1 //===-- ARMConstantIslandPass.cpp - ARM constant islands ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a pass that splits the constant pool up into 'islands' 11 // which are scattered through-out the function. This is required due to the 12 // limited pc-relative displacements that ARM has. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "ARM.h" 17 #include "ARMMachineFunctionInfo.h" 18 #include "MCTargetDesc/ARMAddressingModes.h" 19 #include "Thumb2InstrInfo.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineJumpTableInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/Format.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <algorithm> 36 using namespace llvm; 37 38 #define DEBUG_TYPE "arm-cp-islands" 39 40 STATISTIC(NumCPEs, "Number of constpool entries"); 41 STATISTIC(NumSplit, "Number of uncond branches inserted"); 42 STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 43 STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 44 STATISTIC(NumTBs, "Number of table branches generated"); 45 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); 46 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); 47 STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed"); 48 STATISTIC(NumJTMoved, "Number of jump table destination blocks moved"); 49 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted"); 50 51 52 static cl::opt<bool> 53 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), 54 cl::desc("Adjust basic block layout to better use TB[BH]")); 55 56 static cl::opt<unsigned> 57 CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden, cl::init(30), 58 cl::desc("The max number of iteration for converge")); 59 60 61 /// UnknownPadding - Return the worst case padding that could result from 62 /// unknown offset bits. This does not include alignment padding caused by 63 /// known offset bits. 64 /// 65 /// @param LogAlign log2(alignment) 66 /// @param KnownBits Number of known low offset bits. 67 static inline unsigned UnknownPadding(unsigned LogAlign, unsigned KnownBits) { 68 if (KnownBits < LogAlign) 69 return (1u << LogAlign) - (1u << KnownBits); 70 return 0; 71 } 72 73 namespace { 74 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 75 /// requires constant pool entries to be scattered among the instructions 76 /// inside a function. To do this, it completely ignores the normal LLVM 77 /// constant pool; instead, it places constants wherever it feels like with 78 /// special instructions. 79 /// 80 /// The terminology used in this pass includes: 81 /// Islands - Clumps of constants placed in the function. 82 /// Water - Potential places where an island could be formed. 83 /// CPE - A constant pool entry that has been placed somewhere, which 84 /// tracks a list of users. 85 class ARMConstantIslands : public MachineFunctionPass { 86 /// BasicBlockInfo - Information about the offset and size of a single 87 /// basic block. 88 struct BasicBlockInfo { 89 /// Offset - Distance from the beginning of the function to the beginning 90 /// of this basic block. 91 /// 92 /// Offsets are computed assuming worst case padding before an aligned 93 /// block. This means that subtracting basic block offsets always gives a 94 /// conservative estimate of the real distance which may be smaller. 95 /// 96 /// Because worst case padding is used, the computed offset of an aligned 97 /// block may not actually be aligned. 98 unsigned Offset; 99 100 /// Size - Size of the basic block in bytes. If the block contains 101 /// inline assembly, this is a worst case estimate. 102 /// 103 /// The size does not include any alignment padding whether from the 104 /// beginning of the block, or from an aligned jump table at the end. 105 unsigned Size; 106 107 /// KnownBits - The number of low bits in Offset that are known to be 108 /// exact. The remaining bits of Offset are an upper bound. 109 uint8_t KnownBits; 110 111 /// Unalign - When non-zero, the block contains instructions (inline asm) 112 /// of unknown size. The real size may be smaller than Size bytes by a 113 /// multiple of 1 << Unalign. 114 uint8_t Unalign; 115 116 /// PostAlign - When non-zero, the block terminator contains a .align 117 /// directive, so the end of the block is aligned to 1 << PostAlign 118 /// bytes. 119 uint8_t PostAlign; 120 121 BasicBlockInfo() : Offset(0), Size(0), KnownBits(0), Unalign(0), 122 PostAlign(0) {} 123 124 /// Compute the number of known offset bits internally to this block. 125 /// This number should be used to predict worst case padding when 126 /// splitting the block. 127 unsigned internalKnownBits() const { 128 unsigned Bits = Unalign ? Unalign : KnownBits; 129 // If the block size isn't a multiple of the known bits, assume the 130 // worst case padding. 131 if (Size & ((1u << Bits) - 1)) 132 Bits = countTrailingZeros(Size); 133 return Bits; 134 } 135 136 /// Compute the offset immediately following this block. If LogAlign is 137 /// specified, return the offset the successor block will get if it has 138 /// this alignment. 139 unsigned postOffset(unsigned LogAlign = 0) const { 140 unsigned PO = Offset + Size; 141 unsigned LA = std::max(unsigned(PostAlign), LogAlign); 142 if (!LA) 143 return PO; 144 // Add alignment padding from the terminator. 145 return PO + UnknownPadding(LA, internalKnownBits()); 146 } 147 148 /// Compute the number of known low bits of postOffset. If this block 149 /// contains inline asm, the number of known bits drops to the 150 /// instruction alignment. An aligned terminator may increase the number 151 /// of know bits. 152 /// If LogAlign is given, also consider the alignment of the next block. 153 unsigned postKnownBits(unsigned LogAlign = 0) const { 154 return std::max(std::max(unsigned(PostAlign), LogAlign), 155 internalKnownBits()); 156 } 157 }; 158 159 std::vector<BasicBlockInfo> BBInfo; 160 161 /// WaterList - A sorted list of basic blocks where islands could be placed 162 /// (i.e. blocks that don't fall through to the following block, due 163 /// to a return, unreachable, or unconditional branch). 164 std::vector<MachineBasicBlock*> WaterList; 165 166 /// NewWaterList - The subset of WaterList that was created since the 167 /// previous iteration by inserting unconditional branches. 168 SmallSet<MachineBasicBlock*, 4> NewWaterList; 169 170 typedef std::vector<MachineBasicBlock*>::iterator water_iterator; 171 172 /// CPUser - One user of a constant pool, keeping the machine instruction 173 /// pointer, the constant pool being referenced, and the max displacement 174 /// allowed from the instruction to the CP. The HighWaterMark records the 175 /// highest basic block where a new CPEntry can be placed. To ensure this 176 /// pass terminates, the CP entries are initially placed at the end of the 177 /// function and then move monotonically to lower addresses. The 178 /// exception to this rule is when the current CP entry for a particular 179 /// CPUser is out of range, but there is another CP entry for the same 180 /// constant value in range. We want to use the existing in-range CP 181 /// entry, but if it later moves out of range, the search for new water 182 /// should resume where it left off. The HighWaterMark is used to record 183 /// that point. 184 struct CPUser { 185 MachineInstr *MI; 186 MachineInstr *CPEMI; 187 MachineBasicBlock *HighWaterMark; 188 unsigned MaxDisp; 189 bool NegOk; 190 bool IsSoImm; 191 bool KnownAlignment; 192 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 193 bool neg, bool soimm) 194 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm), 195 KnownAlignment(false) { 196 HighWaterMark = CPEMI->getParent(); 197 } 198 /// getMaxDisp - Returns the maximum displacement supported by MI. 199 /// Correct for unknown alignment. 200 /// Conservatively subtract 2 bytes to handle weird alignment effects. 201 unsigned getMaxDisp() const { 202 return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2; 203 } 204 }; 205 206 /// CPUsers - Keep track of all of the machine instructions that use various 207 /// constant pools and their max displacement. 208 std::vector<CPUser> CPUsers; 209 210 /// CPEntry - One per constant pool entry, keeping the machine instruction 211 /// pointer, the constpool index, and the number of CPUser's which 212 /// reference this entry. 213 struct CPEntry { 214 MachineInstr *CPEMI; 215 unsigned CPI; 216 unsigned RefCount; 217 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 218 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 219 }; 220 221 /// CPEntries - Keep track of all of the constant pool entry machine 222 /// instructions. For each original constpool index (i.e. those that existed 223 /// upon entry to this pass), it keeps a vector of entries. Original 224 /// elements are cloned as we go along; the clones are put in the vector of 225 /// the original element, but have distinct CPIs. 226 /// 227 /// The first half of CPEntries contains generic constants, the second half 228 /// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up 229 /// which vector it will be in here. 230 std::vector<std::vector<CPEntry> > CPEntries; 231 232 /// Maps a JT index to the offset in CPEntries containing copies of that 233 /// table. The equivalent map for a CONSTPOOL_ENTRY is the identity. 234 DenseMap<int, int> JumpTableEntryIndices; 235 236 /// Maps a JT index to the LEA that actually uses the index to calculate its 237 /// base address. 238 DenseMap<int, int> JumpTableUserIndices; 239 240 /// ImmBranch - One per immediate branch, keeping the machine instruction 241 /// pointer, conditional or unconditional, the max displacement, 242 /// and (if isCond is true) the corresponding unconditional branch 243 /// opcode. 244 struct ImmBranch { 245 MachineInstr *MI; 246 unsigned MaxDisp : 31; 247 bool isCond : 1; 248 unsigned UncondBr; 249 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, unsigned ubr) 250 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 251 }; 252 253 /// ImmBranches - Keep track of all the immediate branch instructions. 254 /// 255 std::vector<ImmBranch> ImmBranches; 256 257 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 258 /// 259 SmallVector<MachineInstr*, 4> PushPopMIs; 260 261 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. 262 SmallVector<MachineInstr*, 4> T2JumpTables; 263 264 /// HasFarJump - True if any far jump instruction has been emitted during 265 /// the branch fix up pass. 266 bool HasFarJump; 267 268 MachineFunction *MF; 269 MachineConstantPool *MCP; 270 const ARMBaseInstrInfo *TII; 271 const ARMSubtarget *STI; 272 ARMFunctionInfo *AFI; 273 bool isThumb; 274 bool isThumb1; 275 bool isThumb2; 276 public: 277 static char ID; 278 ARMConstantIslands() : MachineFunctionPass(ID) {} 279 280 bool runOnMachineFunction(MachineFunction &MF) override; 281 282 const char *getPassName() const override { 283 return "ARM constant island placement and branch shortening pass"; 284 } 285 286 private: 287 void doInitialConstPlacement(std::vector<MachineInstr *> &CPEMIs); 288 void doInitialJumpTablePlacement(std::vector<MachineInstr *> &CPEMIs); 289 bool BBHasFallthrough(MachineBasicBlock *MBB); 290 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 291 unsigned getCPELogAlign(const MachineInstr *CPEMI); 292 void scanFunctionJumpTables(); 293 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs); 294 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI); 295 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); 296 void adjustBBOffsetsAfter(MachineBasicBlock *BB); 297 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI); 298 unsigned getCombinedIndex(const MachineInstr *CPEMI); 299 int findInRangeCPEntry(CPUser& U, unsigned UserOffset); 300 bool findAvailableWater(CPUser&U, unsigned UserOffset, 301 water_iterator &WaterIter, bool CloserWater); 302 void createNewWater(unsigned CPUserIndex, unsigned UserOffset, 303 MachineBasicBlock *&NewMBB); 304 bool handleConstantPoolUser(unsigned CPUserIndex, bool CloserWater); 305 void removeDeadCPEMI(MachineInstr *CPEMI); 306 bool removeUnusedCPEntries(); 307 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 308 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 309 bool DoDump = false); 310 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, 311 CPUser &U, unsigned &Growth); 312 bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); 313 bool fixupImmediateBr(ImmBranch &Br); 314 bool fixupConditionalBr(ImmBranch &Br); 315 bool fixupUnconditionalBr(ImmBranch &Br); 316 bool undoLRSpillRestore(); 317 bool mayOptimizeThumb2Instruction(const MachineInstr *MI) const; 318 bool optimizeThumb2Instructions(); 319 bool optimizeThumb2Branches(); 320 bool reorderThumb2JumpTables(); 321 bool preserveBaseRegister(MachineInstr *JumpMI, MachineInstr *LEAMI, 322 unsigned &DeadSize, bool &CanDeleteLEA, 323 bool &BaseRegKill); 324 bool optimizeThumb2JumpTables(); 325 MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB, 326 MachineBasicBlock *JTBB); 327 328 void computeBlockSize(MachineBasicBlock *MBB); 329 unsigned getOffsetOf(MachineInstr *MI) const; 330 unsigned getUserOffset(CPUser&) const; 331 void dumpBBs(); 332 void verify(); 333 334 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 335 unsigned Disp, bool NegativeOK, bool IsSoImm = false); 336 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 337 const CPUser &U) { 338 return isOffsetInRange(UserOffset, TrialOffset, 339 U.getMaxDisp(), U.NegOk, U.IsSoImm); 340 } 341 }; 342 char ARMConstantIslands::ID = 0; 343 } 344 345 /// verify - check BBOffsets, BBSizes, alignment of islands 346 void ARMConstantIslands::verify() { 347 #ifndef NDEBUG 348 for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); 349 MBBI != E; ++MBBI) { 350 MachineBasicBlock *MBB = &*MBBI; 351 unsigned MBBId = MBB->getNumber(); 352 assert(!MBBId || BBInfo[MBBId - 1].postOffset() <= BBInfo[MBBId].Offset); 353 } 354 DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n"); 355 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 356 CPUser &U = CPUsers[i]; 357 unsigned UserOffset = getUserOffset(U); 358 // Verify offset using the real max displacement without the safety 359 // adjustment. 360 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk, 361 /* DoDump = */ true)) { 362 DEBUG(dbgs() << "OK\n"); 363 continue; 364 } 365 DEBUG(dbgs() << "Out of range.\n"); 366 dumpBBs(); 367 DEBUG(MF->dump()); 368 llvm_unreachable("Constant pool entry out of range!"); 369 } 370 #endif 371 } 372 373 /// print block size and offset information - debugging 374 void ARMConstantIslands::dumpBBs() { 375 DEBUG({ 376 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) { 377 const BasicBlockInfo &BBI = BBInfo[J]; 378 dbgs() << format("%08x BB#%u\t", BBI.Offset, J) 379 << " kb=" << unsigned(BBI.KnownBits) 380 << " ua=" << unsigned(BBI.Unalign) 381 << " pa=" << unsigned(BBI.PostAlign) 382 << format(" size=%#x\n", BBInfo[J].Size); 383 } 384 }); 385 } 386 387 /// createARMConstantIslandPass - returns an instance of the constpool 388 /// island pass. 389 FunctionPass *llvm::createARMConstantIslandPass() { 390 return new ARMConstantIslands(); 391 } 392 393 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) { 394 MF = &mf; 395 MCP = mf.getConstantPool(); 396 397 DEBUG(dbgs() << "***** ARMConstantIslands: " 398 << MCP->getConstants().size() << " CP entries, aligned to " 399 << MCP->getConstantPoolAlignment() << " bytes *****\n"); 400 401 STI = &static_cast<const ARMSubtarget &>(MF->getSubtarget()); 402 TII = STI->getInstrInfo(); 403 AFI = MF->getInfo<ARMFunctionInfo>(); 404 405 isThumb = AFI->isThumbFunction(); 406 isThumb1 = AFI->isThumb1OnlyFunction(); 407 isThumb2 = AFI->isThumb2Function(); 408 409 HasFarJump = false; 410 411 // This pass invalidates liveness information when it splits basic blocks. 412 MF->getRegInfo().invalidateLiveness(); 413 414 // Renumber all of the machine basic blocks in the function, guaranteeing that 415 // the numbers agree with the position of the block in the function. 416 MF->RenumberBlocks(); 417 418 // Try to reorder and otherwise adjust the block layout to make good use 419 // of the TB[BH] instructions. 420 bool MadeChange = false; 421 if (isThumb2 && AdjustJumpTableBlocks) { 422 scanFunctionJumpTables(); 423 MadeChange |= reorderThumb2JumpTables(); 424 // Data is out of date, so clear it. It'll be re-computed later. 425 T2JumpTables.clear(); 426 // Blocks may have shifted around. Keep the numbering up to date. 427 MF->RenumberBlocks(); 428 } 429 430 // Perform the initial placement of the constant pool entries. To start with, 431 // we put them all at the end of the function. 432 std::vector<MachineInstr*> CPEMIs; 433 if (!MCP->isEmpty()) 434 doInitialConstPlacement(CPEMIs); 435 436 if (MF->getJumpTableInfo()) 437 doInitialJumpTablePlacement(CPEMIs); 438 439 /// The next UID to take is the first unused one. 440 AFI->initPICLabelUId(CPEMIs.size()); 441 442 // Do the initial scan of the function, building up information about the 443 // sizes of each block, the location of all the water, and finding all of the 444 // constant pool users. 445 initializeFunctionInfo(CPEMIs); 446 CPEMIs.clear(); 447 DEBUG(dumpBBs()); 448 449 // Functions with jump tables need an alignment of 4 because they use the ADR 450 // instruction, which aligns the PC to 4 bytes before adding an offset. 451 if (!T2JumpTables.empty()) 452 MF->ensureAlignment(2); 453 454 /// Remove dead constant pool entries. 455 MadeChange |= removeUnusedCPEntries(); 456 457 // Iteratively place constant pool entries and fix up branches until there 458 // is no change. 459 unsigned NoCPIters = 0, NoBRIters = 0; 460 while (true) { 461 DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); 462 bool CPChange = false; 463 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 464 // For most inputs, it converges in no more than 5 iterations. 465 // If it doens't end in 10, the input may have huge BB or many CPEs. 466 // In this case, we will try differnt heuristics. 467 CPChange |= handleConstantPoolUser(i, NoCPIters >= CPMaxIteration / 2); 468 if (CPChange && ++NoCPIters > CPMaxIteration) 469 report_fatal_error("Constant Island pass failed to converge!"); 470 DEBUG(dumpBBs()); 471 472 // Clear NewWaterList now. If we split a block for branches, it should 473 // appear as "new water" for the next iteration of constant pool placement. 474 NewWaterList.clear(); 475 476 DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); 477 bool BRChange = false; 478 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 479 BRChange |= fixupImmediateBr(ImmBranches[i]); 480 if (BRChange && ++NoBRIters > 30) 481 report_fatal_error("Branch Fix Up pass failed to converge!"); 482 DEBUG(dumpBBs()); 483 484 if (!CPChange && !BRChange) 485 break; 486 MadeChange = true; 487 } 488 489 // Shrink 32-bit Thumb2 branch, load, and store instructions. 490 if (isThumb2 && !STI->prefers32BitThumb()) 491 MadeChange |= optimizeThumb2Instructions(); 492 493 // After a while, this might be made debug-only, but it is not expensive. 494 verify(); 495 496 // If LR has been forced spilled and no far jump (i.e. BL) has been issued, 497 // undo the spill / restore of LR if possible. 498 if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump()) 499 MadeChange |= undoLRSpillRestore(); 500 501 // Save the mapping between original and cloned constpool entries. 502 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 503 for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) { 504 const CPEntry & CPE = CPEntries[i][j]; 505 if (CPE.CPEMI && CPE.CPEMI->getOperand(1).isCPI()) 506 AFI->recordCPEClone(i, CPE.CPI); 507 } 508 } 509 510 DEBUG(dbgs() << '\n'; dumpBBs()); 511 512 BBInfo.clear(); 513 WaterList.clear(); 514 CPUsers.clear(); 515 CPEntries.clear(); 516 JumpTableEntryIndices.clear(); 517 JumpTableUserIndices.clear(); 518 ImmBranches.clear(); 519 PushPopMIs.clear(); 520 T2JumpTables.clear(); 521 522 return MadeChange; 523 } 524 525 /// \brief Perform the initial placement of the regular constant pool entries. 526 /// To start with, we put them all at the end of the function. 527 void 528 ARMConstantIslands::doInitialConstPlacement(std::vector<MachineInstr*> &CPEMIs) { 529 // Create the basic block to hold the CPE's. 530 MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); 531 MF->push_back(BB); 532 533 // MachineConstantPool measures alignment in bytes. We measure in log2(bytes). 534 unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment()); 535 536 // Mark the basic block as required by the const-pool. 537 BB->setAlignment(MaxAlign); 538 539 // The function needs to be as aligned as the basic blocks. The linker may 540 // move functions around based on their alignment. 541 MF->ensureAlignment(BB->getAlignment()); 542 543 // Order the entries in BB by descending alignment. That ensures correct 544 // alignment of all entries as long as BB is sufficiently aligned. Keep 545 // track of the insertion point for each alignment. We are going to bucket 546 // sort the entries as they are created. 547 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end()); 548 549 // Add all of the constants from the constant pool to the end block, use an 550 // identity mapping of CPI's to CPE's. 551 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); 552 553 const DataLayout &TD = MF->getDataLayout(); 554 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 555 unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); 556 assert(Size >= 4 && "Too small constant pool entry"); 557 unsigned Align = CPs[i].getAlignment(); 558 assert(isPowerOf2_32(Align) && "Invalid alignment"); 559 // Verify that all constant pool entries are a multiple of their alignment. 560 // If not, we would have to pad them out so that instructions stay aligned. 561 assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!"); 562 563 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. 564 unsigned LogAlign = Log2_32(Align); 565 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; 566 MachineInstr *CPEMI = 567 BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 568 .addImm(i).addConstantPoolIndex(i).addImm(Size); 569 CPEMIs.push_back(CPEMI); 570 571 // Ensure that future entries with higher alignment get inserted before 572 // CPEMI. This is bucket sort with iterators. 573 for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a) 574 if (InsPoint[a] == InsAt) 575 InsPoint[a] = CPEMI; 576 577 // Add a new CPEntry, but no corresponding CPUser yet. 578 CPEntries.emplace_back(1, CPEntry(CPEMI, i)); 579 ++NumCPEs; 580 DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = " 581 << Size << ", align = " << Align <<'\n'); 582 } 583 DEBUG(BB->dump()); 584 } 585 586 /// \brief Do initial placement of the jump tables. Because Thumb2's TBB and TBH 587 /// instructions can be made more efficient if the jump table immediately 588 /// follows the instruction, it's best to place them immediately next to their 589 /// jumps to begin with. In almost all cases they'll never be moved from that 590 /// position. 591 void ARMConstantIslands::doInitialJumpTablePlacement( 592 std::vector<MachineInstr *> &CPEMIs) { 593 unsigned i = CPEntries.size(); 594 auto MJTI = MF->getJumpTableInfo(); 595 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 596 597 MachineBasicBlock *LastCorrectlyNumberedBB = nullptr; 598 for (MachineBasicBlock &MBB : *MF) { 599 auto MI = MBB.getLastNonDebugInstr(); 600 if (MI == MBB.end()) 601 continue; 602 603 unsigned JTOpcode; 604 switch (MI->getOpcode()) { 605 default: 606 continue; 607 case ARM::BR_JTadd: 608 case ARM::BR_JTr: 609 case ARM::tBR_JTr: 610 case ARM::BR_JTm: 611 JTOpcode = ARM::JUMPTABLE_ADDRS; 612 break; 613 case ARM::t2BR_JT: 614 JTOpcode = ARM::JUMPTABLE_INSTS; 615 break; 616 case ARM::t2TBB_JT: 617 JTOpcode = ARM::JUMPTABLE_TBB; 618 break; 619 case ARM::t2TBH_JT: 620 JTOpcode = ARM::JUMPTABLE_TBH; 621 break; 622 } 623 624 unsigned NumOps = MI->getDesc().getNumOperands(); 625 MachineOperand JTOp = 626 MI->getOperand(NumOps - (MI->isPredicable() ? 2 : 1)); 627 unsigned JTI = JTOp.getIndex(); 628 unsigned Size = JT[JTI].MBBs.size() * sizeof(uint32_t); 629 MachineBasicBlock *JumpTableBB = MF->CreateMachineBasicBlock(); 630 MF->insert(std::next(MachineFunction::iterator(MBB)), JumpTableBB); 631 MachineInstr *CPEMI = BuildMI(*JumpTableBB, JumpTableBB->begin(), 632 DebugLoc(), TII->get(JTOpcode)) 633 .addImm(i++) 634 .addJumpTableIndex(JTI) 635 .addImm(Size); 636 CPEMIs.push_back(CPEMI); 637 CPEntries.emplace_back(1, CPEntry(CPEMI, JTI)); 638 JumpTableEntryIndices.insert(std::make_pair(JTI, CPEntries.size() - 1)); 639 if (!LastCorrectlyNumberedBB) 640 LastCorrectlyNumberedBB = &MBB; 641 } 642 643 // If we did anything then we need to renumber the subsequent blocks. 644 if (LastCorrectlyNumberedBB) 645 MF->RenumberBlocks(LastCorrectlyNumberedBB); 646 } 647 648 /// BBHasFallthrough - Return true if the specified basic block can fallthrough 649 /// into the block immediately after it. 650 bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) { 651 // Get the next machine basic block in the function. 652 MachineFunction::iterator MBBI = MBB->getIterator(); 653 // Can't fall off end of function. 654 if (std::next(MBBI) == MBB->getParent()->end()) 655 return false; 656 657 MachineBasicBlock *NextBB = &*std::next(MBBI); 658 if (std::find(MBB->succ_begin(), MBB->succ_end(), NextBB) == MBB->succ_end()) 659 return false; 660 661 // Try to analyze the end of the block. A potential fallthrough may already 662 // have an unconditional branch for whatever reason. 663 MachineBasicBlock *TBB, *FBB; 664 SmallVector<MachineOperand, 4> Cond; 665 bool TooDifficult = TII->AnalyzeBranch(*MBB, TBB, FBB, Cond); 666 return TooDifficult || FBB == nullptr; 667 } 668 669 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 670 /// look up the corresponding CPEntry. 671 ARMConstantIslands::CPEntry 672 *ARMConstantIslands::findConstPoolEntry(unsigned CPI, 673 const MachineInstr *CPEMI) { 674 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 675 // Number of entries per constpool index should be small, just do a 676 // linear search. 677 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 678 if (CPEs[i].CPEMI == CPEMI) 679 return &CPEs[i]; 680 } 681 return nullptr; 682 } 683 684 /// getCPELogAlign - Returns the required alignment of the constant pool entry 685 /// represented by CPEMI. Alignment is measured in log2(bytes) units. 686 unsigned ARMConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) { 687 switch (CPEMI->getOpcode()) { 688 case ARM::CONSTPOOL_ENTRY: 689 break; 690 case ARM::JUMPTABLE_TBB: 691 return 0; 692 case ARM::JUMPTABLE_TBH: 693 case ARM::JUMPTABLE_INSTS: 694 return 1; 695 case ARM::JUMPTABLE_ADDRS: 696 return 2; 697 default: 698 llvm_unreachable("unknown constpool entry kind"); 699 } 700 701 unsigned CPI = getCombinedIndex(CPEMI); 702 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); 703 unsigned Align = MCP->getConstants()[CPI].getAlignment(); 704 assert(isPowerOf2_32(Align) && "Invalid CPE alignment"); 705 return Log2_32(Align); 706 } 707 708 /// scanFunctionJumpTables - Do a scan of the function, building up 709 /// information about the sizes of each block and the locations of all 710 /// the jump tables. 711 void ARMConstantIslands::scanFunctionJumpTables() { 712 for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); 713 MBBI != E; ++MBBI) { 714 MachineBasicBlock &MBB = *MBBI; 715 716 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 717 I != E; ++I) 718 if (I->isBranch() && I->getOpcode() == ARM::t2BR_JT) 719 T2JumpTables.push_back(I); 720 } 721 } 722 723 /// initializeFunctionInfo - Do the initial scan of the function, building up 724 /// information about the sizes of each block, the location of all the water, 725 /// and finding all of the constant pool users. 726 void ARMConstantIslands:: 727 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) { 728 BBInfo.clear(); 729 BBInfo.resize(MF->getNumBlockIDs()); 730 731 // First thing, compute the size of all basic blocks, and see if the function 732 // has any inline assembly in it. If so, we have to be conservative about 733 // alignment assumptions, as we don't know for sure the size of any 734 // instructions in the inline assembly. 735 for (MachineBasicBlock &MBB : *MF) 736 computeBlockSize(&MBB); 737 738 // The known bits of the entry block offset are determined by the function 739 // alignment. 740 BBInfo.front().KnownBits = MF->getAlignment(); 741 742 // Compute block offsets and known bits. 743 adjustBBOffsetsAfter(&MF->front()); 744 745 // Now go back through the instructions and build up our data structures. 746 for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); 747 MBBI != E; ++MBBI) { 748 MachineBasicBlock &MBB = *MBBI; 749 750 // If this block doesn't fall through into the next MBB, then this is 751 // 'water' that a constant pool island could be placed. 752 if (!BBHasFallthrough(&MBB)) 753 WaterList.push_back(&MBB); 754 755 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 756 I != E; ++I) { 757 if (I->isDebugValue()) 758 continue; 759 760 unsigned Opc = I->getOpcode(); 761 if (I->isBranch()) { 762 bool isCond = false; 763 unsigned Bits = 0; 764 unsigned Scale = 1; 765 int UOpc = Opc; 766 switch (Opc) { 767 default: 768 continue; // Ignore other JT branches 769 case ARM::t2BR_JT: 770 T2JumpTables.push_back(I); 771 continue; // Does not get an entry in ImmBranches 772 case ARM::Bcc: 773 isCond = true; 774 UOpc = ARM::B; 775 // Fallthrough 776 case ARM::B: 777 Bits = 24; 778 Scale = 4; 779 break; 780 case ARM::tBcc: 781 isCond = true; 782 UOpc = ARM::tB; 783 Bits = 8; 784 Scale = 2; 785 break; 786 case ARM::tB: 787 Bits = 11; 788 Scale = 2; 789 break; 790 case ARM::t2Bcc: 791 isCond = true; 792 UOpc = ARM::t2B; 793 Bits = 20; 794 Scale = 2; 795 break; 796 case ARM::t2B: 797 Bits = 24; 798 Scale = 2; 799 break; 800 } 801 802 // Record this immediate branch. 803 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 804 ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc)); 805 } 806 807 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 808 PushPopMIs.push_back(I); 809 810 if (Opc == ARM::CONSTPOOL_ENTRY || Opc == ARM::JUMPTABLE_ADDRS || 811 Opc == ARM::JUMPTABLE_INSTS || Opc == ARM::JUMPTABLE_TBB || 812 Opc == ARM::JUMPTABLE_TBH) 813 continue; 814 815 // Scan the instructions for constant pool operands. 816 for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) 817 if (I->getOperand(op).isCPI() || I->getOperand(op).isJTI()) { 818 // We found one. The addressing mode tells us the max displacement 819 // from the PC that this instruction permits. 820 821 // Basic size info comes from the TSFlags field. 822 unsigned Bits = 0; 823 unsigned Scale = 1; 824 bool NegOk = false; 825 bool IsSoImm = false; 826 827 switch (Opc) { 828 default: 829 llvm_unreachable("Unknown addressing mode for CP reference!"); 830 831 // Taking the address of a CP entry. 832 case ARM::LEApcrel: 833 case ARM::LEApcrelJT: 834 // This takes a SoImm, which is 8 bit immediate rotated. We'll 835 // pretend the maximum offset is 255 * 4. Since each instruction 836 // 4 byte wide, this is always correct. We'll check for other 837 // displacements that fits in a SoImm as well. 838 Bits = 8; 839 Scale = 4; 840 NegOk = true; 841 IsSoImm = true; 842 break; 843 case ARM::t2LEApcrel: 844 case ARM::t2LEApcrelJT: 845 Bits = 12; 846 NegOk = true; 847 break; 848 case ARM::tLEApcrel: 849 case ARM::tLEApcrelJT: 850 Bits = 8; 851 Scale = 4; 852 break; 853 854 case ARM::LDRBi12: 855 case ARM::LDRi12: 856 case ARM::LDRcp: 857 case ARM::t2LDRpci: 858 Bits = 12; // +-offset_12 859 NegOk = true; 860 break; 861 862 case ARM::tLDRpci: 863 Bits = 8; 864 Scale = 4; // +(offset_8*4) 865 break; 866 867 case ARM::VLDRD: 868 case ARM::VLDRS: 869 Bits = 8; 870 Scale = 4; // +-(offset_8*4) 871 NegOk = true; 872 break; 873 } 874 875 // Remember that this is a user of a CP entry. 876 unsigned CPI = I->getOperand(op).getIndex(); 877 if (I->getOperand(op).isJTI()) { 878 JumpTableUserIndices.insert(std::make_pair(CPI, CPUsers.size())); 879 CPI = JumpTableEntryIndices[CPI]; 880 } 881 882 MachineInstr *CPEMI = CPEMIs[CPI]; 883 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 884 CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm)); 885 886 // Increment corresponding CPEntry reference count. 887 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 888 assert(CPE && "Cannot find a corresponding CPEntry!"); 889 CPE->RefCount++; 890 891 // Instructions can only use one CP entry, don't bother scanning the 892 // rest of the operands. 893 break; 894 } 895 } 896 } 897 } 898 899 /// computeBlockSize - Compute the size and some alignment information for MBB. 900 /// This function updates BBInfo directly. 901 void ARMConstantIslands::computeBlockSize(MachineBasicBlock *MBB) { 902 BasicBlockInfo &BBI = BBInfo[MBB->getNumber()]; 903 BBI.Size = 0; 904 BBI.Unalign = 0; 905 BBI.PostAlign = 0; 906 907 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; 908 ++I) { 909 BBI.Size += TII->GetInstSizeInBytes(I); 910 // For inline asm, GetInstSizeInBytes returns a conservative estimate. 911 // The actual size may be smaller, but still a multiple of the instr size. 912 if (I->isInlineAsm()) 913 BBI.Unalign = isThumb ? 1 : 2; 914 // Also consider instructions that may be shrunk later. 915 else if (isThumb && mayOptimizeThumb2Instruction(I)) 916 BBI.Unalign = 1; 917 } 918 919 // tBR_JTr contains a .align 2 directive. 920 if (!MBB->empty() && MBB->back().getOpcode() == ARM::tBR_JTr) { 921 BBI.PostAlign = 2; 922 MBB->getParent()->ensureAlignment(2); 923 } 924 } 925 926 /// getOffsetOf - Return the current offset of the specified machine instruction 927 /// from the start of the function. This offset changes as stuff is moved 928 /// around inside the function. 929 unsigned ARMConstantIslands::getOffsetOf(MachineInstr *MI) const { 930 MachineBasicBlock *MBB = MI->getParent(); 931 932 // The offset is composed of two things: the sum of the sizes of all MBB's 933 // before this instruction's block, and the offset from the start of the block 934 // it is in. 935 unsigned Offset = BBInfo[MBB->getNumber()].Offset; 936 937 // Sum instructions before MI in MBB. 938 for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) { 939 assert(I != MBB->end() && "Didn't find MI in its own basic block?"); 940 Offset += TII->GetInstSizeInBytes(I); 941 } 942 return Offset; 943 } 944 945 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 946 /// ID. 947 static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 948 const MachineBasicBlock *RHS) { 949 return LHS->getNumber() < RHS->getNumber(); 950 } 951 952 /// updateForInsertedWaterBlock - When a block is newly inserted into the 953 /// machine function, it upsets all of the block numbers. Renumber the blocks 954 /// and update the arrays that parallel this numbering. 955 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 956 // Renumber the MBB's to keep them consecutive. 957 NewBB->getParent()->RenumberBlocks(NewBB); 958 959 // Insert an entry into BBInfo to align it properly with the (newly 960 // renumbered) block numbers. 961 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 962 963 // Next, update WaterList. Specifically, we need to add NewMBB as having 964 // available water after it. 965 water_iterator IP = 966 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, 967 CompareMBBNumbers); 968 WaterList.insert(IP, NewBB); 969 } 970 971 972 /// Split the basic block containing MI into two blocks, which are joined by 973 /// an unconditional branch. Update data structures and renumber blocks to 974 /// account for this change and returns the newly created block. 975 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) { 976 MachineBasicBlock *OrigBB = MI->getParent(); 977 978 // Create a new MBB for the code after the OrigBB. 979 MachineBasicBlock *NewBB = 980 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); 981 MachineFunction::iterator MBBI = ++OrigBB->getIterator(); 982 MF->insert(MBBI, NewBB); 983 984 // Splice the instructions starting with MI over to NewBB. 985 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 986 987 // Add an unconditional branch from OrigBB to NewBB. 988 // Note the new unconditional branch is not being recorded. 989 // There doesn't seem to be meaningful DebugInfo available; this doesn't 990 // correspond to anything in the source. 991 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; 992 if (!isThumb) 993 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB); 994 else 995 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB) 996 .addImm(ARMCC::AL).addReg(0); 997 ++NumSplit; 998 999 // Update the CFG. All succs of OrigBB are now succs of NewBB. 1000 NewBB->transferSuccessors(OrigBB); 1001 1002 // OrigBB branches to NewBB. 1003 OrigBB->addSuccessor(NewBB); 1004 1005 // Update internal data structures to account for the newly inserted MBB. 1006 // This is almost the same as updateForInsertedWaterBlock, except that 1007 // the Water goes after OrigBB, not NewBB. 1008 MF->RenumberBlocks(NewBB); 1009 1010 // Insert an entry into BBInfo to align it properly with the (newly 1011 // renumbered) block numbers. 1012 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 1013 1014 // Next, update WaterList. Specifically, we need to add OrigMBB as having 1015 // available water after it (but not if it's already there, which happens 1016 // when splitting before a conditional branch that is followed by an 1017 // unconditional branch - in that case we want to insert NewBB). 1018 water_iterator IP = 1019 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB, 1020 CompareMBBNumbers); 1021 MachineBasicBlock* WaterBB = *IP; 1022 if (WaterBB == OrigBB) 1023 WaterList.insert(std::next(IP), NewBB); 1024 else 1025 WaterList.insert(IP, OrigBB); 1026 NewWaterList.insert(OrigBB); 1027 1028 // Figure out how large the OrigBB is. As the first half of the original 1029 // block, it cannot contain a tablejump. The size includes 1030 // the new jump we added. (It should be possible to do this without 1031 // recounting everything, but it's very confusing, and this is rarely 1032 // executed.) 1033 computeBlockSize(OrigBB); 1034 1035 // Figure out how large the NewMBB is. As the second half of the original 1036 // block, it may contain a tablejump. 1037 computeBlockSize(NewBB); 1038 1039 // All BBOffsets following these blocks must be modified. 1040 adjustBBOffsetsAfter(OrigBB); 1041 1042 return NewBB; 1043 } 1044 1045 /// getUserOffset - Compute the offset of U.MI as seen by the hardware 1046 /// displacement computation. Update U.KnownAlignment to match its current 1047 /// basic block location. 1048 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const { 1049 unsigned UserOffset = getOffsetOf(U.MI); 1050 const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()]; 1051 unsigned KnownBits = BBI.internalKnownBits(); 1052 1053 // The value read from PC is offset from the actual instruction address. 1054 UserOffset += (isThumb ? 4 : 8); 1055 1056 // Because of inline assembly, we may not know the alignment (mod 4) of U.MI. 1057 // Make sure U.getMaxDisp() returns a constrained range. 1058 U.KnownAlignment = (KnownBits >= 2); 1059 1060 // On Thumb, offsets==2 mod 4 are rounded down by the hardware for 1061 // purposes of the displacement computation; compensate for that here. 1062 // For unknown alignments, getMaxDisp() constrains the range instead. 1063 if (isThumb && U.KnownAlignment) 1064 UserOffset &= ~3u; 1065 1066 return UserOffset; 1067 } 1068 1069 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool 1070 /// reference) is within MaxDisp of TrialOffset (a proposed location of a 1071 /// constant pool entry). 1072 /// UserOffset is computed by getUserOffset above to include PC adjustments. If 1073 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be 1074 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that. 1075 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset, 1076 unsigned TrialOffset, unsigned MaxDisp, 1077 bool NegativeOK, bool IsSoImm) { 1078 if (UserOffset <= TrialOffset) { 1079 // User before the Trial. 1080 if (TrialOffset - UserOffset <= MaxDisp) 1081 return true; 1082 // FIXME: Make use full range of soimm values. 1083 } else if (NegativeOK) { 1084 if (UserOffset - TrialOffset <= MaxDisp) 1085 return true; 1086 // FIXME: Make use full range of soimm values. 1087 } 1088 return false; 1089 } 1090 1091 /// isWaterInRange - Returns true if a CPE placed after the specified 1092 /// Water (a basic block) will be in range for the specific MI. 1093 /// 1094 /// Compute how much the function will grow by inserting a CPE after Water. 1095 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset, 1096 MachineBasicBlock* Water, CPUser &U, 1097 unsigned &Growth) { 1098 unsigned CPELogAlign = getCPELogAlign(U.CPEMI); 1099 unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign); 1100 unsigned NextBlockOffset, NextBlockAlignment; 1101 MachineFunction::const_iterator NextBlock = Water->getIterator(); 1102 if (++NextBlock == MF->end()) { 1103 NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); 1104 NextBlockAlignment = 0; 1105 } else { 1106 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; 1107 NextBlockAlignment = NextBlock->getAlignment(); 1108 } 1109 unsigned Size = U.CPEMI->getOperand(2).getImm(); 1110 unsigned CPEEnd = CPEOffset + Size; 1111 1112 // The CPE may be able to hide in the alignment padding before the next 1113 // block. It may also cause more padding to be required if it is more aligned 1114 // that the next block. 1115 if (CPEEnd > NextBlockOffset) { 1116 Growth = CPEEnd - NextBlockOffset; 1117 // Compute the padding that would go at the end of the CPE to align the next 1118 // block. 1119 Growth += OffsetToAlignment(CPEEnd, 1u << NextBlockAlignment); 1120 1121 // If the CPE is to be inserted before the instruction, that will raise 1122 // the offset of the instruction. Also account for unknown alignment padding 1123 // in blocks between CPE and the user. 1124 if (CPEOffset < UserOffset) 1125 UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign); 1126 } else 1127 // CPE fits in existing padding. 1128 Growth = 0; 1129 1130 return isOffsetInRange(UserOffset, CPEOffset, U); 1131 } 1132 1133 /// isCPEntryInRange - Returns true if the distance between specific MI and 1134 /// specific ConstPool entry instruction can fit in MI's displacement field. 1135 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 1136 MachineInstr *CPEMI, unsigned MaxDisp, 1137 bool NegOk, bool DoDump) { 1138 unsigned CPEOffset = getOffsetOf(CPEMI); 1139 1140 if (DoDump) { 1141 DEBUG({ 1142 unsigned Block = MI->getParent()->getNumber(); 1143 const BasicBlockInfo &BBI = BBInfo[Block]; 1144 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 1145 << " max delta=" << MaxDisp 1146 << format(" insn address=%#x", UserOffset) 1147 << " in BB#" << Block << ": " 1148 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI 1149 << format("CPE address=%#x offset=%+d: ", CPEOffset, 1150 int(CPEOffset-UserOffset)); 1151 }); 1152 } 1153 1154 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 1155 } 1156 1157 #ifndef NDEBUG 1158 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor 1159 /// unconditionally branches to its only successor. 1160 static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 1161 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 1162 return false; 1163 1164 MachineBasicBlock *Succ = *MBB->succ_begin(); 1165 MachineBasicBlock *Pred = *MBB->pred_begin(); 1166 MachineInstr *PredMI = &Pred->back(); 1167 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB 1168 || PredMI->getOpcode() == ARM::t2B) 1169 return PredMI->getOperand(0).getMBB() == Succ; 1170 return false; 1171 } 1172 #endif // NDEBUG 1173 1174 void ARMConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) { 1175 unsigned BBNum = BB->getNumber(); 1176 for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) { 1177 // Get the offset and known bits at the end of the layout predecessor. 1178 // Include the alignment of the current block. 1179 unsigned LogAlign = MF->getBlockNumbered(i)->getAlignment(); 1180 unsigned Offset = BBInfo[i - 1].postOffset(LogAlign); 1181 unsigned KnownBits = BBInfo[i - 1].postKnownBits(LogAlign); 1182 1183 // This is where block i begins. Stop if the offset is already correct, 1184 // and we have updated 2 blocks. This is the maximum number of blocks 1185 // changed before calling this function. 1186 if (i > BBNum + 2 && 1187 BBInfo[i].Offset == Offset && 1188 BBInfo[i].KnownBits == KnownBits) 1189 break; 1190 1191 BBInfo[i].Offset = Offset; 1192 BBInfo[i].KnownBits = KnownBits; 1193 } 1194 } 1195 1196 /// decrementCPEReferenceCount - find the constant pool entry with index CPI 1197 /// and instruction CPEMI, and decrement its refcount. If the refcount 1198 /// becomes 0 remove the entry and instruction. Returns true if we removed 1199 /// the entry, false if we didn't. 1200 1201 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI, 1202 MachineInstr *CPEMI) { 1203 // Find the old entry. Eliminate it if it is no longer used. 1204 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 1205 assert(CPE && "Unexpected!"); 1206 if (--CPE->RefCount == 0) { 1207 removeDeadCPEMI(CPEMI); 1208 CPE->CPEMI = nullptr; 1209 --NumCPEs; 1210 return true; 1211 } 1212 return false; 1213 } 1214 1215 unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr *CPEMI) { 1216 if (CPEMI->getOperand(1).isCPI()) 1217 return CPEMI->getOperand(1).getIndex(); 1218 1219 return JumpTableEntryIndices[CPEMI->getOperand(1).getIndex()]; 1220 } 1221 1222 /// LookForCPEntryInRange - see if the currently referenced CPE is in range; 1223 /// if not, see if an in-range clone of the CPE is in range, and if so, 1224 /// change the data structures so the user references the clone. Returns: 1225 /// 0 = no existing entry found 1226 /// 1 = entry found, and there were no code insertions or deletions 1227 /// 2 = entry found, and there were code insertions or deletions 1228 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) 1229 { 1230 MachineInstr *UserMI = U.MI; 1231 MachineInstr *CPEMI = U.CPEMI; 1232 1233 // Check to see if the CPE is already in-range. 1234 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, 1235 true)) { 1236 DEBUG(dbgs() << "In range\n"); 1237 return 1; 1238 } 1239 1240 // No. Look for previously created clones of the CPE that are in range. 1241 unsigned CPI = getCombinedIndex(CPEMI); 1242 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 1243 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 1244 // We already tried this one 1245 if (CPEs[i].CPEMI == CPEMI) 1246 continue; 1247 // Removing CPEs can leave empty entries, skip 1248 if (CPEs[i].CPEMI == nullptr) 1249 continue; 1250 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(), 1251 U.NegOk)) { 1252 DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" 1253 << CPEs[i].CPI << "\n"); 1254 // Point the CPUser node to the replacement 1255 U.CPEMI = CPEs[i].CPEMI; 1256 // Change the CPI in the instruction operand to refer to the clone. 1257 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 1258 if (UserMI->getOperand(j).isCPI()) { 1259 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 1260 break; 1261 } 1262 // Adjust the refcount of the clone... 1263 CPEs[i].RefCount++; 1264 // ...and the original. If we didn't remove the old entry, none of the 1265 // addresses changed, so we don't need another pass. 1266 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; 1267 } 1268 } 1269 return 0; 1270 } 1271 1272 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 1273 /// the specific unconditional branch instruction. 1274 static inline unsigned getUnconditionalBrDisp(int Opc) { 1275 switch (Opc) { 1276 case ARM::tB: 1277 return ((1<<10)-1)*2; 1278 case ARM::t2B: 1279 return ((1<<23)-1)*2; 1280 default: 1281 break; 1282 } 1283 1284 return ((1<<23)-1)*4; 1285 } 1286 1287 /// findAvailableWater - Look for an existing entry in the WaterList in which 1288 /// we can place the CPE referenced from U so it's within range of U's MI. 1289 /// Returns true if found, false if not. If it returns true, WaterIter 1290 /// is set to the WaterList entry. For Thumb, prefer water that will not 1291 /// introduce padding to water that will. To ensure that this pass 1292 /// terminates, the CPE location for a particular CPUser is only allowed to 1293 /// move to a lower address, so search backward from the end of the list and 1294 /// prefer the first water that is in range. 1295 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, 1296 water_iterator &WaterIter, 1297 bool CloserWater) { 1298 if (WaterList.empty()) 1299 return false; 1300 1301 unsigned BestGrowth = ~0u; 1302 // The nearest water without splitting the UserBB is right after it. 1303 // If the distance is still large (we have a big BB), then we need to split it 1304 // if we don't converge after certain iterations. This helps the following 1305 // situation to converge: 1306 // BB0: 1307 // Big BB 1308 // BB1: 1309 // Constant Pool 1310 // When a CP access is out of range, BB0 may be used as water. However, 1311 // inserting islands between BB0 and BB1 makes other accesses out of range. 1312 MachineBasicBlock *UserBB = U.MI->getParent(); 1313 unsigned MinNoSplitDisp = 1314 BBInfo[UserBB->getNumber()].postOffset(getCPELogAlign(U.CPEMI)); 1315 if (CloserWater && MinNoSplitDisp > U.getMaxDisp() / 2) 1316 return false; 1317 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();; 1318 --IP) { 1319 MachineBasicBlock* WaterBB = *IP; 1320 // Check if water is in range and is either at a lower address than the 1321 // current "high water mark" or a new water block that was created since 1322 // the previous iteration by inserting an unconditional branch. In the 1323 // latter case, we want to allow resetting the high water mark back to 1324 // this new water since we haven't seen it before. Inserting branches 1325 // should be relatively uncommon and when it does happen, we want to be 1326 // sure to take advantage of it for all the CPEs near that block, so that 1327 // we don't insert more branches than necessary. 1328 // When CloserWater is true, we try to find the lowest address after (or 1329 // equal to) user MI's BB no matter of padding growth. 1330 unsigned Growth; 1331 if (isWaterInRange(UserOffset, WaterBB, U, Growth) && 1332 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 1333 NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) && 1334 Growth < BestGrowth) { 1335 // This is the least amount of required padding seen so far. 1336 BestGrowth = Growth; 1337 WaterIter = IP; 1338 DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber() 1339 << " Growth=" << Growth << '\n'); 1340 1341 if (CloserWater && WaterBB == U.MI->getParent()) 1342 return true; 1343 // Keep looking unless it is perfect and we're not looking for the lowest 1344 // possible address. 1345 if (!CloserWater && BestGrowth == 0) 1346 return true; 1347 } 1348 if (IP == B) 1349 break; 1350 } 1351 return BestGrowth != ~0u; 1352 } 1353 1354 /// createNewWater - No existing WaterList entry will work for 1355 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1356 /// block is used if in range, and the conditional branch munged so control 1357 /// flow is correct. Otherwise the block is split to create a hole with an 1358 /// unconditional branch around it. In either case NewMBB is set to a 1359 /// block following which the new island can be inserted (the WaterList 1360 /// is not adjusted). 1361 void ARMConstantIslands::createNewWater(unsigned CPUserIndex, 1362 unsigned UserOffset, 1363 MachineBasicBlock *&NewMBB) { 1364 CPUser &U = CPUsers[CPUserIndex]; 1365 MachineInstr *UserMI = U.MI; 1366 MachineInstr *CPEMI = U.CPEMI; 1367 unsigned CPELogAlign = getCPELogAlign(CPEMI); 1368 MachineBasicBlock *UserMBB = UserMI->getParent(); 1369 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; 1370 1371 // If the block does not end in an unconditional branch already, and if the 1372 // end of the block is within range, make new water there. (The addition 1373 // below is for the unconditional branch we will be adding: 4 bytes on ARM + 1374 // Thumb2, 2 on Thumb1. 1375 if (BBHasFallthrough(UserMBB)) { 1376 // Size of branch to insert. 1377 unsigned Delta = isThumb1 ? 2 : 4; 1378 // Compute the offset where the CPE will begin. 1379 unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta; 1380 1381 if (isOffsetInRange(UserOffset, CPEOffset, U)) { 1382 DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber() 1383 << format(", expected CPE offset %#x\n", CPEOffset)); 1384 NewMBB = &*++UserMBB->getIterator(); 1385 // Add an unconditional branch from UserMBB to fallthrough block. Record 1386 // it for branch lengthening; this new branch will not get out of range, 1387 // but if the preceding conditional branch is out of range, the targets 1388 // will be exchanged, and the altered branch may be out of range, so the 1389 // machinery has to know about it. 1390 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; 1391 if (!isThumb) 1392 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); 1393 else 1394 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB) 1395 .addImm(ARMCC::AL).addReg(0); 1396 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1397 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1398 MaxDisp, false, UncondBr)); 1399 computeBlockSize(UserMBB); 1400 adjustBBOffsetsAfter(UserMBB); 1401 return; 1402 } 1403 } 1404 1405 // What a big block. Find a place within the block to split it. This is a 1406 // little tricky on Thumb1 since instructions are 2 bytes and constant pool 1407 // entries are 4 bytes: if instruction I references island CPE, and 1408 // instruction I+1 references CPE', it will not work well to put CPE as far 1409 // forward as possible, since then CPE' cannot immediately follow it (that 1410 // location is 2 bytes farther away from I+1 than CPE was from I) and we'd 1411 // need to create a new island. So, we make a first guess, then walk through 1412 // the instructions between the one currently being looked at and the 1413 // possible insertion point, and make sure any other instructions that 1414 // reference CPEs will be able to use the same island area; if not, we back 1415 // up the insertion point. 1416 1417 // Try to split the block so it's fully aligned. Compute the latest split 1418 // point where we can add a 4-byte branch instruction, and then align to 1419 // LogAlign which is the largest possible alignment in the function. 1420 unsigned LogAlign = MF->getAlignment(); 1421 assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry"); 1422 unsigned KnownBits = UserBBI.internalKnownBits(); 1423 unsigned UPad = UnknownPadding(LogAlign, KnownBits); 1424 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad; 1425 DEBUG(dbgs() << format("Split in middle of big block before %#x", 1426 BaseInsertOffset)); 1427 1428 // The 4 in the following is for the unconditional branch we'll be inserting 1429 // (allows for long branch on Thumb1). Alignment of the island is handled 1430 // inside isOffsetInRange. 1431 BaseInsertOffset -= 4; 1432 1433 DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) 1434 << " la=" << LogAlign 1435 << " kb=" << KnownBits 1436 << " up=" << UPad << '\n'); 1437 1438 // This could point off the end of the block if we've already got constant 1439 // pool entries following this block; only the last one is in the water list. 1440 // Back past any possible branches (allow for a conditional and a maximally 1441 // long unconditional). 1442 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) { 1443 // Ensure BaseInsertOffset is larger than the offset of the instruction 1444 // following UserMI so that the loop which searches for the split point 1445 // iterates at least once. 1446 BaseInsertOffset = 1447 std::max(UserBBI.postOffset() - UPad - 8, 1448 UserOffset + TII->GetInstSizeInBytes(UserMI) + 1); 1449 DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset)); 1450 } 1451 unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad + 1452 CPEMI->getOperand(2).getImm(); 1453 MachineBasicBlock::iterator MI = UserMI; 1454 ++MI; 1455 unsigned CPUIndex = CPUserIndex+1; 1456 unsigned NumCPUsers = CPUsers.size(); 1457 MachineInstr *LastIT = nullptr; 1458 for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI); 1459 Offset < BaseInsertOffset; 1460 Offset += TII->GetInstSizeInBytes(MI), MI = std::next(MI)) { 1461 assert(MI != UserMBB->end() && "Fell off end of block"); 1462 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) { 1463 CPUser &U = CPUsers[CPUIndex]; 1464 if (!isOffsetInRange(Offset, EndInsertOffset, U)) { 1465 // Shift intertion point by one unit of alignment so it is within reach. 1466 BaseInsertOffset -= 1u << LogAlign; 1467 EndInsertOffset -= 1u << LogAlign; 1468 } 1469 // This is overly conservative, as we don't account for CPEMIs being 1470 // reused within the block, but it doesn't matter much. Also assume CPEs 1471 // are added in order with alignment padding. We may eventually be able 1472 // to pack the aligned CPEs better. 1473 EndInsertOffset += U.CPEMI->getOperand(2).getImm(); 1474 CPUIndex++; 1475 } 1476 1477 // Remember the last IT instruction. 1478 if (MI->getOpcode() == ARM::t2IT) 1479 LastIT = MI; 1480 } 1481 1482 --MI; 1483 1484 // Avoid splitting an IT block. 1485 if (LastIT) { 1486 unsigned PredReg = 0; 1487 ARMCC::CondCodes CC = getITInstrPredicate(MI, PredReg); 1488 if (CC != ARMCC::AL) 1489 MI = LastIT; 1490 } 1491 1492 // We really must not split an IT block. 1493 DEBUG(unsigned PredReg; 1494 assert(!isThumb || getITInstrPredicate(MI, PredReg) == ARMCC::AL)); 1495 1496 NewMBB = splitBlockBeforeInstr(MI); 1497 } 1498 1499 /// handleConstantPoolUser - Analyze the specified user, checking to see if it 1500 /// is out-of-range. If so, pick up the constant pool value and move it some 1501 /// place in-range. Return true if we changed any addresses (thus must run 1502 /// another pass of branch lengthening), false otherwise. 1503 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex, 1504 bool CloserWater) { 1505 CPUser &U = CPUsers[CPUserIndex]; 1506 MachineInstr *UserMI = U.MI; 1507 MachineInstr *CPEMI = U.CPEMI; 1508 unsigned CPI = getCombinedIndex(CPEMI); 1509 unsigned Size = CPEMI->getOperand(2).getImm(); 1510 // Compute this only once, it's expensive. 1511 unsigned UserOffset = getUserOffset(U); 1512 1513 // See if the current entry is within range, or there is a clone of it 1514 // in range. 1515 int result = findInRangeCPEntry(U, UserOffset); 1516 if (result==1) return false; 1517 else if (result==2) return true; 1518 1519 // No existing clone of this CPE is within range. 1520 // We will be generating a new clone. Get a UID for it. 1521 unsigned ID = AFI->createPICLabelUId(); 1522 1523 // Look for water where we can place this CPE. 1524 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); 1525 MachineBasicBlock *NewMBB; 1526 water_iterator IP; 1527 if (findAvailableWater(U, UserOffset, IP, CloserWater)) { 1528 DEBUG(dbgs() << "Found water in range\n"); 1529 MachineBasicBlock *WaterBB = *IP; 1530 1531 // If the original WaterList entry was "new water" on this iteration, 1532 // propagate that to the new island. This is just keeping NewWaterList 1533 // updated to match the WaterList, which will be updated below. 1534 if (NewWaterList.erase(WaterBB)) 1535 NewWaterList.insert(NewIsland); 1536 1537 // The new CPE goes before the following block (NewMBB). 1538 NewMBB = &*++WaterBB->getIterator(); 1539 } else { 1540 // No water found. 1541 DEBUG(dbgs() << "No water found\n"); 1542 createNewWater(CPUserIndex, UserOffset, NewMBB); 1543 1544 // splitBlockBeforeInstr adds to WaterList, which is important when it is 1545 // called while handling branches so that the water will be seen on the 1546 // next iteration for constant pools, but in this context, we don't want 1547 // it. Check for this so it will be removed from the WaterList. 1548 // Also remove any entry from NewWaterList. 1549 MachineBasicBlock *WaterBB = &*--NewMBB->getIterator(); 1550 IP = std::find(WaterList.begin(), WaterList.end(), WaterBB); 1551 if (IP != WaterList.end()) 1552 NewWaterList.erase(WaterBB); 1553 1554 // We are adding new water. Update NewWaterList. 1555 NewWaterList.insert(NewIsland); 1556 } 1557 1558 // Remove the original WaterList entry; we want subsequent insertions in 1559 // this vicinity to go after the one we're about to insert. This 1560 // considerably reduces the number of times we have to move the same CPE 1561 // more than once and is also important to ensure the algorithm terminates. 1562 if (IP != WaterList.end()) 1563 WaterList.erase(IP); 1564 1565 // Okay, we know we can put an island before NewMBB now, do it! 1566 MF->insert(NewMBB->getIterator(), NewIsland); 1567 1568 // Update internal data structures to account for the newly inserted MBB. 1569 updateForInsertedWaterBlock(NewIsland); 1570 1571 // Now that we have an island to add the CPE to, clone the original CPE and 1572 // add it to the island. 1573 U.HighWaterMark = NewIsland; 1574 U.CPEMI = BuildMI(NewIsland, DebugLoc(), CPEMI->getDesc()) 1575 .addImm(ID).addOperand(CPEMI->getOperand(1)).addImm(Size); 1576 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1577 ++NumCPEs; 1578 1579 // Decrement the old entry, and remove it if refcount becomes 0. 1580 decrementCPEReferenceCount(CPI, CPEMI); 1581 1582 // Mark the basic block as aligned as required by the const-pool entry. 1583 NewIsland->setAlignment(getCPELogAlign(U.CPEMI)); 1584 1585 // Increase the size of the island block to account for the new entry. 1586 BBInfo[NewIsland->getNumber()].Size += Size; 1587 adjustBBOffsetsAfter(&*--NewIsland->getIterator()); 1588 1589 // Finally, change the CPI in the instruction operand to be ID. 1590 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1591 if (UserMI->getOperand(i).isCPI()) { 1592 UserMI->getOperand(i).setIndex(ID); 1593 break; 1594 } 1595 1596 DEBUG(dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI 1597 << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset)); 1598 1599 return true; 1600 } 1601 1602 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update 1603 /// sizes and offsets of impacted basic blocks. 1604 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { 1605 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1606 unsigned Size = CPEMI->getOperand(2).getImm(); 1607 CPEMI->eraseFromParent(); 1608 BBInfo[CPEBB->getNumber()].Size -= Size; 1609 // All succeeding offsets have the current size value added in, fix this. 1610 if (CPEBB->empty()) { 1611 BBInfo[CPEBB->getNumber()].Size = 0; 1612 1613 // This block no longer needs to be aligned. 1614 CPEBB->setAlignment(0); 1615 } else 1616 // Entries are sorted by descending alignment, so realign from the front. 1617 CPEBB->setAlignment(getCPELogAlign(CPEBB->begin())); 1618 1619 adjustBBOffsetsAfter(CPEBB); 1620 // An island has only one predecessor BB and one successor BB. Check if 1621 // this BB's predecessor jumps directly to this BB's successor. This 1622 // shouldn't happen currently. 1623 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1624 // FIXME: remove the empty blocks after all the work is done? 1625 } 1626 1627 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts 1628 /// are zero. 1629 bool ARMConstantIslands::removeUnusedCPEntries() { 1630 unsigned MadeChange = false; 1631 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1632 std::vector<CPEntry> &CPEs = CPEntries[i]; 1633 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1634 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1635 removeDeadCPEMI(CPEs[j].CPEMI); 1636 CPEs[j].CPEMI = nullptr; 1637 MadeChange = true; 1638 } 1639 } 1640 } 1641 return MadeChange; 1642 } 1643 1644 /// isBBInRange - Returns true if the distance between specific MI and 1645 /// specific BB can fit in MI's displacement field. 1646 bool ARMConstantIslands::isBBInRange(MachineInstr *MI,MachineBasicBlock *DestBB, 1647 unsigned MaxDisp) { 1648 unsigned PCAdj = isThumb ? 4 : 8; 1649 unsigned BrOffset = getOffsetOf(MI) + PCAdj; 1650 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1651 1652 DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber() 1653 << " from BB#" << MI->getParent()->getNumber() 1654 << " max delta=" << MaxDisp 1655 << " from " << getOffsetOf(MI) << " to " << DestOffset 1656 << " offset " << int(DestOffset-BrOffset) << "\t" << *MI); 1657 1658 if (BrOffset <= DestOffset) { 1659 // Branch before the Dest. 1660 if (DestOffset-BrOffset <= MaxDisp) 1661 return true; 1662 } else { 1663 if (BrOffset-DestOffset <= MaxDisp) 1664 return true; 1665 } 1666 return false; 1667 } 1668 1669 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far 1670 /// away to fit in its displacement field. 1671 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) { 1672 MachineInstr *MI = Br.MI; 1673 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1674 1675 // Check to see if the DestBB is already in-range. 1676 if (isBBInRange(MI, DestBB, Br.MaxDisp)) 1677 return false; 1678 1679 if (!Br.isCond) 1680 return fixupUnconditionalBr(Br); 1681 return fixupConditionalBr(Br); 1682 } 1683 1684 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is 1685 /// too far away to fit in its displacement field. If the LR register has been 1686 /// spilled in the epilogue, then we can use BL to implement a far jump. 1687 /// Otherwise, add an intermediate branch instruction to a branch. 1688 bool 1689 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { 1690 MachineInstr *MI = Br.MI; 1691 MachineBasicBlock *MBB = MI->getParent(); 1692 if (!isThumb1) 1693 llvm_unreachable("fixupUnconditionalBr is Thumb1 only!"); 1694 1695 // Use BL to implement far jump. 1696 Br.MaxDisp = (1 << 21) * 2; 1697 MI->setDesc(TII->get(ARM::tBfar)); 1698 BBInfo[MBB->getNumber()].Size += 2; 1699 adjustBBOffsetsAfter(MBB); 1700 HasFarJump = true; 1701 ++NumUBrFixed; 1702 1703 DEBUG(dbgs() << " Changed B to long jump " << *MI); 1704 1705 return true; 1706 } 1707 1708 /// fixupConditionalBr - Fix up a conditional branch whose destination is too 1709 /// far away to fit in its displacement field. It is converted to an inverse 1710 /// conditional branch + an unconditional branch to the destination. 1711 bool 1712 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) { 1713 MachineInstr *MI = Br.MI; 1714 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1715 1716 // Add an unconditional branch to the destination and invert the branch 1717 // condition to jump over it: 1718 // blt L1 1719 // => 1720 // bge L2 1721 // b L1 1722 // L2: 1723 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1724 CC = ARMCC::getOppositeCondition(CC); 1725 unsigned CCReg = MI->getOperand(2).getReg(); 1726 1727 // If the branch is at the end of its MBB and that has a fall-through block, 1728 // direct the updated conditional branch to the fall-through block. Otherwise, 1729 // split the MBB before the next instruction. 1730 MachineBasicBlock *MBB = MI->getParent(); 1731 MachineInstr *BMI = &MBB->back(); 1732 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1733 1734 ++NumCBrFixed; 1735 if (BMI != MI) { 1736 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) && 1737 BMI->getOpcode() == Br.UncondBr) { 1738 // Last MI in the BB is an unconditional branch. Can we simply invert the 1739 // condition and swap destinations: 1740 // beq L1 1741 // b L2 1742 // => 1743 // bne L2 1744 // b L1 1745 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1746 if (isBBInRange(MI, NewDest, Br.MaxDisp)) { 1747 DEBUG(dbgs() << " Invert Bcc condition and swap its destination with " 1748 << *BMI); 1749 BMI->getOperand(0).setMBB(DestBB); 1750 MI->getOperand(0).setMBB(NewDest); 1751 MI->getOperand(1).setImm(CC); 1752 return true; 1753 } 1754 } 1755 } 1756 1757 if (NeedSplit) { 1758 splitBlockBeforeInstr(MI); 1759 // No need for the branch to the next block. We're adding an unconditional 1760 // branch to the destination. 1761 int delta = TII->GetInstSizeInBytes(&MBB->back()); 1762 BBInfo[MBB->getNumber()].Size -= delta; 1763 MBB->back().eraseFromParent(); 1764 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below 1765 } 1766 MachineBasicBlock *NextBB = &*++MBB->getIterator(); 1767 1768 DEBUG(dbgs() << " Insert B to BB#" << DestBB->getNumber() 1769 << " also invert condition and change dest. to BB#" 1770 << NextBB->getNumber() << "\n"); 1771 1772 // Insert a new conditional branch and a new unconditional branch. 1773 // Also update the ImmBranch as well as adding a new entry for the new branch. 1774 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode())) 1775 .addMBB(NextBB).addImm(CC).addReg(CCReg); 1776 Br.MI = &MBB->back(); 1777 BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back()); 1778 if (isThumb) 1779 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB) 1780 .addImm(ARMCC::AL).addReg(0); 1781 else 1782 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1783 BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back()); 1784 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1785 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1786 1787 // Remove the old conditional branch. It may or may not still be in MBB. 1788 BBInfo[MI->getParent()->getNumber()].Size -= TII->GetInstSizeInBytes(MI); 1789 MI->eraseFromParent(); 1790 adjustBBOffsetsAfter(MBB); 1791 return true; 1792 } 1793 1794 /// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills 1795 /// LR / restores LR to pc. FIXME: This is done here because it's only possible 1796 /// to do this if tBfar is not used. 1797 bool ARMConstantIslands::undoLRSpillRestore() { 1798 bool MadeChange = false; 1799 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) { 1800 MachineInstr *MI = PushPopMIs[i]; 1801 // First two operands are predicates. 1802 if (MI->getOpcode() == ARM::tPOP_RET && 1803 MI->getOperand(2).getReg() == ARM::PC && 1804 MI->getNumExplicitOperands() == 3) { 1805 // Create the new insn and copy the predicate from the old. 1806 BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET)) 1807 .addOperand(MI->getOperand(0)) 1808 .addOperand(MI->getOperand(1)); 1809 MI->eraseFromParent(); 1810 MadeChange = true; 1811 } 1812 } 1813 return MadeChange; 1814 } 1815 1816 // mayOptimizeThumb2Instruction - Returns true if optimizeThumb2Instructions 1817 // below may shrink MI. 1818 bool 1819 ARMConstantIslands::mayOptimizeThumb2Instruction(const MachineInstr *MI) const { 1820 switch(MI->getOpcode()) { 1821 // optimizeThumb2Instructions. 1822 case ARM::t2LEApcrel: 1823 case ARM::t2LDRpci: 1824 // optimizeThumb2Branches. 1825 case ARM::t2B: 1826 case ARM::t2Bcc: 1827 case ARM::tBcc: 1828 // optimizeThumb2JumpTables. 1829 case ARM::t2BR_JT: 1830 return true; 1831 } 1832 return false; 1833 } 1834 1835 bool ARMConstantIslands::optimizeThumb2Instructions() { 1836 bool MadeChange = false; 1837 1838 // Shrink ADR and LDR from constantpool. 1839 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 1840 CPUser &U = CPUsers[i]; 1841 unsigned Opcode = U.MI->getOpcode(); 1842 unsigned NewOpc = 0; 1843 unsigned Scale = 1; 1844 unsigned Bits = 0; 1845 switch (Opcode) { 1846 default: break; 1847 case ARM::t2LEApcrel: 1848 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1849 NewOpc = ARM::tLEApcrel; 1850 Bits = 8; 1851 Scale = 4; 1852 } 1853 break; 1854 case ARM::t2LDRpci: 1855 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1856 NewOpc = ARM::tLDRpci; 1857 Bits = 8; 1858 Scale = 4; 1859 } 1860 break; 1861 } 1862 1863 if (!NewOpc) 1864 continue; 1865 1866 unsigned UserOffset = getUserOffset(U); 1867 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 1868 1869 // Be conservative with inline asm. 1870 if (!U.KnownAlignment) 1871 MaxOffs -= 2; 1872 1873 // FIXME: Check if offset is multiple of scale if scale is not 4. 1874 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { 1875 DEBUG(dbgs() << "Shrink: " << *U.MI); 1876 U.MI->setDesc(TII->get(NewOpc)); 1877 MachineBasicBlock *MBB = U.MI->getParent(); 1878 BBInfo[MBB->getNumber()].Size -= 2; 1879 adjustBBOffsetsAfter(MBB); 1880 ++NumT2CPShrunk; 1881 MadeChange = true; 1882 } 1883 } 1884 1885 MadeChange |= optimizeThumb2Branches(); 1886 MadeChange |= optimizeThumb2JumpTables(); 1887 return MadeChange; 1888 } 1889 1890 bool ARMConstantIslands::optimizeThumb2Branches() { 1891 bool MadeChange = false; 1892 1893 // The order in which branches appear in ImmBranches is approximately their 1894 // order within the function body. By visiting later branches first, we reduce 1895 // the distance between earlier forward branches and their targets, making it 1896 // more likely that the cbn?z optimization, which can only apply to forward 1897 // branches, will succeed. 1898 for (unsigned i = ImmBranches.size(); i != 0; --i) { 1899 ImmBranch &Br = ImmBranches[i-1]; 1900 unsigned Opcode = Br.MI->getOpcode(); 1901 unsigned NewOpc = 0; 1902 unsigned Scale = 1; 1903 unsigned Bits = 0; 1904 switch (Opcode) { 1905 default: break; 1906 case ARM::t2B: 1907 NewOpc = ARM::tB; 1908 Bits = 11; 1909 Scale = 2; 1910 break; 1911 case ARM::t2Bcc: { 1912 NewOpc = ARM::tBcc; 1913 Bits = 8; 1914 Scale = 2; 1915 break; 1916 } 1917 } 1918 if (NewOpc) { 1919 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 1920 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1921 if (isBBInRange(Br.MI, DestBB, MaxOffs)) { 1922 DEBUG(dbgs() << "Shrink branch: " << *Br.MI); 1923 Br.MI->setDesc(TII->get(NewOpc)); 1924 MachineBasicBlock *MBB = Br.MI->getParent(); 1925 BBInfo[MBB->getNumber()].Size -= 2; 1926 adjustBBOffsetsAfter(MBB); 1927 ++NumT2BrShrunk; 1928 MadeChange = true; 1929 } 1930 } 1931 1932 Opcode = Br.MI->getOpcode(); 1933 if (Opcode != ARM::tBcc) 1934 continue; 1935 1936 // If the conditional branch doesn't kill CPSR, then CPSR can be liveout 1937 // so this transformation is not safe. 1938 if (!Br.MI->killsRegister(ARM::CPSR)) 1939 continue; 1940 1941 NewOpc = 0; 1942 unsigned PredReg = 0; 1943 ARMCC::CondCodes Pred = getInstrPredicate(Br.MI, PredReg); 1944 if (Pred == ARMCC::EQ) 1945 NewOpc = ARM::tCBZ; 1946 else if (Pred == ARMCC::NE) 1947 NewOpc = ARM::tCBNZ; 1948 if (!NewOpc) 1949 continue; 1950 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1951 // Check if the distance is within 126. Subtract starting offset by 2 1952 // because the cmp will be eliminated. 1953 unsigned BrOffset = getOffsetOf(Br.MI) + 4 - 2; 1954 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1955 if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) { 1956 MachineBasicBlock::iterator CmpMI = Br.MI; 1957 if (CmpMI != Br.MI->getParent()->begin()) { 1958 --CmpMI; 1959 if (CmpMI->getOpcode() == ARM::tCMPi8) { 1960 unsigned Reg = CmpMI->getOperand(0).getReg(); 1961 Pred = getInstrPredicate(CmpMI, PredReg); 1962 if (Pred == ARMCC::AL && 1963 CmpMI->getOperand(1).getImm() == 0 && 1964 isARMLowRegister(Reg)) { 1965 MachineBasicBlock *MBB = Br.MI->getParent(); 1966 DEBUG(dbgs() << "Fold: " << *CmpMI << " and: " << *Br.MI); 1967 MachineInstr *NewBR = 1968 BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc)) 1969 .addReg(Reg).addMBB(DestBB,Br.MI->getOperand(0).getTargetFlags()); 1970 CmpMI->eraseFromParent(); 1971 Br.MI->eraseFromParent(); 1972 Br.MI = NewBR; 1973 BBInfo[MBB->getNumber()].Size -= 2; 1974 adjustBBOffsetsAfter(MBB); 1975 ++NumCBZ; 1976 MadeChange = true; 1977 } 1978 } 1979 } 1980 } 1981 } 1982 1983 return MadeChange; 1984 } 1985 1986 static bool isSimpleIndexCalc(MachineInstr &I, unsigned EntryReg, 1987 unsigned BaseReg) { 1988 if (I.getOpcode() != ARM::t2ADDrs) 1989 return false; 1990 1991 if (I.getOperand(0).getReg() != EntryReg) 1992 return false; 1993 1994 if (I.getOperand(1).getReg() != BaseReg) 1995 return false; 1996 1997 // FIXME: what about CC and IdxReg? 1998 return true; 1999 } 2000 2001 /// \brief While trying to form a TBB/TBH instruction, we may (if the table 2002 /// doesn't immediately follow the BR_JT) need access to the start of the 2003 /// jump-table. We know one instruction that produces such a register; this 2004 /// function works out whether that definition can be preserved to the BR_JT, 2005 /// possibly by removing an intervening addition (which is usually needed to 2006 /// calculate the actual entry to jump to). 2007 bool ARMConstantIslands::preserveBaseRegister(MachineInstr *JumpMI, 2008 MachineInstr *LEAMI, 2009 unsigned &DeadSize, 2010 bool &CanDeleteLEA, 2011 bool &BaseRegKill) { 2012 if (JumpMI->getParent() != LEAMI->getParent()) 2013 return false; 2014 2015 // Now we hope that we have at least these instructions in the basic block: 2016 // BaseReg = t2LEA ... 2017 // [...] 2018 // EntryReg = t2ADDrs BaseReg, ... 2019 // [...] 2020 // t2BR_JT EntryReg 2021 // 2022 // We have to be very conservative about what we recognise here though. The 2023 // main perturbing factors to watch out for are: 2024 // + Spills at any point in the chain: not direct problems but we would 2025 // expect a blocking Def of the spilled register so in practice what we 2026 // can do is limited. 2027 // + EntryReg == BaseReg: this is the one situation we should allow a Def 2028 // of BaseReg, but only if the t2ADDrs can be removed. 2029 // + Some instruction other than t2ADDrs computing the entry. Not seen in 2030 // the wild, but we should be careful. 2031 unsigned EntryReg = JumpMI->getOperand(0).getReg(); 2032 unsigned BaseReg = LEAMI->getOperand(0).getReg(); 2033 2034 CanDeleteLEA = true; 2035 BaseRegKill = false; 2036 MachineInstr *RemovableAdd = nullptr; 2037 MachineBasicBlock::iterator I(LEAMI); 2038 for (++I; &*I != JumpMI; ++I) { 2039 if (isSimpleIndexCalc(*I, EntryReg, BaseReg)) { 2040 RemovableAdd = &*I; 2041 break; 2042 } 2043 2044 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 2045 const MachineOperand &MO = I->getOperand(K); 2046 if (!MO.isReg() || !MO.getReg()) 2047 continue; 2048 if (MO.isDef() && MO.getReg() == BaseReg) 2049 return false; 2050 if (MO.isUse() && MO.getReg() == BaseReg) { 2051 BaseRegKill = BaseRegKill || MO.isKill(); 2052 CanDeleteLEA = false; 2053 } 2054 } 2055 } 2056 2057 if (!RemovableAdd) 2058 return true; 2059 2060 // Check the add really is removable, and that nothing else in the block 2061 // clobbers BaseReg. 2062 for (++I; &*I != JumpMI; ++I) { 2063 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 2064 const MachineOperand &MO = I->getOperand(K); 2065 if (!MO.isReg() || !MO.getReg()) 2066 continue; 2067 if (MO.isDef() && MO.getReg() == BaseReg) 2068 return false; 2069 if (MO.isUse() && MO.getReg() == EntryReg) 2070 RemovableAdd = nullptr; 2071 } 2072 } 2073 2074 if (RemovableAdd) { 2075 RemovableAdd->eraseFromParent(); 2076 DeadSize += 4; 2077 } else if (BaseReg == EntryReg) { 2078 // The add wasn't removable, but clobbered the base for the TBB. So we can't 2079 // preserve it. 2080 return false; 2081 } 2082 2083 // We reached the end of the block without seeing another definition of 2084 // BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be 2085 // used in the TBB/TBH if necessary. 2086 return true; 2087 } 2088 2089 /// \brief Returns whether CPEMI is the first instruction in the block 2090 /// immediately following JTMI (assumed to be a TBB or TBH terminator). If so, 2091 /// we can switch the first register to PC and usually remove the address 2092 /// calculation that preceded it. 2093 static bool jumpTableFollowsTB(MachineInstr *JTMI, MachineInstr *CPEMI) { 2094 MachineFunction::iterator MBB = JTMI->getParent()->getIterator(); 2095 MachineFunction *MF = MBB->getParent(); 2096 ++MBB; 2097 2098 return MBB != MF->end() && MBB->begin() != MBB->end() && 2099 &*MBB->begin() == CPEMI; 2100 } 2101 2102 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller 2103 /// jumptables when it's possible. 2104 bool ARMConstantIslands::optimizeThumb2JumpTables() { 2105 bool MadeChange = false; 2106 2107 // FIXME: After the tables are shrunk, can we get rid some of the 2108 // constantpool tables? 2109 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2110 if (!MJTI) return false; 2111 2112 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2113 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2114 MachineInstr *MI = T2JumpTables[i]; 2115 const MCInstrDesc &MCID = MI->getDesc(); 2116 unsigned NumOps = MCID.getNumOperands(); 2117 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2118 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2119 unsigned JTI = JTOP.getIndex(); 2120 assert(JTI < JT.size()); 2121 2122 bool ByteOk = true; 2123 bool HalfWordOk = true; 2124 unsigned JTOffset = getOffsetOf(MI) + 4; 2125 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2126 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2127 MachineBasicBlock *MBB = JTBBs[j]; 2128 unsigned DstOffset = BBInfo[MBB->getNumber()].Offset; 2129 // Negative offset is not ok. FIXME: We should change BB layout to make 2130 // sure all the branches are forward. 2131 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) 2132 ByteOk = false; 2133 unsigned TBHLimit = ((1<<16)-1)*2; 2134 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) 2135 HalfWordOk = false; 2136 if (!ByteOk && !HalfWordOk) 2137 break; 2138 } 2139 2140 if (!ByteOk && !HalfWordOk) 2141 continue; 2142 2143 MachineBasicBlock *MBB = MI->getParent(); 2144 if (!MI->getOperand(0).isKill()) // FIXME: needed now? 2145 continue; 2146 unsigned IdxReg = MI->getOperand(1).getReg(); 2147 bool IdxRegKill = MI->getOperand(1).isKill(); 2148 2149 CPUser &User = CPUsers[JumpTableUserIndices[JTI]]; 2150 unsigned DeadSize = 0; 2151 bool CanDeleteLEA = false; 2152 bool BaseRegKill = false; 2153 bool PreservedBaseReg = 2154 preserveBaseRegister(MI, User.MI, DeadSize, CanDeleteLEA, BaseRegKill); 2155 2156 if (!jumpTableFollowsTB(MI, User.CPEMI) && !PreservedBaseReg) 2157 continue; 2158 2159 DEBUG(dbgs() << "Shrink JT: " << *MI); 2160 MachineInstr *CPEMI = User.CPEMI; 2161 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT; 2162 MachineBasicBlock::iterator MI_JT = MI; 2163 MachineInstr *NewJTMI = 2164 BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc)) 2165 .addReg(User.MI->getOperand(0).getReg(), 2166 getKillRegState(BaseRegKill)) 2167 .addReg(IdxReg, getKillRegState(IdxRegKill)) 2168 .addJumpTableIndex(JTI, JTOP.getTargetFlags()) 2169 .addImm(CPEMI->getOperand(0).getImm()); 2170 DEBUG(dbgs() << "BB#" << MBB->getNumber() << ": " << *NewJTMI); 2171 2172 unsigned JTOpc = ByteOk ? ARM::JUMPTABLE_TBB : ARM::JUMPTABLE_TBH; 2173 CPEMI->setDesc(TII->get(JTOpc)); 2174 2175 if (jumpTableFollowsTB(MI, User.CPEMI)) { 2176 NewJTMI->getOperand(0).setReg(ARM::PC); 2177 NewJTMI->getOperand(0).setIsKill(false); 2178 2179 if (CanDeleteLEA) { 2180 User.MI->eraseFromParent(); 2181 DeadSize += 4; 2182 2183 // The LEA was eliminated, the TBB instruction becomes the only new user 2184 // of the jump table. 2185 User.MI = NewJTMI; 2186 User.MaxDisp = 4; 2187 User.NegOk = false; 2188 User.IsSoImm = false; 2189 User.KnownAlignment = false; 2190 } else { 2191 // The LEA couldn't be eliminated, so we must add another CPUser to 2192 // record the TBB or TBH use. 2193 int CPEntryIdx = JumpTableEntryIndices[JTI]; 2194 auto &CPEs = CPEntries[CPEntryIdx]; 2195 auto Entry = std::find_if(CPEs.begin(), CPEs.end(), [&](CPEntry &E) { 2196 return E.CPEMI == User.CPEMI; 2197 }); 2198 ++Entry->RefCount; 2199 CPUsers.emplace_back(CPUser(NewJTMI, User.CPEMI, 4, false, false)); 2200 } 2201 } 2202 2203 unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI); 2204 unsigned OrigSize = TII->GetInstSizeInBytes(MI); 2205 MI->eraseFromParent(); 2206 2207 int Delta = OrigSize - NewSize + DeadSize; 2208 BBInfo[MBB->getNumber()].Size -= Delta; 2209 adjustBBOffsetsAfter(MBB); 2210 2211 ++NumTBs; 2212 MadeChange = true; 2213 } 2214 2215 return MadeChange; 2216 } 2217 2218 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that 2219 /// jump tables always branch forwards, since that's what tbb and tbh need. 2220 bool ARMConstantIslands::reorderThumb2JumpTables() { 2221 bool MadeChange = false; 2222 2223 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2224 if (!MJTI) return false; 2225 2226 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2227 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2228 MachineInstr *MI = T2JumpTables[i]; 2229 const MCInstrDesc &MCID = MI->getDesc(); 2230 unsigned NumOps = MCID.getNumOperands(); 2231 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2232 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2233 unsigned JTI = JTOP.getIndex(); 2234 assert(JTI < JT.size()); 2235 2236 // We prefer if target blocks for the jump table come after the jump 2237 // instruction so we can use TB[BH]. Loop through the target blocks 2238 // and try to adjust them such that that's true. 2239 int JTNumber = MI->getParent()->getNumber(); 2240 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2241 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2242 MachineBasicBlock *MBB = JTBBs[j]; 2243 int DTNumber = MBB->getNumber(); 2244 2245 if (DTNumber < JTNumber) { 2246 // The destination precedes the switch. Try to move the block forward 2247 // so we have a positive offset. 2248 MachineBasicBlock *NewBB = 2249 adjustJTTargetBlockForward(MBB, MI->getParent()); 2250 if (NewBB) 2251 MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB); 2252 MadeChange = true; 2253 } 2254 } 2255 } 2256 2257 return MadeChange; 2258 } 2259 2260 MachineBasicBlock *ARMConstantIslands:: 2261 adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) { 2262 // If the destination block is terminated by an unconditional branch, 2263 // try to move it; otherwise, create a new block following the jump 2264 // table that branches back to the actual target. This is a very simple 2265 // heuristic. FIXME: We can definitely improve it. 2266 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2267 SmallVector<MachineOperand, 4> Cond; 2268 SmallVector<MachineOperand, 4> CondPrior; 2269 MachineFunction::iterator BBi = BB->getIterator(); 2270 MachineFunction::iterator OldPrior = std::prev(BBi); 2271 2272 // If the block terminator isn't analyzable, don't try to move the block 2273 bool B = TII->AnalyzeBranch(*BB, TBB, FBB, Cond); 2274 2275 // If the block ends in an unconditional branch, move it. The prior block 2276 // has to have an analyzable terminator for us to move this one. Be paranoid 2277 // and make sure we're not trying to move the entry block of the function. 2278 if (!B && Cond.empty() && BB != MF->begin() && 2279 !TII->AnalyzeBranch(*OldPrior, TBB, FBB, CondPrior)) { 2280 BB->moveAfter(JTBB); 2281 OldPrior->updateTerminator(); 2282 BB->updateTerminator(); 2283 // Update numbering to account for the block being moved. 2284 MF->RenumberBlocks(); 2285 ++NumJTMoved; 2286 return nullptr; 2287 } 2288 2289 // Create a new MBB for the code after the jump BB. 2290 MachineBasicBlock *NewBB = 2291 MF->CreateMachineBasicBlock(JTBB->getBasicBlock()); 2292 MachineFunction::iterator MBBI = ++JTBB->getIterator(); 2293 MF->insert(MBBI, NewBB); 2294 2295 // Add an unconditional branch from NewBB to BB. 2296 // There doesn't seem to be meaningful DebugInfo available; this doesn't 2297 // correspond directly to anything in the source. 2298 assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?"); 2299 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)).addMBB(BB) 2300 .addImm(ARMCC::AL).addReg(0); 2301 2302 // Update internal data structures to account for the newly inserted MBB. 2303 MF->RenumberBlocks(NewBB); 2304 2305 // Update the CFG. 2306 NewBB->addSuccessor(BB); 2307 JTBB->replaceSuccessor(BB, NewBB); 2308 2309 ++NumJTInserted; 2310 return NewBB; 2311 } 2312