1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/Optional.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/Analysis/AssumptionCache.h" 67 #include "llvm/Analysis/ConstantFolding.h" 68 #include "llvm/Analysis/InstructionSimplify.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 71 #include "llvm/Analysis/TargetLibraryInfo.h" 72 #include "llvm/Analysis/ValueTracking.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/GetElementPtrTypeIterator.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalVariable.h" 81 #include "llvm/IR/InstIterator.h" 82 #include "llvm/IR/Instructions.h" 83 #include "llvm/IR/LLVMContext.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/IR/PatternMatch.h" 87 #include "llvm/Support/CommandLine.h" 88 #include "llvm/Support/Debug.h" 89 #include "llvm/Support/ErrorHandling.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Support/SaveAndRestore.h" 93 #include <algorithm> 94 using namespace llvm; 95 96 #define DEBUG_TYPE "scalar-evolution" 97 98 STATISTIC(NumArrayLenItCounts, 99 "Number of trip counts computed with array length"); 100 STATISTIC(NumTripCountsComputed, 101 "Number of loops with predictable loop counts"); 102 STATISTIC(NumTripCountsNotComputed, 103 "Number of loops without predictable loop counts"); 104 STATISTIC(NumBruteForceTripCountsComputed, 105 "Number of loops with trip counts computed by force"); 106 107 static cl::opt<unsigned> 108 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 109 cl::desc("Maximum number of iterations SCEV will " 110 "symbolically execute a constant " 111 "derived loop"), 112 cl::init(100)); 113 114 // FIXME: Enable this with XDEBUG when the test suite is clean. 115 static cl::opt<bool> 116 VerifySCEV("verify-scev", 117 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 118 119 //===----------------------------------------------------------------------===// 120 // SCEV class definitions 121 //===----------------------------------------------------------------------===// 122 123 //===----------------------------------------------------------------------===// 124 // Implementation of the SCEV class. 125 // 126 127 LLVM_DUMP_METHOD 128 void SCEV::dump() const { 129 print(dbgs()); 130 dbgs() << '\n'; 131 } 132 133 void SCEV::print(raw_ostream &OS) const { 134 switch (static_cast<SCEVTypes>(getSCEVType())) { 135 case scConstant: 136 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 137 return; 138 case scTruncate: { 139 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 140 const SCEV *Op = Trunc->getOperand(); 141 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 142 << *Trunc->getType() << ")"; 143 return; 144 } 145 case scZeroExtend: { 146 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 147 const SCEV *Op = ZExt->getOperand(); 148 OS << "(zext " << *Op->getType() << " " << *Op << " to " 149 << *ZExt->getType() << ")"; 150 return; 151 } 152 case scSignExtend: { 153 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 154 const SCEV *Op = SExt->getOperand(); 155 OS << "(sext " << *Op->getType() << " " << *Op << " to " 156 << *SExt->getType() << ")"; 157 return; 158 } 159 case scAddRecExpr: { 160 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 161 OS << "{" << *AR->getOperand(0); 162 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 163 OS << ",+," << *AR->getOperand(i); 164 OS << "}<"; 165 if (AR->getNoWrapFlags(FlagNUW)) 166 OS << "nuw><"; 167 if (AR->getNoWrapFlags(FlagNSW)) 168 OS << "nsw><"; 169 if (AR->getNoWrapFlags(FlagNW) && 170 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 171 OS << "nw><"; 172 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 173 OS << ">"; 174 return; 175 } 176 case scAddExpr: 177 case scMulExpr: 178 case scUMaxExpr: 179 case scSMaxExpr: { 180 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 181 const char *OpStr = nullptr; 182 switch (NAry->getSCEVType()) { 183 case scAddExpr: OpStr = " + "; break; 184 case scMulExpr: OpStr = " * "; break; 185 case scUMaxExpr: OpStr = " umax "; break; 186 case scSMaxExpr: OpStr = " smax "; break; 187 } 188 OS << "("; 189 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 190 I != E; ++I) { 191 OS << **I; 192 if (std::next(I) != E) 193 OS << OpStr; 194 } 195 OS << ")"; 196 switch (NAry->getSCEVType()) { 197 case scAddExpr: 198 case scMulExpr: 199 if (NAry->getNoWrapFlags(FlagNUW)) 200 OS << "<nuw>"; 201 if (NAry->getNoWrapFlags(FlagNSW)) 202 OS << "<nsw>"; 203 } 204 return; 205 } 206 case scUDivExpr: { 207 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 208 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 209 return; 210 } 211 case scUnknown: { 212 const SCEVUnknown *U = cast<SCEVUnknown>(this); 213 Type *AllocTy; 214 if (U->isSizeOf(AllocTy)) { 215 OS << "sizeof(" << *AllocTy << ")"; 216 return; 217 } 218 if (U->isAlignOf(AllocTy)) { 219 OS << "alignof(" << *AllocTy << ")"; 220 return; 221 } 222 223 Type *CTy; 224 Constant *FieldNo; 225 if (U->isOffsetOf(CTy, FieldNo)) { 226 OS << "offsetof(" << *CTy << ", "; 227 FieldNo->printAsOperand(OS, false); 228 OS << ")"; 229 return; 230 } 231 232 // Otherwise just print it normally. 233 U->getValue()->printAsOperand(OS, false); 234 return; 235 } 236 case scCouldNotCompute: 237 OS << "***COULDNOTCOMPUTE***"; 238 return; 239 } 240 llvm_unreachable("Unknown SCEV kind!"); 241 } 242 243 Type *SCEV::getType() const { 244 switch (static_cast<SCEVTypes>(getSCEVType())) { 245 case scConstant: 246 return cast<SCEVConstant>(this)->getType(); 247 case scTruncate: 248 case scZeroExtend: 249 case scSignExtend: 250 return cast<SCEVCastExpr>(this)->getType(); 251 case scAddRecExpr: 252 case scMulExpr: 253 case scUMaxExpr: 254 case scSMaxExpr: 255 return cast<SCEVNAryExpr>(this)->getType(); 256 case scAddExpr: 257 return cast<SCEVAddExpr>(this)->getType(); 258 case scUDivExpr: 259 return cast<SCEVUDivExpr>(this)->getType(); 260 case scUnknown: 261 return cast<SCEVUnknown>(this)->getType(); 262 case scCouldNotCompute: 263 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 264 } 265 llvm_unreachable("Unknown SCEV kind!"); 266 } 267 268 bool SCEV::isZero() const { 269 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 270 return SC->getValue()->isZero(); 271 return false; 272 } 273 274 bool SCEV::isOne() const { 275 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 276 return SC->getValue()->isOne(); 277 return false; 278 } 279 280 bool SCEV::isAllOnesValue() const { 281 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 282 return SC->getValue()->isAllOnesValue(); 283 return false; 284 } 285 286 /// isNonConstantNegative - Return true if the specified scev is negated, but 287 /// not a constant. 288 bool SCEV::isNonConstantNegative() const { 289 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 290 if (!Mul) return false; 291 292 // If there is a constant factor, it will be first. 293 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 294 if (!SC) return false; 295 296 // Return true if the value is negative, this matches things like (-42 * V). 297 return SC->getAPInt().isNegative(); 298 } 299 300 SCEVCouldNotCompute::SCEVCouldNotCompute() : 301 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 302 303 bool SCEVCouldNotCompute::classof(const SCEV *S) { 304 return S->getSCEVType() == scCouldNotCompute; 305 } 306 307 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 308 FoldingSetNodeID ID; 309 ID.AddInteger(scConstant); 310 ID.AddPointer(V); 311 void *IP = nullptr; 312 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 313 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 314 UniqueSCEVs.InsertNode(S, IP); 315 return S; 316 } 317 318 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 319 return getConstant(ConstantInt::get(getContext(), Val)); 320 } 321 322 const SCEV * 323 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 324 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 325 return getConstant(ConstantInt::get(ITy, V, isSigned)); 326 } 327 328 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 329 unsigned SCEVTy, const SCEV *op, Type *ty) 330 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 331 332 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 333 const SCEV *op, Type *ty) 334 : SCEVCastExpr(ID, scTruncate, op, ty) { 335 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 336 (Ty->isIntegerTy() || Ty->isPointerTy()) && 337 "Cannot truncate non-integer value!"); 338 } 339 340 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 341 const SCEV *op, Type *ty) 342 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 343 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 344 (Ty->isIntegerTy() || Ty->isPointerTy()) && 345 "Cannot zero extend non-integer value!"); 346 } 347 348 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 349 const SCEV *op, Type *ty) 350 : SCEVCastExpr(ID, scSignExtend, op, ty) { 351 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 352 (Ty->isIntegerTy() || Ty->isPointerTy()) && 353 "Cannot sign extend non-integer value!"); 354 } 355 356 void SCEVUnknown::deleted() { 357 // Clear this SCEVUnknown from various maps. 358 SE->forgetMemoizedResults(this); 359 360 // Remove this SCEVUnknown from the uniquing map. 361 SE->UniqueSCEVs.RemoveNode(this); 362 363 // Release the value. 364 setValPtr(nullptr); 365 } 366 367 void SCEVUnknown::allUsesReplacedWith(Value *New) { 368 // Clear this SCEVUnknown from various maps. 369 SE->forgetMemoizedResults(this); 370 371 // Remove this SCEVUnknown from the uniquing map. 372 SE->UniqueSCEVs.RemoveNode(this); 373 374 // Update this SCEVUnknown to point to the new value. This is needed 375 // because there may still be outstanding SCEVs which still point to 376 // this SCEVUnknown. 377 setValPtr(New); 378 } 379 380 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 381 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 382 if (VCE->getOpcode() == Instruction::PtrToInt) 383 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 384 if (CE->getOpcode() == Instruction::GetElementPtr && 385 CE->getOperand(0)->isNullValue() && 386 CE->getNumOperands() == 2) 387 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 388 if (CI->isOne()) { 389 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 390 ->getElementType(); 391 return true; 392 } 393 394 return false; 395 } 396 397 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 398 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 399 if (VCE->getOpcode() == Instruction::PtrToInt) 400 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 401 if (CE->getOpcode() == Instruction::GetElementPtr && 402 CE->getOperand(0)->isNullValue()) { 403 Type *Ty = 404 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 405 if (StructType *STy = dyn_cast<StructType>(Ty)) 406 if (!STy->isPacked() && 407 CE->getNumOperands() == 3 && 408 CE->getOperand(1)->isNullValue()) { 409 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 410 if (CI->isOne() && 411 STy->getNumElements() == 2 && 412 STy->getElementType(0)->isIntegerTy(1)) { 413 AllocTy = STy->getElementType(1); 414 return true; 415 } 416 } 417 } 418 419 return false; 420 } 421 422 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 423 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 424 if (VCE->getOpcode() == Instruction::PtrToInt) 425 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 426 if (CE->getOpcode() == Instruction::GetElementPtr && 427 CE->getNumOperands() == 3 && 428 CE->getOperand(0)->isNullValue() && 429 CE->getOperand(1)->isNullValue()) { 430 Type *Ty = 431 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 432 // Ignore vector types here so that ScalarEvolutionExpander doesn't 433 // emit getelementptrs that index into vectors. 434 if (Ty->isStructTy() || Ty->isArrayTy()) { 435 CTy = Ty; 436 FieldNo = CE->getOperand(2); 437 return true; 438 } 439 } 440 441 return false; 442 } 443 444 //===----------------------------------------------------------------------===// 445 // SCEV Utilities 446 //===----------------------------------------------------------------------===// 447 448 namespace { 449 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 450 /// than the complexity of the RHS. This comparator is used to canonicalize 451 /// expressions. 452 class SCEVComplexityCompare { 453 const LoopInfo *const LI; 454 public: 455 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 456 457 // Return true or false if LHS is less than, or at least RHS, respectively. 458 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 459 return compare(LHS, RHS) < 0; 460 } 461 462 // Return negative, zero, or positive, if LHS is less than, equal to, or 463 // greater than RHS, respectively. A three-way result allows recursive 464 // comparisons to be more efficient. 465 int compare(const SCEV *LHS, const SCEV *RHS) const { 466 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 467 if (LHS == RHS) 468 return 0; 469 470 // Primarily, sort the SCEVs by their getSCEVType(). 471 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 472 if (LType != RType) 473 return (int)LType - (int)RType; 474 475 // Aside from the getSCEVType() ordering, the particular ordering 476 // isn't very important except that it's beneficial to be consistent, 477 // so that (a + b) and (b + a) don't end up as different expressions. 478 switch (static_cast<SCEVTypes>(LType)) { 479 case scUnknown: { 480 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 481 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 482 483 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 484 // not as complete as it could be. 485 const Value *LV = LU->getValue(), *RV = RU->getValue(); 486 487 // Order pointer values after integer values. This helps SCEVExpander 488 // form GEPs. 489 bool LIsPointer = LV->getType()->isPointerTy(), 490 RIsPointer = RV->getType()->isPointerTy(); 491 if (LIsPointer != RIsPointer) 492 return (int)LIsPointer - (int)RIsPointer; 493 494 // Compare getValueID values. 495 unsigned LID = LV->getValueID(), 496 RID = RV->getValueID(); 497 if (LID != RID) 498 return (int)LID - (int)RID; 499 500 // Sort arguments by their position. 501 if (const Argument *LA = dyn_cast<Argument>(LV)) { 502 const Argument *RA = cast<Argument>(RV); 503 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 504 return (int)LArgNo - (int)RArgNo; 505 } 506 507 // For instructions, compare their loop depth, and their operand 508 // count. This is pretty loose. 509 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 510 const Instruction *RInst = cast<Instruction>(RV); 511 512 // Compare loop depths. 513 const BasicBlock *LParent = LInst->getParent(), 514 *RParent = RInst->getParent(); 515 if (LParent != RParent) { 516 unsigned LDepth = LI->getLoopDepth(LParent), 517 RDepth = LI->getLoopDepth(RParent); 518 if (LDepth != RDepth) 519 return (int)LDepth - (int)RDepth; 520 } 521 522 // Compare the number of operands. 523 unsigned LNumOps = LInst->getNumOperands(), 524 RNumOps = RInst->getNumOperands(); 525 return (int)LNumOps - (int)RNumOps; 526 } 527 528 return 0; 529 } 530 531 case scConstant: { 532 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 533 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 534 535 // Compare constant values. 536 const APInt &LA = LC->getAPInt(); 537 const APInt &RA = RC->getAPInt(); 538 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 539 if (LBitWidth != RBitWidth) 540 return (int)LBitWidth - (int)RBitWidth; 541 return LA.ult(RA) ? -1 : 1; 542 } 543 544 case scAddRecExpr: { 545 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 546 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 547 548 // Compare addrec loop depths. 549 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 550 if (LLoop != RLoop) { 551 unsigned LDepth = LLoop->getLoopDepth(), 552 RDepth = RLoop->getLoopDepth(); 553 if (LDepth != RDepth) 554 return (int)LDepth - (int)RDepth; 555 } 556 557 // Addrec complexity grows with operand count. 558 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 559 if (LNumOps != RNumOps) 560 return (int)LNumOps - (int)RNumOps; 561 562 // Lexicographically compare. 563 for (unsigned i = 0; i != LNumOps; ++i) { 564 long X = compare(LA->getOperand(i), RA->getOperand(i)); 565 if (X != 0) 566 return X; 567 } 568 569 return 0; 570 } 571 572 case scAddExpr: 573 case scMulExpr: 574 case scSMaxExpr: 575 case scUMaxExpr: { 576 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 577 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 578 579 // Lexicographically compare n-ary expressions. 580 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 581 if (LNumOps != RNumOps) 582 return (int)LNumOps - (int)RNumOps; 583 584 for (unsigned i = 0; i != LNumOps; ++i) { 585 if (i >= RNumOps) 586 return 1; 587 long X = compare(LC->getOperand(i), RC->getOperand(i)); 588 if (X != 0) 589 return X; 590 } 591 return (int)LNumOps - (int)RNumOps; 592 } 593 594 case scUDivExpr: { 595 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 596 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 597 598 // Lexicographically compare udiv expressions. 599 long X = compare(LC->getLHS(), RC->getLHS()); 600 if (X != 0) 601 return X; 602 return compare(LC->getRHS(), RC->getRHS()); 603 } 604 605 case scTruncate: 606 case scZeroExtend: 607 case scSignExtend: { 608 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 609 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 610 611 // Compare cast expressions by operand. 612 return compare(LC->getOperand(), RC->getOperand()); 613 } 614 615 case scCouldNotCompute: 616 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 617 } 618 llvm_unreachable("Unknown SCEV kind!"); 619 } 620 }; 621 } // end anonymous namespace 622 623 /// GroupByComplexity - Given a list of SCEV objects, order them by their 624 /// complexity, and group objects of the same complexity together by value. 625 /// When this routine is finished, we know that any duplicates in the vector are 626 /// consecutive and that complexity is monotonically increasing. 627 /// 628 /// Note that we go take special precautions to ensure that we get deterministic 629 /// results from this routine. In other words, we don't want the results of 630 /// this to depend on where the addresses of various SCEV objects happened to 631 /// land in memory. 632 /// 633 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 634 LoopInfo *LI) { 635 if (Ops.size() < 2) return; // Noop 636 if (Ops.size() == 2) { 637 // This is the common case, which also happens to be trivially simple. 638 // Special case it. 639 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 640 if (SCEVComplexityCompare(LI)(RHS, LHS)) 641 std::swap(LHS, RHS); 642 return; 643 } 644 645 // Do the rough sort by complexity. 646 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 647 648 // Now that we are sorted by complexity, group elements of the same 649 // complexity. Note that this is, at worst, N^2, but the vector is likely to 650 // be extremely short in practice. Note that we take this approach because we 651 // do not want to depend on the addresses of the objects we are grouping. 652 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 653 const SCEV *S = Ops[i]; 654 unsigned Complexity = S->getSCEVType(); 655 656 // If there are any objects of the same complexity and same value as this 657 // one, group them. 658 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 659 if (Ops[j] == S) { // Found a duplicate. 660 // Move it to immediately after i'th element. 661 std::swap(Ops[i+1], Ops[j]); 662 ++i; // no need to rescan it. 663 if (i == e-2) return; // Done! 664 } 665 } 666 } 667 } 668 669 // Returns the size of the SCEV S. 670 static inline int sizeOfSCEV(const SCEV *S) { 671 struct FindSCEVSize { 672 int Size; 673 FindSCEVSize() : Size(0) {} 674 675 bool follow(const SCEV *S) { 676 ++Size; 677 // Keep looking at all operands of S. 678 return true; 679 } 680 bool isDone() const { 681 return false; 682 } 683 }; 684 685 FindSCEVSize F; 686 SCEVTraversal<FindSCEVSize> ST(F); 687 ST.visitAll(S); 688 return F.Size; 689 } 690 691 namespace { 692 693 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 694 public: 695 // Computes the Quotient and Remainder of the division of Numerator by 696 // Denominator. 697 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 698 const SCEV *Denominator, const SCEV **Quotient, 699 const SCEV **Remainder) { 700 assert(Numerator && Denominator && "Uninitialized SCEV"); 701 702 SCEVDivision D(SE, Numerator, Denominator); 703 704 // Check for the trivial case here to avoid having to check for it in the 705 // rest of the code. 706 if (Numerator == Denominator) { 707 *Quotient = D.One; 708 *Remainder = D.Zero; 709 return; 710 } 711 712 if (Numerator->isZero()) { 713 *Quotient = D.Zero; 714 *Remainder = D.Zero; 715 return; 716 } 717 718 // A simple case when N/1. The quotient is N. 719 if (Denominator->isOne()) { 720 *Quotient = Numerator; 721 *Remainder = D.Zero; 722 return; 723 } 724 725 // Split the Denominator when it is a product. 726 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) { 727 const SCEV *Q, *R; 728 *Quotient = Numerator; 729 for (const SCEV *Op : T->operands()) { 730 divide(SE, *Quotient, Op, &Q, &R); 731 *Quotient = Q; 732 733 // Bail out when the Numerator is not divisible by one of the terms of 734 // the Denominator. 735 if (!R->isZero()) { 736 *Quotient = D.Zero; 737 *Remainder = Numerator; 738 return; 739 } 740 } 741 *Remainder = D.Zero; 742 return; 743 } 744 745 D.visit(Numerator); 746 *Quotient = D.Quotient; 747 *Remainder = D.Remainder; 748 } 749 750 // Except in the trivial case described above, we do not know how to divide 751 // Expr by Denominator for the following functions with empty implementation. 752 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 753 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 754 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 755 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 756 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 757 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 758 void visitUnknown(const SCEVUnknown *Numerator) {} 759 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 760 761 void visitConstant(const SCEVConstant *Numerator) { 762 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 763 APInt NumeratorVal = Numerator->getAPInt(); 764 APInt DenominatorVal = D->getAPInt(); 765 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 766 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 767 768 if (NumeratorBW > DenominatorBW) 769 DenominatorVal = DenominatorVal.sext(NumeratorBW); 770 else if (NumeratorBW < DenominatorBW) 771 NumeratorVal = NumeratorVal.sext(DenominatorBW); 772 773 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 774 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 775 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 776 Quotient = SE.getConstant(QuotientVal); 777 Remainder = SE.getConstant(RemainderVal); 778 return; 779 } 780 } 781 782 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 783 const SCEV *StartQ, *StartR, *StepQ, *StepR; 784 if (!Numerator->isAffine()) 785 return cannotDivide(Numerator); 786 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 787 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 788 // Bail out if the types do not match. 789 Type *Ty = Denominator->getType(); 790 if (Ty != StartQ->getType() || Ty != StartR->getType() || 791 Ty != StepQ->getType() || Ty != StepR->getType()) 792 return cannotDivide(Numerator); 793 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 794 Numerator->getNoWrapFlags()); 795 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 796 Numerator->getNoWrapFlags()); 797 } 798 799 void visitAddExpr(const SCEVAddExpr *Numerator) { 800 SmallVector<const SCEV *, 2> Qs, Rs; 801 Type *Ty = Denominator->getType(); 802 803 for (const SCEV *Op : Numerator->operands()) { 804 const SCEV *Q, *R; 805 divide(SE, Op, Denominator, &Q, &R); 806 807 // Bail out if types do not match. 808 if (Ty != Q->getType() || Ty != R->getType()) 809 return cannotDivide(Numerator); 810 811 Qs.push_back(Q); 812 Rs.push_back(R); 813 } 814 815 if (Qs.size() == 1) { 816 Quotient = Qs[0]; 817 Remainder = Rs[0]; 818 return; 819 } 820 821 Quotient = SE.getAddExpr(Qs); 822 Remainder = SE.getAddExpr(Rs); 823 } 824 825 void visitMulExpr(const SCEVMulExpr *Numerator) { 826 SmallVector<const SCEV *, 2> Qs; 827 Type *Ty = Denominator->getType(); 828 829 bool FoundDenominatorTerm = false; 830 for (const SCEV *Op : Numerator->operands()) { 831 // Bail out if types do not match. 832 if (Ty != Op->getType()) 833 return cannotDivide(Numerator); 834 835 if (FoundDenominatorTerm) { 836 Qs.push_back(Op); 837 continue; 838 } 839 840 // Check whether Denominator divides one of the product operands. 841 const SCEV *Q, *R; 842 divide(SE, Op, Denominator, &Q, &R); 843 if (!R->isZero()) { 844 Qs.push_back(Op); 845 continue; 846 } 847 848 // Bail out if types do not match. 849 if (Ty != Q->getType()) 850 return cannotDivide(Numerator); 851 852 FoundDenominatorTerm = true; 853 Qs.push_back(Q); 854 } 855 856 if (FoundDenominatorTerm) { 857 Remainder = Zero; 858 if (Qs.size() == 1) 859 Quotient = Qs[0]; 860 else 861 Quotient = SE.getMulExpr(Qs); 862 return; 863 } 864 865 if (!isa<SCEVUnknown>(Denominator)) 866 return cannotDivide(Numerator); 867 868 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 869 ValueToValueMap RewriteMap; 870 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 871 cast<SCEVConstant>(Zero)->getValue(); 872 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 873 874 if (Remainder->isZero()) { 875 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 876 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 877 cast<SCEVConstant>(One)->getValue(); 878 Quotient = 879 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 880 return; 881 } 882 883 // Quotient is (Numerator - Remainder) divided by Denominator. 884 const SCEV *Q, *R; 885 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 886 // This SCEV does not seem to simplify: fail the division here. 887 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 888 return cannotDivide(Numerator); 889 divide(SE, Diff, Denominator, &Q, &R); 890 if (R != Zero) 891 return cannotDivide(Numerator); 892 Quotient = Q; 893 } 894 895 private: 896 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 897 const SCEV *Denominator) 898 : SE(S), Denominator(Denominator) { 899 Zero = SE.getZero(Denominator->getType()); 900 One = SE.getOne(Denominator->getType()); 901 902 // We generally do not know how to divide Expr by Denominator. We 903 // initialize the division to a "cannot divide" state to simplify the rest 904 // of the code. 905 cannotDivide(Numerator); 906 } 907 908 // Convenience function for giving up on the division. We set the quotient to 909 // be equal to zero and the remainder to be equal to the numerator. 910 void cannotDivide(const SCEV *Numerator) { 911 Quotient = Zero; 912 Remainder = Numerator; 913 } 914 915 ScalarEvolution &SE; 916 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 917 }; 918 919 } 920 921 //===----------------------------------------------------------------------===// 922 // Simple SCEV method implementations 923 //===----------------------------------------------------------------------===// 924 925 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 926 /// Assume, K > 0. 927 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 928 ScalarEvolution &SE, 929 Type *ResultTy) { 930 // Handle the simplest case efficiently. 931 if (K == 1) 932 return SE.getTruncateOrZeroExtend(It, ResultTy); 933 934 // We are using the following formula for BC(It, K): 935 // 936 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 937 // 938 // Suppose, W is the bitwidth of the return value. We must be prepared for 939 // overflow. Hence, we must assure that the result of our computation is 940 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 941 // safe in modular arithmetic. 942 // 943 // However, this code doesn't use exactly that formula; the formula it uses 944 // is something like the following, where T is the number of factors of 2 in 945 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 946 // exponentiation: 947 // 948 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 949 // 950 // This formula is trivially equivalent to the previous formula. However, 951 // this formula can be implemented much more efficiently. The trick is that 952 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 953 // arithmetic. To do exact division in modular arithmetic, all we have 954 // to do is multiply by the inverse. Therefore, this step can be done at 955 // width W. 956 // 957 // The next issue is how to safely do the division by 2^T. The way this 958 // is done is by doing the multiplication step at a width of at least W + T 959 // bits. This way, the bottom W+T bits of the product are accurate. Then, 960 // when we perform the division by 2^T (which is equivalent to a right shift 961 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 962 // truncated out after the division by 2^T. 963 // 964 // In comparison to just directly using the first formula, this technique 965 // is much more efficient; using the first formula requires W * K bits, 966 // but this formula less than W + K bits. Also, the first formula requires 967 // a division step, whereas this formula only requires multiplies and shifts. 968 // 969 // It doesn't matter whether the subtraction step is done in the calculation 970 // width or the input iteration count's width; if the subtraction overflows, 971 // the result must be zero anyway. We prefer here to do it in the width of 972 // the induction variable because it helps a lot for certain cases; CodeGen 973 // isn't smart enough to ignore the overflow, which leads to much less 974 // efficient code if the width of the subtraction is wider than the native 975 // register width. 976 // 977 // (It's possible to not widen at all by pulling out factors of 2 before 978 // the multiplication; for example, K=2 can be calculated as 979 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 980 // extra arithmetic, so it's not an obvious win, and it gets 981 // much more complicated for K > 3.) 982 983 // Protection from insane SCEVs; this bound is conservative, 984 // but it probably doesn't matter. 985 if (K > 1000) 986 return SE.getCouldNotCompute(); 987 988 unsigned W = SE.getTypeSizeInBits(ResultTy); 989 990 // Calculate K! / 2^T and T; we divide out the factors of two before 991 // multiplying for calculating K! / 2^T to avoid overflow. 992 // Other overflow doesn't matter because we only care about the bottom 993 // W bits of the result. 994 APInt OddFactorial(W, 1); 995 unsigned T = 1; 996 for (unsigned i = 3; i <= K; ++i) { 997 APInt Mult(W, i); 998 unsigned TwoFactors = Mult.countTrailingZeros(); 999 T += TwoFactors; 1000 Mult = Mult.lshr(TwoFactors); 1001 OddFactorial *= Mult; 1002 } 1003 1004 // We need at least W + T bits for the multiplication step 1005 unsigned CalculationBits = W + T; 1006 1007 // Calculate 2^T, at width T+W. 1008 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1009 1010 // Calculate the multiplicative inverse of K! / 2^T; 1011 // this multiplication factor will perform the exact division by 1012 // K! / 2^T. 1013 APInt Mod = APInt::getSignedMinValue(W+1); 1014 APInt MultiplyFactor = OddFactorial.zext(W+1); 1015 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1016 MultiplyFactor = MultiplyFactor.trunc(W); 1017 1018 // Calculate the product, at width T+W 1019 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1020 CalculationBits); 1021 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1022 for (unsigned i = 1; i != K; ++i) { 1023 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1024 Dividend = SE.getMulExpr(Dividend, 1025 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1026 } 1027 1028 // Divide by 2^T 1029 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1030 1031 // Truncate the result, and divide by K! / 2^T. 1032 1033 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1034 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1035 } 1036 1037 /// evaluateAtIteration - Return the value of this chain of recurrences at 1038 /// the specified iteration number. We can evaluate this recurrence by 1039 /// multiplying each element in the chain by the binomial coefficient 1040 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 1041 /// 1042 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1043 /// 1044 /// where BC(It, k) stands for binomial coefficient. 1045 /// 1046 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1047 ScalarEvolution &SE) const { 1048 const SCEV *Result = getStart(); 1049 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1050 // The computation is correct in the face of overflow provided that the 1051 // multiplication is performed _after_ the evaluation of the binomial 1052 // coefficient. 1053 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1054 if (isa<SCEVCouldNotCompute>(Coeff)) 1055 return Coeff; 1056 1057 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1058 } 1059 return Result; 1060 } 1061 1062 //===----------------------------------------------------------------------===// 1063 // SCEV Expression folder implementations 1064 //===----------------------------------------------------------------------===// 1065 1066 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1067 Type *Ty) { 1068 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1069 "This is not a truncating conversion!"); 1070 assert(isSCEVable(Ty) && 1071 "This is not a conversion to a SCEVable type!"); 1072 Ty = getEffectiveSCEVType(Ty); 1073 1074 FoldingSetNodeID ID; 1075 ID.AddInteger(scTruncate); 1076 ID.AddPointer(Op); 1077 ID.AddPointer(Ty); 1078 void *IP = nullptr; 1079 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1080 1081 // Fold if the operand is constant. 1082 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1083 return getConstant( 1084 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1085 1086 // trunc(trunc(x)) --> trunc(x) 1087 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1088 return getTruncateExpr(ST->getOperand(), Ty); 1089 1090 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1091 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1092 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1093 1094 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1095 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1096 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1097 1098 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1099 // eliminate all the truncates, or we replace other casts with truncates. 1100 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1101 SmallVector<const SCEV *, 4> Operands; 1102 bool hasTrunc = false; 1103 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1104 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1105 if (!isa<SCEVCastExpr>(SA->getOperand(i))) 1106 hasTrunc = isa<SCEVTruncateExpr>(S); 1107 Operands.push_back(S); 1108 } 1109 if (!hasTrunc) 1110 return getAddExpr(Operands); 1111 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1112 } 1113 1114 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1115 // eliminate all the truncates, or we replace other casts with truncates. 1116 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1117 SmallVector<const SCEV *, 4> Operands; 1118 bool hasTrunc = false; 1119 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1120 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1121 if (!isa<SCEVCastExpr>(SM->getOperand(i))) 1122 hasTrunc = isa<SCEVTruncateExpr>(S); 1123 Operands.push_back(S); 1124 } 1125 if (!hasTrunc) 1126 return getMulExpr(Operands); 1127 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1128 } 1129 1130 // If the input value is a chrec scev, truncate the chrec's operands. 1131 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1132 SmallVector<const SCEV *, 4> Operands; 1133 for (const SCEV *Op : AddRec->operands()) 1134 Operands.push_back(getTruncateExpr(Op, Ty)); 1135 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1136 } 1137 1138 // The cast wasn't folded; create an explicit cast node. We can reuse 1139 // the existing insert position since if we get here, we won't have 1140 // made any changes which would invalidate it. 1141 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1142 Op, Ty); 1143 UniqueSCEVs.InsertNode(S, IP); 1144 return S; 1145 } 1146 1147 // Get the limit of a recurrence such that incrementing by Step cannot cause 1148 // signed overflow as long as the value of the recurrence within the 1149 // loop does not exceed this limit before incrementing. 1150 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1151 ICmpInst::Predicate *Pred, 1152 ScalarEvolution *SE) { 1153 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1154 if (SE->isKnownPositive(Step)) { 1155 *Pred = ICmpInst::ICMP_SLT; 1156 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1157 SE->getSignedRange(Step).getSignedMax()); 1158 } 1159 if (SE->isKnownNegative(Step)) { 1160 *Pred = ICmpInst::ICMP_SGT; 1161 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1162 SE->getSignedRange(Step).getSignedMin()); 1163 } 1164 return nullptr; 1165 } 1166 1167 // Get the limit of a recurrence such that incrementing by Step cannot cause 1168 // unsigned overflow as long as the value of the recurrence within the loop does 1169 // not exceed this limit before incrementing. 1170 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1171 ICmpInst::Predicate *Pred, 1172 ScalarEvolution *SE) { 1173 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1174 *Pred = ICmpInst::ICMP_ULT; 1175 1176 return SE->getConstant(APInt::getMinValue(BitWidth) - 1177 SE->getUnsignedRange(Step).getUnsignedMax()); 1178 } 1179 1180 namespace { 1181 1182 struct ExtendOpTraitsBase { 1183 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *); 1184 }; 1185 1186 // Used to make code generic over signed and unsigned overflow. 1187 template <typename ExtendOp> struct ExtendOpTraits { 1188 // Members present: 1189 // 1190 // static const SCEV::NoWrapFlags WrapType; 1191 // 1192 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1193 // 1194 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1195 // ICmpInst::Predicate *Pred, 1196 // ScalarEvolution *SE); 1197 }; 1198 1199 template <> 1200 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1201 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1202 1203 static const GetExtendExprTy GetExtendExpr; 1204 1205 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1206 ICmpInst::Predicate *Pred, 1207 ScalarEvolution *SE) { 1208 return getSignedOverflowLimitForStep(Step, Pred, SE); 1209 } 1210 }; 1211 1212 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1213 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1214 1215 template <> 1216 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1217 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1218 1219 static const GetExtendExprTy GetExtendExpr; 1220 1221 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1222 ICmpInst::Predicate *Pred, 1223 ScalarEvolution *SE) { 1224 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1225 } 1226 }; 1227 1228 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1229 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1230 } 1231 1232 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1233 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1234 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1235 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1236 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1237 // expression "Step + sext/zext(PreIncAR)" is congruent with 1238 // "sext/zext(PostIncAR)" 1239 template <typename ExtendOpTy> 1240 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1241 ScalarEvolution *SE) { 1242 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1243 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1244 1245 const Loop *L = AR->getLoop(); 1246 const SCEV *Start = AR->getStart(); 1247 const SCEV *Step = AR->getStepRecurrence(*SE); 1248 1249 // Check for a simple looking step prior to loop entry. 1250 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1251 if (!SA) 1252 return nullptr; 1253 1254 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1255 // subtraction is expensive. For this purpose, perform a quick and dirty 1256 // difference, by checking for Step in the operand list. 1257 SmallVector<const SCEV *, 4> DiffOps; 1258 for (const SCEV *Op : SA->operands()) 1259 if (Op != Step) 1260 DiffOps.push_back(Op); 1261 1262 if (DiffOps.size() == SA->getNumOperands()) 1263 return nullptr; 1264 1265 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1266 // `Step`: 1267 1268 // 1. NSW/NUW flags on the step increment. 1269 auto PreStartFlags = 1270 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1271 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1272 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1273 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1274 1275 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1276 // "S+X does not sign/unsign-overflow". 1277 // 1278 1279 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1280 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1281 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1282 return PreStart; 1283 1284 // 2. Direct overflow check on the step operation's expression. 1285 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1286 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1287 const SCEV *OperandExtendedStart = 1288 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy), 1289 (SE->*GetExtendExpr)(Step, WideTy)); 1290 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) { 1291 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1292 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1293 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1294 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1295 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1296 } 1297 return PreStart; 1298 } 1299 1300 // 3. Loop precondition. 1301 ICmpInst::Predicate Pred; 1302 const SCEV *OverflowLimit = 1303 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1304 1305 if (OverflowLimit && 1306 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1307 return PreStart; 1308 1309 return nullptr; 1310 } 1311 1312 // Get the normalized zero or sign extended expression for this AddRec's Start. 1313 template <typename ExtendOpTy> 1314 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1315 ScalarEvolution *SE) { 1316 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1317 1318 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE); 1319 if (!PreStart) 1320 return (SE->*GetExtendExpr)(AR->getStart(), Ty); 1321 1322 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty), 1323 (SE->*GetExtendExpr)(PreStart, Ty)); 1324 } 1325 1326 // Try to prove away overflow by looking at "nearby" add recurrences. A 1327 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1328 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1329 // 1330 // Formally: 1331 // 1332 // {S,+,X} == {S-T,+,X} + T 1333 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1334 // 1335 // If ({S-T,+,X} + T) does not overflow ... (1) 1336 // 1337 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1338 // 1339 // If {S-T,+,X} does not overflow ... (2) 1340 // 1341 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1342 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1343 // 1344 // If (S-T)+T does not overflow ... (3) 1345 // 1346 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1347 // == {Ext(S),+,Ext(X)} == LHS 1348 // 1349 // Thus, if (1), (2) and (3) are true for some T, then 1350 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1351 // 1352 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1353 // does not overflow" restricted to the 0th iteration. Therefore we only need 1354 // to check for (1) and (2). 1355 // 1356 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1357 // is `Delta` (defined below). 1358 // 1359 template <typename ExtendOpTy> 1360 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1361 const SCEV *Step, 1362 const Loop *L) { 1363 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1364 1365 // We restrict `Start` to a constant to prevent SCEV from spending too much 1366 // time here. It is correct (but more expensive) to continue with a 1367 // non-constant `Start` and do a general SCEV subtraction to compute 1368 // `PreStart` below. 1369 // 1370 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1371 if (!StartC) 1372 return false; 1373 1374 APInt StartAI = StartC->getAPInt(); 1375 1376 for (unsigned Delta : {-2, -1, 1, 2}) { 1377 const SCEV *PreStart = getConstant(StartAI - Delta); 1378 1379 FoldingSetNodeID ID; 1380 ID.AddInteger(scAddRecExpr); 1381 ID.AddPointer(PreStart); 1382 ID.AddPointer(Step); 1383 ID.AddPointer(L); 1384 void *IP = nullptr; 1385 const auto *PreAR = 1386 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1387 1388 // Give up if we don't already have the add recurrence we need because 1389 // actually constructing an add recurrence is relatively expensive. 1390 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1391 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1392 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1393 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1394 DeltaS, &Pred, this); 1395 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1396 return true; 1397 } 1398 } 1399 1400 return false; 1401 } 1402 1403 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 1404 Type *Ty) { 1405 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1406 "This is not an extending conversion!"); 1407 assert(isSCEVable(Ty) && 1408 "This is not a conversion to a SCEVable type!"); 1409 Ty = getEffectiveSCEVType(Ty); 1410 1411 // Fold if the operand is constant. 1412 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1413 return getConstant( 1414 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1415 1416 // zext(zext(x)) --> zext(x) 1417 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1418 return getZeroExtendExpr(SZ->getOperand(), Ty); 1419 1420 // Before doing any expensive analysis, check to see if we've already 1421 // computed a SCEV for this Op and Ty. 1422 FoldingSetNodeID ID; 1423 ID.AddInteger(scZeroExtend); 1424 ID.AddPointer(Op); 1425 ID.AddPointer(Ty); 1426 void *IP = nullptr; 1427 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1428 1429 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1430 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1431 // It's possible the bits taken off by the truncate were all zero bits. If 1432 // so, we should be able to simplify this further. 1433 const SCEV *X = ST->getOperand(); 1434 ConstantRange CR = getUnsignedRange(X); 1435 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1436 unsigned NewBits = getTypeSizeInBits(Ty); 1437 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1438 CR.zextOrTrunc(NewBits))) 1439 return getTruncateOrZeroExtend(X, Ty); 1440 } 1441 1442 // If the input value is a chrec scev, and we can prove that the value 1443 // did not overflow the old, smaller, value, we can zero extend all of the 1444 // operands (often constants). This allows analysis of something like 1445 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1446 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1447 if (AR->isAffine()) { 1448 const SCEV *Start = AR->getStart(); 1449 const SCEV *Step = AR->getStepRecurrence(*this); 1450 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1451 const Loop *L = AR->getLoop(); 1452 1453 // If we have special knowledge that this addrec won't overflow, 1454 // we don't need to do any further analysis. 1455 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 1456 return getAddRecExpr( 1457 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1458 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1459 1460 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1461 // Note that this serves two purposes: It filters out loops that are 1462 // simply not analyzable, and it covers the case where this code is 1463 // being called from within backedge-taken count analysis, such that 1464 // attempting to ask for the backedge-taken count would likely result 1465 // in infinite recursion. In the later case, the analysis code will 1466 // cope with a conservative value, and it will take care to purge 1467 // that value once it has finished. 1468 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1469 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1470 // Manually compute the final value for AR, checking for 1471 // overflow. 1472 1473 // Check whether the backedge-taken count can be losslessly casted to 1474 // the addrec's type. The count is always unsigned. 1475 const SCEV *CastedMaxBECount = 1476 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1477 const SCEV *RecastedMaxBECount = 1478 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1479 if (MaxBECount == RecastedMaxBECount) { 1480 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1481 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1482 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 1483 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 1484 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 1485 const SCEV *WideMaxBECount = 1486 getZeroExtendExpr(CastedMaxBECount, WideTy); 1487 const SCEV *OperandExtendedAdd = 1488 getAddExpr(WideStart, 1489 getMulExpr(WideMaxBECount, 1490 getZeroExtendExpr(Step, WideTy))); 1491 if (ZAdd == OperandExtendedAdd) { 1492 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1493 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1494 // Return the expression with the addrec on the outside. 1495 return getAddRecExpr( 1496 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1497 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1498 } 1499 // Similar to above, only this time treat the step value as signed. 1500 // This covers loops that count down. 1501 OperandExtendedAdd = 1502 getAddExpr(WideStart, 1503 getMulExpr(WideMaxBECount, 1504 getSignExtendExpr(Step, WideTy))); 1505 if (ZAdd == OperandExtendedAdd) { 1506 // Cache knowledge of AR NW, which is propagated to this AddRec. 1507 // Negative step causes unsigned wrap, but it still can't self-wrap. 1508 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1509 // Return the expression with the addrec on the outside. 1510 return getAddRecExpr( 1511 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1512 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1513 } 1514 } 1515 1516 // If the backedge is guarded by a comparison with the pre-inc value 1517 // the addrec is safe. Also, if the entry is guarded by a comparison 1518 // with the start value and the backedge is guarded by a comparison 1519 // with the post-inc value, the addrec is safe. 1520 if (isKnownPositive(Step)) { 1521 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1522 getUnsignedRange(Step).getUnsignedMax()); 1523 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1524 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1525 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1526 AR->getPostIncExpr(*this), N))) { 1527 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1528 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1529 // Return the expression with the addrec on the outside. 1530 return getAddRecExpr( 1531 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1532 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1533 } 1534 } else if (isKnownNegative(Step)) { 1535 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1536 getSignedRange(Step).getSignedMin()); 1537 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1538 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1539 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1540 AR->getPostIncExpr(*this), N))) { 1541 // Cache knowledge of AR NW, which is propagated to this AddRec. 1542 // Negative step causes unsigned wrap, but it still can't self-wrap. 1543 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1544 // Return the expression with the addrec on the outside. 1545 return getAddRecExpr( 1546 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1547 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1548 } 1549 } 1550 } 1551 1552 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1553 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1554 return getAddRecExpr( 1555 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1556 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1557 } 1558 } 1559 1560 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1561 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1562 if (SA->getNoWrapFlags(SCEV::FlagNUW)) { 1563 // If the addition does not unsign overflow then we can, by definition, 1564 // commute the zero extension with the addition operation. 1565 SmallVector<const SCEV *, 4> Ops; 1566 for (const auto *Op : SA->operands()) 1567 Ops.push_back(getZeroExtendExpr(Op, Ty)); 1568 return getAddExpr(Ops, SCEV::FlagNUW); 1569 } 1570 } 1571 1572 // The cast wasn't folded; create an explicit cast node. 1573 // Recompute the insert position, as it may have been invalidated. 1574 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1575 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1576 Op, Ty); 1577 UniqueSCEVs.InsertNode(S, IP); 1578 return S; 1579 } 1580 1581 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1582 Type *Ty) { 1583 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1584 "This is not an extending conversion!"); 1585 assert(isSCEVable(Ty) && 1586 "This is not a conversion to a SCEVable type!"); 1587 Ty = getEffectiveSCEVType(Ty); 1588 1589 // Fold if the operand is constant. 1590 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1591 return getConstant( 1592 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1593 1594 // sext(sext(x)) --> sext(x) 1595 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1596 return getSignExtendExpr(SS->getOperand(), Ty); 1597 1598 // sext(zext(x)) --> zext(x) 1599 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1600 return getZeroExtendExpr(SZ->getOperand(), Ty); 1601 1602 // Before doing any expensive analysis, check to see if we've already 1603 // computed a SCEV for this Op and Ty. 1604 FoldingSetNodeID ID; 1605 ID.AddInteger(scSignExtend); 1606 ID.AddPointer(Op); 1607 ID.AddPointer(Ty); 1608 void *IP = nullptr; 1609 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1610 1611 // If the input value is provably positive, build a zext instead. 1612 if (isKnownNonNegative(Op)) 1613 return getZeroExtendExpr(Op, Ty); 1614 1615 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1616 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1617 // It's possible the bits taken off by the truncate were all sign bits. If 1618 // so, we should be able to simplify this further. 1619 const SCEV *X = ST->getOperand(); 1620 ConstantRange CR = getSignedRange(X); 1621 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1622 unsigned NewBits = getTypeSizeInBits(Ty); 1623 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1624 CR.sextOrTrunc(NewBits))) 1625 return getTruncateOrSignExtend(X, Ty); 1626 } 1627 1628 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1629 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1630 if (SA->getNumOperands() == 2) { 1631 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1632 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1633 if (SMul && SC1) { 1634 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1635 const APInt &C1 = SC1->getAPInt(); 1636 const APInt &C2 = SC2->getAPInt(); 1637 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1638 C2.ugt(C1) && C2.isPowerOf2()) 1639 return getAddExpr(getSignExtendExpr(SC1, Ty), 1640 getSignExtendExpr(SMul, Ty)); 1641 } 1642 } 1643 } 1644 1645 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1646 if (SA->getNoWrapFlags(SCEV::FlagNSW)) { 1647 // If the addition does not sign overflow then we can, by definition, 1648 // commute the sign extension with the addition operation. 1649 SmallVector<const SCEV *, 4> Ops; 1650 for (const auto *Op : SA->operands()) 1651 Ops.push_back(getSignExtendExpr(Op, Ty)); 1652 return getAddExpr(Ops, SCEV::FlagNSW); 1653 } 1654 } 1655 // If the input value is a chrec scev, and we can prove that the value 1656 // did not overflow the old, smaller, value, we can sign extend all of the 1657 // operands (often constants). This allows analysis of something like 1658 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1659 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1660 if (AR->isAffine()) { 1661 const SCEV *Start = AR->getStart(); 1662 const SCEV *Step = AR->getStepRecurrence(*this); 1663 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1664 const Loop *L = AR->getLoop(); 1665 1666 // If we have special knowledge that this addrec won't overflow, 1667 // we don't need to do any further analysis. 1668 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1669 return getAddRecExpr( 1670 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1671 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW); 1672 1673 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1674 // Note that this serves two purposes: It filters out loops that are 1675 // simply not analyzable, and it covers the case where this code is 1676 // being called from within backedge-taken count analysis, such that 1677 // attempting to ask for the backedge-taken count would likely result 1678 // in infinite recursion. In the later case, the analysis code will 1679 // cope with a conservative value, and it will take care to purge 1680 // that value once it has finished. 1681 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1682 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1683 // Manually compute the final value for AR, checking for 1684 // overflow. 1685 1686 // Check whether the backedge-taken count can be losslessly casted to 1687 // the addrec's type. The count is always unsigned. 1688 const SCEV *CastedMaxBECount = 1689 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1690 const SCEV *RecastedMaxBECount = 1691 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1692 if (MaxBECount == RecastedMaxBECount) { 1693 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1694 // Check whether Start+Step*MaxBECount has no signed overflow. 1695 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1696 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1697 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1698 const SCEV *WideMaxBECount = 1699 getZeroExtendExpr(CastedMaxBECount, WideTy); 1700 const SCEV *OperandExtendedAdd = 1701 getAddExpr(WideStart, 1702 getMulExpr(WideMaxBECount, 1703 getSignExtendExpr(Step, WideTy))); 1704 if (SAdd == OperandExtendedAdd) { 1705 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1706 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1707 // Return the expression with the addrec on the outside. 1708 return getAddRecExpr( 1709 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1710 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1711 } 1712 // Similar to above, only this time treat the step value as unsigned. 1713 // This covers loops that count up with an unsigned step. 1714 OperandExtendedAdd = 1715 getAddExpr(WideStart, 1716 getMulExpr(WideMaxBECount, 1717 getZeroExtendExpr(Step, WideTy))); 1718 if (SAdd == OperandExtendedAdd) { 1719 // If AR wraps around then 1720 // 1721 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1722 // => SAdd != OperandExtendedAdd 1723 // 1724 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1725 // (SAdd == OperandExtendedAdd => AR is NW) 1726 1727 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1728 1729 // Return the expression with the addrec on the outside. 1730 return getAddRecExpr( 1731 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1732 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1733 } 1734 } 1735 1736 // If the backedge is guarded by a comparison with the pre-inc value 1737 // the addrec is safe. Also, if the entry is guarded by a comparison 1738 // with the start value and the backedge is guarded by a comparison 1739 // with the post-inc value, the addrec is safe. 1740 ICmpInst::Predicate Pred; 1741 const SCEV *OverflowLimit = 1742 getSignedOverflowLimitForStep(Step, &Pred, this); 1743 if (OverflowLimit && 1744 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1745 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1746 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1747 OverflowLimit)))) { 1748 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1749 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1750 return getAddRecExpr( 1751 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1752 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1753 } 1754 } 1755 // If Start and Step are constants, check if we can apply this 1756 // transformation: 1757 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1758 auto *SC1 = dyn_cast<SCEVConstant>(Start); 1759 auto *SC2 = dyn_cast<SCEVConstant>(Step); 1760 if (SC1 && SC2) { 1761 const APInt &C1 = SC1->getAPInt(); 1762 const APInt &C2 = SC2->getAPInt(); 1763 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1764 C2.isPowerOf2()) { 1765 Start = getSignExtendExpr(Start, Ty); 1766 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L, 1767 AR->getNoWrapFlags()); 1768 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty)); 1769 } 1770 } 1771 1772 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1773 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1774 return getAddRecExpr( 1775 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1776 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1777 } 1778 } 1779 1780 // The cast wasn't folded; create an explicit cast node. 1781 // Recompute the insert position, as it may have been invalidated. 1782 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1783 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1784 Op, Ty); 1785 UniqueSCEVs.InsertNode(S, IP); 1786 return S; 1787 } 1788 1789 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1790 /// unspecified bits out to the given type. 1791 /// 1792 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1793 Type *Ty) { 1794 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1795 "This is not an extending conversion!"); 1796 assert(isSCEVable(Ty) && 1797 "This is not a conversion to a SCEVable type!"); 1798 Ty = getEffectiveSCEVType(Ty); 1799 1800 // Sign-extend negative constants. 1801 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1802 if (SC->getAPInt().isNegative()) 1803 return getSignExtendExpr(Op, Ty); 1804 1805 // Peel off a truncate cast. 1806 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1807 const SCEV *NewOp = T->getOperand(); 1808 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1809 return getAnyExtendExpr(NewOp, Ty); 1810 return getTruncateOrNoop(NewOp, Ty); 1811 } 1812 1813 // Next try a zext cast. If the cast is folded, use it. 1814 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1815 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1816 return ZExt; 1817 1818 // Next try a sext cast. If the cast is folded, use it. 1819 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1820 if (!isa<SCEVSignExtendExpr>(SExt)) 1821 return SExt; 1822 1823 // Force the cast to be folded into the operands of an addrec. 1824 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1825 SmallVector<const SCEV *, 4> Ops; 1826 for (const SCEV *Op : AR->operands()) 1827 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1828 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1829 } 1830 1831 // If the expression is obviously signed, use the sext cast value. 1832 if (isa<SCEVSMaxExpr>(Op)) 1833 return SExt; 1834 1835 // Absent any other information, use the zext cast value. 1836 return ZExt; 1837 } 1838 1839 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1840 /// a list of operands to be added under the given scale, update the given 1841 /// map. This is a helper function for getAddRecExpr. As an example of 1842 /// what it does, given a sequence of operands that would form an add 1843 /// expression like this: 1844 /// 1845 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1846 /// 1847 /// where A and B are constants, update the map with these values: 1848 /// 1849 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1850 /// 1851 /// and add 13 + A*B*29 to AccumulatedConstant. 1852 /// This will allow getAddRecExpr to produce this: 1853 /// 1854 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1855 /// 1856 /// This form often exposes folding opportunities that are hidden in 1857 /// the original operand list. 1858 /// 1859 /// Return true iff it appears that any interesting folding opportunities 1860 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1861 /// the common case where no interesting opportunities are present, and 1862 /// is also used as a check to avoid infinite recursion. 1863 /// 1864 static bool 1865 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1866 SmallVectorImpl<const SCEV *> &NewOps, 1867 APInt &AccumulatedConstant, 1868 const SCEV *const *Ops, size_t NumOperands, 1869 const APInt &Scale, 1870 ScalarEvolution &SE) { 1871 bool Interesting = false; 1872 1873 // Iterate over the add operands. They are sorted, with constants first. 1874 unsigned i = 0; 1875 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1876 ++i; 1877 // Pull a buried constant out to the outside. 1878 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1879 Interesting = true; 1880 AccumulatedConstant += Scale * C->getAPInt(); 1881 } 1882 1883 // Next comes everything else. We're especially interested in multiplies 1884 // here, but they're in the middle, so just visit the rest with one loop. 1885 for (; i != NumOperands; ++i) { 1886 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1887 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1888 APInt NewScale = 1889 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 1890 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1891 // A multiplication of a constant with another add; recurse. 1892 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1893 Interesting |= 1894 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1895 Add->op_begin(), Add->getNumOperands(), 1896 NewScale, SE); 1897 } else { 1898 // A multiplication of a constant with some other value. Update 1899 // the map. 1900 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1901 const SCEV *Key = SE.getMulExpr(MulOps); 1902 auto Pair = M.insert(std::make_pair(Key, NewScale)); 1903 if (Pair.second) { 1904 NewOps.push_back(Pair.first->first); 1905 } else { 1906 Pair.first->second += NewScale; 1907 // The map already had an entry for this value, which may indicate 1908 // a folding opportunity. 1909 Interesting = true; 1910 } 1911 } 1912 } else { 1913 // An ordinary operand. Update the map. 1914 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1915 M.insert(std::make_pair(Ops[i], Scale)); 1916 if (Pair.second) { 1917 NewOps.push_back(Pair.first->first); 1918 } else { 1919 Pair.first->second += Scale; 1920 // The map already had an entry for this value, which may indicate 1921 // a folding opportunity. 1922 Interesting = true; 1923 } 1924 } 1925 } 1926 1927 return Interesting; 1928 } 1929 1930 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 1931 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 1932 // can't-overflow flags for the operation if possible. 1933 static SCEV::NoWrapFlags 1934 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 1935 const SmallVectorImpl<const SCEV *> &Ops, 1936 SCEV::NoWrapFlags Flags) { 1937 using namespace std::placeholders; 1938 typedef OverflowingBinaryOperator OBO; 1939 1940 bool CanAnalyze = 1941 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 1942 (void)CanAnalyze; 1943 assert(CanAnalyze && "don't call from other places!"); 1944 1945 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1946 SCEV::NoWrapFlags SignOrUnsignWrap = 1947 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 1948 1949 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1950 auto IsKnownNonNegative = [&](const SCEV *S) { 1951 return SE->isKnownNonNegative(S); 1952 }; 1953 1954 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 1955 Flags = 1956 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1957 1958 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 1959 1960 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr && 1961 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) { 1962 1963 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow 1964 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow 1965 1966 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 1967 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 1968 auto NSWRegion = 1969 ConstantRange::makeNoWrapRegion(Instruction::Add, C, OBO::NoSignedWrap); 1970 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 1971 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 1972 } 1973 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 1974 auto NUWRegion = 1975 ConstantRange::makeNoWrapRegion(Instruction::Add, C, 1976 OBO::NoUnsignedWrap); 1977 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 1978 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 1979 } 1980 } 1981 1982 return Flags; 1983 } 1984 1985 /// getAddExpr - Get a canonical add expression, or something simpler if 1986 /// possible. 1987 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1988 SCEV::NoWrapFlags Flags) { 1989 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1990 "only nuw or nsw allowed"); 1991 assert(!Ops.empty() && "Cannot get empty add!"); 1992 if (Ops.size() == 1) return Ops[0]; 1993 #ifndef NDEBUG 1994 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1995 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1996 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1997 "SCEVAddExpr operand types don't match!"); 1998 #endif 1999 2000 // Sort by complexity, this groups all similar expression types together. 2001 GroupByComplexity(Ops, &LI); 2002 2003 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2004 2005 // If there are any constants, fold them together. 2006 unsigned Idx = 0; 2007 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2008 ++Idx; 2009 assert(Idx < Ops.size()); 2010 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2011 // We found two constants, fold them together! 2012 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2013 if (Ops.size() == 2) return Ops[0]; 2014 Ops.erase(Ops.begin()+1); // Erase the folded element 2015 LHSC = cast<SCEVConstant>(Ops[0]); 2016 } 2017 2018 // If we are left with a constant zero being added, strip it off. 2019 if (LHSC->getValue()->isZero()) { 2020 Ops.erase(Ops.begin()); 2021 --Idx; 2022 } 2023 2024 if (Ops.size() == 1) return Ops[0]; 2025 } 2026 2027 // Okay, check to see if the same value occurs in the operand list more than 2028 // once. If so, merge them together into an multiply expression. Since we 2029 // sorted the list, these values are required to be adjacent. 2030 Type *Ty = Ops[0]->getType(); 2031 bool FoundMatch = false; 2032 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2033 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2034 // Scan ahead to count how many equal operands there are. 2035 unsigned Count = 2; 2036 while (i+Count != e && Ops[i+Count] == Ops[i]) 2037 ++Count; 2038 // Merge the values into a multiply. 2039 const SCEV *Scale = getConstant(Ty, Count); 2040 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 2041 if (Ops.size() == Count) 2042 return Mul; 2043 Ops[i] = Mul; 2044 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2045 --i; e -= Count - 1; 2046 FoundMatch = true; 2047 } 2048 if (FoundMatch) 2049 return getAddExpr(Ops, Flags); 2050 2051 // Check for truncates. If all the operands are truncated from the same 2052 // type, see if factoring out the truncate would permit the result to be 2053 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 2054 // if the contents of the resulting outer trunc fold to something simple. 2055 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 2056 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 2057 Type *DstType = Trunc->getType(); 2058 Type *SrcType = Trunc->getOperand()->getType(); 2059 SmallVector<const SCEV *, 8> LargeOps; 2060 bool Ok = true; 2061 // Check all the operands to see if they can be represented in the 2062 // source type of the truncate. 2063 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2064 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2065 if (T->getOperand()->getType() != SrcType) { 2066 Ok = false; 2067 break; 2068 } 2069 LargeOps.push_back(T->getOperand()); 2070 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2071 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2072 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2073 SmallVector<const SCEV *, 8> LargeMulOps; 2074 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2075 if (const SCEVTruncateExpr *T = 2076 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2077 if (T->getOperand()->getType() != SrcType) { 2078 Ok = false; 2079 break; 2080 } 2081 LargeMulOps.push_back(T->getOperand()); 2082 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2083 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2084 } else { 2085 Ok = false; 2086 break; 2087 } 2088 } 2089 if (Ok) 2090 LargeOps.push_back(getMulExpr(LargeMulOps)); 2091 } else { 2092 Ok = false; 2093 break; 2094 } 2095 } 2096 if (Ok) { 2097 // Evaluate the expression in the larger type. 2098 const SCEV *Fold = getAddExpr(LargeOps, Flags); 2099 // If it folds to something simple, use it. Otherwise, don't. 2100 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2101 return getTruncateExpr(Fold, DstType); 2102 } 2103 } 2104 2105 // Skip past any other cast SCEVs. 2106 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2107 ++Idx; 2108 2109 // If there are add operands they would be next. 2110 if (Idx < Ops.size()) { 2111 bool DeletedAdd = false; 2112 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2113 // If we have an add, expand the add operands onto the end of the operands 2114 // list. 2115 Ops.erase(Ops.begin()+Idx); 2116 Ops.append(Add->op_begin(), Add->op_end()); 2117 DeletedAdd = true; 2118 } 2119 2120 // If we deleted at least one add, we added operands to the end of the list, 2121 // and they are not necessarily sorted. Recurse to resort and resimplify 2122 // any operands we just acquired. 2123 if (DeletedAdd) 2124 return getAddExpr(Ops); 2125 } 2126 2127 // Skip over the add expression until we get to a multiply. 2128 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2129 ++Idx; 2130 2131 // Check to see if there are any folding opportunities present with 2132 // operands multiplied by constant values. 2133 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2134 uint64_t BitWidth = getTypeSizeInBits(Ty); 2135 DenseMap<const SCEV *, APInt> M; 2136 SmallVector<const SCEV *, 8> NewOps; 2137 APInt AccumulatedConstant(BitWidth, 0); 2138 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2139 Ops.data(), Ops.size(), 2140 APInt(BitWidth, 1), *this)) { 2141 struct APIntCompare { 2142 bool operator()(const APInt &LHS, const APInt &RHS) const { 2143 return LHS.ult(RHS); 2144 } 2145 }; 2146 2147 // Some interesting folding opportunity is present, so its worthwhile to 2148 // re-generate the operands list. Group the operands by constant scale, 2149 // to avoid multiplying by the same constant scale multiple times. 2150 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2151 for (const SCEV *NewOp : NewOps) 2152 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2153 // Re-generate the operands list. 2154 Ops.clear(); 2155 if (AccumulatedConstant != 0) 2156 Ops.push_back(getConstant(AccumulatedConstant)); 2157 for (auto &MulOp : MulOpLists) 2158 if (MulOp.first != 0) 2159 Ops.push_back(getMulExpr(getConstant(MulOp.first), 2160 getAddExpr(MulOp.second))); 2161 if (Ops.empty()) 2162 return getZero(Ty); 2163 if (Ops.size() == 1) 2164 return Ops[0]; 2165 return getAddExpr(Ops); 2166 } 2167 } 2168 2169 // If we are adding something to a multiply expression, make sure the 2170 // something is not already an operand of the multiply. If so, merge it into 2171 // the multiply. 2172 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2173 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2174 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2175 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2176 if (isa<SCEVConstant>(MulOpSCEV)) 2177 continue; 2178 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2179 if (MulOpSCEV == Ops[AddOp]) { 2180 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2181 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2182 if (Mul->getNumOperands() != 2) { 2183 // If the multiply has more than two operands, we must get the 2184 // Y*Z term. 2185 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2186 Mul->op_begin()+MulOp); 2187 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2188 InnerMul = getMulExpr(MulOps); 2189 } 2190 const SCEV *One = getOne(Ty); 2191 const SCEV *AddOne = getAddExpr(One, InnerMul); 2192 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 2193 if (Ops.size() == 2) return OuterMul; 2194 if (AddOp < Idx) { 2195 Ops.erase(Ops.begin()+AddOp); 2196 Ops.erase(Ops.begin()+Idx-1); 2197 } else { 2198 Ops.erase(Ops.begin()+Idx); 2199 Ops.erase(Ops.begin()+AddOp-1); 2200 } 2201 Ops.push_back(OuterMul); 2202 return getAddExpr(Ops); 2203 } 2204 2205 // Check this multiply against other multiplies being added together. 2206 for (unsigned OtherMulIdx = Idx+1; 2207 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2208 ++OtherMulIdx) { 2209 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2210 // If MulOp occurs in OtherMul, we can fold the two multiplies 2211 // together. 2212 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2213 OMulOp != e; ++OMulOp) 2214 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2215 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2216 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2217 if (Mul->getNumOperands() != 2) { 2218 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2219 Mul->op_begin()+MulOp); 2220 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2221 InnerMul1 = getMulExpr(MulOps); 2222 } 2223 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2224 if (OtherMul->getNumOperands() != 2) { 2225 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2226 OtherMul->op_begin()+OMulOp); 2227 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2228 InnerMul2 = getMulExpr(MulOps); 2229 } 2230 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 2231 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 2232 if (Ops.size() == 2) return OuterMul; 2233 Ops.erase(Ops.begin()+Idx); 2234 Ops.erase(Ops.begin()+OtherMulIdx-1); 2235 Ops.push_back(OuterMul); 2236 return getAddExpr(Ops); 2237 } 2238 } 2239 } 2240 } 2241 2242 // If there are any add recurrences in the operands list, see if any other 2243 // added values are loop invariant. If so, we can fold them into the 2244 // recurrence. 2245 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2246 ++Idx; 2247 2248 // Scan over all recurrences, trying to fold loop invariants into them. 2249 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2250 // Scan all of the other operands to this add and add them to the vector if 2251 // they are loop invariant w.r.t. the recurrence. 2252 SmallVector<const SCEV *, 8> LIOps; 2253 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2254 const Loop *AddRecLoop = AddRec->getLoop(); 2255 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2256 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2257 LIOps.push_back(Ops[i]); 2258 Ops.erase(Ops.begin()+i); 2259 --i; --e; 2260 } 2261 2262 // If we found some loop invariants, fold them into the recurrence. 2263 if (!LIOps.empty()) { 2264 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2265 LIOps.push_back(AddRec->getStart()); 2266 2267 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2268 AddRec->op_end()); 2269 AddRecOps[0] = getAddExpr(LIOps); 2270 2271 // Build the new addrec. Propagate the NUW and NSW flags if both the 2272 // outer add and the inner addrec are guaranteed to have no overflow. 2273 // Always propagate NW. 2274 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2275 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2276 2277 // If all of the other operands were loop invariant, we are done. 2278 if (Ops.size() == 1) return NewRec; 2279 2280 // Otherwise, add the folded AddRec by the non-invariant parts. 2281 for (unsigned i = 0;; ++i) 2282 if (Ops[i] == AddRec) { 2283 Ops[i] = NewRec; 2284 break; 2285 } 2286 return getAddExpr(Ops); 2287 } 2288 2289 // Okay, if there weren't any loop invariants to be folded, check to see if 2290 // there are multiple AddRec's with the same loop induction variable being 2291 // added together. If so, we can fold them. 2292 for (unsigned OtherIdx = Idx+1; 2293 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2294 ++OtherIdx) 2295 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2296 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2297 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2298 AddRec->op_end()); 2299 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2300 ++OtherIdx) 2301 if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 2302 if (OtherAddRec->getLoop() == AddRecLoop) { 2303 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2304 i != e; ++i) { 2305 if (i >= AddRecOps.size()) { 2306 AddRecOps.append(OtherAddRec->op_begin()+i, 2307 OtherAddRec->op_end()); 2308 break; 2309 } 2310 AddRecOps[i] = getAddExpr(AddRecOps[i], 2311 OtherAddRec->getOperand(i)); 2312 } 2313 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2314 } 2315 // Step size has changed, so we cannot guarantee no self-wraparound. 2316 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2317 return getAddExpr(Ops); 2318 } 2319 2320 // Otherwise couldn't fold anything into this recurrence. Move onto the 2321 // next one. 2322 } 2323 2324 // Okay, it looks like we really DO need an add expr. Check to see if we 2325 // already have one, otherwise create a new one. 2326 FoldingSetNodeID ID; 2327 ID.AddInteger(scAddExpr); 2328 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2329 ID.AddPointer(Ops[i]); 2330 void *IP = nullptr; 2331 SCEVAddExpr *S = 2332 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2333 if (!S) { 2334 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2335 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2336 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 2337 O, Ops.size()); 2338 UniqueSCEVs.InsertNode(S, IP); 2339 } 2340 S->setNoWrapFlags(Flags); 2341 return S; 2342 } 2343 2344 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2345 uint64_t k = i*j; 2346 if (j > 1 && k / j != i) Overflow = true; 2347 return k; 2348 } 2349 2350 /// Compute the result of "n choose k", the binomial coefficient. If an 2351 /// intermediate computation overflows, Overflow will be set and the return will 2352 /// be garbage. Overflow is not cleared on absence of overflow. 2353 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2354 // We use the multiplicative formula: 2355 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2356 // At each iteration, we take the n-th term of the numeral and divide by the 2357 // (k-n)th term of the denominator. This division will always produce an 2358 // integral result, and helps reduce the chance of overflow in the 2359 // intermediate computations. However, we can still overflow even when the 2360 // final result would fit. 2361 2362 if (n == 0 || n == k) return 1; 2363 if (k > n) return 0; 2364 2365 if (k > n/2) 2366 k = n-k; 2367 2368 uint64_t r = 1; 2369 for (uint64_t i = 1; i <= k; ++i) { 2370 r = umul_ov(r, n-(i-1), Overflow); 2371 r /= i; 2372 } 2373 return r; 2374 } 2375 2376 /// Determine if any of the operands in this SCEV are a constant or if 2377 /// any of the add or multiply expressions in this SCEV contain a constant. 2378 static bool containsConstantSomewhere(const SCEV *StartExpr) { 2379 SmallVector<const SCEV *, 4> Ops; 2380 Ops.push_back(StartExpr); 2381 while (!Ops.empty()) { 2382 const SCEV *CurrentExpr = Ops.pop_back_val(); 2383 if (isa<SCEVConstant>(*CurrentExpr)) 2384 return true; 2385 2386 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) { 2387 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr); 2388 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end()); 2389 } 2390 } 2391 return false; 2392 } 2393 2394 /// getMulExpr - Get a canonical multiply expression, or something simpler if 2395 /// possible. 2396 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2397 SCEV::NoWrapFlags Flags) { 2398 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2399 "only nuw or nsw allowed"); 2400 assert(!Ops.empty() && "Cannot get empty mul!"); 2401 if (Ops.size() == 1) return Ops[0]; 2402 #ifndef NDEBUG 2403 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2404 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2405 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2406 "SCEVMulExpr operand types don't match!"); 2407 #endif 2408 2409 // Sort by complexity, this groups all similar expression types together. 2410 GroupByComplexity(Ops, &LI); 2411 2412 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2413 2414 // If there are any constants, fold them together. 2415 unsigned Idx = 0; 2416 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2417 2418 // C1*(C2+V) -> C1*C2 + C1*V 2419 if (Ops.size() == 2) 2420 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2421 // If any of Add's ops are Adds or Muls with a constant, 2422 // apply this transformation as well. 2423 if (Add->getNumOperands() == 2) 2424 if (containsConstantSomewhere(Add)) 2425 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 2426 getMulExpr(LHSC, Add->getOperand(1))); 2427 2428 ++Idx; 2429 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2430 // We found two constants, fold them together! 2431 ConstantInt *Fold = 2432 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt()); 2433 Ops[0] = getConstant(Fold); 2434 Ops.erase(Ops.begin()+1); // Erase the folded element 2435 if (Ops.size() == 1) return Ops[0]; 2436 LHSC = cast<SCEVConstant>(Ops[0]); 2437 } 2438 2439 // If we are left with a constant one being multiplied, strip it off. 2440 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 2441 Ops.erase(Ops.begin()); 2442 --Idx; 2443 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2444 // If we have a multiply of zero, it will always be zero. 2445 return Ops[0]; 2446 } else if (Ops[0]->isAllOnesValue()) { 2447 // If we have a mul by -1 of an add, try distributing the -1 among the 2448 // add operands. 2449 if (Ops.size() == 2) { 2450 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2451 SmallVector<const SCEV *, 4> NewOps; 2452 bool AnyFolded = false; 2453 for (const SCEV *AddOp : Add->operands()) { 2454 const SCEV *Mul = getMulExpr(Ops[0], AddOp); 2455 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2456 NewOps.push_back(Mul); 2457 } 2458 if (AnyFolded) 2459 return getAddExpr(NewOps); 2460 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2461 // Negation preserves a recurrence's no self-wrap property. 2462 SmallVector<const SCEV *, 4> Operands; 2463 for (const SCEV *AddRecOp : AddRec->operands()) 2464 Operands.push_back(getMulExpr(Ops[0], AddRecOp)); 2465 2466 return getAddRecExpr(Operands, AddRec->getLoop(), 2467 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2468 } 2469 } 2470 } 2471 2472 if (Ops.size() == 1) 2473 return Ops[0]; 2474 } 2475 2476 // Skip over the add expression until we get to a multiply. 2477 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2478 ++Idx; 2479 2480 // If there are mul operands inline them all into this expression. 2481 if (Idx < Ops.size()) { 2482 bool DeletedMul = false; 2483 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2484 // If we have an mul, expand the mul operands onto the end of the operands 2485 // list. 2486 Ops.erase(Ops.begin()+Idx); 2487 Ops.append(Mul->op_begin(), Mul->op_end()); 2488 DeletedMul = true; 2489 } 2490 2491 // If we deleted at least one mul, we added operands to the end of the list, 2492 // and they are not necessarily sorted. Recurse to resort and resimplify 2493 // any operands we just acquired. 2494 if (DeletedMul) 2495 return getMulExpr(Ops); 2496 } 2497 2498 // If there are any add recurrences in the operands list, see if any other 2499 // added values are loop invariant. If so, we can fold them into the 2500 // recurrence. 2501 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2502 ++Idx; 2503 2504 // Scan over all recurrences, trying to fold loop invariants into them. 2505 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2506 // Scan all of the other operands to this mul and add them to the vector if 2507 // they are loop invariant w.r.t. the recurrence. 2508 SmallVector<const SCEV *, 8> LIOps; 2509 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2510 const Loop *AddRecLoop = AddRec->getLoop(); 2511 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2512 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2513 LIOps.push_back(Ops[i]); 2514 Ops.erase(Ops.begin()+i); 2515 --i; --e; 2516 } 2517 2518 // If we found some loop invariants, fold them into the recurrence. 2519 if (!LIOps.empty()) { 2520 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2521 SmallVector<const SCEV *, 4> NewOps; 2522 NewOps.reserve(AddRec->getNumOperands()); 2523 const SCEV *Scale = getMulExpr(LIOps); 2524 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2525 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2526 2527 // Build the new addrec. Propagate the NUW and NSW flags if both the 2528 // outer mul and the inner addrec are guaranteed to have no overflow. 2529 // 2530 // No self-wrap cannot be guaranteed after changing the step size, but 2531 // will be inferred if either NUW or NSW is true. 2532 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2533 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2534 2535 // If all of the other operands were loop invariant, we are done. 2536 if (Ops.size() == 1) return NewRec; 2537 2538 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2539 for (unsigned i = 0;; ++i) 2540 if (Ops[i] == AddRec) { 2541 Ops[i] = NewRec; 2542 break; 2543 } 2544 return getMulExpr(Ops); 2545 } 2546 2547 // Okay, if there weren't any loop invariants to be folded, check to see if 2548 // there are multiple AddRec's with the same loop induction variable being 2549 // multiplied together. If so, we can fold them. 2550 2551 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2552 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2553 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2554 // ]]],+,...up to x=2n}. 2555 // Note that the arguments to choose() are always integers with values 2556 // known at compile time, never SCEV objects. 2557 // 2558 // The implementation avoids pointless extra computations when the two 2559 // addrec's are of different length (mathematically, it's equivalent to 2560 // an infinite stream of zeros on the right). 2561 bool OpsModified = false; 2562 for (unsigned OtherIdx = Idx+1; 2563 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2564 ++OtherIdx) { 2565 const SCEVAddRecExpr *OtherAddRec = 2566 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2567 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2568 continue; 2569 2570 bool Overflow = false; 2571 Type *Ty = AddRec->getType(); 2572 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2573 SmallVector<const SCEV*, 7> AddRecOps; 2574 for (int x = 0, xe = AddRec->getNumOperands() + 2575 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2576 const SCEV *Term = getZero(Ty); 2577 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2578 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2579 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2580 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2581 z < ze && !Overflow; ++z) { 2582 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2583 uint64_t Coeff; 2584 if (LargerThan64Bits) 2585 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2586 else 2587 Coeff = Coeff1*Coeff2; 2588 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2589 const SCEV *Term1 = AddRec->getOperand(y-z); 2590 const SCEV *Term2 = OtherAddRec->getOperand(z); 2591 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2592 } 2593 } 2594 AddRecOps.push_back(Term); 2595 } 2596 if (!Overflow) { 2597 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2598 SCEV::FlagAnyWrap); 2599 if (Ops.size() == 2) return NewAddRec; 2600 Ops[Idx] = NewAddRec; 2601 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2602 OpsModified = true; 2603 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2604 if (!AddRec) 2605 break; 2606 } 2607 } 2608 if (OpsModified) 2609 return getMulExpr(Ops); 2610 2611 // Otherwise couldn't fold anything into this recurrence. Move onto the 2612 // next one. 2613 } 2614 2615 // Okay, it looks like we really DO need an mul expr. Check to see if we 2616 // already have one, otherwise create a new one. 2617 FoldingSetNodeID ID; 2618 ID.AddInteger(scMulExpr); 2619 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2620 ID.AddPointer(Ops[i]); 2621 void *IP = nullptr; 2622 SCEVMulExpr *S = 2623 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2624 if (!S) { 2625 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2626 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2627 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2628 O, Ops.size()); 2629 UniqueSCEVs.InsertNode(S, IP); 2630 } 2631 S->setNoWrapFlags(Flags); 2632 return S; 2633 } 2634 2635 /// getUDivExpr - Get a canonical unsigned division expression, or something 2636 /// simpler if possible. 2637 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2638 const SCEV *RHS) { 2639 assert(getEffectiveSCEVType(LHS->getType()) == 2640 getEffectiveSCEVType(RHS->getType()) && 2641 "SCEVUDivExpr operand types don't match!"); 2642 2643 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2644 if (RHSC->getValue()->equalsInt(1)) 2645 return LHS; // X udiv 1 --> x 2646 // If the denominator is zero, the result of the udiv is undefined. Don't 2647 // try to analyze it, because the resolution chosen here may differ from 2648 // the resolution chosen in other parts of the compiler. 2649 if (!RHSC->getValue()->isZero()) { 2650 // Determine if the division can be folded into the operands of 2651 // its operands. 2652 // TODO: Generalize this to non-constants by using known-bits information. 2653 Type *Ty = LHS->getType(); 2654 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 2655 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2656 // For non-power-of-two values, effectively round the value up to the 2657 // nearest power of two. 2658 if (!RHSC->getAPInt().isPowerOf2()) 2659 ++MaxShiftAmt; 2660 IntegerType *ExtTy = 2661 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2662 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2663 if (const SCEVConstant *Step = 2664 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2665 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2666 const APInt &StepInt = Step->getAPInt(); 2667 const APInt &DivInt = RHSC->getAPInt(); 2668 if (!StepInt.urem(DivInt) && 2669 getZeroExtendExpr(AR, ExtTy) == 2670 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2671 getZeroExtendExpr(Step, ExtTy), 2672 AR->getLoop(), SCEV::FlagAnyWrap)) { 2673 SmallVector<const SCEV *, 4> Operands; 2674 for (const SCEV *Op : AR->operands()) 2675 Operands.push_back(getUDivExpr(Op, RHS)); 2676 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 2677 } 2678 /// Get a canonical UDivExpr for a recurrence. 2679 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2680 // We can currently only fold X%N if X is constant. 2681 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2682 if (StartC && !DivInt.urem(StepInt) && 2683 getZeroExtendExpr(AR, ExtTy) == 2684 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2685 getZeroExtendExpr(Step, ExtTy), 2686 AR->getLoop(), SCEV::FlagAnyWrap)) { 2687 const APInt &StartInt = StartC->getAPInt(); 2688 const APInt &StartRem = StartInt.urem(StepInt); 2689 if (StartRem != 0) 2690 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2691 AR->getLoop(), SCEV::FlagNW); 2692 } 2693 } 2694 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2695 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2696 SmallVector<const SCEV *, 4> Operands; 2697 for (const SCEV *Op : M->operands()) 2698 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2699 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2700 // Find an operand that's safely divisible. 2701 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2702 const SCEV *Op = M->getOperand(i); 2703 const SCEV *Div = getUDivExpr(Op, RHSC); 2704 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2705 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2706 M->op_end()); 2707 Operands[i] = Div; 2708 return getMulExpr(Operands); 2709 } 2710 } 2711 } 2712 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2713 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2714 SmallVector<const SCEV *, 4> Operands; 2715 for (const SCEV *Op : A->operands()) 2716 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2717 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2718 Operands.clear(); 2719 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2720 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2721 if (isa<SCEVUDivExpr>(Op) || 2722 getMulExpr(Op, RHS) != A->getOperand(i)) 2723 break; 2724 Operands.push_back(Op); 2725 } 2726 if (Operands.size() == A->getNumOperands()) 2727 return getAddExpr(Operands); 2728 } 2729 } 2730 2731 // Fold if both operands are constant. 2732 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2733 Constant *LHSCV = LHSC->getValue(); 2734 Constant *RHSCV = RHSC->getValue(); 2735 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2736 RHSCV))); 2737 } 2738 } 2739 } 2740 2741 FoldingSetNodeID ID; 2742 ID.AddInteger(scUDivExpr); 2743 ID.AddPointer(LHS); 2744 ID.AddPointer(RHS); 2745 void *IP = nullptr; 2746 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2747 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2748 LHS, RHS); 2749 UniqueSCEVs.InsertNode(S, IP); 2750 return S; 2751 } 2752 2753 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2754 APInt A = C1->getAPInt().abs(); 2755 APInt B = C2->getAPInt().abs(); 2756 uint32_t ABW = A.getBitWidth(); 2757 uint32_t BBW = B.getBitWidth(); 2758 2759 if (ABW > BBW) 2760 B = B.zext(ABW); 2761 else if (ABW < BBW) 2762 A = A.zext(BBW); 2763 2764 return APIntOps::GreatestCommonDivisor(A, B); 2765 } 2766 2767 /// getUDivExactExpr - Get a canonical unsigned division expression, or 2768 /// something simpler if possible. There is no representation for an exact udiv 2769 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS. 2770 /// We can't do this when it's not exact because the udiv may be clearing bits. 2771 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2772 const SCEV *RHS) { 2773 // TODO: we could try to find factors in all sorts of things, but for now we 2774 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2775 // end of this file for inspiration. 2776 2777 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2778 if (!Mul) 2779 return getUDivExpr(LHS, RHS); 2780 2781 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2782 // If the mulexpr multiplies by a constant, then that constant must be the 2783 // first element of the mulexpr. 2784 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2785 if (LHSCst == RHSCst) { 2786 SmallVector<const SCEV *, 2> Operands; 2787 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2788 return getMulExpr(Operands); 2789 } 2790 2791 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 2792 // that there's a factor provided by one of the other terms. We need to 2793 // check. 2794 APInt Factor = gcd(LHSCst, RHSCst); 2795 if (!Factor.isIntN(1)) { 2796 LHSCst = 2797 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 2798 RHSCst = 2799 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 2800 SmallVector<const SCEV *, 2> Operands; 2801 Operands.push_back(LHSCst); 2802 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2803 LHS = getMulExpr(Operands); 2804 RHS = RHSCst; 2805 Mul = dyn_cast<SCEVMulExpr>(LHS); 2806 if (!Mul) 2807 return getUDivExactExpr(LHS, RHS); 2808 } 2809 } 2810 } 2811 2812 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 2813 if (Mul->getOperand(i) == RHS) { 2814 SmallVector<const SCEV *, 2> Operands; 2815 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 2816 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 2817 return getMulExpr(Operands); 2818 } 2819 } 2820 2821 return getUDivExpr(LHS, RHS); 2822 } 2823 2824 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2825 /// Simplify the expression as much as possible. 2826 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2827 const Loop *L, 2828 SCEV::NoWrapFlags Flags) { 2829 SmallVector<const SCEV *, 4> Operands; 2830 Operands.push_back(Start); 2831 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2832 if (StepChrec->getLoop() == L) { 2833 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2834 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2835 } 2836 2837 Operands.push_back(Step); 2838 return getAddRecExpr(Operands, L, Flags); 2839 } 2840 2841 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2842 /// Simplify the expression as much as possible. 2843 const SCEV * 2844 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2845 const Loop *L, SCEV::NoWrapFlags Flags) { 2846 if (Operands.size() == 1) return Operands[0]; 2847 #ifndef NDEBUG 2848 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2849 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2850 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2851 "SCEVAddRecExpr operand types don't match!"); 2852 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2853 assert(isLoopInvariant(Operands[i], L) && 2854 "SCEVAddRecExpr operand is not loop-invariant!"); 2855 #endif 2856 2857 if (Operands.back()->isZero()) { 2858 Operands.pop_back(); 2859 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2860 } 2861 2862 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2863 // use that information to infer NUW and NSW flags. However, computing a 2864 // BE count requires calling getAddRecExpr, so we may not yet have a 2865 // meaningful BE count at this point (and if we don't, we'd be stuck 2866 // with a SCEVCouldNotCompute as the cached BE count). 2867 2868 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 2869 2870 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2871 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2872 const Loop *NestedLoop = NestedAR->getLoop(); 2873 if (L->contains(NestedLoop) 2874 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 2875 : (!NestedLoop->contains(L) && 2876 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 2877 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2878 NestedAR->op_end()); 2879 Operands[0] = NestedAR->getStart(); 2880 // AddRecs require their operands be loop-invariant with respect to their 2881 // loops. Don't perform this transformation if it would break this 2882 // requirement. 2883 bool AllInvariant = all_of( 2884 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 2885 2886 if (AllInvariant) { 2887 // Create a recurrence for the outer loop with the same step size. 2888 // 2889 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2890 // inner recurrence has the same property. 2891 SCEV::NoWrapFlags OuterFlags = 2892 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2893 2894 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2895 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 2896 return isLoopInvariant(Op, NestedLoop); 2897 }); 2898 2899 if (AllInvariant) { 2900 // Ok, both add recurrences are valid after the transformation. 2901 // 2902 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2903 // the outer recurrence has the same property. 2904 SCEV::NoWrapFlags InnerFlags = 2905 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2906 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2907 } 2908 } 2909 // Reset Operands to its original state. 2910 Operands[0] = NestedAR; 2911 } 2912 } 2913 2914 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2915 // already have one, otherwise create a new one. 2916 FoldingSetNodeID ID; 2917 ID.AddInteger(scAddRecExpr); 2918 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2919 ID.AddPointer(Operands[i]); 2920 ID.AddPointer(L); 2921 void *IP = nullptr; 2922 SCEVAddRecExpr *S = 2923 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2924 if (!S) { 2925 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2926 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2927 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2928 O, Operands.size(), L); 2929 UniqueSCEVs.InsertNode(S, IP); 2930 } 2931 S->setNoWrapFlags(Flags); 2932 return S; 2933 } 2934 2935 const SCEV * 2936 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr, 2937 const SmallVectorImpl<const SCEV *> &IndexExprs, 2938 bool InBounds) { 2939 // getSCEV(Base)->getType() has the same address space as Base->getType() 2940 // because SCEV::getType() preserves the address space. 2941 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 2942 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 2943 // instruction to its SCEV, because the Instruction may be guarded by control 2944 // flow and the no-overflow bits may not be valid for the expression in any 2945 // context. This can be fixed similarly to how these flags are handled for 2946 // adds. 2947 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 2948 2949 const SCEV *TotalOffset = getZero(IntPtrTy); 2950 // The address space is unimportant. The first thing we do on CurTy is getting 2951 // its element type. 2952 Type *CurTy = PointerType::getUnqual(PointeeType); 2953 for (const SCEV *IndexExpr : IndexExprs) { 2954 // Compute the (potentially symbolic) offset in bytes for this index. 2955 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2956 // For a struct, add the member offset. 2957 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 2958 unsigned FieldNo = Index->getZExtValue(); 2959 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 2960 2961 // Add the field offset to the running total offset. 2962 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 2963 2964 // Update CurTy to the type of the field at Index. 2965 CurTy = STy->getTypeAtIndex(Index); 2966 } else { 2967 // Update CurTy to its element type. 2968 CurTy = cast<SequentialType>(CurTy)->getElementType(); 2969 // For an array, add the element offset, explicitly scaled. 2970 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 2971 // Getelementptr indices are signed. 2972 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 2973 2974 // Multiply the index by the element size to compute the element offset. 2975 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 2976 2977 // Add the element offset to the running total offset. 2978 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2979 } 2980 } 2981 2982 // Add the total offset from all the GEP indices to the base. 2983 return getAddExpr(BaseExpr, TotalOffset, Wrap); 2984 } 2985 2986 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2987 const SCEV *RHS) { 2988 SmallVector<const SCEV *, 2> Ops; 2989 Ops.push_back(LHS); 2990 Ops.push_back(RHS); 2991 return getSMaxExpr(Ops); 2992 } 2993 2994 const SCEV * 2995 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2996 assert(!Ops.empty() && "Cannot get empty smax!"); 2997 if (Ops.size() == 1) return Ops[0]; 2998 #ifndef NDEBUG 2999 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3000 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3001 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3002 "SCEVSMaxExpr operand types don't match!"); 3003 #endif 3004 3005 // Sort by complexity, this groups all similar expression types together. 3006 GroupByComplexity(Ops, &LI); 3007 3008 // If there are any constants, fold them together. 3009 unsigned Idx = 0; 3010 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3011 ++Idx; 3012 assert(Idx < Ops.size()); 3013 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3014 // We found two constants, fold them together! 3015 ConstantInt *Fold = ConstantInt::get( 3016 getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt())); 3017 Ops[0] = getConstant(Fold); 3018 Ops.erase(Ops.begin()+1); // Erase the folded element 3019 if (Ops.size() == 1) return Ops[0]; 3020 LHSC = cast<SCEVConstant>(Ops[0]); 3021 } 3022 3023 // If we are left with a constant minimum-int, strip it off. 3024 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 3025 Ops.erase(Ops.begin()); 3026 --Idx; 3027 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 3028 // If we have an smax with a constant maximum-int, it will always be 3029 // maximum-int. 3030 return Ops[0]; 3031 } 3032 3033 if (Ops.size() == 1) return Ops[0]; 3034 } 3035 3036 // Find the first SMax 3037 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3038 ++Idx; 3039 3040 // Check to see if one of the operands is an SMax. If so, expand its operands 3041 // onto our operand list, and recurse to simplify. 3042 if (Idx < Ops.size()) { 3043 bool DeletedSMax = false; 3044 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3045 Ops.erase(Ops.begin()+Idx); 3046 Ops.append(SMax->op_begin(), SMax->op_end()); 3047 DeletedSMax = true; 3048 } 3049 3050 if (DeletedSMax) 3051 return getSMaxExpr(Ops); 3052 } 3053 3054 // Okay, check to see if the same value occurs in the operand list twice. If 3055 // so, delete one. Since we sorted the list, these values are required to 3056 // be adjacent. 3057 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3058 // X smax Y smax Y --> X smax Y 3059 // X smax Y --> X, if X is always greater than Y 3060 if (Ops[i] == Ops[i+1] || 3061 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3062 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3063 --i; --e; 3064 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3065 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3066 --i; --e; 3067 } 3068 3069 if (Ops.size() == 1) return Ops[0]; 3070 3071 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3072 3073 // Okay, it looks like we really DO need an smax expr. Check to see if we 3074 // already have one, otherwise create a new one. 3075 FoldingSetNodeID ID; 3076 ID.AddInteger(scSMaxExpr); 3077 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3078 ID.AddPointer(Ops[i]); 3079 void *IP = nullptr; 3080 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3081 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3082 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3083 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3084 O, Ops.size()); 3085 UniqueSCEVs.InsertNode(S, IP); 3086 return S; 3087 } 3088 3089 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3090 const SCEV *RHS) { 3091 SmallVector<const SCEV *, 2> Ops; 3092 Ops.push_back(LHS); 3093 Ops.push_back(RHS); 3094 return getUMaxExpr(Ops); 3095 } 3096 3097 const SCEV * 3098 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3099 assert(!Ops.empty() && "Cannot get empty umax!"); 3100 if (Ops.size() == 1) return Ops[0]; 3101 #ifndef NDEBUG 3102 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3103 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3104 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3105 "SCEVUMaxExpr operand types don't match!"); 3106 #endif 3107 3108 // Sort by complexity, this groups all similar expression types together. 3109 GroupByComplexity(Ops, &LI); 3110 3111 // If there are any constants, fold them together. 3112 unsigned Idx = 0; 3113 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3114 ++Idx; 3115 assert(Idx < Ops.size()); 3116 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3117 // We found two constants, fold them together! 3118 ConstantInt *Fold = ConstantInt::get( 3119 getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt())); 3120 Ops[0] = getConstant(Fold); 3121 Ops.erase(Ops.begin()+1); // Erase the folded element 3122 if (Ops.size() == 1) return Ops[0]; 3123 LHSC = cast<SCEVConstant>(Ops[0]); 3124 } 3125 3126 // If we are left with a constant minimum-int, strip it off. 3127 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3128 Ops.erase(Ops.begin()); 3129 --Idx; 3130 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3131 // If we have an umax with a constant maximum-int, it will always be 3132 // maximum-int. 3133 return Ops[0]; 3134 } 3135 3136 if (Ops.size() == 1) return Ops[0]; 3137 } 3138 3139 // Find the first UMax 3140 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3141 ++Idx; 3142 3143 // Check to see if one of the operands is a UMax. If so, expand its operands 3144 // onto our operand list, and recurse to simplify. 3145 if (Idx < Ops.size()) { 3146 bool DeletedUMax = false; 3147 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3148 Ops.erase(Ops.begin()+Idx); 3149 Ops.append(UMax->op_begin(), UMax->op_end()); 3150 DeletedUMax = true; 3151 } 3152 3153 if (DeletedUMax) 3154 return getUMaxExpr(Ops); 3155 } 3156 3157 // Okay, check to see if the same value occurs in the operand list twice. If 3158 // so, delete one. Since we sorted the list, these values are required to 3159 // be adjacent. 3160 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3161 // X umax Y umax Y --> X umax Y 3162 // X umax Y --> X, if X is always greater than Y 3163 if (Ops[i] == Ops[i+1] || 3164 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3165 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3166 --i; --e; 3167 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3168 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3169 --i; --e; 3170 } 3171 3172 if (Ops.size() == 1) return Ops[0]; 3173 3174 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3175 3176 // Okay, it looks like we really DO need a umax expr. Check to see if we 3177 // already have one, otherwise create a new one. 3178 FoldingSetNodeID ID; 3179 ID.AddInteger(scUMaxExpr); 3180 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3181 ID.AddPointer(Ops[i]); 3182 void *IP = nullptr; 3183 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3184 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3185 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3186 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3187 O, Ops.size()); 3188 UniqueSCEVs.InsertNode(S, IP); 3189 return S; 3190 } 3191 3192 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3193 const SCEV *RHS) { 3194 // ~smax(~x, ~y) == smin(x, y). 3195 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3196 } 3197 3198 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3199 const SCEV *RHS) { 3200 // ~umax(~x, ~y) == umin(x, y) 3201 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3202 } 3203 3204 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3205 // We can bypass creating a target-independent 3206 // constant expression and then folding it back into a ConstantInt. 3207 // This is just a compile-time optimization. 3208 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3209 } 3210 3211 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3212 StructType *STy, 3213 unsigned FieldNo) { 3214 // We can bypass creating a target-independent 3215 // constant expression and then folding it back into a ConstantInt. 3216 // This is just a compile-time optimization. 3217 return getConstant( 3218 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3219 } 3220 3221 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3222 // Don't attempt to do anything other than create a SCEVUnknown object 3223 // here. createSCEV only calls getUnknown after checking for all other 3224 // interesting possibilities, and any other code that calls getUnknown 3225 // is doing so in order to hide a value from SCEV canonicalization. 3226 3227 FoldingSetNodeID ID; 3228 ID.AddInteger(scUnknown); 3229 ID.AddPointer(V); 3230 void *IP = nullptr; 3231 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3232 assert(cast<SCEVUnknown>(S)->getValue() == V && 3233 "Stale SCEVUnknown in uniquing map!"); 3234 return S; 3235 } 3236 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3237 FirstUnknown); 3238 FirstUnknown = cast<SCEVUnknown>(S); 3239 UniqueSCEVs.InsertNode(S, IP); 3240 return S; 3241 } 3242 3243 //===----------------------------------------------------------------------===// 3244 // Basic SCEV Analysis and PHI Idiom Recognition Code 3245 // 3246 3247 /// isSCEVable - Test if values of the given type are analyzable within 3248 /// the SCEV framework. This primarily includes integer types, and it 3249 /// can optionally include pointer types if the ScalarEvolution class 3250 /// has access to target-specific information. 3251 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3252 // Integers and pointers are always SCEVable. 3253 return Ty->isIntegerTy() || Ty->isPointerTy(); 3254 } 3255 3256 /// getTypeSizeInBits - Return the size in bits of the specified type, 3257 /// for which isSCEVable must return true. 3258 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3259 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3260 return getDataLayout().getTypeSizeInBits(Ty); 3261 } 3262 3263 /// getEffectiveSCEVType - Return a type with the same bitwidth as 3264 /// the given type and which represents how SCEV will treat the given 3265 /// type, for which isSCEVable must return true. For pointer types, 3266 /// this is the pointer-sized integer type. 3267 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3268 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3269 3270 if (Ty->isIntegerTy()) 3271 return Ty; 3272 3273 // The only other support type is pointer. 3274 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3275 return getDataLayout().getIntPtrType(Ty); 3276 } 3277 3278 const SCEV *ScalarEvolution::getCouldNotCompute() { 3279 return CouldNotCompute.get(); 3280 } 3281 3282 3283 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3284 // Helper class working with SCEVTraversal to figure out if a SCEV contains 3285 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 3286 // is set iff if find such SCEVUnknown. 3287 // 3288 struct FindInvalidSCEVUnknown { 3289 bool FindOne; 3290 FindInvalidSCEVUnknown() { FindOne = false; } 3291 bool follow(const SCEV *S) { 3292 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3293 case scConstant: 3294 return false; 3295 case scUnknown: 3296 if (!cast<SCEVUnknown>(S)->getValue()) 3297 FindOne = true; 3298 return false; 3299 default: 3300 return true; 3301 } 3302 } 3303 bool isDone() const { return FindOne; } 3304 }; 3305 3306 FindInvalidSCEVUnknown F; 3307 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 3308 ST.visitAll(S); 3309 3310 return !F.FindOne; 3311 } 3312 3313 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 3314 /// expression and create a new one. 3315 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3316 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3317 3318 const SCEV *S = getExistingSCEV(V); 3319 if (S == nullptr) { 3320 S = createSCEV(V); 3321 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 3322 } 3323 return S; 3324 } 3325 3326 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3327 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3328 3329 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3330 if (I != ValueExprMap.end()) { 3331 const SCEV *S = I->second; 3332 if (checkValidity(S)) 3333 return S; 3334 ValueExprMap.erase(I); 3335 } 3336 return nullptr; 3337 } 3338 3339 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 3340 /// 3341 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3342 SCEV::NoWrapFlags Flags) { 3343 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3344 return getConstant( 3345 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3346 3347 Type *Ty = V->getType(); 3348 Ty = getEffectiveSCEVType(Ty); 3349 return getMulExpr( 3350 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3351 } 3352 3353 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 3354 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3355 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3356 return getConstant( 3357 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3358 3359 Type *Ty = V->getType(); 3360 Ty = getEffectiveSCEVType(Ty); 3361 const SCEV *AllOnes = 3362 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3363 return getMinusSCEV(AllOnes, V); 3364 } 3365 3366 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 3367 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3368 SCEV::NoWrapFlags Flags) { 3369 // Fast path: X - X --> 0. 3370 if (LHS == RHS) 3371 return getZero(LHS->getType()); 3372 3373 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3374 // makes it so that we cannot make much use of NUW. 3375 auto AddFlags = SCEV::FlagAnyWrap; 3376 const bool RHSIsNotMinSigned = 3377 !getSignedRange(RHS).getSignedMin().isMinSignedValue(); 3378 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3379 // Let M be the minimum representable signed value. Then (-1)*RHS 3380 // signed-wraps if and only if RHS is M. That can happen even for 3381 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3382 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3383 // (-1)*RHS, we need to prove that RHS != M. 3384 // 3385 // If LHS is non-negative and we know that LHS - RHS does not 3386 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3387 // either by proving that RHS > M or that LHS >= 0. 3388 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3389 AddFlags = SCEV::FlagNSW; 3390 } 3391 } 3392 3393 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3394 // RHS is NSW and LHS >= 0. 3395 // 3396 // The difficulty here is that the NSW flag may have been proven 3397 // relative to a loop that is to be found in a recurrence in LHS and 3398 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3399 // larger scope than intended. 3400 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3401 3402 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags); 3403 } 3404 3405 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 3406 /// input value to the specified type. If the type must be extended, it is zero 3407 /// extended. 3408 const SCEV * 3409 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3410 Type *SrcTy = V->getType(); 3411 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3412 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3413 "Cannot truncate or zero extend with non-integer arguments!"); 3414 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3415 return V; // No conversion 3416 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3417 return getTruncateExpr(V, Ty); 3418 return getZeroExtendExpr(V, Ty); 3419 } 3420 3421 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 3422 /// input value to the specified type. If the type must be extended, it is sign 3423 /// extended. 3424 const SCEV * 3425 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3426 Type *Ty) { 3427 Type *SrcTy = V->getType(); 3428 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3429 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3430 "Cannot truncate or zero extend with non-integer arguments!"); 3431 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3432 return V; // No conversion 3433 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3434 return getTruncateExpr(V, Ty); 3435 return getSignExtendExpr(V, Ty); 3436 } 3437 3438 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 3439 /// input value to the specified type. If the type must be extended, it is zero 3440 /// extended. The conversion must not be narrowing. 3441 const SCEV * 3442 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3443 Type *SrcTy = V->getType(); 3444 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3445 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3446 "Cannot noop or zero extend with non-integer arguments!"); 3447 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3448 "getNoopOrZeroExtend cannot truncate!"); 3449 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3450 return V; // No conversion 3451 return getZeroExtendExpr(V, Ty); 3452 } 3453 3454 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 3455 /// input value to the specified type. If the type must be extended, it is sign 3456 /// extended. The conversion must not be narrowing. 3457 const SCEV * 3458 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3459 Type *SrcTy = V->getType(); 3460 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3461 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3462 "Cannot noop or sign extend with non-integer arguments!"); 3463 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3464 "getNoopOrSignExtend cannot truncate!"); 3465 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3466 return V; // No conversion 3467 return getSignExtendExpr(V, Ty); 3468 } 3469 3470 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 3471 /// the input value to the specified type. If the type must be extended, 3472 /// it is extended with unspecified bits. The conversion must not be 3473 /// narrowing. 3474 const SCEV * 3475 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3476 Type *SrcTy = V->getType(); 3477 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3478 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3479 "Cannot noop or any extend with non-integer arguments!"); 3480 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3481 "getNoopOrAnyExtend cannot truncate!"); 3482 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3483 return V; // No conversion 3484 return getAnyExtendExpr(V, Ty); 3485 } 3486 3487 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 3488 /// input value to the specified type. The conversion must not be widening. 3489 const SCEV * 3490 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3491 Type *SrcTy = V->getType(); 3492 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3493 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3494 "Cannot truncate or noop with non-integer arguments!"); 3495 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3496 "getTruncateOrNoop cannot extend!"); 3497 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3498 return V; // No conversion 3499 return getTruncateExpr(V, Ty); 3500 } 3501 3502 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 3503 /// the types using zero-extension, and then perform a umax operation 3504 /// with them. 3505 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3506 const SCEV *RHS) { 3507 const SCEV *PromotedLHS = LHS; 3508 const SCEV *PromotedRHS = RHS; 3509 3510 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3511 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3512 else 3513 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3514 3515 return getUMaxExpr(PromotedLHS, PromotedRHS); 3516 } 3517 3518 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 3519 /// the types using zero-extension, and then perform a umin operation 3520 /// with them. 3521 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3522 const SCEV *RHS) { 3523 const SCEV *PromotedLHS = LHS; 3524 const SCEV *PromotedRHS = RHS; 3525 3526 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3527 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3528 else 3529 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3530 3531 return getUMinExpr(PromotedLHS, PromotedRHS); 3532 } 3533 3534 /// getPointerBase - Transitively follow the chain of pointer-type operands 3535 /// until reaching a SCEV that does not have a single pointer operand. This 3536 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 3537 /// but corner cases do exist. 3538 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3539 // A pointer operand may evaluate to a nonpointer expression, such as null. 3540 if (!V->getType()->isPointerTy()) 3541 return V; 3542 3543 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3544 return getPointerBase(Cast->getOperand()); 3545 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3546 const SCEV *PtrOp = nullptr; 3547 for (const SCEV *NAryOp : NAry->operands()) { 3548 if (NAryOp->getType()->isPointerTy()) { 3549 // Cannot find the base of an expression with multiple pointer operands. 3550 if (PtrOp) 3551 return V; 3552 PtrOp = NAryOp; 3553 } 3554 } 3555 if (!PtrOp) 3556 return V; 3557 return getPointerBase(PtrOp); 3558 } 3559 return V; 3560 } 3561 3562 /// PushDefUseChildren - Push users of the given Instruction 3563 /// onto the given Worklist. 3564 static void 3565 PushDefUseChildren(Instruction *I, 3566 SmallVectorImpl<Instruction *> &Worklist) { 3567 // Push the def-use children onto the Worklist stack. 3568 for (User *U : I->users()) 3569 Worklist.push_back(cast<Instruction>(U)); 3570 } 3571 3572 /// ForgetSymbolicValue - This looks up computed SCEV values for all 3573 /// instructions that depend on the given instruction and removes them from 3574 /// the ValueExprMapType map if they reference SymName. This is used during PHI 3575 /// resolution. 3576 void 3577 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3578 SmallVector<Instruction *, 16> Worklist; 3579 PushDefUseChildren(PN, Worklist); 3580 3581 SmallPtrSet<Instruction *, 8> Visited; 3582 Visited.insert(PN); 3583 while (!Worklist.empty()) { 3584 Instruction *I = Worklist.pop_back_val(); 3585 if (!Visited.insert(I).second) 3586 continue; 3587 3588 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 3589 if (It != ValueExprMap.end()) { 3590 const SCEV *Old = It->second; 3591 3592 // Short-circuit the def-use traversal if the symbolic name 3593 // ceases to appear in expressions. 3594 if (Old != SymName && !hasOperand(Old, SymName)) 3595 continue; 3596 3597 // SCEVUnknown for a PHI either means that it has an unrecognized 3598 // structure, it's a PHI that's in the progress of being computed 3599 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3600 // additional loop trip count information isn't going to change anything. 3601 // In the second case, createNodeForPHI will perform the necessary 3602 // updates on its own when it gets to that point. In the third, we do 3603 // want to forget the SCEVUnknown. 3604 if (!isa<PHINode>(I) || 3605 !isa<SCEVUnknown>(Old) || 3606 (I != PN && Old == SymName)) { 3607 forgetMemoizedResults(Old); 3608 ValueExprMap.erase(It); 3609 } 3610 } 3611 3612 PushDefUseChildren(I, Worklist); 3613 } 3614 } 3615 3616 namespace { 3617 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 3618 public: 3619 static const SCEV *rewrite(const SCEV *Scev, const Loop *L, 3620 ScalarEvolution &SE) { 3621 SCEVInitRewriter Rewriter(L, SE); 3622 const SCEV *Result = Rewriter.visit(Scev); 3623 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 3624 } 3625 3626 SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 3627 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 3628 3629 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 3630 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant)) 3631 Valid = false; 3632 return Expr; 3633 } 3634 3635 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 3636 // Only allow AddRecExprs for this loop. 3637 if (Expr->getLoop() == L) 3638 return Expr->getStart(); 3639 Valid = false; 3640 return Expr; 3641 } 3642 3643 bool isValid() { return Valid; } 3644 3645 private: 3646 const Loop *L; 3647 bool Valid; 3648 }; 3649 3650 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 3651 public: 3652 static const SCEV *rewrite(const SCEV *Scev, const Loop *L, 3653 ScalarEvolution &SE) { 3654 SCEVShiftRewriter Rewriter(L, SE); 3655 const SCEV *Result = Rewriter.visit(Scev); 3656 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 3657 } 3658 3659 SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 3660 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 3661 3662 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 3663 // Only allow AddRecExprs for this loop. 3664 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant)) 3665 Valid = false; 3666 return Expr; 3667 } 3668 3669 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 3670 if (Expr->getLoop() == L && Expr->isAffine()) 3671 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 3672 Valid = false; 3673 return Expr; 3674 } 3675 bool isValid() { return Valid; } 3676 3677 private: 3678 const Loop *L; 3679 bool Valid; 3680 }; 3681 } // end anonymous namespace 3682 3683 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 3684 const Loop *L = LI.getLoopFor(PN->getParent()); 3685 if (!L || L->getHeader() != PN->getParent()) 3686 return nullptr; 3687 3688 // The loop may have multiple entrances or multiple exits; we can analyze 3689 // this phi as an addrec if it has a unique entry value and a unique 3690 // backedge value. 3691 Value *BEValueV = nullptr, *StartValueV = nullptr; 3692 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3693 Value *V = PN->getIncomingValue(i); 3694 if (L->contains(PN->getIncomingBlock(i))) { 3695 if (!BEValueV) { 3696 BEValueV = V; 3697 } else if (BEValueV != V) { 3698 BEValueV = nullptr; 3699 break; 3700 } 3701 } else if (!StartValueV) { 3702 StartValueV = V; 3703 } else if (StartValueV != V) { 3704 StartValueV = nullptr; 3705 break; 3706 } 3707 } 3708 if (BEValueV && StartValueV) { 3709 // While we are analyzing this PHI node, handle its value symbolically. 3710 const SCEV *SymbolicName = getUnknown(PN); 3711 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3712 "PHI node already processed?"); 3713 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 3714 3715 // Using this symbolic name for the PHI, analyze the value coming around 3716 // the back-edge. 3717 const SCEV *BEValue = getSCEV(BEValueV); 3718 3719 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3720 // has a special value for the first iteration of the loop. 3721 3722 // If the value coming around the backedge is an add with the symbolic 3723 // value we just inserted, then we found a simple induction variable! 3724 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3725 // If there is a single occurrence of the symbolic value, replace it 3726 // with a recurrence. 3727 unsigned FoundIndex = Add->getNumOperands(); 3728 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3729 if (Add->getOperand(i) == SymbolicName) 3730 if (FoundIndex == e) { 3731 FoundIndex = i; 3732 break; 3733 } 3734 3735 if (FoundIndex != Add->getNumOperands()) { 3736 // Create an add with everything but the specified operand. 3737 SmallVector<const SCEV *, 8> Ops; 3738 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3739 if (i != FoundIndex) 3740 Ops.push_back(Add->getOperand(i)); 3741 const SCEV *Accum = getAddExpr(Ops); 3742 3743 // This is not a valid addrec if the step amount is varying each 3744 // loop iteration, but is not itself an addrec in this loop. 3745 if (isLoopInvariant(Accum, L) || 3746 (isa<SCEVAddRecExpr>(Accum) && 3747 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3748 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3749 3750 // If the increment doesn't overflow, then neither the addrec nor 3751 // the post-increment will overflow. 3752 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3753 if (OBO->getOperand(0) == PN) { 3754 if (OBO->hasNoUnsignedWrap()) 3755 Flags = setFlags(Flags, SCEV::FlagNUW); 3756 if (OBO->hasNoSignedWrap()) 3757 Flags = setFlags(Flags, SCEV::FlagNSW); 3758 } 3759 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 3760 // If the increment is an inbounds GEP, then we know the address 3761 // space cannot be wrapped around. We cannot make any guarantee 3762 // about signed or unsigned overflow because pointers are 3763 // unsigned but we may have a negative index from the base 3764 // pointer. We can guarantee that no unsigned wrap occurs if the 3765 // indices form a positive value. 3766 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 3767 Flags = setFlags(Flags, SCEV::FlagNW); 3768 3769 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 3770 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 3771 Flags = setFlags(Flags, SCEV::FlagNUW); 3772 } 3773 3774 // We cannot transfer nuw and nsw flags from subtraction 3775 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 3776 // for instance. 3777 } 3778 3779 const SCEV *StartVal = getSCEV(StartValueV); 3780 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3781 3782 // Since the no-wrap flags are on the increment, they apply to the 3783 // post-incremented value as well. 3784 if (isLoopInvariant(Accum, L)) 3785 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 3786 3787 // Okay, for the entire analysis of this edge we assumed the PHI 3788 // to be symbolic. We now need to go back and purge all of the 3789 // entries for the scalars that use the symbolic expression. 3790 ForgetSymbolicName(PN, SymbolicName); 3791 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3792 return PHISCEV; 3793 } 3794 } 3795 } else { 3796 // Otherwise, this could be a loop like this: 3797 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3798 // In this case, j = {1,+,1} and BEValue is j. 3799 // Because the other in-value of i (0) fits the evolution of BEValue 3800 // i really is an addrec evolution. 3801 // 3802 // We can generalize this saying that i is the shifted value of BEValue 3803 // by one iteration: 3804 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 3805 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 3806 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this); 3807 if (Shifted != getCouldNotCompute() && 3808 Start != getCouldNotCompute()) { 3809 const SCEV *StartVal = getSCEV(StartValueV); 3810 if (Start == StartVal) { 3811 // Okay, for the entire analysis of this edge we assumed the PHI 3812 // to be symbolic. We now need to go back and purge all of the 3813 // entries for the scalars that use the symbolic expression. 3814 ForgetSymbolicName(PN, SymbolicName); 3815 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 3816 return Shifted; 3817 } 3818 } 3819 } 3820 } 3821 3822 return nullptr; 3823 } 3824 3825 // Checks if the SCEV S is available at BB. S is considered available at BB 3826 // if S can be materialized at BB without introducing a fault. 3827 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 3828 BasicBlock *BB) { 3829 struct CheckAvailable { 3830 bool TraversalDone = false; 3831 bool Available = true; 3832 3833 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 3834 BasicBlock *BB = nullptr; 3835 DominatorTree &DT; 3836 3837 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 3838 : L(L), BB(BB), DT(DT) {} 3839 3840 bool setUnavailable() { 3841 TraversalDone = true; 3842 Available = false; 3843 return false; 3844 } 3845 3846 bool follow(const SCEV *S) { 3847 switch (S->getSCEVType()) { 3848 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 3849 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 3850 // These expressions are available if their operand(s) is/are. 3851 return true; 3852 3853 case scAddRecExpr: { 3854 // We allow add recurrences that are on the loop BB is in, or some 3855 // outer loop. This guarantees availability because the value of the 3856 // add recurrence at BB is simply the "current" value of the induction 3857 // variable. We can relax this in the future; for instance an add 3858 // recurrence on a sibling dominating loop is also available at BB. 3859 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 3860 if (L && (ARLoop == L || ARLoop->contains(L))) 3861 return true; 3862 3863 return setUnavailable(); 3864 } 3865 3866 case scUnknown: { 3867 // For SCEVUnknown, we check for simple dominance. 3868 const auto *SU = cast<SCEVUnknown>(S); 3869 Value *V = SU->getValue(); 3870 3871 if (isa<Argument>(V)) 3872 return false; 3873 3874 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 3875 return false; 3876 3877 return setUnavailable(); 3878 } 3879 3880 case scUDivExpr: 3881 case scCouldNotCompute: 3882 // We do not try to smart about these at all. 3883 return setUnavailable(); 3884 } 3885 llvm_unreachable("switch should be fully covered!"); 3886 } 3887 3888 bool isDone() { return TraversalDone; } 3889 }; 3890 3891 CheckAvailable CA(L, BB, DT); 3892 SCEVTraversal<CheckAvailable> ST(CA); 3893 3894 ST.visitAll(S); 3895 return CA.Available; 3896 } 3897 3898 // Try to match a control flow sequence that branches out at BI and merges back 3899 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 3900 // match. 3901 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 3902 Value *&C, Value *&LHS, Value *&RHS) { 3903 C = BI->getCondition(); 3904 3905 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 3906 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 3907 3908 if (!LeftEdge.isSingleEdge()) 3909 return false; 3910 3911 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 3912 3913 Use &LeftUse = Merge->getOperandUse(0); 3914 Use &RightUse = Merge->getOperandUse(1); 3915 3916 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 3917 LHS = LeftUse; 3918 RHS = RightUse; 3919 return true; 3920 } 3921 3922 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 3923 LHS = RightUse; 3924 RHS = LeftUse; 3925 return true; 3926 } 3927 3928 return false; 3929 } 3930 3931 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 3932 if (PN->getNumIncomingValues() == 2) { 3933 const Loop *L = LI.getLoopFor(PN->getParent()); 3934 3935 // We don't want to break LCSSA, even in a SCEV expression tree. 3936 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 3937 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 3938 return nullptr; 3939 3940 // Try to match 3941 // 3942 // br %cond, label %left, label %right 3943 // left: 3944 // br label %merge 3945 // right: 3946 // br label %merge 3947 // merge: 3948 // V = phi [ %x, %left ], [ %y, %right ] 3949 // 3950 // as "select %cond, %x, %y" 3951 3952 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 3953 assert(IDom && "At least the entry block should dominate PN"); 3954 3955 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 3956 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 3957 3958 if (BI && BI->isConditional() && 3959 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 3960 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 3961 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 3962 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 3963 } 3964 3965 return nullptr; 3966 } 3967 3968 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 3969 if (const SCEV *S = createAddRecFromPHI(PN)) 3970 return S; 3971 3972 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 3973 return S; 3974 3975 // If the PHI has a single incoming value, follow that value, unless the 3976 // PHI's incoming blocks are in a different loop, in which case doing so 3977 // risks breaking LCSSA form. Instcombine would normally zap these, but 3978 // it doesn't have DominatorTree information, so it may miss cases. 3979 if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC)) 3980 if (LI.replacementPreservesLCSSAForm(PN, V)) 3981 return getSCEV(V); 3982 3983 // If it's not a loop phi, we can't handle it yet. 3984 return getUnknown(PN); 3985 } 3986 3987 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 3988 Value *Cond, 3989 Value *TrueVal, 3990 Value *FalseVal) { 3991 // Handle "constant" branch or select. This can occur for instance when a 3992 // loop pass transforms an inner loop and moves on to process the outer loop. 3993 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 3994 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 3995 3996 // Try to match some simple smax or umax patterns. 3997 auto *ICI = dyn_cast<ICmpInst>(Cond); 3998 if (!ICI) 3999 return getUnknown(I); 4000 4001 Value *LHS = ICI->getOperand(0); 4002 Value *RHS = ICI->getOperand(1); 4003 4004 switch (ICI->getPredicate()) { 4005 case ICmpInst::ICMP_SLT: 4006 case ICmpInst::ICMP_SLE: 4007 std::swap(LHS, RHS); 4008 // fall through 4009 case ICmpInst::ICMP_SGT: 4010 case ICmpInst::ICMP_SGE: 4011 // a >s b ? a+x : b+x -> smax(a, b)+x 4012 // a >s b ? b+x : a+x -> smin(a, b)+x 4013 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4014 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 4015 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 4016 const SCEV *LA = getSCEV(TrueVal); 4017 const SCEV *RA = getSCEV(FalseVal); 4018 const SCEV *LDiff = getMinusSCEV(LA, LS); 4019 const SCEV *RDiff = getMinusSCEV(RA, RS); 4020 if (LDiff == RDiff) 4021 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 4022 LDiff = getMinusSCEV(LA, RS); 4023 RDiff = getMinusSCEV(RA, LS); 4024 if (LDiff == RDiff) 4025 return getAddExpr(getSMinExpr(LS, RS), LDiff); 4026 } 4027 break; 4028 case ICmpInst::ICMP_ULT: 4029 case ICmpInst::ICMP_ULE: 4030 std::swap(LHS, RHS); 4031 // fall through 4032 case ICmpInst::ICMP_UGT: 4033 case ICmpInst::ICMP_UGE: 4034 // a >u b ? a+x : b+x -> umax(a, b)+x 4035 // a >u b ? b+x : a+x -> umin(a, b)+x 4036 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4037 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4038 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 4039 const SCEV *LA = getSCEV(TrueVal); 4040 const SCEV *RA = getSCEV(FalseVal); 4041 const SCEV *LDiff = getMinusSCEV(LA, LS); 4042 const SCEV *RDiff = getMinusSCEV(RA, RS); 4043 if (LDiff == RDiff) 4044 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 4045 LDiff = getMinusSCEV(LA, RS); 4046 RDiff = getMinusSCEV(RA, LS); 4047 if (LDiff == RDiff) 4048 return getAddExpr(getUMinExpr(LS, RS), LDiff); 4049 } 4050 break; 4051 case ICmpInst::ICMP_NE: 4052 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 4053 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4054 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4055 const SCEV *One = getOne(I->getType()); 4056 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4057 const SCEV *LA = getSCEV(TrueVal); 4058 const SCEV *RA = getSCEV(FalseVal); 4059 const SCEV *LDiff = getMinusSCEV(LA, LS); 4060 const SCEV *RDiff = getMinusSCEV(RA, One); 4061 if (LDiff == RDiff) 4062 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4063 } 4064 break; 4065 case ICmpInst::ICMP_EQ: 4066 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 4067 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4068 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4069 const SCEV *One = getOne(I->getType()); 4070 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4071 const SCEV *LA = getSCEV(TrueVal); 4072 const SCEV *RA = getSCEV(FalseVal); 4073 const SCEV *LDiff = getMinusSCEV(LA, One); 4074 const SCEV *RDiff = getMinusSCEV(RA, LS); 4075 if (LDiff == RDiff) 4076 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4077 } 4078 break; 4079 default: 4080 break; 4081 } 4082 4083 return getUnknown(I); 4084 } 4085 4086 /// createNodeForGEP - Expand GEP instructions into add and multiply 4087 /// operations. This allows them to be analyzed by regular SCEV code. 4088 /// 4089 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 4090 Value *Base = GEP->getOperand(0); 4091 // Don't attempt to analyze GEPs over unsized objects. 4092 if (!Base->getType()->getPointerElementType()->isSized()) 4093 return getUnknown(GEP); 4094 4095 SmallVector<const SCEV *, 4> IndexExprs; 4096 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 4097 IndexExprs.push_back(getSCEV(*Index)); 4098 return getGEPExpr(GEP->getSourceElementType(), getSCEV(Base), IndexExprs, 4099 GEP->isInBounds()); 4100 } 4101 4102 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 4103 /// guaranteed to end in (at every loop iteration). It is, at the same time, 4104 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 4105 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 4106 uint32_t 4107 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 4108 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4109 return C->getAPInt().countTrailingZeros(); 4110 4111 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 4112 return std::min(GetMinTrailingZeros(T->getOperand()), 4113 (uint32_t)getTypeSizeInBits(T->getType())); 4114 4115 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 4116 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4117 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4118 getTypeSizeInBits(E->getType()) : OpRes; 4119 } 4120 4121 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 4122 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4123 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4124 getTypeSizeInBits(E->getType()) : OpRes; 4125 } 4126 4127 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 4128 // The result is the min of all operands results. 4129 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4130 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4131 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4132 return MinOpRes; 4133 } 4134 4135 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 4136 // The result is the sum of all operands results. 4137 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 4138 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 4139 for (unsigned i = 1, e = M->getNumOperands(); 4140 SumOpRes != BitWidth && i != e; ++i) 4141 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 4142 BitWidth); 4143 return SumOpRes; 4144 } 4145 4146 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 4147 // The result is the min of all operands results. 4148 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4149 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4150 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4151 return MinOpRes; 4152 } 4153 4154 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 4155 // The result is the min of all operands results. 4156 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4157 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4158 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4159 return MinOpRes; 4160 } 4161 4162 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 4163 // The result is the min of all operands results. 4164 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4165 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4166 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4167 return MinOpRes; 4168 } 4169 4170 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4171 // For a SCEVUnknown, ask ValueTracking. 4172 unsigned BitWidth = getTypeSizeInBits(U->getType()); 4173 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4174 computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC, 4175 nullptr, &DT); 4176 return Zeros.countTrailingOnes(); 4177 } 4178 4179 // SCEVUDivExpr 4180 return 0; 4181 } 4182 4183 /// GetRangeFromMetadata - Helper method to assign a range to V from 4184 /// metadata present in the IR. 4185 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 4186 if (Instruction *I = dyn_cast<Instruction>(V)) 4187 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 4188 return getConstantRangeFromMetadata(*MD); 4189 4190 return None; 4191 } 4192 4193 /// getRange - Determine the range for a particular SCEV. If SignHint is 4194 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 4195 /// with a "cleaner" unsigned (resp. signed) representation. 4196 /// 4197 ConstantRange 4198 ScalarEvolution::getRange(const SCEV *S, 4199 ScalarEvolution::RangeSignHint SignHint) { 4200 DenseMap<const SCEV *, ConstantRange> &Cache = 4201 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 4202 : SignedRanges; 4203 4204 // See if we've computed this range already. 4205 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 4206 if (I != Cache.end()) 4207 return I->second; 4208 4209 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4210 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 4211 4212 unsigned BitWidth = getTypeSizeInBits(S->getType()); 4213 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 4214 4215 // If the value has known zeros, the maximum value will have those known zeros 4216 // as well. 4217 uint32_t TZ = GetMinTrailingZeros(S); 4218 if (TZ != 0) { 4219 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 4220 ConservativeResult = 4221 ConstantRange(APInt::getMinValue(BitWidth), 4222 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 4223 else 4224 ConservativeResult = ConstantRange( 4225 APInt::getSignedMinValue(BitWidth), 4226 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 4227 } 4228 4229 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 4230 ConstantRange X = getRange(Add->getOperand(0), SignHint); 4231 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 4232 X = X.add(getRange(Add->getOperand(i), SignHint)); 4233 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 4234 } 4235 4236 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 4237 ConstantRange X = getRange(Mul->getOperand(0), SignHint); 4238 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 4239 X = X.multiply(getRange(Mul->getOperand(i), SignHint)); 4240 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 4241 } 4242 4243 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 4244 ConstantRange X = getRange(SMax->getOperand(0), SignHint); 4245 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 4246 X = X.smax(getRange(SMax->getOperand(i), SignHint)); 4247 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 4248 } 4249 4250 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 4251 ConstantRange X = getRange(UMax->getOperand(0), SignHint); 4252 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 4253 X = X.umax(getRange(UMax->getOperand(i), SignHint)); 4254 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 4255 } 4256 4257 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 4258 ConstantRange X = getRange(UDiv->getLHS(), SignHint); 4259 ConstantRange Y = getRange(UDiv->getRHS(), SignHint); 4260 return setRange(UDiv, SignHint, 4261 ConservativeResult.intersectWith(X.udiv(Y))); 4262 } 4263 4264 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 4265 ConstantRange X = getRange(ZExt->getOperand(), SignHint); 4266 return setRange(ZExt, SignHint, 4267 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 4268 } 4269 4270 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 4271 ConstantRange X = getRange(SExt->getOperand(), SignHint); 4272 return setRange(SExt, SignHint, 4273 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 4274 } 4275 4276 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 4277 ConstantRange X = getRange(Trunc->getOperand(), SignHint); 4278 return setRange(Trunc, SignHint, 4279 ConservativeResult.intersectWith(X.truncate(BitWidth))); 4280 } 4281 4282 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 4283 // If there's no unsigned wrap, the value will never be less than its 4284 // initial value. 4285 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 4286 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 4287 if (!C->getValue()->isZero()) 4288 ConservativeResult = ConservativeResult.intersectWith( 4289 ConstantRange(C->getAPInt(), APInt(BitWidth, 0))); 4290 4291 // If there's no signed wrap, and all the operands have the same sign or 4292 // zero, the value won't ever change sign. 4293 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 4294 bool AllNonNeg = true; 4295 bool AllNonPos = true; 4296 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4297 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 4298 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 4299 } 4300 if (AllNonNeg) 4301 ConservativeResult = ConservativeResult.intersectWith( 4302 ConstantRange(APInt(BitWidth, 0), 4303 APInt::getSignedMinValue(BitWidth))); 4304 else if (AllNonPos) 4305 ConservativeResult = ConservativeResult.intersectWith( 4306 ConstantRange(APInt::getSignedMinValue(BitWidth), 4307 APInt(BitWidth, 1))); 4308 } 4309 4310 // TODO: non-affine addrec 4311 if (AddRec->isAffine()) { 4312 Type *Ty = AddRec->getType(); 4313 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 4314 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 4315 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 4316 4317 // Check for overflow. This must be done with ConstantRange arithmetic 4318 // because we could be called from within the ScalarEvolution overflow 4319 // checking code. 4320 4321 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 4322 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 4323 ConstantRange ZExtMaxBECountRange = 4324 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1); 4325 4326 const SCEV *Start = AddRec->getStart(); 4327 const SCEV *Step = AddRec->getStepRecurrence(*this); 4328 ConstantRange StepSRange = getSignedRange(Step); 4329 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1); 4330 4331 ConstantRange StartURange = getUnsignedRange(Start); 4332 ConstantRange EndURange = 4333 StartURange.add(MaxBECountRange.multiply(StepSRange)); 4334 4335 // Check for unsigned overflow. 4336 ConstantRange ZExtStartURange = 4337 StartURange.zextOrTrunc(BitWidth * 2 + 1); 4338 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1); 4339 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4340 ZExtEndURange) { 4341 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(), 4342 EndURange.getUnsignedMin()); 4343 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(), 4344 EndURange.getUnsignedMax()); 4345 bool IsFullRange = Min.isMinValue() && Max.isMaxValue(); 4346 if (!IsFullRange) 4347 ConservativeResult = 4348 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4349 } 4350 4351 ConstantRange StartSRange = getSignedRange(Start); 4352 ConstantRange EndSRange = 4353 StartSRange.add(MaxBECountRange.multiply(StepSRange)); 4354 4355 // Check for signed overflow. This must be done with ConstantRange 4356 // arithmetic because we could be called from within the ScalarEvolution 4357 // overflow checking code. 4358 ConstantRange SExtStartSRange = 4359 StartSRange.sextOrTrunc(BitWidth * 2 + 1); 4360 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1); 4361 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4362 SExtEndSRange) { 4363 APInt Min = APIntOps::smin(StartSRange.getSignedMin(), 4364 EndSRange.getSignedMin()); 4365 APInt Max = APIntOps::smax(StartSRange.getSignedMax(), 4366 EndSRange.getSignedMax()); 4367 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue(); 4368 if (!IsFullRange) 4369 ConservativeResult = 4370 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4371 } 4372 } 4373 } 4374 4375 return setRange(AddRec, SignHint, ConservativeResult); 4376 } 4377 4378 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4379 // Check if the IR explicitly contains !range metadata. 4380 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 4381 if (MDRange.hasValue()) 4382 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 4383 4384 // Split here to avoid paying the compile-time cost of calling both 4385 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 4386 // if needed. 4387 const DataLayout &DL = getDataLayout(); 4388 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 4389 // For a SCEVUnknown, ask ValueTracking. 4390 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4391 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT); 4392 if (Ones != ~Zeros + 1) 4393 ConservativeResult = 4394 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 4395 } else { 4396 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 4397 "generalize as needed!"); 4398 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 4399 if (NS > 1) 4400 ConservativeResult = ConservativeResult.intersectWith( 4401 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 4402 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 4403 } 4404 4405 return setRange(U, SignHint, ConservativeResult); 4406 } 4407 4408 return setRange(S, SignHint, ConservativeResult); 4409 } 4410 4411 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 4412 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 4413 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 4414 4415 // Return early if there are no flags to propagate to the SCEV. 4416 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4417 if (BinOp->hasNoUnsignedWrap()) 4418 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 4419 if (BinOp->hasNoSignedWrap()) 4420 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 4421 if (Flags == SCEV::FlagAnyWrap) { 4422 return SCEV::FlagAnyWrap; 4423 } 4424 4425 // Here we check that BinOp is in the header of the innermost loop 4426 // containing BinOp, since we only deal with instructions in the loop 4427 // header. The actual loop we need to check later will come from an add 4428 // recurrence, but getting that requires computing the SCEV of the operands, 4429 // which can be expensive. This check we can do cheaply to rule out some 4430 // cases early. 4431 Loop *innermostContainingLoop = LI.getLoopFor(BinOp->getParent()); 4432 if (innermostContainingLoop == nullptr || 4433 innermostContainingLoop->getHeader() != BinOp->getParent()) 4434 return SCEV::FlagAnyWrap; 4435 4436 // Only proceed if we can prove that BinOp does not yield poison. 4437 if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap; 4438 4439 // At this point we know that if V is executed, then it does not wrap 4440 // according to at least one of NSW or NUW. If V is not executed, then we do 4441 // not know if the calculation that V represents would wrap. Multiple 4442 // instructions can map to the same SCEV. If we apply NSW or NUW from V to 4443 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 4444 // derived from other instructions that map to the same SCEV. We cannot make 4445 // that guarantee for cases where V is not executed. So we need to find the 4446 // loop that V is considered in relation to and prove that V is executed for 4447 // every iteration of that loop. That implies that the value that V 4448 // calculates does not wrap anywhere in the loop, so then we can apply the 4449 // flags to the SCEV. 4450 // 4451 // We check isLoopInvariant to disambiguate in case we are adding two 4452 // recurrences from different loops, so that we know which loop to prove 4453 // that V is executed in. 4454 for (int OpIndex = 0; OpIndex < 2; ++OpIndex) { 4455 const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex)); 4456 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 4457 const int OtherOpIndex = 1 - OpIndex; 4458 const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex)); 4459 if (isLoopInvariant(OtherOp, AddRec->getLoop()) && 4460 isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop())) 4461 return Flags; 4462 } 4463 } 4464 return SCEV::FlagAnyWrap; 4465 } 4466 4467 /// createSCEV - We know that there is no SCEV for the specified value. Analyze 4468 /// the expression. 4469 /// 4470 const SCEV *ScalarEvolution::createSCEV(Value *V) { 4471 if (!isSCEVable(V->getType())) 4472 return getUnknown(V); 4473 4474 unsigned Opcode = Instruction::UserOp1; 4475 if (Instruction *I = dyn_cast<Instruction>(V)) { 4476 Opcode = I->getOpcode(); 4477 4478 // Don't attempt to analyze instructions in blocks that aren't 4479 // reachable. Such instructions don't matter, and they aren't required 4480 // to obey basic rules for definitions dominating uses which this 4481 // analysis depends on. 4482 if (!DT.isReachableFromEntry(I->getParent())) 4483 return getUnknown(V); 4484 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 4485 Opcode = CE->getOpcode(); 4486 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 4487 return getConstant(CI); 4488 else if (isa<ConstantPointerNull>(V)) 4489 return getZero(V->getType()); 4490 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 4491 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 4492 else 4493 return getUnknown(V); 4494 4495 Operator *U = cast<Operator>(V); 4496 switch (Opcode) { 4497 case Instruction::Add: { 4498 // The simple thing to do would be to just call getSCEV on both operands 4499 // and call getAddExpr with the result. However if we're looking at a 4500 // bunch of things all added together, this can be quite inefficient, 4501 // because it leads to N-1 getAddExpr calls for N ultimate operands. 4502 // Instead, gather up all the operands and make a single getAddExpr call. 4503 // LLVM IR canonical form means we need only traverse the left operands. 4504 SmallVector<const SCEV *, 4> AddOps; 4505 for (Value *Op = U;; Op = U->getOperand(0)) { 4506 U = dyn_cast<Operator>(Op); 4507 unsigned Opcode = U ? U->getOpcode() : 0; 4508 if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) { 4509 assert(Op != V && "V should be an add"); 4510 AddOps.push_back(getSCEV(Op)); 4511 break; 4512 } 4513 4514 if (auto *OpSCEV = getExistingSCEV(U)) { 4515 AddOps.push_back(OpSCEV); 4516 break; 4517 } 4518 4519 // If a NUW or NSW flag can be applied to the SCEV for this 4520 // addition, then compute the SCEV for this addition by itself 4521 // with a separate call to getAddExpr. We need to do that 4522 // instead of pushing the operands of the addition onto AddOps, 4523 // since the flags are only known to apply to this particular 4524 // addition - they may not apply to other additions that can be 4525 // formed with operands from AddOps. 4526 const SCEV *RHS = getSCEV(U->getOperand(1)); 4527 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4528 if (Flags != SCEV::FlagAnyWrap) { 4529 const SCEV *LHS = getSCEV(U->getOperand(0)); 4530 if (Opcode == Instruction::Sub) 4531 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 4532 else 4533 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 4534 break; 4535 } 4536 4537 if (Opcode == Instruction::Sub) 4538 AddOps.push_back(getNegativeSCEV(RHS)); 4539 else 4540 AddOps.push_back(RHS); 4541 } 4542 return getAddExpr(AddOps); 4543 } 4544 4545 case Instruction::Mul: { 4546 SmallVector<const SCEV *, 4> MulOps; 4547 for (Value *Op = U;; Op = U->getOperand(0)) { 4548 U = dyn_cast<Operator>(Op); 4549 if (!U || U->getOpcode() != Instruction::Mul) { 4550 assert(Op != V && "V should be a mul"); 4551 MulOps.push_back(getSCEV(Op)); 4552 break; 4553 } 4554 4555 if (auto *OpSCEV = getExistingSCEV(U)) { 4556 MulOps.push_back(OpSCEV); 4557 break; 4558 } 4559 4560 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4561 if (Flags != SCEV::FlagAnyWrap) { 4562 MulOps.push_back(getMulExpr(getSCEV(U->getOperand(0)), 4563 getSCEV(U->getOperand(1)), Flags)); 4564 break; 4565 } 4566 4567 MulOps.push_back(getSCEV(U->getOperand(1))); 4568 } 4569 return getMulExpr(MulOps); 4570 } 4571 case Instruction::UDiv: 4572 return getUDivExpr(getSCEV(U->getOperand(0)), 4573 getSCEV(U->getOperand(1))); 4574 case Instruction::Sub: 4575 return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)), 4576 getNoWrapFlagsFromUB(U)); 4577 case Instruction::And: 4578 // For an expression like x&255 that merely masks off the high bits, 4579 // use zext(trunc(x)) as the SCEV expression. 4580 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4581 if (CI->isNullValue()) 4582 return getSCEV(U->getOperand(1)); 4583 if (CI->isAllOnesValue()) 4584 return getSCEV(U->getOperand(0)); 4585 const APInt &A = CI->getValue(); 4586 4587 // Instcombine's ShrinkDemandedConstant may strip bits out of 4588 // constants, obscuring what would otherwise be a low-bits mask. 4589 // Use computeKnownBits to compute what ShrinkDemandedConstant 4590 // knew about to reconstruct a low-bits mask value. 4591 unsigned LZ = A.countLeadingZeros(); 4592 unsigned TZ = A.countTrailingZeros(); 4593 unsigned BitWidth = A.getBitWidth(); 4594 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4595 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, getDataLayout(), 4596 0, &AC, nullptr, &DT); 4597 4598 APInt EffectiveMask = 4599 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 4600 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 4601 const SCEV *MulCount = getConstant( 4602 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ))); 4603 return getMulExpr( 4604 getZeroExtendExpr( 4605 getTruncateExpr( 4606 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount), 4607 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 4608 U->getType()), 4609 MulCount); 4610 } 4611 } 4612 break; 4613 4614 case Instruction::Or: 4615 // If the RHS of the Or is a constant, we may have something like: 4616 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 4617 // optimizations will transparently handle this case. 4618 // 4619 // In order for this transformation to be safe, the LHS must be of the 4620 // form X*(2^n) and the Or constant must be less than 2^n. 4621 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4622 const SCEV *LHS = getSCEV(U->getOperand(0)); 4623 const APInt &CIVal = CI->getValue(); 4624 if (GetMinTrailingZeros(LHS) >= 4625 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 4626 // Build a plain add SCEV. 4627 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 4628 // If the LHS of the add was an addrec and it has no-wrap flags, 4629 // transfer the no-wrap flags, since an or won't introduce a wrap. 4630 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 4631 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 4632 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 4633 OldAR->getNoWrapFlags()); 4634 } 4635 return S; 4636 } 4637 } 4638 break; 4639 case Instruction::Xor: 4640 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4641 // If the RHS of the xor is a signbit, then this is just an add. 4642 // Instcombine turns add of signbit into xor as a strength reduction step. 4643 if (CI->getValue().isSignBit()) 4644 return getAddExpr(getSCEV(U->getOperand(0)), 4645 getSCEV(U->getOperand(1))); 4646 4647 // If the RHS of xor is -1, then this is a not operation. 4648 if (CI->isAllOnesValue()) 4649 return getNotSCEV(getSCEV(U->getOperand(0))); 4650 4651 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 4652 // This is a variant of the check for xor with -1, and it handles 4653 // the case where instcombine has trimmed non-demanded bits out 4654 // of an xor with -1. 4655 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 4656 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 4657 if (BO->getOpcode() == Instruction::And && 4658 LCI->getValue() == CI->getValue()) 4659 if (const SCEVZeroExtendExpr *Z = 4660 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 4661 Type *UTy = U->getType(); 4662 const SCEV *Z0 = Z->getOperand(); 4663 Type *Z0Ty = Z0->getType(); 4664 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 4665 4666 // If C is a low-bits mask, the zero extend is serving to 4667 // mask off the high bits. Complement the operand and 4668 // re-apply the zext. 4669 if (APIntOps::isMask(Z0TySize, CI->getValue())) 4670 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 4671 4672 // If C is a single bit, it may be in the sign-bit position 4673 // before the zero-extend. In this case, represent the xor 4674 // using an add, which is equivalent, and re-apply the zext. 4675 APInt Trunc = CI->getValue().trunc(Z0TySize); 4676 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 4677 Trunc.isSignBit()) 4678 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 4679 UTy); 4680 } 4681 } 4682 break; 4683 4684 case Instruction::Shl: 4685 // Turn shift left of a constant amount into a multiply. 4686 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4687 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4688 4689 // If the shift count is not less than the bitwidth, the result of 4690 // the shift is undefined. Don't try to analyze it, because the 4691 // resolution chosen here may differ from the resolution chosen in 4692 // other parts of the compiler. 4693 if (SA->getValue().uge(BitWidth)) 4694 break; 4695 4696 // It is currently not resolved how to interpret NSW for left 4697 // shift by BitWidth - 1, so we avoid applying flags in that 4698 // case. Remove this check (or this comment) once the situation 4699 // is resolved. See 4700 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 4701 // and http://reviews.llvm.org/D8890 . 4702 auto Flags = SCEV::FlagAnyWrap; 4703 if (SA->getValue().ult(BitWidth - 1)) Flags = getNoWrapFlagsFromUB(U); 4704 4705 Constant *X = ConstantInt::get(getContext(), 4706 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4707 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X), Flags); 4708 } 4709 break; 4710 4711 case Instruction::LShr: 4712 // Turn logical shift right of a constant into a unsigned divide. 4713 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4714 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4715 4716 // If the shift count is not less than the bitwidth, the result of 4717 // the shift is undefined. Don't try to analyze it, because the 4718 // resolution chosen here may differ from the resolution chosen in 4719 // other parts of the compiler. 4720 if (SA->getValue().uge(BitWidth)) 4721 break; 4722 4723 Constant *X = ConstantInt::get(getContext(), 4724 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4725 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 4726 } 4727 break; 4728 4729 case Instruction::AShr: 4730 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 4731 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 4732 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 4733 if (L->getOpcode() == Instruction::Shl && 4734 L->getOperand(1) == U->getOperand(1)) { 4735 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 4736 4737 // If the shift count is not less than the bitwidth, the result of 4738 // the shift is undefined. Don't try to analyze it, because the 4739 // resolution chosen here may differ from the resolution chosen in 4740 // other parts of the compiler. 4741 if (CI->getValue().uge(BitWidth)) 4742 break; 4743 4744 uint64_t Amt = BitWidth - CI->getZExtValue(); 4745 if (Amt == BitWidth) 4746 return getSCEV(L->getOperand(0)); // shift by zero --> noop 4747 return 4748 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 4749 IntegerType::get(getContext(), 4750 Amt)), 4751 U->getType()); 4752 } 4753 break; 4754 4755 case Instruction::Trunc: 4756 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 4757 4758 case Instruction::ZExt: 4759 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4760 4761 case Instruction::SExt: 4762 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4763 4764 case Instruction::BitCast: 4765 // BitCasts are no-op casts so we just eliminate the cast. 4766 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 4767 return getSCEV(U->getOperand(0)); 4768 break; 4769 4770 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 4771 // lead to pointer expressions which cannot safely be expanded to GEPs, 4772 // because ScalarEvolution doesn't respect the GEP aliasing rules when 4773 // simplifying integer expressions. 4774 4775 case Instruction::GetElementPtr: 4776 return createNodeForGEP(cast<GEPOperator>(U)); 4777 4778 case Instruction::PHI: 4779 return createNodeForPHI(cast<PHINode>(U)); 4780 4781 case Instruction::Select: 4782 // U can also be a select constant expr, which let fall through. Since 4783 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 4784 // constant expressions cannot have instructions as operands, we'd have 4785 // returned getUnknown for a select constant expressions anyway. 4786 if (isa<Instruction>(U)) 4787 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 4788 U->getOperand(1), U->getOperand(2)); 4789 4790 default: // We cannot analyze this expression. 4791 break; 4792 } 4793 4794 return getUnknown(V); 4795 } 4796 4797 4798 4799 //===----------------------------------------------------------------------===// 4800 // Iteration Count Computation Code 4801 // 4802 4803 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) { 4804 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4805 return getSmallConstantTripCount(L, ExitingBB); 4806 4807 // No trip count information for multiple exits. 4808 return 0; 4809 } 4810 4811 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 4812 /// normal unsigned value. Returns 0 if the trip count is unknown or not 4813 /// constant. Will also return 0 if the maximum trip count is very large (>= 4814 /// 2^32). 4815 /// 4816 /// This "trip count" assumes that control exits via ExitingBlock. More 4817 /// precisely, it is the number of times that control may reach ExitingBlock 4818 /// before taking the branch. For loops with multiple exits, it may not be the 4819 /// number times that the loop header executes because the loop may exit 4820 /// prematurely via another branch. 4821 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L, 4822 BasicBlock *ExitingBlock) { 4823 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4824 assert(L->isLoopExiting(ExitingBlock) && 4825 "Exiting block must actually branch out of the loop!"); 4826 const SCEVConstant *ExitCount = 4827 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 4828 if (!ExitCount) 4829 return 0; 4830 4831 ConstantInt *ExitConst = ExitCount->getValue(); 4832 4833 // Guard against huge trip counts. 4834 if (ExitConst->getValue().getActiveBits() > 32) 4835 return 0; 4836 4837 // In case of integer overflow, this returns 0, which is correct. 4838 return ((unsigned)ExitConst->getZExtValue()) + 1; 4839 } 4840 4841 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) { 4842 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4843 return getSmallConstantTripMultiple(L, ExitingBB); 4844 4845 // No trip multiple information for multiple exits. 4846 return 0; 4847 } 4848 4849 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 4850 /// trip count of this loop as a normal unsigned value, if possible. This 4851 /// means that the actual trip count is always a multiple of the returned 4852 /// value (don't forget the trip count could very well be zero as well!). 4853 /// 4854 /// Returns 1 if the trip count is unknown or not guaranteed to be the 4855 /// multiple of a constant (which is also the case if the trip count is simply 4856 /// constant, use getSmallConstantTripCount for that case), Will also return 1 4857 /// if the trip count is very large (>= 2^32). 4858 /// 4859 /// As explained in the comments for getSmallConstantTripCount, this assumes 4860 /// that control exits the loop via ExitingBlock. 4861 unsigned 4862 ScalarEvolution::getSmallConstantTripMultiple(Loop *L, 4863 BasicBlock *ExitingBlock) { 4864 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4865 assert(L->isLoopExiting(ExitingBlock) && 4866 "Exiting block must actually branch out of the loop!"); 4867 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 4868 if (ExitCount == getCouldNotCompute()) 4869 return 1; 4870 4871 // Get the trip count from the BE count by adding 1. 4872 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType())); 4873 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 4874 // to factor simple cases. 4875 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 4876 TCMul = Mul->getOperand(0); 4877 4878 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 4879 if (!MulC) 4880 return 1; 4881 4882 ConstantInt *Result = MulC->getValue(); 4883 4884 // Guard against huge trip counts (this requires checking 4885 // for zero to handle the case where the trip count == -1 and the 4886 // addition wraps). 4887 if (!Result || Result->getValue().getActiveBits() > 32 || 4888 Result->getValue().getActiveBits() == 0) 4889 return 1; 4890 4891 return (unsigned)Result->getZExtValue(); 4892 } 4893 4894 // getExitCount - Get the expression for the number of loop iterations for which 4895 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return 4896 // SCEVCouldNotCompute. 4897 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 4898 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 4899 } 4900 4901 /// getBackedgeTakenCount - If the specified loop has a predictable 4902 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 4903 /// object. The backedge-taken count is the number of times the loop header 4904 /// will be branched to from within the loop. This is one less than the 4905 /// trip count of the loop, since it doesn't count the first iteration, 4906 /// when the header is branched to from outside the loop. 4907 /// 4908 /// Note that it is not valid to call this method on a loop without a 4909 /// loop-invariant backedge-taken count (see 4910 /// hasLoopInvariantBackedgeTakenCount). 4911 /// 4912 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4913 return getBackedgeTakenInfo(L).getExact(this); 4914 } 4915 4916 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 4917 /// return the least SCEV value that is known never to be less than the 4918 /// actual backedge taken count. 4919 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 4920 return getBackedgeTakenInfo(L).getMax(this); 4921 } 4922 4923 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 4924 /// onto the given Worklist. 4925 static void 4926 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 4927 BasicBlock *Header = L->getHeader(); 4928 4929 // Push all Loop-header PHIs onto the Worklist stack. 4930 for (BasicBlock::iterator I = Header->begin(); 4931 PHINode *PN = dyn_cast<PHINode>(I); ++I) 4932 Worklist.push_back(PN); 4933 } 4934 4935 const ScalarEvolution::BackedgeTakenInfo & 4936 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 4937 // Initially insert an invalid entry for this loop. If the insertion 4938 // succeeds, proceed to actually compute a backedge-taken count and 4939 // update the value. The temporary CouldNotCompute value tells SCEV 4940 // code elsewhere that it shouldn't attempt to request a new 4941 // backedge-taken count, which could result in infinite recursion. 4942 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 4943 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 4944 if (!Pair.second) 4945 return Pair.first->second; 4946 4947 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 4948 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 4949 // must be cleared in this scope. 4950 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 4951 4952 if (Result.getExact(this) != getCouldNotCompute()) { 4953 assert(isLoopInvariant(Result.getExact(this), L) && 4954 isLoopInvariant(Result.getMax(this), L) && 4955 "Computed backedge-taken count isn't loop invariant for loop!"); 4956 ++NumTripCountsComputed; 4957 } 4958 else if (Result.getMax(this) == getCouldNotCompute() && 4959 isa<PHINode>(L->getHeader()->begin())) { 4960 // Only count loops that have phi nodes as not being computable. 4961 ++NumTripCountsNotComputed; 4962 } 4963 4964 // Now that we know more about the trip count for this loop, forget any 4965 // existing SCEV values for PHI nodes in this loop since they are only 4966 // conservative estimates made without the benefit of trip count 4967 // information. This is similar to the code in forgetLoop, except that 4968 // it handles SCEVUnknown PHI nodes specially. 4969 if (Result.hasAnyInfo()) { 4970 SmallVector<Instruction *, 16> Worklist; 4971 PushLoopPHIs(L, Worklist); 4972 4973 SmallPtrSet<Instruction *, 8> Visited; 4974 while (!Worklist.empty()) { 4975 Instruction *I = Worklist.pop_back_val(); 4976 if (!Visited.insert(I).second) 4977 continue; 4978 4979 ValueExprMapType::iterator It = 4980 ValueExprMap.find_as(static_cast<Value *>(I)); 4981 if (It != ValueExprMap.end()) { 4982 const SCEV *Old = It->second; 4983 4984 // SCEVUnknown for a PHI either means that it has an unrecognized 4985 // structure, or it's a PHI that's in the progress of being computed 4986 // by createNodeForPHI. In the former case, additional loop trip 4987 // count information isn't going to change anything. In the later 4988 // case, createNodeForPHI will perform the necessary updates on its 4989 // own when it gets to that point. 4990 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 4991 forgetMemoizedResults(Old); 4992 ValueExprMap.erase(It); 4993 } 4994 if (PHINode *PN = dyn_cast<PHINode>(I)) 4995 ConstantEvolutionLoopExitValue.erase(PN); 4996 } 4997 4998 PushDefUseChildren(I, Worklist); 4999 } 5000 } 5001 5002 // Re-lookup the insert position, since the call to 5003 // computeBackedgeTakenCount above could result in a 5004 // recusive call to getBackedgeTakenInfo (on a different 5005 // loop), which would invalidate the iterator computed 5006 // earlier. 5007 return BackedgeTakenCounts.find(L)->second = Result; 5008 } 5009 5010 /// forgetLoop - This method should be called by the client when it has 5011 /// changed a loop in a way that may effect ScalarEvolution's ability to 5012 /// compute a trip count, or if the loop is deleted. 5013 void ScalarEvolution::forgetLoop(const Loop *L) { 5014 // Drop any stored trip count value. 5015 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 5016 BackedgeTakenCounts.find(L); 5017 if (BTCPos != BackedgeTakenCounts.end()) { 5018 BTCPos->second.clear(); 5019 BackedgeTakenCounts.erase(BTCPos); 5020 } 5021 5022 // Drop information about expressions based on loop-header PHIs. 5023 SmallVector<Instruction *, 16> Worklist; 5024 PushLoopPHIs(L, Worklist); 5025 5026 SmallPtrSet<Instruction *, 8> Visited; 5027 while (!Worklist.empty()) { 5028 Instruction *I = Worklist.pop_back_val(); 5029 if (!Visited.insert(I).second) 5030 continue; 5031 5032 ValueExprMapType::iterator It = 5033 ValueExprMap.find_as(static_cast<Value *>(I)); 5034 if (It != ValueExprMap.end()) { 5035 forgetMemoizedResults(It->second); 5036 ValueExprMap.erase(It); 5037 if (PHINode *PN = dyn_cast<PHINode>(I)) 5038 ConstantEvolutionLoopExitValue.erase(PN); 5039 } 5040 5041 PushDefUseChildren(I, Worklist); 5042 } 5043 5044 // Forget all contained loops too, to avoid dangling entries in the 5045 // ValuesAtScopes map. 5046 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 5047 forgetLoop(*I); 5048 } 5049 5050 /// forgetValue - This method should be called by the client when it has 5051 /// changed a value in a way that may effect its value, or which may 5052 /// disconnect it from a def-use chain linking it to a loop. 5053 void ScalarEvolution::forgetValue(Value *V) { 5054 Instruction *I = dyn_cast<Instruction>(V); 5055 if (!I) return; 5056 5057 // Drop information about expressions based on loop-header PHIs. 5058 SmallVector<Instruction *, 16> Worklist; 5059 Worklist.push_back(I); 5060 5061 SmallPtrSet<Instruction *, 8> Visited; 5062 while (!Worklist.empty()) { 5063 I = Worklist.pop_back_val(); 5064 if (!Visited.insert(I).second) 5065 continue; 5066 5067 ValueExprMapType::iterator It = 5068 ValueExprMap.find_as(static_cast<Value *>(I)); 5069 if (It != ValueExprMap.end()) { 5070 forgetMemoizedResults(It->second); 5071 ValueExprMap.erase(It); 5072 if (PHINode *PN = dyn_cast<PHINode>(I)) 5073 ConstantEvolutionLoopExitValue.erase(PN); 5074 } 5075 5076 PushDefUseChildren(I, Worklist); 5077 } 5078 } 5079 5080 /// getExact - Get the exact loop backedge taken count considering all loop 5081 /// exits. A computable result can only be returned for loops with a single 5082 /// exit. Returning the minimum taken count among all exits is incorrect 5083 /// because one of the loop's exit limit's may have been skipped. HowFarToZero 5084 /// assumes that the limit of each loop test is never skipped. This is a valid 5085 /// assumption as long as the loop exits via that test. For precise results, it 5086 /// is the caller's responsibility to specify the relevant loop exit using 5087 /// getExact(ExitingBlock, SE). 5088 const SCEV * 5089 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 5090 // If any exits were not computable, the loop is not computable. 5091 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 5092 5093 // We need exactly one computable exit. 5094 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 5095 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 5096 5097 const SCEV *BECount = nullptr; 5098 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5099 ENT != nullptr; ENT = ENT->getNextExit()) { 5100 5101 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 5102 5103 if (!BECount) 5104 BECount = ENT->ExactNotTaken; 5105 else if (BECount != ENT->ExactNotTaken) 5106 return SE->getCouldNotCompute(); 5107 } 5108 assert(BECount && "Invalid not taken count for loop exit"); 5109 return BECount; 5110 } 5111 5112 /// getExact - Get the exact not taken count for this loop exit. 5113 const SCEV * 5114 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 5115 ScalarEvolution *SE) const { 5116 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5117 ENT != nullptr; ENT = ENT->getNextExit()) { 5118 5119 if (ENT->ExitingBlock == ExitingBlock) 5120 return ENT->ExactNotTaken; 5121 } 5122 return SE->getCouldNotCompute(); 5123 } 5124 5125 /// getMax - Get the max backedge taken count for the loop. 5126 const SCEV * 5127 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 5128 return Max ? Max : SE->getCouldNotCompute(); 5129 } 5130 5131 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 5132 ScalarEvolution *SE) const { 5133 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S)) 5134 return true; 5135 5136 if (!ExitNotTaken.ExitingBlock) 5137 return false; 5138 5139 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5140 ENT != nullptr; ENT = ENT->getNextExit()) { 5141 5142 if (ENT->ExactNotTaken != SE->getCouldNotCompute() 5143 && SE->hasOperand(ENT->ExactNotTaken, S)) { 5144 return true; 5145 } 5146 } 5147 return false; 5148 } 5149 5150 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 5151 /// computable exit into a persistent ExitNotTakenInfo array. 5152 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 5153 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 5154 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 5155 5156 if (!Complete) 5157 ExitNotTaken.setIncomplete(); 5158 5159 unsigned NumExits = ExitCounts.size(); 5160 if (NumExits == 0) return; 5161 5162 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 5163 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 5164 if (NumExits == 1) return; 5165 5166 // Handle the rare case of multiple computable exits. 5167 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 5168 5169 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 5170 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 5171 PrevENT->setNextExit(ENT); 5172 ENT->ExitingBlock = ExitCounts[i].first; 5173 ENT->ExactNotTaken = ExitCounts[i].second; 5174 } 5175 } 5176 5177 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 5178 void ScalarEvolution::BackedgeTakenInfo::clear() { 5179 ExitNotTaken.ExitingBlock = nullptr; 5180 ExitNotTaken.ExactNotTaken = nullptr; 5181 delete[] ExitNotTaken.getNextExit(); 5182 } 5183 5184 /// computeBackedgeTakenCount - Compute the number of times the backedge 5185 /// of the specified loop will execute. 5186 ScalarEvolution::BackedgeTakenInfo 5187 ScalarEvolution::computeBackedgeTakenCount(const Loop *L) { 5188 SmallVector<BasicBlock *, 8> ExitingBlocks; 5189 L->getExitingBlocks(ExitingBlocks); 5190 5191 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 5192 bool CouldComputeBECount = true; 5193 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 5194 const SCEV *MustExitMaxBECount = nullptr; 5195 const SCEV *MayExitMaxBECount = nullptr; 5196 5197 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 5198 // and compute maxBECount. 5199 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 5200 BasicBlock *ExitBB = ExitingBlocks[i]; 5201 ExitLimit EL = computeExitLimit(L, ExitBB); 5202 5203 // 1. For each exit that can be computed, add an entry to ExitCounts. 5204 // CouldComputeBECount is true only if all exits can be computed. 5205 if (EL.Exact == getCouldNotCompute()) 5206 // We couldn't compute an exact value for this exit, so 5207 // we won't be able to compute an exact value for the loop. 5208 CouldComputeBECount = false; 5209 else 5210 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact)); 5211 5212 // 2. Derive the loop's MaxBECount from each exit's max number of 5213 // non-exiting iterations. Partition the loop exits into two kinds: 5214 // LoopMustExits and LoopMayExits. 5215 // 5216 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 5217 // is a LoopMayExit. If any computable LoopMustExit is found, then 5218 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise, 5219 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is 5220 // considered greater than any computable EL.Max. 5221 if (EL.Max != getCouldNotCompute() && Latch && 5222 DT.dominates(ExitBB, Latch)) { 5223 if (!MustExitMaxBECount) 5224 MustExitMaxBECount = EL.Max; 5225 else { 5226 MustExitMaxBECount = 5227 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max); 5228 } 5229 } else if (MayExitMaxBECount != getCouldNotCompute()) { 5230 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute()) 5231 MayExitMaxBECount = EL.Max; 5232 else { 5233 MayExitMaxBECount = 5234 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max); 5235 } 5236 } 5237 } 5238 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 5239 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 5240 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 5241 } 5242 5243 ScalarEvolution::ExitLimit 5244 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 5245 5246 // Okay, we've chosen an exiting block. See what condition causes us to exit 5247 // at this block and remember the exit block and whether all other targets 5248 // lead to the loop header. 5249 bool MustExecuteLoopHeader = true; 5250 BasicBlock *Exit = nullptr; 5251 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock); 5252 SI != SE; ++SI) 5253 if (!L->contains(*SI)) { 5254 if (Exit) // Multiple exit successors. 5255 return getCouldNotCompute(); 5256 Exit = *SI; 5257 } else if (*SI != L->getHeader()) { 5258 MustExecuteLoopHeader = false; 5259 } 5260 5261 // At this point, we know we have a conditional branch that determines whether 5262 // the loop is exited. However, we don't know if the branch is executed each 5263 // time through the loop. If not, then the execution count of the branch will 5264 // not be equal to the trip count of the loop. 5265 // 5266 // Currently we check for this by checking to see if the Exit branch goes to 5267 // the loop header. If so, we know it will always execute the same number of 5268 // times as the loop. We also handle the case where the exit block *is* the 5269 // loop header. This is common for un-rotated loops. 5270 // 5271 // If both of those tests fail, walk up the unique predecessor chain to the 5272 // header, stopping if there is an edge that doesn't exit the loop. If the 5273 // header is reached, the execution count of the branch will be equal to the 5274 // trip count of the loop. 5275 // 5276 // More extensive analysis could be done to handle more cases here. 5277 // 5278 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 5279 // The simple checks failed, try climbing the unique predecessor chain 5280 // up to the header. 5281 bool Ok = false; 5282 for (BasicBlock *BB = ExitingBlock; BB; ) { 5283 BasicBlock *Pred = BB->getUniquePredecessor(); 5284 if (!Pred) 5285 return getCouldNotCompute(); 5286 TerminatorInst *PredTerm = Pred->getTerminator(); 5287 for (const BasicBlock *PredSucc : PredTerm->successors()) { 5288 if (PredSucc == BB) 5289 continue; 5290 // If the predecessor has a successor that isn't BB and isn't 5291 // outside the loop, assume the worst. 5292 if (L->contains(PredSucc)) 5293 return getCouldNotCompute(); 5294 } 5295 if (Pred == L->getHeader()) { 5296 Ok = true; 5297 break; 5298 } 5299 BB = Pred; 5300 } 5301 if (!Ok) 5302 return getCouldNotCompute(); 5303 } 5304 5305 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 5306 TerminatorInst *Term = ExitingBlock->getTerminator(); 5307 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 5308 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 5309 // Proceed to the next level to examine the exit condition expression. 5310 return computeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0), 5311 BI->getSuccessor(1), 5312 /*ControlsExit=*/IsOnlyExit); 5313 } 5314 5315 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 5316 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 5317 /*ControlsExit=*/IsOnlyExit); 5318 5319 return getCouldNotCompute(); 5320 } 5321 5322 /// computeExitLimitFromCond - Compute the number of times the 5323 /// backedge of the specified loop will execute if its exit condition 5324 /// were a conditional branch of ExitCond, TBB, and FBB. 5325 /// 5326 /// @param ControlsExit is true if ExitCond directly controls the exit 5327 /// branch. In this case, we can assume that the loop exits only if the 5328 /// condition is true and can infer that failing to meet the condition prior to 5329 /// integer wraparound results in undefined behavior. 5330 ScalarEvolution::ExitLimit 5331 ScalarEvolution::computeExitLimitFromCond(const Loop *L, 5332 Value *ExitCond, 5333 BasicBlock *TBB, 5334 BasicBlock *FBB, 5335 bool ControlsExit) { 5336 // Check if the controlling expression for this loop is an And or Or. 5337 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 5338 if (BO->getOpcode() == Instruction::And) { 5339 // Recurse on the operands of the and. 5340 bool EitherMayExit = L->contains(TBB); 5341 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5342 ControlsExit && !EitherMayExit); 5343 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5344 ControlsExit && !EitherMayExit); 5345 const SCEV *BECount = getCouldNotCompute(); 5346 const SCEV *MaxBECount = getCouldNotCompute(); 5347 if (EitherMayExit) { 5348 // Both conditions must be true for the loop to continue executing. 5349 // Choose the less conservative count. 5350 if (EL0.Exact == getCouldNotCompute() || 5351 EL1.Exact == getCouldNotCompute()) 5352 BECount = getCouldNotCompute(); 5353 else 5354 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5355 if (EL0.Max == getCouldNotCompute()) 5356 MaxBECount = EL1.Max; 5357 else if (EL1.Max == getCouldNotCompute()) 5358 MaxBECount = EL0.Max; 5359 else 5360 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5361 } else { 5362 // Both conditions must be true at the same time for the loop to exit. 5363 // For now, be conservative. 5364 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 5365 if (EL0.Max == EL1.Max) 5366 MaxBECount = EL0.Max; 5367 if (EL0.Exact == EL1.Exact) 5368 BECount = EL0.Exact; 5369 } 5370 5371 return ExitLimit(BECount, MaxBECount); 5372 } 5373 if (BO->getOpcode() == Instruction::Or) { 5374 // Recurse on the operands of the or. 5375 bool EitherMayExit = L->contains(FBB); 5376 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5377 ControlsExit && !EitherMayExit); 5378 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5379 ControlsExit && !EitherMayExit); 5380 const SCEV *BECount = getCouldNotCompute(); 5381 const SCEV *MaxBECount = getCouldNotCompute(); 5382 if (EitherMayExit) { 5383 // Both conditions must be false for the loop to continue executing. 5384 // Choose the less conservative count. 5385 if (EL0.Exact == getCouldNotCompute() || 5386 EL1.Exact == getCouldNotCompute()) 5387 BECount = getCouldNotCompute(); 5388 else 5389 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5390 if (EL0.Max == getCouldNotCompute()) 5391 MaxBECount = EL1.Max; 5392 else if (EL1.Max == getCouldNotCompute()) 5393 MaxBECount = EL0.Max; 5394 else 5395 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5396 } else { 5397 // Both conditions must be false at the same time for the loop to exit. 5398 // For now, be conservative. 5399 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 5400 if (EL0.Max == EL1.Max) 5401 MaxBECount = EL0.Max; 5402 if (EL0.Exact == EL1.Exact) 5403 BECount = EL0.Exact; 5404 } 5405 5406 return ExitLimit(BECount, MaxBECount); 5407 } 5408 } 5409 5410 // With an icmp, it may be feasible to compute an exact backedge-taken count. 5411 // Proceed to the next level to examine the icmp. 5412 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 5413 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); 5414 5415 // Check for a constant condition. These are normally stripped out by 5416 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 5417 // preserve the CFG and is temporarily leaving constant conditions 5418 // in place. 5419 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 5420 if (L->contains(FBB) == !CI->getZExtValue()) 5421 // The backedge is always taken. 5422 return getCouldNotCompute(); 5423 else 5424 // The backedge is never taken. 5425 return getZero(CI->getType()); 5426 } 5427 5428 // If it's not an integer or pointer comparison then compute it the hard way. 5429 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5430 } 5431 5432 ScalarEvolution::ExitLimit 5433 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 5434 ICmpInst *ExitCond, 5435 BasicBlock *TBB, 5436 BasicBlock *FBB, 5437 bool ControlsExit) { 5438 5439 // If the condition was exit on true, convert the condition to exit on false 5440 ICmpInst::Predicate Cond; 5441 if (!L->contains(FBB)) 5442 Cond = ExitCond->getPredicate(); 5443 else 5444 Cond = ExitCond->getInversePredicate(); 5445 5446 // Handle common loops like: for (X = "string"; *X; ++X) 5447 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 5448 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 5449 ExitLimit ItCnt = 5450 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 5451 if (ItCnt.hasAnyInfo()) 5452 return ItCnt; 5453 } 5454 5455 ExitLimit ShiftEL = computeShiftCompareExitLimit( 5456 ExitCond->getOperand(0), ExitCond->getOperand(1), L, Cond); 5457 if (ShiftEL.hasAnyInfo()) 5458 return ShiftEL; 5459 5460 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 5461 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 5462 5463 // Try to evaluate any dependencies out of the loop. 5464 LHS = getSCEVAtScope(LHS, L); 5465 RHS = getSCEVAtScope(RHS, L); 5466 5467 // At this point, we would like to compute how many iterations of the 5468 // loop the predicate will return true for these inputs. 5469 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 5470 // If there is a loop-invariant, force it into the RHS. 5471 std::swap(LHS, RHS); 5472 Cond = ICmpInst::getSwappedPredicate(Cond); 5473 } 5474 5475 // Simplify the operands before analyzing them. 5476 (void)SimplifyICmpOperands(Cond, LHS, RHS); 5477 5478 // If we have a comparison of a chrec against a constant, try to use value 5479 // ranges to answer this query. 5480 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 5481 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 5482 if (AddRec->getLoop() == L) { 5483 // Form the constant range. 5484 ConstantRange CompRange( 5485 ICmpInst::makeConstantRange(Cond, RHSC->getAPInt())); 5486 5487 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 5488 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 5489 } 5490 5491 switch (Cond) { 5492 case ICmpInst::ICMP_NE: { // while (X != Y) 5493 // Convert to: while (X-Y != 0) 5494 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5495 if (EL.hasAnyInfo()) return EL; 5496 break; 5497 } 5498 case ICmpInst::ICMP_EQ: { // while (X == Y) 5499 // Convert to: while (X-Y == 0) 5500 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 5501 if (EL.hasAnyInfo()) return EL; 5502 break; 5503 } 5504 case ICmpInst::ICMP_SLT: 5505 case ICmpInst::ICMP_ULT: { // while (X < Y) 5506 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 5507 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit); 5508 if (EL.hasAnyInfo()) return EL; 5509 break; 5510 } 5511 case ICmpInst::ICMP_SGT: 5512 case ICmpInst::ICMP_UGT: { // while (X > Y) 5513 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 5514 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit); 5515 if (EL.hasAnyInfo()) return EL; 5516 break; 5517 } 5518 default: 5519 break; 5520 } 5521 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5522 } 5523 5524 ScalarEvolution::ExitLimit 5525 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 5526 SwitchInst *Switch, 5527 BasicBlock *ExitingBlock, 5528 bool ControlsExit) { 5529 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 5530 5531 // Give up if the exit is the default dest of a switch. 5532 if (Switch->getDefaultDest() == ExitingBlock) 5533 return getCouldNotCompute(); 5534 5535 assert(L->contains(Switch->getDefaultDest()) && 5536 "Default case must not exit the loop!"); 5537 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 5538 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 5539 5540 // while (X != Y) --> while (X-Y != 0) 5541 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5542 if (EL.hasAnyInfo()) 5543 return EL; 5544 5545 return getCouldNotCompute(); 5546 } 5547 5548 static ConstantInt * 5549 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 5550 ScalarEvolution &SE) { 5551 const SCEV *InVal = SE.getConstant(C); 5552 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 5553 assert(isa<SCEVConstant>(Val) && 5554 "Evaluation of SCEV at constant didn't fold correctly?"); 5555 return cast<SCEVConstant>(Val)->getValue(); 5556 } 5557 5558 /// computeLoadConstantCompareExitLimit - Given an exit condition of 5559 /// 'icmp op load X, cst', try to see if we can compute the backedge 5560 /// execution count. 5561 ScalarEvolution::ExitLimit 5562 ScalarEvolution::computeLoadConstantCompareExitLimit( 5563 LoadInst *LI, 5564 Constant *RHS, 5565 const Loop *L, 5566 ICmpInst::Predicate predicate) { 5567 5568 if (LI->isVolatile()) return getCouldNotCompute(); 5569 5570 // Check to see if the loaded pointer is a getelementptr of a global. 5571 // TODO: Use SCEV instead of manually grubbing with GEPs. 5572 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 5573 if (!GEP) return getCouldNotCompute(); 5574 5575 // Make sure that it is really a constant global we are gepping, with an 5576 // initializer, and make sure the first IDX is really 0. 5577 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 5578 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 5579 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 5580 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 5581 return getCouldNotCompute(); 5582 5583 // Okay, we allow one non-constant index into the GEP instruction. 5584 Value *VarIdx = nullptr; 5585 std::vector<Constant*> Indexes; 5586 unsigned VarIdxNum = 0; 5587 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 5588 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 5589 Indexes.push_back(CI); 5590 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 5591 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 5592 VarIdx = GEP->getOperand(i); 5593 VarIdxNum = i-2; 5594 Indexes.push_back(nullptr); 5595 } 5596 5597 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 5598 if (!VarIdx) 5599 return getCouldNotCompute(); 5600 5601 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 5602 // Check to see if X is a loop variant variable value now. 5603 const SCEV *Idx = getSCEV(VarIdx); 5604 Idx = getSCEVAtScope(Idx, L); 5605 5606 // We can only recognize very limited forms of loop index expressions, in 5607 // particular, only affine AddRec's like {C1,+,C2}. 5608 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 5609 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 5610 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 5611 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 5612 return getCouldNotCompute(); 5613 5614 unsigned MaxSteps = MaxBruteForceIterations; 5615 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 5616 ConstantInt *ItCst = ConstantInt::get( 5617 cast<IntegerType>(IdxExpr->getType()), IterationNum); 5618 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 5619 5620 // Form the GEP offset. 5621 Indexes[VarIdxNum] = Val; 5622 5623 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 5624 Indexes); 5625 if (!Result) break; // Cannot compute! 5626 5627 // Evaluate the condition for this iteration. 5628 Result = ConstantExpr::getICmp(predicate, Result, RHS); 5629 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 5630 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 5631 ++NumArrayLenItCounts; 5632 return getConstant(ItCst); // Found terminating iteration! 5633 } 5634 } 5635 return getCouldNotCompute(); 5636 } 5637 5638 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 5639 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 5640 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 5641 if (!RHS) 5642 return getCouldNotCompute(); 5643 5644 const BasicBlock *Latch = L->getLoopLatch(); 5645 if (!Latch) 5646 return getCouldNotCompute(); 5647 5648 const BasicBlock *Predecessor = L->getLoopPredecessor(); 5649 if (!Predecessor) 5650 return getCouldNotCompute(); 5651 5652 // Return true if V is of the form "LHS `shift_op` <positive constant>". 5653 // Return LHS in OutLHS and shift_opt in OutOpCode. 5654 auto MatchPositiveShift = 5655 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 5656 5657 using namespace PatternMatch; 5658 5659 ConstantInt *ShiftAmt; 5660 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 5661 OutOpCode = Instruction::LShr; 5662 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 5663 OutOpCode = Instruction::AShr; 5664 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 5665 OutOpCode = Instruction::Shl; 5666 else 5667 return false; 5668 5669 return ShiftAmt->getValue().isStrictlyPositive(); 5670 }; 5671 5672 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 5673 // 5674 // loop: 5675 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 5676 // %iv.shifted = lshr i32 %iv, <positive constant> 5677 // 5678 // Return true on a succesful match. Return the corresponding PHI node (%iv 5679 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 5680 auto MatchShiftRecurrence = 5681 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 5682 Optional<Instruction::BinaryOps> PostShiftOpCode; 5683 5684 { 5685 Instruction::BinaryOps OpC; 5686 Value *V; 5687 5688 // If we encounter a shift instruction, "peel off" the shift operation, 5689 // and remember that we did so. Later when we inspect %iv's backedge 5690 // value, we will make sure that the backedge value uses the same 5691 // operation. 5692 // 5693 // Note: the peeled shift operation does not have to be the same 5694 // instruction as the one feeding into the PHI's backedge value. We only 5695 // really care about it being the same *kind* of shift instruction -- 5696 // that's all that is required for our later inferences to hold. 5697 if (MatchPositiveShift(LHS, V, OpC)) { 5698 PostShiftOpCode = OpC; 5699 LHS = V; 5700 } 5701 } 5702 5703 PNOut = dyn_cast<PHINode>(LHS); 5704 if (!PNOut || PNOut->getParent() != L->getHeader()) 5705 return false; 5706 5707 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 5708 Value *OpLHS; 5709 5710 return 5711 // The backedge value for the PHI node must be a shift by a positive 5712 // amount 5713 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 5714 5715 // of the PHI node itself 5716 OpLHS == PNOut && 5717 5718 // and the kind of shift should be match the kind of shift we peeled 5719 // off, if any. 5720 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 5721 }; 5722 5723 PHINode *PN; 5724 Instruction::BinaryOps OpCode; 5725 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 5726 return getCouldNotCompute(); 5727 5728 const DataLayout &DL = getDataLayout(); 5729 5730 // The key rationale for this optimization is that for some kinds of shift 5731 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 5732 // within a finite number of iterations. If the condition guarding the 5733 // backedge (in the sense that the backedge is taken if the condition is true) 5734 // is false for the value the shift recurrence stabilizes to, then we know 5735 // that the backedge is taken only a finite number of times. 5736 5737 ConstantInt *StableValue = nullptr; 5738 switch (OpCode) { 5739 default: 5740 llvm_unreachable("Impossible case!"); 5741 5742 case Instruction::AShr: { 5743 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 5744 // bitwidth(K) iterations. 5745 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 5746 bool KnownZero, KnownOne; 5747 ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr, 5748 Predecessor->getTerminator(), &DT); 5749 auto *Ty = cast<IntegerType>(RHS->getType()); 5750 if (KnownZero) 5751 StableValue = ConstantInt::get(Ty, 0); 5752 else if (KnownOne) 5753 StableValue = ConstantInt::get(Ty, -1, true); 5754 else 5755 return getCouldNotCompute(); 5756 5757 break; 5758 } 5759 case Instruction::LShr: 5760 case Instruction::Shl: 5761 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 5762 // stabilize to 0 in at most bitwidth(K) iterations. 5763 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 5764 break; 5765 } 5766 5767 auto *Result = 5768 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 5769 assert(Result->getType()->isIntegerTy(1) && 5770 "Otherwise cannot be an operand to a branch instruction"); 5771 5772 if (Result->isZeroValue()) { 5773 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 5774 const SCEV *UpperBound = 5775 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 5776 return ExitLimit(getCouldNotCompute(), UpperBound); 5777 } 5778 5779 return getCouldNotCompute(); 5780 } 5781 5782 /// CanConstantFold - Return true if we can constant fold an instruction of the 5783 /// specified type, assuming that all operands were constants. 5784 static bool CanConstantFold(const Instruction *I) { 5785 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 5786 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5787 isa<LoadInst>(I)) 5788 return true; 5789 5790 if (const CallInst *CI = dyn_cast<CallInst>(I)) 5791 if (const Function *F = CI->getCalledFunction()) 5792 return canConstantFoldCallTo(F); 5793 return false; 5794 } 5795 5796 /// Determine whether this instruction can constant evolve within this loop 5797 /// assuming its operands can all constant evolve. 5798 static bool canConstantEvolve(Instruction *I, const Loop *L) { 5799 // An instruction outside of the loop can't be derived from a loop PHI. 5800 if (!L->contains(I)) return false; 5801 5802 if (isa<PHINode>(I)) { 5803 // We don't currently keep track of the control flow needed to evaluate 5804 // PHIs, so we cannot handle PHIs inside of loops. 5805 return L->getHeader() == I->getParent(); 5806 } 5807 5808 // If we won't be able to constant fold this expression even if the operands 5809 // are constants, bail early. 5810 return CanConstantFold(I); 5811 } 5812 5813 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 5814 /// recursing through each instruction operand until reaching a loop header phi. 5815 static PHINode * 5816 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 5817 DenseMap<Instruction *, PHINode *> &PHIMap) { 5818 5819 // Otherwise, we can evaluate this instruction if all of its operands are 5820 // constant or derived from a PHI node themselves. 5821 PHINode *PHI = nullptr; 5822 for (Value *Op : UseInst->operands()) { 5823 if (isa<Constant>(Op)) continue; 5824 5825 Instruction *OpInst = dyn_cast<Instruction>(Op); 5826 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 5827 5828 PHINode *P = dyn_cast<PHINode>(OpInst); 5829 if (!P) 5830 // If this operand is already visited, reuse the prior result. 5831 // We may have P != PHI if this is the deepest point at which the 5832 // inconsistent paths meet. 5833 P = PHIMap.lookup(OpInst); 5834 if (!P) { 5835 // Recurse and memoize the results, whether a phi is found or not. 5836 // This recursive call invalidates pointers into PHIMap. 5837 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 5838 PHIMap[OpInst] = P; 5839 } 5840 if (!P) 5841 return nullptr; // Not evolving from PHI 5842 if (PHI && PHI != P) 5843 return nullptr; // Evolving from multiple different PHIs. 5844 PHI = P; 5845 } 5846 // This is a expression evolving from a constant PHI! 5847 return PHI; 5848 } 5849 5850 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 5851 /// in the loop that V is derived from. We allow arbitrary operations along the 5852 /// way, but the operands of an operation must either be constants or a value 5853 /// derived from a constant PHI. If this expression does not fit with these 5854 /// constraints, return null. 5855 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 5856 Instruction *I = dyn_cast<Instruction>(V); 5857 if (!I || !canConstantEvolve(I, L)) return nullptr; 5858 5859 if (PHINode *PN = dyn_cast<PHINode>(I)) 5860 return PN; 5861 5862 // Record non-constant instructions contained by the loop. 5863 DenseMap<Instruction *, PHINode *> PHIMap; 5864 return getConstantEvolvingPHIOperands(I, L, PHIMap); 5865 } 5866 5867 /// EvaluateExpression - Given an expression that passes the 5868 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 5869 /// in the loop has the value PHIVal. If we can't fold this expression for some 5870 /// reason, return null. 5871 static Constant *EvaluateExpression(Value *V, const Loop *L, 5872 DenseMap<Instruction *, Constant *> &Vals, 5873 const DataLayout &DL, 5874 const TargetLibraryInfo *TLI) { 5875 // Convenient constant check, but redundant for recursive calls. 5876 if (Constant *C = dyn_cast<Constant>(V)) return C; 5877 Instruction *I = dyn_cast<Instruction>(V); 5878 if (!I) return nullptr; 5879 5880 if (Constant *C = Vals.lookup(I)) return C; 5881 5882 // An instruction inside the loop depends on a value outside the loop that we 5883 // weren't given a mapping for, or a value such as a call inside the loop. 5884 if (!canConstantEvolve(I, L)) return nullptr; 5885 5886 // An unmapped PHI can be due to a branch or another loop inside this loop, 5887 // or due to this not being the initial iteration through a loop where we 5888 // couldn't compute the evolution of this particular PHI last time. 5889 if (isa<PHINode>(I)) return nullptr; 5890 5891 std::vector<Constant*> Operands(I->getNumOperands()); 5892 5893 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5894 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 5895 if (!Operand) { 5896 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 5897 if (!Operands[i]) return nullptr; 5898 continue; 5899 } 5900 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 5901 Vals[Operand] = C; 5902 if (!C) return nullptr; 5903 Operands[i] = C; 5904 } 5905 5906 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5907 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 5908 Operands[1], DL, TLI); 5909 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5910 if (!LI->isVolatile()) 5911 return ConstantFoldLoadFromConstPtr(Operands[0], DL); 5912 } 5913 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL, 5914 TLI); 5915 } 5916 5917 5918 // If every incoming value to PN except the one for BB is a specific Constant, 5919 // return that, else return nullptr. 5920 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 5921 Constant *IncomingVal = nullptr; 5922 5923 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5924 if (PN->getIncomingBlock(i) == BB) 5925 continue; 5926 5927 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 5928 if (!CurrentVal) 5929 return nullptr; 5930 5931 if (IncomingVal != CurrentVal) { 5932 if (IncomingVal) 5933 return nullptr; 5934 IncomingVal = CurrentVal; 5935 } 5936 } 5937 5938 return IncomingVal; 5939 } 5940 5941 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 5942 /// in the header of its containing loop, we know the loop executes a 5943 /// constant number of times, and the PHI node is just a recurrence 5944 /// involving constants, fold it. 5945 Constant * 5946 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 5947 const APInt &BEs, 5948 const Loop *L) { 5949 auto I = ConstantEvolutionLoopExitValue.find(PN); 5950 if (I != ConstantEvolutionLoopExitValue.end()) 5951 return I->second; 5952 5953 if (BEs.ugt(MaxBruteForceIterations)) 5954 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 5955 5956 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 5957 5958 DenseMap<Instruction *, Constant *> CurrentIterVals; 5959 BasicBlock *Header = L->getHeader(); 5960 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5961 5962 BasicBlock *Latch = L->getLoopLatch(); 5963 if (!Latch) 5964 return nullptr; 5965 5966 for (auto &I : *Header) { 5967 PHINode *PHI = dyn_cast<PHINode>(&I); 5968 if (!PHI) break; 5969 auto *StartCST = getOtherIncomingValue(PHI, Latch); 5970 if (!StartCST) continue; 5971 CurrentIterVals[PHI] = StartCST; 5972 } 5973 if (!CurrentIterVals.count(PN)) 5974 return RetVal = nullptr; 5975 5976 Value *BEValue = PN->getIncomingValueForBlock(Latch); 5977 5978 // Execute the loop symbolically to determine the exit value. 5979 if (BEs.getActiveBits() >= 32) 5980 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 5981 5982 unsigned NumIterations = BEs.getZExtValue(); // must be in range 5983 unsigned IterationNum = 0; 5984 const DataLayout &DL = getDataLayout(); 5985 for (; ; ++IterationNum) { 5986 if (IterationNum == NumIterations) 5987 return RetVal = CurrentIterVals[PN]; // Got exit value! 5988 5989 // Compute the value of the PHIs for the next iteration. 5990 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 5991 DenseMap<Instruction *, Constant *> NextIterVals; 5992 Constant *NextPHI = 5993 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5994 if (!NextPHI) 5995 return nullptr; // Couldn't evaluate! 5996 NextIterVals[PN] = NextPHI; 5997 5998 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 5999 6000 // Also evaluate the other PHI nodes. However, we don't get to stop if we 6001 // cease to be able to evaluate one of them or if they stop evolving, 6002 // because that doesn't necessarily prevent us from computing PN. 6003 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 6004 for (const auto &I : CurrentIterVals) { 6005 PHINode *PHI = dyn_cast<PHINode>(I.first); 6006 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 6007 PHIsToCompute.emplace_back(PHI, I.second); 6008 } 6009 // We use two distinct loops because EvaluateExpression may invalidate any 6010 // iterators into CurrentIterVals. 6011 for (const auto &I : PHIsToCompute) { 6012 PHINode *PHI = I.first; 6013 Constant *&NextPHI = NextIterVals[PHI]; 6014 if (!NextPHI) { // Not already computed. 6015 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 6016 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6017 } 6018 if (NextPHI != I.second) 6019 StoppedEvolving = false; 6020 } 6021 6022 // If all entries in CurrentIterVals == NextIterVals then we can stop 6023 // iterating, the loop can't continue to change. 6024 if (StoppedEvolving) 6025 return RetVal = CurrentIterVals[PN]; 6026 6027 CurrentIterVals.swap(NextIterVals); 6028 } 6029 } 6030 6031 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 6032 Value *Cond, 6033 bool ExitWhen) { 6034 PHINode *PN = getConstantEvolvingPHI(Cond, L); 6035 if (!PN) return getCouldNotCompute(); 6036 6037 // If the loop is canonicalized, the PHI will have exactly two entries. 6038 // That's the only form we support here. 6039 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 6040 6041 DenseMap<Instruction *, Constant *> CurrentIterVals; 6042 BasicBlock *Header = L->getHeader(); 6043 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 6044 6045 BasicBlock *Latch = L->getLoopLatch(); 6046 assert(Latch && "Should follow from NumIncomingValues == 2!"); 6047 6048 for (auto &I : *Header) { 6049 PHINode *PHI = dyn_cast<PHINode>(&I); 6050 if (!PHI) 6051 break; 6052 auto *StartCST = getOtherIncomingValue(PHI, Latch); 6053 if (!StartCST) continue; 6054 CurrentIterVals[PHI] = StartCST; 6055 } 6056 if (!CurrentIterVals.count(PN)) 6057 return getCouldNotCompute(); 6058 6059 // Okay, we find a PHI node that defines the trip count of this loop. Execute 6060 // the loop symbolically to determine when the condition gets a value of 6061 // "ExitWhen". 6062 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 6063 const DataLayout &DL = getDataLayout(); 6064 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 6065 auto *CondVal = dyn_cast_or_null<ConstantInt>( 6066 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 6067 6068 // Couldn't symbolically evaluate. 6069 if (!CondVal) return getCouldNotCompute(); 6070 6071 if (CondVal->getValue() == uint64_t(ExitWhen)) { 6072 ++NumBruteForceTripCountsComputed; 6073 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 6074 } 6075 6076 // Update all the PHI nodes for the next iteration. 6077 DenseMap<Instruction *, Constant *> NextIterVals; 6078 6079 // Create a list of which PHIs we need to compute. We want to do this before 6080 // calling EvaluateExpression on them because that may invalidate iterators 6081 // into CurrentIterVals. 6082 SmallVector<PHINode *, 8> PHIsToCompute; 6083 for (const auto &I : CurrentIterVals) { 6084 PHINode *PHI = dyn_cast<PHINode>(I.first); 6085 if (!PHI || PHI->getParent() != Header) continue; 6086 PHIsToCompute.push_back(PHI); 6087 } 6088 for (PHINode *PHI : PHIsToCompute) { 6089 Constant *&NextPHI = NextIterVals[PHI]; 6090 if (NextPHI) continue; // Already computed! 6091 6092 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 6093 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6094 } 6095 CurrentIterVals.swap(NextIterVals); 6096 } 6097 6098 // Too many iterations were needed to evaluate. 6099 return getCouldNotCompute(); 6100 } 6101 6102 /// getSCEVAtScope - Return a SCEV expression for the specified value 6103 /// at the specified scope in the program. The L value specifies a loop 6104 /// nest to evaluate the expression at, where null is the top-level or a 6105 /// specified loop is immediately inside of the loop. 6106 /// 6107 /// This method can be used to compute the exit value for a variable defined 6108 /// in a loop by querying what the value will hold in the parent loop. 6109 /// 6110 /// In the case that a relevant loop exit value cannot be computed, the 6111 /// original value V is returned. 6112 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 6113 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 6114 ValuesAtScopes[V]; 6115 // Check to see if we've folded this expression at this loop before. 6116 for (auto &LS : Values) 6117 if (LS.first == L) 6118 return LS.second ? LS.second : V; 6119 6120 Values.emplace_back(L, nullptr); 6121 6122 // Otherwise compute it. 6123 const SCEV *C = computeSCEVAtScope(V, L); 6124 for (auto &LS : reverse(ValuesAtScopes[V])) 6125 if (LS.first == L) { 6126 LS.second = C; 6127 break; 6128 } 6129 return C; 6130 } 6131 6132 /// This builds up a Constant using the ConstantExpr interface. That way, we 6133 /// will return Constants for objects which aren't represented by a 6134 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 6135 /// Returns NULL if the SCEV isn't representable as a Constant. 6136 static Constant *BuildConstantFromSCEV(const SCEV *V) { 6137 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 6138 case scCouldNotCompute: 6139 case scAddRecExpr: 6140 break; 6141 case scConstant: 6142 return cast<SCEVConstant>(V)->getValue(); 6143 case scUnknown: 6144 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 6145 case scSignExtend: { 6146 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 6147 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 6148 return ConstantExpr::getSExt(CastOp, SS->getType()); 6149 break; 6150 } 6151 case scZeroExtend: { 6152 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 6153 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 6154 return ConstantExpr::getZExt(CastOp, SZ->getType()); 6155 break; 6156 } 6157 case scTruncate: { 6158 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 6159 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 6160 return ConstantExpr::getTrunc(CastOp, ST->getType()); 6161 break; 6162 } 6163 case scAddExpr: { 6164 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 6165 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 6166 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 6167 unsigned AS = PTy->getAddressSpace(); 6168 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 6169 C = ConstantExpr::getBitCast(C, DestPtrTy); 6170 } 6171 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 6172 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 6173 if (!C2) return nullptr; 6174 6175 // First pointer! 6176 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 6177 unsigned AS = C2->getType()->getPointerAddressSpace(); 6178 std::swap(C, C2); 6179 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 6180 // The offsets have been converted to bytes. We can add bytes to an 6181 // i8* by GEP with the byte count in the first index. 6182 C = ConstantExpr::getBitCast(C, DestPtrTy); 6183 } 6184 6185 // Don't bother trying to sum two pointers. We probably can't 6186 // statically compute a load that results from it anyway. 6187 if (C2->getType()->isPointerTy()) 6188 return nullptr; 6189 6190 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 6191 if (PTy->getElementType()->isStructTy()) 6192 C2 = ConstantExpr::getIntegerCast( 6193 C2, Type::getInt32Ty(C->getContext()), true); 6194 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 6195 } else 6196 C = ConstantExpr::getAdd(C, C2); 6197 } 6198 return C; 6199 } 6200 break; 6201 } 6202 case scMulExpr: { 6203 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 6204 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 6205 // Don't bother with pointers at all. 6206 if (C->getType()->isPointerTy()) return nullptr; 6207 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 6208 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 6209 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 6210 C = ConstantExpr::getMul(C, C2); 6211 } 6212 return C; 6213 } 6214 break; 6215 } 6216 case scUDivExpr: { 6217 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 6218 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 6219 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 6220 if (LHS->getType() == RHS->getType()) 6221 return ConstantExpr::getUDiv(LHS, RHS); 6222 break; 6223 } 6224 case scSMaxExpr: 6225 case scUMaxExpr: 6226 break; // TODO: smax, umax. 6227 } 6228 return nullptr; 6229 } 6230 6231 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 6232 if (isa<SCEVConstant>(V)) return V; 6233 6234 // If this instruction is evolved from a constant-evolving PHI, compute the 6235 // exit value from the loop without using SCEVs. 6236 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 6237 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 6238 const Loop *LI = this->LI[I->getParent()]; 6239 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 6240 if (PHINode *PN = dyn_cast<PHINode>(I)) 6241 if (PN->getParent() == LI->getHeader()) { 6242 // Okay, there is no closed form solution for the PHI node. Check 6243 // to see if the loop that contains it has a known backedge-taken 6244 // count. If so, we may be able to force computation of the exit 6245 // value. 6246 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 6247 if (const SCEVConstant *BTCC = 6248 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 6249 // Okay, we know how many times the containing loop executes. If 6250 // this is a constant evolving PHI node, get the final value at 6251 // the specified iteration number. 6252 Constant *RV = 6253 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI); 6254 if (RV) return getSCEV(RV); 6255 } 6256 } 6257 6258 // Okay, this is an expression that we cannot symbolically evaluate 6259 // into a SCEV. Check to see if it's possible to symbolically evaluate 6260 // the arguments into constants, and if so, try to constant propagate the 6261 // result. This is particularly useful for computing loop exit values. 6262 if (CanConstantFold(I)) { 6263 SmallVector<Constant *, 4> Operands; 6264 bool MadeImprovement = false; 6265 for (Value *Op : I->operands()) { 6266 if (Constant *C = dyn_cast<Constant>(Op)) { 6267 Operands.push_back(C); 6268 continue; 6269 } 6270 6271 // If any of the operands is non-constant and if they are 6272 // non-integer and non-pointer, don't even try to analyze them 6273 // with scev techniques. 6274 if (!isSCEVable(Op->getType())) 6275 return V; 6276 6277 const SCEV *OrigV = getSCEV(Op); 6278 const SCEV *OpV = getSCEVAtScope(OrigV, L); 6279 MadeImprovement |= OrigV != OpV; 6280 6281 Constant *C = BuildConstantFromSCEV(OpV); 6282 if (!C) return V; 6283 if (C->getType() != Op->getType()) 6284 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 6285 Op->getType(), 6286 false), 6287 C, Op->getType()); 6288 Operands.push_back(C); 6289 } 6290 6291 // Check to see if getSCEVAtScope actually made an improvement. 6292 if (MadeImprovement) { 6293 Constant *C = nullptr; 6294 const DataLayout &DL = getDataLayout(); 6295 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 6296 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 6297 Operands[1], DL, &TLI); 6298 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 6299 if (!LI->isVolatile()) 6300 C = ConstantFoldLoadFromConstPtr(Operands[0], DL); 6301 } else 6302 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, 6303 DL, &TLI); 6304 if (!C) return V; 6305 return getSCEV(C); 6306 } 6307 } 6308 } 6309 6310 // This is some other type of SCEVUnknown, just return it. 6311 return V; 6312 } 6313 6314 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 6315 // Avoid performing the look-up in the common case where the specified 6316 // expression has no loop-variant portions. 6317 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 6318 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6319 if (OpAtScope != Comm->getOperand(i)) { 6320 // Okay, at least one of these operands is loop variant but might be 6321 // foldable. Build a new instance of the folded commutative expression. 6322 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 6323 Comm->op_begin()+i); 6324 NewOps.push_back(OpAtScope); 6325 6326 for (++i; i != e; ++i) { 6327 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6328 NewOps.push_back(OpAtScope); 6329 } 6330 if (isa<SCEVAddExpr>(Comm)) 6331 return getAddExpr(NewOps); 6332 if (isa<SCEVMulExpr>(Comm)) 6333 return getMulExpr(NewOps); 6334 if (isa<SCEVSMaxExpr>(Comm)) 6335 return getSMaxExpr(NewOps); 6336 if (isa<SCEVUMaxExpr>(Comm)) 6337 return getUMaxExpr(NewOps); 6338 llvm_unreachable("Unknown commutative SCEV type!"); 6339 } 6340 } 6341 // If we got here, all operands are loop invariant. 6342 return Comm; 6343 } 6344 6345 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 6346 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 6347 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 6348 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 6349 return Div; // must be loop invariant 6350 return getUDivExpr(LHS, RHS); 6351 } 6352 6353 // If this is a loop recurrence for a loop that does not contain L, then we 6354 // are dealing with the final value computed by the loop. 6355 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 6356 // First, attempt to evaluate each operand. 6357 // Avoid performing the look-up in the common case where the specified 6358 // expression has no loop-variant portions. 6359 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 6360 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 6361 if (OpAtScope == AddRec->getOperand(i)) 6362 continue; 6363 6364 // Okay, at least one of these operands is loop variant but might be 6365 // foldable. Build a new instance of the folded commutative expression. 6366 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 6367 AddRec->op_begin()+i); 6368 NewOps.push_back(OpAtScope); 6369 for (++i; i != e; ++i) 6370 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 6371 6372 const SCEV *FoldedRec = 6373 getAddRecExpr(NewOps, AddRec->getLoop(), 6374 AddRec->getNoWrapFlags(SCEV::FlagNW)); 6375 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 6376 // The addrec may be folded to a nonrecurrence, for example, if the 6377 // induction variable is multiplied by zero after constant folding. Go 6378 // ahead and return the folded value. 6379 if (!AddRec) 6380 return FoldedRec; 6381 break; 6382 } 6383 6384 // If the scope is outside the addrec's loop, evaluate it by using the 6385 // loop exit value of the addrec. 6386 if (!AddRec->getLoop()->contains(L)) { 6387 // To evaluate this recurrence, we need to know how many times the AddRec 6388 // loop iterates. Compute this now. 6389 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 6390 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 6391 6392 // Then, evaluate the AddRec. 6393 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 6394 } 6395 6396 return AddRec; 6397 } 6398 6399 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 6400 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6401 if (Op == Cast->getOperand()) 6402 return Cast; // must be loop invariant 6403 return getZeroExtendExpr(Op, Cast->getType()); 6404 } 6405 6406 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 6407 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6408 if (Op == Cast->getOperand()) 6409 return Cast; // must be loop invariant 6410 return getSignExtendExpr(Op, Cast->getType()); 6411 } 6412 6413 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 6414 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6415 if (Op == Cast->getOperand()) 6416 return Cast; // must be loop invariant 6417 return getTruncateExpr(Op, Cast->getType()); 6418 } 6419 6420 llvm_unreachable("Unknown SCEV type!"); 6421 } 6422 6423 /// getSCEVAtScope - This is a convenience function which does 6424 /// getSCEVAtScope(getSCEV(V), L). 6425 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 6426 return getSCEVAtScope(getSCEV(V), L); 6427 } 6428 6429 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 6430 /// following equation: 6431 /// 6432 /// A * X = B (mod N) 6433 /// 6434 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 6435 /// A and B isn't important. 6436 /// 6437 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 6438 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 6439 ScalarEvolution &SE) { 6440 uint32_t BW = A.getBitWidth(); 6441 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 6442 assert(A != 0 && "A must be non-zero."); 6443 6444 // 1. D = gcd(A, N) 6445 // 6446 // The gcd of A and N may have only one prime factor: 2. The number of 6447 // trailing zeros in A is its multiplicity 6448 uint32_t Mult2 = A.countTrailingZeros(); 6449 // D = 2^Mult2 6450 6451 // 2. Check if B is divisible by D. 6452 // 6453 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 6454 // is not less than multiplicity of this prime factor for D. 6455 if (B.countTrailingZeros() < Mult2) 6456 return SE.getCouldNotCompute(); 6457 6458 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 6459 // modulo (N / D). 6460 // 6461 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 6462 // bit width during computations. 6463 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 6464 APInt Mod(BW + 1, 0); 6465 Mod.setBit(BW - Mult2); // Mod = N / D 6466 APInt I = AD.multiplicativeInverse(Mod); 6467 6468 // 4. Compute the minimum unsigned root of the equation: 6469 // I * (B / D) mod (N / D) 6470 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 6471 6472 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 6473 // bits. 6474 return SE.getConstant(Result.trunc(BW)); 6475 } 6476 6477 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 6478 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 6479 /// might be the same) or two SCEVCouldNotCompute objects. 6480 /// 6481 static std::pair<const SCEV *,const SCEV *> 6482 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 6483 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 6484 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 6485 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 6486 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 6487 6488 // We currently can only solve this if the coefficients are constants. 6489 if (!LC || !MC || !NC) { 6490 const SCEV *CNC = SE.getCouldNotCompute(); 6491 return std::make_pair(CNC, CNC); 6492 } 6493 6494 uint32_t BitWidth = LC->getAPInt().getBitWidth(); 6495 const APInt &L = LC->getAPInt(); 6496 const APInt &M = MC->getAPInt(); 6497 const APInt &N = NC->getAPInt(); 6498 APInt Two(BitWidth, 2); 6499 APInt Four(BitWidth, 4); 6500 6501 { 6502 using namespace APIntOps; 6503 const APInt& C = L; 6504 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 6505 // The B coefficient is M-N/2 6506 APInt B(M); 6507 B -= sdiv(N,Two); 6508 6509 // The A coefficient is N/2 6510 APInt A(N.sdiv(Two)); 6511 6512 // Compute the B^2-4ac term. 6513 APInt SqrtTerm(B); 6514 SqrtTerm *= B; 6515 SqrtTerm -= Four * (A * C); 6516 6517 if (SqrtTerm.isNegative()) { 6518 // The loop is provably infinite. 6519 const SCEV *CNC = SE.getCouldNotCompute(); 6520 return std::make_pair(CNC, CNC); 6521 } 6522 6523 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 6524 // integer value or else APInt::sqrt() will assert. 6525 APInt SqrtVal(SqrtTerm.sqrt()); 6526 6527 // Compute the two solutions for the quadratic formula. 6528 // The divisions must be performed as signed divisions. 6529 APInt NegB(-B); 6530 APInt TwoA(A << 1); 6531 if (TwoA.isMinValue()) { 6532 const SCEV *CNC = SE.getCouldNotCompute(); 6533 return std::make_pair(CNC, CNC); 6534 } 6535 6536 LLVMContext &Context = SE.getContext(); 6537 6538 ConstantInt *Solution1 = 6539 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 6540 ConstantInt *Solution2 = 6541 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 6542 6543 return std::make_pair(SE.getConstant(Solution1), 6544 SE.getConstant(Solution2)); 6545 } // end APIntOps namespace 6546 } 6547 6548 /// HowFarToZero - Return the number of times a backedge comparing the specified 6549 /// value to zero will execute. If not computable, return CouldNotCompute. 6550 /// 6551 /// This is only used for loops with a "x != y" exit test. The exit condition is 6552 /// now expressed as a single expression, V = x-y. So the exit test is 6553 /// effectively V != 0. We know and take advantage of the fact that this 6554 /// expression only being used in a comparison by zero context. 6555 ScalarEvolution::ExitLimit 6556 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) { 6557 // If the value is a constant 6558 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6559 // If the value is already zero, the branch will execute zero times. 6560 if (C->getValue()->isZero()) return C; 6561 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6562 } 6563 6564 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 6565 if (!AddRec || AddRec->getLoop() != L) 6566 return getCouldNotCompute(); 6567 6568 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 6569 // the quadratic equation to solve it. 6570 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 6571 std::pair<const SCEV *,const SCEV *> Roots = 6572 SolveQuadraticEquation(AddRec, *this); 6573 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6574 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6575 if (R1 && R2) { 6576 // Pick the smallest positive root value. 6577 if (ConstantInt *CB = 6578 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 6579 R1->getValue(), 6580 R2->getValue()))) { 6581 if (!CB->getZExtValue()) 6582 std::swap(R1, R2); // R1 is the minimum root now. 6583 6584 // We can only use this value if the chrec ends up with an exact zero 6585 // value at this index. When solving for "X*X != 5", for example, we 6586 // should not accept a root of 2. 6587 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 6588 if (Val->isZero()) 6589 return R1; // We found a quadratic root! 6590 } 6591 } 6592 return getCouldNotCompute(); 6593 } 6594 6595 // Otherwise we can only handle this if it is affine. 6596 if (!AddRec->isAffine()) 6597 return getCouldNotCompute(); 6598 6599 // If this is an affine expression, the execution count of this branch is 6600 // the minimum unsigned root of the following equation: 6601 // 6602 // Start + Step*N = 0 (mod 2^BW) 6603 // 6604 // equivalent to: 6605 // 6606 // Step*N = -Start (mod 2^BW) 6607 // 6608 // where BW is the common bit width of Start and Step. 6609 6610 // Get the initial value for the loop. 6611 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 6612 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 6613 6614 // For now we handle only constant steps. 6615 // 6616 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 6617 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 6618 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 6619 // We have not yet seen any such cases. 6620 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 6621 if (!StepC || StepC->getValue()->equalsInt(0)) 6622 return getCouldNotCompute(); 6623 6624 // For positive steps (counting up until unsigned overflow): 6625 // N = -Start/Step (as unsigned) 6626 // For negative steps (counting down to zero): 6627 // N = Start/-Step 6628 // First compute the unsigned distance from zero in the direction of Step. 6629 bool CountDown = StepC->getAPInt().isNegative(); 6630 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 6631 6632 // Handle unitary steps, which cannot wraparound. 6633 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 6634 // N = Distance (as unsigned) 6635 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 6636 ConstantRange CR = getUnsignedRange(Start); 6637 const SCEV *MaxBECount; 6638 if (!CountDown && CR.getUnsignedMin().isMinValue()) 6639 // When counting up, the worst starting value is 1, not 0. 6640 MaxBECount = CR.getUnsignedMax().isMinValue() 6641 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 6642 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 6643 else 6644 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 6645 : -CR.getUnsignedMin()); 6646 return ExitLimit(Distance, MaxBECount); 6647 } 6648 6649 // As a special case, handle the instance where Step is a positive power of 6650 // two. In this case, determining whether Step divides Distance evenly can be 6651 // done by counting and comparing the number of trailing zeros of Step and 6652 // Distance. 6653 if (!CountDown) { 6654 const APInt &StepV = StepC->getAPInt(); 6655 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It 6656 // also returns true if StepV is maximally negative (eg, INT_MIN), but that 6657 // case is not handled as this code is guarded by !CountDown. 6658 if (StepV.isPowerOf2() && 6659 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) { 6660 // Here we've constrained the equation to be of the form 6661 // 6662 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0) 6663 // 6664 // where we're operating on a W bit wide integer domain and k is 6665 // non-negative. The smallest unsigned solution for X is the trip count. 6666 // 6667 // (0) is equivalent to: 6668 // 6669 // 2^(N + k) * Distance' - 2^N * X = L * 2^W 6670 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N 6671 // <=> 2^k * Distance' - X = L * 2^(W - N) 6672 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1) 6673 // 6674 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS 6675 // by 2^(W - N). 6676 // 6677 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2) 6678 // 6679 // E.g. say we're solving 6680 // 6681 // 2 * Val = 2 * X (in i8) ... (3) 6682 // 6683 // then from (2), we get X = Val URem i8 128 (k = 0 in this case). 6684 // 6685 // Note: It is tempting to solve (3) by setting X = Val, but Val is not 6686 // necessarily the smallest unsigned value of X that satisfies (3). 6687 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3) 6688 // is i8 1, not i8 -127 6689 6690 const auto *ModuloResult = getUDivExactExpr(Distance, Step); 6691 6692 // Since SCEV does not have a URem node, we construct one using a truncate 6693 // and a zero extend. 6694 6695 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros(); 6696 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth); 6697 auto *WideTy = Distance->getType(); 6698 6699 return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy); 6700 } 6701 } 6702 6703 // If the condition controls loop exit (the loop exits only if the expression 6704 // is true) and the addition is no-wrap we can use unsigned divide to 6705 // compute the backedge count. In this case, the step may not divide the 6706 // distance, but we don't care because if the condition is "missed" the loop 6707 // will have undefined behavior due to wrapping. 6708 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) { 6709 const SCEV *Exact = 6710 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 6711 return ExitLimit(Exact, Exact); 6712 } 6713 6714 // Then, try to solve the above equation provided that Start is constant. 6715 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 6716 return SolveLinEquationWithOverflow(StepC->getAPInt(), -StartC->getAPInt(), 6717 *this); 6718 return getCouldNotCompute(); 6719 } 6720 6721 /// HowFarToNonZero - Return the number of times a backedge checking the 6722 /// specified value for nonzero will execute. If not computable, return 6723 /// CouldNotCompute 6724 ScalarEvolution::ExitLimit 6725 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 6726 // Loops that look like: while (X == 0) are very strange indeed. We don't 6727 // handle them yet except for the trivial case. This could be expanded in the 6728 // future as needed. 6729 6730 // If the value is a constant, check to see if it is known to be non-zero 6731 // already. If so, the backedge will execute zero times. 6732 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6733 if (!C->getValue()->isNullValue()) 6734 return getZero(C->getType()); 6735 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6736 } 6737 6738 // We could implement others, but I really doubt anyone writes loops like 6739 // this, and if they did, they would already be constant folded. 6740 return getCouldNotCompute(); 6741 } 6742 6743 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 6744 /// (which may not be an immediate predecessor) which has exactly one 6745 /// successor from which BB is reachable, or null if no such block is 6746 /// found. 6747 /// 6748 std::pair<BasicBlock *, BasicBlock *> 6749 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 6750 // If the block has a unique predecessor, then there is no path from the 6751 // predecessor to the block that does not go through the direct edge 6752 // from the predecessor to the block. 6753 if (BasicBlock *Pred = BB->getSinglePredecessor()) 6754 return std::make_pair(Pred, BB); 6755 6756 // A loop's header is defined to be a block that dominates the loop. 6757 // If the header has a unique predecessor outside the loop, it must be 6758 // a block that has exactly one successor that can reach the loop. 6759 if (Loop *L = LI.getLoopFor(BB)) 6760 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 6761 6762 return std::pair<BasicBlock *, BasicBlock *>(); 6763 } 6764 6765 /// HasSameValue - SCEV structural equivalence is usually sufficient for 6766 /// testing whether two expressions are equal, however for the purposes of 6767 /// looking for a condition guarding a loop, it can be useful to be a little 6768 /// more general, since a front-end may have replicated the controlling 6769 /// expression. 6770 /// 6771 static bool HasSameValue(const SCEV *A, const SCEV *B) { 6772 // Quick check to see if they are the same SCEV. 6773 if (A == B) return true; 6774 6775 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 6776 // Not all instructions that are "identical" compute the same value. For 6777 // instance, two distinct alloca instructions allocating the same type are 6778 // identical and do not read memory; but compute distinct values. 6779 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 6780 }; 6781 6782 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 6783 // two different instructions with the same value. Check for this case. 6784 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 6785 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 6786 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 6787 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 6788 if (ComputesEqualValues(AI, BI)) 6789 return true; 6790 6791 // Otherwise assume they may have a different value. 6792 return false; 6793 } 6794 6795 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 6796 /// predicate Pred. Return true iff any changes were made. 6797 /// 6798 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 6799 const SCEV *&LHS, const SCEV *&RHS, 6800 unsigned Depth) { 6801 bool Changed = false; 6802 6803 // If we hit the max recursion limit bail out. 6804 if (Depth >= 3) 6805 return false; 6806 6807 // Canonicalize a constant to the right side. 6808 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 6809 // Check for both operands constant. 6810 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 6811 if (ConstantExpr::getICmp(Pred, 6812 LHSC->getValue(), 6813 RHSC->getValue())->isNullValue()) 6814 goto trivially_false; 6815 else 6816 goto trivially_true; 6817 } 6818 // Otherwise swap the operands to put the constant on the right. 6819 std::swap(LHS, RHS); 6820 Pred = ICmpInst::getSwappedPredicate(Pred); 6821 Changed = true; 6822 } 6823 6824 // If we're comparing an addrec with a value which is loop-invariant in the 6825 // addrec's loop, put the addrec on the left. Also make a dominance check, 6826 // as both operands could be addrecs loop-invariant in each other's loop. 6827 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 6828 const Loop *L = AR->getLoop(); 6829 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 6830 std::swap(LHS, RHS); 6831 Pred = ICmpInst::getSwappedPredicate(Pred); 6832 Changed = true; 6833 } 6834 } 6835 6836 // If there's a constant operand, canonicalize comparisons with boundary 6837 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 6838 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 6839 const APInt &RA = RC->getAPInt(); 6840 switch (Pred) { 6841 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6842 case ICmpInst::ICMP_EQ: 6843 case ICmpInst::ICMP_NE: 6844 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 6845 if (!RA) 6846 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 6847 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 6848 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 6849 ME->getOperand(0)->isAllOnesValue()) { 6850 RHS = AE->getOperand(1); 6851 LHS = ME->getOperand(1); 6852 Changed = true; 6853 } 6854 break; 6855 case ICmpInst::ICMP_UGE: 6856 if ((RA - 1).isMinValue()) { 6857 Pred = ICmpInst::ICMP_NE; 6858 RHS = getConstant(RA - 1); 6859 Changed = true; 6860 break; 6861 } 6862 if (RA.isMaxValue()) { 6863 Pred = ICmpInst::ICMP_EQ; 6864 Changed = true; 6865 break; 6866 } 6867 if (RA.isMinValue()) goto trivially_true; 6868 6869 Pred = ICmpInst::ICMP_UGT; 6870 RHS = getConstant(RA - 1); 6871 Changed = true; 6872 break; 6873 case ICmpInst::ICMP_ULE: 6874 if ((RA + 1).isMaxValue()) { 6875 Pred = ICmpInst::ICMP_NE; 6876 RHS = getConstant(RA + 1); 6877 Changed = true; 6878 break; 6879 } 6880 if (RA.isMinValue()) { 6881 Pred = ICmpInst::ICMP_EQ; 6882 Changed = true; 6883 break; 6884 } 6885 if (RA.isMaxValue()) goto trivially_true; 6886 6887 Pred = ICmpInst::ICMP_ULT; 6888 RHS = getConstant(RA + 1); 6889 Changed = true; 6890 break; 6891 case ICmpInst::ICMP_SGE: 6892 if ((RA - 1).isMinSignedValue()) { 6893 Pred = ICmpInst::ICMP_NE; 6894 RHS = getConstant(RA - 1); 6895 Changed = true; 6896 break; 6897 } 6898 if (RA.isMaxSignedValue()) { 6899 Pred = ICmpInst::ICMP_EQ; 6900 Changed = true; 6901 break; 6902 } 6903 if (RA.isMinSignedValue()) goto trivially_true; 6904 6905 Pred = ICmpInst::ICMP_SGT; 6906 RHS = getConstant(RA - 1); 6907 Changed = true; 6908 break; 6909 case ICmpInst::ICMP_SLE: 6910 if ((RA + 1).isMaxSignedValue()) { 6911 Pred = ICmpInst::ICMP_NE; 6912 RHS = getConstant(RA + 1); 6913 Changed = true; 6914 break; 6915 } 6916 if (RA.isMinSignedValue()) { 6917 Pred = ICmpInst::ICMP_EQ; 6918 Changed = true; 6919 break; 6920 } 6921 if (RA.isMaxSignedValue()) goto trivially_true; 6922 6923 Pred = ICmpInst::ICMP_SLT; 6924 RHS = getConstant(RA + 1); 6925 Changed = true; 6926 break; 6927 case ICmpInst::ICMP_UGT: 6928 if (RA.isMinValue()) { 6929 Pred = ICmpInst::ICMP_NE; 6930 Changed = true; 6931 break; 6932 } 6933 if ((RA + 1).isMaxValue()) { 6934 Pred = ICmpInst::ICMP_EQ; 6935 RHS = getConstant(RA + 1); 6936 Changed = true; 6937 break; 6938 } 6939 if (RA.isMaxValue()) goto trivially_false; 6940 break; 6941 case ICmpInst::ICMP_ULT: 6942 if (RA.isMaxValue()) { 6943 Pred = ICmpInst::ICMP_NE; 6944 Changed = true; 6945 break; 6946 } 6947 if ((RA - 1).isMinValue()) { 6948 Pred = ICmpInst::ICMP_EQ; 6949 RHS = getConstant(RA - 1); 6950 Changed = true; 6951 break; 6952 } 6953 if (RA.isMinValue()) goto trivially_false; 6954 break; 6955 case ICmpInst::ICMP_SGT: 6956 if (RA.isMinSignedValue()) { 6957 Pred = ICmpInst::ICMP_NE; 6958 Changed = true; 6959 break; 6960 } 6961 if ((RA + 1).isMaxSignedValue()) { 6962 Pred = ICmpInst::ICMP_EQ; 6963 RHS = getConstant(RA + 1); 6964 Changed = true; 6965 break; 6966 } 6967 if (RA.isMaxSignedValue()) goto trivially_false; 6968 break; 6969 case ICmpInst::ICMP_SLT: 6970 if (RA.isMaxSignedValue()) { 6971 Pred = ICmpInst::ICMP_NE; 6972 Changed = true; 6973 break; 6974 } 6975 if ((RA - 1).isMinSignedValue()) { 6976 Pred = ICmpInst::ICMP_EQ; 6977 RHS = getConstant(RA - 1); 6978 Changed = true; 6979 break; 6980 } 6981 if (RA.isMinSignedValue()) goto trivially_false; 6982 break; 6983 } 6984 } 6985 6986 // Check for obvious equality. 6987 if (HasSameValue(LHS, RHS)) { 6988 if (ICmpInst::isTrueWhenEqual(Pred)) 6989 goto trivially_true; 6990 if (ICmpInst::isFalseWhenEqual(Pred)) 6991 goto trivially_false; 6992 } 6993 6994 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 6995 // adding or subtracting 1 from one of the operands. 6996 switch (Pred) { 6997 case ICmpInst::ICMP_SLE: 6998 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 6999 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 7000 SCEV::FlagNSW); 7001 Pred = ICmpInst::ICMP_SLT; 7002 Changed = true; 7003 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 7004 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 7005 SCEV::FlagNSW); 7006 Pred = ICmpInst::ICMP_SLT; 7007 Changed = true; 7008 } 7009 break; 7010 case ICmpInst::ICMP_SGE: 7011 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 7012 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 7013 SCEV::FlagNSW); 7014 Pred = ICmpInst::ICMP_SGT; 7015 Changed = true; 7016 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 7017 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 7018 SCEV::FlagNSW); 7019 Pred = ICmpInst::ICMP_SGT; 7020 Changed = true; 7021 } 7022 break; 7023 case ICmpInst::ICMP_ULE: 7024 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 7025 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 7026 SCEV::FlagNUW); 7027 Pred = ICmpInst::ICMP_ULT; 7028 Changed = true; 7029 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 7030 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 7031 Pred = ICmpInst::ICMP_ULT; 7032 Changed = true; 7033 } 7034 break; 7035 case ICmpInst::ICMP_UGE: 7036 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 7037 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 7038 Pred = ICmpInst::ICMP_UGT; 7039 Changed = true; 7040 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 7041 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 7042 SCEV::FlagNUW); 7043 Pred = ICmpInst::ICMP_UGT; 7044 Changed = true; 7045 } 7046 break; 7047 default: 7048 break; 7049 } 7050 7051 // TODO: More simplifications are possible here. 7052 7053 // Recursively simplify until we either hit a recursion limit or nothing 7054 // changes. 7055 if (Changed) 7056 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 7057 7058 return Changed; 7059 7060 trivially_true: 7061 // Return 0 == 0. 7062 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 7063 Pred = ICmpInst::ICMP_EQ; 7064 return true; 7065 7066 trivially_false: 7067 // Return 0 != 0. 7068 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 7069 Pred = ICmpInst::ICMP_NE; 7070 return true; 7071 } 7072 7073 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 7074 return getSignedRange(S).getSignedMax().isNegative(); 7075 } 7076 7077 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 7078 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 7079 } 7080 7081 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 7082 return !getSignedRange(S).getSignedMin().isNegative(); 7083 } 7084 7085 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 7086 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 7087 } 7088 7089 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 7090 return isKnownNegative(S) || isKnownPositive(S); 7091 } 7092 7093 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 7094 const SCEV *LHS, const SCEV *RHS) { 7095 // Canonicalize the inputs first. 7096 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7097 7098 // If LHS or RHS is an addrec, check to see if the condition is true in 7099 // every iteration of the loop. 7100 // If LHS and RHS are both addrec, both conditions must be true in 7101 // every iteration of the loop. 7102 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 7103 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 7104 bool LeftGuarded = false; 7105 bool RightGuarded = false; 7106 if (LAR) { 7107 const Loop *L = LAR->getLoop(); 7108 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 7109 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 7110 if (!RAR) return true; 7111 LeftGuarded = true; 7112 } 7113 } 7114 if (RAR) { 7115 const Loop *L = RAR->getLoop(); 7116 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 7117 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 7118 if (!LAR) return true; 7119 RightGuarded = true; 7120 } 7121 } 7122 if (LeftGuarded && RightGuarded) 7123 return true; 7124 7125 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 7126 return true; 7127 7128 // Otherwise see what can be done with known constant ranges. 7129 return isKnownPredicateWithRanges(Pred, LHS, RHS); 7130 } 7131 7132 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 7133 ICmpInst::Predicate Pred, 7134 bool &Increasing) { 7135 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 7136 7137 #ifndef NDEBUG 7138 // Verify an invariant: inverting the predicate should turn a monotonically 7139 // increasing change to a monotonically decreasing one, and vice versa. 7140 bool IncreasingSwapped; 7141 bool ResultSwapped = isMonotonicPredicateImpl( 7142 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 7143 7144 assert(Result == ResultSwapped && "should be able to analyze both!"); 7145 if (ResultSwapped) 7146 assert(Increasing == !IncreasingSwapped && 7147 "monotonicity should flip as we flip the predicate"); 7148 #endif 7149 7150 return Result; 7151 } 7152 7153 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 7154 ICmpInst::Predicate Pred, 7155 bool &Increasing) { 7156 7157 // A zero step value for LHS means the induction variable is essentially a 7158 // loop invariant value. We don't really depend on the predicate actually 7159 // flipping from false to true (for increasing predicates, and the other way 7160 // around for decreasing predicates), all we care about is that *if* the 7161 // predicate changes then it only changes from false to true. 7162 // 7163 // A zero step value in itself is not very useful, but there may be places 7164 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 7165 // as general as possible. 7166 7167 switch (Pred) { 7168 default: 7169 return false; // Conservative answer 7170 7171 case ICmpInst::ICMP_UGT: 7172 case ICmpInst::ICMP_UGE: 7173 case ICmpInst::ICMP_ULT: 7174 case ICmpInst::ICMP_ULE: 7175 if (!LHS->getNoWrapFlags(SCEV::FlagNUW)) 7176 return false; 7177 7178 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 7179 return true; 7180 7181 case ICmpInst::ICMP_SGT: 7182 case ICmpInst::ICMP_SGE: 7183 case ICmpInst::ICMP_SLT: 7184 case ICmpInst::ICMP_SLE: { 7185 if (!LHS->getNoWrapFlags(SCEV::FlagNSW)) 7186 return false; 7187 7188 const SCEV *Step = LHS->getStepRecurrence(*this); 7189 7190 if (isKnownNonNegative(Step)) { 7191 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 7192 return true; 7193 } 7194 7195 if (isKnownNonPositive(Step)) { 7196 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 7197 return true; 7198 } 7199 7200 return false; 7201 } 7202 7203 } 7204 7205 llvm_unreachable("switch has default clause!"); 7206 } 7207 7208 bool ScalarEvolution::isLoopInvariantPredicate( 7209 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 7210 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 7211 const SCEV *&InvariantRHS) { 7212 7213 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 7214 if (!isLoopInvariant(RHS, L)) { 7215 if (!isLoopInvariant(LHS, L)) 7216 return false; 7217 7218 std::swap(LHS, RHS); 7219 Pred = ICmpInst::getSwappedPredicate(Pred); 7220 } 7221 7222 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7223 if (!ArLHS || ArLHS->getLoop() != L) 7224 return false; 7225 7226 bool Increasing; 7227 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 7228 return false; 7229 7230 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 7231 // true as the loop iterates, and the backedge is control dependent on 7232 // "ArLHS `Pred` RHS" == true then we can reason as follows: 7233 // 7234 // * if the predicate was false in the first iteration then the predicate 7235 // is never evaluated again, since the loop exits without taking the 7236 // backedge. 7237 // * if the predicate was true in the first iteration then it will 7238 // continue to be true for all future iterations since it is 7239 // monotonically increasing. 7240 // 7241 // For both the above possibilities, we can replace the loop varying 7242 // predicate with its value on the first iteration of the loop (which is 7243 // loop invariant). 7244 // 7245 // A similar reasoning applies for a monotonically decreasing predicate, by 7246 // replacing true with false and false with true in the above two bullets. 7247 7248 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 7249 7250 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 7251 return false; 7252 7253 InvariantPred = Pred; 7254 InvariantLHS = ArLHS->getStart(); 7255 InvariantRHS = RHS; 7256 return true; 7257 } 7258 7259 bool 7260 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 7261 const SCEV *LHS, const SCEV *RHS) { 7262 if (HasSameValue(LHS, RHS)) 7263 return ICmpInst::isTrueWhenEqual(Pred); 7264 7265 // This code is split out from isKnownPredicate because it is called from 7266 // within isLoopEntryGuardedByCond. 7267 switch (Pred) { 7268 default: 7269 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 7270 case ICmpInst::ICMP_SGT: 7271 std::swap(LHS, RHS); 7272 case ICmpInst::ICMP_SLT: { 7273 ConstantRange LHSRange = getSignedRange(LHS); 7274 ConstantRange RHSRange = getSignedRange(RHS); 7275 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 7276 return true; 7277 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 7278 return false; 7279 break; 7280 } 7281 case ICmpInst::ICMP_SGE: 7282 std::swap(LHS, RHS); 7283 case ICmpInst::ICMP_SLE: { 7284 ConstantRange LHSRange = getSignedRange(LHS); 7285 ConstantRange RHSRange = getSignedRange(RHS); 7286 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 7287 return true; 7288 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 7289 return false; 7290 break; 7291 } 7292 case ICmpInst::ICMP_UGT: 7293 std::swap(LHS, RHS); 7294 case ICmpInst::ICMP_ULT: { 7295 ConstantRange LHSRange = getUnsignedRange(LHS); 7296 ConstantRange RHSRange = getUnsignedRange(RHS); 7297 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 7298 return true; 7299 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 7300 return false; 7301 break; 7302 } 7303 case ICmpInst::ICMP_UGE: 7304 std::swap(LHS, RHS); 7305 case ICmpInst::ICMP_ULE: { 7306 ConstantRange LHSRange = getUnsignedRange(LHS); 7307 ConstantRange RHSRange = getUnsignedRange(RHS); 7308 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 7309 return true; 7310 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 7311 return false; 7312 break; 7313 } 7314 case ICmpInst::ICMP_NE: { 7315 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 7316 return true; 7317 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 7318 return true; 7319 7320 const SCEV *Diff = getMinusSCEV(LHS, RHS); 7321 if (isKnownNonZero(Diff)) 7322 return true; 7323 break; 7324 } 7325 case ICmpInst::ICMP_EQ: 7326 // The check at the top of the function catches the case where 7327 // the values are known to be equal. 7328 break; 7329 } 7330 return false; 7331 } 7332 7333 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 7334 const SCEV *LHS, 7335 const SCEV *RHS) { 7336 7337 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 7338 // Return Y via OutY. 7339 auto MatchBinaryAddToConst = 7340 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 7341 SCEV::NoWrapFlags ExpectedFlags) { 7342 const SCEV *NonConstOp, *ConstOp; 7343 SCEV::NoWrapFlags FlagsPresent; 7344 7345 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 7346 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 7347 return false; 7348 7349 OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); 7350 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 7351 }; 7352 7353 APInt C; 7354 7355 switch (Pred) { 7356 default: 7357 break; 7358 7359 case ICmpInst::ICMP_SGE: 7360 std::swap(LHS, RHS); 7361 case ICmpInst::ICMP_SLE: 7362 // X s<= (X + C)<nsw> if C >= 0 7363 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 7364 return true; 7365 7366 // (X + C)<nsw> s<= X if C <= 0 7367 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 7368 !C.isStrictlyPositive()) 7369 return true; 7370 break; 7371 7372 case ICmpInst::ICMP_SGT: 7373 std::swap(LHS, RHS); 7374 case ICmpInst::ICMP_SLT: 7375 // X s< (X + C)<nsw> if C > 0 7376 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 7377 C.isStrictlyPositive()) 7378 return true; 7379 7380 // (X + C)<nsw> s< X if C < 0 7381 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 7382 return true; 7383 break; 7384 } 7385 7386 return false; 7387 } 7388 7389 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 7390 const SCEV *LHS, 7391 const SCEV *RHS) { 7392 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 7393 return false; 7394 7395 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 7396 // the stack can result in exponential time complexity. 7397 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 7398 7399 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 7400 // 7401 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 7402 // isKnownPredicate. isKnownPredicate is more powerful, but also more 7403 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 7404 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 7405 // use isKnownPredicate later if needed. 7406 return isKnownNonNegative(RHS) && 7407 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 7408 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 7409 } 7410 7411 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 7412 /// protected by a conditional between LHS and RHS. This is used to 7413 /// to eliminate casts. 7414 bool 7415 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 7416 ICmpInst::Predicate Pred, 7417 const SCEV *LHS, const SCEV *RHS) { 7418 // Interpret a null as meaning no loop, where there is obviously no guard 7419 // (interprocedural conditions notwithstanding). 7420 if (!L) return true; 7421 7422 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 7423 7424 BasicBlock *Latch = L->getLoopLatch(); 7425 if (!Latch) 7426 return false; 7427 7428 BranchInst *LoopContinuePredicate = 7429 dyn_cast<BranchInst>(Latch->getTerminator()); 7430 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 7431 isImpliedCond(Pred, LHS, RHS, 7432 LoopContinuePredicate->getCondition(), 7433 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 7434 return true; 7435 7436 // We don't want more than one activation of the following loops on the stack 7437 // -- that can lead to O(n!) time complexity. 7438 if (WalkingBEDominatingConds) 7439 return false; 7440 7441 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 7442 7443 // See if we can exploit a trip count to prove the predicate. 7444 const auto &BETakenInfo = getBackedgeTakenInfo(L); 7445 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 7446 if (LatchBECount != getCouldNotCompute()) { 7447 // We know that Latch branches back to the loop header exactly 7448 // LatchBECount times. This means the backdege condition at Latch is 7449 // equivalent to "{0,+,1} u< LatchBECount". 7450 Type *Ty = LatchBECount->getType(); 7451 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 7452 const SCEV *LoopCounter = 7453 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 7454 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 7455 LatchBECount)) 7456 return true; 7457 } 7458 7459 // Check conditions due to any @llvm.assume intrinsics. 7460 for (auto &AssumeVH : AC.assumptions()) { 7461 if (!AssumeVH) 7462 continue; 7463 auto *CI = cast<CallInst>(AssumeVH); 7464 if (!DT.dominates(CI, Latch->getTerminator())) 7465 continue; 7466 7467 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7468 return true; 7469 } 7470 7471 // If the loop is not reachable from the entry block, we risk running into an 7472 // infinite loop as we walk up into the dom tree. These loops do not matter 7473 // anyway, so we just return a conservative answer when we see them. 7474 if (!DT.isReachableFromEntry(L->getHeader())) 7475 return false; 7476 7477 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 7478 DTN != HeaderDTN; DTN = DTN->getIDom()) { 7479 7480 assert(DTN && "should reach the loop header before reaching the root!"); 7481 7482 BasicBlock *BB = DTN->getBlock(); 7483 BasicBlock *PBB = BB->getSinglePredecessor(); 7484 if (!PBB) 7485 continue; 7486 7487 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 7488 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 7489 continue; 7490 7491 Value *Condition = ContinuePredicate->getCondition(); 7492 7493 // If we have an edge `E` within the loop body that dominates the only 7494 // latch, the condition guarding `E` also guards the backedge. This 7495 // reasoning works only for loops with a single latch. 7496 7497 BasicBlockEdge DominatingEdge(PBB, BB); 7498 if (DominatingEdge.isSingleEdge()) { 7499 // We're constructively (and conservatively) enumerating edges within the 7500 // loop body that dominate the latch. The dominator tree better agree 7501 // with us on this: 7502 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 7503 7504 if (isImpliedCond(Pred, LHS, RHS, Condition, 7505 BB != ContinuePredicate->getSuccessor(0))) 7506 return true; 7507 } 7508 } 7509 7510 return false; 7511 } 7512 7513 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 7514 /// by a conditional between LHS and RHS. This is used to help avoid max 7515 /// expressions in loop trip counts, and to eliminate casts. 7516 bool 7517 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 7518 ICmpInst::Predicate Pred, 7519 const SCEV *LHS, const SCEV *RHS) { 7520 // Interpret a null as meaning no loop, where there is obviously no guard 7521 // (interprocedural conditions notwithstanding). 7522 if (!L) return false; 7523 7524 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 7525 7526 // Starting at the loop predecessor, climb up the predecessor chain, as long 7527 // as there are predecessors that can be found that have unique successors 7528 // leading to the original header. 7529 for (std::pair<BasicBlock *, BasicBlock *> 7530 Pair(L->getLoopPredecessor(), L->getHeader()); 7531 Pair.first; 7532 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 7533 7534 BranchInst *LoopEntryPredicate = 7535 dyn_cast<BranchInst>(Pair.first->getTerminator()); 7536 if (!LoopEntryPredicate || 7537 LoopEntryPredicate->isUnconditional()) 7538 continue; 7539 7540 if (isImpliedCond(Pred, LHS, RHS, 7541 LoopEntryPredicate->getCondition(), 7542 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 7543 return true; 7544 } 7545 7546 // Check conditions due to any @llvm.assume intrinsics. 7547 for (auto &AssumeVH : AC.assumptions()) { 7548 if (!AssumeVH) 7549 continue; 7550 auto *CI = cast<CallInst>(AssumeVH); 7551 if (!DT.dominates(CI, L->getHeader())) 7552 continue; 7553 7554 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7555 return true; 7556 } 7557 7558 return false; 7559 } 7560 7561 namespace { 7562 /// RAII wrapper to prevent recursive application of isImpliedCond. 7563 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 7564 /// currently evaluating isImpliedCond. 7565 struct MarkPendingLoopPredicate { 7566 Value *Cond; 7567 DenseSet<Value*> &LoopPreds; 7568 bool Pending; 7569 7570 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 7571 : Cond(C), LoopPreds(LP) { 7572 Pending = !LoopPreds.insert(Cond).second; 7573 } 7574 ~MarkPendingLoopPredicate() { 7575 if (!Pending) 7576 LoopPreds.erase(Cond); 7577 } 7578 }; 7579 } // end anonymous namespace 7580 7581 /// isImpliedCond - Test whether the condition described by Pred, LHS, 7582 /// and RHS is true whenever the given Cond value evaluates to true. 7583 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 7584 const SCEV *LHS, const SCEV *RHS, 7585 Value *FoundCondValue, 7586 bool Inverse) { 7587 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 7588 if (Mark.Pending) 7589 return false; 7590 7591 // Recursively handle And and Or conditions. 7592 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 7593 if (BO->getOpcode() == Instruction::And) { 7594 if (!Inverse) 7595 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7596 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7597 } else if (BO->getOpcode() == Instruction::Or) { 7598 if (Inverse) 7599 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7600 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7601 } 7602 } 7603 7604 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 7605 if (!ICI) return false; 7606 7607 // Now that we found a conditional branch that dominates the loop or controls 7608 // the loop latch. Check to see if it is the comparison we are looking for. 7609 ICmpInst::Predicate FoundPred; 7610 if (Inverse) 7611 FoundPred = ICI->getInversePredicate(); 7612 else 7613 FoundPred = ICI->getPredicate(); 7614 7615 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 7616 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 7617 7618 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 7619 } 7620 7621 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 7622 const SCEV *RHS, 7623 ICmpInst::Predicate FoundPred, 7624 const SCEV *FoundLHS, 7625 const SCEV *FoundRHS) { 7626 // Balance the types. 7627 if (getTypeSizeInBits(LHS->getType()) < 7628 getTypeSizeInBits(FoundLHS->getType())) { 7629 if (CmpInst::isSigned(Pred)) { 7630 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 7631 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 7632 } else { 7633 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 7634 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 7635 } 7636 } else if (getTypeSizeInBits(LHS->getType()) > 7637 getTypeSizeInBits(FoundLHS->getType())) { 7638 if (CmpInst::isSigned(FoundPred)) { 7639 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 7640 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 7641 } else { 7642 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 7643 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 7644 } 7645 } 7646 7647 // Canonicalize the query to match the way instcombine will have 7648 // canonicalized the comparison. 7649 if (SimplifyICmpOperands(Pred, LHS, RHS)) 7650 if (LHS == RHS) 7651 return CmpInst::isTrueWhenEqual(Pred); 7652 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 7653 if (FoundLHS == FoundRHS) 7654 return CmpInst::isFalseWhenEqual(FoundPred); 7655 7656 // Check to see if we can make the LHS or RHS match. 7657 if (LHS == FoundRHS || RHS == FoundLHS) { 7658 if (isa<SCEVConstant>(RHS)) { 7659 std::swap(FoundLHS, FoundRHS); 7660 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 7661 } else { 7662 std::swap(LHS, RHS); 7663 Pred = ICmpInst::getSwappedPredicate(Pred); 7664 } 7665 } 7666 7667 // Check whether the found predicate is the same as the desired predicate. 7668 if (FoundPred == Pred) 7669 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 7670 7671 // Check whether swapping the found predicate makes it the same as the 7672 // desired predicate. 7673 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 7674 if (isa<SCEVConstant>(RHS)) 7675 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 7676 else 7677 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 7678 RHS, LHS, FoundLHS, FoundRHS); 7679 } 7680 7681 // Unsigned comparison is the same as signed comparison when both the operands 7682 // are non-negative. 7683 if (CmpInst::isUnsigned(FoundPred) && 7684 CmpInst::getSignedPredicate(FoundPred) == Pred && 7685 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 7686 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 7687 7688 // Check if we can make progress by sharpening ranges. 7689 if (FoundPred == ICmpInst::ICMP_NE && 7690 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 7691 7692 const SCEVConstant *C = nullptr; 7693 const SCEV *V = nullptr; 7694 7695 if (isa<SCEVConstant>(FoundLHS)) { 7696 C = cast<SCEVConstant>(FoundLHS); 7697 V = FoundRHS; 7698 } else { 7699 C = cast<SCEVConstant>(FoundRHS); 7700 V = FoundLHS; 7701 } 7702 7703 // The guarding predicate tells us that C != V. If the known range 7704 // of V is [C, t), we can sharpen the range to [C + 1, t). The 7705 // range we consider has to correspond to same signedness as the 7706 // predicate we're interested in folding. 7707 7708 APInt Min = ICmpInst::isSigned(Pred) ? 7709 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin(); 7710 7711 if (Min == C->getAPInt()) { 7712 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 7713 // This is true even if (Min + 1) wraps around -- in case of 7714 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 7715 7716 APInt SharperMin = Min + 1; 7717 7718 switch (Pred) { 7719 case ICmpInst::ICMP_SGE: 7720 case ICmpInst::ICMP_UGE: 7721 // We know V `Pred` SharperMin. If this implies LHS `Pred` 7722 // RHS, we're done. 7723 if (isImpliedCondOperands(Pred, LHS, RHS, V, 7724 getConstant(SharperMin))) 7725 return true; 7726 7727 case ICmpInst::ICMP_SGT: 7728 case ICmpInst::ICMP_UGT: 7729 // We know from the range information that (V `Pred` Min || 7730 // V == Min). We know from the guarding condition that !(V 7731 // == Min). This gives us 7732 // 7733 // V `Pred` Min || V == Min && !(V == Min) 7734 // => V `Pred` Min 7735 // 7736 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 7737 7738 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 7739 return true; 7740 7741 default: 7742 // No change 7743 break; 7744 } 7745 } 7746 } 7747 7748 // Check whether the actual condition is beyond sufficient. 7749 if (FoundPred == ICmpInst::ICMP_EQ) 7750 if (ICmpInst::isTrueWhenEqual(Pred)) 7751 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7752 return true; 7753 if (Pred == ICmpInst::ICMP_NE) 7754 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 7755 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 7756 return true; 7757 7758 // Otherwise assume the worst. 7759 return false; 7760 } 7761 7762 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 7763 const SCEV *&L, const SCEV *&R, 7764 SCEV::NoWrapFlags &Flags) { 7765 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 7766 if (!AE || AE->getNumOperands() != 2) 7767 return false; 7768 7769 L = AE->getOperand(0); 7770 R = AE->getOperand(1); 7771 Flags = AE->getNoWrapFlags(); 7772 return true; 7773 } 7774 7775 bool ScalarEvolution::computeConstantDifference(const SCEV *Less, 7776 const SCEV *More, 7777 APInt &C) { 7778 // We avoid subtracting expressions here because this function is usually 7779 // fairly deep in the call stack (i.e. is called many times). 7780 7781 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 7782 const auto *LAR = cast<SCEVAddRecExpr>(Less); 7783 const auto *MAR = cast<SCEVAddRecExpr>(More); 7784 7785 if (LAR->getLoop() != MAR->getLoop()) 7786 return false; 7787 7788 // We look at affine expressions only; not for correctness but to keep 7789 // getStepRecurrence cheap. 7790 if (!LAR->isAffine() || !MAR->isAffine()) 7791 return false; 7792 7793 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 7794 return false; 7795 7796 Less = LAR->getStart(); 7797 More = MAR->getStart(); 7798 7799 // fall through 7800 } 7801 7802 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 7803 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 7804 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 7805 C = M - L; 7806 return true; 7807 } 7808 7809 const SCEV *L, *R; 7810 SCEV::NoWrapFlags Flags; 7811 if (splitBinaryAdd(Less, L, R, Flags)) 7812 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 7813 if (R == More) { 7814 C = -(LC->getAPInt()); 7815 return true; 7816 } 7817 7818 if (splitBinaryAdd(More, L, R, Flags)) 7819 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 7820 if (R == Less) { 7821 C = LC->getAPInt(); 7822 return true; 7823 } 7824 7825 return false; 7826 } 7827 7828 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 7829 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 7830 const SCEV *FoundLHS, const SCEV *FoundRHS) { 7831 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 7832 return false; 7833 7834 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7835 if (!AddRecLHS) 7836 return false; 7837 7838 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 7839 if (!AddRecFoundLHS) 7840 return false; 7841 7842 // We'd like to let SCEV reason about control dependencies, so we constrain 7843 // both the inequalities to be about add recurrences on the same loop. This 7844 // way we can use isLoopEntryGuardedByCond later. 7845 7846 const Loop *L = AddRecFoundLHS->getLoop(); 7847 if (L != AddRecLHS->getLoop()) 7848 return false; 7849 7850 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 7851 // 7852 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 7853 // ... (2) 7854 // 7855 // Informal proof for (2), assuming (1) [*]: 7856 // 7857 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 7858 // 7859 // Then 7860 // 7861 // FoundLHS s< FoundRHS s< INT_MIN - C 7862 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 7863 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 7864 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 7865 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 7866 // <=> FoundLHS + C s< FoundRHS + C 7867 // 7868 // [*]: (1) can be proved by ruling out overflow. 7869 // 7870 // [**]: This can be proved by analyzing all the four possibilities: 7871 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 7872 // (A s>= 0, B s>= 0). 7873 // 7874 // Note: 7875 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 7876 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 7877 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 7878 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 7879 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 7880 // C)". 7881 7882 APInt LDiff, RDiff; 7883 if (!computeConstantDifference(FoundLHS, LHS, LDiff) || 7884 !computeConstantDifference(FoundRHS, RHS, RDiff) || 7885 LDiff != RDiff) 7886 return false; 7887 7888 if (LDiff == 0) 7889 return true; 7890 7891 APInt FoundRHSLimit; 7892 7893 if (Pred == CmpInst::ICMP_ULT) { 7894 FoundRHSLimit = -RDiff; 7895 } else { 7896 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 7897 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff; 7898 } 7899 7900 // Try to prove (1) or (2), as needed. 7901 return isLoopEntryGuardedByCond(L, Pred, FoundRHS, 7902 getConstant(FoundRHSLimit)); 7903 } 7904 7905 /// isImpliedCondOperands - Test whether the condition described by Pred, 7906 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 7907 /// and FoundRHS is true. 7908 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 7909 const SCEV *LHS, const SCEV *RHS, 7910 const SCEV *FoundLHS, 7911 const SCEV *FoundRHS) { 7912 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7913 return true; 7914 7915 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7916 return true; 7917 7918 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 7919 FoundLHS, FoundRHS) || 7920 // ~x < ~y --> x > y 7921 isImpliedCondOperandsHelper(Pred, LHS, RHS, 7922 getNotSCEV(FoundRHS), 7923 getNotSCEV(FoundLHS)); 7924 } 7925 7926 7927 /// If Expr computes ~A, return A else return nullptr 7928 static const SCEV *MatchNotExpr(const SCEV *Expr) { 7929 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 7930 if (!Add || Add->getNumOperands() != 2 || 7931 !Add->getOperand(0)->isAllOnesValue()) 7932 return nullptr; 7933 7934 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 7935 if (!AddRHS || AddRHS->getNumOperands() != 2 || 7936 !AddRHS->getOperand(0)->isAllOnesValue()) 7937 return nullptr; 7938 7939 return AddRHS->getOperand(1); 7940 } 7941 7942 7943 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 7944 template<typename MaxExprType> 7945 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 7946 const SCEV *Candidate) { 7947 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 7948 if (!MaxExpr) return false; 7949 7950 return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end(); 7951 } 7952 7953 7954 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 7955 template<typename MaxExprType> 7956 static bool IsMinConsistingOf(ScalarEvolution &SE, 7957 const SCEV *MaybeMinExpr, 7958 const SCEV *Candidate) { 7959 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 7960 if (!MaybeMaxExpr) 7961 return false; 7962 7963 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 7964 } 7965 7966 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 7967 ICmpInst::Predicate Pred, 7968 const SCEV *LHS, const SCEV *RHS) { 7969 7970 // If both sides are affine addrecs for the same loop, with equal 7971 // steps, and we know the recurrences don't wrap, then we only 7972 // need to check the predicate on the starting values. 7973 7974 if (!ICmpInst::isRelational(Pred)) 7975 return false; 7976 7977 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 7978 if (!LAR) 7979 return false; 7980 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 7981 if (!RAR) 7982 return false; 7983 if (LAR->getLoop() != RAR->getLoop()) 7984 return false; 7985 if (!LAR->isAffine() || !RAR->isAffine()) 7986 return false; 7987 7988 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 7989 return false; 7990 7991 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 7992 SCEV::FlagNSW : SCEV::FlagNUW; 7993 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 7994 return false; 7995 7996 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 7997 } 7998 7999 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 8000 /// expression? 8001 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 8002 ICmpInst::Predicate Pred, 8003 const SCEV *LHS, const SCEV *RHS) { 8004 switch (Pred) { 8005 default: 8006 return false; 8007 8008 case ICmpInst::ICMP_SGE: 8009 std::swap(LHS, RHS); 8010 // fall through 8011 case ICmpInst::ICMP_SLE: 8012 return 8013 // min(A, ...) <= A 8014 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 8015 // A <= max(A, ...) 8016 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 8017 8018 case ICmpInst::ICMP_UGE: 8019 std::swap(LHS, RHS); 8020 // fall through 8021 case ICmpInst::ICMP_ULE: 8022 return 8023 // min(A, ...) <= A 8024 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 8025 // A <= max(A, ...) 8026 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 8027 } 8028 8029 llvm_unreachable("covered switch fell through?!"); 8030 } 8031 8032 /// isImpliedCondOperandsHelper - Test whether the condition described by 8033 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 8034 /// FoundLHS, and FoundRHS is true. 8035 bool 8036 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 8037 const SCEV *LHS, const SCEV *RHS, 8038 const SCEV *FoundLHS, 8039 const SCEV *FoundRHS) { 8040 auto IsKnownPredicateFull = 8041 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 8042 return isKnownPredicateWithRanges(Pred, LHS, RHS) || 8043 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 8044 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 8045 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 8046 }; 8047 8048 switch (Pred) { 8049 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 8050 case ICmpInst::ICMP_EQ: 8051 case ICmpInst::ICMP_NE: 8052 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 8053 return true; 8054 break; 8055 case ICmpInst::ICMP_SLT: 8056 case ICmpInst::ICMP_SLE: 8057 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 8058 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 8059 return true; 8060 break; 8061 case ICmpInst::ICMP_SGT: 8062 case ICmpInst::ICMP_SGE: 8063 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 8064 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 8065 return true; 8066 break; 8067 case ICmpInst::ICMP_ULT: 8068 case ICmpInst::ICMP_ULE: 8069 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 8070 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 8071 return true; 8072 break; 8073 case ICmpInst::ICMP_UGT: 8074 case ICmpInst::ICMP_UGE: 8075 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 8076 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 8077 return true; 8078 break; 8079 } 8080 8081 return false; 8082 } 8083 8084 /// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands. 8085 /// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1". 8086 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 8087 const SCEV *LHS, 8088 const SCEV *RHS, 8089 const SCEV *FoundLHS, 8090 const SCEV *FoundRHS) { 8091 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 8092 // The restriction on `FoundRHS` be lifted easily -- it exists only to 8093 // reduce the compile time impact of this optimization. 8094 return false; 8095 8096 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS); 8097 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS || 8098 !isa<SCEVConstant>(AddLHS->getOperand(0))) 8099 return false; 8100 8101 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 8102 8103 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 8104 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 8105 ConstantRange FoundLHSRange = 8106 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 8107 8108 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range 8109 // for `LHS`: 8110 APInt Addend = cast<SCEVConstant>(AddLHS->getOperand(0))->getAPInt(); 8111 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend)); 8112 8113 // We can also compute the range of values for `LHS` that satisfy the 8114 // consequent, "`LHS` `Pred` `RHS`": 8115 APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 8116 ConstantRange SatisfyingLHSRange = 8117 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 8118 8119 // The antecedent implies the consequent if every value of `LHS` that 8120 // satisfies the antecedent also satisfies the consequent. 8121 return SatisfyingLHSRange.contains(LHSRange); 8122 } 8123 8124 // Verify if an linear IV with positive stride can overflow when in a 8125 // less-than comparison, knowing the invariant term of the comparison, the 8126 // stride and the knowledge of NSW/NUW flags on the recurrence. 8127 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 8128 bool IsSigned, bool NoWrap) { 8129 if (NoWrap) return false; 8130 8131 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8132 const SCEV *One = getOne(Stride->getType()); 8133 8134 if (IsSigned) { 8135 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 8136 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 8137 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 8138 .getSignedMax(); 8139 8140 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 8141 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 8142 } 8143 8144 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 8145 APInt MaxValue = APInt::getMaxValue(BitWidth); 8146 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 8147 .getUnsignedMax(); 8148 8149 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 8150 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 8151 } 8152 8153 // Verify if an linear IV with negative stride can overflow when in a 8154 // greater-than comparison, knowing the invariant term of the comparison, 8155 // the stride and the knowledge of NSW/NUW flags on the recurrence. 8156 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 8157 bool IsSigned, bool NoWrap) { 8158 if (NoWrap) return false; 8159 8160 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8161 const SCEV *One = getOne(Stride->getType()); 8162 8163 if (IsSigned) { 8164 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 8165 APInt MinValue = APInt::getSignedMinValue(BitWidth); 8166 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 8167 .getSignedMax(); 8168 8169 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 8170 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 8171 } 8172 8173 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 8174 APInt MinValue = APInt::getMinValue(BitWidth); 8175 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 8176 .getUnsignedMax(); 8177 8178 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 8179 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 8180 } 8181 8182 // Compute the backedge taken count knowing the interval difference, the 8183 // stride and presence of the equality in the comparison. 8184 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 8185 bool Equality) { 8186 const SCEV *One = getOne(Step->getType()); 8187 Delta = Equality ? getAddExpr(Delta, Step) 8188 : getAddExpr(Delta, getMinusSCEV(Step, One)); 8189 return getUDivExpr(Delta, Step); 8190 } 8191 8192 /// HowManyLessThans - Return the number of times a backedge containing the 8193 /// specified less-than comparison will execute. If not computable, return 8194 /// CouldNotCompute. 8195 /// 8196 /// @param ControlsExit is true when the LHS < RHS condition directly controls 8197 /// the branch (loops exits only if condition is true). In this case, we can use 8198 /// NoWrapFlags to skip overflow checks. 8199 ScalarEvolution::ExitLimit 8200 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 8201 const Loop *L, bool IsSigned, 8202 bool ControlsExit) { 8203 // We handle only IV < Invariant 8204 if (!isLoopInvariant(RHS, L)) 8205 return getCouldNotCompute(); 8206 8207 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8208 8209 // Avoid weird loops 8210 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8211 return getCouldNotCompute(); 8212 8213 bool NoWrap = ControlsExit && 8214 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8215 8216 const SCEV *Stride = IV->getStepRecurrence(*this); 8217 8218 // Avoid negative or zero stride values 8219 if (!isKnownPositive(Stride)) 8220 return getCouldNotCompute(); 8221 8222 // Avoid proven overflow cases: this will ensure that the backedge taken count 8223 // will not generate any unsigned overflow. Relaxed no-overflow conditions 8224 // exploit NoWrapFlags, allowing to optimize in presence of undefined 8225 // behaviors like the case of C language. 8226 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 8227 return getCouldNotCompute(); 8228 8229 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 8230 : ICmpInst::ICMP_ULT; 8231 const SCEV *Start = IV->getStart(); 8232 const SCEV *End = RHS; 8233 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) { 8234 const SCEV *Diff = getMinusSCEV(RHS, Start); 8235 // If we have NoWrap set, then we can assume that the increment won't 8236 // overflow, in which case if RHS - Start is a constant, we don't need to 8237 // do a max operation since we can just figure it out statically 8238 if (NoWrap && isa<SCEVConstant>(Diff)) { 8239 APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt(); 8240 if (D.isNegative()) 8241 End = Start; 8242 } else 8243 End = IsSigned ? getSMaxExpr(RHS, Start) 8244 : getUMaxExpr(RHS, Start); 8245 } 8246 8247 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 8248 8249 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 8250 : getUnsignedRange(Start).getUnsignedMin(); 8251 8252 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8253 : getUnsignedRange(Stride).getUnsignedMin(); 8254 8255 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8256 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1) 8257 : APInt::getMaxValue(BitWidth) - (MinStride - 1); 8258 8259 // Although End can be a MAX expression we estimate MaxEnd considering only 8260 // the case End = RHS. This is safe because in the other case (End - Start) 8261 // is zero, leading to a zero maximum backedge taken count. 8262 APInt MaxEnd = 8263 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 8264 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 8265 8266 const SCEV *MaxBECount; 8267 if (isa<SCEVConstant>(BECount)) 8268 MaxBECount = BECount; 8269 else 8270 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 8271 getConstant(MinStride), false); 8272 8273 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8274 MaxBECount = BECount; 8275 8276 return ExitLimit(BECount, MaxBECount); 8277 } 8278 8279 ScalarEvolution::ExitLimit 8280 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 8281 const Loop *L, bool IsSigned, 8282 bool ControlsExit) { 8283 // We handle only IV > Invariant 8284 if (!isLoopInvariant(RHS, L)) 8285 return getCouldNotCompute(); 8286 8287 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8288 8289 // Avoid weird loops 8290 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8291 return getCouldNotCompute(); 8292 8293 bool NoWrap = ControlsExit && 8294 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8295 8296 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 8297 8298 // Avoid negative or zero stride values 8299 if (!isKnownPositive(Stride)) 8300 return getCouldNotCompute(); 8301 8302 // Avoid proven overflow cases: this will ensure that the backedge taken count 8303 // will not generate any unsigned overflow. Relaxed no-overflow conditions 8304 // exploit NoWrapFlags, allowing to optimize in presence of undefined 8305 // behaviors like the case of C language. 8306 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 8307 return getCouldNotCompute(); 8308 8309 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 8310 : ICmpInst::ICMP_UGT; 8311 8312 const SCEV *Start = IV->getStart(); 8313 const SCEV *End = RHS; 8314 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 8315 const SCEV *Diff = getMinusSCEV(RHS, Start); 8316 // If we have NoWrap set, then we can assume that the increment won't 8317 // overflow, in which case if RHS - Start is a constant, we don't need to 8318 // do a max operation since we can just figure it out statically 8319 if (NoWrap && isa<SCEVConstant>(Diff)) { 8320 APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt(); 8321 if (!D.isNegative()) 8322 End = Start; 8323 } else 8324 End = IsSigned ? getSMinExpr(RHS, Start) 8325 : getUMinExpr(RHS, Start); 8326 } 8327 8328 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 8329 8330 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 8331 : getUnsignedRange(Start).getUnsignedMax(); 8332 8333 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8334 : getUnsignedRange(Stride).getUnsignedMin(); 8335 8336 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8337 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 8338 : APInt::getMinValue(BitWidth) + (MinStride - 1); 8339 8340 // Although End can be a MIN expression we estimate MinEnd considering only 8341 // the case End = RHS. This is safe because in the other case (Start - End) 8342 // is zero, leading to a zero maximum backedge taken count. 8343 APInt MinEnd = 8344 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 8345 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 8346 8347 8348 const SCEV *MaxBECount = getCouldNotCompute(); 8349 if (isa<SCEVConstant>(BECount)) 8350 MaxBECount = BECount; 8351 else 8352 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 8353 getConstant(MinStride), false); 8354 8355 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8356 MaxBECount = BECount; 8357 8358 return ExitLimit(BECount, MaxBECount); 8359 } 8360 8361 /// getNumIterationsInRange - Return the number of iterations of this loop that 8362 /// produce values in the specified constant range. Another way of looking at 8363 /// this is that it returns the first iteration number where the value is not in 8364 /// the condition, thus computing the exit count. If the iteration count can't 8365 /// be computed, an instance of SCEVCouldNotCompute is returned. 8366 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 8367 ScalarEvolution &SE) const { 8368 if (Range.isFullSet()) // Infinite loop. 8369 return SE.getCouldNotCompute(); 8370 8371 // If the start is a non-zero constant, shift the range to simplify things. 8372 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 8373 if (!SC->getValue()->isZero()) { 8374 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 8375 Operands[0] = SE.getZero(SC->getType()); 8376 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 8377 getNoWrapFlags(FlagNW)); 8378 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 8379 return ShiftedAddRec->getNumIterationsInRange( 8380 Range.subtract(SC->getAPInt()), SE); 8381 // This is strange and shouldn't happen. 8382 return SE.getCouldNotCompute(); 8383 } 8384 8385 // The only time we can solve this is when we have all constant indices. 8386 // Otherwise, we cannot determine the overflow conditions. 8387 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 8388 return SE.getCouldNotCompute(); 8389 8390 // Okay at this point we know that all elements of the chrec are constants and 8391 // that the start element is zero. 8392 8393 // First check to see if the range contains zero. If not, the first 8394 // iteration exits. 8395 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 8396 if (!Range.contains(APInt(BitWidth, 0))) 8397 return SE.getZero(getType()); 8398 8399 if (isAffine()) { 8400 // If this is an affine expression then we have this situation: 8401 // Solve {0,+,A} in Range === Ax in Range 8402 8403 // We know that zero is in the range. If A is positive then we know that 8404 // the upper value of the range must be the first possible exit value. 8405 // If A is negative then the lower of the range is the last possible loop 8406 // value. Also note that we already checked for a full range. 8407 APInt One(BitWidth,1); 8408 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 8409 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 8410 8411 // The exit value should be (End+A)/A. 8412 APInt ExitVal = (End + A).udiv(A); 8413 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 8414 8415 // Evaluate at the exit value. If we really did fall out of the valid 8416 // range, then we computed our trip count, otherwise wrap around or other 8417 // things must have happened. 8418 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 8419 if (Range.contains(Val->getValue())) 8420 return SE.getCouldNotCompute(); // Something strange happened 8421 8422 // Ensure that the previous value is in the range. This is a sanity check. 8423 assert(Range.contains( 8424 EvaluateConstantChrecAtConstant(this, 8425 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 8426 "Linear scev computation is off in a bad way!"); 8427 return SE.getConstant(ExitValue); 8428 } else if (isQuadratic()) { 8429 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 8430 // quadratic equation to solve it. To do this, we must frame our problem in 8431 // terms of figuring out when zero is crossed, instead of when 8432 // Range.getUpper() is crossed. 8433 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 8434 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 8435 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 8436 // getNoWrapFlags(FlagNW) 8437 FlagAnyWrap); 8438 8439 // Next, solve the constructed addrec 8440 auto Roots = SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 8441 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 8442 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 8443 if (R1) { 8444 // Pick the smallest positive root value. 8445 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp( 8446 ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { 8447 if (!CB->getZExtValue()) 8448 std::swap(R1, R2); // R1 is the minimum root now. 8449 8450 // Make sure the root is not off by one. The returned iteration should 8451 // not be in the range, but the previous one should be. When solving 8452 // for "X*X < 5", for example, we should not return a root of 2. 8453 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 8454 R1->getValue(), 8455 SE); 8456 if (Range.contains(R1Val->getValue())) { 8457 // The next iteration must be out of the range... 8458 ConstantInt *NextVal = 8459 ConstantInt::get(SE.getContext(), R1->getAPInt() + 1); 8460 8461 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8462 if (!Range.contains(R1Val->getValue())) 8463 return SE.getConstant(NextVal); 8464 return SE.getCouldNotCompute(); // Something strange happened 8465 } 8466 8467 // If R1 was not in the range, then it is a good return value. Make 8468 // sure that R1-1 WAS in the range though, just in case. 8469 ConstantInt *NextVal = 8470 ConstantInt::get(SE.getContext(), R1->getAPInt() - 1); 8471 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8472 if (Range.contains(R1Val->getValue())) 8473 return R1; 8474 return SE.getCouldNotCompute(); // Something strange happened 8475 } 8476 } 8477 } 8478 8479 return SE.getCouldNotCompute(); 8480 } 8481 8482 namespace { 8483 struct FindUndefs { 8484 bool Found; 8485 FindUndefs() : Found(false) {} 8486 8487 bool follow(const SCEV *S) { 8488 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) { 8489 if (isa<UndefValue>(C->getValue())) 8490 Found = true; 8491 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 8492 if (isa<UndefValue>(C->getValue())) 8493 Found = true; 8494 } 8495 8496 // Keep looking if we haven't found it yet. 8497 return !Found; 8498 } 8499 bool isDone() const { 8500 // Stop recursion if we have found an undef. 8501 return Found; 8502 } 8503 }; 8504 } 8505 8506 // Return true when S contains at least an undef value. 8507 static inline bool 8508 containsUndefs(const SCEV *S) { 8509 FindUndefs F; 8510 SCEVTraversal<FindUndefs> ST(F); 8511 ST.visitAll(S); 8512 8513 return F.Found; 8514 } 8515 8516 namespace { 8517 // Collect all steps of SCEV expressions. 8518 struct SCEVCollectStrides { 8519 ScalarEvolution &SE; 8520 SmallVectorImpl<const SCEV *> &Strides; 8521 8522 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 8523 : SE(SE), Strides(S) {} 8524 8525 bool follow(const SCEV *S) { 8526 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 8527 Strides.push_back(AR->getStepRecurrence(SE)); 8528 return true; 8529 } 8530 bool isDone() const { return false; } 8531 }; 8532 8533 // Collect all SCEVUnknown and SCEVMulExpr expressions. 8534 struct SCEVCollectTerms { 8535 SmallVectorImpl<const SCEV *> &Terms; 8536 8537 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 8538 : Terms(T) {} 8539 8540 bool follow(const SCEV *S) { 8541 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) { 8542 if (!containsUndefs(S)) 8543 Terms.push_back(S); 8544 8545 // Stop recursion: once we collected a term, do not walk its operands. 8546 return false; 8547 } 8548 8549 // Keep looking. 8550 return true; 8551 } 8552 bool isDone() const { return false; } 8553 }; 8554 8555 // Check if a SCEV contains an AddRecExpr. 8556 struct SCEVHasAddRec { 8557 bool &ContainsAddRec; 8558 8559 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 8560 ContainsAddRec = false; 8561 } 8562 8563 bool follow(const SCEV *S) { 8564 if (isa<SCEVAddRecExpr>(S)) { 8565 ContainsAddRec = true; 8566 8567 // Stop recursion: once we collected a term, do not walk its operands. 8568 return false; 8569 } 8570 8571 // Keep looking. 8572 return true; 8573 } 8574 bool isDone() const { return false; } 8575 }; 8576 8577 // Find factors that are multiplied with an expression that (possibly as a 8578 // subexpression) contains an AddRecExpr. In the expression: 8579 // 8580 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 8581 // 8582 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 8583 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 8584 // parameters as they form a product with an induction variable. 8585 // 8586 // This collector expects all array size parameters to be in the same MulExpr. 8587 // It might be necessary to later add support for collecting parameters that are 8588 // spread over different nested MulExpr. 8589 struct SCEVCollectAddRecMultiplies { 8590 SmallVectorImpl<const SCEV *> &Terms; 8591 ScalarEvolution &SE; 8592 8593 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 8594 : Terms(T), SE(SE) {} 8595 8596 bool follow(const SCEV *S) { 8597 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 8598 bool HasAddRec = false; 8599 SmallVector<const SCEV *, 0> Operands; 8600 for (auto Op : Mul->operands()) { 8601 if (isa<SCEVUnknown>(Op)) { 8602 Operands.push_back(Op); 8603 } else { 8604 bool ContainsAddRec; 8605 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 8606 visitAll(Op, ContiansAddRec); 8607 HasAddRec |= ContainsAddRec; 8608 } 8609 } 8610 if (Operands.size() == 0) 8611 return true; 8612 8613 if (!HasAddRec) 8614 return false; 8615 8616 Terms.push_back(SE.getMulExpr(Operands)); 8617 // Stop recursion: once we collected a term, do not walk its operands. 8618 return false; 8619 } 8620 8621 // Keep looking. 8622 return true; 8623 } 8624 bool isDone() const { return false; } 8625 }; 8626 } 8627 8628 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 8629 /// two places: 8630 /// 1) The strides of AddRec expressions. 8631 /// 2) Unknowns that are multiplied with AddRec expressions. 8632 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 8633 SmallVectorImpl<const SCEV *> &Terms) { 8634 SmallVector<const SCEV *, 4> Strides; 8635 SCEVCollectStrides StrideCollector(*this, Strides); 8636 visitAll(Expr, StrideCollector); 8637 8638 DEBUG({ 8639 dbgs() << "Strides:\n"; 8640 for (const SCEV *S : Strides) 8641 dbgs() << *S << "\n"; 8642 }); 8643 8644 for (const SCEV *S : Strides) { 8645 SCEVCollectTerms TermCollector(Terms); 8646 visitAll(S, TermCollector); 8647 } 8648 8649 DEBUG({ 8650 dbgs() << "Terms:\n"; 8651 for (const SCEV *T : Terms) 8652 dbgs() << *T << "\n"; 8653 }); 8654 8655 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 8656 visitAll(Expr, MulCollector); 8657 } 8658 8659 static bool findArrayDimensionsRec(ScalarEvolution &SE, 8660 SmallVectorImpl<const SCEV *> &Terms, 8661 SmallVectorImpl<const SCEV *> &Sizes) { 8662 int Last = Terms.size() - 1; 8663 const SCEV *Step = Terms[Last]; 8664 8665 // End of recursion. 8666 if (Last == 0) { 8667 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 8668 SmallVector<const SCEV *, 2> Qs; 8669 for (const SCEV *Op : M->operands()) 8670 if (!isa<SCEVConstant>(Op)) 8671 Qs.push_back(Op); 8672 8673 Step = SE.getMulExpr(Qs); 8674 } 8675 8676 Sizes.push_back(Step); 8677 return true; 8678 } 8679 8680 for (const SCEV *&Term : Terms) { 8681 // Normalize the terms before the next call to findArrayDimensionsRec. 8682 const SCEV *Q, *R; 8683 SCEVDivision::divide(SE, Term, Step, &Q, &R); 8684 8685 // Bail out when GCD does not evenly divide one of the terms. 8686 if (!R->isZero()) 8687 return false; 8688 8689 Term = Q; 8690 } 8691 8692 // Remove all SCEVConstants. 8693 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) { 8694 return isa<SCEVConstant>(E); 8695 }), 8696 Terms.end()); 8697 8698 if (Terms.size() > 0) 8699 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 8700 return false; 8701 8702 Sizes.push_back(Step); 8703 return true; 8704 } 8705 8706 // Returns true when S contains at least a SCEVUnknown parameter. 8707 static inline bool 8708 containsParameters(const SCEV *S) { 8709 struct FindParameter { 8710 bool FoundParameter; 8711 FindParameter() : FoundParameter(false) {} 8712 8713 bool follow(const SCEV *S) { 8714 if (isa<SCEVUnknown>(S)) { 8715 FoundParameter = true; 8716 // Stop recursion: we found a parameter. 8717 return false; 8718 } 8719 // Keep looking. 8720 return true; 8721 } 8722 bool isDone() const { 8723 // Stop recursion if we have found a parameter. 8724 return FoundParameter; 8725 } 8726 }; 8727 8728 FindParameter F; 8729 SCEVTraversal<FindParameter> ST(F); 8730 ST.visitAll(S); 8731 8732 return F.FoundParameter; 8733 } 8734 8735 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 8736 static inline bool 8737 containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 8738 for (const SCEV *T : Terms) 8739 if (containsParameters(T)) 8740 return true; 8741 return false; 8742 } 8743 8744 // Return the number of product terms in S. 8745 static inline int numberOfTerms(const SCEV *S) { 8746 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 8747 return Expr->getNumOperands(); 8748 return 1; 8749 } 8750 8751 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 8752 if (isa<SCEVConstant>(T)) 8753 return nullptr; 8754 8755 if (isa<SCEVUnknown>(T)) 8756 return T; 8757 8758 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 8759 SmallVector<const SCEV *, 2> Factors; 8760 for (const SCEV *Op : M->operands()) 8761 if (!isa<SCEVConstant>(Op)) 8762 Factors.push_back(Op); 8763 8764 return SE.getMulExpr(Factors); 8765 } 8766 8767 return T; 8768 } 8769 8770 /// Return the size of an element read or written by Inst. 8771 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 8772 Type *Ty; 8773 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 8774 Ty = Store->getValueOperand()->getType(); 8775 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 8776 Ty = Load->getType(); 8777 else 8778 return nullptr; 8779 8780 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 8781 return getSizeOfExpr(ETy, Ty); 8782 } 8783 8784 /// Second step of delinearization: compute the array dimensions Sizes from the 8785 /// set of Terms extracted from the memory access function of this SCEVAddRec. 8786 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 8787 SmallVectorImpl<const SCEV *> &Sizes, 8788 const SCEV *ElementSize) const { 8789 8790 if (Terms.size() < 1 || !ElementSize) 8791 return; 8792 8793 // Early return when Terms do not contain parameters: we do not delinearize 8794 // non parametric SCEVs. 8795 if (!containsParameters(Terms)) 8796 return; 8797 8798 DEBUG({ 8799 dbgs() << "Terms:\n"; 8800 for (const SCEV *T : Terms) 8801 dbgs() << *T << "\n"; 8802 }); 8803 8804 // Remove duplicates. 8805 std::sort(Terms.begin(), Terms.end()); 8806 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 8807 8808 // Put larger terms first. 8809 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 8810 return numberOfTerms(LHS) > numberOfTerms(RHS); 8811 }); 8812 8813 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8814 8815 // Try to divide all terms by the element size. If term is not divisible by 8816 // element size, proceed with the original term. 8817 for (const SCEV *&Term : Terms) { 8818 const SCEV *Q, *R; 8819 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R); 8820 if (!Q->isZero()) 8821 Term = Q; 8822 } 8823 8824 SmallVector<const SCEV *, 4> NewTerms; 8825 8826 // Remove constant factors. 8827 for (const SCEV *T : Terms) 8828 if (const SCEV *NewT = removeConstantFactors(SE, T)) 8829 NewTerms.push_back(NewT); 8830 8831 DEBUG({ 8832 dbgs() << "Terms after sorting:\n"; 8833 for (const SCEV *T : NewTerms) 8834 dbgs() << *T << "\n"; 8835 }); 8836 8837 if (NewTerms.empty() || 8838 !findArrayDimensionsRec(SE, NewTerms, Sizes)) { 8839 Sizes.clear(); 8840 return; 8841 } 8842 8843 // The last element to be pushed into Sizes is the size of an element. 8844 Sizes.push_back(ElementSize); 8845 8846 DEBUG({ 8847 dbgs() << "Sizes:\n"; 8848 for (const SCEV *S : Sizes) 8849 dbgs() << *S << "\n"; 8850 }); 8851 } 8852 8853 /// Third step of delinearization: compute the access functions for the 8854 /// Subscripts based on the dimensions in Sizes. 8855 void ScalarEvolution::computeAccessFunctions( 8856 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 8857 SmallVectorImpl<const SCEV *> &Sizes) { 8858 8859 // Early exit in case this SCEV is not an affine multivariate function. 8860 if (Sizes.empty()) 8861 return; 8862 8863 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 8864 if (!AR->isAffine()) 8865 return; 8866 8867 const SCEV *Res = Expr; 8868 int Last = Sizes.size() - 1; 8869 for (int i = Last; i >= 0; i--) { 8870 const SCEV *Q, *R; 8871 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 8872 8873 DEBUG({ 8874 dbgs() << "Res: " << *Res << "\n"; 8875 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 8876 dbgs() << "Res divided by Sizes[i]:\n"; 8877 dbgs() << "Quotient: " << *Q << "\n"; 8878 dbgs() << "Remainder: " << *R << "\n"; 8879 }); 8880 8881 Res = Q; 8882 8883 // Do not record the last subscript corresponding to the size of elements in 8884 // the array. 8885 if (i == Last) { 8886 8887 // Bail out if the remainder is too complex. 8888 if (isa<SCEVAddRecExpr>(R)) { 8889 Subscripts.clear(); 8890 Sizes.clear(); 8891 return; 8892 } 8893 8894 continue; 8895 } 8896 8897 // Record the access function for the current subscript. 8898 Subscripts.push_back(R); 8899 } 8900 8901 // Also push in last position the remainder of the last division: it will be 8902 // the access function of the innermost dimension. 8903 Subscripts.push_back(Res); 8904 8905 std::reverse(Subscripts.begin(), Subscripts.end()); 8906 8907 DEBUG({ 8908 dbgs() << "Subscripts:\n"; 8909 for (const SCEV *S : Subscripts) 8910 dbgs() << *S << "\n"; 8911 }); 8912 } 8913 8914 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 8915 /// sizes of an array access. Returns the remainder of the delinearization that 8916 /// is the offset start of the array. The SCEV->delinearize algorithm computes 8917 /// the multiples of SCEV coefficients: that is a pattern matching of sub 8918 /// expressions in the stride and base of a SCEV corresponding to the 8919 /// computation of a GCD (greatest common divisor) of base and stride. When 8920 /// SCEV->delinearize fails, it returns the SCEV unchanged. 8921 /// 8922 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 8923 /// 8924 /// void foo(long n, long m, long o, double A[n][m][o]) { 8925 /// 8926 /// for (long i = 0; i < n; i++) 8927 /// for (long j = 0; j < m; j++) 8928 /// for (long k = 0; k < o; k++) 8929 /// A[i][j][k] = 1.0; 8930 /// } 8931 /// 8932 /// the delinearization input is the following AddRec SCEV: 8933 /// 8934 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 8935 /// 8936 /// From this SCEV, we are able to say that the base offset of the access is %A 8937 /// because it appears as an offset that does not divide any of the strides in 8938 /// the loops: 8939 /// 8940 /// CHECK: Base offset: %A 8941 /// 8942 /// and then SCEV->delinearize determines the size of some of the dimensions of 8943 /// the array as these are the multiples by which the strides are happening: 8944 /// 8945 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 8946 /// 8947 /// Note that the outermost dimension remains of UnknownSize because there are 8948 /// no strides that would help identifying the size of the last dimension: when 8949 /// the array has been statically allocated, one could compute the size of that 8950 /// dimension by dividing the overall size of the array by the size of the known 8951 /// dimensions: %m * %o * 8. 8952 /// 8953 /// Finally delinearize provides the access functions for the array reference 8954 /// that does correspond to A[i][j][k] of the above C testcase: 8955 /// 8956 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 8957 /// 8958 /// The testcases are checking the output of a function pass: 8959 /// DelinearizationPass that walks through all loads and stores of a function 8960 /// asking for the SCEV of the memory access with respect to all enclosing 8961 /// loops, calling SCEV->delinearize on that and printing the results. 8962 8963 void ScalarEvolution::delinearize(const SCEV *Expr, 8964 SmallVectorImpl<const SCEV *> &Subscripts, 8965 SmallVectorImpl<const SCEV *> &Sizes, 8966 const SCEV *ElementSize) { 8967 // First step: collect parametric terms. 8968 SmallVector<const SCEV *, 4> Terms; 8969 collectParametricTerms(Expr, Terms); 8970 8971 if (Terms.empty()) 8972 return; 8973 8974 // Second step: find subscript sizes. 8975 findArrayDimensions(Terms, Sizes, ElementSize); 8976 8977 if (Sizes.empty()) 8978 return; 8979 8980 // Third step: compute the access functions for each subscript. 8981 computeAccessFunctions(Expr, Subscripts, Sizes); 8982 8983 if (Subscripts.empty()) 8984 return; 8985 8986 DEBUG({ 8987 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 8988 dbgs() << "ArrayDecl[UnknownSize]"; 8989 for (const SCEV *S : Sizes) 8990 dbgs() << "[" << *S << "]"; 8991 8992 dbgs() << "\nArrayRef"; 8993 for (const SCEV *S : Subscripts) 8994 dbgs() << "[" << *S << "]"; 8995 dbgs() << "\n"; 8996 }); 8997 } 8998 8999 //===----------------------------------------------------------------------===// 9000 // SCEVCallbackVH Class Implementation 9001 //===----------------------------------------------------------------------===// 9002 9003 void ScalarEvolution::SCEVCallbackVH::deleted() { 9004 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 9005 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 9006 SE->ConstantEvolutionLoopExitValue.erase(PN); 9007 SE->ValueExprMap.erase(getValPtr()); 9008 // this now dangles! 9009 } 9010 9011 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 9012 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 9013 9014 // Forget all the expressions associated with users of the old value, 9015 // so that future queries will recompute the expressions using the new 9016 // value. 9017 Value *Old = getValPtr(); 9018 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 9019 SmallPtrSet<User *, 8> Visited; 9020 while (!Worklist.empty()) { 9021 User *U = Worklist.pop_back_val(); 9022 // Deleting the Old value will cause this to dangle. Postpone 9023 // that until everything else is done. 9024 if (U == Old) 9025 continue; 9026 if (!Visited.insert(U).second) 9027 continue; 9028 if (PHINode *PN = dyn_cast<PHINode>(U)) 9029 SE->ConstantEvolutionLoopExitValue.erase(PN); 9030 SE->ValueExprMap.erase(U); 9031 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 9032 } 9033 // Delete the Old value. 9034 if (PHINode *PN = dyn_cast<PHINode>(Old)) 9035 SE->ConstantEvolutionLoopExitValue.erase(PN); 9036 SE->ValueExprMap.erase(Old); 9037 // this now dangles! 9038 } 9039 9040 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 9041 : CallbackVH(V), SE(se) {} 9042 9043 //===----------------------------------------------------------------------===// 9044 // ScalarEvolution Class Implementation 9045 //===----------------------------------------------------------------------===// 9046 9047 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 9048 AssumptionCache &AC, DominatorTree &DT, 9049 LoopInfo &LI) 9050 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 9051 CouldNotCompute(new SCEVCouldNotCompute()), 9052 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 9053 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), 9054 FirstUnknown(nullptr) {} 9055 9056 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 9057 : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI), 9058 CouldNotCompute(std::move(Arg.CouldNotCompute)), 9059 ValueExprMap(std::move(Arg.ValueExprMap)), 9060 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 9061 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 9062 ConstantEvolutionLoopExitValue( 9063 std::move(Arg.ConstantEvolutionLoopExitValue)), 9064 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 9065 LoopDispositions(std::move(Arg.LoopDispositions)), 9066 BlockDispositions(std::move(Arg.BlockDispositions)), 9067 UnsignedRanges(std::move(Arg.UnsignedRanges)), 9068 SignedRanges(std::move(Arg.SignedRanges)), 9069 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 9070 UniquePreds(std::move(Arg.UniquePreds)), 9071 SCEVAllocator(std::move(Arg.SCEVAllocator)), 9072 FirstUnknown(Arg.FirstUnknown) { 9073 Arg.FirstUnknown = nullptr; 9074 } 9075 9076 ScalarEvolution::~ScalarEvolution() { 9077 // Iterate through all the SCEVUnknown instances and call their 9078 // destructors, so that they release their references to their values. 9079 for (SCEVUnknown *U = FirstUnknown; U;) { 9080 SCEVUnknown *Tmp = U; 9081 U = U->Next; 9082 Tmp->~SCEVUnknown(); 9083 } 9084 FirstUnknown = nullptr; 9085 9086 ValueExprMap.clear(); 9087 9088 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 9089 // that a loop had multiple computable exits. 9090 for (auto &BTCI : BackedgeTakenCounts) 9091 BTCI.second.clear(); 9092 9093 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 9094 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 9095 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 9096 } 9097 9098 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 9099 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 9100 } 9101 9102 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 9103 const Loop *L) { 9104 // Print all inner loops first 9105 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 9106 PrintLoopInfo(OS, SE, *I); 9107 9108 OS << "Loop "; 9109 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9110 OS << ": "; 9111 9112 SmallVector<BasicBlock *, 8> ExitBlocks; 9113 L->getExitBlocks(ExitBlocks); 9114 if (ExitBlocks.size() != 1) 9115 OS << "<multiple exits> "; 9116 9117 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 9118 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 9119 } else { 9120 OS << "Unpredictable backedge-taken count. "; 9121 } 9122 9123 OS << "\n" 9124 "Loop "; 9125 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9126 OS << ": "; 9127 9128 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 9129 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 9130 } else { 9131 OS << "Unpredictable max backedge-taken count. "; 9132 } 9133 9134 OS << "\n"; 9135 } 9136 9137 void ScalarEvolution::print(raw_ostream &OS) const { 9138 // ScalarEvolution's implementation of the print method is to print 9139 // out SCEV values of all instructions that are interesting. Doing 9140 // this potentially causes it to create new SCEV objects though, 9141 // which technically conflicts with the const qualifier. This isn't 9142 // observable from outside the class though, so casting away the 9143 // const isn't dangerous. 9144 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9145 9146 OS << "Classifying expressions for: "; 9147 F.printAsOperand(OS, /*PrintType=*/false); 9148 OS << "\n"; 9149 for (Instruction &I : instructions(F)) 9150 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 9151 OS << I << '\n'; 9152 OS << " --> "; 9153 const SCEV *SV = SE.getSCEV(&I); 9154 SV->print(OS); 9155 if (!isa<SCEVCouldNotCompute>(SV)) { 9156 OS << " U: "; 9157 SE.getUnsignedRange(SV).print(OS); 9158 OS << " S: "; 9159 SE.getSignedRange(SV).print(OS); 9160 } 9161 9162 const Loop *L = LI.getLoopFor(I.getParent()); 9163 9164 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 9165 if (AtUse != SV) { 9166 OS << " --> "; 9167 AtUse->print(OS); 9168 if (!isa<SCEVCouldNotCompute>(AtUse)) { 9169 OS << " U: "; 9170 SE.getUnsignedRange(AtUse).print(OS); 9171 OS << " S: "; 9172 SE.getSignedRange(AtUse).print(OS); 9173 } 9174 } 9175 9176 if (L) { 9177 OS << "\t\t" "Exits: "; 9178 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 9179 if (!SE.isLoopInvariant(ExitValue, L)) { 9180 OS << "<<Unknown>>"; 9181 } else { 9182 OS << *ExitValue; 9183 } 9184 } 9185 9186 OS << "\n"; 9187 } 9188 9189 OS << "Determining loop execution counts for: "; 9190 F.printAsOperand(OS, /*PrintType=*/false); 9191 OS << "\n"; 9192 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I) 9193 PrintLoopInfo(OS, &SE, *I); 9194 } 9195 9196 ScalarEvolution::LoopDisposition 9197 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 9198 auto &Values = LoopDispositions[S]; 9199 for (auto &V : Values) { 9200 if (V.getPointer() == L) 9201 return V.getInt(); 9202 } 9203 Values.emplace_back(L, LoopVariant); 9204 LoopDisposition D = computeLoopDisposition(S, L); 9205 auto &Values2 = LoopDispositions[S]; 9206 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9207 if (V.getPointer() == L) { 9208 V.setInt(D); 9209 break; 9210 } 9211 } 9212 return D; 9213 } 9214 9215 ScalarEvolution::LoopDisposition 9216 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 9217 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9218 case scConstant: 9219 return LoopInvariant; 9220 case scTruncate: 9221 case scZeroExtend: 9222 case scSignExtend: 9223 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 9224 case scAddRecExpr: { 9225 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9226 9227 // If L is the addrec's loop, it's computable. 9228 if (AR->getLoop() == L) 9229 return LoopComputable; 9230 9231 // Add recurrences are never invariant in the function-body (null loop). 9232 if (!L) 9233 return LoopVariant; 9234 9235 // This recurrence is variant w.r.t. L if L contains AR's loop. 9236 if (L->contains(AR->getLoop())) 9237 return LoopVariant; 9238 9239 // This recurrence is invariant w.r.t. L if AR's loop contains L. 9240 if (AR->getLoop()->contains(L)) 9241 return LoopInvariant; 9242 9243 // This recurrence is variant w.r.t. L if any of its operands 9244 // are variant. 9245 for (auto *Op : AR->operands()) 9246 if (!isLoopInvariant(Op, L)) 9247 return LoopVariant; 9248 9249 // Otherwise it's loop-invariant. 9250 return LoopInvariant; 9251 } 9252 case scAddExpr: 9253 case scMulExpr: 9254 case scUMaxExpr: 9255 case scSMaxExpr: { 9256 bool HasVarying = false; 9257 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 9258 LoopDisposition D = getLoopDisposition(Op, L); 9259 if (D == LoopVariant) 9260 return LoopVariant; 9261 if (D == LoopComputable) 9262 HasVarying = true; 9263 } 9264 return HasVarying ? LoopComputable : LoopInvariant; 9265 } 9266 case scUDivExpr: { 9267 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9268 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 9269 if (LD == LoopVariant) 9270 return LoopVariant; 9271 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 9272 if (RD == LoopVariant) 9273 return LoopVariant; 9274 return (LD == LoopInvariant && RD == LoopInvariant) ? 9275 LoopInvariant : LoopComputable; 9276 } 9277 case scUnknown: 9278 // All non-instruction values are loop invariant. All instructions are loop 9279 // invariant if they are not contained in the specified loop. 9280 // Instructions are never considered invariant in the function body 9281 // (null loop) because they are defined within the "loop". 9282 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 9283 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 9284 return LoopInvariant; 9285 case scCouldNotCompute: 9286 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9287 } 9288 llvm_unreachable("Unknown SCEV kind!"); 9289 } 9290 9291 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 9292 return getLoopDisposition(S, L) == LoopInvariant; 9293 } 9294 9295 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 9296 return getLoopDisposition(S, L) == LoopComputable; 9297 } 9298 9299 ScalarEvolution::BlockDisposition 9300 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9301 auto &Values = BlockDispositions[S]; 9302 for (auto &V : Values) { 9303 if (V.getPointer() == BB) 9304 return V.getInt(); 9305 } 9306 Values.emplace_back(BB, DoesNotDominateBlock); 9307 BlockDisposition D = computeBlockDisposition(S, BB); 9308 auto &Values2 = BlockDispositions[S]; 9309 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9310 if (V.getPointer() == BB) { 9311 V.setInt(D); 9312 break; 9313 } 9314 } 9315 return D; 9316 } 9317 9318 ScalarEvolution::BlockDisposition 9319 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9320 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9321 case scConstant: 9322 return ProperlyDominatesBlock; 9323 case scTruncate: 9324 case scZeroExtend: 9325 case scSignExtend: 9326 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 9327 case scAddRecExpr: { 9328 // This uses a "dominates" query instead of "properly dominates" query 9329 // to test for proper dominance too, because the instruction which 9330 // produces the addrec's value is a PHI, and a PHI effectively properly 9331 // dominates its entire containing block. 9332 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9333 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 9334 return DoesNotDominateBlock; 9335 } 9336 // FALL THROUGH into SCEVNAryExpr handling. 9337 case scAddExpr: 9338 case scMulExpr: 9339 case scUMaxExpr: 9340 case scSMaxExpr: { 9341 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 9342 bool Proper = true; 9343 for (const SCEV *NAryOp : NAry->operands()) { 9344 BlockDisposition D = getBlockDisposition(NAryOp, BB); 9345 if (D == DoesNotDominateBlock) 9346 return DoesNotDominateBlock; 9347 if (D == DominatesBlock) 9348 Proper = false; 9349 } 9350 return Proper ? ProperlyDominatesBlock : DominatesBlock; 9351 } 9352 case scUDivExpr: { 9353 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9354 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 9355 BlockDisposition LD = getBlockDisposition(LHS, BB); 9356 if (LD == DoesNotDominateBlock) 9357 return DoesNotDominateBlock; 9358 BlockDisposition RD = getBlockDisposition(RHS, BB); 9359 if (RD == DoesNotDominateBlock) 9360 return DoesNotDominateBlock; 9361 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 9362 ProperlyDominatesBlock : DominatesBlock; 9363 } 9364 case scUnknown: 9365 if (Instruction *I = 9366 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 9367 if (I->getParent() == BB) 9368 return DominatesBlock; 9369 if (DT.properlyDominates(I->getParent(), BB)) 9370 return ProperlyDominatesBlock; 9371 return DoesNotDominateBlock; 9372 } 9373 return ProperlyDominatesBlock; 9374 case scCouldNotCompute: 9375 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9376 } 9377 llvm_unreachable("Unknown SCEV kind!"); 9378 } 9379 9380 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 9381 return getBlockDisposition(S, BB) >= DominatesBlock; 9382 } 9383 9384 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 9385 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 9386 } 9387 9388 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 9389 // Search for a SCEV expression node within an expression tree. 9390 // Implements SCEVTraversal::Visitor. 9391 struct SCEVSearch { 9392 const SCEV *Node; 9393 bool IsFound; 9394 9395 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 9396 9397 bool follow(const SCEV *S) { 9398 IsFound |= (S == Node); 9399 return !IsFound; 9400 } 9401 bool isDone() const { return IsFound; } 9402 }; 9403 9404 SCEVSearch Search(Op); 9405 visitAll(S, Search); 9406 return Search.IsFound; 9407 } 9408 9409 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 9410 ValuesAtScopes.erase(S); 9411 LoopDispositions.erase(S); 9412 BlockDispositions.erase(S); 9413 UnsignedRanges.erase(S); 9414 SignedRanges.erase(S); 9415 9416 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 9417 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) { 9418 BackedgeTakenInfo &BEInfo = I->second; 9419 if (BEInfo.hasOperand(S, this)) { 9420 BEInfo.clear(); 9421 BackedgeTakenCounts.erase(I++); 9422 } 9423 else 9424 ++I; 9425 } 9426 } 9427 9428 typedef DenseMap<const Loop *, std::string> VerifyMap; 9429 9430 /// replaceSubString - Replaces all occurrences of From in Str with To. 9431 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 9432 size_t Pos = 0; 9433 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 9434 Str.replace(Pos, From.size(), To.data(), To.size()); 9435 Pos += To.size(); 9436 } 9437 } 9438 9439 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 9440 static void 9441 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 9442 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) { 9443 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse. 9444 9445 std::string &S = Map[L]; 9446 if (S.empty()) { 9447 raw_string_ostream OS(S); 9448 SE.getBackedgeTakenCount(L)->print(OS); 9449 9450 // false and 0 are semantically equivalent. This can happen in dead loops. 9451 replaceSubString(OS.str(), "false", "0"); 9452 // Remove wrap flags, their use in SCEV is highly fragile. 9453 // FIXME: Remove this when SCEV gets smarter about them. 9454 replaceSubString(OS.str(), "<nw>", ""); 9455 replaceSubString(OS.str(), "<nsw>", ""); 9456 replaceSubString(OS.str(), "<nuw>", ""); 9457 } 9458 } 9459 } 9460 9461 void ScalarEvolution::verify() const { 9462 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9463 9464 // Gather stringified backedge taken counts for all loops using SCEV's caches. 9465 // FIXME: It would be much better to store actual values instead of strings, 9466 // but SCEV pointers will change if we drop the caches. 9467 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 9468 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 9469 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 9470 9471 // Gather stringified backedge taken counts for all loops using a fresh 9472 // ScalarEvolution object. 9473 ScalarEvolution SE2(F, TLI, AC, DT, LI); 9474 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 9475 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2); 9476 9477 // Now compare whether they're the same with and without caches. This allows 9478 // verifying that no pass changed the cache. 9479 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 9480 "New loops suddenly appeared!"); 9481 9482 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 9483 OldE = BackedgeDumpsOld.end(), 9484 NewI = BackedgeDumpsNew.begin(); 9485 OldI != OldE; ++OldI, ++NewI) { 9486 assert(OldI->first == NewI->first && "Loop order changed!"); 9487 9488 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 9489 // changes. 9490 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 9491 // means that a pass is buggy or SCEV has to learn a new pattern but is 9492 // usually not harmful. 9493 if (OldI->second != NewI->second && 9494 OldI->second.find("undef") == std::string::npos && 9495 NewI->second.find("undef") == std::string::npos && 9496 OldI->second != "***COULDNOTCOMPUTE***" && 9497 NewI->second != "***COULDNOTCOMPUTE***") { 9498 dbgs() << "SCEVValidator: SCEV for loop '" 9499 << OldI->first->getHeader()->getName() 9500 << "' changed from '" << OldI->second 9501 << "' to '" << NewI->second << "'!\n"; 9502 std::abort(); 9503 } 9504 } 9505 9506 // TODO: Verify more things. 9507 } 9508 9509 char ScalarEvolutionAnalysis::PassID; 9510 9511 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 9512 AnalysisManager<Function> *AM) { 9513 return ScalarEvolution(F, AM->getResult<TargetLibraryAnalysis>(F), 9514 AM->getResult<AssumptionAnalysis>(F), 9515 AM->getResult<DominatorTreeAnalysis>(F), 9516 AM->getResult<LoopAnalysis>(F)); 9517 } 9518 9519 PreservedAnalyses 9520 ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> *AM) { 9521 AM->getResult<ScalarEvolutionAnalysis>(F).print(OS); 9522 return PreservedAnalyses::all(); 9523 } 9524 9525 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 9526 "Scalar Evolution Analysis", false, true) 9527 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 9528 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 9529 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 9530 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 9531 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 9532 "Scalar Evolution Analysis", false, true) 9533 char ScalarEvolutionWrapperPass::ID = 0; 9534 9535 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 9536 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 9537 } 9538 9539 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 9540 SE.reset(new ScalarEvolution( 9541 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 9542 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 9543 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 9544 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 9545 return false; 9546 } 9547 9548 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 9549 9550 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 9551 SE->print(OS); 9552 } 9553 9554 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 9555 if (!VerifySCEV) 9556 return; 9557 9558 SE->verify(); 9559 } 9560 9561 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 9562 AU.setPreservesAll(); 9563 AU.addRequiredTransitive<AssumptionCacheTracker>(); 9564 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 9565 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 9566 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 9567 } 9568 9569 const SCEVPredicate * 9570 ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS, 9571 const SCEVConstant *RHS) { 9572 FoldingSetNodeID ID; 9573 // Unique this node based on the arguments 9574 ID.AddInteger(SCEVPredicate::P_Equal); 9575 ID.AddPointer(LHS); 9576 ID.AddPointer(RHS); 9577 void *IP = nullptr; 9578 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 9579 return S; 9580 SCEVEqualPredicate *Eq = new (SCEVAllocator) 9581 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 9582 UniquePreds.InsertNode(Eq, IP); 9583 return Eq; 9584 } 9585 9586 namespace { 9587 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 9588 public: 9589 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE, 9590 SCEVUnionPredicate &A) { 9591 SCEVPredicateRewriter Rewriter(SE, A); 9592 return Rewriter.visit(Scev); 9593 } 9594 9595 SCEVPredicateRewriter(ScalarEvolution &SE, SCEVUnionPredicate &P) 9596 : SCEVRewriteVisitor(SE), P(P) {} 9597 9598 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 9599 auto ExprPreds = P.getPredicatesForExpr(Expr); 9600 for (auto *Pred : ExprPreds) 9601 if (const auto *IPred = dyn_cast<const SCEVEqualPredicate>(Pred)) 9602 if (IPred->getLHS() == Expr) 9603 return IPred->getRHS(); 9604 9605 return Expr; 9606 } 9607 9608 private: 9609 SCEVUnionPredicate &P; 9610 }; 9611 } // end anonymous namespace 9612 9613 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *Scev, 9614 SCEVUnionPredicate &Preds) { 9615 return SCEVPredicateRewriter::rewrite(Scev, *this, Preds); 9616 } 9617 9618 /// SCEV predicates 9619 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 9620 SCEVPredicateKind Kind) 9621 : FastID(ID), Kind(Kind) {} 9622 9623 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 9624 const SCEVUnknown *LHS, 9625 const SCEVConstant *RHS) 9626 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {} 9627 9628 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 9629 const auto *Op = dyn_cast<const SCEVEqualPredicate>(N); 9630 9631 if (!Op) 9632 return false; 9633 9634 return Op->LHS == LHS && Op->RHS == RHS; 9635 } 9636 9637 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 9638 9639 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 9640 9641 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 9642 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 9643 } 9644 9645 /// Union predicates don't get cached so create a dummy set ID for it. 9646 SCEVUnionPredicate::SCEVUnionPredicate() 9647 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 9648 9649 bool SCEVUnionPredicate::isAlwaysTrue() const { 9650 return all_of(Preds, 9651 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 9652 } 9653 9654 ArrayRef<const SCEVPredicate *> 9655 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 9656 auto I = SCEVToPreds.find(Expr); 9657 if (I == SCEVToPreds.end()) 9658 return ArrayRef<const SCEVPredicate *>(); 9659 return I->second; 9660 } 9661 9662 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 9663 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) 9664 return all_of(Set->Preds, 9665 [this](const SCEVPredicate *I) { return this->implies(I); }); 9666 9667 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 9668 if (ScevPredsIt == SCEVToPreds.end()) 9669 return false; 9670 auto &SCEVPreds = ScevPredsIt->second; 9671 9672 return any_of(SCEVPreds, 9673 [N](const SCEVPredicate *I) { return I->implies(N); }); 9674 } 9675 9676 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 9677 9678 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 9679 for (auto Pred : Preds) 9680 Pred->print(OS, Depth); 9681 } 9682 9683 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 9684 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) { 9685 for (auto Pred : Set->Preds) 9686 add(Pred); 9687 return; 9688 } 9689 9690 if (implies(N)) 9691 return; 9692 9693 const SCEV *Key = N->getExpr(); 9694 assert(Key && "Only SCEVUnionPredicate doesn't have an " 9695 " associated expression!"); 9696 9697 SCEVToPreds[Key].push_back(N); 9698 Preds.push_back(N); 9699 } 9700 9701 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE) 9702 : SE(SE), Generation(0) {} 9703 9704 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 9705 const SCEV *Expr = SE.getSCEV(V); 9706 RewriteEntry &Entry = RewriteMap[Expr]; 9707 9708 // If we already have an entry and the version matches, return it. 9709 if (Entry.second && Generation == Entry.first) 9710 return Entry.second; 9711 9712 // We found an entry but it's stale. Rewrite the stale entry 9713 // acording to the current predicate. 9714 if (Entry.second) 9715 Expr = Entry.second; 9716 9717 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, Preds); 9718 Entry = {Generation, NewSCEV}; 9719 9720 return NewSCEV; 9721 } 9722 9723 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 9724 if (Preds.implies(&Pred)) 9725 return; 9726 Preds.add(&Pred); 9727 updateGeneration(); 9728 } 9729 9730 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 9731 return Preds; 9732 } 9733 9734 void PredicatedScalarEvolution::updateGeneration() { 9735 // If the generation number wrapped recompute everything. 9736 if (++Generation == 0) { 9737 for (auto &II : RewriteMap) { 9738 const SCEV *Rewritten = II.second.second; 9739 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, Preds)}; 9740 } 9741 } 9742 } 9743