Home | History | Annotate | Download | only in CodeGen
      1 //===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements the TargetLoweringBase class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Target/TargetLowering.h"
     15 #include "llvm/ADT/BitVector.h"
     16 #include "llvm/ADT/STLExtras.h"
     17 #include "llvm/ADT/Triple.h"
     18 #include "llvm/CodeGen/Analysis.h"
     19 #include "llvm/CodeGen/MachineFrameInfo.h"
     20 #include "llvm/CodeGen/MachineFunction.h"
     21 #include "llvm/CodeGen/MachineInstrBuilder.h"
     22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     23 #include "llvm/CodeGen/StackMaps.h"
     24 #include "llvm/IR/DataLayout.h"
     25 #include "llvm/IR/DerivedTypes.h"
     26 #include "llvm/IR/GlobalVariable.h"
     27 #include "llvm/IR/Mangler.h"
     28 #include "llvm/MC/MCAsmInfo.h"
     29 #include "llvm/MC/MCContext.h"
     30 #include "llvm/MC/MCExpr.h"
     31 #include "llvm/Support/CommandLine.h"
     32 #include "llvm/Support/ErrorHandling.h"
     33 #include "llvm/Support/MathExtras.h"
     34 #include "llvm/Target/TargetLoweringObjectFile.h"
     35 #include "llvm/Target/TargetMachine.h"
     36 #include "llvm/Target/TargetRegisterInfo.h"
     37 #include "llvm/Target/TargetSubtargetInfo.h"
     38 #include <cctype>
     39 using namespace llvm;
     40 
     41 static cl::opt<bool> JumpIsExpensiveOverride(
     42     "jump-is-expensive", cl::init(false),
     43     cl::desc("Do not create extra branches to split comparison logic."),
     44     cl::Hidden);
     45 
     46 /// InitLibcallNames - Set default libcall names.
     47 ///
     48 static void InitLibcallNames(const char **Names, const Triple &TT) {
     49   Names[RTLIB::SHL_I16] = "__ashlhi3";
     50   Names[RTLIB::SHL_I32] = "__ashlsi3";
     51   Names[RTLIB::SHL_I64] = "__ashldi3";
     52   Names[RTLIB::SHL_I128] = "__ashlti3";
     53   Names[RTLIB::SRL_I16] = "__lshrhi3";
     54   Names[RTLIB::SRL_I32] = "__lshrsi3";
     55   Names[RTLIB::SRL_I64] = "__lshrdi3";
     56   Names[RTLIB::SRL_I128] = "__lshrti3";
     57   Names[RTLIB::SRA_I16] = "__ashrhi3";
     58   Names[RTLIB::SRA_I32] = "__ashrsi3";
     59   Names[RTLIB::SRA_I64] = "__ashrdi3";
     60   Names[RTLIB::SRA_I128] = "__ashrti3";
     61   Names[RTLIB::MUL_I8] = "__mulqi3";
     62   Names[RTLIB::MUL_I16] = "__mulhi3";
     63   Names[RTLIB::MUL_I32] = "__mulsi3";
     64   Names[RTLIB::MUL_I64] = "__muldi3";
     65   Names[RTLIB::MUL_I128] = "__multi3";
     66   Names[RTLIB::MULO_I32] = "__mulosi4";
     67   Names[RTLIB::MULO_I64] = "__mulodi4";
     68   Names[RTLIB::MULO_I128] = "__muloti4";
     69   Names[RTLIB::SDIV_I8] = "__divqi3";
     70   Names[RTLIB::SDIV_I16] = "__divhi3";
     71   Names[RTLIB::SDIV_I32] = "__divsi3";
     72   Names[RTLIB::SDIV_I64] = "__divdi3";
     73   Names[RTLIB::SDIV_I128] = "__divti3";
     74   Names[RTLIB::UDIV_I8] = "__udivqi3";
     75   Names[RTLIB::UDIV_I16] = "__udivhi3";
     76   Names[RTLIB::UDIV_I32] = "__udivsi3";
     77   Names[RTLIB::UDIV_I64] = "__udivdi3";
     78   Names[RTLIB::UDIV_I128] = "__udivti3";
     79   Names[RTLIB::SREM_I8] = "__modqi3";
     80   Names[RTLIB::SREM_I16] = "__modhi3";
     81   Names[RTLIB::SREM_I32] = "__modsi3";
     82   Names[RTLIB::SREM_I64] = "__moddi3";
     83   Names[RTLIB::SREM_I128] = "__modti3";
     84   Names[RTLIB::UREM_I8] = "__umodqi3";
     85   Names[RTLIB::UREM_I16] = "__umodhi3";
     86   Names[RTLIB::UREM_I32] = "__umodsi3";
     87   Names[RTLIB::UREM_I64] = "__umoddi3";
     88   Names[RTLIB::UREM_I128] = "__umodti3";
     89 
     90   // These are generally not available.
     91   Names[RTLIB::SDIVREM_I8] = nullptr;
     92   Names[RTLIB::SDIVREM_I16] = nullptr;
     93   Names[RTLIB::SDIVREM_I32] = nullptr;
     94   Names[RTLIB::SDIVREM_I64] = nullptr;
     95   Names[RTLIB::SDIVREM_I128] = nullptr;
     96   Names[RTLIB::UDIVREM_I8] = nullptr;
     97   Names[RTLIB::UDIVREM_I16] = nullptr;
     98   Names[RTLIB::UDIVREM_I32] = nullptr;
     99   Names[RTLIB::UDIVREM_I64] = nullptr;
    100   Names[RTLIB::UDIVREM_I128] = nullptr;
    101 
    102   Names[RTLIB::NEG_I32] = "__negsi2";
    103   Names[RTLIB::NEG_I64] = "__negdi2";
    104   Names[RTLIB::ADD_F32] = "__addsf3";
    105   Names[RTLIB::ADD_F64] = "__adddf3";
    106   Names[RTLIB::ADD_F80] = "__addxf3";
    107   Names[RTLIB::ADD_F128] = "__addtf3";
    108   Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
    109   Names[RTLIB::SUB_F32] = "__subsf3";
    110   Names[RTLIB::SUB_F64] = "__subdf3";
    111   Names[RTLIB::SUB_F80] = "__subxf3";
    112   Names[RTLIB::SUB_F128] = "__subtf3";
    113   Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
    114   Names[RTLIB::MUL_F32] = "__mulsf3";
    115   Names[RTLIB::MUL_F64] = "__muldf3";
    116   Names[RTLIB::MUL_F80] = "__mulxf3";
    117   Names[RTLIB::MUL_F128] = "__multf3";
    118   Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
    119   Names[RTLIB::DIV_F32] = "__divsf3";
    120   Names[RTLIB::DIV_F64] = "__divdf3";
    121   Names[RTLIB::DIV_F80] = "__divxf3";
    122   Names[RTLIB::DIV_F128] = "__divtf3";
    123   Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
    124   Names[RTLIB::REM_F32] = "fmodf";
    125   Names[RTLIB::REM_F64] = "fmod";
    126   Names[RTLIB::REM_F80] = "fmodl";
    127   Names[RTLIB::REM_F128] = "fmodl";
    128   Names[RTLIB::REM_PPCF128] = "fmodl";
    129   Names[RTLIB::FMA_F32] = "fmaf";
    130   Names[RTLIB::FMA_F64] = "fma";
    131   Names[RTLIB::FMA_F80] = "fmal";
    132   Names[RTLIB::FMA_F128] = "fmal";
    133   Names[RTLIB::FMA_PPCF128] = "fmal";
    134   Names[RTLIB::POWI_F32] = "__powisf2";
    135   Names[RTLIB::POWI_F64] = "__powidf2";
    136   Names[RTLIB::POWI_F80] = "__powixf2";
    137   Names[RTLIB::POWI_F128] = "__powitf2";
    138   Names[RTLIB::POWI_PPCF128] = "__powitf2";
    139   Names[RTLIB::SQRT_F32] = "sqrtf";
    140   Names[RTLIB::SQRT_F64] = "sqrt";
    141   Names[RTLIB::SQRT_F80] = "sqrtl";
    142   Names[RTLIB::SQRT_F128] = "sqrtl";
    143   Names[RTLIB::SQRT_PPCF128] = "sqrtl";
    144   Names[RTLIB::LOG_F32] = "logf";
    145   Names[RTLIB::LOG_F64] = "log";
    146   Names[RTLIB::LOG_F80] = "logl";
    147   Names[RTLIB::LOG_F128] = "logl";
    148   Names[RTLIB::LOG_PPCF128] = "logl";
    149   Names[RTLIB::LOG2_F32] = "log2f";
    150   Names[RTLIB::LOG2_F64] = "log2";
    151   Names[RTLIB::LOG2_F80] = "log2l";
    152   Names[RTLIB::LOG2_F128] = "log2l";
    153   Names[RTLIB::LOG2_PPCF128] = "log2l";
    154   Names[RTLIB::LOG10_F32] = "log10f";
    155   Names[RTLIB::LOG10_F64] = "log10";
    156   Names[RTLIB::LOG10_F80] = "log10l";
    157   Names[RTLIB::LOG10_F128] = "log10l";
    158   Names[RTLIB::LOG10_PPCF128] = "log10l";
    159   Names[RTLIB::EXP_F32] = "expf";
    160   Names[RTLIB::EXP_F64] = "exp";
    161   Names[RTLIB::EXP_F80] = "expl";
    162   Names[RTLIB::EXP_F128] = "expl";
    163   Names[RTLIB::EXP_PPCF128] = "expl";
    164   Names[RTLIB::EXP2_F32] = "exp2f";
    165   Names[RTLIB::EXP2_F64] = "exp2";
    166   Names[RTLIB::EXP2_F80] = "exp2l";
    167   Names[RTLIB::EXP2_F128] = "exp2l";
    168   Names[RTLIB::EXP2_PPCF128] = "exp2l";
    169   Names[RTLIB::SIN_F32] = "sinf";
    170   Names[RTLIB::SIN_F64] = "sin";
    171   Names[RTLIB::SIN_F80] = "sinl";
    172   Names[RTLIB::SIN_F128] = "sinl";
    173   Names[RTLIB::SIN_PPCF128] = "sinl";
    174   Names[RTLIB::COS_F32] = "cosf";
    175   Names[RTLIB::COS_F64] = "cos";
    176   Names[RTLIB::COS_F80] = "cosl";
    177   Names[RTLIB::COS_F128] = "cosl";
    178   Names[RTLIB::COS_PPCF128] = "cosl";
    179   Names[RTLIB::POW_F32] = "powf";
    180   Names[RTLIB::POW_F64] = "pow";
    181   Names[RTLIB::POW_F80] = "powl";
    182   Names[RTLIB::POW_F128] = "powl";
    183   Names[RTLIB::POW_PPCF128] = "powl";
    184   Names[RTLIB::CEIL_F32] = "ceilf";
    185   Names[RTLIB::CEIL_F64] = "ceil";
    186   Names[RTLIB::CEIL_F80] = "ceill";
    187   Names[RTLIB::CEIL_F128] = "ceill";
    188   Names[RTLIB::CEIL_PPCF128] = "ceill";
    189   Names[RTLIB::TRUNC_F32] = "truncf";
    190   Names[RTLIB::TRUNC_F64] = "trunc";
    191   Names[RTLIB::TRUNC_F80] = "truncl";
    192   Names[RTLIB::TRUNC_F128] = "truncl";
    193   Names[RTLIB::TRUNC_PPCF128] = "truncl";
    194   Names[RTLIB::RINT_F32] = "rintf";
    195   Names[RTLIB::RINT_F64] = "rint";
    196   Names[RTLIB::RINT_F80] = "rintl";
    197   Names[RTLIB::RINT_F128] = "rintl";
    198   Names[RTLIB::RINT_PPCF128] = "rintl";
    199   Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
    200   Names[RTLIB::NEARBYINT_F64] = "nearbyint";
    201   Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
    202   Names[RTLIB::NEARBYINT_F128] = "nearbyintl";
    203   Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
    204   Names[RTLIB::ROUND_F32] = "roundf";
    205   Names[RTLIB::ROUND_F64] = "round";
    206   Names[RTLIB::ROUND_F80] = "roundl";
    207   Names[RTLIB::ROUND_F128] = "roundl";
    208   Names[RTLIB::ROUND_PPCF128] = "roundl";
    209   Names[RTLIB::FLOOR_F32] = "floorf";
    210   Names[RTLIB::FLOOR_F64] = "floor";
    211   Names[RTLIB::FLOOR_F80] = "floorl";
    212   Names[RTLIB::FLOOR_F128] = "floorl";
    213   Names[RTLIB::FLOOR_PPCF128] = "floorl";
    214   Names[RTLIB::FMIN_F32] = "fminf";
    215   Names[RTLIB::FMIN_F64] = "fmin";
    216   Names[RTLIB::FMIN_F80] = "fminl";
    217   Names[RTLIB::FMIN_F128] = "fminl";
    218   Names[RTLIB::FMIN_PPCF128] = "fminl";
    219   Names[RTLIB::FMAX_F32] = "fmaxf";
    220   Names[RTLIB::FMAX_F64] = "fmax";
    221   Names[RTLIB::FMAX_F80] = "fmaxl";
    222   Names[RTLIB::FMAX_F128] = "fmaxl";
    223   Names[RTLIB::FMAX_PPCF128] = "fmaxl";
    224   Names[RTLIB::ROUND_F32] = "roundf";
    225   Names[RTLIB::ROUND_F64] = "round";
    226   Names[RTLIB::ROUND_F80] = "roundl";
    227   Names[RTLIB::ROUND_F128] = "roundl";
    228   Names[RTLIB::ROUND_PPCF128] = "roundl";
    229   Names[RTLIB::COPYSIGN_F32] = "copysignf";
    230   Names[RTLIB::COPYSIGN_F64] = "copysign";
    231   Names[RTLIB::COPYSIGN_F80] = "copysignl";
    232   Names[RTLIB::COPYSIGN_F128] = "copysignl";
    233   Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
    234   Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2";
    235   Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2";
    236   Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
    237   Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
    238   Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
    239   Names[RTLIB::FPROUND_F64_F16] = "__truncdfhf2";
    240   Names[RTLIB::FPROUND_F80_F16] = "__truncxfhf2";
    241   Names[RTLIB::FPROUND_F128_F16] = "__trunctfhf2";
    242   Names[RTLIB::FPROUND_PPCF128_F16] = "__trunctfhf2";
    243   Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
    244   Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
    245   Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2";
    246   Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
    247   Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
    248   Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2";
    249   Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
    250   Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
    251   Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
    252   Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
    253   Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
    254   Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
    255   Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
    256   Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
    257   Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
    258   Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
    259   Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi";
    260   Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi";
    261   Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti";
    262   Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
    263   Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
    264   Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
    265   Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
    266   Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
    267   Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
    268   Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
    269   Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
    270   Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
    271   Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
    272   Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
    273   Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
    274   Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi";
    275   Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi";
    276   Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti";
    277   Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
    278   Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
    279   Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
    280   Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
    281   Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
    282   Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
    283   Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf";
    284   Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
    285   Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
    286   Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
    287   Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
    288   Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf";
    289   Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
    290   Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
    291   Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
    292   Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
    293   Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf";
    294   Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
    295   Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
    296   Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
    297   Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
    298   Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf";
    299   Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
    300   Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
    301   Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
    302   Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
    303   Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf";
    304   Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
    305   Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
    306   Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
    307   Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
    308   Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf";
    309   Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
    310   Names[RTLIB::OEQ_F32] = "__eqsf2";
    311   Names[RTLIB::OEQ_F64] = "__eqdf2";
    312   Names[RTLIB::OEQ_F128] = "__eqtf2";
    313   Names[RTLIB::UNE_F32] = "__nesf2";
    314   Names[RTLIB::UNE_F64] = "__nedf2";
    315   Names[RTLIB::UNE_F128] = "__netf2";
    316   Names[RTLIB::OGE_F32] = "__gesf2";
    317   Names[RTLIB::OGE_F64] = "__gedf2";
    318   Names[RTLIB::OGE_F128] = "__getf2";
    319   Names[RTLIB::OLT_F32] = "__ltsf2";
    320   Names[RTLIB::OLT_F64] = "__ltdf2";
    321   Names[RTLIB::OLT_F128] = "__lttf2";
    322   Names[RTLIB::OLE_F32] = "__lesf2";
    323   Names[RTLIB::OLE_F64] = "__ledf2";
    324   Names[RTLIB::OLE_F128] = "__letf2";
    325   Names[RTLIB::OGT_F32] = "__gtsf2";
    326   Names[RTLIB::OGT_F64] = "__gtdf2";
    327   Names[RTLIB::OGT_F128] = "__gttf2";
    328   Names[RTLIB::UO_F32] = "__unordsf2";
    329   Names[RTLIB::UO_F64] = "__unorddf2";
    330   Names[RTLIB::UO_F128] = "__unordtf2";
    331   Names[RTLIB::O_F32] = "__unordsf2";
    332   Names[RTLIB::O_F64] = "__unorddf2";
    333   Names[RTLIB::O_F128] = "__unordtf2";
    334   Names[RTLIB::MEMCPY] = "memcpy";
    335   Names[RTLIB::MEMMOVE] = "memmove";
    336   Names[RTLIB::MEMSET] = "memset";
    337   Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
    338   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
    339   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
    340   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
    341   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
    342   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16] = "__sync_val_compare_and_swap_16";
    343   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
    344   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
    345   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
    346   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
    347   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_16] = "__sync_lock_test_and_set_16";
    348   Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
    349   Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
    350   Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
    351   Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
    352   Names[RTLIB::SYNC_FETCH_AND_ADD_16] = "__sync_fetch_and_add_16";
    353   Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
    354   Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
    355   Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
    356   Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
    357   Names[RTLIB::SYNC_FETCH_AND_SUB_16] = "__sync_fetch_and_sub_16";
    358   Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
    359   Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
    360   Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
    361   Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
    362   Names[RTLIB::SYNC_FETCH_AND_AND_16] = "__sync_fetch_and_and_16";
    363   Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
    364   Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
    365   Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
    366   Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
    367   Names[RTLIB::SYNC_FETCH_AND_OR_16] = "__sync_fetch_and_or_16";
    368   Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
    369   Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
    370   Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
    371   Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
    372   Names[RTLIB::SYNC_FETCH_AND_XOR_16] = "__sync_fetch_and_xor_16";
    373   Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
    374   Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
    375   Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
    376   Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
    377   Names[RTLIB::SYNC_FETCH_AND_NAND_16] = "__sync_fetch_and_nand_16";
    378   Names[RTLIB::SYNC_FETCH_AND_MAX_1] = "__sync_fetch_and_max_1";
    379   Names[RTLIB::SYNC_FETCH_AND_MAX_2] = "__sync_fetch_and_max_2";
    380   Names[RTLIB::SYNC_FETCH_AND_MAX_4] = "__sync_fetch_and_max_4";
    381   Names[RTLIB::SYNC_FETCH_AND_MAX_8] = "__sync_fetch_and_max_8";
    382   Names[RTLIB::SYNC_FETCH_AND_MAX_16] = "__sync_fetch_and_max_16";
    383   Names[RTLIB::SYNC_FETCH_AND_UMAX_1] = "__sync_fetch_and_umax_1";
    384   Names[RTLIB::SYNC_FETCH_AND_UMAX_2] = "__sync_fetch_and_umax_2";
    385   Names[RTLIB::SYNC_FETCH_AND_UMAX_4] = "__sync_fetch_and_umax_4";
    386   Names[RTLIB::SYNC_FETCH_AND_UMAX_8] = "__sync_fetch_and_umax_8";
    387   Names[RTLIB::SYNC_FETCH_AND_UMAX_16] = "__sync_fetch_and_umax_16";
    388   Names[RTLIB::SYNC_FETCH_AND_MIN_1] = "__sync_fetch_and_min_1";
    389   Names[RTLIB::SYNC_FETCH_AND_MIN_2] = "__sync_fetch_and_min_2";
    390   Names[RTLIB::SYNC_FETCH_AND_MIN_4] = "__sync_fetch_and_min_4";
    391   Names[RTLIB::SYNC_FETCH_AND_MIN_8] = "__sync_fetch_and_min_8";
    392   Names[RTLIB::SYNC_FETCH_AND_MIN_16] = "__sync_fetch_and_min_16";
    393   Names[RTLIB::SYNC_FETCH_AND_UMIN_1] = "__sync_fetch_and_umin_1";
    394   Names[RTLIB::SYNC_FETCH_AND_UMIN_2] = "__sync_fetch_and_umin_2";
    395   Names[RTLIB::SYNC_FETCH_AND_UMIN_4] = "__sync_fetch_and_umin_4";
    396   Names[RTLIB::SYNC_FETCH_AND_UMIN_8] = "__sync_fetch_and_umin_8";
    397   Names[RTLIB::SYNC_FETCH_AND_UMIN_16] = "__sync_fetch_and_umin_16";
    398 
    399   if (TT.getEnvironment() == Triple::GNU) {
    400     Names[RTLIB::SINCOS_F32] = "sincosf";
    401     Names[RTLIB::SINCOS_F64] = "sincos";
    402     Names[RTLIB::SINCOS_F80] = "sincosl";
    403     Names[RTLIB::SINCOS_F128] = "sincosl";
    404     Names[RTLIB::SINCOS_PPCF128] = "sincosl";
    405   } else {
    406     // These are generally not available.
    407     Names[RTLIB::SINCOS_F32] = nullptr;
    408     Names[RTLIB::SINCOS_F64] = nullptr;
    409     Names[RTLIB::SINCOS_F80] = nullptr;
    410     Names[RTLIB::SINCOS_F128] = nullptr;
    411     Names[RTLIB::SINCOS_PPCF128] = nullptr;
    412   }
    413 
    414   if (!TT.isOSOpenBSD()) {
    415     Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = "__stack_chk_fail";
    416   } else {
    417     // These are generally not available.
    418     Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = nullptr;
    419   }
    420 
    421   // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
    422   // of the gnueabi-style __gnu_*_ieee.
    423   // FIXME: What about other targets?
    424   if (TT.isOSDarwin()) {
    425     Names[RTLIB::FPEXT_F16_F32] = "__extendhfsf2";
    426     Names[RTLIB::FPROUND_F32_F16] = "__truncsfhf2";
    427   }
    428 }
    429 
    430 /// InitLibcallCallingConvs - Set default libcall CallingConvs.
    431 ///
    432 static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
    433   for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
    434     CCs[i] = CallingConv::C;
    435   }
    436 }
    437 
    438 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
    439 /// UNKNOWN_LIBCALL if there is none.
    440 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
    441   if (OpVT == MVT::f16) {
    442     if (RetVT == MVT::f32)
    443       return FPEXT_F16_F32;
    444   } else if (OpVT == MVT::f32) {
    445     if (RetVT == MVT::f64)
    446       return FPEXT_F32_F64;
    447     if (RetVT == MVT::f128)
    448       return FPEXT_F32_F128;
    449   } else if (OpVT == MVT::f64) {
    450     if (RetVT == MVT::f128)
    451       return FPEXT_F64_F128;
    452   }
    453 
    454   return UNKNOWN_LIBCALL;
    455 }
    456 
    457 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
    458 /// UNKNOWN_LIBCALL if there is none.
    459 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
    460   if (RetVT == MVT::f16) {
    461     if (OpVT == MVT::f32)
    462       return FPROUND_F32_F16;
    463     if (OpVT == MVT::f64)
    464       return FPROUND_F64_F16;
    465     if (OpVT == MVT::f80)
    466       return FPROUND_F80_F16;
    467     if (OpVT == MVT::f128)
    468       return FPROUND_F128_F16;
    469     if (OpVT == MVT::ppcf128)
    470       return FPROUND_PPCF128_F16;
    471   } else if (RetVT == MVT::f32) {
    472     if (OpVT == MVT::f64)
    473       return FPROUND_F64_F32;
    474     if (OpVT == MVT::f80)
    475       return FPROUND_F80_F32;
    476     if (OpVT == MVT::f128)
    477       return FPROUND_F128_F32;
    478     if (OpVT == MVT::ppcf128)
    479       return FPROUND_PPCF128_F32;
    480   } else if (RetVT == MVT::f64) {
    481     if (OpVT == MVT::f80)
    482       return FPROUND_F80_F64;
    483     if (OpVT == MVT::f128)
    484       return FPROUND_F128_F64;
    485     if (OpVT == MVT::ppcf128)
    486       return FPROUND_PPCF128_F64;
    487   }
    488 
    489   return UNKNOWN_LIBCALL;
    490 }
    491 
    492 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
    493 /// UNKNOWN_LIBCALL if there is none.
    494 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
    495   if (OpVT == MVT::f32) {
    496     if (RetVT == MVT::i32)
    497       return FPTOSINT_F32_I32;
    498     if (RetVT == MVT::i64)
    499       return FPTOSINT_F32_I64;
    500     if (RetVT == MVT::i128)
    501       return FPTOSINT_F32_I128;
    502   } else if (OpVT == MVT::f64) {
    503     if (RetVT == MVT::i32)
    504       return FPTOSINT_F64_I32;
    505     if (RetVT == MVT::i64)
    506       return FPTOSINT_F64_I64;
    507     if (RetVT == MVT::i128)
    508       return FPTOSINT_F64_I128;
    509   } else if (OpVT == MVT::f80) {
    510     if (RetVT == MVT::i32)
    511       return FPTOSINT_F80_I32;
    512     if (RetVT == MVT::i64)
    513       return FPTOSINT_F80_I64;
    514     if (RetVT == MVT::i128)
    515       return FPTOSINT_F80_I128;
    516   } else if (OpVT == MVT::f128) {
    517     if (RetVT == MVT::i32)
    518       return FPTOSINT_F128_I32;
    519     if (RetVT == MVT::i64)
    520       return FPTOSINT_F128_I64;
    521     if (RetVT == MVT::i128)
    522       return FPTOSINT_F128_I128;
    523   } else if (OpVT == MVT::ppcf128) {
    524     if (RetVT == MVT::i32)
    525       return FPTOSINT_PPCF128_I32;
    526     if (RetVT == MVT::i64)
    527       return FPTOSINT_PPCF128_I64;
    528     if (RetVT == MVT::i128)
    529       return FPTOSINT_PPCF128_I128;
    530   }
    531   return UNKNOWN_LIBCALL;
    532 }
    533 
    534 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
    535 /// UNKNOWN_LIBCALL if there is none.
    536 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
    537   if (OpVT == MVT::f32) {
    538     if (RetVT == MVT::i32)
    539       return FPTOUINT_F32_I32;
    540     if (RetVT == MVT::i64)
    541       return FPTOUINT_F32_I64;
    542     if (RetVT == MVT::i128)
    543       return FPTOUINT_F32_I128;
    544   } else if (OpVT == MVT::f64) {
    545     if (RetVT == MVT::i32)
    546       return FPTOUINT_F64_I32;
    547     if (RetVT == MVT::i64)
    548       return FPTOUINT_F64_I64;
    549     if (RetVT == MVT::i128)
    550       return FPTOUINT_F64_I128;
    551   } else if (OpVT == MVT::f80) {
    552     if (RetVT == MVT::i32)
    553       return FPTOUINT_F80_I32;
    554     if (RetVT == MVT::i64)
    555       return FPTOUINT_F80_I64;
    556     if (RetVT == MVT::i128)
    557       return FPTOUINT_F80_I128;
    558   } else if (OpVT == MVT::f128) {
    559     if (RetVT == MVT::i32)
    560       return FPTOUINT_F128_I32;
    561     if (RetVT == MVT::i64)
    562       return FPTOUINT_F128_I64;
    563     if (RetVT == MVT::i128)
    564       return FPTOUINT_F128_I128;
    565   } else if (OpVT == MVT::ppcf128) {
    566     if (RetVT == MVT::i32)
    567       return FPTOUINT_PPCF128_I32;
    568     if (RetVT == MVT::i64)
    569       return FPTOUINT_PPCF128_I64;
    570     if (RetVT == MVT::i128)
    571       return FPTOUINT_PPCF128_I128;
    572   }
    573   return UNKNOWN_LIBCALL;
    574 }
    575 
    576 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
    577 /// UNKNOWN_LIBCALL if there is none.
    578 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
    579   if (OpVT == MVT::i32) {
    580     if (RetVT == MVT::f32)
    581       return SINTTOFP_I32_F32;
    582     if (RetVT == MVT::f64)
    583       return SINTTOFP_I32_F64;
    584     if (RetVT == MVT::f80)
    585       return SINTTOFP_I32_F80;
    586     if (RetVT == MVT::f128)
    587       return SINTTOFP_I32_F128;
    588     if (RetVT == MVT::ppcf128)
    589       return SINTTOFP_I32_PPCF128;
    590   } else if (OpVT == MVT::i64) {
    591     if (RetVT == MVT::f32)
    592       return SINTTOFP_I64_F32;
    593     if (RetVT == MVT::f64)
    594       return SINTTOFP_I64_F64;
    595     if (RetVT == MVT::f80)
    596       return SINTTOFP_I64_F80;
    597     if (RetVT == MVT::f128)
    598       return SINTTOFP_I64_F128;
    599     if (RetVT == MVT::ppcf128)
    600       return SINTTOFP_I64_PPCF128;
    601   } else if (OpVT == MVT::i128) {
    602     if (RetVT == MVT::f32)
    603       return SINTTOFP_I128_F32;
    604     if (RetVT == MVT::f64)
    605       return SINTTOFP_I128_F64;
    606     if (RetVT == MVT::f80)
    607       return SINTTOFP_I128_F80;
    608     if (RetVT == MVT::f128)
    609       return SINTTOFP_I128_F128;
    610     if (RetVT == MVT::ppcf128)
    611       return SINTTOFP_I128_PPCF128;
    612   }
    613   return UNKNOWN_LIBCALL;
    614 }
    615 
    616 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
    617 /// UNKNOWN_LIBCALL if there is none.
    618 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
    619   if (OpVT == MVT::i32) {
    620     if (RetVT == MVT::f32)
    621       return UINTTOFP_I32_F32;
    622     if (RetVT == MVT::f64)
    623       return UINTTOFP_I32_F64;
    624     if (RetVT == MVT::f80)
    625       return UINTTOFP_I32_F80;
    626     if (RetVT == MVT::f128)
    627       return UINTTOFP_I32_F128;
    628     if (RetVT == MVT::ppcf128)
    629       return UINTTOFP_I32_PPCF128;
    630   } else if (OpVT == MVT::i64) {
    631     if (RetVT == MVT::f32)
    632       return UINTTOFP_I64_F32;
    633     if (RetVT == MVT::f64)
    634       return UINTTOFP_I64_F64;
    635     if (RetVT == MVT::f80)
    636       return UINTTOFP_I64_F80;
    637     if (RetVT == MVT::f128)
    638       return UINTTOFP_I64_F128;
    639     if (RetVT == MVT::ppcf128)
    640       return UINTTOFP_I64_PPCF128;
    641   } else if (OpVT == MVT::i128) {
    642     if (RetVT == MVT::f32)
    643       return UINTTOFP_I128_F32;
    644     if (RetVT == MVT::f64)
    645       return UINTTOFP_I128_F64;
    646     if (RetVT == MVT::f80)
    647       return UINTTOFP_I128_F80;
    648     if (RetVT == MVT::f128)
    649       return UINTTOFP_I128_F128;
    650     if (RetVT == MVT::ppcf128)
    651       return UINTTOFP_I128_PPCF128;
    652   }
    653   return UNKNOWN_LIBCALL;
    654 }
    655 
    656 RTLIB::Libcall RTLIB::getATOMIC(unsigned Opc, MVT VT) {
    657 #define OP_TO_LIBCALL(Name, Enum)                                              \
    658   case Name:                                                                   \
    659     switch (VT.SimpleTy) {                                                     \
    660     default:                                                                   \
    661       return UNKNOWN_LIBCALL;                                                  \
    662     case MVT::i8:                                                              \
    663       return Enum##_1;                                                         \
    664     case MVT::i16:                                                             \
    665       return Enum##_2;                                                         \
    666     case MVT::i32:                                                             \
    667       return Enum##_4;                                                         \
    668     case MVT::i64:                                                             \
    669       return Enum##_8;                                                         \
    670     case MVT::i128:                                                            \
    671       return Enum##_16;                                                        \
    672     }
    673 
    674   switch (Opc) {
    675     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
    676     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
    677     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
    678     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
    679     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
    680     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
    681     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
    682     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
    683     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
    684     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
    685     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
    686     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
    687   }
    688 
    689 #undef OP_TO_LIBCALL
    690 
    691   return UNKNOWN_LIBCALL;
    692 }
    693 
    694 /// InitCmpLibcallCCs - Set default comparison libcall CC.
    695 ///
    696 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
    697   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
    698   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
    699   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
    700   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
    701   CCs[RTLIB::UNE_F32] = ISD::SETNE;
    702   CCs[RTLIB::UNE_F64] = ISD::SETNE;
    703   CCs[RTLIB::UNE_F128] = ISD::SETNE;
    704   CCs[RTLIB::OGE_F32] = ISD::SETGE;
    705   CCs[RTLIB::OGE_F64] = ISD::SETGE;
    706   CCs[RTLIB::OGE_F128] = ISD::SETGE;
    707   CCs[RTLIB::OLT_F32] = ISD::SETLT;
    708   CCs[RTLIB::OLT_F64] = ISD::SETLT;
    709   CCs[RTLIB::OLT_F128] = ISD::SETLT;
    710   CCs[RTLIB::OLE_F32] = ISD::SETLE;
    711   CCs[RTLIB::OLE_F64] = ISD::SETLE;
    712   CCs[RTLIB::OLE_F128] = ISD::SETLE;
    713   CCs[RTLIB::OGT_F32] = ISD::SETGT;
    714   CCs[RTLIB::OGT_F64] = ISD::SETGT;
    715   CCs[RTLIB::OGT_F128] = ISD::SETGT;
    716   CCs[RTLIB::UO_F32] = ISD::SETNE;
    717   CCs[RTLIB::UO_F64] = ISD::SETNE;
    718   CCs[RTLIB::UO_F128] = ISD::SETNE;
    719   CCs[RTLIB::O_F32] = ISD::SETEQ;
    720   CCs[RTLIB::O_F64] = ISD::SETEQ;
    721   CCs[RTLIB::O_F128] = ISD::SETEQ;
    722 }
    723 
    724 /// NOTE: The TargetMachine owns TLOF.
    725 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
    726   initActions();
    727 
    728   // Perform these initializations only once.
    729   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 8;
    730   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize
    731     = MaxStoresPerMemmoveOptSize = 4;
    732   UseUnderscoreSetJmp = false;
    733   UseUnderscoreLongJmp = false;
    734   SelectIsExpensive = false;
    735   HasMultipleConditionRegisters = false;
    736   HasExtractBitsInsn = false;
    737   FsqrtIsCheap = false;
    738   JumpIsExpensive = JumpIsExpensiveOverride;
    739   PredictableSelectIsExpensive = false;
    740   MaskAndBranchFoldingIsLegal = false;
    741   EnableExtLdPromotion = false;
    742   HasFloatingPointExceptions = true;
    743   StackPointerRegisterToSaveRestore = 0;
    744   BooleanContents = UndefinedBooleanContent;
    745   BooleanFloatContents = UndefinedBooleanContent;
    746   BooleanVectorContents = UndefinedBooleanContent;
    747   SchedPreferenceInfo = Sched::ILP;
    748   JumpBufSize = 0;
    749   JumpBufAlignment = 0;
    750   MinFunctionAlignment = 0;
    751   PrefFunctionAlignment = 0;
    752   PrefLoopAlignment = 0;
    753   GatherAllAliasesMaxDepth = 6;
    754   MinStackArgumentAlignment = 1;
    755   InsertFencesForAtomic = false;
    756   MinimumJumpTableEntries = 4;
    757 
    758   InitLibcallNames(LibcallRoutineNames, TM.getTargetTriple());
    759   InitCmpLibcallCCs(CmpLibcallCCs);
    760   InitLibcallCallingConvs(LibcallCallingConvs);
    761 }
    762 
    763 void TargetLoweringBase::initActions() {
    764   // All operations default to being supported.
    765   memset(OpActions, 0, sizeof(OpActions));
    766   memset(LoadExtActions, 0, sizeof(LoadExtActions));
    767   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
    768   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
    769   memset(CondCodeActions, 0, sizeof(CondCodeActions));
    770   memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
    771   memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
    772 
    773   // Set default actions for various operations.
    774   for (MVT VT : MVT::all_valuetypes()) {
    775     // Default all indexed load / store to expand.
    776     for (unsigned IM = (unsigned)ISD::PRE_INC;
    777          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
    778       setIndexedLoadAction(IM, VT, Expand);
    779       setIndexedStoreAction(IM, VT, Expand);
    780     }
    781 
    782     // Most backends expect to see the node which just returns the value loaded.
    783     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
    784 
    785     // These operations default to expand.
    786     setOperationAction(ISD::FGETSIGN, VT, Expand);
    787     setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
    788     setOperationAction(ISD::FMINNUM, VT, Expand);
    789     setOperationAction(ISD::FMAXNUM, VT, Expand);
    790     setOperationAction(ISD::FMINNAN, VT, Expand);
    791     setOperationAction(ISD::FMAXNAN, VT, Expand);
    792     setOperationAction(ISD::FMAD, VT, Expand);
    793     setOperationAction(ISD::SMIN, VT, Expand);
    794     setOperationAction(ISD::SMAX, VT, Expand);
    795     setOperationAction(ISD::UMIN, VT, Expand);
    796     setOperationAction(ISD::UMAX, VT, Expand);
    797 
    798     // Overflow operations default to expand
    799     setOperationAction(ISD::SADDO, VT, Expand);
    800     setOperationAction(ISD::SSUBO, VT, Expand);
    801     setOperationAction(ISD::UADDO, VT, Expand);
    802     setOperationAction(ISD::USUBO, VT, Expand);
    803     setOperationAction(ISD::SMULO, VT, Expand);
    804     setOperationAction(ISD::UMULO, VT, Expand);
    805 
    806     setOperationAction(ISD::BITREVERSE, VT, Expand);
    807 
    808     // These library functions default to expand.
    809     setOperationAction(ISD::FROUND, VT, Expand);
    810 
    811     // These operations default to expand for vector types.
    812     if (VT.isVector()) {
    813       setOperationAction(ISD::FCOPYSIGN, VT, Expand);
    814       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
    815       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
    816       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
    817     }
    818 
    819     // For most targets @llvm.get.dynamic.area.offest just returns 0.
    820     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
    821   }
    822 
    823   // Most targets ignore the @llvm.prefetch intrinsic.
    824   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
    825 
    826   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
    827   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
    828 
    829   // ConstantFP nodes default to expand.  Targets can either change this to
    830   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
    831   // to optimize expansions for certain constants.
    832   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
    833   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
    834   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
    835   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
    836   setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
    837 
    838   // These library functions default to expand.
    839   for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
    840     setOperationAction(ISD::FLOG ,      VT, Expand);
    841     setOperationAction(ISD::FLOG2,      VT, Expand);
    842     setOperationAction(ISD::FLOG10,     VT, Expand);
    843     setOperationAction(ISD::FEXP ,      VT, Expand);
    844     setOperationAction(ISD::FEXP2,      VT, Expand);
    845     setOperationAction(ISD::FFLOOR,     VT, Expand);
    846     setOperationAction(ISD::FMINNUM,    VT, Expand);
    847     setOperationAction(ISD::FMAXNUM,    VT, Expand);
    848     setOperationAction(ISD::FNEARBYINT, VT, Expand);
    849     setOperationAction(ISD::FCEIL,      VT, Expand);
    850     setOperationAction(ISD::FRINT,      VT, Expand);
    851     setOperationAction(ISD::FTRUNC,     VT, Expand);
    852     setOperationAction(ISD::FROUND,     VT, Expand);
    853   }
    854 
    855   // Default ISD::TRAP to expand (which turns it into abort).
    856   setOperationAction(ISD::TRAP, MVT::Other, Expand);
    857 
    858   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
    859   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
    860   //
    861   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
    862 }
    863 
    864 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
    865                                                EVT) const {
    866   return MVT::getIntegerVT(8 * DL.getPointerSize(0));
    867 }
    868 
    869 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy,
    870                                          const DataLayout &DL) const {
    871   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
    872   if (LHSTy.isVector())
    873     return LHSTy;
    874   return getScalarShiftAmountTy(DL, LHSTy);
    875 }
    876 
    877 /// canOpTrap - Returns true if the operation can trap for the value type.
    878 /// VT must be a legal type.
    879 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
    880   assert(isTypeLegal(VT));
    881   switch (Op) {
    882   default:
    883     return false;
    884   case ISD::FDIV:
    885   case ISD::FREM:
    886   case ISD::SDIV:
    887   case ISD::UDIV:
    888   case ISD::SREM:
    889   case ISD::UREM:
    890     return true;
    891   }
    892 }
    893 
    894 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
    895   // If the command-line option was specified, ignore this request.
    896   if (!JumpIsExpensiveOverride.getNumOccurrences())
    897     JumpIsExpensive = isExpensive;
    898 }
    899 
    900 TargetLoweringBase::LegalizeKind
    901 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
    902   // If this is a simple type, use the ComputeRegisterProp mechanism.
    903   if (VT.isSimple()) {
    904     MVT SVT = VT.getSimpleVT();
    905     assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
    906     MVT NVT = TransformToType[SVT.SimpleTy];
    907     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
    908 
    909     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
    910             ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger) &&
    911            "Promote may not follow Expand or Promote");
    912 
    913     if (LA == TypeSplitVector)
    914       return LegalizeKind(LA,
    915                           EVT::getVectorVT(Context, SVT.getVectorElementType(),
    916                                            SVT.getVectorNumElements() / 2));
    917     if (LA == TypeScalarizeVector)
    918       return LegalizeKind(LA, SVT.getVectorElementType());
    919     return LegalizeKind(LA, NVT);
    920   }
    921 
    922   // Handle Extended Scalar Types.
    923   if (!VT.isVector()) {
    924     assert(VT.isInteger() && "Float types must be simple");
    925     unsigned BitSize = VT.getSizeInBits();
    926     // First promote to a power-of-two size, then expand if necessary.
    927     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
    928       EVT NVT = VT.getRoundIntegerType(Context);
    929       assert(NVT != VT && "Unable to round integer VT");
    930       LegalizeKind NextStep = getTypeConversion(Context, NVT);
    931       // Avoid multi-step promotion.
    932       if (NextStep.first == TypePromoteInteger)
    933         return NextStep;
    934       // Return rounded integer type.
    935       return LegalizeKind(TypePromoteInteger, NVT);
    936     }
    937 
    938     return LegalizeKind(TypeExpandInteger,
    939                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
    940   }
    941 
    942   // Handle vector types.
    943   unsigned NumElts = VT.getVectorNumElements();
    944   EVT EltVT = VT.getVectorElementType();
    945 
    946   // Vectors with only one element are always scalarized.
    947   if (NumElts == 1)
    948     return LegalizeKind(TypeScalarizeVector, EltVT);
    949 
    950   // Try to widen vector elements until the element type is a power of two and
    951   // promote it to a legal type later on, for example:
    952   // <3 x i8> -> <4 x i8> -> <4 x i32>
    953   if (EltVT.isInteger()) {
    954     // Vectors with a number of elements that is not a power of two are always
    955     // widened, for example <3 x i8> -> <4 x i8>.
    956     if (!VT.isPow2VectorType()) {
    957       NumElts = (unsigned)NextPowerOf2(NumElts);
    958       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
    959       return LegalizeKind(TypeWidenVector, NVT);
    960     }
    961 
    962     // Examine the element type.
    963     LegalizeKind LK = getTypeConversion(Context, EltVT);
    964 
    965     // If type is to be expanded, split the vector.
    966     //  <4 x i140> -> <2 x i140>
    967     if (LK.first == TypeExpandInteger)
    968       return LegalizeKind(TypeSplitVector,
    969                           EVT::getVectorVT(Context, EltVT, NumElts / 2));
    970 
    971     // Promote the integer element types until a legal vector type is found
    972     // or until the element integer type is too big. If a legal type was not
    973     // found, fallback to the usual mechanism of widening/splitting the
    974     // vector.
    975     EVT OldEltVT = EltVT;
    976     while (1) {
    977       // Increase the bitwidth of the element to the next pow-of-two
    978       // (which is greater than 8 bits).
    979       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
    980                   .getRoundIntegerType(Context);
    981 
    982       // Stop trying when getting a non-simple element type.
    983       // Note that vector elements may be greater than legal vector element
    984       // types. Example: X86 XMM registers hold 64bit element on 32bit
    985       // systems.
    986       if (!EltVT.isSimple())
    987         break;
    988 
    989       // Build a new vector type and check if it is legal.
    990       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
    991       // Found a legal promoted vector type.
    992       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
    993         return LegalizeKind(TypePromoteInteger,
    994                             EVT::getVectorVT(Context, EltVT, NumElts));
    995     }
    996 
    997     // Reset the type to the unexpanded type if we did not find a legal vector
    998     // type with a promoted vector element type.
    999     EltVT = OldEltVT;
   1000   }
   1001 
   1002   // Try to widen the vector until a legal type is found.
   1003   // If there is no wider legal type, split the vector.
   1004   while (1) {
   1005     // Round up to the next power of 2.
   1006     NumElts = (unsigned)NextPowerOf2(NumElts);
   1007 
   1008     // If there is no simple vector type with this many elements then there
   1009     // cannot be a larger legal vector type.  Note that this assumes that
   1010     // there are no skipped intermediate vector types in the simple types.
   1011     if (!EltVT.isSimple())
   1012       break;
   1013     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
   1014     if (LargerVector == MVT())
   1015       break;
   1016 
   1017     // If this type is legal then widen the vector.
   1018     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
   1019       return LegalizeKind(TypeWidenVector, LargerVector);
   1020   }
   1021 
   1022   // Widen odd vectors to next power of two.
   1023   if (!VT.isPow2VectorType()) {
   1024     EVT NVT = VT.getPow2VectorType(Context);
   1025     return LegalizeKind(TypeWidenVector, NVT);
   1026   }
   1027 
   1028   // Vectors with illegal element types are expanded.
   1029   EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
   1030   return LegalizeKind(TypeSplitVector, NVT);
   1031 }
   1032 
   1033 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
   1034                                           unsigned &NumIntermediates,
   1035                                           MVT &RegisterVT,
   1036                                           TargetLoweringBase *TLI) {
   1037   // Figure out the right, legal destination reg to copy into.
   1038   unsigned NumElts = VT.getVectorNumElements();
   1039   MVT EltTy = VT.getVectorElementType();
   1040 
   1041   unsigned NumVectorRegs = 1;
   1042 
   1043   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
   1044   // could break down into LHS/RHS like LegalizeDAG does.
   1045   if (!isPowerOf2_32(NumElts)) {
   1046     NumVectorRegs = NumElts;
   1047     NumElts = 1;
   1048   }
   1049 
   1050   // Divide the input until we get to a supported size.  This will always
   1051   // end with a scalar if the target doesn't support vectors.
   1052   while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
   1053     NumElts >>= 1;
   1054     NumVectorRegs <<= 1;
   1055   }
   1056 
   1057   NumIntermediates = NumVectorRegs;
   1058 
   1059   MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
   1060   if (!TLI->isTypeLegal(NewVT))
   1061     NewVT = EltTy;
   1062   IntermediateVT = NewVT;
   1063 
   1064   unsigned NewVTSize = NewVT.getSizeInBits();
   1065 
   1066   // Convert sizes such as i33 to i64.
   1067   if (!isPowerOf2_32(NewVTSize))
   1068     NewVTSize = NextPowerOf2(NewVTSize);
   1069 
   1070   MVT DestVT = TLI->getRegisterType(NewVT);
   1071   RegisterVT = DestVT;
   1072   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
   1073     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
   1074 
   1075   // Otherwise, promotion or legal types use the same number of registers as
   1076   // the vector decimated to the appropriate level.
   1077   return NumVectorRegs;
   1078 }
   1079 
   1080 /// isLegalRC - Return true if the value types that can be represented by the
   1081 /// specified register class are all legal.
   1082 bool TargetLoweringBase::isLegalRC(const TargetRegisterClass *RC) const {
   1083   for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
   1084        I != E; ++I) {
   1085     if (isTypeLegal(*I))
   1086       return true;
   1087   }
   1088   return false;
   1089 }
   1090 
   1091 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
   1092 /// sequence of memory operands that is recognized by PrologEpilogInserter.
   1093 MachineBasicBlock*
   1094 TargetLoweringBase::emitPatchPoint(MachineInstr *MI,
   1095                                    MachineBasicBlock *MBB) const {
   1096   MachineFunction &MF = *MI->getParent()->getParent();
   1097 
   1098   // MI changes inside this loop as we grow operands.
   1099   for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
   1100     MachineOperand &MO = MI->getOperand(OperIdx);
   1101     if (!MO.isFI())
   1102       continue;
   1103 
   1104     // foldMemoryOperand builds a new MI after replacing a single FI operand
   1105     // with the canonical set of five x86 addressing-mode operands.
   1106     int FI = MO.getIndex();
   1107     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
   1108 
   1109     // Copy operands before the frame-index.
   1110     for (unsigned i = 0; i < OperIdx; ++i)
   1111       MIB.addOperand(MI->getOperand(i));
   1112     // Add frame index operands: direct-mem-ref tag, #FI, offset.
   1113     MIB.addImm(StackMaps::DirectMemRefOp);
   1114     MIB.addOperand(MI->getOperand(OperIdx));
   1115     MIB.addImm(0);
   1116     // Copy the operands after the frame index.
   1117     for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
   1118       MIB.addOperand(MI->getOperand(i));
   1119 
   1120     // Inherit previous memory operands.
   1121     MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
   1122     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
   1123 
   1124     // Add a new memory operand for this FI.
   1125     const MachineFrameInfo &MFI = *MF.getFrameInfo();
   1126     assert(MFI.getObjectOffset(FI) != -1);
   1127 
   1128     unsigned Flags = MachineMemOperand::MOLoad;
   1129     if (MI->getOpcode() == TargetOpcode::STATEPOINT) {
   1130       Flags |= MachineMemOperand::MOStore;
   1131       Flags |= MachineMemOperand::MOVolatile;
   1132     }
   1133     MachineMemOperand *MMO = MF.getMachineMemOperand(
   1134         MachinePointerInfo::getFixedStack(MF, FI), Flags,
   1135         MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI));
   1136     MIB->addMemOperand(MF, MMO);
   1137 
   1138     // Replace the instruction and update the operand index.
   1139     MBB->insert(MachineBasicBlock::iterator(MI), MIB);
   1140     OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
   1141     MI->eraseFromParent();
   1142     MI = MIB;
   1143   }
   1144   return MBB;
   1145 }
   1146 
   1147 /// findRepresentativeClass - Return the largest legal super-reg register class
   1148 /// of the register class for the specified type and its associated "cost".
   1149 // This function is in TargetLowering because it uses RegClassForVT which would
   1150 // need to be moved to TargetRegisterInfo and would necessitate moving
   1151 // isTypeLegal over as well - a massive change that would just require
   1152 // TargetLowering having a TargetRegisterInfo class member that it would use.
   1153 std::pair<const TargetRegisterClass *, uint8_t>
   1154 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
   1155                                             MVT VT) const {
   1156   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
   1157   if (!RC)
   1158     return std::make_pair(RC, 0);
   1159 
   1160   // Compute the set of all super-register classes.
   1161   BitVector SuperRegRC(TRI->getNumRegClasses());
   1162   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
   1163     SuperRegRC.setBitsInMask(RCI.getMask());
   1164 
   1165   // Find the first legal register class with the largest spill size.
   1166   const TargetRegisterClass *BestRC = RC;
   1167   for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) {
   1168     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
   1169     // We want the largest possible spill size.
   1170     if (SuperRC->getSize() <= BestRC->getSize())
   1171       continue;
   1172     if (!isLegalRC(SuperRC))
   1173       continue;
   1174     BestRC = SuperRC;
   1175   }
   1176   return std::make_pair(BestRC, 1);
   1177 }
   1178 
   1179 /// computeRegisterProperties - Once all of the register classes are added,
   1180 /// this allows us to compute derived properties we expose.
   1181 void TargetLoweringBase::computeRegisterProperties(
   1182     const TargetRegisterInfo *TRI) {
   1183   static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
   1184                 "Too many value types for ValueTypeActions to hold!");
   1185 
   1186   // Everything defaults to needing one register.
   1187   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
   1188     NumRegistersForVT[i] = 1;
   1189     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
   1190   }
   1191   // ...except isVoid, which doesn't need any registers.
   1192   NumRegistersForVT[MVT::isVoid] = 0;
   1193 
   1194   // Find the largest integer register class.
   1195   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
   1196   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
   1197     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
   1198 
   1199   // Every integer value type larger than this largest register takes twice as
   1200   // many registers to represent as the previous ValueType.
   1201   for (unsigned ExpandedReg = LargestIntReg + 1;
   1202        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
   1203     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
   1204     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
   1205     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
   1206     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
   1207                                    TypeExpandInteger);
   1208   }
   1209 
   1210   // Inspect all of the ValueType's smaller than the largest integer
   1211   // register to see which ones need promotion.
   1212   unsigned LegalIntReg = LargestIntReg;
   1213   for (unsigned IntReg = LargestIntReg - 1;
   1214        IntReg >= (unsigned)MVT::i1; --IntReg) {
   1215     MVT IVT = (MVT::SimpleValueType)IntReg;
   1216     if (isTypeLegal(IVT)) {
   1217       LegalIntReg = IntReg;
   1218     } else {
   1219       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
   1220         (const MVT::SimpleValueType)LegalIntReg;
   1221       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
   1222     }
   1223   }
   1224 
   1225   // ppcf128 type is really two f64's.
   1226   if (!isTypeLegal(MVT::ppcf128)) {
   1227     NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
   1228     RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
   1229     TransformToType[MVT::ppcf128] = MVT::f64;
   1230     ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
   1231   }
   1232 
   1233   // Decide how to handle f128. If the target does not have native f128 support,
   1234   // expand it to i128 and we will be generating soft float library calls.
   1235   if (!isTypeLegal(MVT::f128)) {
   1236     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
   1237     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
   1238     TransformToType[MVT::f128] = MVT::i128;
   1239     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
   1240   }
   1241 
   1242   // Decide how to handle f64. If the target does not have native f64 support,
   1243   // expand it to i64 and we will be generating soft float library calls.
   1244   if (!isTypeLegal(MVT::f64)) {
   1245     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
   1246     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
   1247     TransformToType[MVT::f64] = MVT::i64;
   1248     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
   1249   }
   1250 
   1251   // Decide how to handle f32. If the target does not have native f32 support,
   1252   // expand it to i32 and we will be generating soft float library calls.
   1253   if (!isTypeLegal(MVT::f32)) {
   1254     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
   1255     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
   1256     TransformToType[MVT::f32] = MVT::i32;
   1257     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
   1258   }
   1259 
   1260   // Decide how to handle f16. If the target does not have native f16 support,
   1261   // promote it to f32, because there are no f16 library calls (except for
   1262   // conversions).
   1263   if (!isTypeLegal(MVT::f16)) {
   1264     NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
   1265     RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
   1266     TransformToType[MVT::f16] = MVT::f32;
   1267     ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
   1268   }
   1269 
   1270   // Loop over all of the vector value types to see which need transformations.
   1271   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
   1272        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
   1273     MVT VT = (MVT::SimpleValueType) i;
   1274     if (isTypeLegal(VT))
   1275       continue;
   1276 
   1277     MVT EltVT = VT.getVectorElementType();
   1278     unsigned NElts = VT.getVectorNumElements();
   1279     bool IsLegalWiderType = false;
   1280     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
   1281     switch (PreferredAction) {
   1282     case TypePromoteInteger: {
   1283       // Try to promote the elements of integer vectors. If no legal
   1284       // promotion was found, fall through to the widen-vector method.
   1285       for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
   1286         MVT SVT = (MVT::SimpleValueType) nVT;
   1287         // Promote vectors of integers to vectors with the same number
   1288         // of elements, with a wider element type.
   1289         if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
   1290             && SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)
   1291             && SVT.getScalarType().isInteger()) {
   1292           TransformToType[i] = SVT;
   1293           RegisterTypeForVT[i] = SVT;
   1294           NumRegistersForVT[i] = 1;
   1295           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
   1296           IsLegalWiderType = true;
   1297           break;
   1298         }
   1299       }
   1300       if (IsLegalWiderType)
   1301         break;
   1302     }
   1303     case TypeWidenVector: {
   1304       // Try to widen the vector.
   1305       for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
   1306         MVT SVT = (MVT::SimpleValueType) nVT;
   1307         if (SVT.getVectorElementType() == EltVT
   1308             && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) {
   1309           TransformToType[i] = SVT;
   1310           RegisterTypeForVT[i] = SVT;
   1311           NumRegistersForVT[i] = 1;
   1312           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
   1313           IsLegalWiderType = true;
   1314           break;
   1315         }
   1316       }
   1317       if (IsLegalWiderType)
   1318         break;
   1319     }
   1320     case TypeSplitVector:
   1321     case TypeScalarizeVector: {
   1322       MVT IntermediateVT;
   1323       MVT RegisterVT;
   1324       unsigned NumIntermediates;
   1325       NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT,
   1326           NumIntermediates, RegisterVT, this);
   1327       RegisterTypeForVT[i] = RegisterVT;
   1328 
   1329       MVT NVT = VT.getPow2VectorType();
   1330       if (NVT == VT) {
   1331         // Type is already a power of 2.  The default action is to split.
   1332         TransformToType[i] = MVT::Other;
   1333         if (PreferredAction == TypeScalarizeVector)
   1334           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
   1335         else if (PreferredAction == TypeSplitVector)
   1336           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
   1337         else
   1338           // Set type action according to the number of elements.
   1339           ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector
   1340                                                         : TypeSplitVector);
   1341       } else {
   1342         TransformToType[i] = NVT;
   1343         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
   1344       }
   1345       break;
   1346     }
   1347     default:
   1348       llvm_unreachable("Unknown vector legalization action!");
   1349     }
   1350   }
   1351 
   1352   // Determine the 'representative' register class for each value type.
   1353   // An representative register class is the largest (meaning one which is
   1354   // not a sub-register class / subreg register class) legal register class for
   1355   // a group of value types. For example, on i386, i8, i16, and i32
   1356   // representative would be GR32; while on x86_64 it's GR64.
   1357   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
   1358     const TargetRegisterClass* RRC;
   1359     uint8_t Cost;
   1360     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
   1361     RepRegClassForVT[i] = RRC;
   1362     RepRegClassCostForVT[i] = Cost;
   1363   }
   1364 }
   1365 
   1366 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
   1367                                            EVT VT) const {
   1368   assert(!VT.isVector() && "No default SetCC type for vectors!");
   1369   return getPointerTy(DL).SimpleTy;
   1370 }
   1371 
   1372 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
   1373   return MVT::i32; // return the default value
   1374 }
   1375 
   1376 /// getVectorTypeBreakdown - Vector types are broken down into some number of
   1377 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
   1378 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
   1379 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
   1380 ///
   1381 /// This method returns the number of registers needed, and the VT for each
   1382 /// register.  It also returns the VT and quantity of the intermediate values
   1383 /// before they are promoted/expanded.
   1384 ///
   1385 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
   1386                                                 EVT &IntermediateVT,
   1387                                                 unsigned &NumIntermediates,
   1388                                                 MVT &RegisterVT) const {
   1389   unsigned NumElts = VT.getVectorNumElements();
   1390 
   1391   // If there is a wider vector type with the same element type as this one,
   1392   // or a promoted vector type that has the same number of elements which
   1393   // are wider, then we should convert to that legal vector type.
   1394   // This handles things like <2 x float> -> <4 x float> and
   1395   // <4 x i1> -> <4 x i32>.
   1396   LegalizeTypeAction TA = getTypeAction(Context, VT);
   1397   if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
   1398     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
   1399     if (isTypeLegal(RegisterEVT)) {
   1400       IntermediateVT = RegisterEVT;
   1401       RegisterVT = RegisterEVT.getSimpleVT();
   1402       NumIntermediates = 1;
   1403       return 1;
   1404     }
   1405   }
   1406 
   1407   // Figure out the right, legal destination reg to copy into.
   1408   EVT EltTy = VT.getVectorElementType();
   1409 
   1410   unsigned NumVectorRegs = 1;
   1411 
   1412   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
   1413   // could break down into LHS/RHS like LegalizeDAG does.
   1414   if (!isPowerOf2_32(NumElts)) {
   1415     NumVectorRegs = NumElts;
   1416     NumElts = 1;
   1417   }
   1418 
   1419   // Divide the input until we get to a supported size.  This will always
   1420   // end with a scalar if the target doesn't support vectors.
   1421   while (NumElts > 1 && !isTypeLegal(
   1422                                    EVT::getVectorVT(Context, EltTy, NumElts))) {
   1423     NumElts >>= 1;
   1424     NumVectorRegs <<= 1;
   1425   }
   1426 
   1427   NumIntermediates = NumVectorRegs;
   1428 
   1429   EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
   1430   if (!isTypeLegal(NewVT))
   1431     NewVT = EltTy;
   1432   IntermediateVT = NewVT;
   1433 
   1434   MVT DestVT = getRegisterType(Context, NewVT);
   1435   RegisterVT = DestVT;
   1436   unsigned NewVTSize = NewVT.getSizeInBits();
   1437 
   1438   // Convert sizes such as i33 to i64.
   1439   if (!isPowerOf2_32(NewVTSize))
   1440     NewVTSize = NextPowerOf2(NewVTSize);
   1441 
   1442   if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
   1443     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
   1444 
   1445   // Otherwise, promotion or legal types use the same number of registers as
   1446   // the vector decimated to the appropriate level.
   1447   return NumVectorRegs;
   1448 }
   1449 
   1450 /// Get the EVTs and ArgFlags collections that represent the legalized return
   1451 /// type of the given function.  This does not require a DAG or a return value,
   1452 /// and is suitable for use before any DAGs for the function are constructed.
   1453 /// TODO: Move this out of TargetLowering.cpp.
   1454 void llvm::GetReturnInfo(Type *ReturnType, AttributeSet attr,
   1455                          SmallVectorImpl<ISD::OutputArg> &Outs,
   1456                          const TargetLowering &TLI, const DataLayout &DL) {
   1457   SmallVector<EVT, 4> ValueVTs;
   1458   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
   1459   unsigned NumValues = ValueVTs.size();
   1460   if (NumValues == 0) return;
   1461 
   1462   for (unsigned j = 0, f = NumValues; j != f; ++j) {
   1463     EVT VT = ValueVTs[j];
   1464     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
   1465 
   1466     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
   1467       ExtendKind = ISD::SIGN_EXTEND;
   1468     else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
   1469       ExtendKind = ISD::ZERO_EXTEND;
   1470 
   1471     // FIXME: C calling convention requires the return type to be promoted to
   1472     // at least 32-bit. But this is not necessary for non-C calling
   1473     // conventions. The frontend should mark functions whose return values
   1474     // require promoting with signext or zeroext attributes.
   1475     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
   1476       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
   1477       if (VT.bitsLT(MinVT))
   1478         VT = MinVT;
   1479     }
   1480 
   1481     unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
   1482     MVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
   1483 
   1484     // 'inreg' on function refers to return value
   1485     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
   1486     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::InReg))
   1487       Flags.setInReg();
   1488 
   1489     // Propagate extension type if any
   1490     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
   1491       Flags.setSExt();
   1492     else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
   1493       Flags.setZExt();
   1494 
   1495     for (unsigned i = 0; i < NumParts; ++i)
   1496       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0));
   1497   }
   1498 }
   1499 
   1500 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
   1501 /// function arguments in the caller parameter area.  This is the actual
   1502 /// alignment, not its logarithm.
   1503 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty,
   1504                                                    const DataLayout &DL) const {
   1505   return DL.getABITypeAlignment(Ty);
   1506 }
   1507 
   1508 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
   1509                                             const DataLayout &DL, EVT VT,
   1510                                             unsigned AddrSpace,
   1511                                             unsigned Alignment,
   1512                                             bool *Fast) const {
   1513   // Check if the specified alignment is sufficient based on the data layout.
   1514   // TODO: While using the data layout works in practice, a better solution
   1515   // would be to implement this check directly (make this a virtual function).
   1516   // For example, the ABI alignment may change based on software platform while
   1517   // this function should only be affected by hardware implementation.
   1518   Type *Ty = VT.getTypeForEVT(Context);
   1519   if (Alignment >= DL.getABITypeAlignment(Ty)) {
   1520     // Assume that an access that meets the ABI-specified alignment is fast.
   1521     if (Fast != nullptr)
   1522       *Fast = true;
   1523     return true;
   1524   }
   1525 
   1526   // This is a misaligned access.
   1527   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Fast);
   1528 }
   1529 
   1530 
   1531 //===----------------------------------------------------------------------===//
   1532 //  TargetTransformInfo Helpers
   1533 //===----------------------------------------------------------------------===//
   1534 
   1535 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
   1536   enum InstructionOpcodes {
   1537 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
   1538 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
   1539 #include "llvm/IR/Instruction.def"
   1540   };
   1541   switch (static_cast<InstructionOpcodes>(Opcode)) {
   1542   case Ret:            return 0;
   1543   case Br:             return 0;
   1544   case Switch:         return 0;
   1545   case IndirectBr:     return 0;
   1546   case Invoke:         return 0;
   1547   case Resume:         return 0;
   1548   case Unreachable:    return 0;
   1549   case CleanupRet:     return 0;
   1550   case CatchRet:       return 0;
   1551   case CatchPad:       return 0;
   1552   case CatchSwitch:    return 0;
   1553   case CleanupPad:     return 0;
   1554   case Add:            return ISD::ADD;
   1555   case FAdd:           return ISD::FADD;
   1556   case Sub:            return ISD::SUB;
   1557   case FSub:           return ISD::FSUB;
   1558   case Mul:            return ISD::MUL;
   1559   case FMul:           return ISD::FMUL;
   1560   case UDiv:           return ISD::UDIV;
   1561   case SDiv:           return ISD::SDIV;
   1562   case FDiv:           return ISD::FDIV;
   1563   case URem:           return ISD::UREM;
   1564   case SRem:           return ISD::SREM;
   1565   case FRem:           return ISD::FREM;
   1566   case Shl:            return ISD::SHL;
   1567   case LShr:           return ISD::SRL;
   1568   case AShr:           return ISD::SRA;
   1569   case And:            return ISD::AND;
   1570   case Or:             return ISD::OR;
   1571   case Xor:            return ISD::XOR;
   1572   case Alloca:         return 0;
   1573   case Load:           return ISD::LOAD;
   1574   case Store:          return ISD::STORE;
   1575   case GetElementPtr:  return 0;
   1576   case Fence:          return 0;
   1577   case AtomicCmpXchg:  return 0;
   1578   case AtomicRMW:      return 0;
   1579   case Trunc:          return ISD::TRUNCATE;
   1580   case ZExt:           return ISD::ZERO_EXTEND;
   1581   case SExt:           return ISD::SIGN_EXTEND;
   1582   case FPToUI:         return ISD::FP_TO_UINT;
   1583   case FPToSI:         return ISD::FP_TO_SINT;
   1584   case UIToFP:         return ISD::UINT_TO_FP;
   1585   case SIToFP:         return ISD::SINT_TO_FP;
   1586   case FPTrunc:        return ISD::FP_ROUND;
   1587   case FPExt:          return ISD::FP_EXTEND;
   1588   case PtrToInt:       return ISD::BITCAST;
   1589   case IntToPtr:       return ISD::BITCAST;
   1590   case BitCast:        return ISD::BITCAST;
   1591   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
   1592   case ICmp:           return ISD::SETCC;
   1593   case FCmp:           return ISD::SETCC;
   1594   case PHI:            return 0;
   1595   case Call:           return 0;
   1596   case Select:         return ISD::SELECT;
   1597   case UserOp1:        return 0;
   1598   case UserOp2:        return 0;
   1599   case VAArg:          return 0;
   1600   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
   1601   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
   1602   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
   1603   case ExtractValue:   return ISD::MERGE_VALUES;
   1604   case InsertValue:    return ISD::MERGE_VALUES;
   1605   case LandingPad:     return 0;
   1606   }
   1607 
   1608   llvm_unreachable("Unknown instruction type encountered!");
   1609 }
   1610 
   1611 std::pair<int, MVT>
   1612 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
   1613                                             Type *Ty) const {
   1614   LLVMContext &C = Ty->getContext();
   1615   EVT MTy = getValueType(DL, Ty);
   1616 
   1617   int Cost = 1;
   1618   // We keep legalizing the type until we find a legal kind. We assume that
   1619   // the only operation that costs anything is the split. After splitting
   1620   // we need to handle two types.
   1621   while (true) {
   1622     LegalizeKind LK = getTypeConversion(C, MTy);
   1623 
   1624     if (LK.first == TypeLegal)
   1625       return std::make_pair(Cost, MTy.getSimpleVT());
   1626 
   1627     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
   1628       Cost *= 2;
   1629 
   1630     // Do not loop with f128 type.
   1631     if (MTy == LK.second)
   1632       return std::make_pair(Cost, MTy.getSimpleVT());
   1633 
   1634     // Keep legalizing the type.
   1635     MTy = LK.second;
   1636   }
   1637 }
   1638 
   1639 Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
   1640   if (!TM.getTargetTriple().isAndroid())
   1641     return nullptr;
   1642 
   1643   // Android provides a libc function to retrieve the address of the current
   1644   // thread's unsafe stack pointer.
   1645   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
   1646   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
   1647   Value *Fn = M->getOrInsertFunction("__safestack_pointer_address",
   1648                                      StackPtrTy->getPointerTo(0), nullptr);
   1649   return IRB.CreateCall(Fn);
   1650 }
   1651 
   1652 //===----------------------------------------------------------------------===//
   1653 //  Loop Strength Reduction hooks
   1654 //===----------------------------------------------------------------------===//
   1655 
   1656 /// isLegalAddressingMode - Return true if the addressing mode represented
   1657 /// by AM is legal for this target, for a load/store of the specified type.
   1658 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
   1659                                                const AddrMode &AM, Type *Ty,
   1660                                                unsigned AS) const {
   1661   // The default implementation of this implements a conservative RISCy, r+r and
   1662   // r+i addr mode.
   1663 
   1664   // Allows a sign-extended 16-bit immediate field.
   1665   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
   1666     return false;
   1667 
   1668   // No global is ever allowed as a base.
   1669   if (AM.BaseGV)
   1670     return false;
   1671 
   1672   // Only support r+r,
   1673   switch (AM.Scale) {
   1674   case 0:  // "r+i" or just "i", depending on HasBaseReg.
   1675     break;
   1676   case 1:
   1677     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
   1678       return false;
   1679     // Otherwise we have r+r or r+i.
   1680     break;
   1681   case 2:
   1682     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
   1683       return false;
   1684     // Allow 2*r as r+r.
   1685     break;
   1686   default: // Don't allow n * r
   1687     return false;
   1688   }
   1689 
   1690   return true;
   1691 }
   1692