Home | History | Annotate | Download | only in Analysis
      1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the implementation of the scalar evolution analysis
     11 // engine, which is used primarily to analyze expressions involving induction
     12 // variables in loops.
     13 //
     14 // There are several aspects to this library.  First is the representation of
     15 // scalar expressions, which are represented as subclasses of the SCEV class.
     16 // These classes are used to represent certain types of subexpressions that we
     17 // can handle. We only create one SCEV of a particular shape, so
     18 // pointer-comparisons for equality are legal.
     19 //
     20 // One important aspect of the SCEV objects is that they are never cyclic, even
     21 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
     22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
     23 // recurrence) then we represent it directly as a recurrence node, otherwise we
     24 // represent it as a SCEVUnknown node.
     25 //
     26 // In addition to being able to represent expressions of various types, we also
     27 // have folders that are used to build the *canonical* representation for a
     28 // particular expression.  These folders are capable of using a variety of
     29 // rewrite rules to simplify the expressions.
     30 //
     31 // Once the folders are defined, we can implement the more interesting
     32 // higher-level code, such as the code that recognizes PHI nodes of various
     33 // types, computes the execution count of a loop, etc.
     34 //
     35 // TODO: We should use these routines and value representations to implement
     36 // dependence analysis!
     37 //
     38 //===----------------------------------------------------------------------===//
     39 //
     40 // There are several good references for the techniques used in this analysis.
     41 //
     42 //  Chains of recurrences -- a method to expedite the evaluation
     43 //  of closed-form functions
     44 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
     45 //
     46 //  On computational properties of chains of recurrences
     47 //  Eugene V. Zima
     48 //
     49 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
     50 //  Robert A. van Engelen
     51 //
     52 //  Efficient Symbolic Analysis for Optimizing Compilers
     53 //  Robert A. van Engelen
     54 //
     55 //  Using the chains of recurrences algebra for data dependence testing and
     56 //  induction variable substitution
     57 //  MS Thesis, Johnie Birch
     58 //
     59 //===----------------------------------------------------------------------===//
     60 
     61 #include "llvm/Analysis/ScalarEvolution.h"
     62 #include "llvm/ADT/Optional.h"
     63 #include "llvm/ADT/STLExtras.h"
     64 #include "llvm/ADT/SmallPtrSet.h"
     65 #include "llvm/ADT/Statistic.h"
     66 #include "llvm/Analysis/AssumptionCache.h"
     67 #include "llvm/Analysis/ConstantFolding.h"
     68 #include "llvm/Analysis/InstructionSimplify.h"
     69 #include "llvm/Analysis/LoopInfo.h"
     70 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     71 #include "llvm/Analysis/TargetLibraryInfo.h"
     72 #include "llvm/Analysis/ValueTracking.h"
     73 #include "llvm/IR/ConstantRange.h"
     74 #include "llvm/IR/Constants.h"
     75 #include "llvm/IR/DataLayout.h"
     76 #include "llvm/IR/DerivedTypes.h"
     77 #include "llvm/IR/Dominators.h"
     78 #include "llvm/IR/GetElementPtrTypeIterator.h"
     79 #include "llvm/IR/GlobalAlias.h"
     80 #include "llvm/IR/GlobalVariable.h"
     81 #include "llvm/IR/InstIterator.h"
     82 #include "llvm/IR/Instructions.h"
     83 #include "llvm/IR/LLVMContext.h"
     84 #include "llvm/IR/Metadata.h"
     85 #include "llvm/IR/Operator.h"
     86 #include "llvm/IR/PatternMatch.h"
     87 #include "llvm/Support/CommandLine.h"
     88 #include "llvm/Support/Debug.h"
     89 #include "llvm/Support/ErrorHandling.h"
     90 #include "llvm/Support/MathExtras.h"
     91 #include "llvm/Support/raw_ostream.h"
     92 #include "llvm/Support/SaveAndRestore.h"
     93 #include <algorithm>
     94 using namespace llvm;
     95 
     96 #define DEBUG_TYPE "scalar-evolution"
     97 
     98 STATISTIC(NumArrayLenItCounts,
     99           "Number of trip counts computed with array length");
    100 STATISTIC(NumTripCountsComputed,
    101           "Number of loops with predictable loop counts");
    102 STATISTIC(NumTripCountsNotComputed,
    103           "Number of loops without predictable loop counts");
    104 STATISTIC(NumBruteForceTripCountsComputed,
    105           "Number of loops with trip counts computed by force");
    106 
    107 static cl::opt<unsigned>
    108 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
    109                         cl::desc("Maximum number of iterations SCEV will "
    110                                  "symbolically execute a constant "
    111                                  "derived loop"),
    112                         cl::init(100));
    113 
    114 // FIXME: Enable this with XDEBUG when the test suite is clean.
    115 static cl::opt<bool>
    116 VerifySCEV("verify-scev",
    117            cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
    118 
    119 //===----------------------------------------------------------------------===//
    120 //                           SCEV class definitions
    121 //===----------------------------------------------------------------------===//
    122 
    123 //===----------------------------------------------------------------------===//
    124 // Implementation of the SCEV class.
    125 //
    126 
    127 LLVM_DUMP_METHOD
    128 void SCEV::dump() const {
    129   print(dbgs());
    130   dbgs() << '\n';
    131 }
    132 
    133 void SCEV::print(raw_ostream &OS) const {
    134   switch (static_cast<SCEVTypes>(getSCEVType())) {
    135   case scConstant:
    136     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
    137     return;
    138   case scTruncate: {
    139     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
    140     const SCEV *Op = Trunc->getOperand();
    141     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
    142        << *Trunc->getType() << ")";
    143     return;
    144   }
    145   case scZeroExtend: {
    146     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
    147     const SCEV *Op = ZExt->getOperand();
    148     OS << "(zext " << *Op->getType() << " " << *Op << " to "
    149        << *ZExt->getType() << ")";
    150     return;
    151   }
    152   case scSignExtend: {
    153     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
    154     const SCEV *Op = SExt->getOperand();
    155     OS << "(sext " << *Op->getType() << " " << *Op << " to "
    156        << *SExt->getType() << ")";
    157     return;
    158   }
    159   case scAddRecExpr: {
    160     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
    161     OS << "{" << *AR->getOperand(0);
    162     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
    163       OS << ",+," << *AR->getOperand(i);
    164     OS << "}<";
    165     if (AR->getNoWrapFlags(FlagNUW))
    166       OS << "nuw><";
    167     if (AR->getNoWrapFlags(FlagNSW))
    168       OS << "nsw><";
    169     if (AR->getNoWrapFlags(FlagNW) &&
    170         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
    171       OS << "nw><";
    172     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
    173     OS << ">";
    174     return;
    175   }
    176   case scAddExpr:
    177   case scMulExpr:
    178   case scUMaxExpr:
    179   case scSMaxExpr: {
    180     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
    181     const char *OpStr = nullptr;
    182     switch (NAry->getSCEVType()) {
    183     case scAddExpr: OpStr = " + "; break;
    184     case scMulExpr: OpStr = " * "; break;
    185     case scUMaxExpr: OpStr = " umax "; break;
    186     case scSMaxExpr: OpStr = " smax "; break;
    187     }
    188     OS << "(";
    189     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
    190          I != E; ++I) {
    191       OS << **I;
    192       if (std::next(I) != E)
    193         OS << OpStr;
    194     }
    195     OS << ")";
    196     switch (NAry->getSCEVType()) {
    197     case scAddExpr:
    198     case scMulExpr:
    199       if (NAry->getNoWrapFlags(FlagNUW))
    200         OS << "<nuw>";
    201       if (NAry->getNoWrapFlags(FlagNSW))
    202         OS << "<nsw>";
    203     }
    204     return;
    205   }
    206   case scUDivExpr: {
    207     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
    208     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
    209     return;
    210   }
    211   case scUnknown: {
    212     const SCEVUnknown *U = cast<SCEVUnknown>(this);
    213     Type *AllocTy;
    214     if (U->isSizeOf(AllocTy)) {
    215       OS << "sizeof(" << *AllocTy << ")";
    216       return;
    217     }
    218     if (U->isAlignOf(AllocTy)) {
    219       OS << "alignof(" << *AllocTy << ")";
    220       return;
    221     }
    222 
    223     Type *CTy;
    224     Constant *FieldNo;
    225     if (U->isOffsetOf(CTy, FieldNo)) {
    226       OS << "offsetof(" << *CTy << ", ";
    227       FieldNo->printAsOperand(OS, false);
    228       OS << ")";
    229       return;
    230     }
    231 
    232     // Otherwise just print it normally.
    233     U->getValue()->printAsOperand(OS, false);
    234     return;
    235   }
    236   case scCouldNotCompute:
    237     OS << "***COULDNOTCOMPUTE***";
    238     return;
    239   }
    240   llvm_unreachable("Unknown SCEV kind!");
    241 }
    242 
    243 Type *SCEV::getType() const {
    244   switch (static_cast<SCEVTypes>(getSCEVType())) {
    245   case scConstant:
    246     return cast<SCEVConstant>(this)->getType();
    247   case scTruncate:
    248   case scZeroExtend:
    249   case scSignExtend:
    250     return cast<SCEVCastExpr>(this)->getType();
    251   case scAddRecExpr:
    252   case scMulExpr:
    253   case scUMaxExpr:
    254   case scSMaxExpr:
    255     return cast<SCEVNAryExpr>(this)->getType();
    256   case scAddExpr:
    257     return cast<SCEVAddExpr>(this)->getType();
    258   case scUDivExpr:
    259     return cast<SCEVUDivExpr>(this)->getType();
    260   case scUnknown:
    261     return cast<SCEVUnknown>(this)->getType();
    262   case scCouldNotCompute:
    263     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
    264   }
    265   llvm_unreachable("Unknown SCEV kind!");
    266 }
    267 
    268 bool SCEV::isZero() const {
    269   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
    270     return SC->getValue()->isZero();
    271   return false;
    272 }
    273 
    274 bool SCEV::isOne() const {
    275   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
    276     return SC->getValue()->isOne();
    277   return false;
    278 }
    279 
    280 bool SCEV::isAllOnesValue() const {
    281   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
    282     return SC->getValue()->isAllOnesValue();
    283   return false;
    284 }
    285 
    286 /// isNonConstantNegative - Return true if the specified scev is negated, but
    287 /// not a constant.
    288 bool SCEV::isNonConstantNegative() const {
    289   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
    290   if (!Mul) return false;
    291 
    292   // If there is a constant factor, it will be first.
    293   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
    294   if (!SC) return false;
    295 
    296   // Return true if the value is negative, this matches things like (-42 * V).
    297   return SC->getAPInt().isNegative();
    298 }
    299 
    300 SCEVCouldNotCompute::SCEVCouldNotCompute() :
    301   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
    302 
    303 bool SCEVCouldNotCompute::classof(const SCEV *S) {
    304   return S->getSCEVType() == scCouldNotCompute;
    305 }
    306 
    307 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
    308   FoldingSetNodeID ID;
    309   ID.AddInteger(scConstant);
    310   ID.AddPointer(V);
    311   void *IP = nullptr;
    312   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
    313   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
    314   UniqueSCEVs.InsertNode(S, IP);
    315   return S;
    316 }
    317 
    318 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
    319   return getConstant(ConstantInt::get(getContext(), Val));
    320 }
    321 
    322 const SCEV *
    323 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
    324   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
    325   return getConstant(ConstantInt::get(ITy, V, isSigned));
    326 }
    327 
    328 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
    329                            unsigned SCEVTy, const SCEV *op, Type *ty)
    330   : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
    331 
    332 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
    333                                    const SCEV *op, Type *ty)
    334   : SCEVCastExpr(ID, scTruncate, op, ty) {
    335   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
    336          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
    337          "Cannot truncate non-integer value!");
    338 }
    339 
    340 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
    341                                        const SCEV *op, Type *ty)
    342   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
    343   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
    344          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
    345          "Cannot zero extend non-integer value!");
    346 }
    347 
    348 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
    349                                        const SCEV *op, Type *ty)
    350   : SCEVCastExpr(ID, scSignExtend, op, ty) {
    351   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
    352          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
    353          "Cannot sign extend non-integer value!");
    354 }
    355 
    356 void SCEVUnknown::deleted() {
    357   // Clear this SCEVUnknown from various maps.
    358   SE->forgetMemoizedResults(this);
    359 
    360   // Remove this SCEVUnknown from the uniquing map.
    361   SE->UniqueSCEVs.RemoveNode(this);
    362 
    363   // Release the value.
    364   setValPtr(nullptr);
    365 }
    366 
    367 void SCEVUnknown::allUsesReplacedWith(Value *New) {
    368   // Clear this SCEVUnknown from various maps.
    369   SE->forgetMemoizedResults(this);
    370 
    371   // Remove this SCEVUnknown from the uniquing map.
    372   SE->UniqueSCEVs.RemoveNode(this);
    373 
    374   // Update this SCEVUnknown to point to the new value. This is needed
    375   // because there may still be outstanding SCEVs which still point to
    376   // this SCEVUnknown.
    377   setValPtr(New);
    378 }
    379 
    380 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
    381   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
    382     if (VCE->getOpcode() == Instruction::PtrToInt)
    383       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
    384         if (CE->getOpcode() == Instruction::GetElementPtr &&
    385             CE->getOperand(0)->isNullValue() &&
    386             CE->getNumOperands() == 2)
    387           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
    388             if (CI->isOne()) {
    389               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
    390                                  ->getElementType();
    391               return true;
    392             }
    393 
    394   return false;
    395 }
    396 
    397 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
    398   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
    399     if (VCE->getOpcode() == Instruction::PtrToInt)
    400       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
    401         if (CE->getOpcode() == Instruction::GetElementPtr &&
    402             CE->getOperand(0)->isNullValue()) {
    403           Type *Ty =
    404             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
    405           if (StructType *STy = dyn_cast<StructType>(Ty))
    406             if (!STy->isPacked() &&
    407                 CE->getNumOperands() == 3 &&
    408                 CE->getOperand(1)->isNullValue()) {
    409               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
    410                 if (CI->isOne() &&
    411                     STy->getNumElements() == 2 &&
    412                     STy->getElementType(0)->isIntegerTy(1)) {
    413                   AllocTy = STy->getElementType(1);
    414                   return true;
    415                 }
    416             }
    417         }
    418 
    419   return false;
    420 }
    421 
    422 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
    423   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
    424     if (VCE->getOpcode() == Instruction::PtrToInt)
    425       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
    426         if (CE->getOpcode() == Instruction::GetElementPtr &&
    427             CE->getNumOperands() == 3 &&
    428             CE->getOperand(0)->isNullValue() &&
    429             CE->getOperand(1)->isNullValue()) {
    430           Type *Ty =
    431             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
    432           // Ignore vector types here so that ScalarEvolutionExpander doesn't
    433           // emit getelementptrs that index into vectors.
    434           if (Ty->isStructTy() || Ty->isArrayTy()) {
    435             CTy = Ty;
    436             FieldNo = CE->getOperand(2);
    437             return true;
    438           }
    439         }
    440 
    441   return false;
    442 }
    443 
    444 //===----------------------------------------------------------------------===//
    445 //                               SCEV Utilities
    446 //===----------------------------------------------------------------------===//
    447 
    448 namespace {
    449 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
    450 /// than the complexity of the RHS.  This comparator is used to canonicalize
    451 /// expressions.
    452 class SCEVComplexityCompare {
    453   const LoopInfo *const LI;
    454 public:
    455   explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
    456 
    457   // Return true or false if LHS is less than, or at least RHS, respectively.
    458   bool operator()(const SCEV *LHS, const SCEV *RHS) const {
    459     return compare(LHS, RHS) < 0;
    460   }
    461 
    462   // Return negative, zero, or positive, if LHS is less than, equal to, or
    463   // greater than RHS, respectively. A three-way result allows recursive
    464   // comparisons to be more efficient.
    465   int compare(const SCEV *LHS, const SCEV *RHS) const {
    466     // Fast-path: SCEVs are uniqued so we can do a quick equality check.
    467     if (LHS == RHS)
    468       return 0;
    469 
    470     // Primarily, sort the SCEVs by their getSCEVType().
    471     unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
    472     if (LType != RType)
    473       return (int)LType - (int)RType;
    474 
    475     // Aside from the getSCEVType() ordering, the particular ordering
    476     // isn't very important except that it's beneficial to be consistent,
    477     // so that (a + b) and (b + a) don't end up as different expressions.
    478     switch (static_cast<SCEVTypes>(LType)) {
    479     case scUnknown: {
    480       const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
    481       const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
    482 
    483       // Sort SCEVUnknown values with some loose heuristics. TODO: This is
    484       // not as complete as it could be.
    485       const Value *LV = LU->getValue(), *RV = RU->getValue();
    486 
    487       // Order pointer values after integer values. This helps SCEVExpander
    488       // form GEPs.
    489       bool LIsPointer = LV->getType()->isPointerTy(),
    490         RIsPointer = RV->getType()->isPointerTy();
    491       if (LIsPointer != RIsPointer)
    492         return (int)LIsPointer - (int)RIsPointer;
    493 
    494       // Compare getValueID values.
    495       unsigned LID = LV->getValueID(),
    496         RID = RV->getValueID();
    497       if (LID != RID)
    498         return (int)LID - (int)RID;
    499 
    500       // Sort arguments by their position.
    501       if (const Argument *LA = dyn_cast<Argument>(LV)) {
    502         const Argument *RA = cast<Argument>(RV);
    503         unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
    504         return (int)LArgNo - (int)RArgNo;
    505       }
    506 
    507       // For instructions, compare their loop depth, and their operand
    508       // count.  This is pretty loose.
    509       if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
    510         const Instruction *RInst = cast<Instruction>(RV);
    511 
    512         // Compare loop depths.
    513         const BasicBlock *LParent = LInst->getParent(),
    514           *RParent = RInst->getParent();
    515         if (LParent != RParent) {
    516           unsigned LDepth = LI->getLoopDepth(LParent),
    517             RDepth = LI->getLoopDepth(RParent);
    518           if (LDepth != RDepth)
    519             return (int)LDepth - (int)RDepth;
    520         }
    521 
    522         // Compare the number of operands.
    523         unsigned LNumOps = LInst->getNumOperands(),
    524           RNumOps = RInst->getNumOperands();
    525         return (int)LNumOps - (int)RNumOps;
    526       }
    527 
    528       return 0;
    529     }
    530 
    531     case scConstant: {
    532       const SCEVConstant *LC = cast<SCEVConstant>(LHS);
    533       const SCEVConstant *RC = cast<SCEVConstant>(RHS);
    534 
    535       // Compare constant values.
    536       const APInt &LA = LC->getAPInt();
    537       const APInt &RA = RC->getAPInt();
    538       unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
    539       if (LBitWidth != RBitWidth)
    540         return (int)LBitWidth - (int)RBitWidth;
    541       return LA.ult(RA) ? -1 : 1;
    542     }
    543 
    544     case scAddRecExpr: {
    545       const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
    546       const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
    547 
    548       // Compare addrec loop depths.
    549       const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
    550       if (LLoop != RLoop) {
    551         unsigned LDepth = LLoop->getLoopDepth(),
    552           RDepth = RLoop->getLoopDepth();
    553         if (LDepth != RDepth)
    554           return (int)LDepth - (int)RDepth;
    555       }
    556 
    557       // Addrec complexity grows with operand count.
    558       unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
    559       if (LNumOps != RNumOps)
    560         return (int)LNumOps - (int)RNumOps;
    561 
    562       // Lexicographically compare.
    563       for (unsigned i = 0; i != LNumOps; ++i) {
    564         long X = compare(LA->getOperand(i), RA->getOperand(i));
    565         if (X != 0)
    566           return X;
    567       }
    568 
    569       return 0;
    570     }
    571 
    572     case scAddExpr:
    573     case scMulExpr:
    574     case scSMaxExpr:
    575     case scUMaxExpr: {
    576       const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
    577       const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
    578 
    579       // Lexicographically compare n-ary expressions.
    580       unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
    581       if (LNumOps != RNumOps)
    582         return (int)LNumOps - (int)RNumOps;
    583 
    584       for (unsigned i = 0; i != LNumOps; ++i) {
    585         if (i >= RNumOps)
    586           return 1;
    587         long X = compare(LC->getOperand(i), RC->getOperand(i));
    588         if (X != 0)
    589           return X;
    590       }
    591       return (int)LNumOps - (int)RNumOps;
    592     }
    593 
    594     case scUDivExpr: {
    595       const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
    596       const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
    597 
    598       // Lexicographically compare udiv expressions.
    599       long X = compare(LC->getLHS(), RC->getLHS());
    600       if (X != 0)
    601         return X;
    602       return compare(LC->getRHS(), RC->getRHS());
    603     }
    604 
    605     case scTruncate:
    606     case scZeroExtend:
    607     case scSignExtend: {
    608       const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
    609       const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
    610 
    611       // Compare cast expressions by operand.
    612       return compare(LC->getOperand(), RC->getOperand());
    613     }
    614 
    615     case scCouldNotCompute:
    616       llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
    617     }
    618     llvm_unreachable("Unknown SCEV kind!");
    619   }
    620 };
    621 }  // end anonymous namespace
    622 
    623 /// GroupByComplexity - Given a list of SCEV objects, order them by their
    624 /// complexity, and group objects of the same complexity together by value.
    625 /// When this routine is finished, we know that any duplicates in the vector are
    626 /// consecutive and that complexity is monotonically increasing.
    627 ///
    628 /// Note that we go take special precautions to ensure that we get deterministic
    629 /// results from this routine.  In other words, we don't want the results of
    630 /// this to depend on where the addresses of various SCEV objects happened to
    631 /// land in memory.
    632 ///
    633 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
    634                               LoopInfo *LI) {
    635   if (Ops.size() < 2) return;  // Noop
    636   if (Ops.size() == 2) {
    637     // This is the common case, which also happens to be trivially simple.
    638     // Special case it.
    639     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
    640     if (SCEVComplexityCompare(LI)(RHS, LHS))
    641       std::swap(LHS, RHS);
    642     return;
    643   }
    644 
    645   // Do the rough sort by complexity.
    646   std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
    647 
    648   // Now that we are sorted by complexity, group elements of the same
    649   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
    650   // be extremely short in practice.  Note that we take this approach because we
    651   // do not want to depend on the addresses of the objects we are grouping.
    652   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
    653     const SCEV *S = Ops[i];
    654     unsigned Complexity = S->getSCEVType();
    655 
    656     // If there are any objects of the same complexity and same value as this
    657     // one, group them.
    658     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
    659       if (Ops[j] == S) { // Found a duplicate.
    660         // Move it to immediately after i'th element.
    661         std::swap(Ops[i+1], Ops[j]);
    662         ++i;   // no need to rescan it.
    663         if (i == e-2) return;  // Done!
    664       }
    665     }
    666   }
    667 }
    668 
    669 // Returns the size of the SCEV S.
    670 static inline int sizeOfSCEV(const SCEV *S) {
    671   struct FindSCEVSize {
    672     int Size;
    673     FindSCEVSize() : Size(0) {}
    674 
    675     bool follow(const SCEV *S) {
    676       ++Size;
    677       // Keep looking at all operands of S.
    678       return true;
    679     }
    680     bool isDone() const {
    681       return false;
    682     }
    683   };
    684 
    685   FindSCEVSize F;
    686   SCEVTraversal<FindSCEVSize> ST(F);
    687   ST.visitAll(S);
    688   return F.Size;
    689 }
    690 
    691 namespace {
    692 
    693 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
    694 public:
    695   // Computes the Quotient and Remainder of the division of Numerator by
    696   // Denominator.
    697   static void divide(ScalarEvolution &SE, const SCEV *Numerator,
    698                      const SCEV *Denominator, const SCEV **Quotient,
    699                      const SCEV **Remainder) {
    700     assert(Numerator && Denominator && "Uninitialized SCEV");
    701 
    702     SCEVDivision D(SE, Numerator, Denominator);
    703 
    704     // Check for the trivial case here to avoid having to check for it in the
    705     // rest of the code.
    706     if (Numerator == Denominator) {
    707       *Quotient = D.One;
    708       *Remainder = D.Zero;
    709       return;
    710     }
    711 
    712     if (Numerator->isZero()) {
    713       *Quotient = D.Zero;
    714       *Remainder = D.Zero;
    715       return;
    716     }
    717 
    718     // A simple case when N/1. The quotient is N.
    719     if (Denominator->isOne()) {
    720       *Quotient = Numerator;
    721       *Remainder = D.Zero;
    722       return;
    723     }
    724 
    725     // Split the Denominator when it is a product.
    726     if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
    727       const SCEV *Q, *R;
    728       *Quotient = Numerator;
    729       for (const SCEV *Op : T->operands()) {
    730         divide(SE, *Quotient, Op, &Q, &R);
    731         *Quotient = Q;
    732 
    733         // Bail out when the Numerator is not divisible by one of the terms of
    734         // the Denominator.
    735         if (!R->isZero()) {
    736           *Quotient = D.Zero;
    737           *Remainder = Numerator;
    738           return;
    739         }
    740       }
    741       *Remainder = D.Zero;
    742       return;
    743     }
    744 
    745     D.visit(Numerator);
    746     *Quotient = D.Quotient;
    747     *Remainder = D.Remainder;
    748   }
    749 
    750   // Except in the trivial case described above, we do not know how to divide
    751   // Expr by Denominator for the following functions with empty implementation.
    752   void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
    753   void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
    754   void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
    755   void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
    756   void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
    757   void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
    758   void visitUnknown(const SCEVUnknown *Numerator) {}
    759   void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
    760 
    761   void visitConstant(const SCEVConstant *Numerator) {
    762     if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
    763       APInt NumeratorVal = Numerator->getAPInt();
    764       APInt DenominatorVal = D->getAPInt();
    765       uint32_t NumeratorBW = NumeratorVal.getBitWidth();
    766       uint32_t DenominatorBW = DenominatorVal.getBitWidth();
    767 
    768       if (NumeratorBW > DenominatorBW)
    769         DenominatorVal = DenominatorVal.sext(NumeratorBW);
    770       else if (NumeratorBW < DenominatorBW)
    771         NumeratorVal = NumeratorVal.sext(DenominatorBW);
    772 
    773       APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
    774       APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
    775       APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
    776       Quotient = SE.getConstant(QuotientVal);
    777       Remainder = SE.getConstant(RemainderVal);
    778       return;
    779     }
    780   }
    781 
    782   void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
    783     const SCEV *StartQ, *StartR, *StepQ, *StepR;
    784     if (!Numerator->isAffine())
    785       return cannotDivide(Numerator);
    786     divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
    787     divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
    788     // Bail out if the types do not match.
    789     Type *Ty = Denominator->getType();
    790     if (Ty != StartQ->getType() || Ty != StartR->getType() ||
    791         Ty != StepQ->getType() || Ty != StepR->getType())
    792       return cannotDivide(Numerator);
    793     Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
    794                                 Numerator->getNoWrapFlags());
    795     Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
    796                                  Numerator->getNoWrapFlags());
    797   }
    798 
    799   void visitAddExpr(const SCEVAddExpr *Numerator) {
    800     SmallVector<const SCEV *, 2> Qs, Rs;
    801     Type *Ty = Denominator->getType();
    802 
    803     for (const SCEV *Op : Numerator->operands()) {
    804       const SCEV *Q, *R;
    805       divide(SE, Op, Denominator, &Q, &R);
    806 
    807       // Bail out if types do not match.
    808       if (Ty != Q->getType() || Ty != R->getType())
    809         return cannotDivide(Numerator);
    810 
    811       Qs.push_back(Q);
    812       Rs.push_back(R);
    813     }
    814 
    815     if (Qs.size() == 1) {
    816       Quotient = Qs[0];
    817       Remainder = Rs[0];
    818       return;
    819     }
    820 
    821     Quotient = SE.getAddExpr(Qs);
    822     Remainder = SE.getAddExpr(Rs);
    823   }
    824 
    825   void visitMulExpr(const SCEVMulExpr *Numerator) {
    826     SmallVector<const SCEV *, 2> Qs;
    827     Type *Ty = Denominator->getType();
    828 
    829     bool FoundDenominatorTerm = false;
    830     for (const SCEV *Op : Numerator->operands()) {
    831       // Bail out if types do not match.
    832       if (Ty != Op->getType())
    833         return cannotDivide(Numerator);
    834 
    835       if (FoundDenominatorTerm) {
    836         Qs.push_back(Op);
    837         continue;
    838       }
    839 
    840       // Check whether Denominator divides one of the product operands.
    841       const SCEV *Q, *R;
    842       divide(SE, Op, Denominator, &Q, &R);
    843       if (!R->isZero()) {
    844         Qs.push_back(Op);
    845         continue;
    846       }
    847 
    848       // Bail out if types do not match.
    849       if (Ty != Q->getType())
    850         return cannotDivide(Numerator);
    851 
    852       FoundDenominatorTerm = true;
    853       Qs.push_back(Q);
    854     }
    855 
    856     if (FoundDenominatorTerm) {
    857       Remainder = Zero;
    858       if (Qs.size() == 1)
    859         Quotient = Qs[0];
    860       else
    861         Quotient = SE.getMulExpr(Qs);
    862       return;
    863     }
    864 
    865     if (!isa<SCEVUnknown>(Denominator))
    866       return cannotDivide(Numerator);
    867 
    868     // The Remainder is obtained by replacing Denominator by 0 in Numerator.
    869     ValueToValueMap RewriteMap;
    870     RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
    871         cast<SCEVConstant>(Zero)->getValue();
    872     Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
    873 
    874     if (Remainder->isZero()) {
    875       // The Quotient is obtained by replacing Denominator by 1 in Numerator.
    876       RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
    877           cast<SCEVConstant>(One)->getValue();
    878       Quotient =
    879           SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
    880       return;
    881     }
    882 
    883     // Quotient is (Numerator - Remainder) divided by Denominator.
    884     const SCEV *Q, *R;
    885     const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
    886     // This SCEV does not seem to simplify: fail the division here.
    887     if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
    888       return cannotDivide(Numerator);
    889     divide(SE, Diff, Denominator, &Q, &R);
    890     if (R != Zero)
    891       return cannotDivide(Numerator);
    892     Quotient = Q;
    893   }
    894 
    895 private:
    896   SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
    897                const SCEV *Denominator)
    898       : SE(S), Denominator(Denominator) {
    899     Zero = SE.getZero(Denominator->getType());
    900     One = SE.getOne(Denominator->getType());
    901 
    902     // We generally do not know how to divide Expr by Denominator. We
    903     // initialize the division to a "cannot divide" state to simplify the rest
    904     // of the code.
    905     cannotDivide(Numerator);
    906   }
    907 
    908   // Convenience function for giving up on the division. We set the quotient to
    909   // be equal to zero and the remainder to be equal to the numerator.
    910   void cannotDivide(const SCEV *Numerator) {
    911     Quotient = Zero;
    912     Remainder = Numerator;
    913   }
    914 
    915   ScalarEvolution &SE;
    916   const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
    917 };
    918 
    919 }
    920 
    921 //===----------------------------------------------------------------------===//
    922 //                      Simple SCEV method implementations
    923 //===----------------------------------------------------------------------===//
    924 
    925 /// BinomialCoefficient - Compute BC(It, K).  The result has width W.
    926 /// Assume, K > 0.
    927 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
    928                                        ScalarEvolution &SE,
    929                                        Type *ResultTy) {
    930   // Handle the simplest case efficiently.
    931   if (K == 1)
    932     return SE.getTruncateOrZeroExtend(It, ResultTy);
    933 
    934   // We are using the following formula for BC(It, K):
    935   //
    936   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
    937   //
    938   // Suppose, W is the bitwidth of the return value.  We must be prepared for
    939   // overflow.  Hence, we must assure that the result of our computation is
    940   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
    941   // safe in modular arithmetic.
    942   //
    943   // However, this code doesn't use exactly that formula; the formula it uses
    944   // is something like the following, where T is the number of factors of 2 in
    945   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
    946   // exponentiation:
    947   //
    948   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
    949   //
    950   // This formula is trivially equivalent to the previous formula.  However,
    951   // this formula can be implemented much more efficiently.  The trick is that
    952   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
    953   // arithmetic.  To do exact division in modular arithmetic, all we have
    954   // to do is multiply by the inverse.  Therefore, this step can be done at
    955   // width W.
    956   //
    957   // The next issue is how to safely do the division by 2^T.  The way this
    958   // is done is by doing the multiplication step at a width of at least W + T
    959   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
    960   // when we perform the division by 2^T (which is equivalent to a right shift
    961   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
    962   // truncated out after the division by 2^T.
    963   //
    964   // In comparison to just directly using the first formula, this technique
    965   // is much more efficient; using the first formula requires W * K bits,
    966   // but this formula less than W + K bits. Also, the first formula requires
    967   // a division step, whereas this formula only requires multiplies and shifts.
    968   //
    969   // It doesn't matter whether the subtraction step is done in the calculation
    970   // width or the input iteration count's width; if the subtraction overflows,
    971   // the result must be zero anyway.  We prefer here to do it in the width of
    972   // the induction variable because it helps a lot for certain cases; CodeGen
    973   // isn't smart enough to ignore the overflow, which leads to much less
    974   // efficient code if the width of the subtraction is wider than the native
    975   // register width.
    976   //
    977   // (It's possible to not widen at all by pulling out factors of 2 before
    978   // the multiplication; for example, K=2 can be calculated as
    979   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
    980   // extra arithmetic, so it's not an obvious win, and it gets
    981   // much more complicated for K > 3.)
    982 
    983   // Protection from insane SCEVs; this bound is conservative,
    984   // but it probably doesn't matter.
    985   if (K > 1000)
    986     return SE.getCouldNotCompute();
    987 
    988   unsigned W = SE.getTypeSizeInBits(ResultTy);
    989 
    990   // Calculate K! / 2^T and T; we divide out the factors of two before
    991   // multiplying for calculating K! / 2^T to avoid overflow.
    992   // Other overflow doesn't matter because we only care about the bottom
    993   // W bits of the result.
    994   APInt OddFactorial(W, 1);
    995   unsigned T = 1;
    996   for (unsigned i = 3; i <= K; ++i) {
    997     APInt Mult(W, i);
    998     unsigned TwoFactors = Mult.countTrailingZeros();
    999     T += TwoFactors;
   1000     Mult = Mult.lshr(TwoFactors);
   1001     OddFactorial *= Mult;
   1002   }
   1003 
   1004   // We need at least W + T bits for the multiplication step
   1005   unsigned CalculationBits = W + T;
   1006 
   1007   // Calculate 2^T, at width T+W.
   1008   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
   1009 
   1010   // Calculate the multiplicative inverse of K! / 2^T;
   1011   // this multiplication factor will perform the exact division by
   1012   // K! / 2^T.
   1013   APInt Mod = APInt::getSignedMinValue(W+1);
   1014   APInt MultiplyFactor = OddFactorial.zext(W+1);
   1015   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
   1016   MultiplyFactor = MultiplyFactor.trunc(W);
   1017 
   1018   // Calculate the product, at width T+W
   1019   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
   1020                                                       CalculationBits);
   1021   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
   1022   for (unsigned i = 1; i != K; ++i) {
   1023     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
   1024     Dividend = SE.getMulExpr(Dividend,
   1025                              SE.getTruncateOrZeroExtend(S, CalculationTy));
   1026   }
   1027 
   1028   // Divide by 2^T
   1029   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
   1030 
   1031   // Truncate the result, and divide by K! / 2^T.
   1032 
   1033   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
   1034                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
   1035 }
   1036 
   1037 /// evaluateAtIteration - Return the value of this chain of recurrences at
   1038 /// the specified iteration number.  We can evaluate this recurrence by
   1039 /// multiplying each element in the chain by the binomial coefficient
   1040 /// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
   1041 ///
   1042 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
   1043 ///
   1044 /// where BC(It, k) stands for binomial coefficient.
   1045 ///
   1046 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
   1047                                                 ScalarEvolution &SE) const {
   1048   const SCEV *Result = getStart();
   1049   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
   1050     // The computation is correct in the face of overflow provided that the
   1051     // multiplication is performed _after_ the evaluation of the binomial
   1052     // coefficient.
   1053     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
   1054     if (isa<SCEVCouldNotCompute>(Coeff))
   1055       return Coeff;
   1056 
   1057     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
   1058   }
   1059   return Result;
   1060 }
   1061 
   1062 //===----------------------------------------------------------------------===//
   1063 //                    SCEV Expression folder implementations
   1064 //===----------------------------------------------------------------------===//
   1065 
   1066 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
   1067                                              Type *Ty) {
   1068   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
   1069          "This is not a truncating conversion!");
   1070   assert(isSCEVable(Ty) &&
   1071          "This is not a conversion to a SCEVable type!");
   1072   Ty = getEffectiveSCEVType(Ty);
   1073 
   1074   FoldingSetNodeID ID;
   1075   ID.AddInteger(scTruncate);
   1076   ID.AddPointer(Op);
   1077   ID.AddPointer(Ty);
   1078   void *IP = nullptr;
   1079   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   1080 
   1081   // Fold if the operand is constant.
   1082   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
   1083     return getConstant(
   1084       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
   1085 
   1086   // trunc(trunc(x)) --> trunc(x)
   1087   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
   1088     return getTruncateExpr(ST->getOperand(), Ty);
   1089 
   1090   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
   1091   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
   1092     return getTruncateOrSignExtend(SS->getOperand(), Ty);
   1093 
   1094   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
   1095   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
   1096     return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
   1097 
   1098   // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
   1099   // eliminate all the truncates, or we replace other casts with truncates.
   1100   if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
   1101     SmallVector<const SCEV *, 4> Operands;
   1102     bool hasTrunc = false;
   1103     for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
   1104       const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
   1105       if (!isa<SCEVCastExpr>(SA->getOperand(i)))
   1106         hasTrunc = isa<SCEVTruncateExpr>(S);
   1107       Operands.push_back(S);
   1108     }
   1109     if (!hasTrunc)
   1110       return getAddExpr(Operands);
   1111     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
   1112   }
   1113 
   1114   // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
   1115   // eliminate all the truncates, or we replace other casts with truncates.
   1116   if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
   1117     SmallVector<const SCEV *, 4> Operands;
   1118     bool hasTrunc = false;
   1119     for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
   1120       const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
   1121       if (!isa<SCEVCastExpr>(SM->getOperand(i)))
   1122         hasTrunc = isa<SCEVTruncateExpr>(S);
   1123       Operands.push_back(S);
   1124     }
   1125     if (!hasTrunc)
   1126       return getMulExpr(Operands);
   1127     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
   1128   }
   1129 
   1130   // If the input value is a chrec scev, truncate the chrec's operands.
   1131   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
   1132     SmallVector<const SCEV *, 4> Operands;
   1133     for (const SCEV *Op : AddRec->operands())
   1134       Operands.push_back(getTruncateExpr(Op, Ty));
   1135     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
   1136   }
   1137 
   1138   // The cast wasn't folded; create an explicit cast node. We can reuse
   1139   // the existing insert position since if we get here, we won't have
   1140   // made any changes which would invalidate it.
   1141   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
   1142                                                  Op, Ty);
   1143   UniqueSCEVs.InsertNode(S, IP);
   1144   return S;
   1145 }
   1146 
   1147 // Get the limit of a recurrence such that incrementing by Step cannot cause
   1148 // signed overflow as long as the value of the recurrence within the
   1149 // loop does not exceed this limit before incrementing.
   1150 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
   1151                                                  ICmpInst::Predicate *Pred,
   1152                                                  ScalarEvolution *SE) {
   1153   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
   1154   if (SE->isKnownPositive(Step)) {
   1155     *Pred = ICmpInst::ICMP_SLT;
   1156     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
   1157                            SE->getSignedRange(Step).getSignedMax());
   1158   }
   1159   if (SE->isKnownNegative(Step)) {
   1160     *Pred = ICmpInst::ICMP_SGT;
   1161     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
   1162                            SE->getSignedRange(Step).getSignedMin());
   1163   }
   1164   return nullptr;
   1165 }
   1166 
   1167 // Get the limit of a recurrence such that incrementing by Step cannot cause
   1168 // unsigned overflow as long as the value of the recurrence within the loop does
   1169 // not exceed this limit before incrementing.
   1170 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
   1171                                                    ICmpInst::Predicate *Pred,
   1172                                                    ScalarEvolution *SE) {
   1173   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
   1174   *Pred = ICmpInst::ICMP_ULT;
   1175 
   1176   return SE->getConstant(APInt::getMinValue(BitWidth) -
   1177                          SE->getUnsignedRange(Step).getUnsignedMax());
   1178 }
   1179 
   1180 namespace {
   1181 
   1182 struct ExtendOpTraitsBase {
   1183   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
   1184 };
   1185 
   1186 // Used to make code generic over signed and unsigned overflow.
   1187 template <typename ExtendOp> struct ExtendOpTraits {
   1188   // Members present:
   1189   //
   1190   // static const SCEV::NoWrapFlags WrapType;
   1191   //
   1192   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
   1193   //
   1194   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
   1195   //                                           ICmpInst::Predicate *Pred,
   1196   //                                           ScalarEvolution *SE);
   1197 };
   1198 
   1199 template <>
   1200 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
   1201   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
   1202 
   1203   static const GetExtendExprTy GetExtendExpr;
   1204 
   1205   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
   1206                                              ICmpInst::Predicate *Pred,
   1207                                              ScalarEvolution *SE) {
   1208     return getSignedOverflowLimitForStep(Step, Pred, SE);
   1209   }
   1210 };
   1211 
   1212 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
   1213     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
   1214 
   1215 template <>
   1216 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
   1217   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
   1218 
   1219   static const GetExtendExprTy GetExtendExpr;
   1220 
   1221   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
   1222                                              ICmpInst::Predicate *Pred,
   1223                                              ScalarEvolution *SE) {
   1224     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
   1225   }
   1226 };
   1227 
   1228 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
   1229     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
   1230 }
   1231 
   1232 // The recurrence AR has been shown to have no signed/unsigned wrap or something
   1233 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
   1234 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
   1235 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
   1236 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
   1237 // expression "Step + sext/zext(PreIncAR)" is congruent with
   1238 // "sext/zext(PostIncAR)"
   1239 template <typename ExtendOpTy>
   1240 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
   1241                                         ScalarEvolution *SE) {
   1242   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
   1243   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
   1244 
   1245   const Loop *L = AR->getLoop();
   1246   const SCEV *Start = AR->getStart();
   1247   const SCEV *Step = AR->getStepRecurrence(*SE);
   1248 
   1249   // Check for a simple looking step prior to loop entry.
   1250   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
   1251   if (!SA)
   1252     return nullptr;
   1253 
   1254   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
   1255   // subtraction is expensive. For this purpose, perform a quick and dirty
   1256   // difference, by checking for Step in the operand list.
   1257   SmallVector<const SCEV *, 4> DiffOps;
   1258   for (const SCEV *Op : SA->operands())
   1259     if (Op != Step)
   1260       DiffOps.push_back(Op);
   1261 
   1262   if (DiffOps.size() == SA->getNumOperands())
   1263     return nullptr;
   1264 
   1265   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
   1266   // `Step`:
   1267 
   1268   // 1. NSW/NUW flags on the step increment.
   1269   auto PreStartFlags =
   1270     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
   1271   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
   1272   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
   1273       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
   1274 
   1275   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
   1276   // "S+X does not sign/unsign-overflow".
   1277   //
   1278 
   1279   const SCEV *BECount = SE->getBackedgeTakenCount(L);
   1280   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
   1281       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
   1282     return PreStart;
   1283 
   1284   // 2. Direct overflow check on the step operation's expression.
   1285   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
   1286   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
   1287   const SCEV *OperandExtendedStart =
   1288       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
   1289                      (SE->*GetExtendExpr)(Step, WideTy));
   1290   if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
   1291     if (PreAR && AR->getNoWrapFlags(WrapType)) {
   1292       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
   1293       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
   1294       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
   1295       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
   1296     }
   1297     return PreStart;
   1298   }
   1299 
   1300   // 3. Loop precondition.
   1301   ICmpInst::Predicate Pred;
   1302   const SCEV *OverflowLimit =
   1303       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
   1304 
   1305   if (OverflowLimit &&
   1306       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
   1307     return PreStart;
   1308 
   1309   return nullptr;
   1310 }
   1311 
   1312 // Get the normalized zero or sign extended expression for this AddRec's Start.
   1313 template <typename ExtendOpTy>
   1314 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
   1315                                         ScalarEvolution *SE) {
   1316   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
   1317 
   1318   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
   1319   if (!PreStart)
   1320     return (SE->*GetExtendExpr)(AR->getStart(), Ty);
   1321 
   1322   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
   1323                         (SE->*GetExtendExpr)(PreStart, Ty));
   1324 }
   1325 
   1326 // Try to prove away overflow by looking at "nearby" add recurrences.  A
   1327 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
   1328 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
   1329 //
   1330 // Formally:
   1331 //
   1332 //     {S,+,X} == {S-T,+,X} + T
   1333 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
   1334 //
   1335 // If ({S-T,+,X} + T) does not overflow  ... (1)
   1336 //
   1337 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
   1338 //
   1339 // If {S-T,+,X} does not overflow  ... (2)
   1340 //
   1341 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
   1342 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
   1343 //
   1344 // If (S-T)+T does not overflow  ... (3)
   1345 //
   1346 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
   1347 //      == {Ext(S),+,Ext(X)} == LHS
   1348 //
   1349 // Thus, if (1), (2) and (3) are true for some T, then
   1350 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
   1351 //
   1352 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
   1353 // does not overflow" restricted to the 0th iteration.  Therefore we only need
   1354 // to check for (1) and (2).
   1355 //
   1356 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
   1357 // is `Delta` (defined below).
   1358 //
   1359 template <typename ExtendOpTy>
   1360 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
   1361                                                 const SCEV *Step,
   1362                                                 const Loop *L) {
   1363   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
   1364 
   1365   // We restrict `Start` to a constant to prevent SCEV from spending too much
   1366   // time here.  It is correct (but more expensive) to continue with a
   1367   // non-constant `Start` and do a general SCEV subtraction to compute
   1368   // `PreStart` below.
   1369   //
   1370   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
   1371   if (!StartC)
   1372     return false;
   1373 
   1374   APInt StartAI = StartC->getAPInt();
   1375 
   1376   for (unsigned Delta : {-2, -1, 1, 2}) {
   1377     const SCEV *PreStart = getConstant(StartAI - Delta);
   1378 
   1379     FoldingSetNodeID ID;
   1380     ID.AddInteger(scAddRecExpr);
   1381     ID.AddPointer(PreStart);
   1382     ID.AddPointer(Step);
   1383     ID.AddPointer(L);
   1384     void *IP = nullptr;
   1385     const auto *PreAR =
   1386       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
   1387 
   1388     // Give up if we don't already have the add recurrence we need because
   1389     // actually constructing an add recurrence is relatively expensive.
   1390     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
   1391       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
   1392       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
   1393       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
   1394           DeltaS, &Pred, this);
   1395       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
   1396         return true;
   1397     }
   1398   }
   1399 
   1400   return false;
   1401 }
   1402 
   1403 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
   1404                                                Type *Ty) {
   1405   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
   1406          "This is not an extending conversion!");
   1407   assert(isSCEVable(Ty) &&
   1408          "This is not a conversion to a SCEVable type!");
   1409   Ty = getEffectiveSCEVType(Ty);
   1410 
   1411   // Fold if the operand is constant.
   1412   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
   1413     return getConstant(
   1414       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
   1415 
   1416   // zext(zext(x)) --> zext(x)
   1417   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
   1418     return getZeroExtendExpr(SZ->getOperand(), Ty);
   1419 
   1420   // Before doing any expensive analysis, check to see if we've already
   1421   // computed a SCEV for this Op and Ty.
   1422   FoldingSetNodeID ID;
   1423   ID.AddInteger(scZeroExtend);
   1424   ID.AddPointer(Op);
   1425   ID.AddPointer(Ty);
   1426   void *IP = nullptr;
   1427   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   1428 
   1429   // zext(trunc(x)) --> zext(x) or x or trunc(x)
   1430   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
   1431     // It's possible the bits taken off by the truncate were all zero bits. If
   1432     // so, we should be able to simplify this further.
   1433     const SCEV *X = ST->getOperand();
   1434     ConstantRange CR = getUnsignedRange(X);
   1435     unsigned TruncBits = getTypeSizeInBits(ST->getType());
   1436     unsigned NewBits = getTypeSizeInBits(Ty);
   1437     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
   1438             CR.zextOrTrunc(NewBits)))
   1439       return getTruncateOrZeroExtend(X, Ty);
   1440   }
   1441 
   1442   // If the input value is a chrec scev, and we can prove that the value
   1443   // did not overflow the old, smaller, value, we can zero extend all of the
   1444   // operands (often constants).  This allows analysis of something like
   1445   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
   1446   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
   1447     if (AR->isAffine()) {
   1448       const SCEV *Start = AR->getStart();
   1449       const SCEV *Step = AR->getStepRecurrence(*this);
   1450       unsigned BitWidth = getTypeSizeInBits(AR->getType());
   1451       const Loop *L = AR->getLoop();
   1452 
   1453       // If we have special knowledge that this addrec won't overflow,
   1454       // we don't need to do any further analysis.
   1455       if (AR->getNoWrapFlags(SCEV::FlagNUW))
   1456         return getAddRecExpr(
   1457             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
   1458             getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
   1459 
   1460       // Check whether the backedge-taken count is SCEVCouldNotCompute.
   1461       // Note that this serves two purposes: It filters out loops that are
   1462       // simply not analyzable, and it covers the case where this code is
   1463       // being called from within backedge-taken count analysis, such that
   1464       // attempting to ask for the backedge-taken count would likely result
   1465       // in infinite recursion. In the later case, the analysis code will
   1466       // cope with a conservative value, and it will take care to purge
   1467       // that value once it has finished.
   1468       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
   1469       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
   1470         // Manually compute the final value for AR, checking for
   1471         // overflow.
   1472 
   1473         // Check whether the backedge-taken count can be losslessly casted to
   1474         // the addrec's type. The count is always unsigned.
   1475         const SCEV *CastedMaxBECount =
   1476           getTruncateOrZeroExtend(MaxBECount, Start->getType());
   1477         const SCEV *RecastedMaxBECount =
   1478           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
   1479         if (MaxBECount == RecastedMaxBECount) {
   1480           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
   1481           // Check whether Start+Step*MaxBECount has no unsigned overflow.
   1482           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
   1483           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
   1484           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
   1485           const SCEV *WideMaxBECount =
   1486             getZeroExtendExpr(CastedMaxBECount, WideTy);
   1487           const SCEV *OperandExtendedAdd =
   1488             getAddExpr(WideStart,
   1489                        getMulExpr(WideMaxBECount,
   1490                                   getZeroExtendExpr(Step, WideTy)));
   1491           if (ZAdd == OperandExtendedAdd) {
   1492             // Cache knowledge of AR NUW, which is propagated to this AddRec.
   1493             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
   1494             // Return the expression with the addrec on the outside.
   1495             return getAddRecExpr(
   1496                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
   1497                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
   1498           }
   1499           // Similar to above, only this time treat the step value as signed.
   1500           // This covers loops that count down.
   1501           OperandExtendedAdd =
   1502             getAddExpr(WideStart,
   1503                        getMulExpr(WideMaxBECount,
   1504                                   getSignExtendExpr(Step, WideTy)));
   1505           if (ZAdd == OperandExtendedAdd) {
   1506             // Cache knowledge of AR NW, which is propagated to this AddRec.
   1507             // Negative step causes unsigned wrap, but it still can't self-wrap.
   1508             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
   1509             // Return the expression with the addrec on the outside.
   1510             return getAddRecExpr(
   1511                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
   1512                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
   1513           }
   1514         }
   1515 
   1516         // If the backedge is guarded by a comparison with the pre-inc value
   1517         // the addrec is safe. Also, if the entry is guarded by a comparison
   1518         // with the start value and the backedge is guarded by a comparison
   1519         // with the post-inc value, the addrec is safe.
   1520         if (isKnownPositive(Step)) {
   1521           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
   1522                                       getUnsignedRange(Step).getUnsignedMax());
   1523           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
   1524               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
   1525                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
   1526                                            AR->getPostIncExpr(*this), N))) {
   1527             // Cache knowledge of AR NUW, which is propagated to this AddRec.
   1528             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
   1529             // Return the expression with the addrec on the outside.
   1530             return getAddRecExpr(
   1531                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
   1532                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
   1533           }
   1534         } else if (isKnownNegative(Step)) {
   1535           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
   1536                                       getSignedRange(Step).getSignedMin());
   1537           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
   1538               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
   1539                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
   1540                                            AR->getPostIncExpr(*this), N))) {
   1541             // Cache knowledge of AR NW, which is propagated to this AddRec.
   1542             // Negative step causes unsigned wrap, but it still can't self-wrap.
   1543             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
   1544             // Return the expression with the addrec on the outside.
   1545             return getAddRecExpr(
   1546                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
   1547                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
   1548           }
   1549         }
   1550       }
   1551 
   1552       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
   1553         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
   1554         return getAddRecExpr(
   1555             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
   1556             getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
   1557       }
   1558     }
   1559 
   1560   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
   1561     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
   1562     if (SA->getNoWrapFlags(SCEV::FlagNUW)) {
   1563       // If the addition does not unsign overflow then we can, by definition,
   1564       // commute the zero extension with the addition operation.
   1565       SmallVector<const SCEV *, 4> Ops;
   1566       for (const auto *Op : SA->operands())
   1567         Ops.push_back(getZeroExtendExpr(Op, Ty));
   1568       return getAddExpr(Ops, SCEV::FlagNUW);
   1569     }
   1570   }
   1571 
   1572   // The cast wasn't folded; create an explicit cast node.
   1573   // Recompute the insert position, as it may have been invalidated.
   1574   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   1575   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
   1576                                                    Op, Ty);
   1577   UniqueSCEVs.InsertNode(S, IP);
   1578   return S;
   1579 }
   1580 
   1581 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
   1582                                                Type *Ty) {
   1583   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
   1584          "This is not an extending conversion!");
   1585   assert(isSCEVable(Ty) &&
   1586          "This is not a conversion to a SCEVable type!");
   1587   Ty = getEffectiveSCEVType(Ty);
   1588 
   1589   // Fold if the operand is constant.
   1590   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
   1591     return getConstant(
   1592       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
   1593 
   1594   // sext(sext(x)) --> sext(x)
   1595   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
   1596     return getSignExtendExpr(SS->getOperand(), Ty);
   1597 
   1598   // sext(zext(x)) --> zext(x)
   1599   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
   1600     return getZeroExtendExpr(SZ->getOperand(), Ty);
   1601 
   1602   // Before doing any expensive analysis, check to see if we've already
   1603   // computed a SCEV for this Op and Ty.
   1604   FoldingSetNodeID ID;
   1605   ID.AddInteger(scSignExtend);
   1606   ID.AddPointer(Op);
   1607   ID.AddPointer(Ty);
   1608   void *IP = nullptr;
   1609   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   1610 
   1611   // If the input value is provably positive, build a zext instead.
   1612   if (isKnownNonNegative(Op))
   1613     return getZeroExtendExpr(Op, Ty);
   1614 
   1615   // sext(trunc(x)) --> sext(x) or x or trunc(x)
   1616   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
   1617     // It's possible the bits taken off by the truncate were all sign bits. If
   1618     // so, we should be able to simplify this further.
   1619     const SCEV *X = ST->getOperand();
   1620     ConstantRange CR = getSignedRange(X);
   1621     unsigned TruncBits = getTypeSizeInBits(ST->getType());
   1622     unsigned NewBits = getTypeSizeInBits(Ty);
   1623     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
   1624             CR.sextOrTrunc(NewBits)))
   1625       return getTruncateOrSignExtend(X, Ty);
   1626   }
   1627 
   1628   // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
   1629   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
   1630     if (SA->getNumOperands() == 2) {
   1631       auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
   1632       auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
   1633       if (SMul && SC1) {
   1634         if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
   1635           const APInt &C1 = SC1->getAPInt();
   1636           const APInt &C2 = SC2->getAPInt();
   1637           if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
   1638               C2.ugt(C1) && C2.isPowerOf2())
   1639             return getAddExpr(getSignExtendExpr(SC1, Ty),
   1640                               getSignExtendExpr(SMul, Ty));
   1641         }
   1642       }
   1643     }
   1644 
   1645     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
   1646     if (SA->getNoWrapFlags(SCEV::FlagNSW)) {
   1647       // If the addition does not sign overflow then we can, by definition,
   1648       // commute the sign extension with the addition operation.
   1649       SmallVector<const SCEV *, 4> Ops;
   1650       for (const auto *Op : SA->operands())
   1651         Ops.push_back(getSignExtendExpr(Op, Ty));
   1652       return getAddExpr(Ops, SCEV::FlagNSW);
   1653     }
   1654   }
   1655   // If the input value is a chrec scev, and we can prove that the value
   1656   // did not overflow the old, smaller, value, we can sign extend all of the
   1657   // operands (often constants).  This allows analysis of something like
   1658   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
   1659   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
   1660     if (AR->isAffine()) {
   1661       const SCEV *Start = AR->getStart();
   1662       const SCEV *Step = AR->getStepRecurrence(*this);
   1663       unsigned BitWidth = getTypeSizeInBits(AR->getType());
   1664       const Loop *L = AR->getLoop();
   1665 
   1666       // If we have special knowledge that this addrec won't overflow,
   1667       // we don't need to do any further analysis.
   1668       if (AR->getNoWrapFlags(SCEV::FlagNSW))
   1669         return getAddRecExpr(
   1670             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
   1671             getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
   1672 
   1673       // Check whether the backedge-taken count is SCEVCouldNotCompute.
   1674       // Note that this serves two purposes: It filters out loops that are
   1675       // simply not analyzable, and it covers the case where this code is
   1676       // being called from within backedge-taken count analysis, such that
   1677       // attempting to ask for the backedge-taken count would likely result
   1678       // in infinite recursion. In the later case, the analysis code will
   1679       // cope with a conservative value, and it will take care to purge
   1680       // that value once it has finished.
   1681       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
   1682       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
   1683         // Manually compute the final value for AR, checking for
   1684         // overflow.
   1685 
   1686         // Check whether the backedge-taken count can be losslessly casted to
   1687         // the addrec's type. The count is always unsigned.
   1688         const SCEV *CastedMaxBECount =
   1689           getTruncateOrZeroExtend(MaxBECount, Start->getType());
   1690         const SCEV *RecastedMaxBECount =
   1691           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
   1692         if (MaxBECount == RecastedMaxBECount) {
   1693           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
   1694           // Check whether Start+Step*MaxBECount has no signed overflow.
   1695           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
   1696           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
   1697           const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
   1698           const SCEV *WideMaxBECount =
   1699             getZeroExtendExpr(CastedMaxBECount, WideTy);
   1700           const SCEV *OperandExtendedAdd =
   1701             getAddExpr(WideStart,
   1702                        getMulExpr(WideMaxBECount,
   1703                                   getSignExtendExpr(Step, WideTy)));
   1704           if (SAdd == OperandExtendedAdd) {
   1705             // Cache knowledge of AR NSW, which is propagated to this AddRec.
   1706             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
   1707             // Return the expression with the addrec on the outside.
   1708             return getAddRecExpr(
   1709                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
   1710                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
   1711           }
   1712           // Similar to above, only this time treat the step value as unsigned.
   1713           // This covers loops that count up with an unsigned step.
   1714           OperandExtendedAdd =
   1715             getAddExpr(WideStart,
   1716                        getMulExpr(WideMaxBECount,
   1717                                   getZeroExtendExpr(Step, WideTy)));
   1718           if (SAdd == OperandExtendedAdd) {
   1719             // If AR wraps around then
   1720             //
   1721             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
   1722             // => SAdd != OperandExtendedAdd
   1723             //
   1724             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
   1725             // (SAdd == OperandExtendedAdd => AR is NW)
   1726 
   1727             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
   1728 
   1729             // Return the expression with the addrec on the outside.
   1730             return getAddRecExpr(
   1731                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
   1732                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
   1733           }
   1734         }
   1735 
   1736         // If the backedge is guarded by a comparison with the pre-inc value
   1737         // the addrec is safe. Also, if the entry is guarded by a comparison
   1738         // with the start value and the backedge is guarded by a comparison
   1739         // with the post-inc value, the addrec is safe.
   1740         ICmpInst::Predicate Pred;
   1741         const SCEV *OverflowLimit =
   1742             getSignedOverflowLimitForStep(Step, &Pred, this);
   1743         if (OverflowLimit &&
   1744             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
   1745              (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
   1746               isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
   1747                                           OverflowLimit)))) {
   1748           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
   1749           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
   1750           return getAddRecExpr(
   1751               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
   1752               getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
   1753         }
   1754       }
   1755       // If Start and Step are constants, check if we can apply this
   1756       // transformation:
   1757       // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
   1758       auto *SC1 = dyn_cast<SCEVConstant>(Start);
   1759       auto *SC2 = dyn_cast<SCEVConstant>(Step);
   1760       if (SC1 && SC2) {
   1761         const APInt &C1 = SC1->getAPInt();
   1762         const APInt &C2 = SC2->getAPInt();
   1763         if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
   1764             C2.isPowerOf2()) {
   1765           Start = getSignExtendExpr(Start, Ty);
   1766           const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
   1767                                             AR->getNoWrapFlags());
   1768           return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
   1769         }
   1770       }
   1771 
   1772       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
   1773         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
   1774         return getAddRecExpr(
   1775             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
   1776             getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
   1777       }
   1778     }
   1779 
   1780   // The cast wasn't folded; create an explicit cast node.
   1781   // Recompute the insert position, as it may have been invalidated.
   1782   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   1783   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
   1784                                                    Op, Ty);
   1785   UniqueSCEVs.InsertNode(S, IP);
   1786   return S;
   1787 }
   1788 
   1789 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
   1790 /// unspecified bits out to the given type.
   1791 ///
   1792 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
   1793                                               Type *Ty) {
   1794   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
   1795          "This is not an extending conversion!");
   1796   assert(isSCEVable(Ty) &&
   1797          "This is not a conversion to a SCEVable type!");
   1798   Ty = getEffectiveSCEVType(Ty);
   1799 
   1800   // Sign-extend negative constants.
   1801   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
   1802     if (SC->getAPInt().isNegative())
   1803       return getSignExtendExpr(Op, Ty);
   1804 
   1805   // Peel off a truncate cast.
   1806   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
   1807     const SCEV *NewOp = T->getOperand();
   1808     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
   1809       return getAnyExtendExpr(NewOp, Ty);
   1810     return getTruncateOrNoop(NewOp, Ty);
   1811   }
   1812 
   1813   // Next try a zext cast. If the cast is folded, use it.
   1814   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
   1815   if (!isa<SCEVZeroExtendExpr>(ZExt))
   1816     return ZExt;
   1817 
   1818   // Next try a sext cast. If the cast is folded, use it.
   1819   const SCEV *SExt = getSignExtendExpr(Op, Ty);
   1820   if (!isa<SCEVSignExtendExpr>(SExt))
   1821     return SExt;
   1822 
   1823   // Force the cast to be folded into the operands of an addrec.
   1824   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
   1825     SmallVector<const SCEV *, 4> Ops;
   1826     for (const SCEV *Op : AR->operands())
   1827       Ops.push_back(getAnyExtendExpr(Op, Ty));
   1828     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
   1829   }
   1830 
   1831   // If the expression is obviously signed, use the sext cast value.
   1832   if (isa<SCEVSMaxExpr>(Op))
   1833     return SExt;
   1834 
   1835   // Absent any other information, use the zext cast value.
   1836   return ZExt;
   1837 }
   1838 
   1839 /// CollectAddOperandsWithScales - Process the given Ops list, which is
   1840 /// a list of operands to be added under the given scale, update the given
   1841 /// map. This is a helper function for getAddRecExpr. As an example of
   1842 /// what it does, given a sequence of operands that would form an add
   1843 /// expression like this:
   1844 ///
   1845 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
   1846 ///
   1847 /// where A and B are constants, update the map with these values:
   1848 ///
   1849 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
   1850 ///
   1851 /// and add 13 + A*B*29 to AccumulatedConstant.
   1852 /// This will allow getAddRecExpr to produce this:
   1853 ///
   1854 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
   1855 ///
   1856 /// This form often exposes folding opportunities that are hidden in
   1857 /// the original operand list.
   1858 ///
   1859 /// Return true iff it appears that any interesting folding opportunities
   1860 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
   1861 /// the common case where no interesting opportunities are present, and
   1862 /// is also used as a check to avoid infinite recursion.
   1863 ///
   1864 static bool
   1865 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
   1866                              SmallVectorImpl<const SCEV *> &NewOps,
   1867                              APInt &AccumulatedConstant,
   1868                              const SCEV *const *Ops, size_t NumOperands,
   1869                              const APInt &Scale,
   1870                              ScalarEvolution &SE) {
   1871   bool Interesting = false;
   1872 
   1873   // Iterate over the add operands. They are sorted, with constants first.
   1874   unsigned i = 0;
   1875   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
   1876     ++i;
   1877     // Pull a buried constant out to the outside.
   1878     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
   1879       Interesting = true;
   1880     AccumulatedConstant += Scale * C->getAPInt();
   1881   }
   1882 
   1883   // Next comes everything else. We're especially interested in multiplies
   1884   // here, but they're in the middle, so just visit the rest with one loop.
   1885   for (; i != NumOperands; ++i) {
   1886     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
   1887     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
   1888       APInt NewScale =
   1889           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
   1890       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
   1891         // A multiplication of a constant with another add; recurse.
   1892         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
   1893         Interesting |=
   1894           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
   1895                                        Add->op_begin(), Add->getNumOperands(),
   1896                                        NewScale, SE);
   1897       } else {
   1898         // A multiplication of a constant with some other value. Update
   1899         // the map.
   1900         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
   1901         const SCEV *Key = SE.getMulExpr(MulOps);
   1902         auto Pair = M.insert(std::make_pair(Key, NewScale));
   1903         if (Pair.second) {
   1904           NewOps.push_back(Pair.first->first);
   1905         } else {
   1906           Pair.first->second += NewScale;
   1907           // The map already had an entry for this value, which may indicate
   1908           // a folding opportunity.
   1909           Interesting = true;
   1910         }
   1911       }
   1912     } else {
   1913       // An ordinary operand. Update the map.
   1914       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
   1915         M.insert(std::make_pair(Ops[i], Scale));
   1916       if (Pair.second) {
   1917         NewOps.push_back(Pair.first->first);
   1918       } else {
   1919         Pair.first->second += Scale;
   1920         // The map already had an entry for this value, which may indicate
   1921         // a folding opportunity.
   1922         Interesting = true;
   1923       }
   1924     }
   1925   }
   1926 
   1927   return Interesting;
   1928 }
   1929 
   1930 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
   1931 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
   1932 // can't-overflow flags for the operation if possible.
   1933 static SCEV::NoWrapFlags
   1934 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
   1935                       const SmallVectorImpl<const SCEV *> &Ops,
   1936                       SCEV::NoWrapFlags Flags) {
   1937   using namespace std::placeholders;
   1938   typedef OverflowingBinaryOperator OBO;
   1939 
   1940   bool CanAnalyze =
   1941       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
   1942   (void)CanAnalyze;
   1943   assert(CanAnalyze && "don't call from other places!");
   1944 
   1945   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
   1946   SCEV::NoWrapFlags SignOrUnsignWrap =
   1947       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
   1948 
   1949   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
   1950   auto IsKnownNonNegative = [&](const SCEV *S) {
   1951     return SE->isKnownNonNegative(S);
   1952   };
   1953 
   1954   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
   1955     Flags =
   1956         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
   1957 
   1958   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
   1959 
   1960   if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr &&
   1961       Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) {
   1962 
   1963     // (A + C) --> (A + C)<nsw> if the addition does not sign overflow
   1964     // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow
   1965 
   1966     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
   1967     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
   1968       auto NSWRegion =
   1969         ConstantRange::makeNoWrapRegion(Instruction::Add, C, OBO::NoSignedWrap);
   1970       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
   1971         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
   1972     }
   1973     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
   1974       auto NUWRegion =
   1975         ConstantRange::makeNoWrapRegion(Instruction::Add, C,
   1976                                         OBO::NoUnsignedWrap);
   1977       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
   1978         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
   1979     }
   1980   }
   1981 
   1982   return Flags;
   1983 }
   1984 
   1985 /// getAddExpr - Get a canonical add expression, or something simpler if
   1986 /// possible.
   1987 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
   1988                                         SCEV::NoWrapFlags Flags) {
   1989   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
   1990          "only nuw or nsw allowed");
   1991   assert(!Ops.empty() && "Cannot get empty add!");
   1992   if (Ops.size() == 1) return Ops[0];
   1993 #ifndef NDEBUG
   1994   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
   1995   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
   1996     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
   1997            "SCEVAddExpr operand types don't match!");
   1998 #endif
   1999 
   2000   // Sort by complexity, this groups all similar expression types together.
   2001   GroupByComplexity(Ops, &LI);
   2002 
   2003   Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
   2004 
   2005   // If there are any constants, fold them together.
   2006   unsigned Idx = 0;
   2007   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
   2008     ++Idx;
   2009     assert(Idx < Ops.size());
   2010     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
   2011       // We found two constants, fold them together!
   2012       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
   2013       if (Ops.size() == 2) return Ops[0];
   2014       Ops.erase(Ops.begin()+1);  // Erase the folded element
   2015       LHSC = cast<SCEVConstant>(Ops[0]);
   2016     }
   2017 
   2018     // If we are left with a constant zero being added, strip it off.
   2019     if (LHSC->getValue()->isZero()) {
   2020       Ops.erase(Ops.begin());
   2021       --Idx;
   2022     }
   2023 
   2024     if (Ops.size() == 1) return Ops[0];
   2025   }
   2026 
   2027   // Okay, check to see if the same value occurs in the operand list more than
   2028   // once.  If so, merge them together into an multiply expression.  Since we
   2029   // sorted the list, these values are required to be adjacent.
   2030   Type *Ty = Ops[0]->getType();
   2031   bool FoundMatch = false;
   2032   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
   2033     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
   2034       // Scan ahead to count how many equal operands there are.
   2035       unsigned Count = 2;
   2036       while (i+Count != e && Ops[i+Count] == Ops[i])
   2037         ++Count;
   2038       // Merge the values into a multiply.
   2039       const SCEV *Scale = getConstant(Ty, Count);
   2040       const SCEV *Mul = getMulExpr(Scale, Ops[i]);
   2041       if (Ops.size() == Count)
   2042         return Mul;
   2043       Ops[i] = Mul;
   2044       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
   2045       --i; e -= Count - 1;
   2046       FoundMatch = true;
   2047     }
   2048   if (FoundMatch)
   2049     return getAddExpr(Ops, Flags);
   2050 
   2051   // Check for truncates. If all the operands are truncated from the same
   2052   // type, see if factoring out the truncate would permit the result to be
   2053   // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
   2054   // if the contents of the resulting outer trunc fold to something simple.
   2055   for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
   2056     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
   2057     Type *DstType = Trunc->getType();
   2058     Type *SrcType = Trunc->getOperand()->getType();
   2059     SmallVector<const SCEV *, 8> LargeOps;
   2060     bool Ok = true;
   2061     // Check all the operands to see if they can be represented in the
   2062     // source type of the truncate.
   2063     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   2064       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
   2065         if (T->getOperand()->getType() != SrcType) {
   2066           Ok = false;
   2067           break;
   2068         }
   2069         LargeOps.push_back(T->getOperand());
   2070       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
   2071         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
   2072       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
   2073         SmallVector<const SCEV *, 8> LargeMulOps;
   2074         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
   2075           if (const SCEVTruncateExpr *T =
   2076                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
   2077             if (T->getOperand()->getType() != SrcType) {
   2078               Ok = false;
   2079               break;
   2080             }
   2081             LargeMulOps.push_back(T->getOperand());
   2082           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
   2083             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
   2084           } else {
   2085             Ok = false;
   2086             break;
   2087           }
   2088         }
   2089         if (Ok)
   2090           LargeOps.push_back(getMulExpr(LargeMulOps));
   2091       } else {
   2092         Ok = false;
   2093         break;
   2094       }
   2095     }
   2096     if (Ok) {
   2097       // Evaluate the expression in the larger type.
   2098       const SCEV *Fold = getAddExpr(LargeOps, Flags);
   2099       // If it folds to something simple, use it. Otherwise, don't.
   2100       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
   2101         return getTruncateExpr(Fold, DstType);
   2102     }
   2103   }
   2104 
   2105   // Skip past any other cast SCEVs.
   2106   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
   2107     ++Idx;
   2108 
   2109   // If there are add operands they would be next.
   2110   if (Idx < Ops.size()) {
   2111     bool DeletedAdd = false;
   2112     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
   2113       // If we have an add, expand the add operands onto the end of the operands
   2114       // list.
   2115       Ops.erase(Ops.begin()+Idx);
   2116       Ops.append(Add->op_begin(), Add->op_end());
   2117       DeletedAdd = true;
   2118     }
   2119 
   2120     // If we deleted at least one add, we added operands to the end of the list,
   2121     // and they are not necessarily sorted.  Recurse to resort and resimplify
   2122     // any operands we just acquired.
   2123     if (DeletedAdd)
   2124       return getAddExpr(Ops);
   2125   }
   2126 
   2127   // Skip over the add expression until we get to a multiply.
   2128   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
   2129     ++Idx;
   2130 
   2131   // Check to see if there are any folding opportunities present with
   2132   // operands multiplied by constant values.
   2133   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
   2134     uint64_t BitWidth = getTypeSizeInBits(Ty);
   2135     DenseMap<const SCEV *, APInt> M;
   2136     SmallVector<const SCEV *, 8> NewOps;
   2137     APInt AccumulatedConstant(BitWidth, 0);
   2138     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
   2139                                      Ops.data(), Ops.size(),
   2140                                      APInt(BitWidth, 1), *this)) {
   2141       struct APIntCompare {
   2142         bool operator()(const APInt &LHS, const APInt &RHS) const {
   2143           return LHS.ult(RHS);
   2144         }
   2145       };
   2146 
   2147       // Some interesting folding opportunity is present, so its worthwhile to
   2148       // re-generate the operands list. Group the operands by constant scale,
   2149       // to avoid multiplying by the same constant scale multiple times.
   2150       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
   2151       for (const SCEV *NewOp : NewOps)
   2152         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
   2153       // Re-generate the operands list.
   2154       Ops.clear();
   2155       if (AccumulatedConstant != 0)
   2156         Ops.push_back(getConstant(AccumulatedConstant));
   2157       for (auto &MulOp : MulOpLists)
   2158         if (MulOp.first != 0)
   2159           Ops.push_back(getMulExpr(getConstant(MulOp.first),
   2160                                    getAddExpr(MulOp.second)));
   2161       if (Ops.empty())
   2162         return getZero(Ty);
   2163       if (Ops.size() == 1)
   2164         return Ops[0];
   2165       return getAddExpr(Ops);
   2166     }
   2167   }
   2168 
   2169   // If we are adding something to a multiply expression, make sure the
   2170   // something is not already an operand of the multiply.  If so, merge it into
   2171   // the multiply.
   2172   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
   2173     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
   2174     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
   2175       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
   2176       if (isa<SCEVConstant>(MulOpSCEV))
   2177         continue;
   2178       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
   2179         if (MulOpSCEV == Ops[AddOp]) {
   2180           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
   2181           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
   2182           if (Mul->getNumOperands() != 2) {
   2183             // If the multiply has more than two operands, we must get the
   2184             // Y*Z term.
   2185             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
   2186                                                 Mul->op_begin()+MulOp);
   2187             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
   2188             InnerMul = getMulExpr(MulOps);
   2189           }
   2190           const SCEV *One = getOne(Ty);
   2191           const SCEV *AddOne = getAddExpr(One, InnerMul);
   2192           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
   2193           if (Ops.size() == 2) return OuterMul;
   2194           if (AddOp < Idx) {
   2195             Ops.erase(Ops.begin()+AddOp);
   2196             Ops.erase(Ops.begin()+Idx-1);
   2197           } else {
   2198             Ops.erase(Ops.begin()+Idx);
   2199             Ops.erase(Ops.begin()+AddOp-1);
   2200           }
   2201           Ops.push_back(OuterMul);
   2202           return getAddExpr(Ops);
   2203         }
   2204 
   2205       // Check this multiply against other multiplies being added together.
   2206       for (unsigned OtherMulIdx = Idx+1;
   2207            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
   2208            ++OtherMulIdx) {
   2209         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
   2210         // If MulOp occurs in OtherMul, we can fold the two multiplies
   2211         // together.
   2212         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
   2213              OMulOp != e; ++OMulOp)
   2214           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
   2215             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
   2216             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
   2217             if (Mul->getNumOperands() != 2) {
   2218               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
   2219                                                   Mul->op_begin()+MulOp);
   2220               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
   2221               InnerMul1 = getMulExpr(MulOps);
   2222             }
   2223             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
   2224             if (OtherMul->getNumOperands() != 2) {
   2225               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
   2226                                                   OtherMul->op_begin()+OMulOp);
   2227               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
   2228               InnerMul2 = getMulExpr(MulOps);
   2229             }
   2230             const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
   2231             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
   2232             if (Ops.size() == 2) return OuterMul;
   2233             Ops.erase(Ops.begin()+Idx);
   2234             Ops.erase(Ops.begin()+OtherMulIdx-1);
   2235             Ops.push_back(OuterMul);
   2236             return getAddExpr(Ops);
   2237           }
   2238       }
   2239     }
   2240   }
   2241 
   2242   // If there are any add recurrences in the operands list, see if any other
   2243   // added values are loop invariant.  If so, we can fold them into the
   2244   // recurrence.
   2245   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
   2246     ++Idx;
   2247 
   2248   // Scan over all recurrences, trying to fold loop invariants into them.
   2249   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
   2250     // Scan all of the other operands to this add and add them to the vector if
   2251     // they are loop invariant w.r.t. the recurrence.
   2252     SmallVector<const SCEV *, 8> LIOps;
   2253     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
   2254     const Loop *AddRecLoop = AddRec->getLoop();
   2255     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   2256       if (isLoopInvariant(Ops[i], AddRecLoop)) {
   2257         LIOps.push_back(Ops[i]);
   2258         Ops.erase(Ops.begin()+i);
   2259         --i; --e;
   2260       }
   2261 
   2262     // If we found some loop invariants, fold them into the recurrence.
   2263     if (!LIOps.empty()) {
   2264       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
   2265       LIOps.push_back(AddRec->getStart());
   2266 
   2267       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
   2268                                              AddRec->op_end());
   2269       AddRecOps[0] = getAddExpr(LIOps);
   2270 
   2271       // Build the new addrec. Propagate the NUW and NSW flags if both the
   2272       // outer add and the inner addrec are guaranteed to have no overflow.
   2273       // Always propagate NW.
   2274       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
   2275       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
   2276 
   2277       // If all of the other operands were loop invariant, we are done.
   2278       if (Ops.size() == 1) return NewRec;
   2279 
   2280       // Otherwise, add the folded AddRec by the non-invariant parts.
   2281       for (unsigned i = 0;; ++i)
   2282         if (Ops[i] == AddRec) {
   2283           Ops[i] = NewRec;
   2284           break;
   2285         }
   2286       return getAddExpr(Ops);
   2287     }
   2288 
   2289     // Okay, if there weren't any loop invariants to be folded, check to see if
   2290     // there are multiple AddRec's with the same loop induction variable being
   2291     // added together.  If so, we can fold them.
   2292     for (unsigned OtherIdx = Idx+1;
   2293          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
   2294          ++OtherIdx)
   2295       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
   2296         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
   2297         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
   2298                                                AddRec->op_end());
   2299         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
   2300              ++OtherIdx)
   2301           if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
   2302             if (OtherAddRec->getLoop() == AddRecLoop) {
   2303               for (unsigned i = 0, e = OtherAddRec->getNumOperands();
   2304                    i != e; ++i) {
   2305                 if (i >= AddRecOps.size()) {
   2306                   AddRecOps.append(OtherAddRec->op_begin()+i,
   2307                                    OtherAddRec->op_end());
   2308                   break;
   2309                 }
   2310                 AddRecOps[i] = getAddExpr(AddRecOps[i],
   2311                                           OtherAddRec->getOperand(i));
   2312               }
   2313               Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
   2314             }
   2315         // Step size has changed, so we cannot guarantee no self-wraparound.
   2316         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
   2317         return getAddExpr(Ops);
   2318       }
   2319 
   2320     // Otherwise couldn't fold anything into this recurrence.  Move onto the
   2321     // next one.
   2322   }
   2323 
   2324   // Okay, it looks like we really DO need an add expr.  Check to see if we
   2325   // already have one, otherwise create a new one.
   2326   FoldingSetNodeID ID;
   2327   ID.AddInteger(scAddExpr);
   2328   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   2329     ID.AddPointer(Ops[i]);
   2330   void *IP = nullptr;
   2331   SCEVAddExpr *S =
   2332     static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
   2333   if (!S) {
   2334     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
   2335     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
   2336     S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
   2337                                         O, Ops.size());
   2338     UniqueSCEVs.InsertNode(S, IP);
   2339   }
   2340   S->setNoWrapFlags(Flags);
   2341   return S;
   2342 }
   2343 
   2344 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
   2345   uint64_t k = i*j;
   2346   if (j > 1 && k / j != i) Overflow = true;
   2347   return k;
   2348 }
   2349 
   2350 /// Compute the result of "n choose k", the binomial coefficient.  If an
   2351 /// intermediate computation overflows, Overflow will be set and the return will
   2352 /// be garbage. Overflow is not cleared on absence of overflow.
   2353 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
   2354   // We use the multiplicative formula:
   2355   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
   2356   // At each iteration, we take the n-th term of the numeral and divide by the
   2357   // (k-n)th term of the denominator.  This division will always produce an
   2358   // integral result, and helps reduce the chance of overflow in the
   2359   // intermediate computations. However, we can still overflow even when the
   2360   // final result would fit.
   2361 
   2362   if (n == 0 || n == k) return 1;
   2363   if (k > n) return 0;
   2364 
   2365   if (k > n/2)
   2366     k = n-k;
   2367 
   2368   uint64_t r = 1;
   2369   for (uint64_t i = 1; i <= k; ++i) {
   2370     r = umul_ov(r, n-(i-1), Overflow);
   2371     r /= i;
   2372   }
   2373   return r;
   2374 }
   2375 
   2376 /// Determine if any of the operands in this SCEV are a constant or if
   2377 /// any of the add or multiply expressions in this SCEV contain a constant.
   2378 static bool containsConstantSomewhere(const SCEV *StartExpr) {
   2379   SmallVector<const SCEV *, 4> Ops;
   2380   Ops.push_back(StartExpr);
   2381   while (!Ops.empty()) {
   2382     const SCEV *CurrentExpr = Ops.pop_back_val();
   2383     if (isa<SCEVConstant>(*CurrentExpr))
   2384       return true;
   2385 
   2386     if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
   2387       const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
   2388       Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
   2389     }
   2390   }
   2391   return false;
   2392 }
   2393 
   2394 /// getMulExpr - Get a canonical multiply expression, or something simpler if
   2395 /// possible.
   2396 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
   2397                                         SCEV::NoWrapFlags Flags) {
   2398   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
   2399          "only nuw or nsw allowed");
   2400   assert(!Ops.empty() && "Cannot get empty mul!");
   2401   if (Ops.size() == 1) return Ops[0];
   2402 #ifndef NDEBUG
   2403   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
   2404   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
   2405     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
   2406            "SCEVMulExpr operand types don't match!");
   2407 #endif
   2408 
   2409   // Sort by complexity, this groups all similar expression types together.
   2410   GroupByComplexity(Ops, &LI);
   2411 
   2412   Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
   2413 
   2414   // If there are any constants, fold them together.
   2415   unsigned Idx = 0;
   2416   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
   2417 
   2418     // C1*(C2+V) -> C1*C2 + C1*V
   2419     if (Ops.size() == 2)
   2420         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
   2421           // If any of Add's ops are Adds or Muls with a constant,
   2422           // apply this transformation as well.
   2423           if (Add->getNumOperands() == 2)
   2424             if (containsConstantSomewhere(Add))
   2425               return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
   2426                                 getMulExpr(LHSC, Add->getOperand(1)));
   2427 
   2428     ++Idx;
   2429     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
   2430       // We found two constants, fold them together!
   2431       ConstantInt *Fold =
   2432           ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
   2433       Ops[0] = getConstant(Fold);
   2434       Ops.erase(Ops.begin()+1);  // Erase the folded element
   2435       if (Ops.size() == 1) return Ops[0];
   2436       LHSC = cast<SCEVConstant>(Ops[0]);
   2437     }
   2438 
   2439     // If we are left with a constant one being multiplied, strip it off.
   2440     if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
   2441       Ops.erase(Ops.begin());
   2442       --Idx;
   2443     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
   2444       // If we have a multiply of zero, it will always be zero.
   2445       return Ops[0];
   2446     } else if (Ops[0]->isAllOnesValue()) {
   2447       // If we have a mul by -1 of an add, try distributing the -1 among the
   2448       // add operands.
   2449       if (Ops.size() == 2) {
   2450         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
   2451           SmallVector<const SCEV *, 4> NewOps;
   2452           bool AnyFolded = false;
   2453           for (const SCEV *AddOp : Add->operands()) {
   2454             const SCEV *Mul = getMulExpr(Ops[0], AddOp);
   2455             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
   2456             NewOps.push_back(Mul);
   2457           }
   2458           if (AnyFolded)
   2459             return getAddExpr(NewOps);
   2460         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
   2461           // Negation preserves a recurrence's no self-wrap property.
   2462           SmallVector<const SCEV *, 4> Operands;
   2463           for (const SCEV *AddRecOp : AddRec->operands())
   2464             Operands.push_back(getMulExpr(Ops[0], AddRecOp));
   2465 
   2466           return getAddRecExpr(Operands, AddRec->getLoop(),
   2467                                AddRec->getNoWrapFlags(SCEV::FlagNW));
   2468         }
   2469       }
   2470     }
   2471 
   2472     if (Ops.size() == 1)
   2473       return Ops[0];
   2474   }
   2475 
   2476   // Skip over the add expression until we get to a multiply.
   2477   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
   2478     ++Idx;
   2479 
   2480   // If there are mul operands inline them all into this expression.
   2481   if (Idx < Ops.size()) {
   2482     bool DeletedMul = false;
   2483     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
   2484       // If we have an mul, expand the mul operands onto the end of the operands
   2485       // list.
   2486       Ops.erase(Ops.begin()+Idx);
   2487       Ops.append(Mul->op_begin(), Mul->op_end());
   2488       DeletedMul = true;
   2489     }
   2490 
   2491     // If we deleted at least one mul, we added operands to the end of the list,
   2492     // and they are not necessarily sorted.  Recurse to resort and resimplify
   2493     // any operands we just acquired.
   2494     if (DeletedMul)
   2495       return getMulExpr(Ops);
   2496   }
   2497 
   2498   // If there are any add recurrences in the operands list, see if any other
   2499   // added values are loop invariant.  If so, we can fold them into the
   2500   // recurrence.
   2501   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
   2502     ++Idx;
   2503 
   2504   // Scan over all recurrences, trying to fold loop invariants into them.
   2505   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
   2506     // Scan all of the other operands to this mul and add them to the vector if
   2507     // they are loop invariant w.r.t. the recurrence.
   2508     SmallVector<const SCEV *, 8> LIOps;
   2509     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
   2510     const Loop *AddRecLoop = AddRec->getLoop();
   2511     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   2512       if (isLoopInvariant(Ops[i], AddRecLoop)) {
   2513         LIOps.push_back(Ops[i]);
   2514         Ops.erase(Ops.begin()+i);
   2515         --i; --e;
   2516       }
   2517 
   2518     // If we found some loop invariants, fold them into the recurrence.
   2519     if (!LIOps.empty()) {
   2520       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
   2521       SmallVector<const SCEV *, 4> NewOps;
   2522       NewOps.reserve(AddRec->getNumOperands());
   2523       const SCEV *Scale = getMulExpr(LIOps);
   2524       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
   2525         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
   2526 
   2527       // Build the new addrec. Propagate the NUW and NSW flags if both the
   2528       // outer mul and the inner addrec are guaranteed to have no overflow.
   2529       //
   2530       // No self-wrap cannot be guaranteed after changing the step size, but
   2531       // will be inferred if either NUW or NSW is true.
   2532       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
   2533       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
   2534 
   2535       // If all of the other operands were loop invariant, we are done.
   2536       if (Ops.size() == 1) return NewRec;
   2537 
   2538       // Otherwise, multiply the folded AddRec by the non-invariant parts.
   2539       for (unsigned i = 0;; ++i)
   2540         if (Ops[i] == AddRec) {
   2541           Ops[i] = NewRec;
   2542           break;
   2543         }
   2544       return getMulExpr(Ops);
   2545     }
   2546 
   2547     // Okay, if there weren't any loop invariants to be folded, check to see if
   2548     // there are multiple AddRec's with the same loop induction variable being
   2549     // multiplied together.  If so, we can fold them.
   2550 
   2551     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
   2552     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
   2553     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
   2554     //   ]]],+,...up to x=2n}.
   2555     // Note that the arguments to choose() are always integers with values
   2556     // known at compile time, never SCEV objects.
   2557     //
   2558     // The implementation avoids pointless extra computations when the two
   2559     // addrec's are of different length (mathematically, it's equivalent to
   2560     // an infinite stream of zeros on the right).
   2561     bool OpsModified = false;
   2562     for (unsigned OtherIdx = Idx+1;
   2563          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
   2564          ++OtherIdx) {
   2565       const SCEVAddRecExpr *OtherAddRec =
   2566         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
   2567       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
   2568         continue;
   2569 
   2570       bool Overflow = false;
   2571       Type *Ty = AddRec->getType();
   2572       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
   2573       SmallVector<const SCEV*, 7> AddRecOps;
   2574       for (int x = 0, xe = AddRec->getNumOperands() +
   2575              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
   2576         const SCEV *Term = getZero(Ty);
   2577         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
   2578           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
   2579           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
   2580                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
   2581                z < ze && !Overflow; ++z) {
   2582             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
   2583             uint64_t Coeff;
   2584             if (LargerThan64Bits)
   2585               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
   2586             else
   2587               Coeff = Coeff1*Coeff2;
   2588             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
   2589             const SCEV *Term1 = AddRec->getOperand(y-z);
   2590             const SCEV *Term2 = OtherAddRec->getOperand(z);
   2591             Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
   2592           }
   2593         }
   2594         AddRecOps.push_back(Term);
   2595       }
   2596       if (!Overflow) {
   2597         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
   2598                                               SCEV::FlagAnyWrap);
   2599         if (Ops.size() == 2) return NewAddRec;
   2600         Ops[Idx] = NewAddRec;
   2601         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
   2602         OpsModified = true;
   2603         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
   2604         if (!AddRec)
   2605           break;
   2606       }
   2607     }
   2608     if (OpsModified)
   2609       return getMulExpr(Ops);
   2610 
   2611     // Otherwise couldn't fold anything into this recurrence.  Move onto the
   2612     // next one.
   2613   }
   2614 
   2615   // Okay, it looks like we really DO need an mul expr.  Check to see if we
   2616   // already have one, otherwise create a new one.
   2617   FoldingSetNodeID ID;
   2618   ID.AddInteger(scMulExpr);
   2619   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   2620     ID.AddPointer(Ops[i]);
   2621   void *IP = nullptr;
   2622   SCEVMulExpr *S =
   2623     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
   2624   if (!S) {
   2625     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
   2626     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
   2627     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
   2628                                         O, Ops.size());
   2629     UniqueSCEVs.InsertNode(S, IP);
   2630   }
   2631   S->setNoWrapFlags(Flags);
   2632   return S;
   2633 }
   2634 
   2635 /// getUDivExpr - Get a canonical unsigned division expression, or something
   2636 /// simpler if possible.
   2637 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
   2638                                          const SCEV *RHS) {
   2639   assert(getEffectiveSCEVType(LHS->getType()) ==
   2640          getEffectiveSCEVType(RHS->getType()) &&
   2641          "SCEVUDivExpr operand types don't match!");
   2642 
   2643   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
   2644     if (RHSC->getValue()->equalsInt(1))
   2645       return LHS;                               // X udiv 1 --> x
   2646     // If the denominator is zero, the result of the udiv is undefined. Don't
   2647     // try to analyze it, because the resolution chosen here may differ from
   2648     // the resolution chosen in other parts of the compiler.
   2649     if (!RHSC->getValue()->isZero()) {
   2650       // Determine if the division can be folded into the operands of
   2651       // its operands.
   2652       // TODO: Generalize this to non-constants by using known-bits information.
   2653       Type *Ty = LHS->getType();
   2654       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
   2655       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
   2656       // For non-power-of-two values, effectively round the value up to the
   2657       // nearest power of two.
   2658       if (!RHSC->getAPInt().isPowerOf2())
   2659         ++MaxShiftAmt;
   2660       IntegerType *ExtTy =
   2661         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
   2662       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
   2663         if (const SCEVConstant *Step =
   2664             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
   2665           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
   2666           const APInt &StepInt = Step->getAPInt();
   2667           const APInt &DivInt = RHSC->getAPInt();
   2668           if (!StepInt.urem(DivInt) &&
   2669               getZeroExtendExpr(AR, ExtTy) ==
   2670               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
   2671                             getZeroExtendExpr(Step, ExtTy),
   2672                             AR->getLoop(), SCEV::FlagAnyWrap)) {
   2673             SmallVector<const SCEV *, 4> Operands;
   2674             for (const SCEV *Op : AR->operands())
   2675               Operands.push_back(getUDivExpr(Op, RHS));
   2676             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
   2677           }
   2678           /// Get a canonical UDivExpr for a recurrence.
   2679           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
   2680           // We can currently only fold X%N if X is constant.
   2681           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
   2682           if (StartC && !DivInt.urem(StepInt) &&
   2683               getZeroExtendExpr(AR, ExtTy) ==
   2684               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
   2685                             getZeroExtendExpr(Step, ExtTy),
   2686                             AR->getLoop(), SCEV::FlagAnyWrap)) {
   2687             const APInt &StartInt = StartC->getAPInt();
   2688             const APInt &StartRem = StartInt.urem(StepInt);
   2689             if (StartRem != 0)
   2690               LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
   2691                                   AR->getLoop(), SCEV::FlagNW);
   2692           }
   2693         }
   2694       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
   2695       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
   2696         SmallVector<const SCEV *, 4> Operands;
   2697         for (const SCEV *Op : M->operands())
   2698           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
   2699         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
   2700           // Find an operand that's safely divisible.
   2701           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
   2702             const SCEV *Op = M->getOperand(i);
   2703             const SCEV *Div = getUDivExpr(Op, RHSC);
   2704             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
   2705               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
   2706                                                       M->op_end());
   2707               Operands[i] = Div;
   2708               return getMulExpr(Operands);
   2709             }
   2710           }
   2711       }
   2712       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
   2713       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
   2714         SmallVector<const SCEV *, 4> Operands;
   2715         for (const SCEV *Op : A->operands())
   2716           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
   2717         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
   2718           Operands.clear();
   2719           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
   2720             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
   2721             if (isa<SCEVUDivExpr>(Op) ||
   2722                 getMulExpr(Op, RHS) != A->getOperand(i))
   2723               break;
   2724             Operands.push_back(Op);
   2725           }
   2726           if (Operands.size() == A->getNumOperands())
   2727             return getAddExpr(Operands);
   2728         }
   2729       }
   2730 
   2731       // Fold if both operands are constant.
   2732       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
   2733         Constant *LHSCV = LHSC->getValue();
   2734         Constant *RHSCV = RHSC->getValue();
   2735         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
   2736                                                                    RHSCV)));
   2737       }
   2738     }
   2739   }
   2740 
   2741   FoldingSetNodeID ID;
   2742   ID.AddInteger(scUDivExpr);
   2743   ID.AddPointer(LHS);
   2744   ID.AddPointer(RHS);
   2745   void *IP = nullptr;
   2746   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   2747   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
   2748                                              LHS, RHS);
   2749   UniqueSCEVs.InsertNode(S, IP);
   2750   return S;
   2751 }
   2752 
   2753 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
   2754   APInt A = C1->getAPInt().abs();
   2755   APInt B = C2->getAPInt().abs();
   2756   uint32_t ABW = A.getBitWidth();
   2757   uint32_t BBW = B.getBitWidth();
   2758 
   2759   if (ABW > BBW)
   2760     B = B.zext(ABW);
   2761   else if (ABW < BBW)
   2762     A = A.zext(BBW);
   2763 
   2764   return APIntOps::GreatestCommonDivisor(A, B);
   2765 }
   2766 
   2767 /// getUDivExactExpr - Get a canonical unsigned division expression, or
   2768 /// something simpler if possible. There is no representation for an exact udiv
   2769 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
   2770 /// We can't do this when it's not exact because the udiv may be clearing bits.
   2771 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
   2772                                               const SCEV *RHS) {
   2773   // TODO: we could try to find factors in all sorts of things, but for now we
   2774   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
   2775   // end of this file for inspiration.
   2776 
   2777   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
   2778   if (!Mul)
   2779     return getUDivExpr(LHS, RHS);
   2780 
   2781   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
   2782     // If the mulexpr multiplies by a constant, then that constant must be the
   2783     // first element of the mulexpr.
   2784     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
   2785       if (LHSCst == RHSCst) {
   2786         SmallVector<const SCEV *, 2> Operands;
   2787         Operands.append(Mul->op_begin() + 1, Mul->op_end());
   2788         return getMulExpr(Operands);
   2789       }
   2790 
   2791       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
   2792       // that there's a factor provided by one of the other terms. We need to
   2793       // check.
   2794       APInt Factor = gcd(LHSCst, RHSCst);
   2795       if (!Factor.isIntN(1)) {
   2796         LHSCst =
   2797             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
   2798         RHSCst =
   2799             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
   2800         SmallVector<const SCEV *, 2> Operands;
   2801         Operands.push_back(LHSCst);
   2802         Operands.append(Mul->op_begin() + 1, Mul->op_end());
   2803         LHS = getMulExpr(Operands);
   2804         RHS = RHSCst;
   2805         Mul = dyn_cast<SCEVMulExpr>(LHS);
   2806         if (!Mul)
   2807           return getUDivExactExpr(LHS, RHS);
   2808       }
   2809     }
   2810   }
   2811 
   2812   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
   2813     if (Mul->getOperand(i) == RHS) {
   2814       SmallVector<const SCEV *, 2> Operands;
   2815       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
   2816       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
   2817       return getMulExpr(Operands);
   2818     }
   2819   }
   2820 
   2821   return getUDivExpr(LHS, RHS);
   2822 }
   2823 
   2824 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
   2825 /// Simplify the expression as much as possible.
   2826 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
   2827                                            const Loop *L,
   2828                                            SCEV::NoWrapFlags Flags) {
   2829   SmallVector<const SCEV *, 4> Operands;
   2830   Operands.push_back(Start);
   2831   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
   2832     if (StepChrec->getLoop() == L) {
   2833       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
   2834       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
   2835     }
   2836 
   2837   Operands.push_back(Step);
   2838   return getAddRecExpr(Operands, L, Flags);
   2839 }
   2840 
   2841 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
   2842 /// Simplify the expression as much as possible.
   2843 const SCEV *
   2844 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
   2845                                const Loop *L, SCEV::NoWrapFlags Flags) {
   2846   if (Operands.size() == 1) return Operands[0];
   2847 #ifndef NDEBUG
   2848   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
   2849   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
   2850     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
   2851            "SCEVAddRecExpr operand types don't match!");
   2852   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
   2853     assert(isLoopInvariant(Operands[i], L) &&
   2854            "SCEVAddRecExpr operand is not loop-invariant!");
   2855 #endif
   2856 
   2857   if (Operands.back()->isZero()) {
   2858     Operands.pop_back();
   2859     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
   2860   }
   2861 
   2862   // It's tempting to want to call getMaxBackedgeTakenCount count here and
   2863   // use that information to infer NUW and NSW flags. However, computing a
   2864   // BE count requires calling getAddRecExpr, so we may not yet have a
   2865   // meaningful BE count at this point (and if we don't, we'd be stuck
   2866   // with a SCEVCouldNotCompute as the cached BE count).
   2867 
   2868   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
   2869 
   2870   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
   2871   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
   2872     const Loop *NestedLoop = NestedAR->getLoop();
   2873     if (L->contains(NestedLoop)
   2874             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
   2875             : (!NestedLoop->contains(L) &&
   2876                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
   2877       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
   2878                                                   NestedAR->op_end());
   2879       Operands[0] = NestedAR->getStart();
   2880       // AddRecs require their operands be loop-invariant with respect to their
   2881       // loops. Don't perform this transformation if it would break this
   2882       // requirement.
   2883       bool AllInvariant = all_of(
   2884           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
   2885 
   2886       if (AllInvariant) {
   2887         // Create a recurrence for the outer loop with the same step size.
   2888         //
   2889         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
   2890         // inner recurrence has the same property.
   2891         SCEV::NoWrapFlags OuterFlags =
   2892           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
   2893 
   2894         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
   2895         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
   2896           return isLoopInvariant(Op, NestedLoop);
   2897         });
   2898 
   2899         if (AllInvariant) {
   2900           // Ok, both add recurrences are valid after the transformation.
   2901           //
   2902           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
   2903           // the outer recurrence has the same property.
   2904           SCEV::NoWrapFlags InnerFlags =
   2905             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
   2906           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
   2907         }
   2908       }
   2909       // Reset Operands to its original state.
   2910       Operands[0] = NestedAR;
   2911     }
   2912   }
   2913 
   2914   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
   2915   // already have one, otherwise create a new one.
   2916   FoldingSetNodeID ID;
   2917   ID.AddInteger(scAddRecExpr);
   2918   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
   2919     ID.AddPointer(Operands[i]);
   2920   ID.AddPointer(L);
   2921   void *IP = nullptr;
   2922   SCEVAddRecExpr *S =
   2923     static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
   2924   if (!S) {
   2925     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
   2926     std::uninitialized_copy(Operands.begin(), Operands.end(), O);
   2927     S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
   2928                                            O, Operands.size(), L);
   2929     UniqueSCEVs.InsertNode(S, IP);
   2930   }
   2931   S->setNoWrapFlags(Flags);
   2932   return S;
   2933 }
   2934 
   2935 const SCEV *
   2936 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
   2937                             const SmallVectorImpl<const SCEV *> &IndexExprs,
   2938                             bool InBounds) {
   2939   // getSCEV(Base)->getType() has the same address space as Base->getType()
   2940   // because SCEV::getType() preserves the address space.
   2941   Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
   2942   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
   2943   // instruction to its SCEV, because the Instruction may be guarded by control
   2944   // flow and the no-overflow bits may not be valid for the expression in any
   2945   // context. This can be fixed similarly to how these flags are handled for
   2946   // adds.
   2947   SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
   2948 
   2949   const SCEV *TotalOffset = getZero(IntPtrTy);
   2950   // The address space is unimportant. The first thing we do on CurTy is getting
   2951   // its element type.
   2952   Type *CurTy = PointerType::getUnqual(PointeeType);
   2953   for (const SCEV *IndexExpr : IndexExprs) {
   2954     // Compute the (potentially symbolic) offset in bytes for this index.
   2955     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
   2956       // For a struct, add the member offset.
   2957       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
   2958       unsigned FieldNo = Index->getZExtValue();
   2959       const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
   2960 
   2961       // Add the field offset to the running total offset.
   2962       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
   2963 
   2964       // Update CurTy to the type of the field at Index.
   2965       CurTy = STy->getTypeAtIndex(Index);
   2966     } else {
   2967       // Update CurTy to its element type.
   2968       CurTy = cast<SequentialType>(CurTy)->getElementType();
   2969       // For an array, add the element offset, explicitly scaled.
   2970       const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
   2971       // Getelementptr indices are signed.
   2972       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
   2973 
   2974       // Multiply the index by the element size to compute the element offset.
   2975       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
   2976 
   2977       // Add the element offset to the running total offset.
   2978       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
   2979     }
   2980   }
   2981 
   2982   // Add the total offset from all the GEP indices to the base.
   2983   return getAddExpr(BaseExpr, TotalOffset, Wrap);
   2984 }
   2985 
   2986 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
   2987                                          const SCEV *RHS) {
   2988   SmallVector<const SCEV *, 2> Ops;
   2989   Ops.push_back(LHS);
   2990   Ops.push_back(RHS);
   2991   return getSMaxExpr(Ops);
   2992 }
   2993 
   2994 const SCEV *
   2995 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
   2996   assert(!Ops.empty() && "Cannot get empty smax!");
   2997   if (Ops.size() == 1) return Ops[0];
   2998 #ifndef NDEBUG
   2999   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
   3000   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
   3001     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
   3002            "SCEVSMaxExpr operand types don't match!");
   3003 #endif
   3004 
   3005   // Sort by complexity, this groups all similar expression types together.
   3006   GroupByComplexity(Ops, &LI);
   3007 
   3008   // If there are any constants, fold them together.
   3009   unsigned Idx = 0;
   3010   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
   3011     ++Idx;
   3012     assert(Idx < Ops.size());
   3013     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
   3014       // We found two constants, fold them together!
   3015       ConstantInt *Fold = ConstantInt::get(
   3016           getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt()));
   3017       Ops[0] = getConstant(Fold);
   3018       Ops.erase(Ops.begin()+1);  // Erase the folded element
   3019       if (Ops.size() == 1) return Ops[0];
   3020       LHSC = cast<SCEVConstant>(Ops[0]);
   3021     }
   3022 
   3023     // If we are left with a constant minimum-int, strip it off.
   3024     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
   3025       Ops.erase(Ops.begin());
   3026       --Idx;
   3027     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
   3028       // If we have an smax with a constant maximum-int, it will always be
   3029       // maximum-int.
   3030       return Ops[0];
   3031     }
   3032 
   3033     if (Ops.size() == 1) return Ops[0];
   3034   }
   3035 
   3036   // Find the first SMax
   3037   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
   3038     ++Idx;
   3039 
   3040   // Check to see if one of the operands is an SMax. If so, expand its operands
   3041   // onto our operand list, and recurse to simplify.
   3042   if (Idx < Ops.size()) {
   3043     bool DeletedSMax = false;
   3044     while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
   3045       Ops.erase(Ops.begin()+Idx);
   3046       Ops.append(SMax->op_begin(), SMax->op_end());
   3047       DeletedSMax = true;
   3048     }
   3049 
   3050     if (DeletedSMax)
   3051       return getSMaxExpr(Ops);
   3052   }
   3053 
   3054   // Okay, check to see if the same value occurs in the operand list twice.  If
   3055   // so, delete one.  Since we sorted the list, these values are required to
   3056   // be adjacent.
   3057   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
   3058     //  X smax Y smax Y  -->  X smax Y
   3059     //  X smax Y         -->  X, if X is always greater than Y
   3060     if (Ops[i] == Ops[i+1] ||
   3061         isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
   3062       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
   3063       --i; --e;
   3064     } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
   3065       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
   3066       --i; --e;
   3067     }
   3068 
   3069   if (Ops.size() == 1) return Ops[0];
   3070 
   3071   assert(!Ops.empty() && "Reduced smax down to nothing!");
   3072 
   3073   // Okay, it looks like we really DO need an smax expr.  Check to see if we
   3074   // already have one, otherwise create a new one.
   3075   FoldingSetNodeID ID;
   3076   ID.AddInteger(scSMaxExpr);
   3077   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   3078     ID.AddPointer(Ops[i]);
   3079   void *IP = nullptr;
   3080   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   3081   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
   3082   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
   3083   SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
   3084                                              O, Ops.size());
   3085   UniqueSCEVs.InsertNode(S, IP);
   3086   return S;
   3087 }
   3088 
   3089 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
   3090                                          const SCEV *RHS) {
   3091   SmallVector<const SCEV *, 2> Ops;
   3092   Ops.push_back(LHS);
   3093   Ops.push_back(RHS);
   3094   return getUMaxExpr(Ops);
   3095 }
   3096 
   3097 const SCEV *
   3098 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
   3099   assert(!Ops.empty() && "Cannot get empty umax!");
   3100   if (Ops.size() == 1) return Ops[0];
   3101 #ifndef NDEBUG
   3102   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
   3103   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
   3104     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
   3105            "SCEVUMaxExpr operand types don't match!");
   3106 #endif
   3107 
   3108   // Sort by complexity, this groups all similar expression types together.
   3109   GroupByComplexity(Ops, &LI);
   3110 
   3111   // If there are any constants, fold them together.
   3112   unsigned Idx = 0;
   3113   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
   3114     ++Idx;
   3115     assert(Idx < Ops.size());
   3116     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
   3117       // We found two constants, fold them together!
   3118       ConstantInt *Fold = ConstantInt::get(
   3119           getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt()));
   3120       Ops[0] = getConstant(Fold);
   3121       Ops.erase(Ops.begin()+1);  // Erase the folded element
   3122       if (Ops.size() == 1) return Ops[0];
   3123       LHSC = cast<SCEVConstant>(Ops[0]);
   3124     }
   3125 
   3126     // If we are left with a constant minimum-int, strip it off.
   3127     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
   3128       Ops.erase(Ops.begin());
   3129       --Idx;
   3130     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
   3131       // If we have an umax with a constant maximum-int, it will always be
   3132       // maximum-int.
   3133       return Ops[0];
   3134     }
   3135 
   3136     if (Ops.size() == 1) return Ops[0];
   3137   }
   3138 
   3139   // Find the first UMax
   3140   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
   3141     ++Idx;
   3142 
   3143   // Check to see if one of the operands is a UMax. If so, expand its operands
   3144   // onto our operand list, and recurse to simplify.
   3145   if (Idx < Ops.size()) {
   3146     bool DeletedUMax = false;
   3147     while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
   3148       Ops.erase(Ops.begin()+Idx);
   3149       Ops.append(UMax->op_begin(), UMax->op_end());
   3150       DeletedUMax = true;
   3151     }
   3152 
   3153     if (DeletedUMax)
   3154       return getUMaxExpr(Ops);
   3155   }
   3156 
   3157   // Okay, check to see if the same value occurs in the operand list twice.  If
   3158   // so, delete one.  Since we sorted the list, these values are required to
   3159   // be adjacent.
   3160   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
   3161     //  X umax Y umax Y  -->  X umax Y
   3162     //  X umax Y         -->  X, if X is always greater than Y
   3163     if (Ops[i] == Ops[i+1] ||
   3164         isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
   3165       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
   3166       --i; --e;
   3167     } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
   3168       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
   3169       --i; --e;
   3170     }
   3171 
   3172   if (Ops.size() == 1) return Ops[0];
   3173 
   3174   assert(!Ops.empty() && "Reduced umax down to nothing!");
   3175 
   3176   // Okay, it looks like we really DO need a umax expr.  Check to see if we
   3177   // already have one, otherwise create a new one.
   3178   FoldingSetNodeID ID;
   3179   ID.AddInteger(scUMaxExpr);
   3180   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   3181     ID.AddPointer(Ops[i]);
   3182   void *IP = nullptr;
   3183   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   3184   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
   3185   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
   3186   SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
   3187                                              O, Ops.size());
   3188   UniqueSCEVs.InsertNode(S, IP);
   3189   return S;
   3190 }
   3191 
   3192 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
   3193                                          const SCEV *RHS) {
   3194   // ~smax(~x, ~y) == smin(x, y).
   3195   return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
   3196 }
   3197 
   3198 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
   3199                                          const SCEV *RHS) {
   3200   // ~umax(~x, ~y) == umin(x, y)
   3201   return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
   3202 }
   3203 
   3204 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
   3205   // We can bypass creating a target-independent
   3206   // constant expression and then folding it back into a ConstantInt.
   3207   // This is just a compile-time optimization.
   3208   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
   3209 }
   3210 
   3211 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
   3212                                              StructType *STy,
   3213                                              unsigned FieldNo) {
   3214   // We can bypass creating a target-independent
   3215   // constant expression and then folding it back into a ConstantInt.
   3216   // This is just a compile-time optimization.
   3217   return getConstant(
   3218       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
   3219 }
   3220 
   3221 const SCEV *ScalarEvolution::getUnknown(Value *V) {
   3222   // Don't attempt to do anything other than create a SCEVUnknown object
   3223   // here.  createSCEV only calls getUnknown after checking for all other
   3224   // interesting possibilities, and any other code that calls getUnknown
   3225   // is doing so in order to hide a value from SCEV canonicalization.
   3226 
   3227   FoldingSetNodeID ID;
   3228   ID.AddInteger(scUnknown);
   3229   ID.AddPointer(V);
   3230   void *IP = nullptr;
   3231   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
   3232     assert(cast<SCEVUnknown>(S)->getValue() == V &&
   3233            "Stale SCEVUnknown in uniquing map!");
   3234     return S;
   3235   }
   3236   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
   3237                                             FirstUnknown);
   3238   FirstUnknown = cast<SCEVUnknown>(S);
   3239   UniqueSCEVs.InsertNode(S, IP);
   3240   return S;
   3241 }
   3242 
   3243 //===----------------------------------------------------------------------===//
   3244 //            Basic SCEV Analysis and PHI Idiom Recognition Code
   3245 //
   3246 
   3247 /// isSCEVable - Test if values of the given type are analyzable within
   3248 /// the SCEV framework. This primarily includes integer types, and it
   3249 /// can optionally include pointer types if the ScalarEvolution class
   3250 /// has access to target-specific information.
   3251 bool ScalarEvolution::isSCEVable(Type *Ty) const {
   3252   // Integers and pointers are always SCEVable.
   3253   return Ty->isIntegerTy() || Ty->isPointerTy();
   3254 }
   3255 
   3256 /// getTypeSizeInBits - Return the size in bits of the specified type,
   3257 /// for which isSCEVable must return true.
   3258 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
   3259   assert(isSCEVable(Ty) && "Type is not SCEVable!");
   3260   return getDataLayout().getTypeSizeInBits(Ty);
   3261 }
   3262 
   3263 /// getEffectiveSCEVType - Return a type with the same bitwidth as
   3264 /// the given type and which represents how SCEV will treat the given
   3265 /// type, for which isSCEVable must return true. For pointer types,
   3266 /// this is the pointer-sized integer type.
   3267 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
   3268   assert(isSCEVable(Ty) && "Type is not SCEVable!");
   3269 
   3270   if (Ty->isIntegerTy())
   3271     return Ty;
   3272 
   3273   // The only other support type is pointer.
   3274   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
   3275   return getDataLayout().getIntPtrType(Ty);
   3276 }
   3277 
   3278 const SCEV *ScalarEvolution::getCouldNotCompute() {
   3279   return CouldNotCompute.get();
   3280 }
   3281 
   3282 
   3283 bool ScalarEvolution::checkValidity(const SCEV *S) const {
   3284   // Helper class working with SCEVTraversal to figure out if a SCEV contains
   3285   // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
   3286   // is set iff if find such SCEVUnknown.
   3287   //
   3288   struct FindInvalidSCEVUnknown {
   3289     bool FindOne;
   3290     FindInvalidSCEVUnknown() { FindOne = false; }
   3291     bool follow(const SCEV *S) {
   3292       switch (static_cast<SCEVTypes>(S->getSCEVType())) {
   3293       case scConstant:
   3294         return false;
   3295       case scUnknown:
   3296         if (!cast<SCEVUnknown>(S)->getValue())
   3297           FindOne = true;
   3298         return false;
   3299       default:
   3300         return true;
   3301       }
   3302     }
   3303     bool isDone() const { return FindOne; }
   3304   };
   3305 
   3306   FindInvalidSCEVUnknown F;
   3307   SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
   3308   ST.visitAll(S);
   3309 
   3310   return !F.FindOne;
   3311 }
   3312 
   3313 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
   3314 /// expression and create a new one.
   3315 const SCEV *ScalarEvolution::getSCEV(Value *V) {
   3316   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
   3317 
   3318   const SCEV *S = getExistingSCEV(V);
   3319   if (S == nullptr) {
   3320     S = createSCEV(V);
   3321     ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
   3322   }
   3323   return S;
   3324 }
   3325 
   3326 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
   3327   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
   3328 
   3329   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
   3330   if (I != ValueExprMap.end()) {
   3331     const SCEV *S = I->second;
   3332     if (checkValidity(S))
   3333       return S;
   3334     ValueExprMap.erase(I);
   3335   }
   3336   return nullptr;
   3337 }
   3338 
   3339 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
   3340 ///
   3341 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
   3342                                              SCEV::NoWrapFlags Flags) {
   3343   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
   3344     return getConstant(
   3345                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
   3346 
   3347   Type *Ty = V->getType();
   3348   Ty = getEffectiveSCEVType(Ty);
   3349   return getMulExpr(
   3350       V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
   3351 }
   3352 
   3353 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
   3354 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
   3355   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
   3356     return getConstant(
   3357                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
   3358 
   3359   Type *Ty = V->getType();
   3360   Ty = getEffectiveSCEVType(Ty);
   3361   const SCEV *AllOnes =
   3362                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
   3363   return getMinusSCEV(AllOnes, V);
   3364 }
   3365 
   3366 /// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
   3367 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
   3368                                           SCEV::NoWrapFlags Flags) {
   3369   // Fast path: X - X --> 0.
   3370   if (LHS == RHS)
   3371     return getZero(LHS->getType());
   3372 
   3373   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
   3374   // makes it so that we cannot make much use of NUW.
   3375   auto AddFlags = SCEV::FlagAnyWrap;
   3376   const bool RHSIsNotMinSigned =
   3377       !getSignedRange(RHS).getSignedMin().isMinSignedValue();
   3378   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
   3379     // Let M be the minimum representable signed value. Then (-1)*RHS
   3380     // signed-wraps if and only if RHS is M. That can happen even for
   3381     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
   3382     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
   3383     // (-1)*RHS, we need to prove that RHS != M.
   3384     //
   3385     // If LHS is non-negative and we know that LHS - RHS does not
   3386     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
   3387     // either by proving that RHS > M or that LHS >= 0.
   3388     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
   3389       AddFlags = SCEV::FlagNSW;
   3390     }
   3391   }
   3392 
   3393   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
   3394   // RHS is NSW and LHS >= 0.
   3395   //
   3396   // The difficulty here is that the NSW flag may have been proven
   3397   // relative to a loop that is to be found in a recurrence in LHS and
   3398   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
   3399   // larger scope than intended.
   3400   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
   3401 
   3402   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags);
   3403 }
   3404 
   3405 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
   3406 /// input value to the specified type.  If the type must be extended, it is zero
   3407 /// extended.
   3408 const SCEV *
   3409 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
   3410   Type *SrcTy = V->getType();
   3411   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   3412          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   3413          "Cannot truncate or zero extend with non-integer arguments!");
   3414   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   3415     return V;  // No conversion
   3416   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
   3417     return getTruncateExpr(V, Ty);
   3418   return getZeroExtendExpr(V, Ty);
   3419 }
   3420 
   3421 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
   3422 /// input value to the specified type.  If the type must be extended, it is sign
   3423 /// extended.
   3424 const SCEV *
   3425 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
   3426                                          Type *Ty) {
   3427   Type *SrcTy = V->getType();
   3428   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   3429          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   3430          "Cannot truncate or zero extend with non-integer arguments!");
   3431   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   3432     return V;  // No conversion
   3433   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
   3434     return getTruncateExpr(V, Ty);
   3435   return getSignExtendExpr(V, Ty);
   3436 }
   3437 
   3438 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
   3439 /// input value to the specified type.  If the type must be extended, it is zero
   3440 /// extended.  The conversion must not be narrowing.
   3441 const SCEV *
   3442 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
   3443   Type *SrcTy = V->getType();
   3444   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   3445          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   3446          "Cannot noop or zero extend with non-integer arguments!");
   3447   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
   3448          "getNoopOrZeroExtend cannot truncate!");
   3449   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   3450     return V;  // No conversion
   3451   return getZeroExtendExpr(V, Ty);
   3452 }
   3453 
   3454 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
   3455 /// input value to the specified type.  If the type must be extended, it is sign
   3456 /// extended.  The conversion must not be narrowing.
   3457 const SCEV *
   3458 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
   3459   Type *SrcTy = V->getType();
   3460   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   3461          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   3462          "Cannot noop or sign extend with non-integer arguments!");
   3463   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
   3464          "getNoopOrSignExtend cannot truncate!");
   3465   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   3466     return V;  // No conversion
   3467   return getSignExtendExpr(V, Ty);
   3468 }
   3469 
   3470 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
   3471 /// the input value to the specified type. If the type must be extended,
   3472 /// it is extended with unspecified bits. The conversion must not be
   3473 /// narrowing.
   3474 const SCEV *
   3475 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
   3476   Type *SrcTy = V->getType();
   3477   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   3478          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   3479          "Cannot noop or any extend with non-integer arguments!");
   3480   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
   3481          "getNoopOrAnyExtend cannot truncate!");
   3482   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   3483     return V;  // No conversion
   3484   return getAnyExtendExpr(V, Ty);
   3485 }
   3486 
   3487 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
   3488 /// input value to the specified type.  The conversion must not be widening.
   3489 const SCEV *
   3490 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
   3491   Type *SrcTy = V->getType();
   3492   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   3493          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   3494          "Cannot truncate or noop with non-integer arguments!");
   3495   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
   3496          "getTruncateOrNoop cannot extend!");
   3497   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   3498     return V;  // No conversion
   3499   return getTruncateExpr(V, Ty);
   3500 }
   3501 
   3502 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
   3503 /// the types using zero-extension, and then perform a umax operation
   3504 /// with them.
   3505 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
   3506                                                         const SCEV *RHS) {
   3507   const SCEV *PromotedLHS = LHS;
   3508   const SCEV *PromotedRHS = RHS;
   3509 
   3510   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
   3511     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
   3512   else
   3513     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
   3514 
   3515   return getUMaxExpr(PromotedLHS, PromotedRHS);
   3516 }
   3517 
   3518 /// getUMinFromMismatchedTypes - Promote the operands to the wider of
   3519 /// the types using zero-extension, and then perform a umin operation
   3520 /// with them.
   3521 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
   3522                                                         const SCEV *RHS) {
   3523   const SCEV *PromotedLHS = LHS;
   3524   const SCEV *PromotedRHS = RHS;
   3525 
   3526   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
   3527     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
   3528   else
   3529     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
   3530 
   3531   return getUMinExpr(PromotedLHS, PromotedRHS);
   3532 }
   3533 
   3534 /// getPointerBase - Transitively follow the chain of pointer-type operands
   3535 /// until reaching a SCEV that does not have a single pointer operand. This
   3536 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
   3537 /// but corner cases do exist.
   3538 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
   3539   // A pointer operand may evaluate to a nonpointer expression, such as null.
   3540   if (!V->getType()->isPointerTy())
   3541     return V;
   3542 
   3543   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
   3544     return getPointerBase(Cast->getOperand());
   3545   } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
   3546     const SCEV *PtrOp = nullptr;
   3547     for (const SCEV *NAryOp : NAry->operands()) {
   3548       if (NAryOp->getType()->isPointerTy()) {
   3549         // Cannot find the base of an expression with multiple pointer operands.
   3550         if (PtrOp)
   3551           return V;
   3552         PtrOp = NAryOp;
   3553       }
   3554     }
   3555     if (!PtrOp)
   3556       return V;
   3557     return getPointerBase(PtrOp);
   3558   }
   3559   return V;
   3560 }
   3561 
   3562 /// PushDefUseChildren - Push users of the given Instruction
   3563 /// onto the given Worklist.
   3564 static void
   3565 PushDefUseChildren(Instruction *I,
   3566                    SmallVectorImpl<Instruction *> &Worklist) {
   3567   // Push the def-use children onto the Worklist stack.
   3568   for (User *U : I->users())
   3569     Worklist.push_back(cast<Instruction>(U));
   3570 }
   3571 
   3572 /// ForgetSymbolicValue - This looks up computed SCEV values for all
   3573 /// instructions that depend on the given instruction and removes them from
   3574 /// the ValueExprMapType map if they reference SymName. This is used during PHI
   3575 /// resolution.
   3576 void
   3577 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
   3578   SmallVector<Instruction *, 16> Worklist;
   3579   PushDefUseChildren(PN, Worklist);
   3580 
   3581   SmallPtrSet<Instruction *, 8> Visited;
   3582   Visited.insert(PN);
   3583   while (!Worklist.empty()) {
   3584     Instruction *I = Worklist.pop_back_val();
   3585     if (!Visited.insert(I).second)
   3586       continue;
   3587 
   3588     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
   3589     if (It != ValueExprMap.end()) {
   3590       const SCEV *Old = It->second;
   3591 
   3592       // Short-circuit the def-use traversal if the symbolic name
   3593       // ceases to appear in expressions.
   3594       if (Old != SymName && !hasOperand(Old, SymName))
   3595         continue;
   3596 
   3597       // SCEVUnknown for a PHI either means that it has an unrecognized
   3598       // structure, it's a PHI that's in the progress of being computed
   3599       // by createNodeForPHI, or it's a single-value PHI. In the first case,
   3600       // additional loop trip count information isn't going to change anything.
   3601       // In the second case, createNodeForPHI will perform the necessary
   3602       // updates on its own when it gets to that point. In the third, we do
   3603       // want to forget the SCEVUnknown.
   3604       if (!isa<PHINode>(I) ||
   3605           !isa<SCEVUnknown>(Old) ||
   3606           (I != PN && Old == SymName)) {
   3607         forgetMemoizedResults(Old);
   3608         ValueExprMap.erase(It);
   3609       }
   3610     }
   3611 
   3612     PushDefUseChildren(I, Worklist);
   3613   }
   3614 }
   3615 
   3616 namespace {
   3617 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
   3618 public:
   3619   static const SCEV *rewrite(const SCEV *Scev, const Loop *L,
   3620                              ScalarEvolution &SE) {
   3621     SCEVInitRewriter Rewriter(L, SE);
   3622     const SCEV *Result = Rewriter.visit(Scev);
   3623     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
   3624   }
   3625 
   3626   SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
   3627       : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
   3628 
   3629   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
   3630     if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
   3631       Valid = false;
   3632     return Expr;
   3633   }
   3634 
   3635   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
   3636     // Only allow AddRecExprs for this loop.
   3637     if (Expr->getLoop() == L)
   3638       return Expr->getStart();
   3639     Valid = false;
   3640     return Expr;
   3641   }
   3642 
   3643   bool isValid() { return Valid; }
   3644 
   3645 private:
   3646   const Loop *L;
   3647   bool Valid;
   3648 };
   3649 
   3650 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
   3651 public:
   3652   static const SCEV *rewrite(const SCEV *Scev, const Loop *L,
   3653                              ScalarEvolution &SE) {
   3654     SCEVShiftRewriter Rewriter(L, SE);
   3655     const SCEV *Result = Rewriter.visit(Scev);
   3656     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
   3657   }
   3658 
   3659   SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
   3660       : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
   3661 
   3662   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
   3663     // Only allow AddRecExprs for this loop.
   3664     if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
   3665       Valid = false;
   3666     return Expr;
   3667   }
   3668 
   3669   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
   3670     if (Expr->getLoop() == L && Expr->isAffine())
   3671       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
   3672     Valid = false;
   3673     return Expr;
   3674   }
   3675   bool isValid() { return Valid; }
   3676 
   3677 private:
   3678   const Loop *L;
   3679   bool Valid;
   3680 };
   3681 } // end anonymous namespace
   3682 
   3683 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
   3684   const Loop *L = LI.getLoopFor(PN->getParent());
   3685   if (!L || L->getHeader() != PN->getParent())
   3686     return nullptr;
   3687 
   3688   // The loop may have multiple entrances or multiple exits; we can analyze
   3689   // this phi as an addrec if it has a unique entry value and a unique
   3690   // backedge value.
   3691   Value *BEValueV = nullptr, *StartValueV = nullptr;
   3692   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   3693     Value *V = PN->getIncomingValue(i);
   3694     if (L->contains(PN->getIncomingBlock(i))) {
   3695       if (!BEValueV) {
   3696         BEValueV = V;
   3697       } else if (BEValueV != V) {
   3698         BEValueV = nullptr;
   3699         break;
   3700       }
   3701     } else if (!StartValueV) {
   3702       StartValueV = V;
   3703     } else if (StartValueV != V) {
   3704       StartValueV = nullptr;
   3705       break;
   3706     }
   3707   }
   3708   if (BEValueV && StartValueV) {
   3709     // While we are analyzing this PHI node, handle its value symbolically.
   3710     const SCEV *SymbolicName = getUnknown(PN);
   3711     assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
   3712            "PHI node already processed?");
   3713     ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
   3714 
   3715     // Using this symbolic name for the PHI, analyze the value coming around
   3716     // the back-edge.
   3717     const SCEV *BEValue = getSCEV(BEValueV);
   3718 
   3719     // NOTE: If BEValue is loop invariant, we know that the PHI node just
   3720     // has a special value for the first iteration of the loop.
   3721 
   3722     // If the value coming around the backedge is an add with the symbolic
   3723     // value we just inserted, then we found a simple induction variable!
   3724     if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
   3725       // If there is a single occurrence of the symbolic value, replace it
   3726       // with a recurrence.
   3727       unsigned FoundIndex = Add->getNumOperands();
   3728       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
   3729         if (Add->getOperand(i) == SymbolicName)
   3730           if (FoundIndex == e) {
   3731             FoundIndex = i;
   3732             break;
   3733           }
   3734 
   3735       if (FoundIndex != Add->getNumOperands()) {
   3736         // Create an add with everything but the specified operand.
   3737         SmallVector<const SCEV *, 8> Ops;
   3738         for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
   3739           if (i != FoundIndex)
   3740             Ops.push_back(Add->getOperand(i));
   3741         const SCEV *Accum = getAddExpr(Ops);
   3742 
   3743         // This is not a valid addrec if the step amount is varying each
   3744         // loop iteration, but is not itself an addrec in this loop.
   3745         if (isLoopInvariant(Accum, L) ||
   3746             (isa<SCEVAddRecExpr>(Accum) &&
   3747              cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
   3748           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
   3749 
   3750           // If the increment doesn't overflow, then neither the addrec nor
   3751           // the post-increment will overflow.
   3752           if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
   3753             if (OBO->getOperand(0) == PN) {
   3754               if (OBO->hasNoUnsignedWrap())
   3755                 Flags = setFlags(Flags, SCEV::FlagNUW);
   3756               if (OBO->hasNoSignedWrap())
   3757                 Flags = setFlags(Flags, SCEV::FlagNSW);
   3758             }
   3759           } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
   3760             // If the increment is an inbounds GEP, then we know the address
   3761             // space cannot be wrapped around. We cannot make any guarantee
   3762             // about signed or unsigned overflow because pointers are
   3763             // unsigned but we may have a negative index from the base
   3764             // pointer. We can guarantee that no unsigned wrap occurs if the
   3765             // indices form a positive value.
   3766             if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
   3767               Flags = setFlags(Flags, SCEV::FlagNW);
   3768 
   3769               const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
   3770               if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
   3771                 Flags = setFlags(Flags, SCEV::FlagNUW);
   3772             }
   3773 
   3774             // We cannot transfer nuw and nsw flags from subtraction
   3775             // operations -- sub nuw X, Y is not the same as add nuw X, -Y
   3776             // for instance.
   3777           }
   3778 
   3779           const SCEV *StartVal = getSCEV(StartValueV);
   3780           const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
   3781 
   3782           // Since the no-wrap flags are on the increment, they apply to the
   3783           // post-incremented value as well.
   3784           if (isLoopInvariant(Accum, L))
   3785             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
   3786 
   3787           // Okay, for the entire analysis of this edge we assumed the PHI
   3788           // to be symbolic.  We now need to go back and purge all of the
   3789           // entries for the scalars that use the symbolic expression.
   3790           ForgetSymbolicName(PN, SymbolicName);
   3791           ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
   3792           return PHISCEV;
   3793         }
   3794       }
   3795     } else {
   3796       // Otherwise, this could be a loop like this:
   3797       //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
   3798       // In this case, j = {1,+,1}  and BEValue is j.
   3799       // Because the other in-value of i (0) fits the evolution of BEValue
   3800       // i really is an addrec evolution.
   3801       //
   3802       // We can generalize this saying that i is the shifted value of BEValue
   3803       // by one iteration:
   3804       //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
   3805       const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
   3806       const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this);
   3807       if (Shifted != getCouldNotCompute() &&
   3808           Start != getCouldNotCompute()) {
   3809         const SCEV *StartVal = getSCEV(StartValueV);
   3810         if (Start == StartVal) {
   3811           // Okay, for the entire analysis of this edge we assumed the PHI
   3812           // to be symbolic.  We now need to go back and purge all of the
   3813           // entries for the scalars that use the symbolic expression.
   3814           ForgetSymbolicName(PN, SymbolicName);
   3815           ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
   3816           return Shifted;
   3817         }
   3818       }
   3819     }
   3820   }
   3821 
   3822   return nullptr;
   3823 }
   3824 
   3825 // Checks if the SCEV S is available at BB.  S is considered available at BB
   3826 // if S can be materialized at BB without introducing a fault.
   3827 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
   3828                                BasicBlock *BB) {
   3829   struct CheckAvailable {
   3830     bool TraversalDone = false;
   3831     bool Available = true;
   3832 
   3833     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
   3834     BasicBlock *BB = nullptr;
   3835     DominatorTree &DT;
   3836 
   3837     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
   3838       : L(L), BB(BB), DT(DT) {}
   3839 
   3840     bool setUnavailable() {
   3841       TraversalDone = true;
   3842       Available = false;
   3843       return false;
   3844     }
   3845 
   3846     bool follow(const SCEV *S) {
   3847       switch (S->getSCEVType()) {
   3848       case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
   3849       case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
   3850         // These expressions are available if their operand(s) is/are.
   3851         return true;
   3852 
   3853       case scAddRecExpr: {
   3854         // We allow add recurrences that are on the loop BB is in, or some
   3855         // outer loop.  This guarantees availability because the value of the
   3856         // add recurrence at BB is simply the "current" value of the induction
   3857         // variable.  We can relax this in the future; for instance an add
   3858         // recurrence on a sibling dominating loop is also available at BB.
   3859         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
   3860         if (L && (ARLoop == L || ARLoop->contains(L)))
   3861           return true;
   3862 
   3863         return setUnavailable();
   3864       }
   3865 
   3866       case scUnknown: {
   3867         // For SCEVUnknown, we check for simple dominance.
   3868         const auto *SU = cast<SCEVUnknown>(S);
   3869         Value *V = SU->getValue();
   3870 
   3871         if (isa<Argument>(V))
   3872           return false;
   3873 
   3874         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
   3875           return false;
   3876 
   3877         return setUnavailable();
   3878       }
   3879 
   3880       case scUDivExpr:
   3881       case scCouldNotCompute:
   3882         // We do not try to smart about these at all.
   3883         return setUnavailable();
   3884       }
   3885       llvm_unreachable("switch should be fully covered!");
   3886     }
   3887 
   3888     bool isDone() { return TraversalDone; }
   3889   };
   3890 
   3891   CheckAvailable CA(L, BB, DT);
   3892   SCEVTraversal<CheckAvailable> ST(CA);
   3893 
   3894   ST.visitAll(S);
   3895   return CA.Available;
   3896 }
   3897 
   3898 // Try to match a control flow sequence that branches out at BI and merges back
   3899 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
   3900 // match.
   3901 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
   3902                           Value *&C, Value *&LHS, Value *&RHS) {
   3903   C = BI->getCondition();
   3904 
   3905   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
   3906   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
   3907 
   3908   if (!LeftEdge.isSingleEdge())
   3909     return false;
   3910 
   3911   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
   3912 
   3913   Use &LeftUse = Merge->getOperandUse(0);
   3914   Use &RightUse = Merge->getOperandUse(1);
   3915 
   3916   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
   3917     LHS = LeftUse;
   3918     RHS = RightUse;
   3919     return true;
   3920   }
   3921 
   3922   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
   3923     LHS = RightUse;
   3924     RHS = LeftUse;
   3925     return true;
   3926   }
   3927 
   3928   return false;
   3929 }
   3930 
   3931 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
   3932   if (PN->getNumIncomingValues() == 2) {
   3933     const Loop *L = LI.getLoopFor(PN->getParent());
   3934 
   3935     // We don't want to break LCSSA, even in a SCEV expression tree.
   3936     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
   3937       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
   3938         return nullptr;
   3939 
   3940     // Try to match
   3941     //
   3942     //  br %cond, label %left, label %right
   3943     // left:
   3944     //  br label %merge
   3945     // right:
   3946     //  br label %merge
   3947     // merge:
   3948     //  V = phi [ %x, %left ], [ %y, %right ]
   3949     //
   3950     // as "select %cond, %x, %y"
   3951 
   3952     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
   3953     assert(IDom && "At least the entry block should dominate PN");
   3954 
   3955     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
   3956     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
   3957 
   3958     if (BI && BI->isConditional() &&
   3959         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
   3960         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
   3961         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
   3962       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
   3963   }
   3964 
   3965   return nullptr;
   3966 }
   3967 
   3968 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
   3969   if (const SCEV *S = createAddRecFromPHI(PN))
   3970     return S;
   3971 
   3972   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
   3973     return S;
   3974 
   3975   // If the PHI has a single incoming value, follow that value, unless the
   3976   // PHI's incoming blocks are in a different loop, in which case doing so
   3977   // risks breaking LCSSA form. Instcombine would normally zap these, but
   3978   // it doesn't have DominatorTree information, so it may miss cases.
   3979   if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC))
   3980     if (LI.replacementPreservesLCSSAForm(PN, V))
   3981       return getSCEV(V);
   3982 
   3983   // If it's not a loop phi, we can't handle it yet.
   3984   return getUnknown(PN);
   3985 }
   3986 
   3987 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
   3988                                                       Value *Cond,
   3989                                                       Value *TrueVal,
   3990                                                       Value *FalseVal) {
   3991   // Handle "constant" branch or select. This can occur for instance when a
   3992   // loop pass transforms an inner loop and moves on to process the outer loop.
   3993   if (auto *CI = dyn_cast<ConstantInt>(Cond))
   3994     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
   3995 
   3996   // Try to match some simple smax or umax patterns.
   3997   auto *ICI = dyn_cast<ICmpInst>(Cond);
   3998   if (!ICI)
   3999     return getUnknown(I);
   4000 
   4001   Value *LHS = ICI->getOperand(0);
   4002   Value *RHS = ICI->getOperand(1);
   4003 
   4004   switch (ICI->getPredicate()) {
   4005   case ICmpInst::ICMP_SLT:
   4006   case ICmpInst::ICMP_SLE:
   4007     std::swap(LHS, RHS);
   4008   // fall through
   4009   case ICmpInst::ICMP_SGT:
   4010   case ICmpInst::ICMP_SGE:
   4011     // a >s b ? a+x : b+x  ->  smax(a, b)+x
   4012     // a >s b ? b+x : a+x  ->  smin(a, b)+x
   4013     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
   4014       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
   4015       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
   4016       const SCEV *LA = getSCEV(TrueVal);
   4017       const SCEV *RA = getSCEV(FalseVal);
   4018       const SCEV *LDiff = getMinusSCEV(LA, LS);
   4019       const SCEV *RDiff = getMinusSCEV(RA, RS);
   4020       if (LDiff == RDiff)
   4021         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
   4022       LDiff = getMinusSCEV(LA, RS);
   4023       RDiff = getMinusSCEV(RA, LS);
   4024       if (LDiff == RDiff)
   4025         return getAddExpr(getSMinExpr(LS, RS), LDiff);
   4026     }
   4027     break;
   4028   case ICmpInst::ICMP_ULT:
   4029   case ICmpInst::ICMP_ULE:
   4030     std::swap(LHS, RHS);
   4031   // fall through
   4032   case ICmpInst::ICMP_UGT:
   4033   case ICmpInst::ICMP_UGE:
   4034     // a >u b ? a+x : b+x  ->  umax(a, b)+x
   4035     // a >u b ? b+x : a+x  ->  umin(a, b)+x
   4036     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
   4037       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
   4038       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
   4039       const SCEV *LA = getSCEV(TrueVal);
   4040       const SCEV *RA = getSCEV(FalseVal);
   4041       const SCEV *LDiff = getMinusSCEV(LA, LS);
   4042       const SCEV *RDiff = getMinusSCEV(RA, RS);
   4043       if (LDiff == RDiff)
   4044         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
   4045       LDiff = getMinusSCEV(LA, RS);
   4046       RDiff = getMinusSCEV(RA, LS);
   4047       if (LDiff == RDiff)
   4048         return getAddExpr(getUMinExpr(LS, RS), LDiff);
   4049     }
   4050     break;
   4051   case ICmpInst::ICMP_NE:
   4052     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
   4053     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
   4054         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
   4055       const SCEV *One = getOne(I->getType());
   4056       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
   4057       const SCEV *LA = getSCEV(TrueVal);
   4058       const SCEV *RA = getSCEV(FalseVal);
   4059       const SCEV *LDiff = getMinusSCEV(LA, LS);
   4060       const SCEV *RDiff = getMinusSCEV(RA, One);
   4061       if (LDiff == RDiff)
   4062         return getAddExpr(getUMaxExpr(One, LS), LDiff);
   4063     }
   4064     break;
   4065   case ICmpInst::ICMP_EQ:
   4066     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
   4067     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
   4068         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
   4069       const SCEV *One = getOne(I->getType());
   4070       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
   4071       const SCEV *LA = getSCEV(TrueVal);
   4072       const SCEV *RA = getSCEV(FalseVal);
   4073       const SCEV *LDiff = getMinusSCEV(LA, One);
   4074       const SCEV *RDiff = getMinusSCEV(RA, LS);
   4075       if (LDiff == RDiff)
   4076         return getAddExpr(getUMaxExpr(One, LS), LDiff);
   4077     }
   4078     break;
   4079   default:
   4080     break;
   4081   }
   4082 
   4083   return getUnknown(I);
   4084 }
   4085 
   4086 /// createNodeForGEP - Expand GEP instructions into add and multiply
   4087 /// operations. This allows them to be analyzed by regular SCEV code.
   4088 ///
   4089 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
   4090   Value *Base = GEP->getOperand(0);
   4091   // Don't attempt to analyze GEPs over unsized objects.
   4092   if (!Base->getType()->getPointerElementType()->isSized())
   4093     return getUnknown(GEP);
   4094 
   4095   SmallVector<const SCEV *, 4> IndexExprs;
   4096   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
   4097     IndexExprs.push_back(getSCEV(*Index));
   4098   return getGEPExpr(GEP->getSourceElementType(), getSCEV(Base), IndexExprs,
   4099                     GEP->isInBounds());
   4100 }
   4101 
   4102 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
   4103 /// guaranteed to end in (at every loop iteration).  It is, at the same time,
   4104 /// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
   4105 /// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
   4106 uint32_t
   4107 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
   4108   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
   4109     return C->getAPInt().countTrailingZeros();
   4110 
   4111   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
   4112     return std::min(GetMinTrailingZeros(T->getOperand()),
   4113                     (uint32_t)getTypeSizeInBits(T->getType()));
   4114 
   4115   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
   4116     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
   4117     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
   4118              getTypeSizeInBits(E->getType()) : OpRes;
   4119   }
   4120 
   4121   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
   4122     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
   4123     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
   4124              getTypeSizeInBits(E->getType()) : OpRes;
   4125   }
   4126 
   4127   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
   4128     // The result is the min of all operands results.
   4129     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
   4130     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
   4131       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
   4132     return MinOpRes;
   4133   }
   4134 
   4135   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
   4136     // The result is the sum of all operands results.
   4137     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
   4138     uint32_t BitWidth = getTypeSizeInBits(M->getType());
   4139     for (unsigned i = 1, e = M->getNumOperands();
   4140          SumOpRes != BitWidth && i != e; ++i)
   4141       SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
   4142                           BitWidth);
   4143     return SumOpRes;
   4144   }
   4145 
   4146   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
   4147     // The result is the min of all operands results.
   4148     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
   4149     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
   4150       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
   4151     return MinOpRes;
   4152   }
   4153 
   4154   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
   4155     // The result is the min of all operands results.
   4156     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
   4157     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
   4158       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
   4159     return MinOpRes;
   4160   }
   4161 
   4162   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
   4163     // The result is the min of all operands results.
   4164     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
   4165     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
   4166       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
   4167     return MinOpRes;
   4168   }
   4169 
   4170   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
   4171     // For a SCEVUnknown, ask ValueTracking.
   4172     unsigned BitWidth = getTypeSizeInBits(U->getType());
   4173     APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
   4174     computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC,
   4175                      nullptr, &DT);
   4176     return Zeros.countTrailingOnes();
   4177   }
   4178 
   4179   // SCEVUDivExpr
   4180   return 0;
   4181 }
   4182 
   4183 /// GetRangeFromMetadata - Helper method to assign a range to V from
   4184 /// metadata present in the IR.
   4185 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
   4186   if (Instruction *I = dyn_cast<Instruction>(V))
   4187     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
   4188       return getConstantRangeFromMetadata(*MD);
   4189 
   4190   return None;
   4191 }
   4192 
   4193 /// getRange - Determine the range for a particular SCEV.  If SignHint is
   4194 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
   4195 /// with a "cleaner" unsigned (resp. signed) representation.
   4196 ///
   4197 ConstantRange
   4198 ScalarEvolution::getRange(const SCEV *S,
   4199                           ScalarEvolution::RangeSignHint SignHint) {
   4200   DenseMap<const SCEV *, ConstantRange> &Cache =
   4201       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
   4202                                                        : SignedRanges;
   4203 
   4204   // See if we've computed this range already.
   4205   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
   4206   if (I != Cache.end())
   4207     return I->second;
   4208 
   4209   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
   4210     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
   4211 
   4212   unsigned BitWidth = getTypeSizeInBits(S->getType());
   4213   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
   4214 
   4215   // If the value has known zeros, the maximum value will have those known zeros
   4216   // as well.
   4217   uint32_t TZ = GetMinTrailingZeros(S);
   4218   if (TZ != 0) {
   4219     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
   4220       ConservativeResult =
   4221           ConstantRange(APInt::getMinValue(BitWidth),
   4222                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
   4223     else
   4224       ConservativeResult = ConstantRange(
   4225           APInt::getSignedMinValue(BitWidth),
   4226           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
   4227   }
   4228 
   4229   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
   4230     ConstantRange X = getRange(Add->getOperand(0), SignHint);
   4231     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
   4232       X = X.add(getRange(Add->getOperand(i), SignHint));
   4233     return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
   4234   }
   4235 
   4236   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
   4237     ConstantRange X = getRange(Mul->getOperand(0), SignHint);
   4238     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
   4239       X = X.multiply(getRange(Mul->getOperand(i), SignHint));
   4240     return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
   4241   }
   4242 
   4243   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
   4244     ConstantRange X = getRange(SMax->getOperand(0), SignHint);
   4245     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
   4246       X = X.smax(getRange(SMax->getOperand(i), SignHint));
   4247     return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
   4248   }
   4249 
   4250   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
   4251     ConstantRange X = getRange(UMax->getOperand(0), SignHint);
   4252     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
   4253       X = X.umax(getRange(UMax->getOperand(i), SignHint));
   4254     return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
   4255   }
   4256 
   4257   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
   4258     ConstantRange X = getRange(UDiv->getLHS(), SignHint);
   4259     ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
   4260     return setRange(UDiv, SignHint,
   4261                     ConservativeResult.intersectWith(X.udiv(Y)));
   4262   }
   4263 
   4264   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
   4265     ConstantRange X = getRange(ZExt->getOperand(), SignHint);
   4266     return setRange(ZExt, SignHint,
   4267                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
   4268   }
   4269 
   4270   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
   4271     ConstantRange X = getRange(SExt->getOperand(), SignHint);
   4272     return setRange(SExt, SignHint,
   4273                     ConservativeResult.intersectWith(X.signExtend(BitWidth)));
   4274   }
   4275 
   4276   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
   4277     ConstantRange X = getRange(Trunc->getOperand(), SignHint);
   4278     return setRange(Trunc, SignHint,
   4279                     ConservativeResult.intersectWith(X.truncate(BitWidth)));
   4280   }
   4281 
   4282   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
   4283     // If there's no unsigned wrap, the value will never be less than its
   4284     // initial value.
   4285     if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
   4286       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
   4287         if (!C->getValue()->isZero())
   4288           ConservativeResult = ConservativeResult.intersectWith(
   4289               ConstantRange(C->getAPInt(), APInt(BitWidth, 0)));
   4290 
   4291     // If there's no signed wrap, and all the operands have the same sign or
   4292     // zero, the value won't ever change sign.
   4293     if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
   4294       bool AllNonNeg = true;
   4295       bool AllNonPos = true;
   4296       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
   4297         if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
   4298         if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
   4299       }
   4300       if (AllNonNeg)
   4301         ConservativeResult = ConservativeResult.intersectWith(
   4302           ConstantRange(APInt(BitWidth, 0),
   4303                         APInt::getSignedMinValue(BitWidth)));
   4304       else if (AllNonPos)
   4305         ConservativeResult = ConservativeResult.intersectWith(
   4306           ConstantRange(APInt::getSignedMinValue(BitWidth),
   4307                         APInt(BitWidth, 1)));
   4308     }
   4309 
   4310     // TODO: non-affine addrec
   4311     if (AddRec->isAffine()) {
   4312       Type *Ty = AddRec->getType();
   4313       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
   4314       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
   4315           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
   4316 
   4317         // Check for overflow.  This must be done with ConstantRange arithmetic
   4318         // because we could be called from within the ScalarEvolution overflow
   4319         // checking code.
   4320 
   4321         MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
   4322         ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
   4323         ConstantRange ZExtMaxBECountRange =
   4324             MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
   4325 
   4326         const SCEV *Start = AddRec->getStart();
   4327         const SCEV *Step = AddRec->getStepRecurrence(*this);
   4328         ConstantRange StepSRange = getSignedRange(Step);
   4329         ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
   4330 
   4331         ConstantRange StartURange = getUnsignedRange(Start);
   4332         ConstantRange EndURange =
   4333             StartURange.add(MaxBECountRange.multiply(StepSRange));
   4334 
   4335         // Check for unsigned overflow.
   4336         ConstantRange ZExtStartURange =
   4337             StartURange.zextOrTrunc(BitWidth * 2 + 1);
   4338         ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
   4339         if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
   4340             ZExtEndURange) {
   4341           APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
   4342                                      EndURange.getUnsignedMin());
   4343           APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
   4344                                      EndURange.getUnsignedMax());
   4345           bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
   4346           if (!IsFullRange)
   4347             ConservativeResult =
   4348                 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
   4349         }
   4350 
   4351         ConstantRange StartSRange = getSignedRange(Start);
   4352         ConstantRange EndSRange =
   4353             StartSRange.add(MaxBECountRange.multiply(StepSRange));
   4354 
   4355         // Check for signed overflow. This must be done with ConstantRange
   4356         // arithmetic because we could be called from within the ScalarEvolution
   4357         // overflow checking code.
   4358         ConstantRange SExtStartSRange =
   4359             StartSRange.sextOrTrunc(BitWidth * 2 + 1);
   4360         ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
   4361         if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
   4362             SExtEndSRange) {
   4363           APInt Min = APIntOps::smin(StartSRange.getSignedMin(),
   4364                                      EndSRange.getSignedMin());
   4365           APInt Max = APIntOps::smax(StartSRange.getSignedMax(),
   4366                                      EndSRange.getSignedMax());
   4367           bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
   4368           if (!IsFullRange)
   4369             ConservativeResult =
   4370                 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
   4371         }
   4372       }
   4373     }
   4374 
   4375     return setRange(AddRec, SignHint, ConservativeResult);
   4376   }
   4377 
   4378   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
   4379     // Check if the IR explicitly contains !range metadata.
   4380     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
   4381     if (MDRange.hasValue())
   4382       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
   4383 
   4384     // Split here to avoid paying the compile-time cost of calling both
   4385     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
   4386     // if needed.
   4387     const DataLayout &DL = getDataLayout();
   4388     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
   4389       // For a SCEVUnknown, ask ValueTracking.
   4390       APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
   4391       computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT);
   4392       if (Ones != ~Zeros + 1)
   4393         ConservativeResult =
   4394             ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
   4395     } else {
   4396       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
   4397              "generalize as needed!");
   4398       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
   4399       if (NS > 1)
   4400         ConservativeResult = ConservativeResult.intersectWith(
   4401             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
   4402                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
   4403     }
   4404 
   4405     return setRange(U, SignHint, ConservativeResult);
   4406   }
   4407 
   4408   return setRange(S, SignHint, ConservativeResult);
   4409 }
   4410 
   4411 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
   4412   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
   4413   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
   4414 
   4415   // Return early if there are no flags to propagate to the SCEV.
   4416   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
   4417   if (BinOp->hasNoUnsignedWrap())
   4418     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
   4419   if (BinOp->hasNoSignedWrap())
   4420     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
   4421   if (Flags == SCEV::FlagAnyWrap) {
   4422     return SCEV::FlagAnyWrap;
   4423   }
   4424 
   4425   // Here we check that BinOp is in the header of the innermost loop
   4426   // containing BinOp, since we only deal with instructions in the loop
   4427   // header. The actual loop we need to check later will come from an add
   4428   // recurrence, but getting that requires computing the SCEV of the operands,
   4429   // which can be expensive. This check we can do cheaply to rule out some
   4430   // cases early.
   4431   Loop *innermostContainingLoop = LI.getLoopFor(BinOp->getParent());
   4432   if (innermostContainingLoop == nullptr ||
   4433       innermostContainingLoop->getHeader() != BinOp->getParent())
   4434     return SCEV::FlagAnyWrap;
   4435 
   4436   // Only proceed if we can prove that BinOp does not yield poison.
   4437   if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap;
   4438 
   4439   // At this point we know that if V is executed, then it does not wrap
   4440   // according to at least one of NSW or NUW. If V is not executed, then we do
   4441   // not know if the calculation that V represents would wrap. Multiple
   4442   // instructions can map to the same SCEV. If we apply NSW or NUW from V to
   4443   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
   4444   // derived from other instructions that map to the same SCEV. We cannot make
   4445   // that guarantee for cases where V is not executed. So we need to find the
   4446   // loop that V is considered in relation to and prove that V is executed for
   4447   // every iteration of that loop. That implies that the value that V
   4448   // calculates does not wrap anywhere in the loop, so then we can apply the
   4449   // flags to the SCEV.
   4450   //
   4451   // We check isLoopInvariant to disambiguate in case we are adding two
   4452   // recurrences from different loops, so that we know which loop to prove
   4453   // that V is executed in.
   4454   for (int OpIndex = 0; OpIndex < 2; ++OpIndex) {
   4455     const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex));
   4456     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
   4457       const int OtherOpIndex = 1 - OpIndex;
   4458       const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex));
   4459       if (isLoopInvariant(OtherOp, AddRec->getLoop()) &&
   4460           isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop()))
   4461         return Flags;
   4462     }
   4463   }
   4464   return SCEV::FlagAnyWrap;
   4465 }
   4466 
   4467 /// createSCEV - We know that there is no SCEV for the specified value.  Analyze
   4468 /// the expression.
   4469 ///
   4470 const SCEV *ScalarEvolution::createSCEV(Value *V) {
   4471   if (!isSCEVable(V->getType()))
   4472     return getUnknown(V);
   4473 
   4474   unsigned Opcode = Instruction::UserOp1;
   4475   if (Instruction *I = dyn_cast<Instruction>(V)) {
   4476     Opcode = I->getOpcode();
   4477 
   4478     // Don't attempt to analyze instructions in blocks that aren't
   4479     // reachable. Such instructions don't matter, and they aren't required
   4480     // to obey basic rules for definitions dominating uses which this
   4481     // analysis depends on.
   4482     if (!DT.isReachableFromEntry(I->getParent()))
   4483       return getUnknown(V);
   4484   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
   4485     Opcode = CE->getOpcode();
   4486   else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
   4487     return getConstant(CI);
   4488   else if (isa<ConstantPointerNull>(V))
   4489     return getZero(V->getType());
   4490   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
   4491     return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
   4492   else
   4493     return getUnknown(V);
   4494 
   4495   Operator *U = cast<Operator>(V);
   4496   switch (Opcode) {
   4497   case Instruction::Add: {
   4498     // The simple thing to do would be to just call getSCEV on both operands
   4499     // and call getAddExpr with the result. However if we're looking at a
   4500     // bunch of things all added together, this can be quite inefficient,
   4501     // because it leads to N-1 getAddExpr calls for N ultimate operands.
   4502     // Instead, gather up all the operands and make a single getAddExpr call.
   4503     // LLVM IR canonical form means we need only traverse the left operands.
   4504     SmallVector<const SCEV *, 4> AddOps;
   4505     for (Value *Op = U;; Op = U->getOperand(0)) {
   4506       U = dyn_cast<Operator>(Op);
   4507       unsigned Opcode = U ? U->getOpcode() : 0;
   4508       if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) {
   4509         assert(Op != V && "V should be an add");
   4510         AddOps.push_back(getSCEV(Op));
   4511         break;
   4512       }
   4513 
   4514       if (auto *OpSCEV = getExistingSCEV(U)) {
   4515         AddOps.push_back(OpSCEV);
   4516         break;
   4517       }
   4518 
   4519       // If a NUW or NSW flag can be applied to the SCEV for this
   4520       // addition, then compute the SCEV for this addition by itself
   4521       // with a separate call to getAddExpr. We need to do that
   4522       // instead of pushing the operands of the addition onto AddOps,
   4523       // since the flags are only known to apply to this particular
   4524       // addition - they may not apply to other additions that can be
   4525       // formed with operands from AddOps.
   4526       const SCEV *RHS = getSCEV(U->getOperand(1));
   4527       SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U);
   4528       if (Flags != SCEV::FlagAnyWrap) {
   4529         const SCEV *LHS = getSCEV(U->getOperand(0));
   4530         if (Opcode == Instruction::Sub)
   4531           AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
   4532         else
   4533           AddOps.push_back(getAddExpr(LHS, RHS, Flags));
   4534         break;
   4535       }
   4536 
   4537       if (Opcode == Instruction::Sub)
   4538         AddOps.push_back(getNegativeSCEV(RHS));
   4539       else
   4540         AddOps.push_back(RHS);
   4541     }
   4542     return getAddExpr(AddOps);
   4543   }
   4544 
   4545   case Instruction::Mul: {
   4546     SmallVector<const SCEV *, 4> MulOps;
   4547     for (Value *Op = U;; Op = U->getOperand(0)) {
   4548       U = dyn_cast<Operator>(Op);
   4549       if (!U || U->getOpcode() != Instruction::Mul) {
   4550         assert(Op != V && "V should be a mul");
   4551         MulOps.push_back(getSCEV(Op));
   4552         break;
   4553       }
   4554 
   4555       if (auto *OpSCEV = getExistingSCEV(U)) {
   4556         MulOps.push_back(OpSCEV);
   4557         break;
   4558       }
   4559 
   4560       SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U);
   4561       if (Flags != SCEV::FlagAnyWrap) {
   4562         MulOps.push_back(getMulExpr(getSCEV(U->getOperand(0)),
   4563                                     getSCEV(U->getOperand(1)), Flags));
   4564         break;
   4565       }
   4566 
   4567       MulOps.push_back(getSCEV(U->getOperand(1)));
   4568     }
   4569     return getMulExpr(MulOps);
   4570   }
   4571   case Instruction::UDiv:
   4572     return getUDivExpr(getSCEV(U->getOperand(0)),
   4573                        getSCEV(U->getOperand(1)));
   4574   case Instruction::Sub:
   4575     return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)),
   4576                         getNoWrapFlagsFromUB(U));
   4577   case Instruction::And:
   4578     // For an expression like x&255 that merely masks off the high bits,
   4579     // use zext(trunc(x)) as the SCEV expression.
   4580     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
   4581       if (CI->isNullValue())
   4582         return getSCEV(U->getOperand(1));
   4583       if (CI->isAllOnesValue())
   4584         return getSCEV(U->getOperand(0));
   4585       const APInt &A = CI->getValue();
   4586 
   4587       // Instcombine's ShrinkDemandedConstant may strip bits out of
   4588       // constants, obscuring what would otherwise be a low-bits mask.
   4589       // Use computeKnownBits to compute what ShrinkDemandedConstant
   4590       // knew about to reconstruct a low-bits mask value.
   4591       unsigned LZ = A.countLeadingZeros();
   4592       unsigned TZ = A.countTrailingZeros();
   4593       unsigned BitWidth = A.getBitWidth();
   4594       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
   4595       computeKnownBits(U->getOperand(0), KnownZero, KnownOne, getDataLayout(),
   4596                        0, &AC, nullptr, &DT);
   4597 
   4598       APInt EffectiveMask =
   4599           APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
   4600       if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
   4601         const SCEV *MulCount = getConstant(
   4602             ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
   4603         return getMulExpr(
   4604             getZeroExtendExpr(
   4605                 getTruncateExpr(
   4606                     getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
   4607                     IntegerType::get(getContext(), BitWidth - LZ - TZ)),
   4608                 U->getType()),
   4609             MulCount);
   4610       }
   4611     }
   4612     break;
   4613 
   4614   case Instruction::Or:
   4615     // If the RHS of the Or is a constant, we may have something like:
   4616     // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
   4617     // optimizations will transparently handle this case.
   4618     //
   4619     // In order for this transformation to be safe, the LHS must be of the
   4620     // form X*(2^n) and the Or constant must be less than 2^n.
   4621     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
   4622       const SCEV *LHS = getSCEV(U->getOperand(0));
   4623       const APInt &CIVal = CI->getValue();
   4624       if (GetMinTrailingZeros(LHS) >=
   4625           (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
   4626         // Build a plain add SCEV.
   4627         const SCEV *S = getAddExpr(LHS, getSCEV(CI));
   4628         // If the LHS of the add was an addrec and it has no-wrap flags,
   4629         // transfer the no-wrap flags, since an or won't introduce a wrap.
   4630         if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
   4631           const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
   4632           const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
   4633             OldAR->getNoWrapFlags());
   4634         }
   4635         return S;
   4636       }
   4637     }
   4638     break;
   4639   case Instruction::Xor:
   4640     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
   4641       // If the RHS of the xor is a signbit, then this is just an add.
   4642       // Instcombine turns add of signbit into xor as a strength reduction step.
   4643       if (CI->getValue().isSignBit())
   4644         return getAddExpr(getSCEV(U->getOperand(0)),
   4645                           getSCEV(U->getOperand(1)));
   4646 
   4647       // If the RHS of xor is -1, then this is a not operation.
   4648       if (CI->isAllOnesValue())
   4649         return getNotSCEV(getSCEV(U->getOperand(0)));
   4650 
   4651       // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
   4652       // This is a variant of the check for xor with -1, and it handles
   4653       // the case where instcombine has trimmed non-demanded bits out
   4654       // of an xor with -1.
   4655       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
   4656         if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
   4657           if (BO->getOpcode() == Instruction::And &&
   4658               LCI->getValue() == CI->getValue())
   4659             if (const SCEVZeroExtendExpr *Z =
   4660                   dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
   4661               Type *UTy = U->getType();
   4662               const SCEV *Z0 = Z->getOperand();
   4663               Type *Z0Ty = Z0->getType();
   4664               unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
   4665 
   4666               // If C is a low-bits mask, the zero extend is serving to
   4667               // mask off the high bits. Complement the operand and
   4668               // re-apply the zext.
   4669               if (APIntOps::isMask(Z0TySize, CI->getValue()))
   4670                 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
   4671 
   4672               // If C is a single bit, it may be in the sign-bit position
   4673               // before the zero-extend. In this case, represent the xor
   4674               // using an add, which is equivalent, and re-apply the zext.
   4675               APInt Trunc = CI->getValue().trunc(Z0TySize);
   4676               if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
   4677                   Trunc.isSignBit())
   4678                 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
   4679                                          UTy);
   4680             }
   4681     }
   4682     break;
   4683 
   4684   case Instruction::Shl:
   4685     // Turn shift left of a constant amount into a multiply.
   4686     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
   4687       uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
   4688 
   4689       // If the shift count is not less than the bitwidth, the result of
   4690       // the shift is undefined. Don't try to analyze it, because the
   4691       // resolution chosen here may differ from the resolution chosen in
   4692       // other parts of the compiler.
   4693       if (SA->getValue().uge(BitWidth))
   4694         break;
   4695 
   4696       // It is currently not resolved how to interpret NSW for left
   4697       // shift by BitWidth - 1, so we avoid applying flags in that
   4698       // case. Remove this check (or this comment) once the situation
   4699       // is resolved. See
   4700       // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
   4701       // and http://reviews.llvm.org/D8890 .
   4702       auto Flags = SCEV::FlagAnyWrap;
   4703       if (SA->getValue().ult(BitWidth - 1)) Flags = getNoWrapFlagsFromUB(U);
   4704 
   4705       Constant *X = ConstantInt::get(getContext(),
   4706         APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
   4707       return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X), Flags);
   4708     }
   4709     break;
   4710 
   4711   case Instruction::LShr:
   4712     // Turn logical shift right of a constant into a unsigned divide.
   4713     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
   4714       uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
   4715 
   4716       // If the shift count is not less than the bitwidth, the result of
   4717       // the shift is undefined. Don't try to analyze it, because the
   4718       // resolution chosen here may differ from the resolution chosen in
   4719       // other parts of the compiler.
   4720       if (SA->getValue().uge(BitWidth))
   4721         break;
   4722 
   4723       Constant *X = ConstantInt::get(getContext(),
   4724         APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
   4725       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
   4726     }
   4727     break;
   4728 
   4729   case Instruction::AShr:
   4730     // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
   4731     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
   4732       if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
   4733         if (L->getOpcode() == Instruction::Shl &&
   4734             L->getOperand(1) == U->getOperand(1)) {
   4735           uint64_t BitWidth = getTypeSizeInBits(U->getType());
   4736 
   4737           // If the shift count is not less than the bitwidth, the result of
   4738           // the shift is undefined. Don't try to analyze it, because the
   4739           // resolution chosen here may differ from the resolution chosen in
   4740           // other parts of the compiler.
   4741           if (CI->getValue().uge(BitWidth))
   4742             break;
   4743 
   4744           uint64_t Amt = BitWidth - CI->getZExtValue();
   4745           if (Amt == BitWidth)
   4746             return getSCEV(L->getOperand(0));       // shift by zero --> noop
   4747           return
   4748             getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
   4749                                               IntegerType::get(getContext(),
   4750                                                                Amt)),
   4751                               U->getType());
   4752         }
   4753     break;
   4754 
   4755   case Instruction::Trunc:
   4756     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
   4757 
   4758   case Instruction::ZExt:
   4759     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
   4760 
   4761   case Instruction::SExt:
   4762     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
   4763 
   4764   case Instruction::BitCast:
   4765     // BitCasts are no-op casts so we just eliminate the cast.
   4766     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
   4767       return getSCEV(U->getOperand(0));
   4768     break;
   4769 
   4770   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
   4771   // lead to pointer expressions which cannot safely be expanded to GEPs,
   4772   // because ScalarEvolution doesn't respect the GEP aliasing rules when
   4773   // simplifying integer expressions.
   4774 
   4775   case Instruction::GetElementPtr:
   4776     return createNodeForGEP(cast<GEPOperator>(U));
   4777 
   4778   case Instruction::PHI:
   4779     return createNodeForPHI(cast<PHINode>(U));
   4780 
   4781   case Instruction::Select:
   4782     // U can also be a select constant expr, which let fall through.  Since
   4783     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
   4784     // constant expressions cannot have instructions as operands, we'd have
   4785     // returned getUnknown for a select constant expressions anyway.
   4786     if (isa<Instruction>(U))
   4787       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
   4788                                       U->getOperand(1), U->getOperand(2));
   4789 
   4790   default: // We cannot analyze this expression.
   4791     break;
   4792   }
   4793 
   4794   return getUnknown(V);
   4795 }
   4796 
   4797 
   4798 
   4799 //===----------------------------------------------------------------------===//
   4800 //                   Iteration Count Computation Code
   4801 //
   4802 
   4803 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
   4804   if (BasicBlock *ExitingBB = L->getExitingBlock())
   4805     return getSmallConstantTripCount(L, ExitingBB);
   4806 
   4807   // No trip count information for multiple exits.
   4808   return 0;
   4809 }
   4810 
   4811 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
   4812 /// normal unsigned value. Returns 0 if the trip count is unknown or not
   4813 /// constant. Will also return 0 if the maximum trip count is very large (>=
   4814 /// 2^32).
   4815 ///
   4816 /// This "trip count" assumes that control exits via ExitingBlock. More
   4817 /// precisely, it is the number of times that control may reach ExitingBlock
   4818 /// before taking the branch. For loops with multiple exits, it may not be the
   4819 /// number times that the loop header executes because the loop may exit
   4820 /// prematurely via another branch.
   4821 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
   4822                                                     BasicBlock *ExitingBlock) {
   4823   assert(ExitingBlock && "Must pass a non-null exiting block!");
   4824   assert(L->isLoopExiting(ExitingBlock) &&
   4825          "Exiting block must actually branch out of the loop!");
   4826   const SCEVConstant *ExitCount =
   4827       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
   4828   if (!ExitCount)
   4829     return 0;
   4830 
   4831   ConstantInt *ExitConst = ExitCount->getValue();
   4832 
   4833   // Guard against huge trip counts.
   4834   if (ExitConst->getValue().getActiveBits() > 32)
   4835     return 0;
   4836 
   4837   // In case of integer overflow, this returns 0, which is correct.
   4838   return ((unsigned)ExitConst->getZExtValue()) + 1;
   4839 }
   4840 
   4841 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
   4842   if (BasicBlock *ExitingBB = L->getExitingBlock())
   4843     return getSmallConstantTripMultiple(L, ExitingBB);
   4844 
   4845   // No trip multiple information for multiple exits.
   4846   return 0;
   4847 }
   4848 
   4849 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
   4850 /// trip count of this loop as a normal unsigned value, if possible. This
   4851 /// means that the actual trip count is always a multiple of the returned
   4852 /// value (don't forget the trip count could very well be zero as well!).
   4853 ///
   4854 /// Returns 1 if the trip count is unknown or not guaranteed to be the
   4855 /// multiple of a constant (which is also the case if the trip count is simply
   4856 /// constant, use getSmallConstantTripCount for that case), Will also return 1
   4857 /// if the trip count is very large (>= 2^32).
   4858 ///
   4859 /// As explained in the comments for getSmallConstantTripCount, this assumes
   4860 /// that control exits the loop via ExitingBlock.
   4861 unsigned
   4862 ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
   4863                                               BasicBlock *ExitingBlock) {
   4864   assert(ExitingBlock && "Must pass a non-null exiting block!");
   4865   assert(L->isLoopExiting(ExitingBlock) &&
   4866          "Exiting block must actually branch out of the loop!");
   4867   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
   4868   if (ExitCount == getCouldNotCompute())
   4869     return 1;
   4870 
   4871   // Get the trip count from the BE count by adding 1.
   4872   const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType()));
   4873   // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
   4874   // to factor simple cases.
   4875   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
   4876     TCMul = Mul->getOperand(0);
   4877 
   4878   const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
   4879   if (!MulC)
   4880     return 1;
   4881 
   4882   ConstantInt *Result = MulC->getValue();
   4883 
   4884   // Guard against huge trip counts (this requires checking
   4885   // for zero to handle the case where the trip count == -1 and the
   4886   // addition wraps).
   4887   if (!Result || Result->getValue().getActiveBits() > 32 ||
   4888       Result->getValue().getActiveBits() == 0)
   4889     return 1;
   4890 
   4891   return (unsigned)Result->getZExtValue();
   4892 }
   4893 
   4894 // getExitCount - Get the expression for the number of loop iterations for which
   4895 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return
   4896 // SCEVCouldNotCompute.
   4897 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
   4898   return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
   4899 }
   4900 
   4901 /// getBackedgeTakenCount - If the specified loop has a predictable
   4902 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
   4903 /// object. The backedge-taken count is the number of times the loop header
   4904 /// will be branched to from within the loop. This is one less than the
   4905 /// trip count of the loop, since it doesn't count the first iteration,
   4906 /// when the header is branched to from outside the loop.
   4907 ///
   4908 /// Note that it is not valid to call this method on a loop without a
   4909 /// loop-invariant backedge-taken count (see
   4910 /// hasLoopInvariantBackedgeTakenCount).
   4911 ///
   4912 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
   4913   return getBackedgeTakenInfo(L).getExact(this);
   4914 }
   4915 
   4916 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
   4917 /// return the least SCEV value that is known never to be less than the
   4918 /// actual backedge taken count.
   4919 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
   4920   return getBackedgeTakenInfo(L).getMax(this);
   4921 }
   4922 
   4923 /// PushLoopPHIs - Push PHI nodes in the header of the given loop
   4924 /// onto the given Worklist.
   4925 static void
   4926 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
   4927   BasicBlock *Header = L->getHeader();
   4928 
   4929   // Push all Loop-header PHIs onto the Worklist stack.
   4930   for (BasicBlock::iterator I = Header->begin();
   4931        PHINode *PN = dyn_cast<PHINode>(I); ++I)
   4932     Worklist.push_back(PN);
   4933 }
   4934 
   4935 const ScalarEvolution::BackedgeTakenInfo &
   4936 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
   4937   // Initially insert an invalid entry for this loop. If the insertion
   4938   // succeeds, proceed to actually compute a backedge-taken count and
   4939   // update the value. The temporary CouldNotCompute value tells SCEV
   4940   // code elsewhere that it shouldn't attempt to request a new
   4941   // backedge-taken count, which could result in infinite recursion.
   4942   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
   4943     BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
   4944   if (!Pair.second)
   4945     return Pair.first->second;
   4946 
   4947   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
   4948   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
   4949   // must be cleared in this scope.
   4950   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
   4951 
   4952   if (Result.getExact(this) != getCouldNotCompute()) {
   4953     assert(isLoopInvariant(Result.getExact(this), L) &&
   4954            isLoopInvariant(Result.getMax(this), L) &&
   4955            "Computed backedge-taken count isn't loop invariant for loop!");
   4956     ++NumTripCountsComputed;
   4957   }
   4958   else if (Result.getMax(this) == getCouldNotCompute() &&
   4959            isa<PHINode>(L->getHeader()->begin())) {
   4960     // Only count loops that have phi nodes as not being computable.
   4961     ++NumTripCountsNotComputed;
   4962   }
   4963 
   4964   // Now that we know more about the trip count for this loop, forget any
   4965   // existing SCEV values for PHI nodes in this loop since they are only
   4966   // conservative estimates made without the benefit of trip count
   4967   // information. This is similar to the code in forgetLoop, except that
   4968   // it handles SCEVUnknown PHI nodes specially.
   4969   if (Result.hasAnyInfo()) {
   4970     SmallVector<Instruction *, 16> Worklist;
   4971     PushLoopPHIs(L, Worklist);
   4972 
   4973     SmallPtrSet<Instruction *, 8> Visited;
   4974     while (!Worklist.empty()) {
   4975       Instruction *I = Worklist.pop_back_val();
   4976       if (!Visited.insert(I).second)
   4977         continue;
   4978 
   4979       ValueExprMapType::iterator It =
   4980         ValueExprMap.find_as(static_cast<Value *>(I));
   4981       if (It != ValueExprMap.end()) {
   4982         const SCEV *Old = It->second;
   4983 
   4984         // SCEVUnknown for a PHI either means that it has an unrecognized
   4985         // structure, or it's a PHI that's in the progress of being computed
   4986         // by createNodeForPHI.  In the former case, additional loop trip
   4987         // count information isn't going to change anything. In the later
   4988         // case, createNodeForPHI will perform the necessary updates on its
   4989         // own when it gets to that point.
   4990         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
   4991           forgetMemoizedResults(Old);
   4992           ValueExprMap.erase(It);
   4993         }
   4994         if (PHINode *PN = dyn_cast<PHINode>(I))
   4995           ConstantEvolutionLoopExitValue.erase(PN);
   4996       }
   4997 
   4998       PushDefUseChildren(I, Worklist);
   4999     }
   5000   }
   5001 
   5002   // Re-lookup the insert position, since the call to
   5003   // computeBackedgeTakenCount above could result in a
   5004   // recusive call to getBackedgeTakenInfo (on a different
   5005   // loop), which would invalidate the iterator computed
   5006   // earlier.
   5007   return BackedgeTakenCounts.find(L)->second = Result;
   5008 }
   5009 
   5010 /// forgetLoop - This method should be called by the client when it has
   5011 /// changed a loop in a way that may effect ScalarEvolution's ability to
   5012 /// compute a trip count, or if the loop is deleted.
   5013 void ScalarEvolution::forgetLoop(const Loop *L) {
   5014   // Drop any stored trip count value.
   5015   DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
   5016     BackedgeTakenCounts.find(L);
   5017   if (BTCPos != BackedgeTakenCounts.end()) {
   5018     BTCPos->second.clear();
   5019     BackedgeTakenCounts.erase(BTCPos);
   5020   }
   5021 
   5022   // Drop information about expressions based on loop-header PHIs.
   5023   SmallVector<Instruction *, 16> Worklist;
   5024   PushLoopPHIs(L, Worklist);
   5025 
   5026   SmallPtrSet<Instruction *, 8> Visited;
   5027   while (!Worklist.empty()) {
   5028     Instruction *I = Worklist.pop_back_val();
   5029     if (!Visited.insert(I).second)
   5030       continue;
   5031 
   5032     ValueExprMapType::iterator It =
   5033       ValueExprMap.find_as(static_cast<Value *>(I));
   5034     if (It != ValueExprMap.end()) {
   5035       forgetMemoizedResults(It->second);
   5036       ValueExprMap.erase(It);
   5037       if (PHINode *PN = dyn_cast<PHINode>(I))
   5038         ConstantEvolutionLoopExitValue.erase(PN);
   5039     }
   5040 
   5041     PushDefUseChildren(I, Worklist);
   5042   }
   5043 
   5044   // Forget all contained loops too, to avoid dangling entries in the
   5045   // ValuesAtScopes map.
   5046   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
   5047     forgetLoop(*I);
   5048 }
   5049 
   5050 /// forgetValue - This method should be called by the client when it has
   5051 /// changed a value in a way that may effect its value, or which may
   5052 /// disconnect it from a def-use chain linking it to a loop.
   5053 void ScalarEvolution::forgetValue(Value *V) {
   5054   Instruction *I = dyn_cast<Instruction>(V);
   5055   if (!I) return;
   5056 
   5057   // Drop information about expressions based on loop-header PHIs.
   5058   SmallVector<Instruction *, 16> Worklist;
   5059   Worklist.push_back(I);
   5060 
   5061   SmallPtrSet<Instruction *, 8> Visited;
   5062   while (!Worklist.empty()) {
   5063     I = Worklist.pop_back_val();
   5064     if (!Visited.insert(I).second)
   5065       continue;
   5066 
   5067     ValueExprMapType::iterator It =
   5068       ValueExprMap.find_as(static_cast<Value *>(I));
   5069     if (It != ValueExprMap.end()) {
   5070       forgetMemoizedResults(It->second);
   5071       ValueExprMap.erase(It);
   5072       if (PHINode *PN = dyn_cast<PHINode>(I))
   5073         ConstantEvolutionLoopExitValue.erase(PN);
   5074     }
   5075 
   5076     PushDefUseChildren(I, Worklist);
   5077   }
   5078 }
   5079 
   5080 /// getExact - Get the exact loop backedge taken count considering all loop
   5081 /// exits. A computable result can only be returned for loops with a single
   5082 /// exit.  Returning the minimum taken count among all exits is incorrect
   5083 /// because one of the loop's exit limit's may have been skipped. HowFarToZero
   5084 /// assumes that the limit of each loop test is never skipped. This is a valid
   5085 /// assumption as long as the loop exits via that test. For precise results, it
   5086 /// is the caller's responsibility to specify the relevant loop exit using
   5087 /// getExact(ExitingBlock, SE).
   5088 const SCEV *
   5089 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
   5090   // If any exits were not computable, the loop is not computable.
   5091   if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
   5092 
   5093   // We need exactly one computable exit.
   5094   if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
   5095   assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
   5096 
   5097   const SCEV *BECount = nullptr;
   5098   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
   5099        ENT != nullptr; ENT = ENT->getNextExit()) {
   5100 
   5101     assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
   5102 
   5103     if (!BECount)
   5104       BECount = ENT->ExactNotTaken;
   5105     else if (BECount != ENT->ExactNotTaken)
   5106       return SE->getCouldNotCompute();
   5107   }
   5108   assert(BECount && "Invalid not taken count for loop exit");
   5109   return BECount;
   5110 }
   5111 
   5112 /// getExact - Get the exact not taken count for this loop exit.
   5113 const SCEV *
   5114 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
   5115                                              ScalarEvolution *SE) const {
   5116   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
   5117        ENT != nullptr; ENT = ENT->getNextExit()) {
   5118 
   5119     if (ENT->ExitingBlock == ExitingBlock)
   5120       return ENT->ExactNotTaken;
   5121   }
   5122   return SE->getCouldNotCompute();
   5123 }
   5124 
   5125 /// getMax - Get the max backedge taken count for the loop.
   5126 const SCEV *
   5127 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
   5128   return Max ? Max : SE->getCouldNotCompute();
   5129 }
   5130 
   5131 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
   5132                                                     ScalarEvolution *SE) const {
   5133   if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
   5134     return true;
   5135 
   5136   if (!ExitNotTaken.ExitingBlock)
   5137     return false;
   5138 
   5139   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
   5140        ENT != nullptr; ENT = ENT->getNextExit()) {
   5141 
   5142     if (ENT->ExactNotTaken != SE->getCouldNotCompute()
   5143         && SE->hasOperand(ENT->ExactNotTaken, S)) {
   5144       return true;
   5145     }
   5146   }
   5147   return false;
   5148 }
   5149 
   5150 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
   5151 /// computable exit into a persistent ExitNotTakenInfo array.
   5152 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
   5153   SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
   5154   bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
   5155 
   5156   if (!Complete)
   5157     ExitNotTaken.setIncomplete();
   5158 
   5159   unsigned NumExits = ExitCounts.size();
   5160   if (NumExits == 0) return;
   5161 
   5162   ExitNotTaken.ExitingBlock = ExitCounts[0].first;
   5163   ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
   5164   if (NumExits == 1) return;
   5165 
   5166   // Handle the rare case of multiple computable exits.
   5167   ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
   5168 
   5169   ExitNotTakenInfo *PrevENT = &ExitNotTaken;
   5170   for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
   5171     PrevENT->setNextExit(ENT);
   5172     ENT->ExitingBlock = ExitCounts[i].first;
   5173     ENT->ExactNotTaken = ExitCounts[i].second;
   5174   }
   5175 }
   5176 
   5177 /// clear - Invalidate this result and free the ExitNotTakenInfo array.
   5178 void ScalarEvolution::BackedgeTakenInfo::clear() {
   5179   ExitNotTaken.ExitingBlock = nullptr;
   5180   ExitNotTaken.ExactNotTaken = nullptr;
   5181   delete[] ExitNotTaken.getNextExit();
   5182 }
   5183 
   5184 /// computeBackedgeTakenCount - Compute the number of times the backedge
   5185 /// of the specified loop will execute.
   5186 ScalarEvolution::BackedgeTakenInfo
   5187 ScalarEvolution::computeBackedgeTakenCount(const Loop *L) {
   5188   SmallVector<BasicBlock *, 8> ExitingBlocks;
   5189   L->getExitingBlocks(ExitingBlocks);
   5190 
   5191   SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
   5192   bool CouldComputeBECount = true;
   5193   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
   5194   const SCEV *MustExitMaxBECount = nullptr;
   5195   const SCEV *MayExitMaxBECount = nullptr;
   5196 
   5197   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
   5198   // and compute maxBECount.
   5199   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
   5200     BasicBlock *ExitBB = ExitingBlocks[i];
   5201     ExitLimit EL = computeExitLimit(L, ExitBB);
   5202 
   5203     // 1. For each exit that can be computed, add an entry to ExitCounts.
   5204     // CouldComputeBECount is true only if all exits can be computed.
   5205     if (EL.Exact == getCouldNotCompute())
   5206       // We couldn't compute an exact value for this exit, so
   5207       // we won't be able to compute an exact value for the loop.
   5208       CouldComputeBECount = false;
   5209     else
   5210       ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
   5211 
   5212     // 2. Derive the loop's MaxBECount from each exit's max number of
   5213     // non-exiting iterations. Partition the loop exits into two kinds:
   5214     // LoopMustExits and LoopMayExits.
   5215     //
   5216     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
   5217     // is a LoopMayExit.  If any computable LoopMustExit is found, then
   5218     // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
   5219     // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
   5220     // considered greater than any computable EL.Max.
   5221     if (EL.Max != getCouldNotCompute() && Latch &&
   5222         DT.dominates(ExitBB, Latch)) {
   5223       if (!MustExitMaxBECount)
   5224         MustExitMaxBECount = EL.Max;
   5225       else {
   5226         MustExitMaxBECount =
   5227           getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
   5228       }
   5229     } else if (MayExitMaxBECount != getCouldNotCompute()) {
   5230       if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
   5231         MayExitMaxBECount = EL.Max;
   5232       else {
   5233         MayExitMaxBECount =
   5234           getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
   5235       }
   5236     }
   5237   }
   5238   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
   5239     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
   5240   return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
   5241 }
   5242 
   5243 ScalarEvolution::ExitLimit
   5244 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
   5245 
   5246   // Okay, we've chosen an exiting block.  See what condition causes us to exit
   5247   // at this block and remember the exit block and whether all other targets
   5248   // lead to the loop header.
   5249   bool MustExecuteLoopHeader = true;
   5250   BasicBlock *Exit = nullptr;
   5251   for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
   5252        SI != SE; ++SI)
   5253     if (!L->contains(*SI)) {
   5254       if (Exit) // Multiple exit successors.
   5255         return getCouldNotCompute();
   5256       Exit = *SI;
   5257     } else if (*SI != L->getHeader()) {
   5258       MustExecuteLoopHeader = false;
   5259     }
   5260 
   5261   // At this point, we know we have a conditional branch that determines whether
   5262   // the loop is exited.  However, we don't know if the branch is executed each
   5263   // time through the loop.  If not, then the execution count of the branch will
   5264   // not be equal to the trip count of the loop.
   5265   //
   5266   // Currently we check for this by checking to see if the Exit branch goes to
   5267   // the loop header.  If so, we know it will always execute the same number of
   5268   // times as the loop.  We also handle the case where the exit block *is* the
   5269   // loop header.  This is common for un-rotated loops.
   5270   //
   5271   // If both of those tests fail, walk up the unique predecessor chain to the
   5272   // header, stopping if there is an edge that doesn't exit the loop. If the
   5273   // header is reached, the execution count of the branch will be equal to the
   5274   // trip count of the loop.
   5275   //
   5276   //  More extensive analysis could be done to handle more cases here.
   5277   //
   5278   if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
   5279     // The simple checks failed, try climbing the unique predecessor chain
   5280     // up to the header.
   5281     bool Ok = false;
   5282     for (BasicBlock *BB = ExitingBlock; BB; ) {
   5283       BasicBlock *Pred = BB->getUniquePredecessor();
   5284       if (!Pred)
   5285         return getCouldNotCompute();
   5286       TerminatorInst *PredTerm = Pred->getTerminator();
   5287       for (const BasicBlock *PredSucc : PredTerm->successors()) {
   5288         if (PredSucc == BB)
   5289           continue;
   5290         // If the predecessor has a successor that isn't BB and isn't
   5291         // outside the loop, assume the worst.
   5292         if (L->contains(PredSucc))
   5293           return getCouldNotCompute();
   5294       }
   5295       if (Pred == L->getHeader()) {
   5296         Ok = true;
   5297         break;
   5298       }
   5299       BB = Pred;
   5300     }
   5301     if (!Ok)
   5302       return getCouldNotCompute();
   5303   }
   5304 
   5305   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
   5306   TerminatorInst *Term = ExitingBlock->getTerminator();
   5307   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
   5308     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
   5309     // Proceed to the next level to examine the exit condition expression.
   5310     return computeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
   5311                                     BI->getSuccessor(1),
   5312                                     /*ControlsExit=*/IsOnlyExit);
   5313   }
   5314 
   5315   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
   5316     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
   5317                                                 /*ControlsExit=*/IsOnlyExit);
   5318 
   5319   return getCouldNotCompute();
   5320 }
   5321 
   5322 /// computeExitLimitFromCond - Compute the number of times the
   5323 /// backedge of the specified loop will execute if its exit condition
   5324 /// were a conditional branch of ExitCond, TBB, and FBB.
   5325 ///
   5326 /// @param ControlsExit is true if ExitCond directly controls the exit
   5327 /// branch. In this case, we can assume that the loop exits only if the
   5328 /// condition is true and can infer that failing to meet the condition prior to
   5329 /// integer wraparound results in undefined behavior.
   5330 ScalarEvolution::ExitLimit
   5331 ScalarEvolution::computeExitLimitFromCond(const Loop *L,
   5332                                           Value *ExitCond,
   5333                                           BasicBlock *TBB,
   5334                                           BasicBlock *FBB,
   5335                                           bool ControlsExit) {
   5336   // Check if the controlling expression for this loop is an And or Or.
   5337   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
   5338     if (BO->getOpcode() == Instruction::And) {
   5339       // Recurse on the operands of the and.
   5340       bool EitherMayExit = L->contains(TBB);
   5341       ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
   5342                                                ControlsExit && !EitherMayExit);
   5343       ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
   5344                                                ControlsExit && !EitherMayExit);
   5345       const SCEV *BECount = getCouldNotCompute();
   5346       const SCEV *MaxBECount = getCouldNotCompute();
   5347       if (EitherMayExit) {
   5348         // Both conditions must be true for the loop to continue executing.
   5349         // Choose the less conservative count.
   5350         if (EL0.Exact == getCouldNotCompute() ||
   5351             EL1.Exact == getCouldNotCompute())
   5352           BECount = getCouldNotCompute();
   5353         else
   5354           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
   5355         if (EL0.Max == getCouldNotCompute())
   5356           MaxBECount = EL1.Max;
   5357         else if (EL1.Max == getCouldNotCompute())
   5358           MaxBECount = EL0.Max;
   5359         else
   5360           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
   5361       } else {
   5362         // Both conditions must be true at the same time for the loop to exit.
   5363         // For now, be conservative.
   5364         assert(L->contains(FBB) && "Loop block has no successor in loop!");
   5365         if (EL0.Max == EL1.Max)
   5366           MaxBECount = EL0.Max;
   5367         if (EL0.Exact == EL1.Exact)
   5368           BECount = EL0.Exact;
   5369       }
   5370 
   5371       return ExitLimit(BECount, MaxBECount);
   5372     }
   5373     if (BO->getOpcode() == Instruction::Or) {
   5374       // Recurse on the operands of the or.
   5375       bool EitherMayExit = L->contains(FBB);
   5376       ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
   5377                                                ControlsExit && !EitherMayExit);
   5378       ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
   5379                                                ControlsExit && !EitherMayExit);
   5380       const SCEV *BECount = getCouldNotCompute();
   5381       const SCEV *MaxBECount = getCouldNotCompute();
   5382       if (EitherMayExit) {
   5383         // Both conditions must be false for the loop to continue executing.
   5384         // Choose the less conservative count.
   5385         if (EL0.Exact == getCouldNotCompute() ||
   5386             EL1.Exact == getCouldNotCompute())
   5387           BECount = getCouldNotCompute();
   5388         else
   5389           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
   5390         if (EL0.Max == getCouldNotCompute())
   5391           MaxBECount = EL1.Max;
   5392         else if (EL1.Max == getCouldNotCompute())
   5393           MaxBECount = EL0.Max;
   5394         else
   5395           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
   5396       } else {
   5397         // Both conditions must be false at the same time for the loop to exit.
   5398         // For now, be conservative.
   5399         assert(L->contains(TBB) && "Loop block has no successor in loop!");
   5400         if (EL0.Max == EL1.Max)
   5401           MaxBECount = EL0.Max;
   5402         if (EL0.Exact == EL1.Exact)
   5403           BECount = EL0.Exact;
   5404       }
   5405 
   5406       return ExitLimit(BECount, MaxBECount);
   5407     }
   5408   }
   5409 
   5410   // With an icmp, it may be feasible to compute an exact backedge-taken count.
   5411   // Proceed to the next level to examine the icmp.
   5412   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
   5413     return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
   5414 
   5415   // Check for a constant condition. These are normally stripped out by
   5416   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
   5417   // preserve the CFG and is temporarily leaving constant conditions
   5418   // in place.
   5419   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
   5420     if (L->contains(FBB) == !CI->getZExtValue())
   5421       // The backedge is always taken.
   5422       return getCouldNotCompute();
   5423     else
   5424       // The backedge is never taken.
   5425       return getZero(CI->getType());
   5426   }
   5427 
   5428   // If it's not an integer or pointer comparison then compute it the hard way.
   5429   return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
   5430 }
   5431 
   5432 ScalarEvolution::ExitLimit
   5433 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
   5434                                           ICmpInst *ExitCond,
   5435                                           BasicBlock *TBB,
   5436                                           BasicBlock *FBB,
   5437                                           bool ControlsExit) {
   5438 
   5439   // If the condition was exit on true, convert the condition to exit on false
   5440   ICmpInst::Predicate Cond;
   5441   if (!L->contains(FBB))
   5442     Cond = ExitCond->getPredicate();
   5443   else
   5444     Cond = ExitCond->getInversePredicate();
   5445 
   5446   // Handle common loops like: for (X = "string"; *X; ++X)
   5447   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
   5448     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
   5449       ExitLimit ItCnt =
   5450         computeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
   5451       if (ItCnt.hasAnyInfo())
   5452         return ItCnt;
   5453     }
   5454 
   5455   ExitLimit ShiftEL = computeShiftCompareExitLimit(
   5456       ExitCond->getOperand(0), ExitCond->getOperand(1), L, Cond);
   5457   if (ShiftEL.hasAnyInfo())
   5458     return ShiftEL;
   5459 
   5460   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
   5461   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
   5462 
   5463   // Try to evaluate any dependencies out of the loop.
   5464   LHS = getSCEVAtScope(LHS, L);
   5465   RHS = getSCEVAtScope(RHS, L);
   5466 
   5467   // At this point, we would like to compute how many iterations of the
   5468   // loop the predicate will return true for these inputs.
   5469   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
   5470     // If there is a loop-invariant, force it into the RHS.
   5471     std::swap(LHS, RHS);
   5472     Cond = ICmpInst::getSwappedPredicate(Cond);
   5473   }
   5474 
   5475   // Simplify the operands before analyzing them.
   5476   (void)SimplifyICmpOperands(Cond, LHS, RHS);
   5477 
   5478   // If we have a comparison of a chrec against a constant, try to use value
   5479   // ranges to answer this query.
   5480   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
   5481     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
   5482       if (AddRec->getLoop() == L) {
   5483         // Form the constant range.
   5484         ConstantRange CompRange(
   5485             ICmpInst::makeConstantRange(Cond, RHSC->getAPInt()));
   5486 
   5487         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
   5488         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
   5489       }
   5490 
   5491   switch (Cond) {
   5492   case ICmpInst::ICMP_NE: {                     // while (X != Y)
   5493     // Convert to: while (X-Y != 0)
   5494     ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
   5495     if (EL.hasAnyInfo()) return EL;
   5496     break;
   5497   }
   5498   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
   5499     // Convert to: while (X-Y == 0)
   5500     ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
   5501     if (EL.hasAnyInfo()) return EL;
   5502     break;
   5503   }
   5504   case ICmpInst::ICMP_SLT:
   5505   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
   5506     bool IsSigned = Cond == ICmpInst::ICMP_SLT;
   5507     ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
   5508     if (EL.hasAnyInfo()) return EL;
   5509     break;
   5510   }
   5511   case ICmpInst::ICMP_SGT:
   5512   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
   5513     bool IsSigned = Cond == ICmpInst::ICMP_SGT;
   5514     ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
   5515     if (EL.hasAnyInfo()) return EL;
   5516     break;
   5517   }
   5518   default:
   5519     break;
   5520   }
   5521   return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
   5522 }
   5523 
   5524 ScalarEvolution::ExitLimit
   5525 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
   5526                                                       SwitchInst *Switch,
   5527                                                       BasicBlock *ExitingBlock,
   5528                                                       bool ControlsExit) {
   5529   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
   5530 
   5531   // Give up if the exit is the default dest of a switch.
   5532   if (Switch->getDefaultDest() == ExitingBlock)
   5533     return getCouldNotCompute();
   5534 
   5535   assert(L->contains(Switch->getDefaultDest()) &&
   5536          "Default case must not exit the loop!");
   5537   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
   5538   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
   5539 
   5540   // while (X != Y) --> while (X-Y != 0)
   5541   ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
   5542   if (EL.hasAnyInfo())
   5543     return EL;
   5544 
   5545   return getCouldNotCompute();
   5546 }
   5547 
   5548 static ConstantInt *
   5549 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
   5550                                 ScalarEvolution &SE) {
   5551   const SCEV *InVal = SE.getConstant(C);
   5552   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
   5553   assert(isa<SCEVConstant>(Val) &&
   5554          "Evaluation of SCEV at constant didn't fold correctly?");
   5555   return cast<SCEVConstant>(Val)->getValue();
   5556 }
   5557 
   5558 /// computeLoadConstantCompareExitLimit - Given an exit condition of
   5559 /// 'icmp op load X, cst', try to see if we can compute the backedge
   5560 /// execution count.
   5561 ScalarEvolution::ExitLimit
   5562 ScalarEvolution::computeLoadConstantCompareExitLimit(
   5563   LoadInst *LI,
   5564   Constant *RHS,
   5565   const Loop *L,
   5566   ICmpInst::Predicate predicate) {
   5567 
   5568   if (LI->isVolatile()) return getCouldNotCompute();
   5569 
   5570   // Check to see if the loaded pointer is a getelementptr of a global.
   5571   // TODO: Use SCEV instead of manually grubbing with GEPs.
   5572   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
   5573   if (!GEP) return getCouldNotCompute();
   5574 
   5575   // Make sure that it is really a constant global we are gepping, with an
   5576   // initializer, and make sure the first IDX is really 0.
   5577   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
   5578   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
   5579       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
   5580       !cast<Constant>(GEP->getOperand(1))->isNullValue())
   5581     return getCouldNotCompute();
   5582 
   5583   // Okay, we allow one non-constant index into the GEP instruction.
   5584   Value *VarIdx = nullptr;
   5585   std::vector<Constant*> Indexes;
   5586   unsigned VarIdxNum = 0;
   5587   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
   5588     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
   5589       Indexes.push_back(CI);
   5590     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
   5591       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
   5592       VarIdx = GEP->getOperand(i);
   5593       VarIdxNum = i-2;
   5594       Indexes.push_back(nullptr);
   5595     }
   5596 
   5597   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
   5598   if (!VarIdx)
   5599     return getCouldNotCompute();
   5600 
   5601   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
   5602   // Check to see if X is a loop variant variable value now.
   5603   const SCEV *Idx = getSCEV(VarIdx);
   5604   Idx = getSCEVAtScope(Idx, L);
   5605 
   5606   // We can only recognize very limited forms of loop index expressions, in
   5607   // particular, only affine AddRec's like {C1,+,C2}.
   5608   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
   5609   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
   5610       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
   5611       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
   5612     return getCouldNotCompute();
   5613 
   5614   unsigned MaxSteps = MaxBruteForceIterations;
   5615   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
   5616     ConstantInt *ItCst = ConstantInt::get(
   5617                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
   5618     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
   5619 
   5620     // Form the GEP offset.
   5621     Indexes[VarIdxNum] = Val;
   5622 
   5623     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
   5624                                                          Indexes);
   5625     if (!Result) break;  // Cannot compute!
   5626 
   5627     // Evaluate the condition for this iteration.
   5628     Result = ConstantExpr::getICmp(predicate, Result, RHS);
   5629     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
   5630     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
   5631       ++NumArrayLenItCounts;
   5632       return getConstant(ItCst);   // Found terminating iteration!
   5633     }
   5634   }
   5635   return getCouldNotCompute();
   5636 }
   5637 
   5638 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
   5639     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
   5640   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
   5641   if (!RHS)
   5642     return getCouldNotCompute();
   5643 
   5644   const BasicBlock *Latch = L->getLoopLatch();
   5645   if (!Latch)
   5646     return getCouldNotCompute();
   5647 
   5648   const BasicBlock *Predecessor = L->getLoopPredecessor();
   5649   if (!Predecessor)
   5650     return getCouldNotCompute();
   5651 
   5652   // Return true if V is of the form "LHS `shift_op` <positive constant>".
   5653   // Return LHS in OutLHS and shift_opt in OutOpCode.
   5654   auto MatchPositiveShift =
   5655       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
   5656 
   5657     using namespace PatternMatch;
   5658 
   5659     ConstantInt *ShiftAmt;
   5660     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
   5661       OutOpCode = Instruction::LShr;
   5662     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
   5663       OutOpCode = Instruction::AShr;
   5664     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
   5665       OutOpCode = Instruction::Shl;
   5666     else
   5667       return false;
   5668 
   5669     return ShiftAmt->getValue().isStrictlyPositive();
   5670   };
   5671 
   5672   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
   5673   //
   5674   // loop:
   5675   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
   5676   //   %iv.shifted = lshr i32 %iv, <positive constant>
   5677   //
   5678   // Return true on a succesful match.  Return the corresponding PHI node (%iv
   5679   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
   5680   auto MatchShiftRecurrence =
   5681       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
   5682     Optional<Instruction::BinaryOps> PostShiftOpCode;
   5683 
   5684     {
   5685       Instruction::BinaryOps OpC;
   5686       Value *V;
   5687 
   5688       // If we encounter a shift instruction, "peel off" the shift operation,
   5689       // and remember that we did so.  Later when we inspect %iv's backedge
   5690       // value, we will make sure that the backedge value uses the same
   5691       // operation.
   5692       //
   5693       // Note: the peeled shift operation does not have to be the same
   5694       // instruction as the one feeding into the PHI's backedge value.  We only
   5695       // really care about it being the same *kind* of shift instruction --
   5696       // that's all that is required for our later inferences to hold.
   5697       if (MatchPositiveShift(LHS, V, OpC)) {
   5698         PostShiftOpCode = OpC;
   5699         LHS = V;
   5700       }
   5701     }
   5702 
   5703     PNOut = dyn_cast<PHINode>(LHS);
   5704     if (!PNOut || PNOut->getParent() != L->getHeader())
   5705       return false;
   5706 
   5707     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
   5708     Value *OpLHS;
   5709 
   5710     return
   5711         // The backedge value for the PHI node must be a shift by a positive
   5712         // amount
   5713         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
   5714 
   5715         // of the PHI node itself
   5716         OpLHS == PNOut &&
   5717 
   5718         // and the kind of shift should be match the kind of shift we peeled
   5719         // off, if any.
   5720         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
   5721   };
   5722 
   5723   PHINode *PN;
   5724   Instruction::BinaryOps OpCode;
   5725   if (!MatchShiftRecurrence(LHS, PN, OpCode))
   5726     return getCouldNotCompute();
   5727 
   5728   const DataLayout &DL = getDataLayout();
   5729 
   5730   // The key rationale for this optimization is that for some kinds of shift
   5731   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
   5732   // within a finite number of iterations.  If the condition guarding the
   5733   // backedge (in the sense that the backedge is taken if the condition is true)
   5734   // is false for the value the shift recurrence stabilizes to, then we know
   5735   // that the backedge is taken only a finite number of times.
   5736 
   5737   ConstantInt *StableValue = nullptr;
   5738   switch (OpCode) {
   5739   default:
   5740     llvm_unreachable("Impossible case!");
   5741 
   5742   case Instruction::AShr: {
   5743     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
   5744     // bitwidth(K) iterations.
   5745     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
   5746     bool KnownZero, KnownOne;
   5747     ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr,
   5748                    Predecessor->getTerminator(), &DT);
   5749     auto *Ty = cast<IntegerType>(RHS->getType());
   5750     if (KnownZero)
   5751       StableValue = ConstantInt::get(Ty, 0);
   5752     else if (KnownOne)
   5753       StableValue = ConstantInt::get(Ty, -1, true);
   5754     else
   5755       return getCouldNotCompute();
   5756 
   5757     break;
   5758   }
   5759   case Instruction::LShr:
   5760   case Instruction::Shl:
   5761     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
   5762     // stabilize to 0 in at most bitwidth(K) iterations.
   5763     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
   5764     break;
   5765   }
   5766 
   5767   auto *Result =
   5768       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
   5769   assert(Result->getType()->isIntegerTy(1) &&
   5770          "Otherwise cannot be an operand to a branch instruction");
   5771 
   5772   if (Result->isZeroValue()) {
   5773     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
   5774     const SCEV *UpperBound =
   5775         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
   5776     return ExitLimit(getCouldNotCompute(), UpperBound);
   5777   }
   5778 
   5779   return getCouldNotCompute();
   5780 }
   5781 
   5782 /// CanConstantFold - Return true if we can constant fold an instruction of the
   5783 /// specified type, assuming that all operands were constants.
   5784 static bool CanConstantFold(const Instruction *I) {
   5785   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
   5786       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
   5787       isa<LoadInst>(I))
   5788     return true;
   5789 
   5790   if (const CallInst *CI = dyn_cast<CallInst>(I))
   5791     if (const Function *F = CI->getCalledFunction())
   5792       return canConstantFoldCallTo(F);
   5793   return false;
   5794 }
   5795 
   5796 /// Determine whether this instruction can constant evolve within this loop
   5797 /// assuming its operands can all constant evolve.
   5798 static bool canConstantEvolve(Instruction *I, const Loop *L) {
   5799   // An instruction outside of the loop can't be derived from a loop PHI.
   5800   if (!L->contains(I)) return false;
   5801 
   5802   if (isa<PHINode>(I)) {
   5803     // We don't currently keep track of the control flow needed to evaluate
   5804     // PHIs, so we cannot handle PHIs inside of loops.
   5805     return L->getHeader() == I->getParent();
   5806   }
   5807 
   5808   // If we won't be able to constant fold this expression even if the operands
   5809   // are constants, bail early.
   5810   return CanConstantFold(I);
   5811 }
   5812 
   5813 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
   5814 /// recursing through each instruction operand until reaching a loop header phi.
   5815 static PHINode *
   5816 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
   5817                                DenseMap<Instruction *, PHINode *> &PHIMap) {
   5818 
   5819   // Otherwise, we can evaluate this instruction if all of its operands are
   5820   // constant or derived from a PHI node themselves.
   5821   PHINode *PHI = nullptr;
   5822   for (Value *Op : UseInst->operands()) {
   5823     if (isa<Constant>(Op)) continue;
   5824 
   5825     Instruction *OpInst = dyn_cast<Instruction>(Op);
   5826     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
   5827 
   5828     PHINode *P = dyn_cast<PHINode>(OpInst);
   5829     if (!P)
   5830       // If this operand is already visited, reuse the prior result.
   5831       // We may have P != PHI if this is the deepest point at which the
   5832       // inconsistent paths meet.
   5833       P = PHIMap.lookup(OpInst);
   5834     if (!P) {
   5835       // Recurse and memoize the results, whether a phi is found or not.
   5836       // This recursive call invalidates pointers into PHIMap.
   5837       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
   5838       PHIMap[OpInst] = P;
   5839     }
   5840     if (!P)
   5841       return nullptr;  // Not evolving from PHI
   5842     if (PHI && PHI != P)
   5843       return nullptr;  // Evolving from multiple different PHIs.
   5844     PHI = P;
   5845   }
   5846   // This is a expression evolving from a constant PHI!
   5847   return PHI;
   5848 }
   5849 
   5850 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
   5851 /// in the loop that V is derived from.  We allow arbitrary operations along the
   5852 /// way, but the operands of an operation must either be constants or a value
   5853 /// derived from a constant PHI.  If this expression does not fit with these
   5854 /// constraints, return null.
   5855 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
   5856   Instruction *I = dyn_cast<Instruction>(V);
   5857   if (!I || !canConstantEvolve(I, L)) return nullptr;
   5858 
   5859   if (PHINode *PN = dyn_cast<PHINode>(I))
   5860     return PN;
   5861 
   5862   // Record non-constant instructions contained by the loop.
   5863   DenseMap<Instruction *, PHINode *> PHIMap;
   5864   return getConstantEvolvingPHIOperands(I, L, PHIMap);
   5865 }
   5866 
   5867 /// EvaluateExpression - Given an expression that passes the
   5868 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
   5869 /// in the loop has the value PHIVal.  If we can't fold this expression for some
   5870 /// reason, return null.
   5871 static Constant *EvaluateExpression(Value *V, const Loop *L,
   5872                                     DenseMap<Instruction *, Constant *> &Vals,
   5873                                     const DataLayout &DL,
   5874                                     const TargetLibraryInfo *TLI) {
   5875   // Convenient constant check, but redundant for recursive calls.
   5876   if (Constant *C = dyn_cast<Constant>(V)) return C;
   5877   Instruction *I = dyn_cast<Instruction>(V);
   5878   if (!I) return nullptr;
   5879 
   5880   if (Constant *C = Vals.lookup(I)) return C;
   5881 
   5882   // An instruction inside the loop depends on a value outside the loop that we
   5883   // weren't given a mapping for, or a value such as a call inside the loop.
   5884   if (!canConstantEvolve(I, L)) return nullptr;
   5885 
   5886   // An unmapped PHI can be due to a branch or another loop inside this loop,
   5887   // or due to this not being the initial iteration through a loop where we
   5888   // couldn't compute the evolution of this particular PHI last time.
   5889   if (isa<PHINode>(I)) return nullptr;
   5890 
   5891   std::vector<Constant*> Operands(I->getNumOperands());
   5892 
   5893   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
   5894     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
   5895     if (!Operand) {
   5896       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
   5897       if (!Operands[i]) return nullptr;
   5898       continue;
   5899     }
   5900     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
   5901     Vals[Operand] = C;
   5902     if (!C) return nullptr;
   5903     Operands[i] = C;
   5904   }
   5905 
   5906   if (CmpInst *CI = dyn_cast<CmpInst>(I))
   5907     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
   5908                                            Operands[1], DL, TLI);
   5909   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
   5910     if (!LI->isVolatile())
   5911       return ConstantFoldLoadFromConstPtr(Operands[0], DL);
   5912   }
   5913   return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
   5914                                   TLI);
   5915 }
   5916 
   5917 
   5918 // If every incoming value to PN except the one for BB is a specific Constant,
   5919 // return that, else return nullptr.
   5920 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
   5921   Constant *IncomingVal = nullptr;
   5922 
   5923   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   5924     if (PN->getIncomingBlock(i) == BB)
   5925       continue;
   5926 
   5927     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
   5928     if (!CurrentVal)
   5929       return nullptr;
   5930 
   5931     if (IncomingVal != CurrentVal) {
   5932       if (IncomingVal)
   5933         return nullptr;
   5934       IncomingVal = CurrentVal;
   5935     }
   5936   }
   5937 
   5938   return IncomingVal;
   5939 }
   5940 
   5941 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
   5942 /// in the header of its containing loop, we know the loop executes a
   5943 /// constant number of times, and the PHI node is just a recurrence
   5944 /// involving constants, fold it.
   5945 Constant *
   5946 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
   5947                                                    const APInt &BEs,
   5948                                                    const Loop *L) {
   5949   auto I = ConstantEvolutionLoopExitValue.find(PN);
   5950   if (I != ConstantEvolutionLoopExitValue.end())
   5951     return I->second;
   5952 
   5953   if (BEs.ugt(MaxBruteForceIterations))
   5954     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
   5955 
   5956   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
   5957 
   5958   DenseMap<Instruction *, Constant *> CurrentIterVals;
   5959   BasicBlock *Header = L->getHeader();
   5960   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
   5961 
   5962   BasicBlock *Latch = L->getLoopLatch();
   5963   if (!Latch)
   5964     return nullptr;
   5965 
   5966   for (auto &I : *Header) {
   5967     PHINode *PHI = dyn_cast<PHINode>(&I);
   5968     if (!PHI) break;
   5969     auto *StartCST = getOtherIncomingValue(PHI, Latch);
   5970     if (!StartCST) continue;
   5971     CurrentIterVals[PHI] = StartCST;
   5972   }
   5973   if (!CurrentIterVals.count(PN))
   5974     return RetVal = nullptr;
   5975 
   5976   Value *BEValue = PN->getIncomingValueForBlock(Latch);
   5977 
   5978   // Execute the loop symbolically to determine the exit value.
   5979   if (BEs.getActiveBits() >= 32)
   5980     return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
   5981 
   5982   unsigned NumIterations = BEs.getZExtValue(); // must be in range
   5983   unsigned IterationNum = 0;
   5984   const DataLayout &DL = getDataLayout();
   5985   for (; ; ++IterationNum) {
   5986     if (IterationNum == NumIterations)
   5987       return RetVal = CurrentIterVals[PN];  // Got exit value!
   5988 
   5989     // Compute the value of the PHIs for the next iteration.
   5990     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
   5991     DenseMap<Instruction *, Constant *> NextIterVals;
   5992     Constant *NextPHI =
   5993         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
   5994     if (!NextPHI)
   5995       return nullptr;        // Couldn't evaluate!
   5996     NextIterVals[PN] = NextPHI;
   5997 
   5998     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
   5999 
   6000     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
   6001     // cease to be able to evaluate one of them or if they stop evolving,
   6002     // because that doesn't necessarily prevent us from computing PN.
   6003     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
   6004     for (const auto &I : CurrentIterVals) {
   6005       PHINode *PHI = dyn_cast<PHINode>(I.first);
   6006       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
   6007       PHIsToCompute.emplace_back(PHI, I.second);
   6008     }
   6009     // We use two distinct loops because EvaluateExpression may invalidate any
   6010     // iterators into CurrentIterVals.
   6011     for (const auto &I : PHIsToCompute) {
   6012       PHINode *PHI = I.first;
   6013       Constant *&NextPHI = NextIterVals[PHI];
   6014       if (!NextPHI) {   // Not already computed.
   6015         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
   6016         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
   6017       }
   6018       if (NextPHI != I.second)
   6019         StoppedEvolving = false;
   6020     }
   6021 
   6022     // If all entries in CurrentIterVals == NextIterVals then we can stop
   6023     // iterating, the loop can't continue to change.
   6024     if (StoppedEvolving)
   6025       return RetVal = CurrentIterVals[PN];
   6026 
   6027     CurrentIterVals.swap(NextIterVals);
   6028   }
   6029 }
   6030 
   6031 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
   6032                                                           Value *Cond,
   6033                                                           bool ExitWhen) {
   6034   PHINode *PN = getConstantEvolvingPHI(Cond, L);
   6035   if (!PN) return getCouldNotCompute();
   6036 
   6037   // If the loop is canonicalized, the PHI will have exactly two entries.
   6038   // That's the only form we support here.
   6039   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
   6040 
   6041   DenseMap<Instruction *, Constant *> CurrentIterVals;
   6042   BasicBlock *Header = L->getHeader();
   6043   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
   6044 
   6045   BasicBlock *Latch = L->getLoopLatch();
   6046   assert(Latch && "Should follow from NumIncomingValues == 2!");
   6047 
   6048   for (auto &I : *Header) {
   6049     PHINode *PHI = dyn_cast<PHINode>(&I);
   6050     if (!PHI)
   6051       break;
   6052     auto *StartCST = getOtherIncomingValue(PHI, Latch);
   6053     if (!StartCST) continue;
   6054     CurrentIterVals[PHI] = StartCST;
   6055   }
   6056   if (!CurrentIterVals.count(PN))
   6057     return getCouldNotCompute();
   6058 
   6059   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
   6060   // the loop symbolically to determine when the condition gets a value of
   6061   // "ExitWhen".
   6062   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
   6063   const DataLayout &DL = getDataLayout();
   6064   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
   6065     auto *CondVal = dyn_cast_or_null<ConstantInt>(
   6066         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
   6067 
   6068     // Couldn't symbolically evaluate.
   6069     if (!CondVal) return getCouldNotCompute();
   6070 
   6071     if (CondVal->getValue() == uint64_t(ExitWhen)) {
   6072       ++NumBruteForceTripCountsComputed;
   6073       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
   6074     }
   6075 
   6076     // Update all the PHI nodes for the next iteration.
   6077     DenseMap<Instruction *, Constant *> NextIterVals;
   6078 
   6079     // Create a list of which PHIs we need to compute. We want to do this before
   6080     // calling EvaluateExpression on them because that may invalidate iterators
   6081     // into CurrentIterVals.
   6082     SmallVector<PHINode *, 8> PHIsToCompute;
   6083     for (const auto &I : CurrentIterVals) {
   6084       PHINode *PHI = dyn_cast<PHINode>(I.first);
   6085       if (!PHI || PHI->getParent() != Header) continue;
   6086       PHIsToCompute.push_back(PHI);
   6087     }
   6088     for (PHINode *PHI : PHIsToCompute) {
   6089       Constant *&NextPHI = NextIterVals[PHI];
   6090       if (NextPHI) continue;    // Already computed!
   6091 
   6092       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
   6093       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
   6094     }
   6095     CurrentIterVals.swap(NextIterVals);
   6096   }
   6097 
   6098   // Too many iterations were needed to evaluate.
   6099   return getCouldNotCompute();
   6100 }
   6101 
   6102 /// getSCEVAtScope - Return a SCEV expression for the specified value
   6103 /// at the specified scope in the program.  The L value specifies a loop
   6104 /// nest to evaluate the expression at, where null is the top-level or a
   6105 /// specified loop is immediately inside of the loop.
   6106 ///
   6107 /// This method can be used to compute the exit value for a variable defined
   6108 /// in a loop by querying what the value will hold in the parent loop.
   6109 ///
   6110 /// In the case that a relevant loop exit value cannot be computed, the
   6111 /// original value V is returned.
   6112 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
   6113   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
   6114       ValuesAtScopes[V];
   6115   // Check to see if we've folded this expression at this loop before.
   6116   for (auto &LS : Values)
   6117     if (LS.first == L)
   6118       return LS.second ? LS.second : V;
   6119 
   6120   Values.emplace_back(L, nullptr);
   6121 
   6122   // Otherwise compute it.
   6123   const SCEV *C = computeSCEVAtScope(V, L);
   6124   for (auto &LS : reverse(ValuesAtScopes[V]))
   6125     if (LS.first == L) {
   6126       LS.second = C;
   6127       break;
   6128     }
   6129   return C;
   6130 }
   6131 
   6132 /// This builds up a Constant using the ConstantExpr interface.  That way, we
   6133 /// will return Constants for objects which aren't represented by a
   6134 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
   6135 /// Returns NULL if the SCEV isn't representable as a Constant.
   6136 static Constant *BuildConstantFromSCEV(const SCEV *V) {
   6137   switch (static_cast<SCEVTypes>(V->getSCEVType())) {
   6138     case scCouldNotCompute:
   6139     case scAddRecExpr:
   6140       break;
   6141     case scConstant:
   6142       return cast<SCEVConstant>(V)->getValue();
   6143     case scUnknown:
   6144       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
   6145     case scSignExtend: {
   6146       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
   6147       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
   6148         return ConstantExpr::getSExt(CastOp, SS->getType());
   6149       break;
   6150     }
   6151     case scZeroExtend: {
   6152       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
   6153       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
   6154         return ConstantExpr::getZExt(CastOp, SZ->getType());
   6155       break;
   6156     }
   6157     case scTruncate: {
   6158       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
   6159       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
   6160         return ConstantExpr::getTrunc(CastOp, ST->getType());
   6161       break;
   6162     }
   6163     case scAddExpr: {
   6164       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
   6165       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
   6166         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
   6167           unsigned AS = PTy->getAddressSpace();
   6168           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
   6169           C = ConstantExpr::getBitCast(C, DestPtrTy);
   6170         }
   6171         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
   6172           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
   6173           if (!C2) return nullptr;
   6174 
   6175           // First pointer!
   6176           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
   6177             unsigned AS = C2->getType()->getPointerAddressSpace();
   6178             std::swap(C, C2);
   6179             Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
   6180             // The offsets have been converted to bytes.  We can add bytes to an
   6181             // i8* by GEP with the byte count in the first index.
   6182             C = ConstantExpr::getBitCast(C, DestPtrTy);
   6183           }
   6184 
   6185           // Don't bother trying to sum two pointers. We probably can't
   6186           // statically compute a load that results from it anyway.
   6187           if (C2->getType()->isPointerTy())
   6188             return nullptr;
   6189 
   6190           if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
   6191             if (PTy->getElementType()->isStructTy())
   6192               C2 = ConstantExpr::getIntegerCast(
   6193                   C2, Type::getInt32Ty(C->getContext()), true);
   6194             C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
   6195           } else
   6196             C = ConstantExpr::getAdd(C, C2);
   6197         }
   6198         return C;
   6199       }
   6200       break;
   6201     }
   6202     case scMulExpr: {
   6203       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
   6204       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
   6205         // Don't bother with pointers at all.
   6206         if (C->getType()->isPointerTy()) return nullptr;
   6207         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
   6208           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
   6209           if (!C2 || C2->getType()->isPointerTy()) return nullptr;
   6210           C = ConstantExpr::getMul(C, C2);
   6211         }
   6212         return C;
   6213       }
   6214       break;
   6215     }
   6216     case scUDivExpr: {
   6217       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
   6218       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
   6219         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
   6220           if (LHS->getType() == RHS->getType())
   6221             return ConstantExpr::getUDiv(LHS, RHS);
   6222       break;
   6223     }
   6224     case scSMaxExpr:
   6225     case scUMaxExpr:
   6226       break; // TODO: smax, umax.
   6227   }
   6228   return nullptr;
   6229 }
   6230 
   6231 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
   6232   if (isa<SCEVConstant>(V)) return V;
   6233 
   6234   // If this instruction is evolved from a constant-evolving PHI, compute the
   6235   // exit value from the loop without using SCEVs.
   6236   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
   6237     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
   6238       const Loop *LI = this->LI[I->getParent()];
   6239       if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
   6240         if (PHINode *PN = dyn_cast<PHINode>(I))
   6241           if (PN->getParent() == LI->getHeader()) {
   6242             // Okay, there is no closed form solution for the PHI node.  Check
   6243             // to see if the loop that contains it has a known backedge-taken
   6244             // count.  If so, we may be able to force computation of the exit
   6245             // value.
   6246             const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
   6247             if (const SCEVConstant *BTCC =
   6248                   dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
   6249               // Okay, we know how many times the containing loop executes.  If
   6250               // this is a constant evolving PHI node, get the final value at
   6251               // the specified iteration number.
   6252               Constant *RV =
   6253                   getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
   6254               if (RV) return getSCEV(RV);
   6255             }
   6256           }
   6257 
   6258       // Okay, this is an expression that we cannot symbolically evaluate
   6259       // into a SCEV.  Check to see if it's possible to symbolically evaluate
   6260       // the arguments into constants, and if so, try to constant propagate the
   6261       // result.  This is particularly useful for computing loop exit values.
   6262       if (CanConstantFold(I)) {
   6263         SmallVector<Constant *, 4> Operands;
   6264         bool MadeImprovement = false;
   6265         for (Value *Op : I->operands()) {
   6266           if (Constant *C = dyn_cast<Constant>(Op)) {
   6267             Operands.push_back(C);
   6268             continue;
   6269           }
   6270 
   6271           // If any of the operands is non-constant and if they are
   6272           // non-integer and non-pointer, don't even try to analyze them
   6273           // with scev techniques.
   6274           if (!isSCEVable(Op->getType()))
   6275             return V;
   6276 
   6277           const SCEV *OrigV = getSCEV(Op);
   6278           const SCEV *OpV = getSCEVAtScope(OrigV, L);
   6279           MadeImprovement |= OrigV != OpV;
   6280 
   6281           Constant *C = BuildConstantFromSCEV(OpV);
   6282           if (!C) return V;
   6283           if (C->getType() != Op->getType())
   6284             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
   6285                                                               Op->getType(),
   6286                                                               false),
   6287                                       C, Op->getType());
   6288           Operands.push_back(C);
   6289         }
   6290 
   6291         // Check to see if getSCEVAtScope actually made an improvement.
   6292         if (MadeImprovement) {
   6293           Constant *C = nullptr;
   6294           const DataLayout &DL = getDataLayout();
   6295           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
   6296             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
   6297                                                 Operands[1], DL, &TLI);
   6298           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
   6299             if (!LI->isVolatile())
   6300               C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
   6301           } else
   6302             C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands,
   6303                                          DL, &TLI);
   6304           if (!C) return V;
   6305           return getSCEV(C);
   6306         }
   6307       }
   6308     }
   6309 
   6310     // This is some other type of SCEVUnknown, just return it.
   6311     return V;
   6312   }
   6313 
   6314   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
   6315     // Avoid performing the look-up in the common case where the specified
   6316     // expression has no loop-variant portions.
   6317     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
   6318       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
   6319       if (OpAtScope != Comm->getOperand(i)) {
   6320         // Okay, at least one of these operands is loop variant but might be
   6321         // foldable.  Build a new instance of the folded commutative expression.
   6322         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
   6323                                             Comm->op_begin()+i);
   6324         NewOps.push_back(OpAtScope);
   6325 
   6326         for (++i; i != e; ++i) {
   6327           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
   6328           NewOps.push_back(OpAtScope);
   6329         }
   6330         if (isa<SCEVAddExpr>(Comm))
   6331           return getAddExpr(NewOps);
   6332         if (isa<SCEVMulExpr>(Comm))
   6333           return getMulExpr(NewOps);
   6334         if (isa<SCEVSMaxExpr>(Comm))
   6335           return getSMaxExpr(NewOps);
   6336         if (isa<SCEVUMaxExpr>(Comm))
   6337           return getUMaxExpr(NewOps);
   6338         llvm_unreachable("Unknown commutative SCEV type!");
   6339       }
   6340     }
   6341     // If we got here, all operands are loop invariant.
   6342     return Comm;
   6343   }
   6344 
   6345   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
   6346     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
   6347     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
   6348     if (LHS == Div->getLHS() && RHS == Div->getRHS())
   6349       return Div;   // must be loop invariant
   6350     return getUDivExpr(LHS, RHS);
   6351   }
   6352 
   6353   // If this is a loop recurrence for a loop that does not contain L, then we
   6354   // are dealing with the final value computed by the loop.
   6355   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
   6356     // First, attempt to evaluate each operand.
   6357     // Avoid performing the look-up in the common case where the specified
   6358     // expression has no loop-variant portions.
   6359     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
   6360       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
   6361       if (OpAtScope == AddRec->getOperand(i))
   6362         continue;
   6363 
   6364       // Okay, at least one of these operands is loop variant but might be
   6365       // foldable.  Build a new instance of the folded commutative expression.
   6366       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
   6367                                           AddRec->op_begin()+i);
   6368       NewOps.push_back(OpAtScope);
   6369       for (++i; i != e; ++i)
   6370         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
   6371 
   6372       const SCEV *FoldedRec =
   6373         getAddRecExpr(NewOps, AddRec->getLoop(),
   6374                       AddRec->getNoWrapFlags(SCEV::FlagNW));
   6375       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
   6376       // The addrec may be folded to a nonrecurrence, for example, if the
   6377       // induction variable is multiplied by zero after constant folding. Go
   6378       // ahead and return the folded value.
   6379       if (!AddRec)
   6380         return FoldedRec;
   6381       break;
   6382     }
   6383 
   6384     // If the scope is outside the addrec's loop, evaluate it by using the
   6385     // loop exit value of the addrec.
   6386     if (!AddRec->getLoop()->contains(L)) {
   6387       // To evaluate this recurrence, we need to know how many times the AddRec
   6388       // loop iterates.  Compute this now.
   6389       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
   6390       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
   6391 
   6392       // Then, evaluate the AddRec.
   6393       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
   6394     }
   6395 
   6396     return AddRec;
   6397   }
   6398 
   6399   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
   6400     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
   6401     if (Op == Cast->getOperand())
   6402       return Cast;  // must be loop invariant
   6403     return getZeroExtendExpr(Op, Cast->getType());
   6404   }
   6405 
   6406   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
   6407     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
   6408     if (Op == Cast->getOperand())
   6409       return Cast;  // must be loop invariant
   6410     return getSignExtendExpr(Op, Cast->getType());
   6411   }
   6412 
   6413   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
   6414     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
   6415     if (Op == Cast->getOperand())
   6416       return Cast;  // must be loop invariant
   6417     return getTruncateExpr(Op, Cast->getType());
   6418   }
   6419 
   6420   llvm_unreachable("Unknown SCEV type!");
   6421 }
   6422 
   6423 /// getSCEVAtScope - This is a convenience function which does
   6424 /// getSCEVAtScope(getSCEV(V), L).
   6425 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
   6426   return getSCEVAtScope(getSCEV(V), L);
   6427 }
   6428 
   6429 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
   6430 /// following equation:
   6431 ///
   6432 ///     A * X = B (mod N)
   6433 ///
   6434 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
   6435 /// A and B isn't important.
   6436 ///
   6437 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
   6438 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
   6439                                                ScalarEvolution &SE) {
   6440   uint32_t BW = A.getBitWidth();
   6441   assert(BW == B.getBitWidth() && "Bit widths must be the same.");
   6442   assert(A != 0 && "A must be non-zero.");
   6443 
   6444   // 1. D = gcd(A, N)
   6445   //
   6446   // The gcd of A and N may have only one prime factor: 2. The number of
   6447   // trailing zeros in A is its multiplicity
   6448   uint32_t Mult2 = A.countTrailingZeros();
   6449   // D = 2^Mult2
   6450 
   6451   // 2. Check if B is divisible by D.
   6452   //
   6453   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
   6454   // is not less than multiplicity of this prime factor for D.
   6455   if (B.countTrailingZeros() < Mult2)
   6456     return SE.getCouldNotCompute();
   6457 
   6458   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
   6459   // modulo (N / D).
   6460   //
   6461   // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
   6462   // bit width during computations.
   6463   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
   6464   APInt Mod(BW + 1, 0);
   6465   Mod.setBit(BW - Mult2);  // Mod = N / D
   6466   APInt I = AD.multiplicativeInverse(Mod);
   6467 
   6468   // 4. Compute the minimum unsigned root of the equation:
   6469   // I * (B / D) mod (N / D)
   6470   APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
   6471 
   6472   // The result is guaranteed to be less than 2^BW so we may truncate it to BW
   6473   // bits.
   6474   return SE.getConstant(Result.trunc(BW));
   6475 }
   6476 
   6477 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
   6478 /// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
   6479 /// might be the same) or two SCEVCouldNotCompute objects.
   6480 ///
   6481 static std::pair<const SCEV *,const SCEV *>
   6482 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
   6483   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
   6484   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
   6485   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
   6486   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
   6487 
   6488   // We currently can only solve this if the coefficients are constants.
   6489   if (!LC || !MC || !NC) {
   6490     const SCEV *CNC = SE.getCouldNotCompute();
   6491     return std::make_pair(CNC, CNC);
   6492   }
   6493 
   6494   uint32_t BitWidth = LC->getAPInt().getBitWidth();
   6495   const APInt &L = LC->getAPInt();
   6496   const APInt &M = MC->getAPInt();
   6497   const APInt &N = NC->getAPInt();
   6498   APInt Two(BitWidth, 2);
   6499   APInt Four(BitWidth, 4);
   6500 
   6501   {
   6502     using namespace APIntOps;
   6503     const APInt& C = L;
   6504     // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
   6505     // The B coefficient is M-N/2
   6506     APInt B(M);
   6507     B -= sdiv(N,Two);
   6508 
   6509     // The A coefficient is N/2
   6510     APInt A(N.sdiv(Two));
   6511 
   6512     // Compute the B^2-4ac term.
   6513     APInt SqrtTerm(B);
   6514     SqrtTerm *= B;
   6515     SqrtTerm -= Four * (A * C);
   6516 
   6517     if (SqrtTerm.isNegative()) {
   6518       // The loop is provably infinite.
   6519       const SCEV *CNC = SE.getCouldNotCompute();
   6520       return std::make_pair(CNC, CNC);
   6521     }
   6522 
   6523     // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
   6524     // integer value or else APInt::sqrt() will assert.
   6525     APInt SqrtVal(SqrtTerm.sqrt());
   6526 
   6527     // Compute the two solutions for the quadratic formula.
   6528     // The divisions must be performed as signed divisions.
   6529     APInt NegB(-B);
   6530     APInt TwoA(A << 1);
   6531     if (TwoA.isMinValue()) {
   6532       const SCEV *CNC = SE.getCouldNotCompute();
   6533       return std::make_pair(CNC, CNC);
   6534     }
   6535 
   6536     LLVMContext &Context = SE.getContext();
   6537 
   6538     ConstantInt *Solution1 =
   6539       ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
   6540     ConstantInt *Solution2 =
   6541       ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
   6542 
   6543     return std::make_pair(SE.getConstant(Solution1),
   6544                           SE.getConstant(Solution2));
   6545   } // end APIntOps namespace
   6546 }
   6547 
   6548 /// HowFarToZero - Return the number of times a backedge comparing the specified
   6549 /// value to zero will execute.  If not computable, return CouldNotCompute.
   6550 ///
   6551 /// This is only used for loops with a "x != y" exit test. The exit condition is
   6552 /// now expressed as a single expression, V = x-y. So the exit test is
   6553 /// effectively V != 0.  We know and take advantage of the fact that this
   6554 /// expression only being used in a comparison by zero context.
   6555 ScalarEvolution::ExitLimit
   6556 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
   6557   // If the value is a constant
   6558   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
   6559     // If the value is already zero, the branch will execute zero times.
   6560     if (C->getValue()->isZero()) return C;
   6561     return getCouldNotCompute();  // Otherwise it will loop infinitely.
   6562   }
   6563 
   6564   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
   6565   if (!AddRec || AddRec->getLoop() != L)
   6566     return getCouldNotCompute();
   6567 
   6568   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
   6569   // the quadratic equation to solve it.
   6570   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
   6571     std::pair<const SCEV *,const SCEV *> Roots =
   6572       SolveQuadraticEquation(AddRec, *this);
   6573     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
   6574     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
   6575     if (R1 && R2) {
   6576       // Pick the smallest positive root value.
   6577       if (ConstantInt *CB =
   6578           dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
   6579                                                       R1->getValue(),
   6580                                                       R2->getValue()))) {
   6581         if (!CB->getZExtValue())
   6582           std::swap(R1, R2);   // R1 is the minimum root now.
   6583 
   6584         // We can only use this value if the chrec ends up with an exact zero
   6585         // value at this index.  When solving for "X*X != 5", for example, we
   6586         // should not accept a root of 2.
   6587         const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
   6588         if (Val->isZero())
   6589           return R1;  // We found a quadratic root!
   6590       }
   6591     }
   6592     return getCouldNotCompute();
   6593   }
   6594 
   6595   // Otherwise we can only handle this if it is affine.
   6596   if (!AddRec->isAffine())
   6597     return getCouldNotCompute();
   6598 
   6599   // If this is an affine expression, the execution count of this branch is
   6600   // the minimum unsigned root of the following equation:
   6601   //
   6602   //     Start + Step*N = 0 (mod 2^BW)
   6603   //
   6604   // equivalent to:
   6605   //
   6606   //             Step*N = -Start (mod 2^BW)
   6607   //
   6608   // where BW is the common bit width of Start and Step.
   6609 
   6610   // Get the initial value for the loop.
   6611   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
   6612   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
   6613 
   6614   // For now we handle only constant steps.
   6615   //
   6616   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
   6617   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
   6618   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
   6619   // We have not yet seen any such cases.
   6620   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
   6621   if (!StepC || StepC->getValue()->equalsInt(0))
   6622     return getCouldNotCompute();
   6623 
   6624   // For positive steps (counting up until unsigned overflow):
   6625   //   N = -Start/Step (as unsigned)
   6626   // For negative steps (counting down to zero):
   6627   //   N = Start/-Step
   6628   // First compute the unsigned distance from zero in the direction of Step.
   6629   bool CountDown = StepC->getAPInt().isNegative();
   6630   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
   6631 
   6632   // Handle unitary steps, which cannot wraparound.
   6633   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
   6634   //   N = Distance (as unsigned)
   6635   if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
   6636     ConstantRange CR = getUnsignedRange(Start);
   6637     const SCEV *MaxBECount;
   6638     if (!CountDown && CR.getUnsignedMin().isMinValue())
   6639       // When counting up, the worst starting value is 1, not 0.
   6640       MaxBECount = CR.getUnsignedMax().isMinValue()
   6641         ? getConstant(APInt::getMinValue(CR.getBitWidth()))
   6642         : getConstant(APInt::getMaxValue(CR.getBitWidth()));
   6643     else
   6644       MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
   6645                                          : -CR.getUnsignedMin());
   6646     return ExitLimit(Distance, MaxBECount);
   6647   }
   6648 
   6649   // As a special case, handle the instance where Step is a positive power of
   6650   // two. In this case, determining whether Step divides Distance evenly can be
   6651   // done by counting and comparing the number of trailing zeros of Step and
   6652   // Distance.
   6653   if (!CountDown) {
   6654     const APInt &StepV = StepC->getAPInt();
   6655     // StepV.isPowerOf2() returns true if StepV is an positive power of two.  It
   6656     // also returns true if StepV is maximally negative (eg, INT_MIN), but that
   6657     // case is not handled as this code is guarded by !CountDown.
   6658     if (StepV.isPowerOf2() &&
   6659         GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) {
   6660       // Here we've constrained the equation to be of the form
   6661       //
   6662       //   2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W)  ... (0)
   6663       //
   6664       // where we're operating on a W bit wide integer domain and k is
   6665       // non-negative.  The smallest unsigned solution for X is the trip count.
   6666       //
   6667       // (0) is equivalent to:
   6668       //
   6669       //      2^(N + k) * Distance' - 2^N * X = L * 2^W
   6670       // <=>  2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N
   6671       // <=>  2^k * Distance' - X = L * 2^(W - N)
   6672       // <=>  2^k * Distance'     = L * 2^(W - N) + X    ... (1)
   6673       //
   6674       // The smallest X satisfying (1) is unsigned remainder of dividing the LHS
   6675       // by 2^(W - N).
   6676       //
   6677       // <=>  X = 2^k * Distance' URem 2^(W - N)   ... (2)
   6678       //
   6679       // E.g. say we're solving
   6680       //
   6681       //   2 * Val = 2 * X  (in i8)   ... (3)
   6682       //
   6683       // then from (2), we get X = Val URem i8 128 (k = 0 in this case).
   6684       //
   6685       // Note: It is tempting to solve (3) by setting X = Val, but Val is not
   6686       // necessarily the smallest unsigned value of X that satisfies (3).
   6687       // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3)
   6688       // is i8 1, not i8 -127
   6689 
   6690       const auto *ModuloResult = getUDivExactExpr(Distance, Step);
   6691 
   6692       // Since SCEV does not have a URem node, we construct one using a truncate
   6693       // and a zero extend.
   6694 
   6695       unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros();
   6696       auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth);
   6697       auto *WideTy = Distance->getType();
   6698 
   6699       return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy);
   6700     }
   6701   }
   6702 
   6703   // If the condition controls loop exit (the loop exits only if the expression
   6704   // is true) and the addition is no-wrap we can use unsigned divide to
   6705   // compute the backedge count.  In this case, the step may not divide the
   6706   // distance, but we don't care because if the condition is "missed" the loop
   6707   // will have undefined behavior due to wrapping.
   6708   if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
   6709     const SCEV *Exact =
   6710         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
   6711     return ExitLimit(Exact, Exact);
   6712   }
   6713 
   6714   // Then, try to solve the above equation provided that Start is constant.
   6715   if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
   6716     return SolveLinEquationWithOverflow(StepC->getAPInt(), -StartC->getAPInt(),
   6717                                         *this);
   6718   return getCouldNotCompute();
   6719 }
   6720 
   6721 /// HowFarToNonZero - Return the number of times a backedge checking the
   6722 /// specified value for nonzero will execute.  If not computable, return
   6723 /// CouldNotCompute
   6724 ScalarEvolution::ExitLimit
   6725 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
   6726   // Loops that look like: while (X == 0) are very strange indeed.  We don't
   6727   // handle them yet except for the trivial case.  This could be expanded in the
   6728   // future as needed.
   6729 
   6730   // If the value is a constant, check to see if it is known to be non-zero
   6731   // already.  If so, the backedge will execute zero times.
   6732   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
   6733     if (!C->getValue()->isNullValue())
   6734       return getZero(C->getType());
   6735     return getCouldNotCompute();  // Otherwise it will loop infinitely.
   6736   }
   6737 
   6738   // We could implement others, but I really doubt anyone writes loops like
   6739   // this, and if they did, they would already be constant folded.
   6740   return getCouldNotCompute();
   6741 }
   6742 
   6743 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
   6744 /// (which may not be an immediate predecessor) which has exactly one
   6745 /// successor from which BB is reachable, or null if no such block is
   6746 /// found.
   6747 ///
   6748 std::pair<BasicBlock *, BasicBlock *>
   6749 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
   6750   // If the block has a unique predecessor, then there is no path from the
   6751   // predecessor to the block that does not go through the direct edge
   6752   // from the predecessor to the block.
   6753   if (BasicBlock *Pred = BB->getSinglePredecessor())
   6754     return std::make_pair(Pred, BB);
   6755 
   6756   // A loop's header is defined to be a block that dominates the loop.
   6757   // If the header has a unique predecessor outside the loop, it must be
   6758   // a block that has exactly one successor that can reach the loop.
   6759   if (Loop *L = LI.getLoopFor(BB))
   6760     return std::make_pair(L->getLoopPredecessor(), L->getHeader());
   6761 
   6762   return std::pair<BasicBlock *, BasicBlock *>();
   6763 }
   6764 
   6765 /// HasSameValue - SCEV structural equivalence is usually sufficient for
   6766 /// testing whether two expressions are equal, however for the purposes of
   6767 /// looking for a condition guarding a loop, it can be useful to be a little
   6768 /// more general, since a front-end may have replicated the controlling
   6769 /// expression.
   6770 ///
   6771 static bool HasSameValue(const SCEV *A, const SCEV *B) {
   6772   // Quick check to see if they are the same SCEV.
   6773   if (A == B) return true;
   6774 
   6775   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
   6776     // Not all instructions that are "identical" compute the same value.  For
   6777     // instance, two distinct alloca instructions allocating the same type are
   6778     // identical and do not read memory; but compute distinct values.
   6779     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
   6780   };
   6781 
   6782   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
   6783   // two different instructions with the same value. Check for this case.
   6784   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
   6785     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
   6786       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
   6787         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
   6788           if (ComputesEqualValues(AI, BI))
   6789             return true;
   6790 
   6791   // Otherwise assume they may have a different value.
   6792   return false;
   6793 }
   6794 
   6795 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
   6796 /// predicate Pred. Return true iff any changes were made.
   6797 ///
   6798 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
   6799                                            const SCEV *&LHS, const SCEV *&RHS,
   6800                                            unsigned Depth) {
   6801   bool Changed = false;
   6802 
   6803   // If we hit the max recursion limit bail out.
   6804   if (Depth >= 3)
   6805     return false;
   6806 
   6807   // Canonicalize a constant to the right side.
   6808   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
   6809     // Check for both operands constant.
   6810     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
   6811       if (ConstantExpr::getICmp(Pred,
   6812                                 LHSC->getValue(),
   6813                                 RHSC->getValue())->isNullValue())
   6814         goto trivially_false;
   6815       else
   6816         goto trivially_true;
   6817     }
   6818     // Otherwise swap the operands to put the constant on the right.
   6819     std::swap(LHS, RHS);
   6820     Pred = ICmpInst::getSwappedPredicate(Pred);
   6821     Changed = true;
   6822   }
   6823 
   6824   // If we're comparing an addrec with a value which is loop-invariant in the
   6825   // addrec's loop, put the addrec on the left. Also make a dominance check,
   6826   // as both operands could be addrecs loop-invariant in each other's loop.
   6827   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
   6828     const Loop *L = AR->getLoop();
   6829     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
   6830       std::swap(LHS, RHS);
   6831       Pred = ICmpInst::getSwappedPredicate(Pred);
   6832       Changed = true;
   6833     }
   6834   }
   6835 
   6836   // If there's a constant operand, canonicalize comparisons with boundary
   6837   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
   6838   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
   6839     const APInt &RA = RC->getAPInt();
   6840     switch (Pred) {
   6841     default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
   6842     case ICmpInst::ICMP_EQ:
   6843     case ICmpInst::ICMP_NE:
   6844       // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
   6845       if (!RA)
   6846         if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
   6847           if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
   6848             if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
   6849                 ME->getOperand(0)->isAllOnesValue()) {
   6850               RHS = AE->getOperand(1);
   6851               LHS = ME->getOperand(1);
   6852               Changed = true;
   6853             }
   6854       break;
   6855     case ICmpInst::ICMP_UGE:
   6856       if ((RA - 1).isMinValue()) {
   6857         Pred = ICmpInst::ICMP_NE;
   6858         RHS = getConstant(RA - 1);
   6859         Changed = true;
   6860         break;
   6861       }
   6862       if (RA.isMaxValue()) {
   6863         Pred = ICmpInst::ICMP_EQ;
   6864         Changed = true;
   6865         break;
   6866       }
   6867       if (RA.isMinValue()) goto trivially_true;
   6868 
   6869       Pred = ICmpInst::ICMP_UGT;
   6870       RHS = getConstant(RA - 1);
   6871       Changed = true;
   6872       break;
   6873     case ICmpInst::ICMP_ULE:
   6874       if ((RA + 1).isMaxValue()) {
   6875         Pred = ICmpInst::ICMP_NE;
   6876         RHS = getConstant(RA + 1);
   6877         Changed = true;
   6878         break;
   6879       }
   6880       if (RA.isMinValue()) {
   6881         Pred = ICmpInst::ICMP_EQ;
   6882         Changed = true;
   6883         break;
   6884       }
   6885       if (RA.isMaxValue()) goto trivially_true;
   6886 
   6887       Pred = ICmpInst::ICMP_ULT;
   6888       RHS = getConstant(RA + 1);
   6889       Changed = true;
   6890       break;
   6891     case ICmpInst::ICMP_SGE:
   6892       if ((RA - 1).isMinSignedValue()) {
   6893         Pred = ICmpInst::ICMP_NE;
   6894         RHS = getConstant(RA - 1);
   6895         Changed = true;
   6896         break;
   6897       }
   6898       if (RA.isMaxSignedValue()) {
   6899         Pred = ICmpInst::ICMP_EQ;
   6900         Changed = true;
   6901         break;
   6902       }
   6903       if (RA.isMinSignedValue()) goto trivially_true;
   6904 
   6905       Pred = ICmpInst::ICMP_SGT;
   6906       RHS = getConstant(RA - 1);
   6907       Changed = true;
   6908       break;
   6909     case ICmpInst::ICMP_SLE:
   6910       if ((RA + 1).isMaxSignedValue()) {
   6911         Pred = ICmpInst::ICMP_NE;
   6912         RHS = getConstant(RA + 1);
   6913         Changed = true;
   6914         break;
   6915       }
   6916       if (RA.isMinSignedValue()) {
   6917         Pred = ICmpInst::ICMP_EQ;
   6918         Changed = true;
   6919         break;
   6920       }
   6921       if (RA.isMaxSignedValue()) goto trivially_true;
   6922 
   6923       Pred = ICmpInst::ICMP_SLT;
   6924       RHS = getConstant(RA + 1);
   6925       Changed = true;
   6926       break;
   6927     case ICmpInst::ICMP_UGT:
   6928       if (RA.isMinValue()) {
   6929         Pred = ICmpInst::ICMP_NE;
   6930         Changed = true;
   6931         break;
   6932       }
   6933       if ((RA + 1).isMaxValue()) {
   6934         Pred = ICmpInst::ICMP_EQ;
   6935         RHS = getConstant(RA + 1);
   6936         Changed = true;
   6937         break;
   6938       }
   6939       if (RA.isMaxValue()) goto trivially_false;
   6940       break;
   6941     case ICmpInst::ICMP_ULT:
   6942       if (RA.isMaxValue()) {
   6943         Pred = ICmpInst::ICMP_NE;
   6944         Changed = true;
   6945         break;
   6946       }
   6947       if ((RA - 1).isMinValue()) {
   6948         Pred = ICmpInst::ICMP_EQ;
   6949         RHS = getConstant(RA - 1);
   6950         Changed = true;
   6951         break;
   6952       }
   6953       if (RA.isMinValue()) goto trivially_false;
   6954       break;
   6955     case ICmpInst::ICMP_SGT:
   6956       if (RA.isMinSignedValue()) {
   6957         Pred = ICmpInst::ICMP_NE;
   6958         Changed = true;
   6959         break;
   6960       }
   6961       if ((RA + 1).isMaxSignedValue()) {
   6962         Pred = ICmpInst::ICMP_EQ;
   6963         RHS = getConstant(RA + 1);
   6964         Changed = true;
   6965         break;
   6966       }
   6967       if (RA.isMaxSignedValue()) goto trivially_false;
   6968       break;
   6969     case ICmpInst::ICMP_SLT:
   6970       if (RA.isMaxSignedValue()) {
   6971         Pred = ICmpInst::ICMP_NE;
   6972         Changed = true;
   6973         break;
   6974       }
   6975       if ((RA - 1).isMinSignedValue()) {
   6976        Pred = ICmpInst::ICMP_EQ;
   6977        RHS = getConstant(RA - 1);
   6978         Changed = true;
   6979        break;
   6980       }
   6981       if (RA.isMinSignedValue()) goto trivially_false;
   6982       break;
   6983     }
   6984   }
   6985 
   6986   // Check for obvious equality.
   6987   if (HasSameValue(LHS, RHS)) {
   6988     if (ICmpInst::isTrueWhenEqual(Pred))
   6989       goto trivially_true;
   6990     if (ICmpInst::isFalseWhenEqual(Pred))
   6991       goto trivially_false;
   6992   }
   6993 
   6994   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
   6995   // adding or subtracting 1 from one of the operands.
   6996   switch (Pred) {
   6997   case ICmpInst::ICMP_SLE:
   6998     if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
   6999       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
   7000                        SCEV::FlagNSW);
   7001       Pred = ICmpInst::ICMP_SLT;
   7002       Changed = true;
   7003     } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
   7004       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
   7005                        SCEV::FlagNSW);
   7006       Pred = ICmpInst::ICMP_SLT;
   7007       Changed = true;
   7008     }
   7009     break;
   7010   case ICmpInst::ICMP_SGE:
   7011     if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
   7012       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
   7013                        SCEV::FlagNSW);
   7014       Pred = ICmpInst::ICMP_SGT;
   7015       Changed = true;
   7016     } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
   7017       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
   7018                        SCEV::FlagNSW);
   7019       Pred = ICmpInst::ICMP_SGT;
   7020       Changed = true;
   7021     }
   7022     break;
   7023   case ICmpInst::ICMP_ULE:
   7024     if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
   7025       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
   7026                        SCEV::FlagNUW);
   7027       Pred = ICmpInst::ICMP_ULT;
   7028       Changed = true;
   7029     } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
   7030       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
   7031       Pred = ICmpInst::ICMP_ULT;
   7032       Changed = true;
   7033     }
   7034     break;
   7035   case ICmpInst::ICMP_UGE:
   7036     if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
   7037       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
   7038       Pred = ICmpInst::ICMP_UGT;
   7039       Changed = true;
   7040     } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
   7041       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
   7042                        SCEV::FlagNUW);
   7043       Pred = ICmpInst::ICMP_UGT;
   7044       Changed = true;
   7045     }
   7046     break;
   7047   default:
   7048     break;
   7049   }
   7050 
   7051   // TODO: More simplifications are possible here.
   7052 
   7053   // Recursively simplify until we either hit a recursion limit or nothing
   7054   // changes.
   7055   if (Changed)
   7056     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
   7057 
   7058   return Changed;
   7059 
   7060 trivially_true:
   7061   // Return 0 == 0.
   7062   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
   7063   Pred = ICmpInst::ICMP_EQ;
   7064   return true;
   7065 
   7066 trivially_false:
   7067   // Return 0 != 0.
   7068   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
   7069   Pred = ICmpInst::ICMP_NE;
   7070   return true;
   7071 }
   7072 
   7073 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
   7074   return getSignedRange(S).getSignedMax().isNegative();
   7075 }
   7076 
   7077 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
   7078   return getSignedRange(S).getSignedMin().isStrictlyPositive();
   7079 }
   7080 
   7081 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
   7082   return !getSignedRange(S).getSignedMin().isNegative();
   7083 }
   7084 
   7085 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
   7086   return !getSignedRange(S).getSignedMax().isStrictlyPositive();
   7087 }
   7088 
   7089 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
   7090   return isKnownNegative(S) || isKnownPositive(S);
   7091 }
   7092 
   7093 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
   7094                                        const SCEV *LHS, const SCEV *RHS) {
   7095   // Canonicalize the inputs first.
   7096   (void)SimplifyICmpOperands(Pred, LHS, RHS);
   7097 
   7098   // If LHS or RHS is an addrec, check to see if the condition is true in
   7099   // every iteration of the loop.
   7100   // If LHS and RHS are both addrec, both conditions must be true in
   7101   // every iteration of the loop.
   7102   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
   7103   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
   7104   bool LeftGuarded = false;
   7105   bool RightGuarded = false;
   7106   if (LAR) {
   7107     const Loop *L = LAR->getLoop();
   7108     if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
   7109         isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
   7110       if (!RAR) return true;
   7111       LeftGuarded = true;
   7112     }
   7113   }
   7114   if (RAR) {
   7115     const Loop *L = RAR->getLoop();
   7116     if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
   7117         isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
   7118       if (!LAR) return true;
   7119       RightGuarded = true;
   7120     }
   7121   }
   7122   if (LeftGuarded && RightGuarded)
   7123     return true;
   7124 
   7125   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
   7126     return true;
   7127 
   7128   // Otherwise see what can be done with known constant ranges.
   7129   return isKnownPredicateWithRanges(Pred, LHS, RHS);
   7130 }
   7131 
   7132 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
   7133                                            ICmpInst::Predicate Pred,
   7134                                            bool &Increasing) {
   7135   bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
   7136 
   7137 #ifndef NDEBUG
   7138   // Verify an invariant: inverting the predicate should turn a monotonically
   7139   // increasing change to a monotonically decreasing one, and vice versa.
   7140   bool IncreasingSwapped;
   7141   bool ResultSwapped = isMonotonicPredicateImpl(
   7142       LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
   7143 
   7144   assert(Result == ResultSwapped && "should be able to analyze both!");
   7145   if (ResultSwapped)
   7146     assert(Increasing == !IncreasingSwapped &&
   7147            "monotonicity should flip as we flip the predicate");
   7148 #endif
   7149 
   7150   return Result;
   7151 }
   7152 
   7153 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
   7154                                                ICmpInst::Predicate Pred,
   7155                                                bool &Increasing) {
   7156 
   7157   // A zero step value for LHS means the induction variable is essentially a
   7158   // loop invariant value. We don't really depend on the predicate actually
   7159   // flipping from false to true (for increasing predicates, and the other way
   7160   // around for decreasing predicates), all we care about is that *if* the
   7161   // predicate changes then it only changes from false to true.
   7162   //
   7163   // A zero step value in itself is not very useful, but there may be places
   7164   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
   7165   // as general as possible.
   7166 
   7167   switch (Pred) {
   7168   default:
   7169     return false; // Conservative answer
   7170 
   7171   case ICmpInst::ICMP_UGT:
   7172   case ICmpInst::ICMP_UGE:
   7173   case ICmpInst::ICMP_ULT:
   7174   case ICmpInst::ICMP_ULE:
   7175     if (!LHS->getNoWrapFlags(SCEV::FlagNUW))
   7176       return false;
   7177 
   7178     Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
   7179     return true;
   7180 
   7181   case ICmpInst::ICMP_SGT:
   7182   case ICmpInst::ICMP_SGE:
   7183   case ICmpInst::ICMP_SLT:
   7184   case ICmpInst::ICMP_SLE: {
   7185     if (!LHS->getNoWrapFlags(SCEV::FlagNSW))
   7186       return false;
   7187 
   7188     const SCEV *Step = LHS->getStepRecurrence(*this);
   7189 
   7190     if (isKnownNonNegative(Step)) {
   7191       Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
   7192       return true;
   7193     }
   7194 
   7195     if (isKnownNonPositive(Step)) {
   7196       Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
   7197       return true;
   7198     }
   7199 
   7200     return false;
   7201   }
   7202 
   7203   }
   7204 
   7205   llvm_unreachable("switch has default clause!");
   7206 }
   7207 
   7208 bool ScalarEvolution::isLoopInvariantPredicate(
   7209     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
   7210     ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
   7211     const SCEV *&InvariantRHS) {
   7212 
   7213   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
   7214   if (!isLoopInvariant(RHS, L)) {
   7215     if (!isLoopInvariant(LHS, L))
   7216       return false;
   7217 
   7218     std::swap(LHS, RHS);
   7219     Pred = ICmpInst::getSwappedPredicate(Pred);
   7220   }
   7221 
   7222   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
   7223   if (!ArLHS || ArLHS->getLoop() != L)
   7224     return false;
   7225 
   7226   bool Increasing;
   7227   if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
   7228     return false;
   7229 
   7230   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
   7231   // true as the loop iterates, and the backedge is control dependent on
   7232   // "ArLHS `Pred` RHS" == true then we can reason as follows:
   7233   //
   7234   //   * if the predicate was false in the first iteration then the predicate
   7235   //     is never evaluated again, since the loop exits without taking the
   7236   //     backedge.
   7237   //   * if the predicate was true in the first iteration then it will
   7238   //     continue to be true for all future iterations since it is
   7239   //     monotonically increasing.
   7240   //
   7241   // For both the above possibilities, we can replace the loop varying
   7242   // predicate with its value on the first iteration of the loop (which is
   7243   // loop invariant).
   7244   //
   7245   // A similar reasoning applies for a monotonically decreasing predicate, by
   7246   // replacing true with false and false with true in the above two bullets.
   7247 
   7248   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
   7249 
   7250   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
   7251     return false;
   7252 
   7253   InvariantPred = Pred;
   7254   InvariantLHS = ArLHS->getStart();
   7255   InvariantRHS = RHS;
   7256   return true;
   7257 }
   7258 
   7259 bool
   7260 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
   7261                                             const SCEV *LHS, const SCEV *RHS) {
   7262   if (HasSameValue(LHS, RHS))
   7263     return ICmpInst::isTrueWhenEqual(Pred);
   7264 
   7265   // This code is split out from isKnownPredicate because it is called from
   7266   // within isLoopEntryGuardedByCond.
   7267   switch (Pred) {
   7268   default:
   7269     llvm_unreachable("Unexpected ICmpInst::Predicate value!");
   7270   case ICmpInst::ICMP_SGT:
   7271     std::swap(LHS, RHS);
   7272   case ICmpInst::ICMP_SLT: {
   7273     ConstantRange LHSRange = getSignedRange(LHS);
   7274     ConstantRange RHSRange = getSignedRange(RHS);
   7275     if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
   7276       return true;
   7277     if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
   7278       return false;
   7279     break;
   7280   }
   7281   case ICmpInst::ICMP_SGE:
   7282     std::swap(LHS, RHS);
   7283   case ICmpInst::ICMP_SLE: {
   7284     ConstantRange LHSRange = getSignedRange(LHS);
   7285     ConstantRange RHSRange = getSignedRange(RHS);
   7286     if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
   7287       return true;
   7288     if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
   7289       return false;
   7290     break;
   7291   }
   7292   case ICmpInst::ICMP_UGT:
   7293     std::swap(LHS, RHS);
   7294   case ICmpInst::ICMP_ULT: {
   7295     ConstantRange LHSRange = getUnsignedRange(LHS);
   7296     ConstantRange RHSRange = getUnsignedRange(RHS);
   7297     if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
   7298       return true;
   7299     if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
   7300       return false;
   7301     break;
   7302   }
   7303   case ICmpInst::ICMP_UGE:
   7304     std::swap(LHS, RHS);
   7305   case ICmpInst::ICMP_ULE: {
   7306     ConstantRange LHSRange = getUnsignedRange(LHS);
   7307     ConstantRange RHSRange = getUnsignedRange(RHS);
   7308     if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
   7309       return true;
   7310     if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
   7311       return false;
   7312     break;
   7313   }
   7314   case ICmpInst::ICMP_NE: {
   7315     if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
   7316       return true;
   7317     if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
   7318       return true;
   7319 
   7320     const SCEV *Diff = getMinusSCEV(LHS, RHS);
   7321     if (isKnownNonZero(Diff))
   7322       return true;
   7323     break;
   7324   }
   7325   case ICmpInst::ICMP_EQ:
   7326     // The check at the top of the function catches the case where
   7327     // the values are known to be equal.
   7328     break;
   7329   }
   7330   return false;
   7331 }
   7332 
   7333 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
   7334                                                     const SCEV *LHS,
   7335                                                     const SCEV *RHS) {
   7336 
   7337   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
   7338   // Return Y via OutY.
   7339   auto MatchBinaryAddToConst =
   7340       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
   7341              SCEV::NoWrapFlags ExpectedFlags) {
   7342     const SCEV *NonConstOp, *ConstOp;
   7343     SCEV::NoWrapFlags FlagsPresent;
   7344 
   7345     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
   7346         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
   7347       return false;
   7348 
   7349     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
   7350     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
   7351   };
   7352 
   7353   APInt C;
   7354 
   7355   switch (Pred) {
   7356   default:
   7357     break;
   7358 
   7359   case ICmpInst::ICMP_SGE:
   7360     std::swap(LHS, RHS);
   7361   case ICmpInst::ICMP_SLE:
   7362     // X s<= (X + C)<nsw> if C >= 0
   7363     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
   7364       return true;
   7365 
   7366     // (X + C)<nsw> s<= X if C <= 0
   7367     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
   7368         !C.isStrictlyPositive())
   7369       return true;
   7370     break;
   7371 
   7372   case ICmpInst::ICMP_SGT:
   7373     std::swap(LHS, RHS);
   7374   case ICmpInst::ICMP_SLT:
   7375     // X s< (X + C)<nsw> if C > 0
   7376     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
   7377         C.isStrictlyPositive())
   7378       return true;
   7379 
   7380     // (X + C)<nsw> s< X if C < 0
   7381     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
   7382       return true;
   7383     break;
   7384   }
   7385 
   7386   return false;
   7387 }
   7388 
   7389 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
   7390                                                    const SCEV *LHS,
   7391                                                    const SCEV *RHS) {
   7392   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
   7393     return false;
   7394 
   7395   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
   7396   // the stack can result in exponential time complexity.
   7397   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
   7398 
   7399   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
   7400   //
   7401   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
   7402   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
   7403   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
   7404   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
   7405   // use isKnownPredicate later if needed.
   7406   return isKnownNonNegative(RHS) &&
   7407          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
   7408          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
   7409 }
   7410 
   7411 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
   7412 /// protected by a conditional between LHS and RHS.  This is used to
   7413 /// to eliminate casts.
   7414 bool
   7415 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
   7416                                              ICmpInst::Predicate Pred,
   7417                                              const SCEV *LHS, const SCEV *RHS) {
   7418   // Interpret a null as meaning no loop, where there is obviously no guard
   7419   // (interprocedural conditions notwithstanding).
   7420   if (!L) return true;
   7421 
   7422   if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
   7423 
   7424   BasicBlock *Latch = L->getLoopLatch();
   7425   if (!Latch)
   7426     return false;
   7427 
   7428   BranchInst *LoopContinuePredicate =
   7429     dyn_cast<BranchInst>(Latch->getTerminator());
   7430   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
   7431       isImpliedCond(Pred, LHS, RHS,
   7432                     LoopContinuePredicate->getCondition(),
   7433                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
   7434     return true;
   7435 
   7436   // We don't want more than one activation of the following loops on the stack
   7437   // -- that can lead to O(n!) time complexity.
   7438   if (WalkingBEDominatingConds)
   7439     return false;
   7440 
   7441   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
   7442 
   7443   // See if we can exploit a trip count to prove the predicate.
   7444   const auto &BETakenInfo = getBackedgeTakenInfo(L);
   7445   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
   7446   if (LatchBECount != getCouldNotCompute()) {
   7447     // We know that Latch branches back to the loop header exactly
   7448     // LatchBECount times.  This means the backdege condition at Latch is
   7449     // equivalent to  "{0,+,1} u< LatchBECount".
   7450     Type *Ty = LatchBECount->getType();
   7451     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
   7452     const SCEV *LoopCounter =
   7453       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
   7454     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
   7455                       LatchBECount))
   7456       return true;
   7457   }
   7458 
   7459   // Check conditions due to any @llvm.assume intrinsics.
   7460   for (auto &AssumeVH : AC.assumptions()) {
   7461     if (!AssumeVH)
   7462       continue;
   7463     auto *CI = cast<CallInst>(AssumeVH);
   7464     if (!DT.dominates(CI, Latch->getTerminator()))
   7465       continue;
   7466 
   7467     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
   7468       return true;
   7469   }
   7470 
   7471   // If the loop is not reachable from the entry block, we risk running into an
   7472   // infinite loop as we walk up into the dom tree.  These loops do not matter
   7473   // anyway, so we just return a conservative answer when we see them.
   7474   if (!DT.isReachableFromEntry(L->getHeader()))
   7475     return false;
   7476 
   7477   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
   7478        DTN != HeaderDTN; DTN = DTN->getIDom()) {
   7479 
   7480     assert(DTN && "should reach the loop header before reaching the root!");
   7481 
   7482     BasicBlock *BB = DTN->getBlock();
   7483     BasicBlock *PBB = BB->getSinglePredecessor();
   7484     if (!PBB)
   7485       continue;
   7486 
   7487     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
   7488     if (!ContinuePredicate || !ContinuePredicate->isConditional())
   7489       continue;
   7490 
   7491     Value *Condition = ContinuePredicate->getCondition();
   7492 
   7493     // If we have an edge `E` within the loop body that dominates the only
   7494     // latch, the condition guarding `E` also guards the backedge.  This
   7495     // reasoning works only for loops with a single latch.
   7496 
   7497     BasicBlockEdge DominatingEdge(PBB, BB);
   7498     if (DominatingEdge.isSingleEdge()) {
   7499       // We're constructively (and conservatively) enumerating edges within the
   7500       // loop body that dominate the latch.  The dominator tree better agree
   7501       // with us on this:
   7502       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
   7503 
   7504       if (isImpliedCond(Pred, LHS, RHS, Condition,
   7505                         BB != ContinuePredicate->getSuccessor(0)))
   7506         return true;
   7507     }
   7508   }
   7509 
   7510   return false;
   7511 }
   7512 
   7513 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
   7514 /// by a conditional between LHS and RHS.  This is used to help avoid max
   7515 /// expressions in loop trip counts, and to eliminate casts.
   7516 bool
   7517 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
   7518                                           ICmpInst::Predicate Pred,
   7519                                           const SCEV *LHS, const SCEV *RHS) {
   7520   // Interpret a null as meaning no loop, where there is obviously no guard
   7521   // (interprocedural conditions notwithstanding).
   7522   if (!L) return false;
   7523 
   7524   if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
   7525 
   7526   // Starting at the loop predecessor, climb up the predecessor chain, as long
   7527   // as there are predecessors that can be found that have unique successors
   7528   // leading to the original header.
   7529   for (std::pair<BasicBlock *, BasicBlock *>
   7530          Pair(L->getLoopPredecessor(), L->getHeader());
   7531        Pair.first;
   7532        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
   7533 
   7534     BranchInst *LoopEntryPredicate =
   7535       dyn_cast<BranchInst>(Pair.first->getTerminator());
   7536     if (!LoopEntryPredicate ||
   7537         LoopEntryPredicate->isUnconditional())
   7538       continue;
   7539 
   7540     if (isImpliedCond(Pred, LHS, RHS,
   7541                       LoopEntryPredicate->getCondition(),
   7542                       LoopEntryPredicate->getSuccessor(0) != Pair.second))
   7543       return true;
   7544   }
   7545 
   7546   // Check conditions due to any @llvm.assume intrinsics.
   7547   for (auto &AssumeVH : AC.assumptions()) {
   7548     if (!AssumeVH)
   7549       continue;
   7550     auto *CI = cast<CallInst>(AssumeVH);
   7551     if (!DT.dominates(CI, L->getHeader()))
   7552       continue;
   7553 
   7554     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
   7555       return true;
   7556   }
   7557 
   7558   return false;
   7559 }
   7560 
   7561 namespace {
   7562 /// RAII wrapper to prevent recursive application of isImpliedCond.
   7563 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
   7564 /// currently evaluating isImpliedCond.
   7565 struct MarkPendingLoopPredicate {
   7566   Value *Cond;
   7567   DenseSet<Value*> &LoopPreds;
   7568   bool Pending;
   7569 
   7570   MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
   7571     : Cond(C), LoopPreds(LP) {
   7572     Pending = !LoopPreds.insert(Cond).second;
   7573   }
   7574   ~MarkPendingLoopPredicate() {
   7575     if (!Pending)
   7576       LoopPreds.erase(Cond);
   7577   }
   7578 };
   7579 } // end anonymous namespace
   7580 
   7581 /// isImpliedCond - Test whether the condition described by Pred, LHS,
   7582 /// and RHS is true whenever the given Cond value evaluates to true.
   7583 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
   7584                                     const SCEV *LHS, const SCEV *RHS,
   7585                                     Value *FoundCondValue,
   7586                                     bool Inverse) {
   7587   MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
   7588   if (Mark.Pending)
   7589     return false;
   7590 
   7591   // Recursively handle And and Or conditions.
   7592   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
   7593     if (BO->getOpcode() == Instruction::And) {
   7594       if (!Inverse)
   7595         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
   7596                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
   7597     } else if (BO->getOpcode() == Instruction::Or) {
   7598       if (Inverse)
   7599         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
   7600                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
   7601     }
   7602   }
   7603 
   7604   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
   7605   if (!ICI) return false;
   7606 
   7607   // Now that we found a conditional branch that dominates the loop or controls
   7608   // the loop latch. Check to see if it is the comparison we are looking for.
   7609   ICmpInst::Predicate FoundPred;
   7610   if (Inverse)
   7611     FoundPred = ICI->getInversePredicate();
   7612   else
   7613     FoundPred = ICI->getPredicate();
   7614 
   7615   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
   7616   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
   7617 
   7618   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
   7619 }
   7620 
   7621 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
   7622                                     const SCEV *RHS,
   7623                                     ICmpInst::Predicate FoundPred,
   7624                                     const SCEV *FoundLHS,
   7625                                     const SCEV *FoundRHS) {
   7626   // Balance the types.
   7627   if (getTypeSizeInBits(LHS->getType()) <
   7628       getTypeSizeInBits(FoundLHS->getType())) {
   7629     if (CmpInst::isSigned(Pred)) {
   7630       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
   7631       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
   7632     } else {
   7633       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
   7634       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
   7635     }
   7636   } else if (getTypeSizeInBits(LHS->getType()) >
   7637       getTypeSizeInBits(FoundLHS->getType())) {
   7638     if (CmpInst::isSigned(FoundPred)) {
   7639       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
   7640       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
   7641     } else {
   7642       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
   7643       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
   7644     }
   7645   }
   7646 
   7647   // Canonicalize the query to match the way instcombine will have
   7648   // canonicalized the comparison.
   7649   if (SimplifyICmpOperands(Pred, LHS, RHS))
   7650     if (LHS == RHS)
   7651       return CmpInst::isTrueWhenEqual(Pred);
   7652   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
   7653     if (FoundLHS == FoundRHS)
   7654       return CmpInst::isFalseWhenEqual(FoundPred);
   7655 
   7656   // Check to see if we can make the LHS or RHS match.
   7657   if (LHS == FoundRHS || RHS == FoundLHS) {
   7658     if (isa<SCEVConstant>(RHS)) {
   7659       std::swap(FoundLHS, FoundRHS);
   7660       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
   7661     } else {
   7662       std::swap(LHS, RHS);
   7663       Pred = ICmpInst::getSwappedPredicate(Pred);
   7664     }
   7665   }
   7666 
   7667   // Check whether the found predicate is the same as the desired predicate.
   7668   if (FoundPred == Pred)
   7669     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
   7670 
   7671   // Check whether swapping the found predicate makes it the same as the
   7672   // desired predicate.
   7673   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
   7674     if (isa<SCEVConstant>(RHS))
   7675       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
   7676     else
   7677       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
   7678                                    RHS, LHS, FoundLHS, FoundRHS);
   7679   }
   7680 
   7681   // Unsigned comparison is the same as signed comparison when both the operands
   7682   // are non-negative.
   7683   if (CmpInst::isUnsigned(FoundPred) &&
   7684       CmpInst::getSignedPredicate(FoundPred) == Pred &&
   7685       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
   7686     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
   7687 
   7688   // Check if we can make progress by sharpening ranges.
   7689   if (FoundPred == ICmpInst::ICMP_NE &&
   7690       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
   7691 
   7692     const SCEVConstant *C = nullptr;
   7693     const SCEV *V = nullptr;
   7694 
   7695     if (isa<SCEVConstant>(FoundLHS)) {
   7696       C = cast<SCEVConstant>(FoundLHS);
   7697       V = FoundRHS;
   7698     } else {
   7699       C = cast<SCEVConstant>(FoundRHS);
   7700       V = FoundLHS;
   7701     }
   7702 
   7703     // The guarding predicate tells us that C != V. If the known range
   7704     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
   7705     // range we consider has to correspond to same signedness as the
   7706     // predicate we're interested in folding.
   7707 
   7708     APInt Min = ICmpInst::isSigned(Pred) ?
   7709         getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
   7710 
   7711     if (Min == C->getAPInt()) {
   7712       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
   7713       // This is true even if (Min + 1) wraps around -- in case of
   7714       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
   7715 
   7716       APInt SharperMin = Min + 1;
   7717 
   7718       switch (Pred) {
   7719         case ICmpInst::ICMP_SGE:
   7720         case ICmpInst::ICMP_UGE:
   7721           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
   7722           // RHS, we're done.
   7723           if (isImpliedCondOperands(Pred, LHS, RHS, V,
   7724                                     getConstant(SharperMin)))
   7725             return true;
   7726 
   7727         case ICmpInst::ICMP_SGT:
   7728         case ICmpInst::ICMP_UGT:
   7729           // We know from the range information that (V `Pred` Min ||
   7730           // V == Min).  We know from the guarding condition that !(V
   7731           // == Min).  This gives us
   7732           //
   7733           //       V `Pred` Min || V == Min && !(V == Min)
   7734           //   =>  V `Pred` Min
   7735           //
   7736           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
   7737 
   7738           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
   7739             return true;
   7740 
   7741         default:
   7742           // No change
   7743           break;
   7744       }
   7745     }
   7746   }
   7747 
   7748   // Check whether the actual condition is beyond sufficient.
   7749   if (FoundPred == ICmpInst::ICMP_EQ)
   7750     if (ICmpInst::isTrueWhenEqual(Pred))
   7751       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
   7752         return true;
   7753   if (Pred == ICmpInst::ICMP_NE)
   7754     if (!ICmpInst::isTrueWhenEqual(FoundPred))
   7755       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
   7756         return true;
   7757 
   7758   // Otherwise assume the worst.
   7759   return false;
   7760 }
   7761 
   7762 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
   7763                                      const SCEV *&L, const SCEV *&R,
   7764                                      SCEV::NoWrapFlags &Flags) {
   7765   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
   7766   if (!AE || AE->getNumOperands() != 2)
   7767     return false;
   7768 
   7769   L = AE->getOperand(0);
   7770   R = AE->getOperand(1);
   7771   Flags = AE->getNoWrapFlags();
   7772   return true;
   7773 }
   7774 
   7775 bool ScalarEvolution::computeConstantDifference(const SCEV *Less,
   7776                                                 const SCEV *More,
   7777                                                 APInt &C) {
   7778   // We avoid subtracting expressions here because this function is usually
   7779   // fairly deep in the call stack (i.e. is called many times).
   7780 
   7781   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
   7782     const auto *LAR = cast<SCEVAddRecExpr>(Less);
   7783     const auto *MAR = cast<SCEVAddRecExpr>(More);
   7784 
   7785     if (LAR->getLoop() != MAR->getLoop())
   7786       return false;
   7787 
   7788     // We look at affine expressions only; not for correctness but to keep
   7789     // getStepRecurrence cheap.
   7790     if (!LAR->isAffine() || !MAR->isAffine())
   7791       return false;
   7792 
   7793     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
   7794       return false;
   7795 
   7796     Less = LAR->getStart();
   7797     More = MAR->getStart();
   7798 
   7799     // fall through
   7800   }
   7801 
   7802   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
   7803     const auto &M = cast<SCEVConstant>(More)->getAPInt();
   7804     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
   7805     C = M - L;
   7806     return true;
   7807   }
   7808 
   7809   const SCEV *L, *R;
   7810   SCEV::NoWrapFlags Flags;
   7811   if (splitBinaryAdd(Less, L, R, Flags))
   7812     if (const auto *LC = dyn_cast<SCEVConstant>(L))
   7813       if (R == More) {
   7814         C = -(LC->getAPInt());
   7815         return true;
   7816       }
   7817 
   7818   if (splitBinaryAdd(More, L, R, Flags))
   7819     if (const auto *LC = dyn_cast<SCEVConstant>(L))
   7820       if (R == Less) {
   7821         C = LC->getAPInt();
   7822         return true;
   7823       }
   7824 
   7825   return false;
   7826 }
   7827 
   7828 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
   7829     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
   7830     const SCEV *FoundLHS, const SCEV *FoundRHS) {
   7831   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
   7832     return false;
   7833 
   7834   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
   7835   if (!AddRecLHS)
   7836     return false;
   7837 
   7838   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
   7839   if (!AddRecFoundLHS)
   7840     return false;
   7841 
   7842   // We'd like to let SCEV reason about control dependencies, so we constrain
   7843   // both the inequalities to be about add recurrences on the same loop.  This
   7844   // way we can use isLoopEntryGuardedByCond later.
   7845 
   7846   const Loop *L = AddRecFoundLHS->getLoop();
   7847   if (L != AddRecLHS->getLoop())
   7848     return false;
   7849 
   7850   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
   7851   //
   7852   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
   7853   //                                                                  ... (2)
   7854   //
   7855   // Informal proof for (2), assuming (1) [*]:
   7856   //
   7857   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
   7858   //
   7859   // Then
   7860   //
   7861   //       FoundLHS s< FoundRHS s< INT_MIN - C
   7862   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
   7863   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
   7864   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
   7865   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
   7866   // <=>  FoundLHS + C s< FoundRHS + C
   7867   //
   7868   // [*]: (1) can be proved by ruling out overflow.
   7869   //
   7870   // [**]: This can be proved by analyzing all the four possibilities:
   7871   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
   7872   //    (A s>= 0, B s>= 0).
   7873   //
   7874   // Note:
   7875   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
   7876   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
   7877   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
   7878   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
   7879   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
   7880   // C)".
   7881 
   7882   APInt LDiff, RDiff;
   7883   if (!computeConstantDifference(FoundLHS, LHS, LDiff) ||
   7884       !computeConstantDifference(FoundRHS, RHS, RDiff) ||
   7885       LDiff != RDiff)
   7886     return false;
   7887 
   7888   if (LDiff == 0)
   7889     return true;
   7890 
   7891   APInt FoundRHSLimit;
   7892 
   7893   if (Pred == CmpInst::ICMP_ULT) {
   7894     FoundRHSLimit = -RDiff;
   7895   } else {
   7896     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
   7897     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff;
   7898   }
   7899 
   7900   // Try to prove (1) or (2), as needed.
   7901   return isLoopEntryGuardedByCond(L, Pred, FoundRHS,
   7902                                   getConstant(FoundRHSLimit));
   7903 }
   7904 
   7905 /// isImpliedCondOperands - Test whether the condition described by Pred,
   7906 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
   7907 /// and FoundRHS is true.
   7908 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
   7909                                             const SCEV *LHS, const SCEV *RHS,
   7910                                             const SCEV *FoundLHS,
   7911                                             const SCEV *FoundRHS) {
   7912   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
   7913     return true;
   7914 
   7915   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
   7916     return true;
   7917 
   7918   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
   7919                                      FoundLHS, FoundRHS) ||
   7920          // ~x < ~y --> x > y
   7921          isImpliedCondOperandsHelper(Pred, LHS, RHS,
   7922                                      getNotSCEV(FoundRHS),
   7923                                      getNotSCEV(FoundLHS));
   7924 }
   7925 
   7926 
   7927 /// If Expr computes ~A, return A else return nullptr
   7928 static const SCEV *MatchNotExpr(const SCEV *Expr) {
   7929   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
   7930   if (!Add || Add->getNumOperands() != 2 ||
   7931       !Add->getOperand(0)->isAllOnesValue())
   7932     return nullptr;
   7933 
   7934   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
   7935   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
   7936       !AddRHS->getOperand(0)->isAllOnesValue())
   7937     return nullptr;
   7938 
   7939   return AddRHS->getOperand(1);
   7940 }
   7941 
   7942 
   7943 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
   7944 template<typename MaxExprType>
   7945 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
   7946                               const SCEV *Candidate) {
   7947   const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
   7948   if (!MaxExpr) return false;
   7949 
   7950   return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
   7951 }
   7952 
   7953 
   7954 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
   7955 template<typename MaxExprType>
   7956 static bool IsMinConsistingOf(ScalarEvolution &SE,
   7957                               const SCEV *MaybeMinExpr,
   7958                               const SCEV *Candidate) {
   7959   const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
   7960   if (!MaybeMaxExpr)
   7961     return false;
   7962 
   7963   return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
   7964 }
   7965 
   7966 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
   7967                                            ICmpInst::Predicate Pred,
   7968                                            const SCEV *LHS, const SCEV *RHS) {
   7969 
   7970   // If both sides are affine addrecs for the same loop, with equal
   7971   // steps, and we know the recurrences don't wrap, then we only
   7972   // need to check the predicate on the starting values.
   7973 
   7974   if (!ICmpInst::isRelational(Pred))
   7975     return false;
   7976 
   7977   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
   7978   if (!LAR)
   7979     return false;
   7980   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
   7981   if (!RAR)
   7982     return false;
   7983   if (LAR->getLoop() != RAR->getLoop())
   7984     return false;
   7985   if (!LAR->isAffine() || !RAR->isAffine())
   7986     return false;
   7987 
   7988   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
   7989     return false;
   7990 
   7991   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
   7992                          SCEV::FlagNSW : SCEV::FlagNUW;
   7993   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
   7994     return false;
   7995 
   7996   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
   7997 }
   7998 
   7999 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
   8000 /// expression?
   8001 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
   8002                                         ICmpInst::Predicate Pred,
   8003                                         const SCEV *LHS, const SCEV *RHS) {
   8004   switch (Pred) {
   8005   default:
   8006     return false;
   8007 
   8008   case ICmpInst::ICMP_SGE:
   8009     std::swap(LHS, RHS);
   8010     // fall through
   8011   case ICmpInst::ICMP_SLE:
   8012     return
   8013       // min(A, ...) <= A
   8014       IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
   8015       // A <= max(A, ...)
   8016       IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
   8017 
   8018   case ICmpInst::ICMP_UGE:
   8019     std::swap(LHS, RHS);
   8020     // fall through
   8021   case ICmpInst::ICMP_ULE:
   8022     return
   8023       // min(A, ...) <= A
   8024       IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
   8025       // A <= max(A, ...)
   8026       IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
   8027   }
   8028 
   8029   llvm_unreachable("covered switch fell through?!");
   8030 }
   8031 
   8032 /// isImpliedCondOperandsHelper - Test whether the condition described by
   8033 /// Pred, LHS, and RHS is true whenever the condition described by Pred,
   8034 /// FoundLHS, and FoundRHS is true.
   8035 bool
   8036 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
   8037                                              const SCEV *LHS, const SCEV *RHS,
   8038                                              const SCEV *FoundLHS,
   8039                                              const SCEV *FoundRHS) {
   8040   auto IsKnownPredicateFull =
   8041       [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
   8042     return isKnownPredicateWithRanges(Pred, LHS, RHS) ||
   8043            IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
   8044            IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
   8045            isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
   8046   };
   8047 
   8048   switch (Pred) {
   8049   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
   8050   case ICmpInst::ICMP_EQ:
   8051   case ICmpInst::ICMP_NE:
   8052     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
   8053       return true;
   8054     break;
   8055   case ICmpInst::ICMP_SLT:
   8056   case ICmpInst::ICMP_SLE:
   8057     if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
   8058         IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
   8059       return true;
   8060     break;
   8061   case ICmpInst::ICMP_SGT:
   8062   case ICmpInst::ICMP_SGE:
   8063     if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
   8064         IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
   8065       return true;
   8066     break;
   8067   case ICmpInst::ICMP_ULT:
   8068   case ICmpInst::ICMP_ULE:
   8069     if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
   8070         IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
   8071       return true;
   8072     break;
   8073   case ICmpInst::ICMP_UGT:
   8074   case ICmpInst::ICMP_UGE:
   8075     if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
   8076         IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
   8077       return true;
   8078     break;
   8079   }
   8080 
   8081   return false;
   8082 }
   8083 
   8084 /// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands.
   8085 /// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1".
   8086 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
   8087                                                      const SCEV *LHS,
   8088                                                      const SCEV *RHS,
   8089                                                      const SCEV *FoundLHS,
   8090                                                      const SCEV *FoundRHS) {
   8091   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
   8092     // The restriction on `FoundRHS` be lifted easily -- it exists only to
   8093     // reduce the compile time impact of this optimization.
   8094     return false;
   8095 
   8096   const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS);
   8097   if (!AddLHS || AddLHS->getOperand(1) != FoundLHS ||
   8098       !isa<SCEVConstant>(AddLHS->getOperand(0)))
   8099     return false;
   8100 
   8101   APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
   8102 
   8103   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
   8104   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
   8105   ConstantRange FoundLHSRange =
   8106       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
   8107 
   8108   // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range
   8109   // for `LHS`:
   8110   APInt Addend = cast<SCEVConstant>(AddLHS->getOperand(0))->getAPInt();
   8111   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend));
   8112 
   8113   // We can also compute the range of values for `LHS` that satisfy the
   8114   // consequent, "`LHS` `Pred` `RHS`":
   8115   APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
   8116   ConstantRange SatisfyingLHSRange =
   8117       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
   8118 
   8119   // The antecedent implies the consequent if every value of `LHS` that
   8120   // satisfies the antecedent also satisfies the consequent.
   8121   return SatisfyingLHSRange.contains(LHSRange);
   8122 }
   8123 
   8124 // Verify if an linear IV with positive stride can overflow when in a
   8125 // less-than comparison, knowing the invariant term of the comparison, the
   8126 // stride and the knowledge of NSW/NUW flags on the recurrence.
   8127 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
   8128                                          bool IsSigned, bool NoWrap) {
   8129   if (NoWrap) return false;
   8130 
   8131   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
   8132   const SCEV *One = getOne(Stride->getType());
   8133 
   8134   if (IsSigned) {
   8135     APInt MaxRHS = getSignedRange(RHS).getSignedMax();
   8136     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
   8137     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
   8138                                 .getSignedMax();
   8139 
   8140     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
   8141     return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
   8142   }
   8143 
   8144   APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
   8145   APInt MaxValue = APInt::getMaxValue(BitWidth);
   8146   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
   8147                               .getUnsignedMax();
   8148 
   8149   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
   8150   return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
   8151 }
   8152 
   8153 // Verify if an linear IV with negative stride can overflow when in a
   8154 // greater-than comparison, knowing the invariant term of the comparison,
   8155 // the stride and the knowledge of NSW/NUW flags on the recurrence.
   8156 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
   8157                                          bool IsSigned, bool NoWrap) {
   8158   if (NoWrap) return false;
   8159 
   8160   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
   8161   const SCEV *One = getOne(Stride->getType());
   8162 
   8163   if (IsSigned) {
   8164     APInt MinRHS = getSignedRange(RHS).getSignedMin();
   8165     APInt MinValue = APInt::getSignedMinValue(BitWidth);
   8166     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
   8167                                .getSignedMax();
   8168 
   8169     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
   8170     return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
   8171   }
   8172 
   8173   APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
   8174   APInt MinValue = APInt::getMinValue(BitWidth);
   8175   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
   8176                             .getUnsignedMax();
   8177 
   8178   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
   8179   return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
   8180 }
   8181 
   8182 // Compute the backedge taken count knowing the interval difference, the
   8183 // stride and presence of the equality in the comparison.
   8184 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
   8185                                             bool Equality) {
   8186   const SCEV *One = getOne(Step->getType());
   8187   Delta = Equality ? getAddExpr(Delta, Step)
   8188                    : getAddExpr(Delta, getMinusSCEV(Step, One));
   8189   return getUDivExpr(Delta, Step);
   8190 }
   8191 
   8192 /// HowManyLessThans - Return the number of times a backedge containing the
   8193 /// specified less-than comparison will execute.  If not computable, return
   8194 /// CouldNotCompute.
   8195 ///
   8196 /// @param ControlsExit is true when the LHS < RHS condition directly controls
   8197 /// the branch (loops exits only if condition is true). In this case, we can use
   8198 /// NoWrapFlags to skip overflow checks.
   8199 ScalarEvolution::ExitLimit
   8200 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
   8201                                   const Loop *L, bool IsSigned,
   8202                                   bool ControlsExit) {
   8203   // We handle only IV < Invariant
   8204   if (!isLoopInvariant(RHS, L))
   8205     return getCouldNotCompute();
   8206 
   8207   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
   8208 
   8209   // Avoid weird loops
   8210   if (!IV || IV->getLoop() != L || !IV->isAffine())
   8211     return getCouldNotCompute();
   8212 
   8213   bool NoWrap = ControlsExit &&
   8214                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
   8215 
   8216   const SCEV *Stride = IV->getStepRecurrence(*this);
   8217 
   8218   // Avoid negative or zero stride values
   8219   if (!isKnownPositive(Stride))
   8220     return getCouldNotCompute();
   8221 
   8222   // Avoid proven overflow cases: this will ensure that the backedge taken count
   8223   // will not generate any unsigned overflow. Relaxed no-overflow conditions
   8224   // exploit NoWrapFlags, allowing to optimize in presence of undefined
   8225   // behaviors like the case of C language.
   8226   if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
   8227     return getCouldNotCompute();
   8228 
   8229   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
   8230                                       : ICmpInst::ICMP_ULT;
   8231   const SCEV *Start = IV->getStart();
   8232   const SCEV *End = RHS;
   8233   if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
   8234     const SCEV *Diff = getMinusSCEV(RHS, Start);
   8235     // If we have NoWrap set, then we can assume that the increment won't
   8236     // overflow, in which case if RHS - Start is a constant, we don't need to
   8237     // do a max operation since we can just figure it out statically
   8238     if (NoWrap && isa<SCEVConstant>(Diff)) {
   8239       APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt();
   8240       if (D.isNegative())
   8241         End = Start;
   8242     } else
   8243       End = IsSigned ? getSMaxExpr(RHS, Start)
   8244                      : getUMaxExpr(RHS, Start);
   8245   }
   8246 
   8247   const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
   8248 
   8249   APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
   8250                             : getUnsignedRange(Start).getUnsignedMin();
   8251 
   8252   APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
   8253                              : getUnsignedRange(Stride).getUnsignedMin();
   8254 
   8255   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
   8256   APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
   8257                          : APInt::getMaxValue(BitWidth) - (MinStride - 1);
   8258 
   8259   // Although End can be a MAX expression we estimate MaxEnd considering only
   8260   // the case End = RHS. This is safe because in the other case (End - Start)
   8261   // is zero, leading to a zero maximum backedge taken count.
   8262   APInt MaxEnd =
   8263     IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
   8264              : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
   8265 
   8266   const SCEV *MaxBECount;
   8267   if (isa<SCEVConstant>(BECount))
   8268     MaxBECount = BECount;
   8269   else
   8270     MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
   8271                                 getConstant(MinStride), false);
   8272 
   8273   if (isa<SCEVCouldNotCompute>(MaxBECount))
   8274     MaxBECount = BECount;
   8275 
   8276   return ExitLimit(BECount, MaxBECount);
   8277 }
   8278 
   8279 ScalarEvolution::ExitLimit
   8280 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
   8281                                      const Loop *L, bool IsSigned,
   8282                                      bool ControlsExit) {
   8283   // We handle only IV > Invariant
   8284   if (!isLoopInvariant(RHS, L))
   8285     return getCouldNotCompute();
   8286 
   8287   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
   8288 
   8289   // Avoid weird loops
   8290   if (!IV || IV->getLoop() != L || !IV->isAffine())
   8291     return getCouldNotCompute();
   8292 
   8293   bool NoWrap = ControlsExit &&
   8294                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
   8295 
   8296   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
   8297 
   8298   // Avoid negative or zero stride values
   8299   if (!isKnownPositive(Stride))
   8300     return getCouldNotCompute();
   8301 
   8302   // Avoid proven overflow cases: this will ensure that the backedge taken count
   8303   // will not generate any unsigned overflow. Relaxed no-overflow conditions
   8304   // exploit NoWrapFlags, allowing to optimize in presence of undefined
   8305   // behaviors like the case of C language.
   8306   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
   8307     return getCouldNotCompute();
   8308 
   8309   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
   8310                                       : ICmpInst::ICMP_UGT;
   8311 
   8312   const SCEV *Start = IV->getStart();
   8313   const SCEV *End = RHS;
   8314   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
   8315     const SCEV *Diff = getMinusSCEV(RHS, Start);
   8316     // If we have NoWrap set, then we can assume that the increment won't
   8317     // overflow, in which case if RHS - Start is a constant, we don't need to
   8318     // do a max operation since we can just figure it out statically
   8319     if (NoWrap && isa<SCEVConstant>(Diff)) {
   8320       APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt();
   8321       if (!D.isNegative())
   8322         End = Start;
   8323     } else
   8324       End = IsSigned ? getSMinExpr(RHS, Start)
   8325                      : getUMinExpr(RHS, Start);
   8326   }
   8327 
   8328   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
   8329 
   8330   APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
   8331                             : getUnsignedRange(Start).getUnsignedMax();
   8332 
   8333   APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
   8334                              : getUnsignedRange(Stride).getUnsignedMin();
   8335 
   8336   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
   8337   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
   8338                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
   8339 
   8340   // Although End can be a MIN expression we estimate MinEnd considering only
   8341   // the case End = RHS. This is safe because in the other case (Start - End)
   8342   // is zero, leading to a zero maximum backedge taken count.
   8343   APInt MinEnd =
   8344     IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
   8345              : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
   8346 
   8347 
   8348   const SCEV *MaxBECount = getCouldNotCompute();
   8349   if (isa<SCEVConstant>(BECount))
   8350     MaxBECount = BECount;
   8351   else
   8352     MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
   8353                                 getConstant(MinStride), false);
   8354 
   8355   if (isa<SCEVCouldNotCompute>(MaxBECount))
   8356     MaxBECount = BECount;
   8357 
   8358   return ExitLimit(BECount, MaxBECount);
   8359 }
   8360 
   8361 /// getNumIterationsInRange - Return the number of iterations of this loop that
   8362 /// produce values in the specified constant range.  Another way of looking at
   8363 /// this is that it returns the first iteration number where the value is not in
   8364 /// the condition, thus computing the exit count. If the iteration count can't
   8365 /// be computed, an instance of SCEVCouldNotCompute is returned.
   8366 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
   8367                                                     ScalarEvolution &SE) const {
   8368   if (Range.isFullSet())  // Infinite loop.
   8369     return SE.getCouldNotCompute();
   8370 
   8371   // If the start is a non-zero constant, shift the range to simplify things.
   8372   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
   8373     if (!SC->getValue()->isZero()) {
   8374       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
   8375       Operands[0] = SE.getZero(SC->getType());
   8376       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
   8377                                              getNoWrapFlags(FlagNW));
   8378       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
   8379         return ShiftedAddRec->getNumIterationsInRange(
   8380             Range.subtract(SC->getAPInt()), SE);
   8381       // This is strange and shouldn't happen.
   8382       return SE.getCouldNotCompute();
   8383     }
   8384 
   8385   // The only time we can solve this is when we have all constant indices.
   8386   // Otherwise, we cannot determine the overflow conditions.
   8387   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
   8388     return SE.getCouldNotCompute();
   8389 
   8390   // Okay at this point we know that all elements of the chrec are constants and
   8391   // that the start element is zero.
   8392 
   8393   // First check to see if the range contains zero.  If not, the first
   8394   // iteration exits.
   8395   unsigned BitWidth = SE.getTypeSizeInBits(getType());
   8396   if (!Range.contains(APInt(BitWidth, 0)))
   8397     return SE.getZero(getType());
   8398 
   8399   if (isAffine()) {
   8400     // If this is an affine expression then we have this situation:
   8401     //   Solve {0,+,A} in Range  ===  Ax in Range
   8402 
   8403     // We know that zero is in the range.  If A is positive then we know that
   8404     // the upper value of the range must be the first possible exit value.
   8405     // If A is negative then the lower of the range is the last possible loop
   8406     // value.  Also note that we already checked for a full range.
   8407     APInt One(BitWidth,1);
   8408     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
   8409     APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
   8410 
   8411     // The exit value should be (End+A)/A.
   8412     APInt ExitVal = (End + A).udiv(A);
   8413     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
   8414 
   8415     // Evaluate at the exit value.  If we really did fall out of the valid
   8416     // range, then we computed our trip count, otherwise wrap around or other
   8417     // things must have happened.
   8418     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
   8419     if (Range.contains(Val->getValue()))
   8420       return SE.getCouldNotCompute();  // Something strange happened
   8421 
   8422     // Ensure that the previous value is in the range.  This is a sanity check.
   8423     assert(Range.contains(
   8424            EvaluateConstantChrecAtConstant(this,
   8425            ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
   8426            "Linear scev computation is off in a bad way!");
   8427     return SE.getConstant(ExitValue);
   8428   } else if (isQuadratic()) {
   8429     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
   8430     // quadratic equation to solve it.  To do this, we must frame our problem in
   8431     // terms of figuring out when zero is crossed, instead of when
   8432     // Range.getUpper() is crossed.
   8433     SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
   8434     NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
   8435     const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
   8436                                              // getNoWrapFlags(FlagNW)
   8437                                              FlagAnyWrap);
   8438 
   8439     // Next, solve the constructed addrec
   8440     auto Roots = SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
   8441     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
   8442     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
   8443     if (R1) {
   8444       // Pick the smallest positive root value.
   8445       if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
   8446               ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
   8447         if (!CB->getZExtValue())
   8448           std::swap(R1, R2);   // R1 is the minimum root now.
   8449 
   8450         // Make sure the root is not off by one.  The returned iteration should
   8451         // not be in the range, but the previous one should be.  When solving
   8452         // for "X*X < 5", for example, we should not return a root of 2.
   8453         ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
   8454                                                              R1->getValue(),
   8455                                                              SE);
   8456         if (Range.contains(R1Val->getValue())) {
   8457           // The next iteration must be out of the range...
   8458           ConstantInt *NextVal =
   8459               ConstantInt::get(SE.getContext(), R1->getAPInt() + 1);
   8460 
   8461           R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
   8462           if (!Range.contains(R1Val->getValue()))
   8463             return SE.getConstant(NextVal);
   8464           return SE.getCouldNotCompute();  // Something strange happened
   8465         }
   8466 
   8467         // If R1 was not in the range, then it is a good return value.  Make
   8468         // sure that R1-1 WAS in the range though, just in case.
   8469         ConstantInt *NextVal =
   8470             ConstantInt::get(SE.getContext(), R1->getAPInt() - 1);
   8471         R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
   8472         if (Range.contains(R1Val->getValue()))
   8473           return R1;
   8474         return SE.getCouldNotCompute();  // Something strange happened
   8475       }
   8476     }
   8477   }
   8478 
   8479   return SE.getCouldNotCompute();
   8480 }
   8481 
   8482 namespace {
   8483 struct FindUndefs {
   8484   bool Found;
   8485   FindUndefs() : Found(false) {}
   8486 
   8487   bool follow(const SCEV *S) {
   8488     if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
   8489       if (isa<UndefValue>(C->getValue()))
   8490         Found = true;
   8491     } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
   8492       if (isa<UndefValue>(C->getValue()))
   8493         Found = true;
   8494     }
   8495 
   8496     // Keep looking if we haven't found it yet.
   8497     return !Found;
   8498   }
   8499   bool isDone() const {
   8500     // Stop recursion if we have found an undef.
   8501     return Found;
   8502   }
   8503 };
   8504 }
   8505 
   8506 // Return true when S contains at least an undef value.
   8507 static inline bool
   8508 containsUndefs(const SCEV *S) {
   8509   FindUndefs F;
   8510   SCEVTraversal<FindUndefs> ST(F);
   8511   ST.visitAll(S);
   8512 
   8513   return F.Found;
   8514 }
   8515 
   8516 namespace {
   8517 // Collect all steps of SCEV expressions.
   8518 struct SCEVCollectStrides {
   8519   ScalarEvolution &SE;
   8520   SmallVectorImpl<const SCEV *> &Strides;
   8521 
   8522   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
   8523       : SE(SE), Strides(S) {}
   8524 
   8525   bool follow(const SCEV *S) {
   8526     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
   8527       Strides.push_back(AR->getStepRecurrence(SE));
   8528     return true;
   8529   }
   8530   bool isDone() const { return false; }
   8531 };
   8532 
   8533 // Collect all SCEVUnknown and SCEVMulExpr expressions.
   8534 struct SCEVCollectTerms {
   8535   SmallVectorImpl<const SCEV *> &Terms;
   8536 
   8537   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
   8538       : Terms(T) {}
   8539 
   8540   bool follow(const SCEV *S) {
   8541     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
   8542       if (!containsUndefs(S))
   8543         Terms.push_back(S);
   8544 
   8545       // Stop recursion: once we collected a term, do not walk its operands.
   8546       return false;
   8547     }
   8548 
   8549     // Keep looking.
   8550     return true;
   8551   }
   8552   bool isDone() const { return false; }
   8553 };
   8554 
   8555 // Check if a SCEV contains an AddRecExpr.
   8556 struct SCEVHasAddRec {
   8557   bool &ContainsAddRec;
   8558 
   8559   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
   8560    ContainsAddRec = false;
   8561   }
   8562 
   8563   bool follow(const SCEV *S) {
   8564     if (isa<SCEVAddRecExpr>(S)) {
   8565       ContainsAddRec = true;
   8566 
   8567       // Stop recursion: once we collected a term, do not walk its operands.
   8568       return false;
   8569     }
   8570 
   8571     // Keep looking.
   8572     return true;
   8573   }
   8574   bool isDone() const { return false; }
   8575 };
   8576 
   8577 // Find factors that are multiplied with an expression that (possibly as a
   8578 // subexpression) contains an AddRecExpr. In the expression:
   8579 //
   8580 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
   8581 //
   8582 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
   8583 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
   8584 // parameters as they form a product with an induction variable.
   8585 //
   8586 // This collector expects all array size parameters to be in the same MulExpr.
   8587 // It might be necessary to later add support for collecting parameters that are
   8588 // spread over different nested MulExpr.
   8589 struct SCEVCollectAddRecMultiplies {
   8590   SmallVectorImpl<const SCEV *> &Terms;
   8591   ScalarEvolution &SE;
   8592 
   8593   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
   8594       : Terms(T), SE(SE) {}
   8595 
   8596   bool follow(const SCEV *S) {
   8597     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
   8598       bool HasAddRec = false;
   8599       SmallVector<const SCEV *, 0> Operands;
   8600       for (auto Op : Mul->operands()) {
   8601         if (isa<SCEVUnknown>(Op)) {
   8602           Operands.push_back(Op);
   8603         } else {
   8604           bool ContainsAddRec;
   8605           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
   8606           visitAll(Op, ContiansAddRec);
   8607           HasAddRec |= ContainsAddRec;
   8608         }
   8609       }
   8610       if (Operands.size() == 0)
   8611         return true;
   8612 
   8613       if (!HasAddRec)
   8614         return false;
   8615 
   8616       Terms.push_back(SE.getMulExpr(Operands));
   8617       // Stop recursion: once we collected a term, do not walk its operands.
   8618       return false;
   8619     }
   8620 
   8621     // Keep looking.
   8622     return true;
   8623   }
   8624   bool isDone() const { return false; }
   8625 };
   8626 }
   8627 
   8628 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
   8629 /// two places:
   8630 ///   1) The strides of AddRec expressions.
   8631 ///   2) Unknowns that are multiplied with AddRec expressions.
   8632 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
   8633     SmallVectorImpl<const SCEV *> &Terms) {
   8634   SmallVector<const SCEV *, 4> Strides;
   8635   SCEVCollectStrides StrideCollector(*this, Strides);
   8636   visitAll(Expr, StrideCollector);
   8637 
   8638   DEBUG({
   8639       dbgs() << "Strides:\n";
   8640       for (const SCEV *S : Strides)
   8641         dbgs() << *S << "\n";
   8642     });
   8643 
   8644   for (const SCEV *S : Strides) {
   8645     SCEVCollectTerms TermCollector(Terms);
   8646     visitAll(S, TermCollector);
   8647   }
   8648 
   8649   DEBUG({
   8650       dbgs() << "Terms:\n";
   8651       for (const SCEV *T : Terms)
   8652         dbgs() << *T << "\n";
   8653     });
   8654 
   8655   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
   8656   visitAll(Expr, MulCollector);
   8657 }
   8658 
   8659 static bool findArrayDimensionsRec(ScalarEvolution &SE,
   8660                                    SmallVectorImpl<const SCEV *> &Terms,
   8661                                    SmallVectorImpl<const SCEV *> &Sizes) {
   8662   int Last = Terms.size() - 1;
   8663   const SCEV *Step = Terms[Last];
   8664 
   8665   // End of recursion.
   8666   if (Last == 0) {
   8667     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
   8668       SmallVector<const SCEV *, 2> Qs;
   8669       for (const SCEV *Op : M->operands())
   8670         if (!isa<SCEVConstant>(Op))
   8671           Qs.push_back(Op);
   8672 
   8673       Step = SE.getMulExpr(Qs);
   8674     }
   8675 
   8676     Sizes.push_back(Step);
   8677     return true;
   8678   }
   8679 
   8680   for (const SCEV *&Term : Terms) {
   8681     // Normalize the terms before the next call to findArrayDimensionsRec.
   8682     const SCEV *Q, *R;
   8683     SCEVDivision::divide(SE, Term, Step, &Q, &R);
   8684 
   8685     // Bail out when GCD does not evenly divide one of the terms.
   8686     if (!R->isZero())
   8687       return false;
   8688 
   8689     Term = Q;
   8690   }
   8691 
   8692   // Remove all SCEVConstants.
   8693   Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
   8694                 return isa<SCEVConstant>(E);
   8695               }),
   8696               Terms.end());
   8697 
   8698   if (Terms.size() > 0)
   8699     if (!findArrayDimensionsRec(SE, Terms, Sizes))
   8700       return false;
   8701 
   8702   Sizes.push_back(Step);
   8703   return true;
   8704 }
   8705 
   8706 // Returns true when S contains at least a SCEVUnknown parameter.
   8707 static inline bool
   8708 containsParameters(const SCEV *S) {
   8709   struct FindParameter {
   8710     bool FoundParameter;
   8711     FindParameter() : FoundParameter(false) {}
   8712 
   8713     bool follow(const SCEV *S) {
   8714       if (isa<SCEVUnknown>(S)) {
   8715         FoundParameter = true;
   8716         // Stop recursion: we found a parameter.
   8717         return false;
   8718       }
   8719       // Keep looking.
   8720       return true;
   8721     }
   8722     bool isDone() const {
   8723       // Stop recursion if we have found a parameter.
   8724       return FoundParameter;
   8725     }
   8726   };
   8727 
   8728   FindParameter F;
   8729   SCEVTraversal<FindParameter> ST(F);
   8730   ST.visitAll(S);
   8731 
   8732   return F.FoundParameter;
   8733 }
   8734 
   8735 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
   8736 static inline bool
   8737 containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
   8738   for (const SCEV *T : Terms)
   8739     if (containsParameters(T))
   8740       return true;
   8741   return false;
   8742 }
   8743 
   8744 // Return the number of product terms in S.
   8745 static inline int numberOfTerms(const SCEV *S) {
   8746   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
   8747     return Expr->getNumOperands();
   8748   return 1;
   8749 }
   8750 
   8751 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
   8752   if (isa<SCEVConstant>(T))
   8753     return nullptr;
   8754 
   8755   if (isa<SCEVUnknown>(T))
   8756     return T;
   8757 
   8758   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
   8759     SmallVector<const SCEV *, 2> Factors;
   8760     for (const SCEV *Op : M->operands())
   8761       if (!isa<SCEVConstant>(Op))
   8762         Factors.push_back(Op);
   8763 
   8764     return SE.getMulExpr(Factors);
   8765   }
   8766 
   8767   return T;
   8768 }
   8769 
   8770 /// Return the size of an element read or written by Inst.
   8771 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
   8772   Type *Ty;
   8773   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
   8774     Ty = Store->getValueOperand()->getType();
   8775   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
   8776     Ty = Load->getType();
   8777   else
   8778     return nullptr;
   8779 
   8780   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
   8781   return getSizeOfExpr(ETy, Ty);
   8782 }
   8783 
   8784 /// Second step of delinearization: compute the array dimensions Sizes from the
   8785 /// set of Terms extracted from the memory access function of this SCEVAddRec.
   8786 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
   8787                                           SmallVectorImpl<const SCEV *> &Sizes,
   8788                                           const SCEV *ElementSize) const {
   8789 
   8790   if (Terms.size() < 1 || !ElementSize)
   8791     return;
   8792 
   8793   // Early return when Terms do not contain parameters: we do not delinearize
   8794   // non parametric SCEVs.
   8795   if (!containsParameters(Terms))
   8796     return;
   8797 
   8798   DEBUG({
   8799       dbgs() << "Terms:\n";
   8800       for (const SCEV *T : Terms)
   8801         dbgs() << *T << "\n";
   8802     });
   8803 
   8804   // Remove duplicates.
   8805   std::sort(Terms.begin(), Terms.end());
   8806   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
   8807 
   8808   // Put larger terms first.
   8809   std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
   8810     return numberOfTerms(LHS) > numberOfTerms(RHS);
   8811   });
   8812 
   8813   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
   8814 
   8815   // Try to divide all terms by the element size. If term is not divisible by
   8816   // element size, proceed with the original term.
   8817   for (const SCEV *&Term : Terms) {
   8818     const SCEV *Q, *R;
   8819     SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
   8820     if (!Q->isZero())
   8821       Term = Q;
   8822   }
   8823 
   8824   SmallVector<const SCEV *, 4> NewTerms;
   8825 
   8826   // Remove constant factors.
   8827   for (const SCEV *T : Terms)
   8828     if (const SCEV *NewT = removeConstantFactors(SE, T))
   8829       NewTerms.push_back(NewT);
   8830 
   8831   DEBUG({
   8832       dbgs() << "Terms after sorting:\n";
   8833       for (const SCEV *T : NewTerms)
   8834         dbgs() << *T << "\n";
   8835     });
   8836 
   8837   if (NewTerms.empty() ||
   8838       !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
   8839     Sizes.clear();
   8840     return;
   8841   }
   8842 
   8843   // The last element to be pushed into Sizes is the size of an element.
   8844   Sizes.push_back(ElementSize);
   8845 
   8846   DEBUG({
   8847       dbgs() << "Sizes:\n";
   8848       for (const SCEV *S : Sizes)
   8849         dbgs() << *S << "\n";
   8850     });
   8851 }
   8852 
   8853 /// Third step of delinearization: compute the access functions for the
   8854 /// Subscripts based on the dimensions in Sizes.
   8855 void ScalarEvolution::computeAccessFunctions(
   8856     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
   8857     SmallVectorImpl<const SCEV *> &Sizes) {
   8858 
   8859   // Early exit in case this SCEV is not an affine multivariate function.
   8860   if (Sizes.empty())
   8861     return;
   8862 
   8863   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
   8864     if (!AR->isAffine())
   8865       return;
   8866 
   8867   const SCEV *Res = Expr;
   8868   int Last = Sizes.size() - 1;
   8869   for (int i = Last; i >= 0; i--) {
   8870     const SCEV *Q, *R;
   8871     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
   8872 
   8873     DEBUG({
   8874         dbgs() << "Res: " << *Res << "\n";
   8875         dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
   8876         dbgs() << "Res divided by Sizes[i]:\n";
   8877         dbgs() << "Quotient: " << *Q << "\n";
   8878         dbgs() << "Remainder: " << *R << "\n";
   8879       });
   8880 
   8881     Res = Q;
   8882 
   8883     // Do not record the last subscript corresponding to the size of elements in
   8884     // the array.
   8885     if (i == Last) {
   8886 
   8887       // Bail out if the remainder is too complex.
   8888       if (isa<SCEVAddRecExpr>(R)) {
   8889         Subscripts.clear();
   8890         Sizes.clear();
   8891         return;
   8892       }
   8893 
   8894       continue;
   8895     }
   8896 
   8897     // Record the access function for the current subscript.
   8898     Subscripts.push_back(R);
   8899   }
   8900 
   8901   // Also push in last position the remainder of the last division: it will be
   8902   // the access function of the innermost dimension.
   8903   Subscripts.push_back(Res);
   8904 
   8905   std::reverse(Subscripts.begin(), Subscripts.end());
   8906 
   8907   DEBUG({
   8908       dbgs() << "Subscripts:\n";
   8909       for (const SCEV *S : Subscripts)
   8910         dbgs() << *S << "\n";
   8911     });
   8912 }
   8913 
   8914 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
   8915 /// sizes of an array access. Returns the remainder of the delinearization that
   8916 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
   8917 /// the multiples of SCEV coefficients: that is a pattern matching of sub
   8918 /// expressions in the stride and base of a SCEV corresponding to the
   8919 /// computation of a GCD (greatest common divisor) of base and stride.  When
   8920 /// SCEV->delinearize fails, it returns the SCEV unchanged.
   8921 ///
   8922 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
   8923 ///
   8924 ///  void foo(long n, long m, long o, double A[n][m][o]) {
   8925 ///
   8926 ///    for (long i = 0; i < n; i++)
   8927 ///      for (long j = 0; j < m; j++)
   8928 ///        for (long k = 0; k < o; k++)
   8929 ///          A[i][j][k] = 1.0;
   8930 ///  }
   8931 ///
   8932 /// the delinearization input is the following AddRec SCEV:
   8933 ///
   8934 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
   8935 ///
   8936 /// From this SCEV, we are able to say that the base offset of the access is %A
   8937 /// because it appears as an offset that does not divide any of the strides in
   8938 /// the loops:
   8939 ///
   8940 ///  CHECK: Base offset: %A
   8941 ///
   8942 /// and then SCEV->delinearize determines the size of some of the dimensions of
   8943 /// the array as these are the multiples by which the strides are happening:
   8944 ///
   8945 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
   8946 ///
   8947 /// Note that the outermost dimension remains of UnknownSize because there are
   8948 /// no strides that would help identifying the size of the last dimension: when
   8949 /// the array has been statically allocated, one could compute the size of that
   8950 /// dimension by dividing the overall size of the array by the size of the known
   8951 /// dimensions: %m * %o * 8.
   8952 ///
   8953 /// Finally delinearize provides the access functions for the array reference
   8954 /// that does correspond to A[i][j][k] of the above C testcase:
   8955 ///
   8956 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
   8957 ///
   8958 /// The testcases are checking the output of a function pass:
   8959 /// DelinearizationPass that walks through all loads and stores of a function
   8960 /// asking for the SCEV of the memory access with respect to all enclosing
   8961 /// loops, calling SCEV->delinearize on that and printing the results.
   8962 
   8963 void ScalarEvolution::delinearize(const SCEV *Expr,
   8964                                  SmallVectorImpl<const SCEV *> &Subscripts,
   8965                                  SmallVectorImpl<const SCEV *> &Sizes,
   8966                                  const SCEV *ElementSize) {
   8967   // First step: collect parametric terms.
   8968   SmallVector<const SCEV *, 4> Terms;
   8969   collectParametricTerms(Expr, Terms);
   8970 
   8971   if (Terms.empty())
   8972     return;
   8973 
   8974   // Second step: find subscript sizes.
   8975   findArrayDimensions(Terms, Sizes, ElementSize);
   8976 
   8977   if (Sizes.empty())
   8978     return;
   8979 
   8980   // Third step: compute the access functions for each subscript.
   8981   computeAccessFunctions(Expr, Subscripts, Sizes);
   8982 
   8983   if (Subscripts.empty())
   8984     return;
   8985 
   8986   DEBUG({
   8987       dbgs() << "succeeded to delinearize " << *Expr << "\n";
   8988       dbgs() << "ArrayDecl[UnknownSize]";
   8989       for (const SCEV *S : Sizes)
   8990         dbgs() << "[" << *S << "]";
   8991 
   8992       dbgs() << "\nArrayRef";
   8993       for (const SCEV *S : Subscripts)
   8994         dbgs() << "[" << *S << "]";
   8995       dbgs() << "\n";
   8996     });
   8997 }
   8998 
   8999 //===----------------------------------------------------------------------===//
   9000 //                   SCEVCallbackVH Class Implementation
   9001 //===----------------------------------------------------------------------===//
   9002 
   9003 void ScalarEvolution::SCEVCallbackVH::deleted() {
   9004   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
   9005   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
   9006     SE->ConstantEvolutionLoopExitValue.erase(PN);
   9007   SE->ValueExprMap.erase(getValPtr());
   9008   // this now dangles!
   9009 }
   9010 
   9011 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
   9012   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
   9013 
   9014   // Forget all the expressions associated with users of the old value,
   9015   // so that future queries will recompute the expressions using the new
   9016   // value.
   9017   Value *Old = getValPtr();
   9018   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
   9019   SmallPtrSet<User *, 8> Visited;
   9020   while (!Worklist.empty()) {
   9021     User *U = Worklist.pop_back_val();
   9022     // Deleting the Old value will cause this to dangle. Postpone
   9023     // that until everything else is done.
   9024     if (U == Old)
   9025       continue;
   9026     if (!Visited.insert(U).second)
   9027       continue;
   9028     if (PHINode *PN = dyn_cast<PHINode>(U))
   9029       SE->ConstantEvolutionLoopExitValue.erase(PN);
   9030     SE->ValueExprMap.erase(U);
   9031     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
   9032   }
   9033   // Delete the Old value.
   9034   if (PHINode *PN = dyn_cast<PHINode>(Old))
   9035     SE->ConstantEvolutionLoopExitValue.erase(PN);
   9036   SE->ValueExprMap.erase(Old);
   9037   // this now dangles!
   9038 }
   9039 
   9040 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
   9041   : CallbackVH(V), SE(se) {}
   9042 
   9043 //===----------------------------------------------------------------------===//
   9044 //                   ScalarEvolution Class Implementation
   9045 //===----------------------------------------------------------------------===//
   9046 
   9047 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
   9048                                  AssumptionCache &AC, DominatorTree &DT,
   9049                                  LoopInfo &LI)
   9050     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
   9051       CouldNotCompute(new SCEVCouldNotCompute()),
   9052       WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
   9053       ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64),
   9054       FirstUnknown(nullptr) {}
   9055 
   9056 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
   9057     : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI),
   9058       CouldNotCompute(std::move(Arg.CouldNotCompute)),
   9059       ValueExprMap(std::move(Arg.ValueExprMap)),
   9060       WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
   9061       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
   9062       ConstantEvolutionLoopExitValue(
   9063           std::move(Arg.ConstantEvolutionLoopExitValue)),
   9064       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
   9065       LoopDispositions(std::move(Arg.LoopDispositions)),
   9066       BlockDispositions(std::move(Arg.BlockDispositions)),
   9067       UnsignedRanges(std::move(Arg.UnsignedRanges)),
   9068       SignedRanges(std::move(Arg.SignedRanges)),
   9069       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
   9070       UniquePreds(std::move(Arg.UniquePreds)),
   9071       SCEVAllocator(std::move(Arg.SCEVAllocator)),
   9072       FirstUnknown(Arg.FirstUnknown) {
   9073   Arg.FirstUnknown = nullptr;
   9074 }
   9075 
   9076 ScalarEvolution::~ScalarEvolution() {
   9077   // Iterate through all the SCEVUnknown instances and call their
   9078   // destructors, so that they release their references to their values.
   9079   for (SCEVUnknown *U = FirstUnknown; U;) {
   9080     SCEVUnknown *Tmp = U;
   9081     U = U->Next;
   9082     Tmp->~SCEVUnknown();
   9083   }
   9084   FirstUnknown = nullptr;
   9085 
   9086   ValueExprMap.clear();
   9087 
   9088   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
   9089   // that a loop had multiple computable exits.
   9090   for (auto &BTCI : BackedgeTakenCounts)
   9091     BTCI.second.clear();
   9092 
   9093   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
   9094   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
   9095   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
   9096 }
   9097 
   9098 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
   9099   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
   9100 }
   9101 
   9102 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
   9103                           const Loop *L) {
   9104   // Print all inner loops first
   9105   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
   9106     PrintLoopInfo(OS, SE, *I);
   9107 
   9108   OS << "Loop ";
   9109   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
   9110   OS << ": ";
   9111 
   9112   SmallVector<BasicBlock *, 8> ExitBlocks;
   9113   L->getExitBlocks(ExitBlocks);
   9114   if (ExitBlocks.size() != 1)
   9115     OS << "<multiple exits> ";
   9116 
   9117   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
   9118     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
   9119   } else {
   9120     OS << "Unpredictable backedge-taken count. ";
   9121   }
   9122 
   9123   OS << "\n"
   9124         "Loop ";
   9125   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
   9126   OS << ": ";
   9127 
   9128   if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
   9129     OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
   9130   } else {
   9131     OS << "Unpredictable max backedge-taken count. ";
   9132   }
   9133 
   9134   OS << "\n";
   9135 }
   9136 
   9137 void ScalarEvolution::print(raw_ostream &OS) const {
   9138   // ScalarEvolution's implementation of the print method is to print
   9139   // out SCEV values of all instructions that are interesting. Doing
   9140   // this potentially causes it to create new SCEV objects though,
   9141   // which technically conflicts with the const qualifier. This isn't
   9142   // observable from outside the class though, so casting away the
   9143   // const isn't dangerous.
   9144   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
   9145 
   9146   OS << "Classifying expressions for: ";
   9147   F.printAsOperand(OS, /*PrintType=*/false);
   9148   OS << "\n";
   9149   for (Instruction &I : instructions(F))
   9150     if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
   9151       OS << I << '\n';
   9152       OS << "  -->  ";
   9153       const SCEV *SV = SE.getSCEV(&I);
   9154       SV->print(OS);
   9155       if (!isa<SCEVCouldNotCompute>(SV)) {
   9156         OS << " U: ";
   9157         SE.getUnsignedRange(SV).print(OS);
   9158         OS << " S: ";
   9159         SE.getSignedRange(SV).print(OS);
   9160       }
   9161 
   9162       const Loop *L = LI.getLoopFor(I.getParent());
   9163 
   9164       const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
   9165       if (AtUse != SV) {
   9166         OS << "  -->  ";
   9167         AtUse->print(OS);
   9168         if (!isa<SCEVCouldNotCompute>(AtUse)) {
   9169           OS << " U: ";
   9170           SE.getUnsignedRange(AtUse).print(OS);
   9171           OS << " S: ";
   9172           SE.getSignedRange(AtUse).print(OS);
   9173         }
   9174       }
   9175 
   9176       if (L) {
   9177         OS << "\t\t" "Exits: ";
   9178         const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
   9179         if (!SE.isLoopInvariant(ExitValue, L)) {
   9180           OS << "<<Unknown>>";
   9181         } else {
   9182           OS << *ExitValue;
   9183         }
   9184       }
   9185 
   9186       OS << "\n";
   9187     }
   9188 
   9189   OS << "Determining loop execution counts for: ";
   9190   F.printAsOperand(OS, /*PrintType=*/false);
   9191   OS << "\n";
   9192   for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
   9193     PrintLoopInfo(OS, &SE, *I);
   9194 }
   9195 
   9196 ScalarEvolution::LoopDisposition
   9197 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
   9198   auto &Values = LoopDispositions[S];
   9199   for (auto &V : Values) {
   9200     if (V.getPointer() == L)
   9201       return V.getInt();
   9202   }
   9203   Values.emplace_back(L, LoopVariant);
   9204   LoopDisposition D = computeLoopDisposition(S, L);
   9205   auto &Values2 = LoopDispositions[S];
   9206   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
   9207     if (V.getPointer() == L) {
   9208       V.setInt(D);
   9209       break;
   9210     }
   9211   }
   9212   return D;
   9213 }
   9214 
   9215 ScalarEvolution::LoopDisposition
   9216 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
   9217   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
   9218   case scConstant:
   9219     return LoopInvariant;
   9220   case scTruncate:
   9221   case scZeroExtend:
   9222   case scSignExtend:
   9223     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
   9224   case scAddRecExpr: {
   9225     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
   9226 
   9227     // If L is the addrec's loop, it's computable.
   9228     if (AR->getLoop() == L)
   9229       return LoopComputable;
   9230 
   9231     // Add recurrences are never invariant in the function-body (null loop).
   9232     if (!L)
   9233       return LoopVariant;
   9234 
   9235     // This recurrence is variant w.r.t. L if L contains AR's loop.
   9236     if (L->contains(AR->getLoop()))
   9237       return LoopVariant;
   9238 
   9239     // This recurrence is invariant w.r.t. L if AR's loop contains L.
   9240     if (AR->getLoop()->contains(L))
   9241       return LoopInvariant;
   9242 
   9243     // This recurrence is variant w.r.t. L if any of its operands
   9244     // are variant.
   9245     for (auto *Op : AR->operands())
   9246       if (!isLoopInvariant(Op, L))
   9247         return LoopVariant;
   9248 
   9249     // Otherwise it's loop-invariant.
   9250     return LoopInvariant;
   9251   }
   9252   case scAddExpr:
   9253   case scMulExpr:
   9254   case scUMaxExpr:
   9255   case scSMaxExpr: {
   9256     bool HasVarying = false;
   9257     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
   9258       LoopDisposition D = getLoopDisposition(Op, L);
   9259       if (D == LoopVariant)
   9260         return LoopVariant;
   9261       if (D == LoopComputable)
   9262         HasVarying = true;
   9263     }
   9264     return HasVarying ? LoopComputable : LoopInvariant;
   9265   }
   9266   case scUDivExpr: {
   9267     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
   9268     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
   9269     if (LD == LoopVariant)
   9270       return LoopVariant;
   9271     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
   9272     if (RD == LoopVariant)
   9273       return LoopVariant;
   9274     return (LD == LoopInvariant && RD == LoopInvariant) ?
   9275            LoopInvariant : LoopComputable;
   9276   }
   9277   case scUnknown:
   9278     // All non-instruction values are loop invariant.  All instructions are loop
   9279     // invariant if they are not contained in the specified loop.
   9280     // Instructions are never considered invariant in the function body
   9281     // (null loop) because they are defined within the "loop".
   9282     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
   9283       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
   9284     return LoopInvariant;
   9285   case scCouldNotCompute:
   9286     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
   9287   }
   9288   llvm_unreachable("Unknown SCEV kind!");
   9289 }
   9290 
   9291 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
   9292   return getLoopDisposition(S, L) == LoopInvariant;
   9293 }
   9294 
   9295 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
   9296   return getLoopDisposition(S, L) == LoopComputable;
   9297 }
   9298 
   9299 ScalarEvolution::BlockDisposition
   9300 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
   9301   auto &Values = BlockDispositions[S];
   9302   for (auto &V : Values) {
   9303     if (V.getPointer() == BB)
   9304       return V.getInt();
   9305   }
   9306   Values.emplace_back(BB, DoesNotDominateBlock);
   9307   BlockDisposition D = computeBlockDisposition(S, BB);
   9308   auto &Values2 = BlockDispositions[S];
   9309   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
   9310     if (V.getPointer() == BB) {
   9311       V.setInt(D);
   9312       break;
   9313     }
   9314   }
   9315   return D;
   9316 }
   9317 
   9318 ScalarEvolution::BlockDisposition
   9319 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
   9320   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
   9321   case scConstant:
   9322     return ProperlyDominatesBlock;
   9323   case scTruncate:
   9324   case scZeroExtend:
   9325   case scSignExtend:
   9326     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
   9327   case scAddRecExpr: {
   9328     // This uses a "dominates" query instead of "properly dominates" query
   9329     // to test for proper dominance too, because the instruction which
   9330     // produces the addrec's value is a PHI, and a PHI effectively properly
   9331     // dominates its entire containing block.
   9332     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
   9333     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
   9334       return DoesNotDominateBlock;
   9335   }
   9336   // FALL THROUGH into SCEVNAryExpr handling.
   9337   case scAddExpr:
   9338   case scMulExpr:
   9339   case scUMaxExpr:
   9340   case scSMaxExpr: {
   9341     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
   9342     bool Proper = true;
   9343     for (const SCEV *NAryOp : NAry->operands()) {
   9344       BlockDisposition D = getBlockDisposition(NAryOp, BB);
   9345       if (D == DoesNotDominateBlock)
   9346         return DoesNotDominateBlock;
   9347       if (D == DominatesBlock)
   9348         Proper = false;
   9349     }
   9350     return Proper ? ProperlyDominatesBlock : DominatesBlock;
   9351   }
   9352   case scUDivExpr: {
   9353     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
   9354     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
   9355     BlockDisposition LD = getBlockDisposition(LHS, BB);
   9356     if (LD == DoesNotDominateBlock)
   9357       return DoesNotDominateBlock;
   9358     BlockDisposition RD = getBlockDisposition(RHS, BB);
   9359     if (RD == DoesNotDominateBlock)
   9360       return DoesNotDominateBlock;
   9361     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
   9362       ProperlyDominatesBlock : DominatesBlock;
   9363   }
   9364   case scUnknown:
   9365     if (Instruction *I =
   9366           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
   9367       if (I->getParent() == BB)
   9368         return DominatesBlock;
   9369       if (DT.properlyDominates(I->getParent(), BB))
   9370         return ProperlyDominatesBlock;
   9371       return DoesNotDominateBlock;
   9372     }
   9373     return ProperlyDominatesBlock;
   9374   case scCouldNotCompute:
   9375     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
   9376   }
   9377   llvm_unreachable("Unknown SCEV kind!");
   9378 }
   9379 
   9380 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
   9381   return getBlockDisposition(S, BB) >= DominatesBlock;
   9382 }
   9383 
   9384 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
   9385   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
   9386 }
   9387 
   9388 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
   9389   // Search for a SCEV expression node within an expression tree.
   9390   // Implements SCEVTraversal::Visitor.
   9391   struct SCEVSearch {
   9392     const SCEV *Node;
   9393     bool IsFound;
   9394 
   9395     SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
   9396 
   9397     bool follow(const SCEV *S) {
   9398       IsFound |= (S == Node);
   9399       return !IsFound;
   9400     }
   9401     bool isDone() const { return IsFound; }
   9402   };
   9403 
   9404   SCEVSearch Search(Op);
   9405   visitAll(S, Search);
   9406   return Search.IsFound;
   9407 }
   9408 
   9409 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
   9410   ValuesAtScopes.erase(S);
   9411   LoopDispositions.erase(S);
   9412   BlockDispositions.erase(S);
   9413   UnsignedRanges.erase(S);
   9414   SignedRanges.erase(S);
   9415 
   9416   for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
   9417          BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
   9418     BackedgeTakenInfo &BEInfo = I->second;
   9419     if (BEInfo.hasOperand(S, this)) {
   9420       BEInfo.clear();
   9421       BackedgeTakenCounts.erase(I++);
   9422     }
   9423     else
   9424       ++I;
   9425   }
   9426 }
   9427 
   9428 typedef DenseMap<const Loop *, std::string> VerifyMap;
   9429 
   9430 /// replaceSubString - Replaces all occurrences of From in Str with To.
   9431 static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
   9432   size_t Pos = 0;
   9433   while ((Pos = Str.find(From, Pos)) != std::string::npos) {
   9434     Str.replace(Pos, From.size(), To.data(), To.size());
   9435     Pos += To.size();
   9436   }
   9437 }
   9438 
   9439 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
   9440 static void
   9441 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
   9442   for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
   9443     getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
   9444 
   9445     std::string &S = Map[L];
   9446     if (S.empty()) {
   9447       raw_string_ostream OS(S);
   9448       SE.getBackedgeTakenCount(L)->print(OS);
   9449 
   9450       // false and 0 are semantically equivalent. This can happen in dead loops.
   9451       replaceSubString(OS.str(), "false", "0");
   9452       // Remove wrap flags, their use in SCEV is highly fragile.
   9453       // FIXME: Remove this when SCEV gets smarter about them.
   9454       replaceSubString(OS.str(), "<nw>", "");
   9455       replaceSubString(OS.str(), "<nsw>", "");
   9456       replaceSubString(OS.str(), "<nuw>", "");
   9457     }
   9458   }
   9459 }
   9460 
   9461 void ScalarEvolution::verify() const {
   9462   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
   9463 
   9464   // Gather stringified backedge taken counts for all loops using SCEV's caches.
   9465   // FIXME: It would be much better to store actual values instead of strings,
   9466   //        but SCEV pointers will change if we drop the caches.
   9467   VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
   9468   for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
   9469     getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
   9470 
   9471   // Gather stringified backedge taken counts for all loops using a fresh
   9472   // ScalarEvolution object.
   9473   ScalarEvolution SE2(F, TLI, AC, DT, LI);
   9474   for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
   9475     getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2);
   9476 
   9477   // Now compare whether they're the same with and without caches. This allows
   9478   // verifying that no pass changed the cache.
   9479   assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
   9480          "New loops suddenly appeared!");
   9481 
   9482   for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
   9483                            OldE = BackedgeDumpsOld.end(),
   9484                            NewI = BackedgeDumpsNew.begin();
   9485        OldI != OldE; ++OldI, ++NewI) {
   9486     assert(OldI->first == NewI->first && "Loop order changed!");
   9487 
   9488     // Compare the stringified SCEVs. We don't care if undef backedgetaken count
   9489     // changes.
   9490     // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
   9491     // means that a pass is buggy or SCEV has to learn a new pattern but is
   9492     // usually not harmful.
   9493     if (OldI->second != NewI->second &&
   9494         OldI->second.find("undef") == std::string::npos &&
   9495         NewI->second.find("undef") == std::string::npos &&
   9496         OldI->second != "***COULDNOTCOMPUTE***" &&
   9497         NewI->second != "***COULDNOTCOMPUTE***") {
   9498       dbgs() << "SCEVValidator: SCEV for loop '"
   9499              << OldI->first->getHeader()->getName()
   9500              << "' changed from '" << OldI->second
   9501              << "' to '" << NewI->second << "'!\n";
   9502       std::abort();
   9503     }
   9504   }
   9505 
   9506   // TODO: Verify more things.
   9507 }
   9508 
   9509 char ScalarEvolutionAnalysis::PassID;
   9510 
   9511 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
   9512                                              AnalysisManager<Function> *AM) {
   9513   return ScalarEvolution(F, AM->getResult<TargetLibraryAnalysis>(F),
   9514                          AM->getResult<AssumptionAnalysis>(F),
   9515                          AM->getResult<DominatorTreeAnalysis>(F),
   9516                          AM->getResult<LoopAnalysis>(F));
   9517 }
   9518 
   9519 PreservedAnalyses
   9520 ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> *AM) {
   9521   AM->getResult<ScalarEvolutionAnalysis>(F).print(OS);
   9522   return PreservedAnalyses::all();
   9523 }
   9524 
   9525 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
   9526                       "Scalar Evolution Analysis", false, true)
   9527 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
   9528 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
   9529 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
   9530 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
   9531 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
   9532                     "Scalar Evolution Analysis", false, true)
   9533 char ScalarEvolutionWrapperPass::ID = 0;
   9534 
   9535 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
   9536   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
   9537 }
   9538 
   9539 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
   9540   SE.reset(new ScalarEvolution(
   9541       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
   9542       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
   9543       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
   9544       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
   9545   return false;
   9546 }
   9547 
   9548 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
   9549 
   9550 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
   9551   SE->print(OS);
   9552 }
   9553 
   9554 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
   9555   if (!VerifySCEV)
   9556     return;
   9557 
   9558   SE->verify();
   9559 }
   9560 
   9561 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
   9562   AU.setPreservesAll();
   9563   AU.addRequiredTransitive<AssumptionCacheTracker>();
   9564   AU.addRequiredTransitive<LoopInfoWrapperPass>();
   9565   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
   9566   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
   9567 }
   9568 
   9569 const SCEVPredicate *
   9570 ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS,
   9571                                    const SCEVConstant *RHS) {
   9572   FoldingSetNodeID ID;
   9573   // Unique this node based on the arguments
   9574   ID.AddInteger(SCEVPredicate::P_Equal);
   9575   ID.AddPointer(LHS);
   9576   ID.AddPointer(RHS);
   9577   void *IP = nullptr;
   9578   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
   9579     return S;
   9580   SCEVEqualPredicate *Eq = new (SCEVAllocator)
   9581       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
   9582   UniquePreds.InsertNode(Eq, IP);
   9583   return Eq;
   9584 }
   9585 
   9586 namespace {
   9587 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
   9588 public:
   9589   static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE,
   9590                              SCEVUnionPredicate &A) {
   9591     SCEVPredicateRewriter Rewriter(SE, A);
   9592     return Rewriter.visit(Scev);
   9593   }
   9594 
   9595   SCEVPredicateRewriter(ScalarEvolution &SE, SCEVUnionPredicate &P)
   9596       : SCEVRewriteVisitor(SE), P(P) {}
   9597 
   9598   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
   9599     auto ExprPreds = P.getPredicatesForExpr(Expr);
   9600     for (auto *Pred : ExprPreds)
   9601       if (const auto *IPred = dyn_cast<const SCEVEqualPredicate>(Pred))
   9602         if (IPred->getLHS() == Expr)
   9603           return IPred->getRHS();
   9604 
   9605     return Expr;
   9606   }
   9607 
   9608 private:
   9609   SCEVUnionPredicate &P;
   9610 };
   9611 } // end anonymous namespace
   9612 
   9613 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *Scev,
   9614                                                    SCEVUnionPredicate &Preds) {
   9615   return SCEVPredicateRewriter::rewrite(Scev, *this, Preds);
   9616 }
   9617 
   9618 /// SCEV predicates
   9619 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
   9620                              SCEVPredicateKind Kind)
   9621     : FastID(ID), Kind(Kind) {}
   9622 
   9623 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
   9624                                        const SCEVUnknown *LHS,
   9625                                        const SCEVConstant *RHS)
   9626     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {}
   9627 
   9628 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
   9629   const auto *Op = dyn_cast<const SCEVEqualPredicate>(N);
   9630 
   9631   if (!Op)
   9632     return false;
   9633 
   9634   return Op->LHS == LHS && Op->RHS == RHS;
   9635 }
   9636 
   9637 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
   9638 
   9639 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
   9640 
   9641 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
   9642   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
   9643 }
   9644 
   9645 /// Union predicates don't get cached so create a dummy set ID for it.
   9646 SCEVUnionPredicate::SCEVUnionPredicate()
   9647     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
   9648 
   9649 bool SCEVUnionPredicate::isAlwaysTrue() const {
   9650   return all_of(Preds,
   9651                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
   9652 }
   9653 
   9654 ArrayRef<const SCEVPredicate *>
   9655 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
   9656   auto I = SCEVToPreds.find(Expr);
   9657   if (I == SCEVToPreds.end())
   9658     return ArrayRef<const SCEVPredicate *>();
   9659   return I->second;
   9660 }
   9661 
   9662 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
   9663   if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N))
   9664     return all_of(Set->Preds,
   9665                   [this](const SCEVPredicate *I) { return this->implies(I); });
   9666 
   9667   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
   9668   if (ScevPredsIt == SCEVToPreds.end())
   9669     return false;
   9670   auto &SCEVPreds = ScevPredsIt->second;
   9671 
   9672   return any_of(SCEVPreds,
   9673                 [N](const SCEVPredicate *I) { return I->implies(N); });
   9674 }
   9675 
   9676 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
   9677 
   9678 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
   9679   for (auto Pred : Preds)
   9680     Pred->print(OS, Depth);
   9681 }
   9682 
   9683 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
   9684   if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) {
   9685     for (auto Pred : Set->Preds)
   9686       add(Pred);
   9687     return;
   9688   }
   9689 
   9690   if (implies(N))
   9691     return;
   9692 
   9693   const SCEV *Key = N->getExpr();
   9694   assert(Key && "Only SCEVUnionPredicate doesn't have an "
   9695                 " associated expression!");
   9696 
   9697   SCEVToPreds[Key].push_back(N);
   9698   Preds.push_back(N);
   9699 }
   9700 
   9701 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE)
   9702     : SE(SE), Generation(0) {}
   9703 
   9704 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
   9705   const SCEV *Expr = SE.getSCEV(V);
   9706   RewriteEntry &Entry = RewriteMap[Expr];
   9707 
   9708   // If we already have an entry and the version matches, return it.
   9709   if (Entry.second && Generation == Entry.first)
   9710     return Entry.second;
   9711 
   9712   // We found an entry but it's stale. Rewrite the stale entry
   9713   // acording to the current predicate.
   9714   if (Entry.second)
   9715     Expr = Entry.second;
   9716 
   9717   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, Preds);
   9718   Entry = {Generation, NewSCEV};
   9719 
   9720   return NewSCEV;
   9721 }
   9722 
   9723 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
   9724   if (Preds.implies(&Pred))
   9725     return;
   9726   Preds.add(&Pred);
   9727   updateGeneration();
   9728 }
   9729 
   9730 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
   9731   return Preds;
   9732 }
   9733 
   9734 void PredicatedScalarEvolution::updateGeneration() {
   9735   // If the generation number wrapped recompute everything.
   9736   if (++Generation == 0) {
   9737     for (auto &II : RewriteMap) {
   9738       const SCEV *Rewritten = II.second.second;
   9739       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, Preds)};
   9740     }
   9741   }
   9742 }
   9743