1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CodeGenDAGPatterns class, which is used to read and 11 // represent the patterns present in a .td file for instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenDAGPatterns.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/TableGen/Error.h" 23 #include "llvm/TableGen/Record.h" 24 #include <algorithm> 25 #include <cstdio> 26 #include <set> 27 using namespace llvm; 28 29 #define DEBUG_TYPE "dag-patterns" 30 31 //===----------------------------------------------------------------------===// 32 // EEVT::TypeSet Implementation 33 //===----------------------------------------------------------------------===// 34 35 static inline bool isInteger(MVT::SimpleValueType VT) { 36 return MVT(VT).isInteger(); 37 } 38 static inline bool isFloatingPoint(MVT::SimpleValueType VT) { 39 return MVT(VT).isFloatingPoint(); 40 } 41 static inline bool isVector(MVT::SimpleValueType VT) { 42 return MVT(VT).isVector(); 43 } 44 static inline bool isScalar(MVT::SimpleValueType VT) { 45 return !MVT(VT).isVector(); 46 } 47 48 EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) { 49 if (VT == MVT::iAny) 50 EnforceInteger(TP); 51 else if (VT == MVT::fAny) 52 EnforceFloatingPoint(TP); 53 else if (VT == MVT::vAny) 54 EnforceVector(TP); 55 else { 56 assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR || 57 VT == MVT::iPTRAny || VT == MVT::Any) && "Not a concrete type!"); 58 TypeVec.push_back(VT); 59 } 60 } 61 62 63 EEVT::TypeSet::TypeSet(ArrayRef<MVT::SimpleValueType> VTList) { 64 assert(!VTList.empty() && "empty list?"); 65 TypeVec.append(VTList.begin(), VTList.end()); 66 67 if (!VTList.empty()) 68 assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny && 69 VTList[0] != MVT::fAny); 70 71 // Verify no duplicates. 72 array_pod_sort(TypeVec.begin(), TypeVec.end()); 73 assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end()); 74 } 75 76 /// FillWithPossibleTypes - Set to all legal types and return true, only valid 77 /// on completely unknown type sets. 78 bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP, 79 bool (*Pred)(MVT::SimpleValueType), 80 const char *PredicateName) { 81 assert(isCompletelyUnknown()); 82 ArrayRef<MVT::SimpleValueType> LegalTypes = 83 TP.getDAGPatterns().getTargetInfo().getLegalValueTypes(); 84 85 if (TP.hasError()) 86 return false; 87 88 for (MVT::SimpleValueType VT : LegalTypes) 89 if (!Pred || Pred(VT)) 90 TypeVec.push_back(VT); 91 92 // If we have nothing that matches the predicate, bail out. 93 if (TypeVec.empty()) { 94 TP.error("Type inference contradiction found, no " + 95 std::string(PredicateName) + " types found"); 96 return false; 97 } 98 // No need to sort with one element. 99 if (TypeVec.size() == 1) return true; 100 101 // Remove duplicates. 102 array_pod_sort(TypeVec.begin(), TypeVec.end()); 103 TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end()); 104 105 return true; 106 } 107 108 /// hasIntegerTypes - Return true if this TypeSet contains iAny or an 109 /// integer value type. 110 bool EEVT::TypeSet::hasIntegerTypes() const { 111 return std::any_of(TypeVec.begin(), TypeVec.end(), isInteger); 112 } 113 114 /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or 115 /// a floating point value type. 116 bool EEVT::TypeSet::hasFloatingPointTypes() const { 117 return std::any_of(TypeVec.begin(), TypeVec.end(), isFloatingPoint); 118 } 119 120 /// hasScalarTypes - Return true if this TypeSet contains a scalar value type. 121 bool EEVT::TypeSet::hasScalarTypes() const { 122 return std::any_of(TypeVec.begin(), TypeVec.end(), isScalar); 123 } 124 125 /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector 126 /// value type. 127 bool EEVT::TypeSet::hasVectorTypes() const { 128 return std::any_of(TypeVec.begin(), TypeVec.end(), isVector); 129 } 130 131 132 std::string EEVT::TypeSet::getName() const { 133 if (TypeVec.empty()) return "<empty>"; 134 135 std::string Result; 136 137 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) { 138 std::string VTName = llvm::getEnumName(TypeVec[i]); 139 // Strip off MVT:: prefix if present. 140 if (VTName.substr(0,5) == "MVT::") 141 VTName = VTName.substr(5); 142 if (i) Result += ':'; 143 Result += VTName; 144 } 145 146 if (TypeVec.size() == 1) 147 return Result; 148 return "{" + Result + "}"; 149 } 150 151 /// MergeInTypeInfo - This merges in type information from the specified 152 /// argument. If 'this' changes, it returns true. If the two types are 153 /// contradictory (e.g. merge f32 into i32) then this flags an error. 154 bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){ 155 if (InVT.isCompletelyUnknown() || *this == InVT || TP.hasError()) 156 return false; 157 158 if (isCompletelyUnknown()) { 159 *this = InVT; 160 return true; 161 } 162 163 assert(!TypeVec.empty() && !InVT.TypeVec.empty() && "No unknowns"); 164 165 // Handle the abstract cases, seeing if we can resolve them better. 166 switch (TypeVec[0]) { 167 default: break; 168 case MVT::iPTR: 169 case MVT::iPTRAny: 170 if (InVT.hasIntegerTypes()) { 171 EEVT::TypeSet InCopy(InVT); 172 InCopy.EnforceInteger(TP); 173 InCopy.EnforceScalar(TP); 174 175 if (InCopy.isConcrete()) { 176 // If the RHS has one integer type, upgrade iPTR to i32. 177 TypeVec[0] = InVT.TypeVec[0]; 178 return true; 179 } 180 181 // If the input has multiple scalar integers, this doesn't add any info. 182 if (!InCopy.isCompletelyUnknown()) 183 return false; 184 } 185 break; 186 } 187 188 // If the input constraint is iAny/iPTR and this is an integer type list, 189 // remove non-integer types from the list. 190 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && 191 hasIntegerTypes()) { 192 bool MadeChange = EnforceInteger(TP); 193 194 // If we're merging in iPTR/iPTRAny and the node currently has a list of 195 // multiple different integer types, replace them with a single iPTR. 196 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && 197 TypeVec.size() != 1) { 198 TypeVec.assign(1, InVT.TypeVec[0]); 199 MadeChange = true; 200 } 201 202 return MadeChange; 203 } 204 205 // If this is a type list and the RHS is a typelist as well, eliminate entries 206 // from this list that aren't in the other one. 207 TypeSet InputSet(*this); 208 209 TypeVec.clear(); 210 std::set_intersection(InputSet.TypeVec.begin(), InputSet.TypeVec.end(), 211 InVT.TypeVec.begin(), InVT.TypeVec.end(), 212 std::back_inserter(TypeVec)); 213 214 // If the intersection is the same size as the original set then we're done. 215 if (TypeVec.size() == InputSet.TypeVec.size()) 216 return false; 217 218 // If we removed all of our types, we have a type contradiction. 219 if (!TypeVec.empty()) 220 return true; 221 222 // FIXME: Really want an SMLoc here! 223 TP.error("Type inference contradiction found, merging '" + 224 InVT.getName() + "' into '" + InputSet.getName() + "'"); 225 return false; 226 } 227 228 /// EnforceInteger - Remove all non-integer types from this set. 229 bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) { 230 if (TP.hasError()) 231 return false; 232 // If we know nothing, then get the full set. 233 if (TypeVec.empty()) 234 return FillWithPossibleTypes(TP, isInteger, "integer"); 235 236 if (!hasFloatingPointTypes()) 237 return false; 238 239 TypeSet InputSet(*this); 240 241 // Filter out all the fp types. 242 TypeVec.erase(std::remove_if(TypeVec.begin(), TypeVec.end(), 243 std::not1(std::ptr_fun(isInteger))), 244 TypeVec.end()); 245 246 if (TypeVec.empty()) { 247 TP.error("Type inference contradiction found, '" + 248 InputSet.getName() + "' needs to be integer"); 249 return false; 250 } 251 return true; 252 } 253 254 /// EnforceFloatingPoint - Remove all integer types from this set. 255 bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) { 256 if (TP.hasError()) 257 return false; 258 // If we know nothing, then get the full set. 259 if (TypeVec.empty()) 260 return FillWithPossibleTypes(TP, isFloatingPoint, "floating point"); 261 262 if (!hasIntegerTypes()) 263 return false; 264 265 TypeSet InputSet(*this); 266 267 // Filter out all the integer types. 268 TypeVec.erase(std::remove_if(TypeVec.begin(), TypeVec.end(), 269 std::not1(std::ptr_fun(isFloatingPoint))), 270 TypeVec.end()); 271 272 if (TypeVec.empty()) { 273 TP.error("Type inference contradiction found, '" + 274 InputSet.getName() + "' needs to be floating point"); 275 return false; 276 } 277 return true; 278 } 279 280 /// EnforceScalar - Remove all vector types from this. 281 bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) { 282 if (TP.hasError()) 283 return false; 284 285 // If we know nothing, then get the full set. 286 if (TypeVec.empty()) 287 return FillWithPossibleTypes(TP, isScalar, "scalar"); 288 289 if (!hasVectorTypes()) 290 return false; 291 292 TypeSet InputSet(*this); 293 294 // Filter out all the vector types. 295 TypeVec.erase(std::remove_if(TypeVec.begin(), TypeVec.end(), 296 std::not1(std::ptr_fun(isScalar))), 297 TypeVec.end()); 298 299 if (TypeVec.empty()) { 300 TP.error("Type inference contradiction found, '" + 301 InputSet.getName() + "' needs to be scalar"); 302 return false; 303 } 304 return true; 305 } 306 307 /// EnforceVector - Remove all vector types from this. 308 bool EEVT::TypeSet::EnforceVector(TreePattern &TP) { 309 if (TP.hasError()) 310 return false; 311 312 // If we know nothing, then get the full set. 313 if (TypeVec.empty()) 314 return FillWithPossibleTypes(TP, isVector, "vector"); 315 316 TypeSet InputSet(*this); 317 bool MadeChange = false; 318 319 // Filter out all the scalar types. 320 TypeVec.erase(std::remove_if(TypeVec.begin(), TypeVec.end(), 321 std::not1(std::ptr_fun(isVector))), 322 TypeVec.end()); 323 324 if (TypeVec.empty()) { 325 TP.error("Type inference contradiction found, '" + 326 InputSet.getName() + "' needs to be a vector"); 327 return false; 328 } 329 return MadeChange; 330 } 331 332 333 334 /// EnforceSmallerThan - 'this' must be a smaller VT than Other. For vectors 335 /// this should be based on the element type. Update this and other based on 336 /// this information. 337 bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) { 338 if (TP.hasError()) 339 return false; 340 341 // Both operands must be integer or FP, but we don't care which. 342 bool MadeChange = false; 343 344 if (isCompletelyUnknown()) 345 MadeChange = FillWithPossibleTypes(TP); 346 347 if (Other.isCompletelyUnknown()) 348 MadeChange = Other.FillWithPossibleTypes(TP); 349 350 // If one side is known to be integer or known to be FP but the other side has 351 // no information, get at least the type integrality info in there. 352 if (!hasFloatingPointTypes()) 353 MadeChange |= Other.EnforceInteger(TP); 354 else if (!hasIntegerTypes()) 355 MadeChange |= Other.EnforceFloatingPoint(TP); 356 if (!Other.hasFloatingPointTypes()) 357 MadeChange |= EnforceInteger(TP); 358 else if (!Other.hasIntegerTypes()) 359 MadeChange |= EnforceFloatingPoint(TP); 360 361 assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() && 362 "Should have a type list now"); 363 364 // If one contains vectors but the other doesn't pull vectors out. 365 if (!hasVectorTypes()) 366 MadeChange |= Other.EnforceScalar(TP); 367 else if (!hasScalarTypes()) 368 MadeChange |= Other.EnforceVector(TP); 369 if (!Other.hasVectorTypes()) 370 MadeChange |= EnforceScalar(TP); 371 else if (!Other.hasScalarTypes()) 372 MadeChange |= EnforceVector(TP); 373 374 // This code does not currently handle nodes which have multiple types, 375 // where some types are integer, and some are fp. Assert that this is not 376 // the case. 377 assert(!(hasIntegerTypes() && hasFloatingPointTypes()) && 378 !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) && 379 "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); 380 381 if (TP.hasError()) 382 return false; 383 384 // Okay, find the smallest type from current set and remove anything the 385 // same or smaller from the other set. We need to ensure that the scalar 386 // type size is smaller than the scalar size of the smallest type. For 387 // vectors, we also need to make sure that the total size is no larger than 388 // the size of the smallest type. 389 { 390 TypeSet InputSet(Other); 391 MVT Smallest = *std::min_element(TypeVec.begin(), TypeVec.end(), 392 [](MVT A, MVT B) { 393 return A.getScalarSizeInBits() < B.getScalarSizeInBits() || 394 (A.getScalarSizeInBits() == B.getScalarSizeInBits() && 395 A.getSizeInBits() < B.getSizeInBits()); 396 }); 397 398 auto I = std::remove_if(Other.TypeVec.begin(), Other.TypeVec.end(), 399 [Smallest](MVT OtherVT) { 400 // Don't compare vector and non-vector types. 401 if (OtherVT.isVector() != Smallest.isVector()) 402 return false; 403 // The getSizeInBits() check here is only needed for vectors, but is 404 // a subset of the scalar check for scalars so no need to qualify. 405 return OtherVT.getScalarSizeInBits() <= Smallest.getScalarSizeInBits()|| 406 OtherVT.getSizeInBits() < Smallest.getSizeInBits(); 407 }); 408 MadeChange |= I != Other.TypeVec.end(); // If we're about to remove types. 409 Other.TypeVec.erase(I, Other.TypeVec.end()); 410 411 if (Other.TypeVec.empty()) { 412 TP.error("Type inference contradiction found, '" + InputSet.getName() + 413 "' has nothing larger than '" + getName() +"'!"); 414 return false; 415 } 416 } 417 418 // Okay, find the largest type from the other set and remove anything the 419 // same or smaller from the current set. We need to ensure that the scalar 420 // type size is larger than the scalar size of the largest type. For 421 // vectors, we also need to make sure that the total size is no smaller than 422 // the size of the largest type. 423 { 424 TypeSet InputSet(*this); 425 MVT Largest = *std::max_element(Other.TypeVec.begin(), Other.TypeVec.end(), 426 [](MVT A, MVT B) { 427 return A.getScalarSizeInBits() < B.getScalarSizeInBits() || 428 (A.getScalarSizeInBits() == B.getScalarSizeInBits() && 429 A.getSizeInBits() < B.getSizeInBits()); 430 }); 431 auto I = std::remove_if(TypeVec.begin(), TypeVec.end(), 432 [Largest](MVT OtherVT) { 433 // Don't compare vector and non-vector types. 434 if (OtherVT.isVector() != Largest.isVector()) 435 return false; 436 return OtherVT.getScalarSizeInBits() >= Largest.getScalarSizeInBits() || 437 OtherVT.getSizeInBits() > Largest.getSizeInBits(); 438 }); 439 MadeChange |= I != TypeVec.end(); // If we're about to remove types. 440 TypeVec.erase(I, TypeVec.end()); 441 442 if (TypeVec.empty()) { 443 TP.error("Type inference contradiction found, '" + InputSet.getName() + 444 "' has nothing smaller than '" + Other.getName() +"'!"); 445 return false; 446 } 447 } 448 449 return MadeChange; 450 } 451 452 /// EnforceVectorEltTypeIs - 'this' is now constrained to be a vector type 453 /// whose element is specified by VTOperand. 454 bool EEVT::TypeSet::EnforceVectorEltTypeIs(MVT::SimpleValueType VT, 455 TreePattern &TP) { 456 bool MadeChange = false; 457 458 MadeChange |= EnforceVector(TP); 459 460 TypeSet InputSet(*this); 461 462 // Filter out all the types which don't have the right element type. 463 auto I = std::remove_if(TypeVec.begin(), TypeVec.end(), 464 [VT](MVT VVT) { 465 return VVT.getVectorElementType().SimpleTy != VT; 466 }); 467 MadeChange |= I != TypeVec.end(); 468 TypeVec.erase(I, TypeVec.end()); 469 470 if (TypeVec.empty()) { // FIXME: Really want an SMLoc here! 471 TP.error("Type inference contradiction found, forcing '" + 472 InputSet.getName() + "' to have a vector element of type " + 473 getEnumName(VT)); 474 return false; 475 } 476 477 return MadeChange; 478 } 479 480 /// EnforceVectorEltTypeIs - 'this' is now constrained to be a vector type 481 /// whose element is specified by VTOperand. 482 bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand, 483 TreePattern &TP) { 484 if (TP.hasError()) 485 return false; 486 487 // "This" must be a vector and "VTOperand" must be a scalar. 488 bool MadeChange = false; 489 MadeChange |= EnforceVector(TP); 490 MadeChange |= VTOperand.EnforceScalar(TP); 491 492 // If we know the vector type, it forces the scalar to agree. 493 if (isConcrete()) { 494 MVT IVT = getConcrete(); 495 IVT = IVT.getVectorElementType(); 496 return MadeChange || VTOperand.MergeInTypeInfo(IVT.SimpleTy, TP); 497 } 498 499 // If the scalar type is known, filter out vector types whose element types 500 // disagree. 501 if (!VTOperand.isConcrete()) 502 return MadeChange; 503 504 MVT::SimpleValueType VT = VTOperand.getConcrete(); 505 506 MadeChange |= EnforceVectorEltTypeIs(VT, TP); 507 508 return MadeChange; 509 } 510 511 /// EnforceVectorSubVectorTypeIs - 'this' is now constrained to be a 512 /// vector type specified by VTOperand. 513 bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand, 514 TreePattern &TP) { 515 if (TP.hasError()) 516 return false; 517 518 // "This" must be a vector and "VTOperand" must be a vector. 519 bool MadeChange = false; 520 MadeChange |= EnforceVector(TP); 521 MadeChange |= VTOperand.EnforceVector(TP); 522 523 // If one side is known to be integer or known to be FP but the other side has 524 // no information, get at least the type integrality info in there. 525 if (!hasFloatingPointTypes()) 526 MadeChange |= VTOperand.EnforceInteger(TP); 527 else if (!hasIntegerTypes()) 528 MadeChange |= VTOperand.EnforceFloatingPoint(TP); 529 if (!VTOperand.hasFloatingPointTypes()) 530 MadeChange |= EnforceInteger(TP); 531 else if (!VTOperand.hasIntegerTypes()) 532 MadeChange |= EnforceFloatingPoint(TP); 533 534 assert(!isCompletelyUnknown() && !VTOperand.isCompletelyUnknown() && 535 "Should have a type list now"); 536 537 // If we know the vector type, it forces the scalar types to agree. 538 // Also force one vector to have more elements than the other. 539 if (isConcrete()) { 540 MVT IVT = getConcrete(); 541 unsigned NumElems = IVT.getVectorNumElements(); 542 IVT = IVT.getVectorElementType(); 543 544 EEVT::TypeSet EltTypeSet(IVT.SimpleTy, TP); 545 MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP); 546 547 // Only keep types that have less elements than VTOperand. 548 TypeSet InputSet(VTOperand); 549 550 auto I = std::remove_if(VTOperand.TypeVec.begin(), VTOperand.TypeVec.end(), 551 [NumElems](MVT VVT) { 552 return VVT.getVectorNumElements() >= NumElems; 553 }); 554 MadeChange |= I != VTOperand.TypeVec.end(); 555 VTOperand.TypeVec.erase(I, VTOperand.TypeVec.end()); 556 557 if (VTOperand.TypeVec.empty()) { // FIXME: Really want an SMLoc here! 558 TP.error("Type inference contradiction found, forcing '" + 559 InputSet.getName() + "' to have less vector elements than '" + 560 getName() + "'"); 561 return false; 562 } 563 } else if (VTOperand.isConcrete()) { 564 MVT IVT = VTOperand.getConcrete(); 565 unsigned NumElems = IVT.getVectorNumElements(); 566 IVT = IVT.getVectorElementType(); 567 568 EEVT::TypeSet EltTypeSet(IVT.SimpleTy, TP); 569 MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP); 570 571 // Only keep types that have more elements than 'this'. 572 TypeSet InputSet(*this); 573 574 auto I = std::remove_if(TypeVec.begin(), TypeVec.end(), 575 [NumElems](MVT VVT) { 576 return VVT.getVectorNumElements() <= NumElems; 577 }); 578 MadeChange |= I != TypeVec.end(); 579 TypeVec.erase(I, TypeVec.end()); 580 581 if (TypeVec.empty()) { // FIXME: Really want an SMLoc here! 582 TP.error("Type inference contradiction found, forcing '" + 583 InputSet.getName() + "' to have more vector elements than '" + 584 VTOperand.getName() + "'"); 585 return false; 586 } 587 } 588 589 return MadeChange; 590 } 591 592 /// EnforceVectorSameNumElts - 'this' is now constrained to 593 /// be a vector with same num elements as VTOperand. 594 bool EEVT::TypeSet::EnforceVectorSameNumElts(EEVT::TypeSet &VTOperand, 595 TreePattern &TP) { 596 if (TP.hasError()) 597 return false; 598 599 // "This" must be a vector and "VTOperand" must be a vector. 600 bool MadeChange = false; 601 MadeChange |= EnforceVector(TP); 602 MadeChange |= VTOperand.EnforceVector(TP); 603 604 // If we know one of the vector types, it forces the other type to agree. 605 if (isConcrete()) { 606 MVT IVT = getConcrete(); 607 unsigned NumElems = IVT.getVectorNumElements(); 608 609 // Only keep types that have same elements as 'this'. 610 TypeSet InputSet(VTOperand); 611 612 auto I = std::remove_if(VTOperand.TypeVec.begin(), VTOperand.TypeVec.end(), 613 [NumElems](MVT VVT) { 614 return VVT.getVectorNumElements() != NumElems; 615 }); 616 MadeChange |= I != VTOperand.TypeVec.end(); 617 VTOperand.TypeVec.erase(I, VTOperand.TypeVec.end()); 618 619 if (VTOperand.TypeVec.empty()) { // FIXME: Really want an SMLoc here! 620 TP.error("Type inference contradiction found, forcing '" + 621 InputSet.getName() + "' to have same number elements as '" + 622 getName() + "'"); 623 return false; 624 } 625 } else if (VTOperand.isConcrete()) { 626 MVT IVT = VTOperand.getConcrete(); 627 unsigned NumElems = IVT.getVectorNumElements(); 628 629 // Only keep types that have same elements as VTOperand. 630 TypeSet InputSet(*this); 631 632 auto I = std::remove_if(TypeVec.begin(), TypeVec.end(), 633 [NumElems](MVT VVT) { 634 return VVT.getVectorNumElements() != NumElems; 635 }); 636 MadeChange |= I != TypeVec.end(); 637 TypeVec.erase(I, TypeVec.end()); 638 639 if (TypeVec.empty()) { // FIXME: Really want an SMLoc here! 640 TP.error("Type inference contradiction found, forcing '" + 641 InputSet.getName() + "' to have same number elements than '" + 642 VTOperand.getName() + "'"); 643 return false; 644 } 645 } 646 647 return MadeChange; 648 } 649 650 /// EnforceSameSize - 'this' is now constrained to be same size as VTOperand. 651 bool EEVT::TypeSet::EnforceSameSize(EEVT::TypeSet &VTOperand, 652 TreePattern &TP) { 653 if (TP.hasError()) 654 return false; 655 656 bool MadeChange = false; 657 658 // If we know one of the types, it forces the other type agree. 659 if (isConcrete()) { 660 MVT IVT = getConcrete(); 661 unsigned Size = IVT.getSizeInBits(); 662 663 // Only keep types that have the same size as 'this'. 664 TypeSet InputSet(VTOperand); 665 666 auto I = std::remove_if(VTOperand.TypeVec.begin(), VTOperand.TypeVec.end(), 667 [&](MVT VT) { 668 return VT.getSizeInBits() != Size; 669 }); 670 MadeChange |= I != VTOperand.TypeVec.end(); 671 VTOperand.TypeVec.erase(I, VTOperand.TypeVec.end()); 672 673 if (VTOperand.TypeVec.empty()) { // FIXME: Really want an SMLoc here! 674 TP.error("Type inference contradiction found, forcing '" + 675 InputSet.getName() + "' to have same size as '" + 676 getName() + "'"); 677 return false; 678 } 679 } else if (VTOperand.isConcrete()) { 680 MVT IVT = VTOperand.getConcrete(); 681 unsigned Size = IVT.getSizeInBits(); 682 683 // Only keep types that have the same size as VTOperand. 684 TypeSet InputSet(*this); 685 686 auto I = std::remove_if(TypeVec.begin(), TypeVec.end(), 687 [&](MVT VT) { 688 return VT.getSizeInBits() != Size; 689 }); 690 MadeChange |= I != TypeVec.end(); 691 TypeVec.erase(I, TypeVec.end()); 692 693 if (TypeVec.empty()) { // FIXME: Really want an SMLoc here! 694 TP.error("Type inference contradiction found, forcing '" + 695 InputSet.getName() + "' to have same size as '" + 696 VTOperand.getName() + "'"); 697 return false; 698 } 699 } 700 701 return MadeChange; 702 } 703 704 //===----------------------------------------------------------------------===// 705 // Helpers for working with extended types. 706 707 /// Dependent variable map for CodeGenDAGPattern variant generation 708 typedef std::map<std::string, int> DepVarMap; 709 710 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 711 if (N->isLeaf()) { 712 if (isa<DefInit>(N->getLeafValue())) 713 DepMap[N->getName()]++; 714 } else { 715 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 716 FindDepVarsOf(N->getChild(i), DepMap); 717 } 718 } 719 720 /// Find dependent variables within child patterns 721 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 722 DepVarMap depcounts; 723 FindDepVarsOf(N, depcounts); 724 for (const std::pair<std::string, int> &Pair : depcounts) { 725 if (Pair.second > 1) 726 DepVars.insert(Pair.first); 727 } 728 } 729 730 #ifndef NDEBUG 731 /// Dump the dependent variable set: 732 static void DumpDepVars(MultipleUseVarSet &DepVars) { 733 if (DepVars.empty()) { 734 DEBUG(errs() << "<empty set>"); 735 } else { 736 DEBUG(errs() << "[ "); 737 for (const std::string &DepVar : DepVars) { 738 DEBUG(errs() << DepVar << " "); 739 } 740 DEBUG(errs() << "]"); 741 } 742 } 743 #endif 744 745 746 //===----------------------------------------------------------------------===// 747 // TreePredicateFn Implementation 748 //===----------------------------------------------------------------------===// 749 750 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 751 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { 752 assert((getPredCode().empty() || getImmCode().empty()) && 753 ".td file corrupt: can't have a node predicate *and* an imm predicate"); 754 } 755 756 std::string TreePredicateFn::getPredCode() const { 757 return PatFragRec->getRecord()->getValueAsString("PredicateCode"); 758 } 759 760 std::string TreePredicateFn::getImmCode() const { 761 return PatFragRec->getRecord()->getValueAsString("ImmediateCode"); 762 } 763 764 765 /// isAlwaysTrue - Return true if this is a noop predicate. 766 bool TreePredicateFn::isAlwaysTrue() const { 767 return getPredCode().empty() && getImmCode().empty(); 768 } 769 770 /// Return the name to use in the generated code to reference this, this is 771 /// "Predicate_foo" if from a pattern fragment "foo". 772 std::string TreePredicateFn::getFnName() const { 773 return "Predicate_" + PatFragRec->getRecord()->getName(); 774 } 775 776 /// getCodeToRunOnSDNode - Return the code for the function body that 777 /// evaluates this predicate. The argument is expected to be in "Node", 778 /// not N. This handles casting and conversion to a concrete node type as 779 /// appropriate. 780 std::string TreePredicateFn::getCodeToRunOnSDNode() const { 781 // Handle immediate predicates first. 782 std::string ImmCode = getImmCode(); 783 if (!ImmCode.empty()) { 784 std::string Result = 785 " int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n"; 786 return Result + ImmCode; 787 } 788 789 // Handle arbitrary node predicates. 790 assert(!getPredCode().empty() && "Don't have any predicate code!"); 791 std::string ClassName; 792 if (PatFragRec->getOnlyTree()->isLeaf()) 793 ClassName = "SDNode"; 794 else { 795 Record *Op = PatFragRec->getOnlyTree()->getOperator(); 796 ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName(); 797 } 798 std::string Result; 799 if (ClassName == "SDNode") 800 Result = " SDNode *N = Node;\n"; 801 else 802 Result = " auto *N = cast<" + ClassName + ">(Node);\n"; 803 804 return Result + getPredCode(); 805 } 806 807 //===----------------------------------------------------------------------===// 808 // PatternToMatch implementation 809 // 810 811 812 /// getPatternSize - Return the 'size' of this pattern. We want to match large 813 /// patterns before small ones. This is used to determine the size of a 814 /// pattern. 815 static unsigned getPatternSize(const TreePatternNode *P, 816 const CodeGenDAGPatterns &CGP) { 817 unsigned Size = 3; // The node itself. 818 // If the root node is a ConstantSDNode, increases its size. 819 // e.g. (set R32:$dst, 0). 820 if (P->isLeaf() && isa<IntInit>(P->getLeafValue())) 821 Size += 2; 822 823 // FIXME: This is a hack to statically increase the priority of patterns 824 // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. 825 // Later we can allow complexity / cost for each pattern to be (optionally) 826 // specified. To get best possible pattern match we'll need to dynamically 827 // calculate the complexity of all patterns a dag can potentially map to. 828 const ComplexPattern *AM = P->getComplexPatternInfo(CGP); 829 if (AM) { 830 Size += AM->getNumOperands() * 3; 831 832 // We don't want to count any children twice, so return early. 833 return Size; 834 } 835 836 // If this node has some predicate function that must match, it adds to the 837 // complexity of this node. 838 if (!P->getPredicateFns().empty()) 839 ++Size; 840 841 // Count children in the count if they are also nodes. 842 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { 843 TreePatternNode *Child = P->getChild(i); 844 if (!Child->isLeaf() && Child->getNumTypes() && 845 Child->getType(0) != MVT::Other) 846 Size += getPatternSize(Child, CGP); 847 else if (Child->isLeaf()) { 848 if (isa<IntInit>(Child->getLeafValue())) 849 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 850 else if (Child->getComplexPatternInfo(CGP)) 851 Size += getPatternSize(Child, CGP); 852 else if (!Child->getPredicateFns().empty()) 853 ++Size; 854 } 855 } 856 857 return Size; 858 } 859 860 /// Compute the complexity metric for the input pattern. This roughly 861 /// corresponds to the number of nodes that are covered. 862 int PatternToMatch:: 863 getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 864 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 865 } 866 867 868 /// getPredicateCheck - Return a single string containing all of this 869 /// pattern's predicates concatenated with "&&" operators. 870 /// 871 std::string PatternToMatch::getPredicateCheck() const { 872 SmallVector<Record *, 4> PredicateRecs; 873 for (Init *I : Predicates->getValues()) { 874 if (DefInit *Pred = dyn_cast<DefInit>(I)) { 875 Record *Def = Pred->getDef(); 876 if (!Def->isSubClassOf("Predicate")) { 877 #ifndef NDEBUG 878 Def->dump(); 879 #endif 880 llvm_unreachable("Unknown predicate type!"); 881 } 882 PredicateRecs.push_back(Def); 883 } 884 } 885 // Sort so that different orders get canonicalized to the same string. 886 std::sort(PredicateRecs.begin(), PredicateRecs.end(), LessRecord()); 887 888 SmallString<128> PredicateCheck; 889 for (Record *Pred : PredicateRecs) { 890 if (!PredicateCheck.empty()) 891 PredicateCheck += " && "; 892 PredicateCheck += "(" + Pred->getValueAsString("CondString") + ")"; 893 } 894 895 return PredicateCheck.str(); 896 } 897 898 //===----------------------------------------------------------------------===// 899 // SDTypeConstraint implementation 900 // 901 902 SDTypeConstraint::SDTypeConstraint(Record *R) { 903 OperandNo = R->getValueAsInt("OperandNum"); 904 905 if (R->isSubClassOf("SDTCisVT")) { 906 ConstraintType = SDTCisVT; 907 x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); 908 if (x.SDTCisVT_Info.VT == MVT::isVoid) 909 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 910 911 } else if (R->isSubClassOf("SDTCisPtrTy")) { 912 ConstraintType = SDTCisPtrTy; 913 } else if (R->isSubClassOf("SDTCisInt")) { 914 ConstraintType = SDTCisInt; 915 } else if (R->isSubClassOf("SDTCisFP")) { 916 ConstraintType = SDTCisFP; 917 } else if (R->isSubClassOf("SDTCisVec")) { 918 ConstraintType = SDTCisVec; 919 } else if (R->isSubClassOf("SDTCisSameAs")) { 920 ConstraintType = SDTCisSameAs; 921 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 922 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 923 ConstraintType = SDTCisVTSmallerThanOp; 924 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 925 R->getValueAsInt("OtherOperandNum"); 926 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 927 ConstraintType = SDTCisOpSmallerThanOp; 928 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 929 R->getValueAsInt("BigOperandNum"); 930 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 931 ConstraintType = SDTCisEltOfVec; 932 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 933 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 934 ConstraintType = SDTCisSubVecOfVec; 935 x.SDTCisSubVecOfVec_Info.OtherOperandNum = 936 R->getValueAsInt("OtherOpNum"); 937 } else if (R->isSubClassOf("SDTCVecEltisVT")) { 938 ConstraintType = SDTCVecEltisVT; 939 x.SDTCVecEltisVT_Info.VT = getValueType(R->getValueAsDef("VT")); 940 if (MVT(x.SDTCVecEltisVT_Info.VT).isVector()) 941 PrintFatalError(R->getLoc(), "Cannot use vector type as SDTCVecEltisVT"); 942 if (!MVT(x.SDTCVecEltisVT_Info.VT).isInteger() && 943 !MVT(x.SDTCVecEltisVT_Info.VT).isFloatingPoint()) 944 PrintFatalError(R->getLoc(), "Must use integer or floating point type " 945 "as SDTCVecEltisVT"); 946 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) { 947 ConstraintType = SDTCisSameNumEltsAs; 948 x.SDTCisSameNumEltsAs_Info.OtherOperandNum = 949 R->getValueAsInt("OtherOperandNum"); 950 } else if (R->isSubClassOf("SDTCisSameSizeAs")) { 951 ConstraintType = SDTCisSameSizeAs; 952 x.SDTCisSameSizeAs_Info.OtherOperandNum = 953 R->getValueAsInt("OtherOperandNum"); 954 } else { 955 PrintFatalError("Unrecognized SDTypeConstraint '" + R->getName() + "'!\n"); 956 } 957 } 958 959 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 960 /// N, and the result number in ResNo. 961 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, 962 const SDNodeInfo &NodeInfo, 963 unsigned &ResNo) { 964 unsigned NumResults = NodeInfo.getNumResults(); 965 if (OpNo < NumResults) { 966 ResNo = OpNo; 967 return N; 968 } 969 970 OpNo -= NumResults; 971 972 if (OpNo >= N->getNumChildren()) { 973 std::string S; 974 raw_string_ostream OS(S); 975 OS << "Invalid operand number in type constraint " 976 << (OpNo+NumResults) << " "; 977 N->print(OS); 978 PrintFatalError(OS.str()); 979 } 980 981 return N->getChild(OpNo); 982 } 983 984 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 985 /// constraint to the nodes operands. This returns true if it makes a 986 /// change, false otherwise. If a type contradiction is found, flag an error. 987 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 988 const SDNodeInfo &NodeInfo, 989 TreePattern &TP) const { 990 if (TP.hasError()) 991 return false; 992 993 unsigned ResNo = 0; // The result number being referenced. 994 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 995 996 switch (ConstraintType) { 997 case SDTCisVT: 998 // Operand must be a particular type. 999 return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP); 1000 case SDTCisPtrTy: 1001 // Operand must be same as target pointer type. 1002 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); 1003 case SDTCisInt: 1004 // Require it to be one of the legal integer VTs. 1005 return NodeToApply->getExtType(ResNo).EnforceInteger(TP); 1006 case SDTCisFP: 1007 // Require it to be one of the legal fp VTs. 1008 return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP); 1009 case SDTCisVec: 1010 // Require it to be one of the legal vector VTs. 1011 return NodeToApply->getExtType(ResNo).EnforceVector(TP); 1012 case SDTCisSameAs: { 1013 unsigned OResNo = 0; 1014 TreePatternNode *OtherNode = 1015 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 1016 return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)| 1017 OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP); 1018 } 1019 case SDTCisVTSmallerThanOp: { 1020 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 1021 // have an integer type that is smaller than the VT. 1022 if (!NodeToApply->isLeaf() || 1023 !isa<DefInit>(NodeToApply->getLeafValue()) || 1024 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() 1025 ->isSubClassOf("ValueType")) { 1026 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 1027 return false; 1028 } 1029 MVT::SimpleValueType VT = 1030 getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()); 1031 1032 EEVT::TypeSet TypeListTmp(VT, TP); 1033 1034 unsigned OResNo = 0; 1035 TreePatternNode *OtherNode = 1036 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, 1037 OResNo); 1038 1039 return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP); 1040 } 1041 case SDTCisOpSmallerThanOp: { 1042 unsigned BResNo = 0; 1043 TreePatternNode *BigOperand = 1044 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, 1045 BResNo); 1046 return NodeToApply->getExtType(ResNo). 1047 EnforceSmallerThan(BigOperand->getExtType(BResNo), TP); 1048 } 1049 case SDTCisEltOfVec: { 1050 unsigned VResNo = 0; 1051 TreePatternNode *VecOperand = 1052 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, 1053 VResNo); 1054 1055 // Filter vector types out of VecOperand that don't have the right element 1056 // type. 1057 return VecOperand->getExtType(VResNo). 1058 EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP); 1059 } 1060 case SDTCisSubVecOfVec: { 1061 unsigned VResNo = 0; 1062 TreePatternNode *BigVecOperand = 1063 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, 1064 VResNo); 1065 1066 // Filter vector types out of BigVecOperand that don't have the 1067 // right subvector type. 1068 return BigVecOperand->getExtType(VResNo). 1069 EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP); 1070 } 1071 case SDTCVecEltisVT: { 1072 return NodeToApply->getExtType(ResNo). 1073 EnforceVectorEltTypeIs(x.SDTCVecEltisVT_Info.VT, TP); 1074 } 1075 case SDTCisSameNumEltsAs: { 1076 unsigned OResNo = 0; 1077 TreePatternNode *OtherNode = 1078 getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum, 1079 N, NodeInfo, OResNo); 1080 return OtherNode->getExtType(OResNo). 1081 EnforceVectorSameNumElts(NodeToApply->getExtType(ResNo), TP); 1082 } 1083 case SDTCisSameSizeAs: { 1084 unsigned OResNo = 0; 1085 TreePatternNode *OtherNode = 1086 getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum, 1087 N, NodeInfo, OResNo); 1088 return OtherNode->getExtType(OResNo). 1089 EnforceSameSize(NodeToApply->getExtType(ResNo), TP); 1090 } 1091 } 1092 llvm_unreachable("Invalid ConstraintType!"); 1093 } 1094 1095 // Update the node type to match an instruction operand or result as specified 1096 // in the ins or outs lists on the instruction definition. Return true if the 1097 // type was actually changed. 1098 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, 1099 Record *Operand, 1100 TreePattern &TP) { 1101 // The 'unknown' operand indicates that types should be inferred from the 1102 // context. 1103 if (Operand->isSubClassOf("unknown_class")) 1104 return false; 1105 1106 // The Operand class specifies a type directly. 1107 if (Operand->isSubClassOf("Operand")) 1108 return UpdateNodeType(ResNo, getValueType(Operand->getValueAsDef("Type")), 1109 TP); 1110 1111 // PointerLikeRegClass has a type that is determined at runtime. 1112 if (Operand->isSubClassOf("PointerLikeRegClass")) 1113 return UpdateNodeType(ResNo, MVT::iPTR, TP); 1114 1115 // Both RegisterClass and RegisterOperand operands derive their types from a 1116 // register class def. 1117 Record *RC = nullptr; 1118 if (Operand->isSubClassOf("RegisterClass")) 1119 RC = Operand; 1120 else if (Operand->isSubClassOf("RegisterOperand")) 1121 RC = Operand->getValueAsDef("RegClass"); 1122 1123 assert(RC && "Unknown operand type"); 1124 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo(); 1125 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP); 1126 } 1127 1128 1129 //===----------------------------------------------------------------------===// 1130 // SDNodeInfo implementation 1131 // 1132 SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { 1133 EnumName = R->getValueAsString("Opcode"); 1134 SDClassName = R->getValueAsString("SDClass"); 1135 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 1136 NumResults = TypeProfile->getValueAsInt("NumResults"); 1137 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 1138 1139 // Parse the properties. 1140 Properties = 0; 1141 for (Record *Property : R->getValueAsListOfDefs("Properties")) { 1142 if (Property->getName() == "SDNPCommutative") { 1143 Properties |= 1 << SDNPCommutative; 1144 } else if (Property->getName() == "SDNPAssociative") { 1145 Properties |= 1 << SDNPAssociative; 1146 } else if (Property->getName() == "SDNPHasChain") { 1147 Properties |= 1 << SDNPHasChain; 1148 } else if (Property->getName() == "SDNPOutGlue") { 1149 Properties |= 1 << SDNPOutGlue; 1150 } else if (Property->getName() == "SDNPInGlue") { 1151 Properties |= 1 << SDNPInGlue; 1152 } else if (Property->getName() == "SDNPOptInGlue") { 1153 Properties |= 1 << SDNPOptInGlue; 1154 } else if (Property->getName() == "SDNPMayStore") { 1155 Properties |= 1 << SDNPMayStore; 1156 } else if (Property->getName() == "SDNPMayLoad") { 1157 Properties |= 1 << SDNPMayLoad; 1158 } else if (Property->getName() == "SDNPSideEffect") { 1159 Properties |= 1 << SDNPSideEffect; 1160 } else if (Property->getName() == "SDNPMemOperand") { 1161 Properties |= 1 << SDNPMemOperand; 1162 } else if (Property->getName() == "SDNPVariadic") { 1163 Properties |= 1 << SDNPVariadic; 1164 } else { 1165 PrintFatalError("Unknown SD Node property '" + 1166 Property->getName() + "' on node '" + 1167 R->getName() + "'!"); 1168 } 1169 } 1170 1171 1172 // Parse the type constraints. 1173 std::vector<Record*> ConstraintList = 1174 TypeProfile->getValueAsListOfDefs("Constraints"); 1175 TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end()); 1176 } 1177 1178 /// getKnownType - If the type constraints on this node imply a fixed type 1179 /// (e.g. all stores return void, etc), then return it as an 1180 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 1181 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 1182 unsigned NumResults = getNumResults(); 1183 assert(NumResults <= 1 && 1184 "We only work with nodes with zero or one result so far!"); 1185 assert(ResNo == 0 && "Only handles single result nodes so far"); 1186 1187 for (const SDTypeConstraint &Constraint : TypeConstraints) { 1188 // Make sure that this applies to the correct node result. 1189 if (Constraint.OperandNo >= NumResults) // FIXME: need value # 1190 continue; 1191 1192 switch (Constraint.ConstraintType) { 1193 default: break; 1194 case SDTypeConstraint::SDTCisVT: 1195 return Constraint.x.SDTCisVT_Info.VT; 1196 case SDTypeConstraint::SDTCisPtrTy: 1197 return MVT::iPTR; 1198 } 1199 } 1200 return MVT::Other; 1201 } 1202 1203 //===----------------------------------------------------------------------===// 1204 // TreePatternNode implementation 1205 // 1206 1207 TreePatternNode::~TreePatternNode() { 1208 #if 0 // FIXME: implement refcounted tree nodes! 1209 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1210 delete getChild(i); 1211 #endif 1212 } 1213 1214 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 1215 if (Operator->getName() == "set" || 1216 Operator->getName() == "implicit") 1217 return 0; // All return nothing. 1218 1219 if (Operator->isSubClassOf("Intrinsic")) 1220 return CDP.getIntrinsic(Operator).IS.RetVTs.size(); 1221 1222 if (Operator->isSubClassOf("SDNode")) 1223 return CDP.getSDNodeInfo(Operator).getNumResults(); 1224 1225 if (Operator->isSubClassOf("PatFrag")) { 1226 // If we've already parsed this pattern fragment, get it. Otherwise, handle 1227 // the forward reference case where one pattern fragment references another 1228 // before it is processed. 1229 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) 1230 return PFRec->getOnlyTree()->getNumTypes(); 1231 1232 // Get the result tree. 1233 DagInit *Tree = Operator->getValueAsDag("Fragment"); 1234 Record *Op = nullptr; 1235 if (Tree) 1236 if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator())) 1237 Op = DI->getDef(); 1238 assert(Op && "Invalid Fragment"); 1239 return GetNumNodeResults(Op, CDP); 1240 } 1241 1242 if (Operator->isSubClassOf("Instruction")) { 1243 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 1244 1245 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs; 1246 1247 // Subtract any defaulted outputs. 1248 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) { 1249 Record *OperandNode = InstInfo.Operands[i].Rec; 1250 1251 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1252 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1253 --NumDefsToAdd; 1254 } 1255 1256 // Add on one implicit def if it has a resolvable type. 1257 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) 1258 ++NumDefsToAdd; 1259 return NumDefsToAdd; 1260 } 1261 1262 if (Operator->isSubClassOf("SDNodeXForm")) 1263 return 1; // FIXME: Generalize SDNodeXForm 1264 1265 if (Operator->isSubClassOf("ValueType")) 1266 return 1; // A type-cast of one result. 1267 1268 if (Operator->isSubClassOf("ComplexPattern")) 1269 return 1; 1270 1271 Operator->dump(); 1272 PrintFatalError("Unhandled node in GetNumNodeResults"); 1273 } 1274 1275 void TreePatternNode::print(raw_ostream &OS) const { 1276 if (isLeaf()) 1277 OS << *getLeafValue(); 1278 else 1279 OS << '(' << getOperator()->getName(); 1280 1281 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1282 OS << ':' << getExtType(i).getName(); 1283 1284 if (!isLeaf()) { 1285 if (getNumChildren() != 0) { 1286 OS << " "; 1287 getChild(0)->print(OS); 1288 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { 1289 OS << ", "; 1290 getChild(i)->print(OS); 1291 } 1292 } 1293 OS << ")"; 1294 } 1295 1296 for (const TreePredicateFn &Pred : PredicateFns) 1297 OS << "<<P:" << Pred.getFnName() << ">>"; 1298 if (TransformFn) 1299 OS << "<<X:" << TransformFn->getName() << ">>"; 1300 if (!getName().empty()) 1301 OS << ":$" << getName(); 1302 1303 } 1304 void TreePatternNode::dump() const { 1305 print(errs()); 1306 } 1307 1308 /// isIsomorphicTo - Return true if this node is recursively 1309 /// isomorphic to the specified node. For this comparison, the node's 1310 /// entire state is considered. The assigned name is ignored, since 1311 /// nodes with differing names are considered isomorphic. However, if 1312 /// the assigned name is present in the dependent variable set, then 1313 /// the assigned name is considered significant and the node is 1314 /// isomorphic if the names match. 1315 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 1316 const MultipleUseVarSet &DepVars) const { 1317 if (N == this) return true; 1318 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 1319 getPredicateFns() != N->getPredicateFns() || 1320 getTransformFn() != N->getTransformFn()) 1321 return false; 1322 1323 if (isLeaf()) { 1324 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1325 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) { 1326 return ((DI->getDef() == NDI->getDef()) 1327 && (DepVars.find(getName()) == DepVars.end() 1328 || getName() == N->getName())); 1329 } 1330 } 1331 return getLeafValue() == N->getLeafValue(); 1332 } 1333 1334 if (N->getOperator() != getOperator() || 1335 N->getNumChildren() != getNumChildren()) return false; 1336 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1337 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 1338 return false; 1339 return true; 1340 } 1341 1342 /// clone - Make a copy of this tree and all of its children. 1343 /// 1344 TreePatternNode *TreePatternNode::clone() const { 1345 TreePatternNode *New; 1346 if (isLeaf()) { 1347 New = new TreePatternNode(getLeafValue(), getNumTypes()); 1348 } else { 1349 std::vector<TreePatternNode*> CChildren; 1350 CChildren.reserve(Children.size()); 1351 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1352 CChildren.push_back(getChild(i)->clone()); 1353 New = new TreePatternNode(getOperator(), CChildren, getNumTypes()); 1354 } 1355 New->setName(getName()); 1356 New->Types = Types; 1357 New->setPredicateFns(getPredicateFns()); 1358 New->setTransformFn(getTransformFn()); 1359 return New; 1360 } 1361 1362 /// RemoveAllTypes - Recursively strip all the types of this tree. 1363 void TreePatternNode::RemoveAllTypes() { 1364 // Reset to unknown type. 1365 std::fill(Types.begin(), Types.end(), EEVT::TypeSet()); 1366 if (isLeaf()) return; 1367 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1368 getChild(i)->RemoveAllTypes(); 1369 } 1370 1371 1372 /// SubstituteFormalArguments - Replace the formal arguments in this tree 1373 /// with actual values specified by ArgMap. 1374 void TreePatternNode:: 1375 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { 1376 if (isLeaf()) return; 1377 1378 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1379 TreePatternNode *Child = getChild(i); 1380 if (Child->isLeaf()) { 1381 Init *Val = Child->getLeafValue(); 1382 // Note that, when substituting into an output pattern, Val might be an 1383 // UnsetInit. 1384 if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) && 1385 cast<DefInit>(Val)->getDef()->getName() == "node")) { 1386 // We found a use of a formal argument, replace it with its value. 1387 TreePatternNode *NewChild = ArgMap[Child->getName()]; 1388 assert(NewChild && "Couldn't find formal argument!"); 1389 assert((Child->getPredicateFns().empty() || 1390 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1391 "Non-empty child predicate clobbered!"); 1392 setChild(i, NewChild); 1393 } 1394 } else { 1395 getChild(i)->SubstituteFormalArguments(ArgMap); 1396 } 1397 } 1398 } 1399 1400 1401 /// InlinePatternFragments - If this pattern refers to any pattern 1402 /// fragments, inline them into place, giving us a pattern without any 1403 /// PatFrag references. 1404 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { 1405 if (TP.hasError()) 1406 return nullptr; 1407 1408 if (isLeaf()) 1409 return this; // nothing to do. 1410 Record *Op = getOperator(); 1411 1412 if (!Op->isSubClassOf("PatFrag")) { 1413 // Just recursively inline children nodes. 1414 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1415 TreePatternNode *Child = getChild(i); 1416 TreePatternNode *NewChild = Child->InlinePatternFragments(TP); 1417 1418 assert((Child->getPredicateFns().empty() || 1419 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1420 "Non-empty child predicate clobbered!"); 1421 1422 setChild(i, NewChild); 1423 } 1424 return this; 1425 } 1426 1427 // Otherwise, we found a reference to a fragment. First, look up its 1428 // TreePattern record. 1429 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 1430 1431 // Verify that we are passing the right number of operands. 1432 if (Frag->getNumArgs() != Children.size()) { 1433 TP.error("'" + Op->getName() + "' fragment requires " + 1434 utostr(Frag->getNumArgs()) + " operands!"); 1435 return nullptr; 1436 } 1437 1438 TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); 1439 1440 TreePredicateFn PredFn(Frag); 1441 if (!PredFn.isAlwaysTrue()) 1442 FragTree->addPredicateFn(PredFn); 1443 1444 // Resolve formal arguments to their actual value. 1445 if (Frag->getNumArgs()) { 1446 // Compute the map of formal to actual arguments. 1447 std::map<std::string, TreePatternNode*> ArgMap; 1448 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) 1449 ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); 1450 1451 FragTree->SubstituteFormalArguments(ArgMap); 1452 } 1453 1454 FragTree->setName(getName()); 1455 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1456 FragTree->UpdateNodeType(i, getExtType(i), TP); 1457 1458 // Transfer in the old predicates. 1459 for (const TreePredicateFn &Pred : getPredicateFns()) 1460 FragTree->addPredicateFn(Pred); 1461 1462 // Get a new copy of this fragment to stitch into here. 1463 //delete this; // FIXME: implement refcounting! 1464 1465 // The fragment we inlined could have recursive inlining that is needed. See 1466 // if there are any pattern fragments in it and inline them as needed. 1467 return FragTree->InlinePatternFragments(TP); 1468 } 1469 1470 /// getImplicitType - Check to see if the specified record has an implicit 1471 /// type which should be applied to it. This will infer the type of register 1472 /// references from the register file information, for example. 1473 /// 1474 /// When Unnamed is set, return the type of a DAG operand with no name, such as 1475 /// the F8RC register class argument in: 1476 /// 1477 /// (COPY_TO_REGCLASS GPR:$src, F8RC) 1478 /// 1479 /// When Unnamed is false, return the type of a named DAG operand such as the 1480 /// GPR:$src operand above. 1481 /// 1482 static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo, 1483 bool NotRegisters, 1484 bool Unnamed, 1485 TreePattern &TP) { 1486 // Check to see if this is a register operand. 1487 if (R->isSubClassOf("RegisterOperand")) { 1488 assert(ResNo == 0 && "Regoperand ref only has one result!"); 1489 if (NotRegisters) 1490 return EEVT::TypeSet(); // Unknown. 1491 Record *RegClass = R->getValueAsDef("RegClass"); 1492 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1493 return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes()); 1494 } 1495 1496 // Check to see if this is a register or a register class. 1497 if (R->isSubClassOf("RegisterClass")) { 1498 assert(ResNo == 0 && "Regclass ref only has one result!"); 1499 // An unnamed register class represents itself as an i32 immediate, for 1500 // example on a COPY_TO_REGCLASS instruction. 1501 if (Unnamed) 1502 return EEVT::TypeSet(MVT::i32, TP); 1503 1504 // In a named operand, the register class provides the possible set of 1505 // types. 1506 if (NotRegisters) 1507 return EEVT::TypeSet(); // Unknown. 1508 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1509 return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes()); 1510 } 1511 1512 if (R->isSubClassOf("PatFrag")) { 1513 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 1514 // Pattern fragment types will be resolved when they are inlined. 1515 return EEVT::TypeSet(); // Unknown. 1516 } 1517 1518 if (R->isSubClassOf("Register")) { 1519 assert(ResNo == 0 && "Registers only produce one result!"); 1520 if (NotRegisters) 1521 return EEVT::TypeSet(); // Unknown. 1522 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1523 return EEVT::TypeSet(T.getRegisterVTs(R)); 1524 } 1525 1526 if (R->isSubClassOf("SubRegIndex")) { 1527 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 1528 return EEVT::TypeSet(MVT::i32, TP); 1529 } 1530 1531 if (R->isSubClassOf("ValueType")) { 1532 assert(ResNo == 0 && "This node only has one result!"); 1533 // An unnamed VTSDNode represents itself as an MVT::Other immediate. 1534 // 1535 // (sext_inreg GPR:$src, i16) 1536 // ~~~ 1537 if (Unnamed) 1538 return EEVT::TypeSet(MVT::Other, TP); 1539 // With a name, the ValueType simply provides the type of the named 1540 // variable. 1541 // 1542 // (sext_inreg i32:$src, i16) 1543 // ~~~~~~~~ 1544 if (NotRegisters) 1545 return EEVT::TypeSet(); // Unknown. 1546 return EEVT::TypeSet(getValueType(R), TP); 1547 } 1548 1549 if (R->isSubClassOf("CondCode")) { 1550 assert(ResNo == 0 && "This node only has one result!"); 1551 // Using a CondCodeSDNode. 1552 return EEVT::TypeSet(MVT::Other, TP); 1553 } 1554 1555 if (R->isSubClassOf("ComplexPattern")) { 1556 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 1557 if (NotRegisters) 1558 return EEVT::TypeSet(); // Unknown. 1559 return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(), 1560 TP); 1561 } 1562 if (R->isSubClassOf("PointerLikeRegClass")) { 1563 assert(ResNo == 0 && "Regclass can only have one result!"); 1564 return EEVT::TypeSet(MVT::iPTR, TP); 1565 } 1566 1567 if (R->getName() == "node" || R->getName() == "srcvalue" || 1568 R->getName() == "zero_reg") { 1569 // Placeholder. 1570 return EEVT::TypeSet(); // Unknown. 1571 } 1572 1573 if (R->isSubClassOf("Operand")) 1574 return EEVT::TypeSet(getValueType(R->getValueAsDef("Type"))); 1575 1576 TP.error("Unknown node flavor used in pattern: " + R->getName()); 1577 return EEVT::TypeSet(MVT::Other, TP); 1578 } 1579 1580 1581 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 1582 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 1583 const CodeGenIntrinsic *TreePatternNode:: 1584 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 1585 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 1586 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 1587 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 1588 return nullptr; 1589 1590 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue(); 1591 return &CDP.getIntrinsicInfo(IID); 1592 } 1593 1594 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 1595 /// return the ComplexPattern information, otherwise return null. 1596 const ComplexPattern * 1597 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 1598 Record *Rec; 1599 if (isLeaf()) { 1600 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 1601 if (!DI) 1602 return nullptr; 1603 Rec = DI->getDef(); 1604 } else 1605 Rec = getOperator(); 1606 1607 if (!Rec->isSubClassOf("ComplexPattern")) 1608 return nullptr; 1609 return &CGP.getComplexPattern(Rec); 1610 } 1611 1612 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const { 1613 // A ComplexPattern specifically declares how many results it fills in. 1614 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 1615 return CP->getNumOperands(); 1616 1617 // If MIOperandInfo is specified, that gives the count. 1618 if (isLeaf()) { 1619 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 1620 if (DI && DI->getDef()->isSubClassOf("Operand")) { 1621 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo"); 1622 if (MIOps->getNumArgs()) 1623 return MIOps->getNumArgs(); 1624 } 1625 } 1626 1627 // Otherwise there is just one result. 1628 return 1; 1629 } 1630 1631 /// NodeHasProperty - Return true if this node has the specified property. 1632 bool TreePatternNode::NodeHasProperty(SDNP Property, 1633 const CodeGenDAGPatterns &CGP) const { 1634 if (isLeaf()) { 1635 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 1636 return CP->hasProperty(Property); 1637 return false; 1638 } 1639 1640 Record *Operator = getOperator(); 1641 if (!Operator->isSubClassOf("SDNode")) return false; 1642 1643 return CGP.getSDNodeInfo(Operator).hasProperty(Property); 1644 } 1645 1646 1647 1648 1649 /// TreeHasProperty - Return true if any node in this tree has the specified 1650 /// property. 1651 bool TreePatternNode::TreeHasProperty(SDNP Property, 1652 const CodeGenDAGPatterns &CGP) const { 1653 if (NodeHasProperty(Property, CGP)) 1654 return true; 1655 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1656 if (getChild(i)->TreeHasProperty(Property, CGP)) 1657 return true; 1658 return false; 1659 } 1660 1661 /// isCommutativeIntrinsic - Return true if the node corresponds to a 1662 /// commutative intrinsic. 1663 bool 1664 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 1665 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 1666 return Int->isCommutative; 1667 return false; 1668 } 1669 1670 static bool isOperandClass(const TreePatternNode *N, StringRef Class) { 1671 if (!N->isLeaf()) 1672 return N->getOperator()->isSubClassOf(Class); 1673 1674 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); 1675 if (DI && DI->getDef()->isSubClassOf(Class)) 1676 return true; 1677 1678 return false; 1679 } 1680 1681 static void emitTooManyOperandsError(TreePattern &TP, 1682 StringRef InstName, 1683 unsigned Expected, 1684 unsigned Actual) { 1685 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) + 1686 " operands but expected only " + Twine(Expected) + "!"); 1687 } 1688 1689 static void emitTooFewOperandsError(TreePattern &TP, 1690 StringRef InstName, 1691 unsigned Actual) { 1692 TP.error("Instruction '" + InstName + 1693 "' expects more than the provided " + Twine(Actual) + " operands!"); 1694 } 1695 1696 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 1697 /// this node and its children in the tree. This returns true if it makes a 1698 /// change, false otherwise. If a type contradiction is found, flag an error. 1699 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 1700 if (TP.hasError()) 1701 return false; 1702 1703 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 1704 if (isLeaf()) { 1705 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1706 // If it's a regclass or something else known, include the type. 1707 bool MadeChange = false; 1708 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1709 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, 1710 NotRegisters, 1711 !hasName(), TP), TP); 1712 return MadeChange; 1713 } 1714 1715 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) { 1716 assert(Types.size() == 1 && "Invalid IntInit"); 1717 1718 // Int inits are always integers. :) 1719 bool MadeChange = Types[0].EnforceInteger(TP); 1720 1721 if (!Types[0].isConcrete()) 1722 return MadeChange; 1723 1724 MVT::SimpleValueType VT = getType(0); 1725 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 1726 return MadeChange; 1727 1728 unsigned Size = MVT(VT).getSizeInBits(); 1729 // Make sure that the value is representable for this type. 1730 if (Size >= 32) return MadeChange; 1731 1732 // Check that the value doesn't use more bits than we have. It must either 1733 // be a sign- or zero-extended equivalent of the original. 1734 int64_t SignBitAndAbove = II->getValue() >> (Size - 1); 1735 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || SignBitAndAbove == 1) 1736 return MadeChange; 1737 1738 TP.error("Integer value '" + itostr(II->getValue()) + 1739 "' is out of range for type '" + getEnumName(getType(0)) + "'!"); 1740 return false; 1741 } 1742 return false; 1743 } 1744 1745 // special handling for set, which isn't really an SDNode. 1746 if (getOperator()->getName() == "set") { 1747 assert(getNumTypes() == 0 && "Set doesn't produce a value"); 1748 assert(getNumChildren() >= 2 && "Missing RHS of a set?"); 1749 unsigned NC = getNumChildren(); 1750 1751 TreePatternNode *SetVal = getChild(NC-1); 1752 bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters); 1753 1754 for (unsigned i = 0; i < NC-1; ++i) { 1755 TreePatternNode *Child = getChild(i); 1756 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); 1757 1758 // Types of operands must match. 1759 MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP); 1760 MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP); 1761 } 1762 return MadeChange; 1763 } 1764 1765 if (getOperator()->getName() == "implicit") { 1766 assert(getNumTypes() == 0 && "Node doesn't produce a value"); 1767 1768 bool MadeChange = false; 1769 for (unsigned i = 0; i < getNumChildren(); ++i) 1770 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1771 return MadeChange; 1772 } 1773 1774 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 1775 bool MadeChange = false; 1776 1777 // Apply the result type to the node. 1778 unsigned NumRetVTs = Int->IS.RetVTs.size(); 1779 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 1780 1781 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 1782 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); 1783 1784 if (getNumChildren() != NumParamVTs + 1) { 1785 TP.error("Intrinsic '" + Int->Name + "' expects " + 1786 utostr(NumParamVTs) + " operands, not " + 1787 utostr(getNumChildren() - 1) + " operands!"); 1788 return false; 1789 } 1790 1791 // Apply type info to the intrinsic ID. 1792 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); 1793 1794 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { 1795 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); 1796 1797 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; 1798 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); 1799 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); 1800 } 1801 return MadeChange; 1802 } 1803 1804 if (getOperator()->isSubClassOf("SDNode")) { 1805 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 1806 1807 // Check that the number of operands is sane. Negative operands -> varargs. 1808 if (NI.getNumOperands() >= 0 && 1809 getNumChildren() != (unsigned)NI.getNumOperands()) { 1810 TP.error(getOperator()->getName() + " node requires exactly " + 1811 itostr(NI.getNumOperands()) + " operands!"); 1812 return false; 1813 } 1814 1815 bool MadeChange = NI.ApplyTypeConstraints(this, TP); 1816 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1817 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1818 return MadeChange; 1819 } 1820 1821 if (getOperator()->isSubClassOf("Instruction")) { 1822 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 1823 CodeGenInstruction &InstInfo = 1824 CDP.getTargetInfo().getInstruction(getOperator()); 1825 1826 bool MadeChange = false; 1827 1828 // Apply the result types to the node, these come from the things in the 1829 // (outs) list of the instruction. 1830 unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs, 1831 Inst.getNumResults()); 1832 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) 1833 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP); 1834 1835 // If the instruction has implicit defs, we apply the first one as a result. 1836 // FIXME: This sucks, it should apply all implicit defs. 1837 if (!InstInfo.ImplicitDefs.empty()) { 1838 unsigned ResNo = NumResultsToAdd; 1839 1840 // FIXME: Generalize to multiple possible types and multiple possible 1841 // ImplicitDefs. 1842 MVT::SimpleValueType VT = 1843 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 1844 1845 if (VT != MVT::Other) 1846 MadeChange |= UpdateNodeType(ResNo, VT, TP); 1847 } 1848 1849 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 1850 // be the same. 1851 if (getOperator()->getName() == "INSERT_SUBREG") { 1852 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); 1853 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); 1854 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); 1855 } else if (getOperator()->getName() == "REG_SEQUENCE") { 1856 // We need to do extra, custom typechecking for REG_SEQUENCE since it is 1857 // variadic. 1858 1859 unsigned NChild = getNumChildren(); 1860 if (NChild < 3) { 1861 TP.error("REG_SEQUENCE requires at least 3 operands!"); 1862 return false; 1863 } 1864 1865 if (NChild % 2 == 0) { 1866 TP.error("REG_SEQUENCE requires an odd number of operands!"); 1867 return false; 1868 } 1869 1870 if (!isOperandClass(getChild(0), "RegisterClass")) { 1871 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!"); 1872 return false; 1873 } 1874 1875 for (unsigned I = 1; I < NChild; I += 2) { 1876 TreePatternNode *SubIdxChild = getChild(I + 1); 1877 if (!isOperandClass(SubIdxChild, "SubRegIndex")) { 1878 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " + 1879 itostr(I + 1) + "!"); 1880 return false; 1881 } 1882 } 1883 } 1884 1885 unsigned ChildNo = 0; 1886 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { 1887 Record *OperandNode = Inst.getOperand(i); 1888 1889 // If the instruction expects a predicate or optional def operand, we 1890 // codegen this by setting the operand to it's default value if it has a 1891 // non-empty DefaultOps field. 1892 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1893 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1894 continue; 1895 1896 // Verify that we didn't run out of provided operands. 1897 if (ChildNo >= getNumChildren()) { 1898 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren()); 1899 return false; 1900 } 1901 1902 TreePatternNode *Child = getChild(ChildNo++); 1903 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 1904 1905 // If the operand has sub-operands, they may be provided by distinct 1906 // child patterns, so attempt to match each sub-operand separately. 1907 if (OperandNode->isSubClassOf("Operand")) { 1908 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 1909 if (unsigned NumArgs = MIOpInfo->getNumArgs()) { 1910 // But don't do that if the whole operand is being provided by 1911 // a single ComplexPattern-related Operand. 1912 1913 if (Child->getNumMIResults(CDP) < NumArgs) { 1914 // Match first sub-operand against the child we already have. 1915 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef(); 1916 MadeChange |= 1917 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 1918 1919 // And the remaining sub-operands against subsequent children. 1920 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) { 1921 if (ChildNo >= getNumChildren()) { 1922 emitTooFewOperandsError(TP, getOperator()->getName(), 1923 getNumChildren()); 1924 return false; 1925 } 1926 Child = getChild(ChildNo++); 1927 1928 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef(); 1929 MadeChange |= 1930 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 1931 } 1932 continue; 1933 } 1934 } 1935 } 1936 1937 // If we didn't match by pieces above, attempt to match the whole 1938 // operand now. 1939 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP); 1940 } 1941 1942 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) { 1943 emitTooManyOperandsError(TP, getOperator()->getName(), 1944 ChildNo, getNumChildren()); 1945 return false; 1946 } 1947 1948 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1949 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1950 return MadeChange; 1951 } 1952 1953 if (getOperator()->isSubClassOf("ComplexPattern")) { 1954 bool MadeChange = false; 1955 1956 for (unsigned i = 0; i < getNumChildren(); ++i) 1957 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1958 1959 return MadeChange; 1960 } 1961 1962 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 1963 1964 // Node transforms always take one operand. 1965 if (getNumChildren() != 1) { 1966 TP.error("Node transform '" + getOperator()->getName() + 1967 "' requires one operand!"); 1968 return false; 1969 } 1970 1971 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 1972 1973 1974 // If either the output or input of the xform does not have exact 1975 // type info. We assume they must be the same. Otherwise, it is perfectly 1976 // legal to transform from one type to a completely different type. 1977 #if 0 1978 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) { 1979 bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP); 1980 MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP); 1981 return MadeChange; 1982 } 1983 #endif 1984 return MadeChange; 1985 } 1986 1987 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 1988 /// RHS of a commutative operation, not the on LHS. 1989 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 1990 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 1991 return true; 1992 if (N->isLeaf() && isa<IntInit>(N->getLeafValue())) 1993 return true; 1994 return false; 1995 } 1996 1997 1998 /// canPatternMatch - If it is impossible for this pattern to match on this 1999 /// target, fill in Reason and return false. Otherwise, return true. This is 2000 /// used as a sanity check for .td files (to prevent people from writing stuff 2001 /// that can never possibly work), and to prevent the pattern permuter from 2002 /// generating stuff that is useless. 2003 bool TreePatternNode::canPatternMatch(std::string &Reason, 2004 const CodeGenDAGPatterns &CDP) { 2005 if (isLeaf()) return true; 2006 2007 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2008 if (!getChild(i)->canPatternMatch(Reason, CDP)) 2009 return false; 2010 2011 // If this is an intrinsic, handle cases that would make it not match. For 2012 // example, if an operand is required to be an immediate. 2013 if (getOperator()->isSubClassOf("Intrinsic")) { 2014 // TODO: 2015 return true; 2016 } 2017 2018 if (getOperator()->isSubClassOf("ComplexPattern")) 2019 return true; 2020 2021 // If this node is a commutative operator, check that the LHS isn't an 2022 // immediate. 2023 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 2024 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 2025 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 2026 // Scan all of the operands of the node and make sure that only the last one 2027 // is a constant node, unless the RHS also is. 2028 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 2029 bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 2030 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 2031 if (OnlyOnRHSOfCommutative(getChild(i))) { 2032 Reason="Immediate value must be on the RHS of commutative operators!"; 2033 return false; 2034 } 2035 } 2036 } 2037 2038 return true; 2039 } 2040 2041 //===----------------------------------------------------------------------===// 2042 // TreePattern implementation 2043 // 2044 2045 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 2046 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2047 isInputPattern(isInput), HasError(false) { 2048 for (Init *I : RawPat->getValues()) 2049 Trees.push_back(ParseTreePattern(I, "")); 2050 } 2051 2052 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 2053 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2054 isInputPattern(isInput), HasError(false) { 2055 Trees.push_back(ParseTreePattern(Pat, "")); 2056 } 2057 2058 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, 2059 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2060 isInputPattern(isInput), HasError(false) { 2061 Trees.push_back(Pat); 2062 } 2063 2064 void TreePattern::error(const Twine &Msg) { 2065 if (HasError) 2066 return; 2067 dump(); 2068 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 2069 HasError = true; 2070 } 2071 2072 void TreePattern::ComputeNamedNodes() { 2073 for (TreePatternNode *Tree : Trees) 2074 ComputeNamedNodes(Tree); 2075 } 2076 2077 void TreePattern::ComputeNamedNodes(TreePatternNode *N) { 2078 if (!N->getName().empty()) 2079 NamedNodes[N->getName()].push_back(N); 2080 2081 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2082 ComputeNamedNodes(N->getChild(i)); 2083 } 2084 2085 2086 TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ 2087 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) { 2088 Record *R = DI->getDef(); 2089 2090 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 2091 // TreePatternNode of its own. For example: 2092 /// (foo GPR, imm) -> (foo GPR, (imm)) 2093 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) 2094 return ParseTreePattern( 2095 DagInit::get(DI, "", 2096 std::vector<std::pair<Init*, std::string> >()), 2097 OpName); 2098 2099 // Input argument? 2100 TreePatternNode *Res = new TreePatternNode(DI, 1); 2101 if (R->getName() == "node" && !OpName.empty()) { 2102 if (OpName.empty()) 2103 error("'node' argument requires a name to match with operand list"); 2104 Args.push_back(OpName); 2105 } 2106 2107 Res->setName(OpName); 2108 return Res; 2109 } 2110 2111 // ?:$name or just $name. 2112 if (isa<UnsetInit>(TheInit)) { 2113 if (OpName.empty()) 2114 error("'?' argument requires a name to match with operand list"); 2115 TreePatternNode *Res = new TreePatternNode(TheInit, 1); 2116 Args.push_back(OpName); 2117 Res->setName(OpName); 2118 return Res; 2119 } 2120 2121 if (IntInit *II = dyn_cast<IntInit>(TheInit)) { 2122 if (!OpName.empty()) 2123 error("Constant int argument should not have a name!"); 2124 return new TreePatternNode(II, 1); 2125 } 2126 2127 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) { 2128 // Turn this into an IntInit. 2129 Init *II = BI->convertInitializerTo(IntRecTy::get()); 2130 if (!II || !isa<IntInit>(II)) 2131 error("Bits value must be constants!"); 2132 return ParseTreePattern(II, OpName); 2133 } 2134 2135 DagInit *Dag = dyn_cast<DagInit>(TheInit); 2136 if (!Dag) { 2137 TheInit->dump(); 2138 error("Pattern has unexpected init kind!"); 2139 } 2140 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator()); 2141 if (!OpDef) error("Pattern has unexpected operator type!"); 2142 Record *Operator = OpDef->getDef(); 2143 2144 if (Operator->isSubClassOf("ValueType")) { 2145 // If the operator is a ValueType, then this must be "type cast" of a leaf 2146 // node. 2147 if (Dag->getNumArgs() != 1) 2148 error("Type cast only takes one operand!"); 2149 2150 TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0)); 2151 2152 // Apply the type cast. 2153 assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); 2154 New->UpdateNodeType(0, getValueType(Operator), *this); 2155 2156 if (!OpName.empty()) 2157 error("ValueType cast should not have a name!"); 2158 return New; 2159 } 2160 2161 // Verify that this is something that makes sense for an operator. 2162 if (!Operator->isSubClassOf("PatFrag") && 2163 !Operator->isSubClassOf("SDNode") && 2164 !Operator->isSubClassOf("Instruction") && 2165 !Operator->isSubClassOf("SDNodeXForm") && 2166 !Operator->isSubClassOf("Intrinsic") && 2167 !Operator->isSubClassOf("ComplexPattern") && 2168 Operator->getName() != "set" && 2169 Operator->getName() != "implicit") 2170 error("Unrecognized node '" + Operator->getName() + "'!"); 2171 2172 // Check to see if this is something that is illegal in an input pattern. 2173 if (isInputPattern) { 2174 if (Operator->isSubClassOf("Instruction") || 2175 Operator->isSubClassOf("SDNodeXForm")) 2176 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 2177 } else { 2178 if (Operator->isSubClassOf("Intrinsic")) 2179 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2180 2181 if (Operator->isSubClassOf("SDNode") && 2182 Operator->getName() != "imm" && 2183 Operator->getName() != "fpimm" && 2184 Operator->getName() != "tglobaltlsaddr" && 2185 Operator->getName() != "tconstpool" && 2186 Operator->getName() != "tjumptable" && 2187 Operator->getName() != "tframeindex" && 2188 Operator->getName() != "texternalsym" && 2189 Operator->getName() != "tblockaddress" && 2190 Operator->getName() != "tglobaladdr" && 2191 Operator->getName() != "bb" && 2192 Operator->getName() != "vt" && 2193 Operator->getName() != "mcsym") 2194 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2195 } 2196 2197 std::vector<TreePatternNode*> Children; 2198 2199 // Parse all the operands. 2200 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 2201 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i))); 2202 2203 // If the operator is an intrinsic, then this is just syntactic sugar for for 2204 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 2205 // convert the intrinsic name to a number. 2206 if (Operator->isSubClassOf("Intrinsic")) { 2207 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 2208 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 2209 2210 // If this intrinsic returns void, it must have side-effects and thus a 2211 // chain. 2212 if (Int.IS.RetVTs.empty()) 2213 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 2214 else if (Int.ModRef != CodeGenIntrinsic::NoMem) 2215 // Has side-effects, requires chain. 2216 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 2217 else // Otherwise, no chain. 2218 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 2219 2220 TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1); 2221 Children.insert(Children.begin(), IIDNode); 2222 } 2223 2224 if (Operator->isSubClassOf("ComplexPattern")) { 2225 for (unsigned i = 0; i < Children.size(); ++i) { 2226 TreePatternNode *Child = Children[i]; 2227 2228 if (Child->getName().empty()) 2229 error("All arguments to a ComplexPattern must be named"); 2230 2231 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)" 2232 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern; 2233 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)". 2234 auto OperandId = std::make_pair(Operator, i); 2235 auto PrevOp = ComplexPatternOperands.find(Child->getName()); 2236 if (PrevOp != ComplexPatternOperands.end()) { 2237 if (PrevOp->getValue() != OperandId) 2238 error("All ComplexPattern operands must appear consistently: " 2239 "in the same order in just one ComplexPattern instance."); 2240 } else 2241 ComplexPatternOperands[Child->getName()] = OperandId; 2242 } 2243 } 2244 2245 unsigned NumResults = GetNumNodeResults(Operator, CDP); 2246 TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults); 2247 Result->setName(OpName); 2248 2249 if (!Dag->getName().empty()) { 2250 assert(Result->getName().empty()); 2251 Result->setName(Dag->getName()); 2252 } 2253 return Result; 2254 } 2255 2256 /// SimplifyTree - See if we can simplify this tree to eliminate something that 2257 /// will never match in favor of something obvious that will. This is here 2258 /// strictly as a convenience to target authors because it allows them to write 2259 /// more type generic things and have useless type casts fold away. 2260 /// 2261 /// This returns true if any change is made. 2262 static bool SimplifyTree(TreePatternNode *&N) { 2263 if (N->isLeaf()) 2264 return false; 2265 2266 // If we have a bitconvert with a resolved type and if the source and 2267 // destination types are the same, then the bitconvert is useless, remove it. 2268 if (N->getOperator()->getName() == "bitconvert" && 2269 N->getExtType(0).isConcrete() && 2270 N->getExtType(0) == N->getChild(0)->getExtType(0) && 2271 N->getName().empty()) { 2272 N = N->getChild(0); 2273 SimplifyTree(N); 2274 return true; 2275 } 2276 2277 // Walk all children. 2278 bool MadeChange = false; 2279 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 2280 TreePatternNode *Child = N->getChild(i); 2281 MadeChange |= SimplifyTree(Child); 2282 N->setChild(i, Child); 2283 } 2284 return MadeChange; 2285 } 2286 2287 2288 2289 /// InferAllTypes - Infer/propagate as many types throughout the expression 2290 /// patterns as possible. Return true if all types are inferred, false 2291 /// otherwise. Flags an error if a type contradiction is found. 2292 bool TreePattern:: 2293 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { 2294 if (NamedNodes.empty()) 2295 ComputeNamedNodes(); 2296 2297 bool MadeChange = true; 2298 while (MadeChange) { 2299 MadeChange = false; 2300 for (TreePatternNode *Tree : Trees) { 2301 MadeChange |= Tree->ApplyTypeConstraints(*this, false); 2302 MadeChange |= SimplifyTree(Tree); 2303 } 2304 2305 // If there are constraints on our named nodes, apply them. 2306 for (auto &Entry : NamedNodes) { 2307 SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second; 2308 2309 // If we have input named node types, propagate their types to the named 2310 // values here. 2311 if (InNamedTypes) { 2312 if (!InNamedTypes->count(Entry.getKey())) { 2313 error("Node '" + std::string(Entry.getKey()) + 2314 "' in output pattern but not input pattern"); 2315 return true; 2316 } 2317 2318 const SmallVectorImpl<TreePatternNode*> &InNodes = 2319 InNamedTypes->find(Entry.getKey())->second; 2320 2321 // The input types should be fully resolved by now. 2322 for (TreePatternNode *Node : Nodes) { 2323 // If this node is a register class, and it is the root of the pattern 2324 // then we're mapping something onto an input register. We allow 2325 // changing the type of the input register in this case. This allows 2326 // us to match things like: 2327 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 2328 if (Node == Trees[0] && Node->isLeaf()) { 2329 DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue()); 2330 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 2331 DI->getDef()->isSubClassOf("RegisterOperand"))) 2332 continue; 2333 } 2334 2335 assert(Node->getNumTypes() == 1 && 2336 InNodes[0]->getNumTypes() == 1 && 2337 "FIXME: cannot name multiple result nodes yet"); 2338 MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0), 2339 *this); 2340 } 2341 } 2342 2343 // If there are multiple nodes with the same name, they must all have the 2344 // same type. 2345 if (Entry.second.size() > 1) { 2346 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { 2347 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; 2348 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 2349 "FIXME: cannot name multiple result nodes yet"); 2350 2351 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 2352 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 2353 } 2354 } 2355 } 2356 } 2357 2358 bool HasUnresolvedTypes = false; 2359 for (const TreePatternNode *Tree : Trees) 2360 HasUnresolvedTypes |= Tree->ContainsUnresolvedType(); 2361 return !HasUnresolvedTypes; 2362 } 2363 2364 void TreePattern::print(raw_ostream &OS) const { 2365 OS << getRecord()->getName(); 2366 if (!Args.empty()) { 2367 OS << "(" << Args[0]; 2368 for (unsigned i = 1, e = Args.size(); i != e; ++i) 2369 OS << ", " << Args[i]; 2370 OS << ")"; 2371 } 2372 OS << ": "; 2373 2374 if (Trees.size() > 1) 2375 OS << "[\n"; 2376 for (const TreePatternNode *Tree : Trees) { 2377 OS << "\t"; 2378 Tree->print(OS); 2379 OS << "\n"; 2380 } 2381 2382 if (Trees.size() > 1) 2383 OS << "]\n"; 2384 } 2385 2386 void TreePattern::dump() const { print(errs()); } 2387 2388 //===----------------------------------------------------------------------===// 2389 // CodeGenDAGPatterns implementation 2390 // 2391 2392 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : 2393 Records(R), Target(R) { 2394 2395 Intrinsics = LoadIntrinsics(Records, false); 2396 TgtIntrinsics = LoadIntrinsics(Records, true); 2397 ParseNodeInfo(); 2398 ParseNodeTransforms(); 2399 ParseComplexPatterns(); 2400 ParsePatternFragments(); 2401 ParseDefaultOperands(); 2402 ParseInstructions(); 2403 ParsePatternFragments(/*OutFrags*/true); 2404 ParsePatterns(); 2405 2406 // Generate variants. For example, commutative patterns can match 2407 // multiple ways. Add them to PatternsToMatch as well. 2408 GenerateVariants(); 2409 2410 // Infer instruction flags. For example, we can detect loads, 2411 // stores, and side effects in many cases by examining an 2412 // instruction's pattern. 2413 InferInstructionFlags(); 2414 2415 // Verify that instruction flags match the patterns. 2416 VerifyInstructionFlags(); 2417 } 2418 2419 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { 2420 Record *N = Records.getDef(Name); 2421 if (!N || !N->isSubClassOf("SDNode")) 2422 PrintFatalError("Error getting SDNode '" + Name + "'!"); 2423 2424 return N; 2425 } 2426 2427 // Parse all of the SDNode definitions for the target, populating SDNodes. 2428 void CodeGenDAGPatterns::ParseNodeInfo() { 2429 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 2430 while (!Nodes.empty()) { 2431 SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); 2432 Nodes.pop_back(); 2433 } 2434 2435 // Get the builtin intrinsic nodes. 2436 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 2437 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 2438 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 2439 } 2440 2441 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 2442 /// map, and emit them to the file as functions. 2443 void CodeGenDAGPatterns::ParseNodeTransforms() { 2444 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 2445 while (!Xforms.empty()) { 2446 Record *XFormNode = Xforms.back(); 2447 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 2448 std::string Code = XFormNode->getValueAsString("XFormFunction"); 2449 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); 2450 2451 Xforms.pop_back(); 2452 } 2453 } 2454 2455 void CodeGenDAGPatterns::ParseComplexPatterns() { 2456 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 2457 while (!AMs.empty()) { 2458 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 2459 AMs.pop_back(); 2460 } 2461 } 2462 2463 2464 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 2465 /// file, building up the PatternFragments map. After we've collected them all, 2466 /// inline fragments together as necessary, so that there are no references left 2467 /// inside a pattern fragment to a pattern fragment. 2468 /// 2469 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) { 2470 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag"); 2471 2472 // First step, parse all of the fragments. 2473 for (Record *Frag : Fragments) { 2474 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 2475 continue; 2476 2477 DagInit *Tree = Frag->getValueAsDag("Fragment"); 2478 TreePattern *P = 2479 (PatternFragments[Frag] = llvm::make_unique<TreePattern>( 2480 Frag, Tree, !Frag->isSubClassOf("OutPatFrag"), 2481 *this)).get(); 2482 2483 // Validate the argument list, converting it to set, to discard duplicates. 2484 std::vector<std::string> &Args = P->getArgList(); 2485 std::set<std::string> OperandsSet(Args.begin(), Args.end()); 2486 2487 if (OperandsSet.count("")) 2488 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 2489 2490 // Parse the operands list. 2491 DagInit *OpsList = Frag->getValueAsDag("Operands"); 2492 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator()); 2493 // Special cases: ops == outs == ins. Different names are used to 2494 // improve readability. 2495 if (!OpsOp || 2496 (OpsOp->getDef()->getName() != "ops" && 2497 OpsOp->getDef()->getName() != "outs" && 2498 OpsOp->getDef()->getName() != "ins")) 2499 P->error("Operands list should start with '(ops ... '!"); 2500 2501 // Copy over the arguments. 2502 Args.clear(); 2503 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 2504 if (!isa<DefInit>(OpsList->getArg(j)) || 2505 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node") 2506 P->error("Operands list should all be 'node' values."); 2507 if (OpsList->getArgName(j).empty()) 2508 P->error("Operands list should have names for each operand!"); 2509 if (!OperandsSet.count(OpsList->getArgName(j))) 2510 P->error("'" + OpsList->getArgName(j) + 2511 "' does not occur in pattern or was multiply specified!"); 2512 OperandsSet.erase(OpsList->getArgName(j)); 2513 Args.push_back(OpsList->getArgName(j)); 2514 } 2515 2516 if (!OperandsSet.empty()) 2517 P->error("Operands list does not contain an entry for operand '" + 2518 *OperandsSet.begin() + "'!"); 2519 2520 // If there is a code init for this fragment, keep track of the fact that 2521 // this fragment uses it. 2522 TreePredicateFn PredFn(P); 2523 if (!PredFn.isAlwaysTrue()) 2524 P->getOnlyTree()->addPredicateFn(PredFn); 2525 2526 // If there is a node transformation corresponding to this, keep track of 2527 // it. 2528 Record *Transform = Frag->getValueAsDef("OperandTransform"); 2529 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 2530 P->getOnlyTree()->setTransformFn(Transform); 2531 } 2532 2533 // Now that we've parsed all of the tree fragments, do a closure on them so 2534 // that there are not references to PatFrags left inside of them. 2535 for (Record *Frag : Fragments) { 2536 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 2537 continue; 2538 2539 TreePattern &ThePat = *PatternFragments[Frag]; 2540 ThePat.InlinePatternFragments(); 2541 2542 // Infer as many types as possible. Don't worry about it if we don't infer 2543 // all of them, some may depend on the inputs of the pattern. 2544 ThePat.InferAllTypes(); 2545 ThePat.resetError(); 2546 2547 // If debugging, print out the pattern fragment result. 2548 DEBUG(ThePat.dump()); 2549 } 2550 } 2551 2552 void CodeGenDAGPatterns::ParseDefaultOperands() { 2553 std::vector<Record*> DefaultOps; 2554 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps"); 2555 2556 // Find some SDNode. 2557 assert(!SDNodes.empty() && "No SDNodes parsed?"); 2558 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first); 2559 2560 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) { 2561 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps"); 2562 2563 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 2564 // SomeSDnode so that we can parse this. 2565 std::vector<std::pair<Init*, std::string> > Ops; 2566 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 2567 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 2568 DefaultInfo->getArgName(op))); 2569 DagInit *DI = DagInit::get(SomeSDNode, "", Ops); 2570 2571 // Create a TreePattern to parse this. 2572 TreePattern P(DefaultOps[i], DI, false, *this); 2573 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 2574 2575 // Copy the operands over into a DAGDefaultOperand. 2576 DAGDefaultOperand DefaultOpInfo; 2577 2578 TreePatternNode *T = P.getTree(0); 2579 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 2580 TreePatternNode *TPN = T->getChild(op); 2581 while (TPN->ApplyTypeConstraints(P, false)) 2582 /* Resolve all types */; 2583 2584 if (TPN->ContainsUnresolvedType()) { 2585 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" + 2586 DefaultOps[i]->getName() + 2587 "' doesn't have a concrete type!"); 2588 } 2589 DefaultOpInfo.DefaultOps.push_back(TPN); 2590 } 2591 2592 // Insert it into the DefaultOperands map so we can find it later. 2593 DefaultOperands[DefaultOps[i]] = DefaultOpInfo; 2594 } 2595 } 2596 2597 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 2598 /// instruction input. Return true if this is a real use. 2599 static bool HandleUse(TreePattern *I, TreePatternNode *Pat, 2600 std::map<std::string, TreePatternNode*> &InstInputs) { 2601 // No name -> not interesting. 2602 if (Pat->getName().empty()) { 2603 if (Pat->isLeaf()) { 2604 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 2605 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 2606 DI->getDef()->isSubClassOf("RegisterOperand"))) 2607 I->error("Input " + DI->getDef()->getName() + " must be named!"); 2608 } 2609 return false; 2610 } 2611 2612 Record *Rec; 2613 if (Pat->isLeaf()) { 2614 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 2615 if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); 2616 Rec = DI->getDef(); 2617 } else { 2618 Rec = Pat->getOperator(); 2619 } 2620 2621 // SRCVALUE nodes are ignored. 2622 if (Rec->getName() == "srcvalue") 2623 return false; 2624 2625 TreePatternNode *&Slot = InstInputs[Pat->getName()]; 2626 if (!Slot) { 2627 Slot = Pat; 2628 return true; 2629 } 2630 Record *SlotRec; 2631 if (Slot->isLeaf()) { 2632 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef(); 2633 } else { 2634 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 2635 SlotRec = Slot->getOperator(); 2636 } 2637 2638 // Ensure that the inputs agree if we've already seen this input. 2639 if (Rec != SlotRec) 2640 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 2641 if (Slot->getExtTypes() != Pat->getExtTypes()) 2642 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 2643 return true; 2644 } 2645 2646 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 2647 /// part of "I", the instruction), computing the set of inputs and outputs of 2648 /// the pattern. Report errors if we see anything naughty. 2649 void CodeGenDAGPatterns:: 2650 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, 2651 std::map<std::string, TreePatternNode*> &InstInputs, 2652 std::map<std::string, TreePatternNode*>&InstResults, 2653 std::vector<Record*> &InstImpResults) { 2654 if (Pat->isLeaf()) { 2655 bool isUse = HandleUse(I, Pat, InstInputs); 2656 if (!isUse && Pat->getTransformFn()) 2657 I->error("Cannot specify a transform function for a non-input value!"); 2658 return; 2659 } 2660 2661 if (Pat->getOperator()->getName() == "implicit") { 2662 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 2663 TreePatternNode *Dest = Pat->getChild(i); 2664 if (!Dest->isLeaf()) 2665 I->error("implicitly defined value should be a register!"); 2666 2667 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 2668 if (!Val || !Val->getDef()->isSubClassOf("Register")) 2669 I->error("implicitly defined value should be a register!"); 2670 InstImpResults.push_back(Val->getDef()); 2671 } 2672 return; 2673 } 2674 2675 if (Pat->getOperator()->getName() != "set") { 2676 // If this is not a set, verify that the children nodes are not void typed, 2677 // and recurse. 2678 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 2679 if (Pat->getChild(i)->getNumTypes() == 0) 2680 I->error("Cannot have void nodes inside of patterns!"); 2681 FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, 2682 InstImpResults); 2683 } 2684 2685 // If this is a non-leaf node with no children, treat it basically as if 2686 // it were a leaf. This handles nodes like (imm). 2687 bool isUse = HandleUse(I, Pat, InstInputs); 2688 2689 if (!isUse && Pat->getTransformFn()) 2690 I->error("Cannot specify a transform function for a non-input value!"); 2691 return; 2692 } 2693 2694 // Otherwise, this is a set, validate and collect instruction results. 2695 if (Pat->getNumChildren() == 0) 2696 I->error("set requires operands!"); 2697 2698 if (Pat->getTransformFn()) 2699 I->error("Cannot specify a transform function on a set node!"); 2700 2701 // Check the set destinations. 2702 unsigned NumDests = Pat->getNumChildren()-1; 2703 for (unsigned i = 0; i != NumDests; ++i) { 2704 TreePatternNode *Dest = Pat->getChild(i); 2705 if (!Dest->isLeaf()) 2706 I->error("set destination should be a register!"); 2707 2708 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 2709 if (!Val) { 2710 I->error("set destination should be a register!"); 2711 continue; 2712 } 2713 2714 if (Val->getDef()->isSubClassOf("RegisterClass") || 2715 Val->getDef()->isSubClassOf("ValueType") || 2716 Val->getDef()->isSubClassOf("RegisterOperand") || 2717 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 2718 if (Dest->getName().empty()) 2719 I->error("set destination must have a name!"); 2720 if (InstResults.count(Dest->getName())) 2721 I->error("cannot set '" + Dest->getName() +"' multiple times"); 2722 InstResults[Dest->getName()] = Dest; 2723 } else if (Val->getDef()->isSubClassOf("Register")) { 2724 InstImpResults.push_back(Val->getDef()); 2725 } else { 2726 I->error("set destination should be a register!"); 2727 } 2728 } 2729 2730 // Verify and collect info from the computation. 2731 FindPatternInputsAndOutputs(I, Pat->getChild(NumDests), 2732 InstInputs, InstResults, InstImpResults); 2733 } 2734 2735 //===----------------------------------------------------------------------===// 2736 // Instruction Analysis 2737 //===----------------------------------------------------------------------===// 2738 2739 class InstAnalyzer { 2740 const CodeGenDAGPatterns &CDP; 2741 public: 2742 bool hasSideEffects; 2743 bool mayStore; 2744 bool mayLoad; 2745 bool isBitcast; 2746 bool isVariadic; 2747 2748 InstAnalyzer(const CodeGenDAGPatterns &cdp) 2749 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false), 2750 isBitcast(false), isVariadic(false) {} 2751 2752 void Analyze(const TreePattern *Pat) { 2753 // Assume only the first tree is the pattern. The others are clobber nodes. 2754 AnalyzeNode(Pat->getTree(0)); 2755 } 2756 2757 void Analyze(const PatternToMatch *Pat) { 2758 AnalyzeNode(Pat->getSrcPattern()); 2759 } 2760 2761 private: 2762 bool IsNodeBitcast(const TreePatternNode *N) const { 2763 if (hasSideEffects || mayLoad || mayStore || isVariadic) 2764 return false; 2765 2766 if (N->getNumChildren() != 2) 2767 return false; 2768 2769 const TreePatternNode *N0 = N->getChild(0); 2770 if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue())) 2771 return false; 2772 2773 const TreePatternNode *N1 = N->getChild(1); 2774 if (N1->isLeaf()) 2775 return false; 2776 if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf()) 2777 return false; 2778 2779 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator()); 2780 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) 2781 return false; 2782 return OpInfo.getEnumName() == "ISD::BITCAST"; 2783 } 2784 2785 public: 2786 void AnalyzeNode(const TreePatternNode *N) { 2787 if (N->isLeaf()) { 2788 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { 2789 Record *LeafRec = DI->getDef(); 2790 // Handle ComplexPattern leaves. 2791 if (LeafRec->isSubClassOf("ComplexPattern")) { 2792 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 2793 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 2794 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 2795 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true; 2796 } 2797 } 2798 return; 2799 } 2800 2801 // Analyze children. 2802 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2803 AnalyzeNode(N->getChild(i)); 2804 2805 // Ignore set nodes, which are not SDNodes. 2806 if (N->getOperator()->getName() == "set") { 2807 isBitcast = IsNodeBitcast(N); 2808 return; 2809 } 2810 2811 // Notice properties of the node. 2812 if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true; 2813 if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true; 2814 if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true; 2815 if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true; 2816 2817 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 2818 // If this is an intrinsic, analyze it. 2819 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem) 2820 mayLoad = true;// These may load memory. 2821 2822 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem) 2823 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 2824 2825 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem) 2826 // WriteMem intrinsics can have other strange effects. 2827 hasSideEffects = true; 2828 } 2829 } 2830 2831 }; 2832 2833 static bool InferFromPattern(CodeGenInstruction &InstInfo, 2834 const InstAnalyzer &PatInfo, 2835 Record *PatDef) { 2836 bool Error = false; 2837 2838 // Remember where InstInfo got its flags. 2839 if (InstInfo.hasUndefFlags()) 2840 InstInfo.InferredFrom = PatDef; 2841 2842 // Check explicitly set flags for consistency. 2843 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects && 2844 !InstInfo.hasSideEffects_Unset) { 2845 // Allow explicitly setting hasSideEffects = 1 on instructions, even when 2846 // the pattern has no side effects. That could be useful for div/rem 2847 // instructions that may trap. 2848 if (!InstInfo.hasSideEffects) { 2849 Error = true; 2850 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " + 2851 Twine(InstInfo.hasSideEffects)); 2852 } 2853 } 2854 2855 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) { 2856 Error = true; 2857 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " + 2858 Twine(InstInfo.mayStore)); 2859 } 2860 2861 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) { 2862 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads. 2863 // Some targets translate immediates to loads. 2864 if (!InstInfo.mayLoad) { 2865 Error = true; 2866 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " + 2867 Twine(InstInfo.mayLoad)); 2868 } 2869 } 2870 2871 // Transfer inferred flags. 2872 InstInfo.hasSideEffects |= PatInfo.hasSideEffects; 2873 InstInfo.mayStore |= PatInfo.mayStore; 2874 InstInfo.mayLoad |= PatInfo.mayLoad; 2875 2876 // These flags are silently added without any verification. 2877 InstInfo.isBitcast |= PatInfo.isBitcast; 2878 2879 // Don't infer isVariadic. This flag means something different on SDNodes and 2880 // instructions. For example, a CALL SDNode is variadic because it has the 2881 // call arguments as operands, but a CALL instruction is not variadic - it 2882 // has argument registers as implicit, not explicit uses. 2883 2884 return Error; 2885 } 2886 2887 /// hasNullFragReference - Return true if the DAG has any reference to the 2888 /// null_frag operator. 2889 static bool hasNullFragReference(DagInit *DI) { 2890 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator()); 2891 if (!OpDef) return false; 2892 Record *Operator = OpDef->getDef(); 2893 2894 // If this is the null fragment, return true. 2895 if (Operator->getName() == "null_frag") return true; 2896 // If any of the arguments reference the null fragment, return true. 2897 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { 2898 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i)); 2899 if (Arg && hasNullFragReference(Arg)) 2900 return true; 2901 } 2902 2903 return false; 2904 } 2905 2906 /// hasNullFragReference - Return true if any DAG in the list references 2907 /// the null_frag operator. 2908 static bool hasNullFragReference(ListInit *LI) { 2909 for (Init *I : LI->getValues()) { 2910 DagInit *DI = dyn_cast<DagInit>(I); 2911 assert(DI && "non-dag in an instruction Pattern list?!"); 2912 if (hasNullFragReference(DI)) 2913 return true; 2914 } 2915 return false; 2916 } 2917 2918 /// Get all the instructions in a tree. 2919 static void 2920 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) { 2921 if (Tree->isLeaf()) 2922 return; 2923 if (Tree->getOperator()->isSubClassOf("Instruction")) 2924 Instrs.push_back(Tree->getOperator()); 2925 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i) 2926 getInstructionsInTree(Tree->getChild(i), Instrs); 2927 } 2928 2929 /// Check the class of a pattern leaf node against the instruction operand it 2930 /// represents. 2931 static bool checkOperandClass(CGIOperandList::OperandInfo &OI, 2932 Record *Leaf) { 2933 if (OI.Rec == Leaf) 2934 return true; 2935 2936 // Allow direct value types to be used in instruction set patterns. 2937 // The type will be checked later. 2938 if (Leaf->isSubClassOf("ValueType")) 2939 return true; 2940 2941 // Patterns can also be ComplexPattern instances. 2942 if (Leaf->isSubClassOf("ComplexPattern")) 2943 return true; 2944 2945 return false; 2946 } 2947 2948 const DAGInstruction &CodeGenDAGPatterns::parseInstructionPattern( 2949 CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) { 2950 2951 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!"); 2952 2953 // Parse the instruction. 2954 TreePattern *I = new TreePattern(CGI.TheDef, Pat, true, *this); 2955 // Inline pattern fragments into it. 2956 I->InlinePatternFragments(); 2957 2958 // Infer as many types as possible. If we cannot infer all of them, we can 2959 // never do anything with this instruction pattern: report it to the user. 2960 if (!I->InferAllTypes()) 2961 I->error("Could not infer all types in pattern!"); 2962 2963 // InstInputs - Keep track of all of the inputs of the instruction, along 2964 // with the record they are declared as. 2965 std::map<std::string, TreePatternNode*> InstInputs; 2966 2967 // InstResults - Keep track of all the virtual registers that are 'set' 2968 // in the instruction, including what reg class they are. 2969 std::map<std::string, TreePatternNode*> InstResults; 2970 2971 std::vector<Record*> InstImpResults; 2972 2973 // Verify that the top-level forms in the instruction are of void type, and 2974 // fill in the InstResults map. 2975 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { 2976 TreePatternNode *Pat = I->getTree(j); 2977 if (Pat->getNumTypes() != 0) 2978 I->error("Top-level forms in instruction pattern should have" 2979 " void types"); 2980 2981 // Find inputs and outputs, and verify the structure of the uses/defs. 2982 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 2983 InstImpResults); 2984 } 2985 2986 // Now that we have inputs and outputs of the pattern, inspect the operands 2987 // list for the instruction. This determines the order that operands are 2988 // added to the machine instruction the node corresponds to. 2989 unsigned NumResults = InstResults.size(); 2990 2991 // Parse the operands list from the (ops) list, validating it. 2992 assert(I->getArgList().empty() && "Args list should still be empty here!"); 2993 2994 // Check that all of the results occur first in the list. 2995 std::vector<Record*> Results; 2996 SmallVector<TreePatternNode *, 2> ResNodes; 2997 for (unsigned i = 0; i != NumResults; ++i) { 2998 if (i == CGI.Operands.size()) 2999 I->error("'" + InstResults.begin()->first + 3000 "' set but does not appear in operand list!"); 3001 const std::string &OpName = CGI.Operands[i].Name; 3002 3003 // Check that it exists in InstResults. 3004 TreePatternNode *RNode = InstResults[OpName]; 3005 if (!RNode) 3006 I->error("Operand $" + OpName + " does not exist in operand list!"); 3007 3008 ResNodes.push_back(RNode); 3009 3010 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef(); 3011 if (!R) 3012 I->error("Operand $" + OpName + " should be a set destination: all " 3013 "outputs must occur before inputs in operand list!"); 3014 3015 if (!checkOperandClass(CGI.Operands[i], R)) 3016 I->error("Operand $" + OpName + " class mismatch!"); 3017 3018 // Remember the return type. 3019 Results.push_back(CGI.Operands[i].Rec); 3020 3021 // Okay, this one checks out. 3022 InstResults.erase(OpName); 3023 } 3024 3025 // Loop over the inputs next. Make a copy of InstInputs so we can destroy 3026 // the copy while we're checking the inputs. 3027 std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs); 3028 3029 std::vector<TreePatternNode*> ResultNodeOperands; 3030 std::vector<Record*> Operands; 3031 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 3032 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 3033 const std::string &OpName = Op.Name; 3034 if (OpName.empty()) 3035 I->error("Operand #" + utostr(i) + " in operands list has no name!"); 3036 3037 if (!InstInputsCheck.count(OpName)) { 3038 // If this is an operand with a DefaultOps set filled in, we can ignore 3039 // this. When we codegen it, we will do so as always executed. 3040 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) { 3041 // Does it have a non-empty DefaultOps field? If so, ignore this 3042 // operand. 3043 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 3044 continue; 3045 } 3046 I->error("Operand $" + OpName + 3047 " does not appear in the instruction pattern"); 3048 } 3049 TreePatternNode *InVal = InstInputsCheck[OpName]; 3050 InstInputsCheck.erase(OpName); // It occurred, remove from map. 3051 3052 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) { 3053 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); 3054 if (!checkOperandClass(Op, InRec)) 3055 I->error("Operand $" + OpName + "'s register class disagrees" 3056 " between the operand and pattern"); 3057 } 3058 Operands.push_back(Op.Rec); 3059 3060 // Construct the result for the dest-pattern operand list. 3061 TreePatternNode *OpNode = InVal->clone(); 3062 3063 // No predicate is useful on the result. 3064 OpNode->clearPredicateFns(); 3065 3066 // Promote the xform function to be an explicit node if set. 3067 if (Record *Xform = OpNode->getTransformFn()) { 3068 OpNode->setTransformFn(nullptr); 3069 std::vector<TreePatternNode*> Children; 3070 Children.push_back(OpNode); 3071 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 3072 } 3073 3074 ResultNodeOperands.push_back(OpNode); 3075 } 3076 3077 if (!InstInputsCheck.empty()) 3078 I->error("Input operand $" + InstInputsCheck.begin()->first + 3079 " occurs in pattern but not in operands list!"); 3080 3081 TreePatternNode *ResultPattern = 3082 new TreePatternNode(I->getRecord(), ResultNodeOperands, 3083 GetNumNodeResults(I->getRecord(), *this)); 3084 // Copy fully inferred output node types to instruction result pattern. 3085 for (unsigned i = 0; i != NumResults; ++i) { 3086 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled"); 3087 ResultPattern->setType(i, ResNodes[i]->getExtType(0)); 3088 } 3089 3090 // Create and insert the instruction. 3091 // FIXME: InstImpResults should not be part of DAGInstruction. 3092 DAGInstruction TheInst(I, Results, Operands, InstImpResults); 3093 DAGInsts.insert(std::make_pair(I->getRecord(), TheInst)); 3094 3095 // Use a temporary tree pattern to infer all types and make sure that the 3096 // constructed result is correct. This depends on the instruction already 3097 // being inserted into the DAGInsts map. 3098 TreePattern Temp(I->getRecord(), ResultPattern, false, *this); 3099 Temp.InferAllTypes(&I->getNamedNodesMap()); 3100 3101 DAGInstruction &TheInsertedInst = DAGInsts.find(I->getRecord())->second; 3102 TheInsertedInst.setResultPattern(Temp.getOnlyTree()); 3103 3104 return TheInsertedInst; 3105 } 3106 3107 /// ParseInstructions - Parse all of the instructions, inlining and resolving 3108 /// any fragments involved. This populates the Instructions list with fully 3109 /// resolved instructions. 3110 void CodeGenDAGPatterns::ParseInstructions() { 3111 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 3112 3113 for (Record *Instr : Instrs) { 3114 ListInit *LI = nullptr; 3115 3116 if (isa<ListInit>(Instr->getValueInit("Pattern"))) 3117 LI = Instr->getValueAsListInit("Pattern"); 3118 3119 // If there is no pattern, only collect minimal information about the 3120 // instruction for its operand list. We have to assume that there is one 3121 // result, as we have no detailed info. A pattern which references the 3122 // null_frag operator is as-if no pattern were specified. Normally this 3123 // is from a multiclass expansion w/ a SDPatternOperator passed in as 3124 // null_frag. 3125 if (!LI || LI->empty() || hasNullFragReference(LI)) { 3126 std::vector<Record*> Results; 3127 std::vector<Record*> Operands; 3128 3129 CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3130 3131 if (InstInfo.Operands.size() != 0) { 3132 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j) 3133 Results.push_back(InstInfo.Operands[j].Rec); 3134 3135 // The rest are inputs. 3136 for (unsigned j = InstInfo.Operands.NumDefs, 3137 e = InstInfo.Operands.size(); j < e; ++j) 3138 Operands.push_back(InstInfo.Operands[j].Rec); 3139 } 3140 3141 // Create and insert the instruction. 3142 std::vector<Record*> ImpResults; 3143 Instructions.insert(std::make_pair(Instr, 3144 DAGInstruction(nullptr, Results, Operands, ImpResults))); 3145 continue; // no pattern. 3146 } 3147 3148 CodeGenInstruction &CGI = Target.getInstruction(Instr); 3149 const DAGInstruction &DI = parseInstructionPattern(CGI, LI, Instructions); 3150 3151 (void)DI; 3152 DEBUG(DI.getPattern()->dump()); 3153 } 3154 3155 // If we can, convert the instructions to be patterns that are matched! 3156 for (auto &Entry : Instructions) { 3157 DAGInstruction &TheInst = Entry.second; 3158 TreePattern *I = TheInst.getPattern(); 3159 if (!I) continue; // No pattern. 3160 3161 // FIXME: Assume only the first tree is the pattern. The others are clobber 3162 // nodes. 3163 TreePatternNode *Pattern = I->getTree(0); 3164 TreePatternNode *SrcPattern; 3165 if (Pattern->getOperator()->getName() == "set") { 3166 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 3167 } else{ 3168 // Not a set (store or something?) 3169 SrcPattern = Pattern; 3170 } 3171 3172 Record *Instr = Entry.first; 3173 AddPatternToMatch(I, 3174 PatternToMatch(Instr, 3175 Instr->getValueAsListInit("Predicates"), 3176 SrcPattern, 3177 TheInst.getResultPattern(), 3178 TheInst.getImpResults(), 3179 Instr->getValueAsInt("AddedComplexity"), 3180 Instr->getID())); 3181 } 3182 } 3183 3184 3185 typedef std::pair<const TreePatternNode*, unsigned> NameRecord; 3186 3187 static void FindNames(const TreePatternNode *P, 3188 std::map<std::string, NameRecord> &Names, 3189 TreePattern *PatternTop) { 3190 if (!P->getName().empty()) { 3191 NameRecord &Rec = Names[P->getName()]; 3192 // If this is the first instance of the name, remember the node. 3193 if (Rec.second++ == 0) 3194 Rec.first = P; 3195 else if (Rec.first->getExtTypes() != P->getExtTypes()) 3196 PatternTop->error("repetition of value: $" + P->getName() + 3197 " where different uses have different types!"); 3198 } 3199 3200 if (!P->isLeaf()) { 3201 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) 3202 FindNames(P->getChild(i), Names, PatternTop); 3203 } 3204 } 3205 3206 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern, 3207 const PatternToMatch &PTM) { 3208 // Do some sanity checking on the pattern we're about to match. 3209 std::string Reason; 3210 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) { 3211 PrintWarning(Pattern->getRecord()->getLoc(), 3212 Twine("Pattern can never match: ") + Reason); 3213 return; 3214 } 3215 3216 // If the source pattern's root is a complex pattern, that complex pattern 3217 // must specify the nodes it can potentially match. 3218 if (const ComplexPattern *CP = 3219 PTM.getSrcPattern()->getComplexPatternInfo(*this)) 3220 if (CP->getRootNodes().empty()) 3221 Pattern->error("ComplexPattern at root must specify list of opcodes it" 3222 " could match"); 3223 3224 3225 // Find all of the named values in the input and output, ensure they have the 3226 // same type. 3227 std::map<std::string, NameRecord> SrcNames, DstNames; 3228 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 3229 FindNames(PTM.getDstPattern(), DstNames, Pattern); 3230 3231 // Scan all of the named values in the destination pattern, rejecting them if 3232 // they don't exist in the input pattern. 3233 for (const auto &Entry : DstNames) { 3234 if (SrcNames[Entry.first].first == nullptr) 3235 Pattern->error("Pattern has input without matching name in output: $" + 3236 Entry.first); 3237 } 3238 3239 // Scan all of the named values in the source pattern, rejecting them if the 3240 // name isn't used in the dest, and isn't used to tie two values together. 3241 for (const auto &Entry : SrcNames) 3242 if (DstNames[Entry.first].first == nullptr && 3243 SrcNames[Entry.first].second == 1) 3244 Pattern->error("Pattern has dead named input: $" + Entry.first); 3245 3246 PatternsToMatch.push_back(PTM); 3247 } 3248 3249 3250 3251 void CodeGenDAGPatterns::InferInstructionFlags() { 3252 const std::vector<const CodeGenInstruction*> &Instructions = 3253 Target.getInstructionsByEnumValue(); 3254 3255 // First try to infer flags from the primary instruction pattern, if any. 3256 SmallVector<CodeGenInstruction*, 8> Revisit; 3257 unsigned Errors = 0; 3258 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 3259 CodeGenInstruction &InstInfo = 3260 const_cast<CodeGenInstruction &>(*Instructions[i]); 3261 3262 // Get the primary instruction pattern. 3263 const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern(); 3264 if (!Pattern) { 3265 if (InstInfo.hasUndefFlags()) 3266 Revisit.push_back(&InstInfo); 3267 continue; 3268 } 3269 InstAnalyzer PatInfo(*this); 3270 PatInfo.Analyze(Pattern); 3271 Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef); 3272 } 3273 3274 // Second, look for single-instruction patterns defined outside the 3275 // instruction. 3276 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) { 3277 const PatternToMatch &PTM = *I; 3278 3279 // We can only infer from single-instruction patterns, otherwise we won't 3280 // know which instruction should get the flags. 3281 SmallVector<Record*, 8> PatInstrs; 3282 getInstructionsInTree(PTM.getDstPattern(), PatInstrs); 3283 if (PatInstrs.size() != 1) 3284 continue; 3285 3286 // Get the single instruction. 3287 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front()); 3288 3289 // Only infer properties from the first pattern. We'll verify the others. 3290 if (InstInfo.InferredFrom) 3291 continue; 3292 3293 InstAnalyzer PatInfo(*this); 3294 PatInfo.Analyze(&PTM); 3295 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord()); 3296 } 3297 3298 if (Errors) 3299 PrintFatalError("pattern conflicts"); 3300 3301 // Revisit instructions with undefined flags and no pattern. 3302 if (Target.guessInstructionProperties()) { 3303 for (CodeGenInstruction *InstInfo : Revisit) { 3304 if (InstInfo->InferredFrom) 3305 continue; 3306 // The mayLoad and mayStore flags default to false. 3307 // Conservatively assume hasSideEffects if it wasn't explicit. 3308 if (InstInfo->hasSideEffects_Unset) 3309 InstInfo->hasSideEffects = true; 3310 } 3311 return; 3312 } 3313 3314 // Complain about any flags that are still undefined. 3315 for (CodeGenInstruction *InstInfo : Revisit) { 3316 if (InstInfo->InferredFrom) 3317 continue; 3318 if (InstInfo->hasSideEffects_Unset) 3319 PrintError(InstInfo->TheDef->getLoc(), 3320 "Can't infer hasSideEffects from patterns"); 3321 if (InstInfo->mayStore_Unset) 3322 PrintError(InstInfo->TheDef->getLoc(), 3323 "Can't infer mayStore from patterns"); 3324 if (InstInfo->mayLoad_Unset) 3325 PrintError(InstInfo->TheDef->getLoc(), 3326 "Can't infer mayLoad from patterns"); 3327 } 3328 } 3329 3330 3331 /// Verify instruction flags against pattern node properties. 3332 void CodeGenDAGPatterns::VerifyInstructionFlags() { 3333 unsigned Errors = 0; 3334 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) { 3335 const PatternToMatch &PTM = *I; 3336 SmallVector<Record*, 8> Instrs; 3337 getInstructionsInTree(PTM.getDstPattern(), Instrs); 3338 if (Instrs.empty()) 3339 continue; 3340 3341 // Count the number of instructions with each flag set. 3342 unsigned NumSideEffects = 0; 3343 unsigned NumStores = 0; 3344 unsigned NumLoads = 0; 3345 for (const Record *Instr : Instrs) { 3346 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3347 NumSideEffects += InstInfo.hasSideEffects; 3348 NumStores += InstInfo.mayStore; 3349 NumLoads += InstInfo.mayLoad; 3350 } 3351 3352 // Analyze the source pattern. 3353 InstAnalyzer PatInfo(*this); 3354 PatInfo.Analyze(&PTM); 3355 3356 // Collect error messages. 3357 SmallVector<std::string, 4> Msgs; 3358 3359 // Check for missing flags in the output. 3360 // Permit extra flags for now at least. 3361 if (PatInfo.hasSideEffects && !NumSideEffects) 3362 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set"); 3363 3364 // Don't verify store flags on instructions with side effects. At least for 3365 // intrinsics, side effects implies mayStore. 3366 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores) 3367 Msgs.push_back("pattern may store, but mayStore isn't set"); 3368 3369 // Similarly, mayStore implies mayLoad on intrinsics. 3370 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads) 3371 Msgs.push_back("pattern may load, but mayLoad isn't set"); 3372 3373 // Print error messages. 3374 if (Msgs.empty()) 3375 continue; 3376 ++Errors; 3377 3378 for (const std::string &Msg : Msgs) 3379 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " + 3380 (Instrs.size() == 1 ? 3381 "instruction" : "output instructions")); 3382 // Provide the location of the relevant instruction definitions. 3383 for (const Record *Instr : Instrs) { 3384 if (Instr != PTM.getSrcRecord()) 3385 PrintError(Instr->getLoc(), "defined here"); 3386 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3387 if (InstInfo.InferredFrom && 3388 InstInfo.InferredFrom != InstInfo.TheDef && 3389 InstInfo.InferredFrom != PTM.getSrcRecord()) 3390 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern"); 3391 } 3392 } 3393 if (Errors) 3394 PrintFatalError("Errors in DAG patterns"); 3395 } 3396 3397 /// Given a pattern result with an unresolved type, see if we can find one 3398 /// instruction with an unresolved result type. Force this result type to an 3399 /// arbitrary element if it's possible types to converge results. 3400 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { 3401 if (N->isLeaf()) 3402 return false; 3403 3404 // Analyze children. 3405 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3406 if (ForceArbitraryInstResultType(N->getChild(i), TP)) 3407 return true; 3408 3409 if (!N->getOperator()->isSubClassOf("Instruction")) 3410 return false; 3411 3412 // If this type is already concrete or completely unknown we can't do 3413 // anything. 3414 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { 3415 if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete()) 3416 continue; 3417 3418 // Otherwise, force its type to the first possibility (an arbitrary choice). 3419 if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP)) 3420 return true; 3421 } 3422 3423 return false; 3424 } 3425 3426 void CodeGenDAGPatterns::ParsePatterns() { 3427 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 3428 3429 for (Record *CurPattern : Patterns) { 3430 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 3431 3432 // If the pattern references the null_frag, there's nothing to do. 3433 if (hasNullFragReference(Tree)) 3434 continue; 3435 3436 TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this); 3437 3438 // Inline pattern fragments into it. 3439 Pattern->InlinePatternFragments(); 3440 3441 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 3442 if (LI->empty()) continue; // no pattern. 3443 3444 // Parse the instruction. 3445 TreePattern Result(CurPattern, LI, false, *this); 3446 3447 // Inline pattern fragments into it. 3448 Result.InlinePatternFragments(); 3449 3450 if (Result.getNumTrees() != 1) 3451 Result.error("Cannot handle instructions producing instructions " 3452 "with temporaries yet!"); 3453 3454 bool IterateInference; 3455 bool InferredAllPatternTypes, InferredAllResultTypes; 3456 do { 3457 // Infer as many types as possible. If we cannot infer all of them, we 3458 // can never do anything with this pattern: report it to the user. 3459 InferredAllPatternTypes = 3460 Pattern->InferAllTypes(&Pattern->getNamedNodesMap()); 3461 3462 // Infer as many types as possible. If we cannot infer all of them, we 3463 // can never do anything with this pattern: report it to the user. 3464 InferredAllResultTypes = 3465 Result.InferAllTypes(&Pattern->getNamedNodesMap()); 3466 3467 IterateInference = false; 3468 3469 // Apply the type of the result to the source pattern. This helps us 3470 // resolve cases where the input type is known to be a pointer type (which 3471 // is considered resolved), but the result knows it needs to be 32- or 3472 // 64-bits. Infer the other way for good measure. 3473 for (unsigned i = 0, e = std::min(Result.getTree(0)->getNumTypes(), 3474 Pattern->getTree(0)->getNumTypes()); 3475 i != e; ++i) { 3476 IterateInference = Pattern->getTree(0)->UpdateNodeType( 3477 i, Result.getTree(0)->getExtType(i), Result); 3478 IterateInference |= Result.getTree(0)->UpdateNodeType( 3479 i, Pattern->getTree(0)->getExtType(i), Result); 3480 } 3481 3482 // If our iteration has converged and the input pattern's types are fully 3483 // resolved but the result pattern is not fully resolved, we may have a 3484 // situation where we have two instructions in the result pattern and 3485 // the instructions require a common register class, but don't care about 3486 // what actual MVT is used. This is actually a bug in our modelling: 3487 // output patterns should have register classes, not MVTs. 3488 // 3489 // In any case, to handle this, we just go through and disambiguate some 3490 // arbitrary types to the result pattern's nodes. 3491 if (!IterateInference && InferredAllPatternTypes && 3492 !InferredAllResultTypes) 3493 IterateInference = 3494 ForceArbitraryInstResultType(Result.getTree(0), Result); 3495 } while (IterateInference); 3496 3497 // Verify that we inferred enough types that we can do something with the 3498 // pattern and result. If these fire the user has to add type casts. 3499 if (!InferredAllPatternTypes) 3500 Pattern->error("Could not infer all types in pattern!"); 3501 if (!InferredAllResultTypes) { 3502 Pattern->dump(); 3503 Result.error("Could not infer all types in pattern result!"); 3504 } 3505 3506 // Validate that the input pattern is correct. 3507 std::map<std::string, TreePatternNode*> InstInputs; 3508 std::map<std::string, TreePatternNode*> InstResults; 3509 std::vector<Record*> InstImpResults; 3510 for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j) 3511 FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j), 3512 InstInputs, InstResults, 3513 InstImpResults); 3514 3515 // Promote the xform function to be an explicit node if set. 3516 TreePatternNode *DstPattern = Result.getOnlyTree(); 3517 std::vector<TreePatternNode*> ResultNodeOperands; 3518 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { 3519 TreePatternNode *OpNode = DstPattern->getChild(ii); 3520 if (Record *Xform = OpNode->getTransformFn()) { 3521 OpNode->setTransformFn(nullptr); 3522 std::vector<TreePatternNode*> Children; 3523 Children.push_back(OpNode); 3524 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 3525 } 3526 ResultNodeOperands.push_back(OpNode); 3527 } 3528 DstPattern = Result.getOnlyTree(); 3529 if (!DstPattern->isLeaf()) 3530 DstPattern = new TreePatternNode(DstPattern->getOperator(), 3531 ResultNodeOperands, 3532 DstPattern->getNumTypes()); 3533 3534 for (unsigned i = 0, e = Result.getOnlyTree()->getNumTypes(); i != e; ++i) 3535 DstPattern->setType(i, Result.getOnlyTree()->getExtType(i)); 3536 3537 TreePattern Temp(Result.getRecord(), DstPattern, false, *this); 3538 Temp.InferAllTypes(); 3539 3540 3541 AddPatternToMatch(Pattern, 3542 PatternToMatch(CurPattern, 3543 CurPattern->getValueAsListInit("Predicates"), 3544 Pattern->getTree(0), 3545 Temp.getOnlyTree(), InstImpResults, 3546 CurPattern->getValueAsInt("AddedComplexity"), 3547 CurPattern->getID())); 3548 } 3549 } 3550 3551 /// CombineChildVariants - Given a bunch of permutations of each child of the 3552 /// 'operator' node, put them together in all possible ways. 3553 static void CombineChildVariants(TreePatternNode *Orig, 3554 const std::vector<std::vector<TreePatternNode*> > &ChildVariants, 3555 std::vector<TreePatternNode*> &OutVariants, 3556 CodeGenDAGPatterns &CDP, 3557 const MultipleUseVarSet &DepVars) { 3558 // Make sure that each operand has at least one variant to choose from. 3559 for (const auto &Variants : ChildVariants) 3560 if (Variants.empty()) 3561 return; 3562 3563 // The end result is an all-pairs construction of the resultant pattern. 3564 std::vector<unsigned> Idxs; 3565 Idxs.resize(ChildVariants.size()); 3566 bool NotDone; 3567 do { 3568 #ifndef NDEBUG 3569 DEBUG(if (!Idxs.empty()) { 3570 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 3571 for (unsigned Idx : Idxs) { 3572 errs() << Idx << " "; 3573 } 3574 errs() << "]\n"; 3575 }); 3576 #endif 3577 // Create the variant and add it to the output list. 3578 std::vector<TreePatternNode*> NewChildren; 3579 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 3580 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 3581 auto R = llvm::make_unique<TreePatternNode>( 3582 Orig->getOperator(), NewChildren, Orig->getNumTypes()); 3583 3584 // Copy over properties. 3585 R->setName(Orig->getName()); 3586 R->setPredicateFns(Orig->getPredicateFns()); 3587 R->setTransformFn(Orig->getTransformFn()); 3588 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 3589 R->setType(i, Orig->getExtType(i)); 3590 3591 // If this pattern cannot match, do not include it as a variant. 3592 std::string ErrString; 3593 // Scan to see if this pattern has already been emitted. We can get 3594 // duplication due to things like commuting: 3595 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 3596 // which are the same pattern. Ignore the dups. 3597 if (R->canPatternMatch(ErrString, CDP) && 3598 std::none_of(OutVariants.begin(), OutVariants.end(), 3599 [&](TreePatternNode *Variant) { 3600 return R->isIsomorphicTo(Variant, DepVars); 3601 })) 3602 OutVariants.push_back(R.release()); 3603 3604 // Increment indices to the next permutation by incrementing the 3605 // indices from last index backward, e.g., generate the sequence 3606 // [0, 0], [0, 1], [1, 0], [1, 1]. 3607 int IdxsIdx; 3608 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 3609 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 3610 Idxs[IdxsIdx] = 0; 3611 else 3612 break; 3613 } 3614 NotDone = (IdxsIdx >= 0); 3615 } while (NotDone); 3616 } 3617 3618 /// CombineChildVariants - A helper function for binary operators. 3619 /// 3620 static void CombineChildVariants(TreePatternNode *Orig, 3621 const std::vector<TreePatternNode*> &LHS, 3622 const std::vector<TreePatternNode*> &RHS, 3623 std::vector<TreePatternNode*> &OutVariants, 3624 CodeGenDAGPatterns &CDP, 3625 const MultipleUseVarSet &DepVars) { 3626 std::vector<std::vector<TreePatternNode*> > ChildVariants; 3627 ChildVariants.push_back(LHS); 3628 ChildVariants.push_back(RHS); 3629 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 3630 } 3631 3632 3633 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, 3634 std::vector<TreePatternNode *> &Children) { 3635 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 3636 Record *Operator = N->getOperator(); 3637 3638 // Only permit raw nodes. 3639 if (!N->getName().empty() || !N->getPredicateFns().empty() || 3640 N->getTransformFn()) { 3641 Children.push_back(N); 3642 return; 3643 } 3644 3645 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 3646 Children.push_back(N->getChild(0)); 3647 else 3648 GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); 3649 3650 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 3651 Children.push_back(N->getChild(1)); 3652 else 3653 GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); 3654 } 3655 3656 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 3657 /// the (potentially recursive) pattern by using algebraic laws. 3658 /// 3659 static void GenerateVariantsOf(TreePatternNode *N, 3660 std::vector<TreePatternNode*> &OutVariants, 3661 CodeGenDAGPatterns &CDP, 3662 const MultipleUseVarSet &DepVars) { 3663 // We cannot permute leaves or ComplexPattern uses. 3664 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) { 3665 OutVariants.push_back(N); 3666 return; 3667 } 3668 3669 // Look up interesting info about the node. 3670 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 3671 3672 // If this node is associative, re-associate. 3673 if (NodeInfo.hasProperty(SDNPAssociative)) { 3674 // Re-associate by pulling together all of the linked operators 3675 std::vector<TreePatternNode*> MaximalChildren; 3676 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 3677 3678 // Only handle child sizes of 3. Otherwise we'll end up trying too many 3679 // permutations. 3680 if (MaximalChildren.size() == 3) { 3681 // Find the variants of all of our maximal children. 3682 std::vector<TreePatternNode*> AVariants, BVariants, CVariants; 3683 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 3684 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 3685 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 3686 3687 // There are only two ways we can permute the tree: 3688 // (A op B) op C and A op (B op C) 3689 // Within these forms, we can also permute A/B/C. 3690 3691 // Generate legal pair permutations of A/B/C. 3692 std::vector<TreePatternNode*> ABVariants; 3693 std::vector<TreePatternNode*> BAVariants; 3694 std::vector<TreePatternNode*> ACVariants; 3695 std::vector<TreePatternNode*> CAVariants; 3696 std::vector<TreePatternNode*> BCVariants; 3697 std::vector<TreePatternNode*> CBVariants; 3698 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 3699 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 3700 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 3701 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 3702 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 3703 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 3704 3705 // Combine those into the result: (x op x) op x 3706 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 3707 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 3708 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 3709 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 3710 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 3711 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 3712 3713 // Combine those into the result: x op (x op x) 3714 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 3715 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 3716 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 3717 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 3718 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 3719 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 3720 return; 3721 } 3722 } 3723 3724 // Compute permutations of all children. 3725 std::vector<std::vector<TreePatternNode*> > ChildVariants; 3726 ChildVariants.resize(N->getNumChildren()); 3727 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3728 GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars); 3729 3730 // Build all permutations based on how the children were formed. 3731 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 3732 3733 // If this node is commutative, consider the commuted order. 3734 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 3735 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 3736 assert((N->getNumChildren()==2 || isCommIntrinsic) && 3737 "Commutative but doesn't have 2 children!"); 3738 // Don't count children which are actually register references. 3739 unsigned NC = 0; 3740 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 3741 TreePatternNode *Child = N->getChild(i); 3742 if (Child->isLeaf()) 3743 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) { 3744 Record *RR = DI->getDef(); 3745 if (RR->isSubClassOf("Register")) 3746 continue; 3747 } 3748 NC++; 3749 } 3750 // Consider the commuted order. 3751 if (isCommIntrinsic) { 3752 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd 3753 // operands are the commutative operands, and there might be more operands 3754 // after those. 3755 assert(NC >= 3 && 3756 "Commutative intrinsic should have at least 3 children!"); 3757 std::vector<std::vector<TreePatternNode*> > Variants; 3758 Variants.push_back(ChildVariants[0]); // Intrinsic id. 3759 Variants.push_back(ChildVariants[2]); 3760 Variants.push_back(ChildVariants[1]); 3761 for (unsigned i = 3; i != NC; ++i) 3762 Variants.push_back(ChildVariants[i]); 3763 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 3764 } else if (NC == 2) 3765 CombineChildVariants(N, ChildVariants[1], ChildVariants[0], 3766 OutVariants, CDP, DepVars); 3767 } 3768 } 3769 3770 3771 // GenerateVariants - Generate variants. For example, commutative patterns can 3772 // match multiple ways. Add them to PatternsToMatch as well. 3773 void CodeGenDAGPatterns::GenerateVariants() { 3774 DEBUG(errs() << "Generating instruction variants.\n"); 3775 3776 // Loop over all of the patterns we've collected, checking to see if we can 3777 // generate variants of the instruction, through the exploitation of 3778 // identities. This permits the target to provide aggressive matching without 3779 // the .td file having to contain tons of variants of instructions. 3780 // 3781 // Note that this loop adds new patterns to the PatternsToMatch list, but we 3782 // intentionally do not reconsider these. Any variants of added patterns have 3783 // already been added. 3784 // 3785 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { 3786 MultipleUseVarSet DepVars; 3787 std::vector<TreePatternNode*> Variants; 3788 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 3789 DEBUG(errs() << "Dependent/multiply used variables: "); 3790 DEBUG(DumpDepVars(DepVars)); 3791 DEBUG(errs() << "\n"); 3792 GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, 3793 DepVars); 3794 3795 assert(!Variants.empty() && "Must create at least original variant!"); 3796 Variants.erase(Variants.begin()); // Remove the original pattern. 3797 3798 if (Variants.empty()) // No variants for this pattern. 3799 continue; 3800 3801 DEBUG(errs() << "FOUND VARIANTS OF: "; 3802 PatternsToMatch[i].getSrcPattern()->dump(); 3803 errs() << "\n"); 3804 3805 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 3806 TreePatternNode *Variant = Variants[v]; 3807 3808 DEBUG(errs() << " VAR#" << v << ": "; 3809 Variant->dump(); 3810 errs() << "\n"); 3811 3812 // Scan to see if an instruction or explicit pattern already matches this. 3813 bool AlreadyExists = false; 3814 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 3815 // Skip if the top level predicates do not match. 3816 if (PatternsToMatch[i].getPredicates() != 3817 PatternsToMatch[p].getPredicates()) 3818 continue; 3819 // Check to see if this variant already exists. 3820 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 3821 DepVars)) { 3822 DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 3823 AlreadyExists = true; 3824 break; 3825 } 3826 } 3827 // If we already have it, ignore the variant. 3828 if (AlreadyExists) continue; 3829 3830 // Otherwise, add it to the list of patterns we have. 3831 PatternsToMatch.emplace_back( 3832 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(), 3833 Variant, PatternsToMatch[i].getDstPattern(), 3834 PatternsToMatch[i].getDstRegs(), 3835 PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()); 3836 } 3837 3838 DEBUG(errs() << "\n"); 3839 } 3840 } 3841