Home | History | Annotate | Download | only in arm64
      1 // Copyright 2013 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/crankshaft/arm64/lithium-codegen-arm64.h"
      6 
      7 #include "src/arm64/frames-arm64.h"
      8 #include "src/base/bits.h"
      9 #include "src/code-factory.h"
     10 #include "src/code-stubs.h"
     11 #include "src/crankshaft/arm64/lithium-gap-resolver-arm64.h"
     12 #include "src/crankshaft/hydrogen-osr.h"
     13 #include "src/ic/ic.h"
     14 #include "src/ic/stub-cache.h"
     15 
     16 namespace v8 {
     17 namespace internal {
     18 
     19 
     20 class SafepointGenerator final : public CallWrapper {
     21  public:
     22   SafepointGenerator(LCodeGen* codegen,
     23                      LPointerMap* pointers,
     24                      Safepoint::DeoptMode mode)
     25       : codegen_(codegen),
     26         pointers_(pointers),
     27         deopt_mode_(mode) { }
     28   virtual ~SafepointGenerator() { }
     29 
     30   virtual void BeforeCall(int call_size) const { }
     31 
     32   virtual void AfterCall() const {
     33     codegen_->RecordSafepoint(pointers_, deopt_mode_);
     34   }
     35 
     36  private:
     37   LCodeGen* codegen_;
     38   LPointerMap* pointers_;
     39   Safepoint::DeoptMode deopt_mode_;
     40 };
     41 
     42 
     43 #define __ masm()->
     44 
     45 // Emit code to branch if the given condition holds.
     46 // The code generated here doesn't modify the flags and they must have
     47 // been set by some prior instructions.
     48 //
     49 // The EmitInverted function simply inverts the condition.
     50 class BranchOnCondition : public BranchGenerator {
     51  public:
     52   BranchOnCondition(LCodeGen* codegen, Condition cond)
     53     : BranchGenerator(codegen),
     54       cond_(cond) { }
     55 
     56   virtual void Emit(Label* label) const {
     57     __ B(cond_, label);
     58   }
     59 
     60   virtual void EmitInverted(Label* label) const {
     61     if (cond_ != al) {
     62       __ B(NegateCondition(cond_), label);
     63     }
     64   }
     65 
     66  private:
     67   Condition cond_;
     68 };
     69 
     70 
     71 // Emit code to compare lhs and rhs and branch if the condition holds.
     72 // This uses MacroAssembler's CompareAndBranch function so it will handle
     73 // converting the comparison to Cbz/Cbnz if the right-hand side is 0.
     74 //
     75 // EmitInverted still compares the two operands but inverts the condition.
     76 class CompareAndBranch : public BranchGenerator {
     77  public:
     78   CompareAndBranch(LCodeGen* codegen,
     79                    Condition cond,
     80                    const Register& lhs,
     81                    const Operand& rhs)
     82     : BranchGenerator(codegen),
     83       cond_(cond),
     84       lhs_(lhs),
     85       rhs_(rhs) { }
     86 
     87   virtual void Emit(Label* label) const {
     88     __ CompareAndBranch(lhs_, rhs_, cond_, label);
     89   }
     90 
     91   virtual void EmitInverted(Label* label) const {
     92     __ CompareAndBranch(lhs_, rhs_, NegateCondition(cond_), label);
     93   }
     94 
     95  private:
     96   Condition cond_;
     97   const Register& lhs_;
     98   const Operand& rhs_;
     99 };
    100 
    101 
    102 // Test the input with the given mask and branch if the condition holds.
    103 // If the condition is 'eq' or 'ne' this will use MacroAssembler's
    104 // TestAndBranchIfAllClear and TestAndBranchIfAnySet so it will handle the
    105 // conversion to Tbz/Tbnz when possible.
    106 class TestAndBranch : public BranchGenerator {
    107  public:
    108   TestAndBranch(LCodeGen* codegen,
    109                 Condition cond,
    110                 const Register& value,
    111                 uint64_t mask)
    112     : BranchGenerator(codegen),
    113       cond_(cond),
    114       value_(value),
    115       mask_(mask) { }
    116 
    117   virtual void Emit(Label* label) const {
    118     switch (cond_) {
    119       case eq:
    120         __ TestAndBranchIfAllClear(value_, mask_, label);
    121         break;
    122       case ne:
    123         __ TestAndBranchIfAnySet(value_, mask_, label);
    124         break;
    125       default:
    126         __ Tst(value_, mask_);
    127         __ B(cond_, label);
    128     }
    129   }
    130 
    131   virtual void EmitInverted(Label* label) const {
    132     // The inverse of "all clear" is "any set" and vice versa.
    133     switch (cond_) {
    134       case eq:
    135         __ TestAndBranchIfAnySet(value_, mask_, label);
    136         break;
    137       case ne:
    138         __ TestAndBranchIfAllClear(value_, mask_, label);
    139         break;
    140       default:
    141         __ Tst(value_, mask_);
    142         __ B(NegateCondition(cond_), label);
    143     }
    144   }
    145 
    146  private:
    147   Condition cond_;
    148   const Register& value_;
    149   uint64_t mask_;
    150 };
    151 
    152 
    153 // Test the input and branch if it is non-zero and not a NaN.
    154 class BranchIfNonZeroNumber : public BranchGenerator {
    155  public:
    156   BranchIfNonZeroNumber(LCodeGen* codegen, const FPRegister& value,
    157                         const FPRegister& scratch)
    158     : BranchGenerator(codegen), value_(value), scratch_(scratch) { }
    159 
    160   virtual void Emit(Label* label) const {
    161     __ Fabs(scratch_, value_);
    162     // Compare with 0.0. Because scratch_ is positive, the result can be one of
    163     // nZCv (equal), nzCv (greater) or nzCV (unordered).
    164     __ Fcmp(scratch_, 0.0);
    165     __ B(gt, label);
    166   }
    167 
    168   virtual void EmitInverted(Label* label) const {
    169     __ Fabs(scratch_, value_);
    170     __ Fcmp(scratch_, 0.0);
    171     __ B(le, label);
    172   }
    173 
    174  private:
    175   const FPRegister& value_;
    176   const FPRegister& scratch_;
    177 };
    178 
    179 
    180 // Test the input and branch if it is a heap number.
    181 class BranchIfHeapNumber : public BranchGenerator {
    182  public:
    183   BranchIfHeapNumber(LCodeGen* codegen, const Register& value)
    184       : BranchGenerator(codegen), value_(value) { }
    185 
    186   virtual void Emit(Label* label) const {
    187     __ JumpIfHeapNumber(value_, label);
    188   }
    189 
    190   virtual void EmitInverted(Label* label) const {
    191     __ JumpIfNotHeapNumber(value_, label);
    192   }
    193 
    194  private:
    195   const Register& value_;
    196 };
    197 
    198 
    199 // Test the input and branch if it is the specified root value.
    200 class BranchIfRoot : public BranchGenerator {
    201  public:
    202   BranchIfRoot(LCodeGen* codegen, const Register& value,
    203                Heap::RootListIndex index)
    204       : BranchGenerator(codegen), value_(value), index_(index) { }
    205 
    206   virtual void Emit(Label* label) const {
    207     __ JumpIfRoot(value_, index_, label);
    208   }
    209 
    210   virtual void EmitInverted(Label* label) const {
    211     __ JumpIfNotRoot(value_, index_, label);
    212   }
    213 
    214  private:
    215   const Register& value_;
    216   const Heap::RootListIndex index_;
    217 };
    218 
    219 
    220 void LCodeGen::WriteTranslation(LEnvironment* environment,
    221                                 Translation* translation) {
    222   if (environment == NULL) return;
    223 
    224   // The translation includes one command per value in the environment.
    225   int translation_size = environment->translation_size();
    226 
    227   WriteTranslation(environment->outer(), translation);
    228   WriteTranslationFrame(environment, translation);
    229 
    230   int object_index = 0;
    231   int dematerialized_index = 0;
    232   for (int i = 0; i < translation_size; ++i) {
    233     LOperand* value = environment->values()->at(i);
    234     AddToTranslation(
    235         environment, translation, value, environment->HasTaggedValueAt(i),
    236         environment->HasUint32ValueAt(i), &object_index, &dematerialized_index);
    237   }
    238 }
    239 
    240 
    241 void LCodeGen::AddToTranslation(LEnvironment* environment,
    242                                 Translation* translation,
    243                                 LOperand* op,
    244                                 bool is_tagged,
    245                                 bool is_uint32,
    246                                 int* object_index_pointer,
    247                                 int* dematerialized_index_pointer) {
    248   if (op == LEnvironment::materialization_marker()) {
    249     int object_index = (*object_index_pointer)++;
    250     if (environment->ObjectIsDuplicateAt(object_index)) {
    251       int dupe_of = environment->ObjectDuplicateOfAt(object_index);
    252       translation->DuplicateObject(dupe_of);
    253       return;
    254     }
    255     int object_length = environment->ObjectLengthAt(object_index);
    256     if (environment->ObjectIsArgumentsAt(object_index)) {
    257       translation->BeginArgumentsObject(object_length);
    258     } else {
    259       translation->BeginCapturedObject(object_length);
    260     }
    261     int dematerialized_index = *dematerialized_index_pointer;
    262     int env_offset = environment->translation_size() + dematerialized_index;
    263     *dematerialized_index_pointer += object_length;
    264     for (int i = 0; i < object_length; ++i) {
    265       LOperand* value = environment->values()->at(env_offset + i);
    266       AddToTranslation(environment,
    267                        translation,
    268                        value,
    269                        environment->HasTaggedValueAt(env_offset + i),
    270                        environment->HasUint32ValueAt(env_offset + i),
    271                        object_index_pointer,
    272                        dematerialized_index_pointer);
    273     }
    274     return;
    275   }
    276 
    277   if (op->IsStackSlot()) {
    278     int index = op->index();
    279     if (is_tagged) {
    280       translation->StoreStackSlot(index);
    281     } else if (is_uint32) {
    282       translation->StoreUint32StackSlot(index);
    283     } else {
    284       translation->StoreInt32StackSlot(index);
    285     }
    286   } else if (op->IsDoubleStackSlot()) {
    287     int index = op->index();
    288     translation->StoreDoubleStackSlot(index);
    289   } else if (op->IsRegister()) {
    290     Register reg = ToRegister(op);
    291     if (is_tagged) {
    292       translation->StoreRegister(reg);
    293     } else if (is_uint32) {
    294       translation->StoreUint32Register(reg);
    295     } else {
    296       translation->StoreInt32Register(reg);
    297     }
    298   } else if (op->IsDoubleRegister()) {
    299     DoubleRegister reg = ToDoubleRegister(op);
    300     translation->StoreDoubleRegister(reg);
    301   } else if (op->IsConstantOperand()) {
    302     HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
    303     int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
    304     translation->StoreLiteral(src_index);
    305   } else {
    306     UNREACHABLE();
    307   }
    308 }
    309 
    310 
    311 void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
    312                                                     Safepoint::DeoptMode mode) {
    313   environment->set_has_been_used();
    314   if (!environment->HasBeenRegistered()) {
    315     int frame_count = 0;
    316     int jsframe_count = 0;
    317     for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
    318       ++frame_count;
    319       if (e->frame_type() == JS_FUNCTION) {
    320         ++jsframe_count;
    321       }
    322     }
    323     Translation translation(&translations_, frame_count, jsframe_count, zone());
    324     WriteTranslation(environment, &translation);
    325     int deoptimization_index = deoptimizations_.length();
    326     int pc_offset = masm()->pc_offset();
    327     environment->Register(deoptimization_index,
    328                           translation.index(),
    329                           (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
    330     deoptimizations_.Add(environment, zone());
    331   }
    332 }
    333 
    334 
    335 void LCodeGen::CallCode(Handle<Code> code,
    336                         RelocInfo::Mode mode,
    337                         LInstruction* instr) {
    338   CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
    339 }
    340 
    341 
    342 void LCodeGen::CallCodeGeneric(Handle<Code> code,
    343                                RelocInfo::Mode mode,
    344                                LInstruction* instr,
    345                                SafepointMode safepoint_mode) {
    346   DCHECK(instr != NULL);
    347 
    348   Assembler::BlockPoolsScope scope(masm_);
    349   __ Call(code, mode);
    350   RecordSafepointWithLazyDeopt(instr, safepoint_mode);
    351 
    352   if ((code->kind() == Code::BINARY_OP_IC) ||
    353       (code->kind() == Code::COMPARE_IC)) {
    354     // Signal that we don't inline smi code before these stubs in the
    355     // optimizing code generator.
    356     InlineSmiCheckInfo::EmitNotInlined(masm());
    357   }
    358 }
    359 
    360 
    361 void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
    362   DCHECK(instr->IsMarkedAsCall());
    363   DCHECK(ToRegister(instr->context()).is(cp));
    364   DCHECK(ToRegister(instr->constructor()).is(x1));
    365 
    366   __ Mov(x0, Operand(instr->arity()));
    367   __ Mov(x2, instr->hydrogen()->site());
    368 
    369   ElementsKind kind = instr->hydrogen()->elements_kind();
    370   AllocationSiteOverrideMode override_mode =
    371       (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
    372           ? DISABLE_ALLOCATION_SITES
    373           : DONT_OVERRIDE;
    374 
    375   if (instr->arity() == 0) {
    376     ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
    377     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
    378   } else if (instr->arity() == 1) {
    379     Label done;
    380     if (IsFastPackedElementsKind(kind)) {
    381       Label packed_case;
    382 
    383       // We might need to create a holey array; look at the first argument.
    384       __ Peek(x10, 0);
    385       __ Cbz(x10, &packed_case);
    386 
    387       ElementsKind holey_kind = GetHoleyElementsKind(kind);
    388       ArraySingleArgumentConstructorStub stub(isolate(),
    389                                               holey_kind,
    390                                               override_mode);
    391       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
    392       __ B(&done);
    393       __ Bind(&packed_case);
    394     }
    395 
    396     ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
    397     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
    398     __ Bind(&done);
    399   } else {
    400     ArrayNArgumentsConstructorStub stub(isolate());
    401     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
    402   }
    403   RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
    404 
    405   DCHECK(ToRegister(instr->result()).is(x0));
    406 }
    407 
    408 
    409 void LCodeGen::CallRuntime(const Runtime::Function* function,
    410                            int num_arguments,
    411                            LInstruction* instr,
    412                            SaveFPRegsMode save_doubles) {
    413   DCHECK(instr != NULL);
    414 
    415   __ CallRuntime(function, num_arguments, save_doubles);
    416 
    417   RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
    418 }
    419 
    420 
    421 void LCodeGen::LoadContextFromDeferred(LOperand* context) {
    422   if (context->IsRegister()) {
    423     __ Mov(cp, ToRegister(context));
    424   } else if (context->IsStackSlot()) {
    425     __ Ldr(cp, ToMemOperand(context, kMustUseFramePointer));
    426   } else if (context->IsConstantOperand()) {
    427     HConstant* constant =
    428         chunk_->LookupConstant(LConstantOperand::cast(context));
    429     __ LoadHeapObject(cp,
    430                       Handle<HeapObject>::cast(constant->handle(isolate())));
    431   } else {
    432     UNREACHABLE();
    433   }
    434 }
    435 
    436 
    437 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
    438                                        int argc,
    439                                        LInstruction* instr,
    440                                        LOperand* context) {
    441   LoadContextFromDeferred(context);
    442   __ CallRuntimeSaveDoubles(id);
    443   RecordSafepointWithRegisters(
    444       instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
    445 }
    446 
    447 
    448 void LCodeGen::RecordAndWritePosition(int position) {
    449   if (position == RelocInfo::kNoPosition) return;
    450   masm()->positions_recorder()->RecordPosition(position);
    451 }
    452 
    453 
    454 void LCodeGen::RecordSafepointWithLazyDeopt(LInstruction* instr,
    455                                             SafepointMode safepoint_mode) {
    456   if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
    457     RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
    458   } else {
    459     DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
    460     RecordSafepointWithRegisters(
    461         instr->pointer_map(), 0, Safepoint::kLazyDeopt);
    462   }
    463 }
    464 
    465 
    466 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
    467                                Safepoint::Kind kind,
    468                                int arguments,
    469                                Safepoint::DeoptMode deopt_mode) {
    470   DCHECK(expected_safepoint_kind_ == kind);
    471 
    472   const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
    473   Safepoint safepoint = safepoints_.DefineSafepoint(
    474       masm(), kind, arguments, deopt_mode);
    475 
    476   for (int i = 0; i < operands->length(); i++) {
    477     LOperand* pointer = operands->at(i);
    478     if (pointer->IsStackSlot()) {
    479       safepoint.DefinePointerSlot(pointer->index(), zone());
    480     } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
    481       safepoint.DefinePointerRegister(ToRegister(pointer), zone());
    482     }
    483   }
    484 }
    485 
    486 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
    487                                Safepoint::DeoptMode deopt_mode) {
    488   RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
    489 }
    490 
    491 
    492 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
    493   LPointerMap empty_pointers(zone());
    494   RecordSafepoint(&empty_pointers, deopt_mode);
    495 }
    496 
    497 
    498 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
    499                                             int arguments,
    500                                             Safepoint::DeoptMode deopt_mode) {
    501   RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
    502 }
    503 
    504 
    505 bool LCodeGen::GenerateCode() {
    506   LPhase phase("Z_Code generation", chunk());
    507   DCHECK(is_unused());
    508   status_ = GENERATING;
    509 
    510   // Open a frame scope to indicate that there is a frame on the stack.  The
    511   // NONE indicates that the scope shouldn't actually generate code to set up
    512   // the frame (that is done in GeneratePrologue).
    513   FrameScope frame_scope(masm_, StackFrame::NONE);
    514 
    515   return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() &&
    516          GenerateJumpTable() && GenerateSafepointTable();
    517 }
    518 
    519 
    520 void LCodeGen::SaveCallerDoubles() {
    521   DCHECK(info()->saves_caller_doubles());
    522   DCHECK(NeedsEagerFrame());
    523   Comment(";;; Save clobbered callee double registers");
    524   BitVector* doubles = chunk()->allocated_double_registers();
    525   BitVector::Iterator iterator(doubles);
    526   int count = 0;
    527   while (!iterator.Done()) {
    528     // TODO(all): Is this supposed to save just the callee-saved doubles? It
    529     // looks like it's saving all of them.
    530     FPRegister value = FPRegister::from_code(iterator.Current());
    531     __ Poke(value, count * kDoubleSize);
    532     iterator.Advance();
    533     count++;
    534   }
    535 }
    536 
    537 
    538 void LCodeGen::RestoreCallerDoubles() {
    539   DCHECK(info()->saves_caller_doubles());
    540   DCHECK(NeedsEagerFrame());
    541   Comment(";;; Restore clobbered callee double registers");
    542   BitVector* doubles = chunk()->allocated_double_registers();
    543   BitVector::Iterator iterator(doubles);
    544   int count = 0;
    545   while (!iterator.Done()) {
    546     // TODO(all): Is this supposed to restore just the callee-saved doubles? It
    547     // looks like it's restoring all of them.
    548     FPRegister value = FPRegister::from_code(iterator.Current());
    549     __ Peek(value, count * kDoubleSize);
    550     iterator.Advance();
    551     count++;
    552   }
    553 }
    554 
    555 
    556 bool LCodeGen::GeneratePrologue() {
    557   DCHECK(is_generating());
    558 
    559   if (info()->IsOptimizing()) {
    560     ProfileEntryHookStub::MaybeCallEntryHook(masm_);
    561   }
    562 
    563   DCHECK(__ StackPointer().Is(jssp));
    564   info()->set_prologue_offset(masm_->pc_offset());
    565   if (NeedsEagerFrame()) {
    566     if (info()->IsStub()) {
    567       __ StubPrologue(
    568           StackFrame::STUB,
    569           GetStackSlotCount() + TypedFrameConstants::kFixedSlotCount);
    570     } else {
    571       __ Prologue(info()->GeneratePreagedPrologue());
    572       // Reserve space for the stack slots needed by the code.
    573       int slots = GetStackSlotCount();
    574       if (slots > 0) {
    575         __ Claim(slots, kPointerSize);
    576       }
    577     }
    578     frame_is_built_ = true;
    579   }
    580 
    581   if (info()->saves_caller_doubles()) {
    582     SaveCallerDoubles();
    583   }
    584   return !is_aborted();
    585 }
    586 
    587 
    588 void LCodeGen::DoPrologue(LPrologue* instr) {
    589   Comment(";;; Prologue begin");
    590 
    591   // Allocate a local context if needed.
    592   if (info()->scope()->num_heap_slots() > 0) {
    593     Comment(";;; Allocate local context");
    594     bool need_write_barrier = true;
    595     // Argument to NewContext is the function, which is in x1.
    596     int slots = info()->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
    597     Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt;
    598     if (info()->scope()->is_script_scope()) {
    599       __ Mov(x10, Operand(info()->scope()->GetScopeInfo(info()->isolate())));
    600       __ Push(x1, x10);
    601       __ CallRuntime(Runtime::kNewScriptContext);
    602       deopt_mode = Safepoint::kLazyDeopt;
    603     } else if (slots <= FastNewContextStub::kMaximumSlots) {
    604       FastNewContextStub stub(isolate(), slots);
    605       __ CallStub(&stub);
    606       // Result of FastNewContextStub is always in new space.
    607       need_write_barrier = false;
    608     } else {
    609       __ Push(x1);
    610       __ CallRuntime(Runtime::kNewFunctionContext);
    611     }
    612     RecordSafepoint(deopt_mode);
    613     // Context is returned in x0. It replaces the context passed to us. It's
    614     // saved in the stack and kept live in cp.
    615     __ Mov(cp, x0);
    616     __ Str(x0, MemOperand(fp, StandardFrameConstants::kContextOffset));
    617     // Copy any necessary parameters into the context.
    618     int num_parameters = scope()->num_parameters();
    619     int first_parameter = scope()->has_this_declaration() ? -1 : 0;
    620     for (int i = first_parameter; i < num_parameters; i++) {
    621       Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i);
    622       if (var->IsContextSlot()) {
    623         Register value = x0;
    624         Register scratch = x3;
    625 
    626         int parameter_offset = StandardFrameConstants::kCallerSPOffset +
    627             (num_parameters - 1 - i) * kPointerSize;
    628         // Load parameter from stack.
    629         __ Ldr(value, MemOperand(fp, parameter_offset));
    630         // Store it in the context.
    631         MemOperand target = ContextMemOperand(cp, var->index());
    632         __ Str(value, target);
    633         // Update the write barrier. This clobbers value and scratch.
    634         if (need_write_barrier) {
    635           __ RecordWriteContextSlot(cp, static_cast<int>(target.offset()),
    636                                     value, scratch, GetLinkRegisterState(),
    637                                     kSaveFPRegs);
    638         } else if (FLAG_debug_code) {
    639           Label done;
    640           __ JumpIfInNewSpace(cp, &done);
    641           __ Abort(kExpectedNewSpaceObject);
    642           __ bind(&done);
    643         }
    644       }
    645     }
    646     Comment(";;; End allocate local context");
    647   }
    648 
    649   Comment(";;; Prologue end");
    650 }
    651 
    652 
    653 void LCodeGen::GenerateOsrPrologue() {
    654   // Generate the OSR entry prologue at the first unknown OSR value, or if there
    655   // are none, at the OSR entrypoint instruction.
    656   if (osr_pc_offset_ >= 0) return;
    657 
    658   osr_pc_offset_ = masm()->pc_offset();
    659 
    660   // Adjust the frame size, subsuming the unoptimized frame into the
    661   // optimized frame.
    662   int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
    663   DCHECK(slots >= 0);
    664   __ Claim(slots);
    665 }
    666 
    667 
    668 void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
    669   if (instr->IsCall()) {
    670     EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
    671   }
    672   if (!instr->IsLazyBailout() && !instr->IsGap()) {
    673     safepoints_.BumpLastLazySafepointIndex();
    674   }
    675 }
    676 
    677 
    678 bool LCodeGen::GenerateDeferredCode() {
    679   DCHECK(is_generating());
    680   if (deferred_.length() > 0) {
    681     for (int i = 0; !is_aborted() && (i < deferred_.length()); i++) {
    682       LDeferredCode* code = deferred_[i];
    683 
    684       HValue* value =
    685           instructions_->at(code->instruction_index())->hydrogen_value();
    686       RecordAndWritePosition(
    687           chunk()->graph()->SourcePositionToScriptPosition(value->position()));
    688 
    689       Comment(";;; <@%d,#%d> "
    690               "-------------------- Deferred %s --------------------",
    691               code->instruction_index(),
    692               code->instr()->hydrogen_value()->id(),
    693               code->instr()->Mnemonic());
    694 
    695       __ Bind(code->entry());
    696 
    697       if (NeedsDeferredFrame()) {
    698         Comment(";;; Build frame");
    699         DCHECK(!frame_is_built_);
    700         DCHECK(info()->IsStub());
    701         frame_is_built_ = true;
    702         __ Push(lr, fp);
    703         __ Mov(fp, Smi::FromInt(StackFrame::STUB));
    704         __ Push(fp);
    705         __ Add(fp, __ StackPointer(),
    706                TypedFrameConstants::kFixedFrameSizeFromFp);
    707         Comment(";;; Deferred code");
    708       }
    709 
    710       code->Generate();
    711 
    712       if (NeedsDeferredFrame()) {
    713         Comment(";;; Destroy frame");
    714         DCHECK(frame_is_built_);
    715         __ Pop(xzr, fp, lr);
    716         frame_is_built_ = false;
    717       }
    718 
    719       __ B(code->exit());
    720     }
    721   }
    722 
    723   // Force constant pool emission at the end of the deferred code to make
    724   // sure that no constant pools are emitted after deferred code because
    725   // deferred code generation is the last step which generates code. The two
    726   // following steps will only output data used by crakshaft.
    727   masm()->CheckConstPool(true, false);
    728 
    729   return !is_aborted();
    730 }
    731 
    732 
    733 bool LCodeGen::GenerateJumpTable() {
    734   Label needs_frame, call_deopt_entry;
    735 
    736   if (jump_table_.length() > 0) {
    737     Comment(";;; -------------------- Jump table --------------------");
    738     Address base = jump_table_[0]->address;
    739 
    740     UseScratchRegisterScope temps(masm());
    741     Register entry_offset = temps.AcquireX();
    742 
    743     int length = jump_table_.length();
    744     for (int i = 0; i < length; i++) {
    745       Deoptimizer::JumpTableEntry* table_entry = jump_table_[i];
    746       __ Bind(&table_entry->label);
    747 
    748       Address entry = table_entry->address;
    749       DeoptComment(table_entry->deopt_info);
    750 
    751       // Second-level deopt table entries are contiguous and small, so instead
    752       // of loading the full, absolute address of each one, load the base
    753       // address and add an immediate offset.
    754       __ Mov(entry_offset, entry - base);
    755 
    756       if (table_entry->needs_frame) {
    757         DCHECK(!info()->saves_caller_doubles());
    758         Comment(";;; call deopt with frame");
    759         // Save lr before Bl, fp will be adjusted in the needs_frame code.
    760         __ Push(lr, fp);
    761         // Reuse the existing needs_frame code.
    762         __ Bl(&needs_frame);
    763       } else {
    764         // There is nothing special to do, so just continue to the second-level
    765         // table.
    766         __ Bl(&call_deopt_entry);
    767       }
    768 
    769       masm()->CheckConstPool(false, false);
    770     }
    771 
    772     if (needs_frame.is_linked()) {
    773       // This variant of deopt can only be used with stubs. Since we don't
    774       // have a function pointer to install in the stack frame that we're
    775       // building, install a special marker there instead.
    776       DCHECK(info()->IsStub());
    777 
    778       Comment(";;; needs_frame common code");
    779       UseScratchRegisterScope temps(masm());
    780       Register stub_marker = temps.AcquireX();
    781       __ Bind(&needs_frame);
    782       __ Mov(stub_marker, Smi::FromInt(StackFrame::STUB));
    783       __ Push(cp, stub_marker);
    784       __ Add(fp, __ StackPointer(), 2 * kPointerSize);
    785     }
    786 
    787     // Generate common code for calling the second-level deopt table.
    788     __ Bind(&call_deopt_entry);
    789 
    790     if (info()->saves_caller_doubles()) {
    791       DCHECK(info()->IsStub());
    792       RestoreCallerDoubles();
    793     }
    794 
    795     Register deopt_entry = temps.AcquireX();
    796     __ Mov(deopt_entry, Operand(reinterpret_cast<uint64_t>(base),
    797                                 RelocInfo::RUNTIME_ENTRY));
    798     __ Add(deopt_entry, deopt_entry, entry_offset);
    799     __ Br(deopt_entry);
    800   }
    801 
    802   // Force constant pool emission at the end of the deopt jump table to make
    803   // sure that no constant pools are emitted after.
    804   masm()->CheckConstPool(true, false);
    805 
    806   // The deoptimization jump table is the last part of the instruction
    807   // sequence. Mark the generated code as done unless we bailed out.
    808   if (!is_aborted()) status_ = DONE;
    809   return !is_aborted();
    810 }
    811 
    812 
    813 bool LCodeGen::GenerateSafepointTable() {
    814   DCHECK(is_done());
    815   // We do not know how much data will be emitted for the safepoint table, so
    816   // force emission of the veneer pool.
    817   masm()->CheckVeneerPool(true, true);
    818   safepoints_.Emit(masm(), GetTotalFrameSlotCount());
    819   return !is_aborted();
    820 }
    821 
    822 
    823 void LCodeGen::FinishCode(Handle<Code> code) {
    824   DCHECK(is_done());
    825   code->set_stack_slots(GetTotalFrameSlotCount());
    826   code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
    827   PopulateDeoptimizationData(code);
    828 }
    829 
    830 
    831 void LCodeGen::DeoptimizeBranch(
    832     LInstruction* instr, Deoptimizer::DeoptReason deopt_reason,
    833     BranchType branch_type, Register reg, int bit,
    834     Deoptimizer::BailoutType* override_bailout_type) {
    835   LEnvironment* environment = instr->environment();
    836   RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
    837   Deoptimizer::BailoutType bailout_type =
    838     info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER;
    839 
    840   if (override_bailout_type != NULL) {
    841     bailout_type = *override_bailout_type;
    842   }
    843 
    844   DCHECK(environment->HasBeenRegistered());
    845   int id = environment->deoptimization_index();
    846   Address entry =
    847       Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
    848 
    849   if (entry == NULL) {
    850     Abort(kBailoutWasNotPrepared);
    851   }
    852 
    853   if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
    854     Label not_zero;
    855     ExternalReference count = ExternalReference::stress_deopt_count(isolate());
    856 
    857     __ Push(x0, x1, x2);
    858     __ Mrs(x2, NZCV);
    859     __ Mov(x0, count);
    860     __ Ldr(w1, MemOperand(x0));
    861     __ Subs(x1, x1, 1);
    862     __ B(gt, &not_zero);
    863     __ Mov(w1, FLAG_deopt_every_n_times);
    864     __ Str(w1, MemOperand(x0));
    865     __ Pop(x2, x1, x0);
    866     DCHECK(frame_is_built_);
    867     __ Call(entry, RelocInfo::RUNTIME_ENTRY);
    868     __ Unreachable();
    869 
    870     __ Bind(&not_zero);
    871     __ Str(w1, MemOperand(x0));
    872     __ Msr(NZCV, x2);
    873     __ Pop(x2, x1, x0);
    874   }
    875 
    876   if (info()->ShouldTrapOnDeopt()) {
    877     Label dont_trap;
    878     __ B(&dont_trap, InvertBranchType(branch_type), reg, bit);
    879     __ Debug("trap_on_deopt", __LINE__, BREAK);
    880     __ Bind(&dont_trap);
    881   }
    882 
    883   Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason, id);
    884 
    885   DCHECK(info()->IsStub() || frame_is_built_);
    886   // Go through jump table if we need to build frame, or restore caller doubles.
    887   if (branch_type == always &&
    888       frame_is_built_ && !info()->saves_caller_doubles()) {
    889     DeoptComment(deopt_info);
    890     __ Call(entry, RelocInfo::RUNTIME_ENTRY);
    891   } else {
    892     Deoptimizer::JumpTableEntry* table_entry =
    893         new (zone()) Deoptimizer::JumpTableEntry(
    894             entry, deopt_info, bailout_type, !frame_is_built_);
    895     // We often have several deopts to the same entry, reuse the last
    896     // jump entry if this is the case.
    897     if (FLAG_trace_deopt || isolate()->is_profiling() ||
    898         jump_table_.is_empty() ||
    899         !table_entry->IsEquivalentTo(*jump_table_.last())) {
    900       jump_table_.Add(table_entry, zone());
    901     }
    902     __ B(&jump_table_.last()->label, branch_type, reg, bit);
    903   }
    904 }
    905 
    906 
    907 void LCodeGen::Deoptimize(LInstruction* instr,
    908                           Deoptimizer::DeoptReason deopt_reason,
    909                           Deoptimizer::BailoutType* override_bailout_type) {
    910   DeoptimizeBranch(instr, deopt_reason, always, NoReg, -1,
    911                    override_bailout_type);
    912 }
    913 
    914 
    915 void LCodeGen::DeoptimizeIf(Condition cond, LInstruction* instr,
    916                             Deoptimizer::DeoptReason deopt_reason) {
    917   DeoptimizeBranch(instr, deopt_reason, static_cast<BranchType>(cond));
    918 }
    919 
    920 
    921 void LCodeGen::DeoptimizeIfZero(Register rt, LInstruction* instr,
    922                                 Deoptimizer::DeoptReason deopt_reason) {
    923   DeoptimizeBranch(instr, deopt_reason, reg_zero, rt);
    924 }
    925 
    926 
    927 void LCodeGen::DeoptimizeIfNotZero(Register rt, LInstruction* instr,
    928                                    Deoptimizer::DeoptReason deopt_reason) {
    929   DeoptimizeBranch(instr, deopt_reason, reg_not_zero, rt);
    930 }
    931 
    932 
    933 void LCodeGen::DeoptimizeIfNegative(Register rt, LInstruction* instr,
    934                                     Deoptimizer::DeoptReason deopt_reason) {
    935   int sign_bit = rt.Is64Bits() ? kXSignBit : kWSignBit;
    936   DeoptimizeIfBitSet(rt, sign_bit, instr, deopt_reason);
    937 }
    938 
    939 
    940 void LCodeGen::DeoptimizeIfSmi(Register rt, LInstruction* instr,
    941                                Deoptimizer::DeoptReason deopt_reason) {
    942   DeoptimizeIfBitClear(rt, MaskToBit(kSmiTagMask), instr, deopt_reason);
    943 }
    944 
    945 
    946 void LCodeGen::DeoptimizeIfNotSmi(Register rt, LInstruction* instr,
    947                                   Deoptimizer::DeoptReason deopt_reason) {
    948   DeoptimizeIfBitSet(rt, MaskToBit(kSmiTagMask), instr, deopt_reason);
    949 }
    950 
    951 
    952 void LCodeGen::DeoptimizeIfRoot(Register rt, Heap::RootListIndex index,
    953                                 LInstruction* instr,
    954                                 Deoptimizer::DeoptReason deopt_reason) {
    955   __ CompareRoot(rt, index);
    956   DeoptimizeIf(eq, instr, deopt_reason);
    957 }
    958 
    959 
    960 void LCodeGen::DeoptimizeIfNotRoot(Register rt, Heap::RootListIndex index,
    961                                    LInstruction* instr,
    962                                    Deoptimizer::DeoptReason deopt_reason) {
    963   __ CompareRoot(rt, index);
    964   DeoptimizeIf(ne, instr, deopt_reason);
    965 }
    966 
    967 
    968 void LCodeGen::DeoptimizeIfMinusZero(DoubleRegister input, LInstruction* instr,
    969                                      Deoptimizer::DeoptReason deopt_reason) {
    970   __ TestForMinusZero(input);
    971   DeoptimizeIf(vs, instr, deopt_reason);
    972 }
    973 
    974 
    975 void LCodeGen::DeoptimizeIfNotHeapNumber(Register object, LInstruction* instr) {
    976   __ CompareObjectMap(object, Heap::kHeapNumberMapRootIndex);
    977   DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber);
    978 }
    979 
    980 
    981 void LCodeGen::DeoptimizeIfBitSet(Register rt, int bit, LInstruction* instr,
    982                                   Deoptimizer::DeoptReason deopt_reason) {
    983   DeoptimizeBranch(instr, deopt_reason, reg_bit_set, rt, bit);
    984 }
    985 
    986 
    987 void LCodeGen::DeoptimizeIfBitClear(Register rt, int bit, LInstruction* instr,
    988                                     Deoptimizer::DeoptReason deopt_reason) {
    989   DeoptimizeBranch(instr, deopt_reason, reg_bit_clear, rt, bit);
    990 }
    991 
    992 
    993 void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
    994   if (info()->ShouldEnsureSpaceForLazyDeopt()) {
    995     // Ensure that we have enough space after the previous lazy-bailout
    996     // instruction for patching the code here.
    997     intptr_t current_pc = masm()->pc_offset();
    998 
    999     if (current_pc < (last_lazy_deopt_pc_ + space_needed)) {
   1000       ptrdiff_t padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
   1001       DCHECK((padding_size % kInstructionSize) == 0);
   1002       InstructionAccurateScope instruction_accurate(
   1003           masm(), padding_size / kInstructionSize);
   1004 
   1005       while (padding_size > 0) {
   1006         __ nop();
   1007         padding_size -= kInstructionSize;
   1008       }
   1009     }
   1010   }
   1011   last_lazy_deopt_pc_ = masm()->pc_offset();
   1012 }
   1013 
   1014 
   1015 Register LCodeGen::ToRegister(LOperand* op) const {
   1016   // TODO(all): support zero register results, as ToRegister32.
   1017   DCHECK((op != NULL) && op->IsRegister());
   1018   return Register::from_code(op->index());
   1019 }
   1020 
   1021 
   1022 Register LCodeGen::ToRegister32(LOperand* op) const {
   1023   DCHECK(op != NULL);
   1024   if (op->IsConstantOperand()) {
   1025     // If this is a constant operand, the result must be the zero register.
   1026     DCHECK(ToInteger32(LConstantOperand::cast(op)) == 0);
   1027     return wzr;
   1028   } else {
   1029     return ToRegister(op).W();
   1030   }
   1031 }
   1032 
   1033 
   1034 Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
   1035   HConstant* constant = chunk_->LookupConstant(op);
   1036   return Smi::FromInt(constant->Integer32Value());
   1037 }
   1038 
   1039 
   1040 DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
   1041   DCHECK((op != NULL) && op->IsDoubleRegister());
   1042   return DoubleRegister::from_code(op->index());
   1043 }
   1044 
   1045 
   1046 Operand LCodeGen::ToOperand(LOperand* op) {
   1047   DCHECK(op != NULL);
   1048   if (op->IsConstantOperand()) {
   1049     LConstantOperand* const_op = LConstantOperand::cast(op);
   1050     HConstant* constant = chunk()->LookupConstant(const_op);
   1051     Representation r = chunk_->LookupLiteralRepresentation(const_op);
   1052     if (r.IsSmi()) {
   1053       DCHECK(constant->HasSmiValue());
   1054       return Operand(Smi::FromInt(constant->Integer32Value()));
   1055     } else if (r.IsInteger32()) {
   1056       DCHECK(constant->HasInteger32Value());
   1057       return Operand(constant->Integer32Value());
   1058     } else if (r.IsDouble()) {
   1059       Abort(kToOperandUnsupportedDoubleImmediate);
   1060     }
   1061     DCHECK(r.IsTagged());
   1062     return Operand(constant->handle(isolate()));
   1063   } else if (op->IsRegister()) {
   1064     return Operand(ToRegister(op));
   1065   } else if (op->IsDoubleRegister()) {
   1066     Abort(kToOperandIsDoubleRegisterUnimplemented);
   1067     return Operand(0);
   1068   }
   1069   // Stack slots not implemented, use ToMemOperand instead.
   1070   UNREACHABLE();
   1071   return Operand(0);
   1072 }
   1073 
   1074 
   1075 Operand LCodeGen::ToOperand32(LOperand* op) {
   1076   DCHECK(op != NULL);
   1077   if (op->IsRegister()) {
   1078     return Operand(ToRegister32(op));
   1079   } else if (op->IsConstantOperand()) {
   1080     LConstantOperand* const_op = LConstantOperand::cast(op);
   1081     HConstant* constant = chunk()->LookupConstant(const_op);
   1082     Representation r = chunk_->LookupLiteralRepresentation(const_op);
   1083     if (r.IsInteger32()) {
   1084       return Operand(constant->Integer32Value());
   1085     } else {
   1086       // Other constants not implemented.
   1087       Abort(kToOperand32UnsupportedImmediate);
   1088     }
   1089   }
   1090   // Other cases are not implemented.
   1091   UNREACHABLE();
   1092   return Operand(0);
   1093 }
   1094 
   1095 
   1096 static int64_t ArgumentsOffsetWithoutFrame(int index) {
   1097   DCHECK(index < 0);
   1098   return -(index + 1) * kPointerSize;
   1099 }
   1100 
   1101 
   1102 MemOperand LCodeGen::ToMemOperand(LOperand* op, StackMode stack_mode) const {
   1103   DCHECK(op != NULL);
   1104   DCHECK(!op->IsRegister());
   1105   DCHECK(!op->IsDoubleRegister());
   1106   DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
   1107   if (NeedsEagerFrame()) {
   1108     int fp_offset = FrameSlotToFPOffset(op->index());
   1109     // Loads and stores have a bigger reach in positive offset than negative.
   1110     // We try to access using jssp (positive offset) first, then fall back to
   1111     // fp (negative offset) if that fails.
   1112     //
   1113     // We can reference a stack slot from jssp only if we know how much we've
   1114     // put on the stack. We don't know this in the following cases:
   1115     // - stack_mode != kCanUseStackPointer: this is the case when deferred
   1116     //   code has saved the registers.
   1117     // - saves_caller_doubles(): some double registers have been pushed, jssp
   1118     //   references the end of the double registers and not the end of the stack
   1119     //   slots.
   1120     // In both of the cases above, we _could_ add the tracking information
   1121     // required so that we can use jssp here, but in practice it isn't worth it.
   1122     if ((stack_mode == kCanUseStackPointer) &&
   1123         !info()->saves_caller_doubles()) {
   1124       int jssp_offset_to_fp =
   1125           (pushed_arguments_ + GetTotalFrameSlotCount()) * kPointerSize -
   1126           StandardFrameConstants::kFixedFrameSizeAboveFp;
   1127       int jssp_offset = fp_offset + jssp_offset_to_fp;
   1128       if (masm()->IsImmLSScaled(jssp_offset, LSDoubleWord)) {
   1129         return MemOperand(masm()->StackPointer(), jssp_offset);
   1130       }
   1131     }
   1132     return MemOperand(fp, fp_offset);
   1133   } else {
   1134     // Retrieve parameter without eager stack-frame relative to the
   1135     // stack-pointer.
   1136     return MemOperand(masm()->StackPointer(),
   1137                       ArgumentsOffsetWithoutFrame(op->index()));
   1138   }
   1139 }
   1140 
   1141 
   1142 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
   1143   HConstant* constant = chunk_->LookupConstant(op);
   1144   DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
   1145   return constant->handle(isolate());
   1146 }
   1147 
   1148 
   1149 template <class LI>
   1150 Operand LCodeGen::ToShiftedRightOperand32(LOperand* right, LI* shift_info) {
   1151   if (shift_info->shift() == NO_SHIFT) {
   1152     return ToOperand32(right);
   1153   } else {
   1154     return Operand(
   1155         ToRegister32(right),
   1156         shift_info->shift(),
   1157         JSShiftAmountFromLConstant(shift_info->shift_amount()));
   1158   }
   1159 }
   1160 
   1161 
   1162 bool LCodeGen::IsSmi(LConstantOperand* op) const {
   1163   return chunk_->LookupLiteralRepresentation(op).IsSmi();
   1164 }
   1165 
   1166 
   1167 bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const {
   1168   return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
   1169 }
   1170 
   1171 
   1172 int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
   1173   HConstant* constant = chunk_->LookupConstant(op);
   1174   return constant->Integer32Value();
   1175 }
   1176 
   1177 
   1178 double LCodeGen::ToDouble(LConstantOperand* op) const {
   1179   HConstant* constant = chunk_->LookupConstant(op);
   1180   DCHECK(constant->HasDoubleValue());
   1181   return constant->DoubleValue();
   1182 }
   1183 
   1184 
   1185 Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
   1186   Condition cond = nv;
   1187   switch (op) {
   1188     case Token::EQ:
   1189     case Token::EQ_STRICT:
   1190       cond = eq;
   1191       break;
   1192     case Token::NE:
   1193     case Token::NE_STRICT:
   1194       cond = ne;
   1195       break;
   1196     case Token::LT:
   1197       cond = is_unsigned ? lo : lt;
   1198       break;
   1199     case Token::GT:
   1200       cond = is_unsigned ? hi : gt;
   1201       break;
   1202     case Token::LTE:
   1203       cond = is_unsigned ? ls : le;
   1204       break;
   1205     case Token::GTE:
   1206       cond = is_unsigned ? hs : ge;
   1207       break;
   1208     case Token::IN:
   1209     case Token::INSTANCEOF:
   1210     default:
   1211       UNREACHABLE();
   1212   }
   1213   return cond;
   1214 }
   1215 
   1216 
   1217 template<class InstrType>
   1218 void LCodeGen::EmitBranchGeneric(InstrType instr,
   1219                                  const BranchGenerator& branch) {
   1220   int left_block = instr->TrueDestination(chunk_);
   1221   int right_block = instr->FalseDestination(chunk_);
   1222 
   1223   int next_block = GetNextEmittedBlock();
   1224 
   1225   if (right_block == left_block) {
   1226     EmitGoto(left_block);
   1227   } else if (left_block == next_block) {
   1228     branch.EmitInverted(chunk_->GetAssemblyLabel(right_block));
   1229   } else {
   1230     branch.Emit(chunk_->GetAssemblyLabel(left_block));
   1231     if (right_block != next_block) {
   1232       __ B(chunk_->GetAssemblyLabel(right_block));
   1233     }
   1234   }
   1235 }
   1236 
   1237 
   1238 template<class InstrType>
   1239 void LCodeGen::EmitBranch(InstrType instr, Condition condition) {
   1240   DCHECK((condition != al) && (condition != nv));
   1241   BranchOnCondition branch(this, condition);
   1242   EmitBranchGeneric(instr, branch);
   1243 }
   1244 
   1245 
   1246 template<class InstrType>
   1247 void LCodeGen::EmitCompareAndBranch(InstrType instr,
   1248                                     Condition condition,
   1249                                     const Register& lhs,
   1250                                     const Operand& rhs) {
   1251   DCHECK((condition != al) && (condition != nv));
   1252   CompareAndBranch branch(this, condition, lhs, rhs);
   1253   EmitBranchGeneric(instr, branch);
   1254 }
   1255 
   1256 
   1257 template<class InstrType>
   1258 void LCodeGen::EmitTestAndBranch(InstrType instr,
   1259                                  Condition condition,
   1260                                  const Register& value,
   1261                                  uint64_t mask) {
   1262   DCHECK((condition != al) && (condition != nv));
   1263   TestAndBranch branch(this, condition, value, mask);
   1264   EmitBranchGeneric(instr, branch);
   1265 }
   1266 
   1267 
   1268 template<class InstrType>
   1269 void LCodeGen::EmitBranchIfNonZeroNumber(InstrType instr,
   1270                                          const FPRegister& value,
   1271                                          const FPRegister& scratch) {
   1272   BranchIfNonZeroNumber branch(this, value, scratch);
   1273   EmitBranchGeneric(instr, branch);
   1274 }
   1275 
   1276 
   1277 template<class InstrType>
   1278 void LCodeGen::EmitBranchIfHeapNumber(InstrType instr,
   1279                                       const Register& value) {
   1280   BranchIfHeapNumber branch(this, value);
   1281   EmitBranchGeneric(instr, branch);
   1282 }
   1283 
   1284 
   1285 template<class InstrType>
   1286 void LCodeGen::EmitBranchIfRoot(InstrType instr,
   1287                                 const Register& value,
   1288                                 Heap::RootListIndex index) {
   1289   BranchIfRoot branch(this, value, index);
   1290   EmitBranchGeneric(instr, branch);
   1291 }
   1292 
   1293 
   1294 void LCodeGen::DoGap(LGap* gap) {
   1295   for (int i = LGap::FIRST_INNER_POSITION;
   1296        i <= LGap::LAST_INNER_POSITION;
   1297        i++) {
   1298     LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
   1299     LParallelMove* move = gap->GetParallelMove(inner_pos);
   1300     if (move != NULL) {
   1301       resolver_.Resolve(move);
   1302     }
   1303   }
   1304 }
   1305 
   1306 
   1307 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
   1308   Register arguments = ToRegister(instr->arguments());
   1309   Register result = ToRegister(instr->result());
   1310 
   1311   // The pointer to the arguments array come from DoArgumentsElements.
   1312   // It does not point directly to the arguments and there is an offest of
   1313   // two words that we must take into account when accessing an argument.
   1314   // Subtracting the index from length accounts for one, so we add one more.
   1315 
   1316   if (instr->length()->IsConstantOperand() &&
   1317       instr->index()->IsConstantOperand()) {
   1318     int index = ToInteger32(LConstantOperand::cast(instr->index()));
   1319     int length = ToInteger32(LConstantOperand::cast(instr->length()));
   1320     int offset = ((length - index) + 1) * kPointerSize;
   1321     __ Ldr(result, MemOperand(arguments, offset));
   1322   } else if (instr->index()->IsConstantOperand()) {
   1323     Register length = ToRegister32(instr->length());
   1324     int index = ToInteger32(LConstantOperand::cast(instr->index()));
   1325     int loc = index - 1;
   1326     if (loc != 0) {
   1327       __ Sub(result.W(), length, loc);
   1328       __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2));
   1329     } else {
   1330       __ Ldr(result, MemOperand(arguments, length, UXTW, kPointerSizeLog2));
   1331     }
   1332   } else {
   1333     Register length = ToRegister32(instr->length());
   1334     Operand index = ToOperand32(instr->index());
   1335     __ Sub(result.W(), length, index);
   1336     __ Add(result.W(), result.W(), 1);
   1337     __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2));
   1338   }
   1339 }
   1340 
   1341 
   1342 void LCodeGen::DoAddE(LAddE* instr) {
   1343   Register result = ToRegister(instr->result());
   1344   Register left = ToRegister(instr->left());
   1345   Operand right = Operand(x0);  // Dummy initialization.
   1346   if (instr->hydrogen()->external_add_type() == AddOfExternalAndTagged) {
   1347     right = Operand(ToRegister(instr->right()));
   1348   } else if (instr->right()->IsConstantOperand()) {
   1349     right = ToInteger32(LConstantOperand::cast(instr->right()));
   1350   } else {
   1351     right = Operand(ToRegister32(instr->right()), SXTW);
   1352   }
   1353 
   1354   DCHECK(!instr->hydrogen()->CheckFlag(HValue::kCanOverflow));
   1355   __ Add(result, left, right);
   1356 }
   1357 
   1358 
   1359 void LCodeGen::DoAddI(LAddI* instr) {
   1360   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
   1361   Register result = ToRegister32(instr->result());
   1362   Register left = ToRegister32(instr->left());
   1363   Operand right = ToShiftedRightOperand32(instr->right(), instr);
   1364 
   1365   if (can_overflow) {
   1366     __ Adds(result, left, right);
   1367     DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
   1368   } else {
   1369     __ Add(result, left, right);
   1370   }
   1371 }
   1372 
   1373 
   1374 void LCodeGen::DoAddS(LAddS* instr) {
   1375   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
   1376   Register result = ToRegister(instr->result());
   1377   Register left = ToRegister(instr->left());
   1378   Operand right = ToOperand(instr->right());
   1379   if (can_overflow) {
   1380     __ Adds(result, left, right);
   1381     DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
   1382   } else {
   1383     __ Add(result, left, right);
   1384   }
   1385 }
   1386 
   1387 
   1388 void LCodeGen::DoAllocate(LAllocate* instr) {
   1389   class DeferredAllocate: public LDeferredCode {
   1390    public:
   1391     DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
   1392         : LDeferredCode(codegen), instr_(instr) { }
   1393     virtual void Generate() { codegen()->DoDeferredAllocate(instr_); }
   1394     virtual LInstruction* instr() { return instr_; }
   1395    private:
   1396     LAllocate* instr_;
   1397   };
   1398 
   1399   DeferredAllocate* deferred = new(zone()) DeferredAllocate(this, instr);
   1400 
   1401   Register result = ToRegister(instr->result());
   1402   Register temp1 = ToRegister(instr->temp1());
   1403   Register temp2 = ToRegister(instr->temp2());
   1404 
   1405   // Allocate memory for the object.
   1406   AllocationFlags flags = NO_ALLOCATION_FLAGS;
   1407   if (instr->hydrogen()->MustAllocateDoubleAligned()) {
   1408     flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
   1409   }
   1410 
   1411   if (instr->hydrogen()->IsOldSpaceAllocation()) {
   1412     DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
   1413     flags = static_cast<AllocationFlags>(flags | PRETENURE);
   1414   }
   1415 
   1416   if (instr->hydrogen()->IsAllocationFoldingDominator()) {
   1417     flags = static_cast<AllocationFlags>(flags | ALLOCATION_FOLDING_DOMINATOR);
   1418   }
   1419   DCHECK(!instr->hydrogen()->IsAllocationFolded());
   1420 
   1421   if (instr->size()->IsConstantOperand()) {
   1422     int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
   1423     CHECK(size <= Page::kMaxRegularHeapObjectSize);
   1424     __ Allocate(size, result, temp1, temp2, deferred->entry(), flags);
   1425   } else {
   1426     Register size = ToRegister32(instr->size());
   1427     __ Sxtw(size.X(), size);
   1428     __ Allocate(size.X(), result, temp1, temp2, deferred->entry(), flags);
   1429   }
   1430 
   1431   __ Bind(deferred->exit());
   1432 
   1433   if (instr->hydrogen()->MustPrefillWithFiller()) {
   1434     Register start = temp1;
   1435     Register end = temp2;
   1436     Register filler = ToRegister(instr->temp3());
   1437 
   1438     __ Sub(start, result, kHeapObjectTag);
   1439 
   1440     if (instr->size()->IsConstantOperand()) {
   1441       int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
   1442       __ Add(end, start, size);
   1443     } else {
   1444       __ Add(end, start, ToRegister(instr->size()));
   1445     }
   1446     __ LoadRoot(filler, Heap::kOnePointerFillerMapRootIndex);
   1447     __ InitializeFieldsWithFiller(start, end, filler);
   1448   } else {
   1449     DCHECK(instr->temp3() == NULL);
   1450   }
   1451 }
   1452 
   1453 
   1454 void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
   1455   // TODO(3095996): Get rid of this. For now, we need to make the
   1456   // result register contain a valid pointer because it is already
   1457   // contained in the register pointer map.
   1458   __ Mov(ToRegister(instr->result()), Smi::FromInt(0));
   1459 
   1460   PushSafepointRegistersScope scope(this);
   1461   // We're in a SafepointRegistersScope so we can use any scratch registers.
   1462   Register size = x0;
   1463   if (instr->size()->IsConstantOperand()) {
   1464     __ Mov(size, ToSmi(LConstantOperand::cast(instr->size())));
   1465   } else {
   1466     __ SmiTag(size, ToRegister32(instr->size()).X());
   1467   }
   1468   int flags = AllocateDoubleAlignFlag::encode(
   1469       instr->hydrogen()->MustAllocateDoubleAligned());
   1470   if (instr->hydrogen()->IsOldSpaceAllocation()) {
   1471     DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
   1472     flags = AllocateTargetSpace::update(flags, OLD_SPACE);
   1473   } else {
   1474     flags = AllocateTargetSpace::update(flags, NEW_SPACE);
   1475   }
   1476   __ Mov(x10, Smi::FromInt(flags));
   1477   __ Push(size, x10);
   1478 
   1479   CallRuntimeFromDeferred(
   1480       Runtime::kAllocateInTargetSpace, 2, instr, instr->context());
   1481   __ StoreToSafepointRegisterSlot(x0, ToRegister(instr->result()));
   1482 
   1483   if (instr->hydrogen()->IsAllocationFoldingDominator()) {
   1484     AllocationFlags allocation_flags = NO_ALLOCATION_FLAGS;
   1485     if (instr->hydrogen()->IsOldSpaceAllocation()) {
   1486       DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
   1487       allocation_flags = static_cast<AllocationFlags>(flags | PRETENURE);
   1488     }
   1489     // If the allocation folding dominator allocate triggered a GC, allocation
   1490     // happend in the runtime. We have to reset the top pointer to virtually
   1491     // undo the allocation.
   1492     ExternalReference allocation_top =
   1493         AllocationUtils::GetAllocationTopReference(isolate(), allocation_flags);
   1494     Register top_address = x10;
   1495     __ Sub(x0, x0, Operand(kHeapObjectTag));
   1496     __ Mov(top_address, Operand(allocation_top));
   1497     __ Str(x0, MemOperand(top_address));
   1498     __ Add(x0, x0, Operand(kHeapObjectTag));
   1499   }
   1500 }
   1501 
   1502 void LCodeGen::DoFastAllocate(LFastAllocate* instr) {
   1503   DCHECK(instr->hydrogen()->IsAllocationFolded());
   1504   DCHECK(!instr->hydrogen()->IsAllocationFoldingDominator());
   1505   Register result = ToRegister(instr->result());
   1506   Register scratch1 = ToRegister(instr->temp1());
   1507   Register scratch2 = ToRegister(instr->temp2());
   1508 
   1509   AllocationFlags flags = ALLOCATION_FOLDED;
   1510   if (instr->hydrogen()->MustAllocateDoubleAligned()) {
   1511     flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
   1512   }
   1513   if (instr->hydrogen()->IsOldSpaceAllocation()) {
   1514     DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
   1515     flags = static_cast<AllocationFlags>(flags | PRETENURE);
   1516   }
   1517   if (instr->size()->IsConstantOperand()) {
   1518     int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
   1519     CHECK(size <= Page::kMaxRegularHeapObjectSize);
   1520     __ FastAllocate(size, result, scratch1, scratch2, flags);
   1521   } else {
   1522     Register size = ToRegister(instr->size());
   1523     __ FastAllocate(size, result, scratch1, scratch2, flags);
   1524   }
   1525 }
   1526 
   1527 
   1528 void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
   1529   Register receiver = ToRegister(instr->receiver());
   1530   Register function = ToRegister(instr->function());
   1531   Register length = ToRegister32(instr->length());
   1532 
   1533   Register elements = ToRegister(instr->elements());
   1534   Register scratch = x5;
   1535   DCHECK(receiver.Is(x0));  // Used for parameter count.
   1536   DCHECK(function.Is(x1));  // Required by InvokeFunction.
   1537   DCHECK(ToRegister(instr->result()).Is(x0));
   1538   DCHECK(instr->IsMarkedAsCall());
   1539 
   1540   // Copy the arguments to this function possibly from the
   1541   // adaptor frame below it.
   1542   const uint32_t kArgumentsLimit = 1 * KB;
   1543   __ Cmp(length, kArgumentsLimit);
   1544   DeoptimizeIf(hi, instr, Deoptimizer::kTooManyArguments);
   1545 
   1546   // Push the receiver and use the register to keep the original
   1547   // number of arguments.
   1548   __ Push(receiver);
   1549   Register argc = receiver;
   1550   receiver = NoReg;
   1551   __ Sxtw(argc, length);
   1552   // The arguments are at a one pointer size offset from elements.
   1553   __ Add(elements, elements, 1 * kPointerSize);
   1554 
   1555   // Loop through the arguments pushing them onto the execution
   1556   // stack.
   1557   Label invoke, loop;
   1558   // length is a small non-negative integer, due to the test above.
   1559   __ Cbz(length, &invoke);
   1560   __ Bind(&loop);
   1561   __ Ldr(scratch, MemOperand(elements, length, SXTW, kPointerSizeLog2));
   1562   __ Push(scratch);
   1563   __ Subs(length, length, 1);
   1564   __ B(ne, &loop);
   1565 
   1566   __ Bind(&invoke);
   1567 
   1568   InvokeFlag flag = CALL_FUNCTION;
   1569   if (instr->hydrogen()->tail_call_mode() == TailCallMode::kAllow) {
   1570     DCHECK(!info()->saves_caller_doubles());
   1571     // TODO(ishell): drop current frame before pushing arguments to the stack.
   1572     flag = JUMP_FUNCTION;
   1573     ParameterCount actual(x0);
   1574     // It is safe to use x3, x4 and x5 as scratch registers here given that
   1575     // 1) we are not going to return to caller function anyway,
   1576     // 2) x3 (new.target) will be initialized below.
   1577     PrepareForTailCall(actual, x3, x4, x5);
   1578   }
   1579 
   1580   DCHECK(instr->HasPointerMap());
   1581   LPointerMap* pointers = instr->pointer_map();
   1582   SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
   1583   // The number of arguments is stored in argc (receiver) which is x0, as
   1584   // expected by InvokeFunction.
   1585   ParameterCount actual(argc);
   1586   __ InvokeFunction(function, no_reg, actual, flag, safepoint_generator);
   1587 }
   1588 
   1589 
   1590 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
   1591   Register result = ToRegister(instr->result());
   1592 
   1593   if (instr->hydrogen()->from_inlined()) {
   1594     // When we are inside an inlined function, the arguments are the last things
   1595     // that have been pushed on the stack. Therefore the arguments array can be
   1596     // accessed directly from jssp.
   1597     // However in the normal case, it is accessed via fp but there are two words
   1598     // on the stack between fp and the arguments (the saved lr and fp) and the
   1599     // LAccessArgumentsAt implementation take that into account.
   1600     // In the inlined case we need to subtract the size of 2 words to jssp to
   1601     // get a pointer which will work well with LAccessArgumentsAt.
   1602     DCHECK(masm()->StackPointer().Is(jssp));
   1603     __ Sub(result, jssp, 2 * kPointerSize);
   1604   } else if (instr->hydrogen()->arguments_adaptor()) {
   1605     DCHECK(instr->temp() != NULL);
   1606     Register previous_fp = ToRegister(instr->temp());
   1607 
   1608     __ Ldr(previous_fp,
   1609            MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
   1610     __ Ldr(result, MemOperand(previous_fp,
   1611                               CommonFrameConstants::kContextOrFrameTypeOffset));
   1612     __ Cmp(result, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
   1613     __ Csel(result, fp, previous_fp, ne);
   1614   } else {
   1615     __ Mov(result, fp);
   1616   }
   1617 }
   1618 
   1619 
   1620 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
   1621   Register elements = ToRegister(instr->elements());
   1622   Register result = ToRegister32(instr->result());
   1623   Label done;
   1624 
   1625   // If no arguments adaptor frame the number of arguments is fixed.
   1626   __ Cmp(fp, elements);
   1627   __ Mov(result, scope()->num_parameters());
   1628   __ B(eq, &done);
   1629 
   1630   // Arguments adaptor frame present. Get argument length from there.
   1631   __ Ldr(result.X(), MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
   1632   __ Ldr(result,
   1633          UntagSmiMemOperand(result.X(),
   1634                             ArgumentsAdaptorFrameConstants::kLengthOffset));
   1635 
   1636   // Argument length is in result register.
   1637   __ Bind(&done);
   1638 }
   1639 
   1640 
   1641 void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
   1642   DoubleRegister left = ToDoubleRegister(instr->left());
   1643   DoubleRegister right = ToDoubleRegister(instr->right());
   1644   DoubleRegister result = ToDoubleRegister(instr->result());
   1645 
   1646   switch (instr->op()) {
   1647     case Token::ADD: __ Fadd(result, left, right); break;
   1648     case Token::SUB: __ Fsub(result, left, right); break;
   1649     case Token::MUL: __ Fmul(result, left, right); break;
   1650     case Token::DIV: __ Fdiv(result, left, right); break;
   1651     case Token::MOD: {
   1652       // The ECMA-262 remainder operator is the remainder from a truncating
   1653       // (round-towards-zero) division. Note that this differs from IEEE-754.
   1654       //
   1655       // TODO(jbramley): See if it's possible to do this inline, rather than by
   1656       // calling a helper function. With frintz (to produce the intermediate
   1657       // quotient) and fmsub (to calculate the remainder without loss of
   1658       // precision), it should be possible. However, we would need support for
   1659       // fdiv in round-towards-zero mode, and the ARM64 simulator doesn't
   1660       // support that yet.
   1661       DCHECK(left.Is(d0));
   1662       DCHECK(right.Is(d1));
   1663       __ CallCFunction(
   1664           ExternalReference::mod_two_doubles_operation(isolate()),
   1665           0, 2);
   1666       DCHECK(result.Is(d0));
   1667       break;
   1668     }
   1669     default:
   1670       UNREACHABLE();
   1671       break;
   1672   }
   1673 }
   1674 
   1675 
   1676 void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
   1677   DCHECK(ToRegister(instr->context()).is(cp));
   1678   DCHECK(ToRegister(instr->left()).is(x1));
   1679   DCHECK(ToRegister(instr->right()).is(x0));
   1680   DCHECK(ToRegister(instr->result()).is(x0));
   1681 
   1682   Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), instr->op()).code();
   1683   CallCode(code, RelocInfo::CODE_TARGET, instr);
   1684 }
   1685 
   1686 
   1687 void LCodeGen::DoBitI(LBitI* instr) {
   1688   Register result = ToRegister32(instr->result());
   1689   Register left = ToRegister32(instr->left());
   1690   Operand right = ToShiftedRightOperand32(instr->right(), instr);
   1691 
   1692   switch (instr->op()) {
   1693     case Token::BIT_AND: __ And(result, left, right); break;
   1694     case Token::BIT_OR:  __ Orr(result, left, right); break;
   1695     case Token::BIT_XOR: __ Eor(result, left, right); break;
   1696     default:
   1697       UNREACHABLE();
   1698       break;
   1699   }
   1700 }
   1701 
   1702 
   1703 void LCodeGen::DoBitS(LBitS* instr) {
   1704   Register result = ToRegister(instr->result());
   1705   Register left = ToRegister(instr->left());
   1706   Operand right = ToOperand(instr->right());
   1707 
   1708   switch (instr->op()) {
   1709     case Token::BIT_AND: __ And(result, left, right); break;
   1710     case Token::BIT_OR:  __ Orr(result, left, right); break;
   1711     case Token::BIT_XOR: __ Eor(result, left, right); break;
   1712     default:
   1713       UNREACHABLE();
   1714       break;
   1715   }
   1716 }
   1717 
   1718 
   1719 void LCodeGen::DoBoundsCheck(LBoundsCheck *instr) {
   1720   Condition cond = instr->hydrogen()->allow_equality() ? hi : hs;
   1721   DCHECK(instr->hydrogen()->index()->representation().IsInteger32());
   1722   DCHECK(instr->hydrogen()->length()->representation().IsInteger32());
   1723   if (instr->index()->IsConstantOperand()) {
   1724     Operand index = ToOperand32(instr->index());
   1725     Register length = ToRegister32(instr->length());
   1726     __ Cmp(length, index);
   1727     cond = CommuteCondition(cond);
   1728   } else {
   1729     Register index = ToRegister32(instr->index());
   1730     Operand length = ToOperand32(instr->length());
   1731     __ Cmp(index, length);
   1732   }
   1733   if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
   1734     __ Assert(NegateCondition(cond), kEliminatedBoundsCheckFailed);
   1735   } else {
   1736     DeoptimizeIf(cond, instr, Deoptimizer::kOutOfBounds);
   1737   }
   1738 }
   1739 
   1740 
   1741 void LCodeGen::DoBranch(LBranch* instr) {
   1742   Representation r = instr->hydrogen()->value()->representation();
   1743   Label* true_label = instr->TrueLabel(chunk_);
   1744   Label* false_label = instr->FalseLabel(chunk_);
   1745 
   1746   if (r.IsInteger32()) {
   1747     DCHECK(!info()->IsStub());
   1748     EmitCompareAndBranch(instr, ne, ToRegister32(instr->value()), 0);
   1749   } else if (r.IsSmi()) {
   1750     DCHECK(!info()->IsStub());
   1751     STATIC_ASSERT(kSmiTag == 0);
   1752     EmitCompareAndBranch(instr, ne, ToRegister(instr->value()), 0);
   1753   } else if (r.IsDouble()) {
   1754     DoubleRegister value = ToDoubleRegister(instr->value());
   1755     // Test the double value. Zero and NaN are false.
   1756     EmitBranchIfNonZeroNumber(instr, value, double_scratch());
   1757   } else {
   1758     DCHECK(r.IsTagged());
   1759     Register value = ToRegister(instr->value());
   1760     HType type = instr->hydrogen()->value()->type();
   1761 
   1762     if (type.IsBoolean()) {
   1763       DCHECK(!info()->IsStub());
   1764       __ CompareRoot(value, Heap::kTrueValueRootIndex);
   1765       EmitBranch(instr, eq);
   1766     } else if (type.IsSmi()) {
   1767       DCHECK(!info()->IsStub());
   1768       EmitCompareAndBranch(instr, ne, value, Smi::FromInt(0));
   1769     } else if (type.IsJSArray()) {
   1770       DCHECK(!info()->IsStub());
   1771       EmitGoto(instr->TrueDestination(chunk()));
   1772     } else if (type.IsHeapNumber()) {
   1773       DCHECK(!info()->IsStub());
   1774       __ Ldr(double_scratch(), FieldMemOperand(value,
   1775                                                HeapNumber::kValueOffset));
   1776       // Test the double value. Zero and NaN are false.
   1777       EmitBranchIfNonZeroNumber(instr, double_scratch(), double_scratch());
   1778     } else if (type.IsString()) {
   1779       DCHECK(!info()->IsStub());
   1780       Register temp = ToRegister(instr->temp1());
   1781       __ Ldr(temp, FieldMemOperand(value, String::kLengthOffset));
   1782       EmitCompareAndBranch(instr, ne, temp, 0);
   1783     } else {
   1784       ToBooleanICStub::Types expected =
   1785           instr->hydrogen()->expected_input_types();
   1786       // Avoid deopts in the case where we've never executed this path before.
   1787       if (expected.IsEmpty()) expected = ToBooleanICStub::Types::Generic();
   1788 
   1789       if (expected.Contains(ToBooleanICStub::UNDEFINED)) {
   1790         // undefined -> false.
   1791         __ JumpIfRoot(
   1792             value, Heap::kUndefinedValueRootIndex, false_label);
   1793       }
   1794 
   1795       if (expected.Contains(ToBooleanICStub::BOOLEAN)) {
   1796         // Boolean -> its value.
   1797         __ JumpIfRoot(
   1798             value, Heap::kTrueValueRootIndex, true_label);
   1799         __ JumpIfRoot(
   1800             value, Heap::kFalseValueRootIndex, false_label);
   1801       }
   1802 
   1803       if (expected.Contains(ToBooleanICStub::NULL_TYPE)) {
   1804         // 'null' -> false.
   1805         __ JumpIfRoot(
   1806             value, Heap::kNullValueRootIndex, false_label);
   1807       }
   1808 
   1809       if (expected.Contains(ToBooleanICStub::SMI)) {
   1810         // Smis: 0 -> false, all other -> true.
   1811         DCHECK(Smi::FromInt(0) == 0);
   1812         __ Cbz(value, false_label);
   1813         __ JumpIfSmi(value, true_label);
   1814       } else if (expected.NeedsMap()) {
   1815         // If we need a map later and have a smi, deopt.
   1816         DeoptimizeIfSmi(value, instr, Deoptimizer::kSmi);
   1817       }
   1818 
   1819       Register map = NoReg;
   1820       Register scratch = NoReg;
   1821 
   1822       if (expected.NeedsMap()) {
   1823         DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
   1824         map = ToRegister(instr->temp1());
   1825         scratch = ToRegister(instr->temp2());
   1826 
   1827         __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
   1828 
   1829         if (expected.CanBeUndetectable()) {
   1830           // Undetectable -> false.
   1831           __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
   1832           __ TestAndBranchIfAnySet(
   1833               scratch, 1 << Map::kIsUndetectable, false_label);
   1834         }
   1835       }
   1836 
   1837       if (expected.Contains(ToBooleanICStub::SPEC_OBJECT)) {
   1838         // spec object -> true.
   1839         __ CompareInstanceType(map, scratch, FIRST_JS_RECEIVER_TYPE);
   1840         __ B(ge, true_label);
   1841       }
   1842 
   1843       if (expected.Contains(ToBooleanICStub::STRING)) {
   1844         // String value -> false iff empty.
   1845         Label not_string;
   1846         __ CompareInstanceType(map, scratch, FIRST_NONSTRING_TYPE);
   1847         __ B(ge, &not_string);
   1848         __ Ldr(scratch, FieldMemOperand(value, String::kLengthOffset));
   1849         __ Cbz(scratch, false_label);
   1850         __ B(true_label);
   1851         __ Bind(&not_string);
   1852       }
   1853 
   1854       if (expected.Contains(ToBooleanICStub::SYMBOL)) {
   1855         // Symbol value -> true.
   1856         __ CompareInstanceType(map, scratch, SYMBOL_TYPE);
   1857         __ B(eq, true_label);
   1858       }
   1859 
   1860       if (expected.Contains(ToBooleanICStub::SIMD_VALUE)) {
   1861         // SIMD value -> true.
   1862         __ CompareInstanceType(map, scratch, SIMD128_VALUE_TYPE);
   1863         __ B(eq, true_label);
   1864       }
   1865 
   1866       if (expected.Contains(ToBooleanICStub::HEAP_NUMBER)) {
   1867         Label not_heap_number;
   1868         __ JumpIfNotRoot(map, Heap::kHeapNumberMapRootIndex, &not_heap_number);
   1869 
   1870         __ Ldr(double_scratch(),
   1871                FieldMemOperand(value, HeapNumber::kValueOffset));
   1872         __ Fcmp(double_scratch(), 0.0);
   1873         // If we got a NaN (overflow bit is set), jump to the false branch.
   1874         __ B(vs, false_label);
   1875         __ B(eq, false_label);
   1876         __ B(true_label);
   1877         __ Bind(&not_heap_number);
   1878       }
   1879 
   1880       if (!expected.IsGeneric()) {
   1881         // We've seen something for the first time -> deopt.
   1882         // This can only happen if we are not generic already.
   1883         Deoptimize(instr, Deoptimizer::kUnexpectedObject);
   1884       }
   1885     }
   1886   }
   1887 }
   1888 
   1889 void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
   1890                                  int formal_parameter_count, int arity,
   1891                                  bool is_tail_call, LInstruction* instr) {
   1892   bool dont_adapt_arguments =
   1893       formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
   1894   bool can_invoke_directly =
   1895       dont_adapt_arguments || formal_parameter_count == arity;
   1896 
   1897   // The function interface relies on the following register assignments.
   1898   Register function_reg = x1;
   1899   Register arity_reg = x0;
   1900 
   1901   LPointerMap* pointers = instr->pointer_map();
   1902 
   1903   if (FLAG_debug_code) {
   1904     Label is_not_smi;
   1905     // Try to confirm that function_reg (x1) is a tagged pointer.
   1906     __ JumpIfNotSmi(function_reg, &is_not_smi);
   1907     __ Abort(kExpectedFunctionObject);
   1908     __ Bind(&is_not_smi);
   1909   }
   1910 
   1911   if (can_invoke_directly) {
   1912     // Change context.
   1913     __ Ldr(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset));
   1914 
   1915     // Always initialize new target and number of actual arguments.
   1916     __ LoadRoot(x3, Heap::kUndefinedValueRootIndex);
   1917     __ Mov(arity_reg, arity);
   1918 
   1919     bool is_self_call = function.is_identical_to(info()->closure());
   1920 
   1921     // Invoke function.
   1922     if (is_self_call) {
   1923       Handle<Code> self(reinterpret_cast<Code**>(__ CodeObject().location()));
   1924       if (is_tail_call) {
   1925         __ Jump(self, RelocInfo::CODE_TARGET);
   1926       } else {
   1927         __ Call(self, RelocInfo::CODE_TARGET);
   1928       }
   1929     } else {
   1930       __ Ldr(x10, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset));
   1931       if (is_tail_call) {
   1932         __ Jump(x10);
   1933       } else {
   1934         __ Call(x10);
   1935       }
   1936     }
   1937 
   1938     if (!is_tail_call) {
   1939       // Set up deoptimization.
   1940       RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
   1941     }
   1942   } else {
   1943     SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
   1944     ParameterCount actual(arity);
   1945     ParameterCount expected(formal_parameter_count);
   1946     InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
   1947     __ InvokeFunction(function_reg, expected, actual, flag, generator);
   1948   }
   1949 }
   1950 
   1951 void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
   1952   DCHECK(instr->IsMarkedAsCall());
   1953   DCHECK(ToRegister(instr->result()).Is(x0));
   1954 
   1955   if (instr->hydrogen()->IsTailCall()) {
   1956     if (NeedsEagerFrame()) __ LeaveFrame(StackFrame::INTERNAL);
   1957 
   1958     if (instr->target()->IsConstantOperand()) {
   1959       LConstantOperand* target = LConstantOperand::cast(instr->target());
   1960       Handle<Code> code = Handle<Code>::cast(ToHandle(target));
   1961       // TODO(all): on ARM we use a call descriptor to specify a storage mode
   1962       // but on ARM64 we only have one storage mode so it isn't necessary. Check
   1963       // this understanding is correct.
   1964       __ Jump(code, RelocInfo::CODE_TARGET);
   1965     } else {
   1966       DCHECK(instr->target()->IsRegister());
   1967       Register target = ToRegister(instr->target());
   1968       __ Add(target, target, Code::kHeaderSize - kHeapObjectTag);
   1969       __ Br(target);
   1970     }
   1971   } else {
   1972     LPointerMap* pointers = instr->pointer_map();
   1973     SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
   1974 
   1975     if (instr->target()->IsConstantOperand()) {
   1976       LConstantOperand* target = LConstantOperand::cast(instr->target());
   1977       Handle<Code> code = Handle<Code>::cast(ToHandle(target));
   1978       generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
   1979       // TODO(all): on ARM we use a call descriptor to specify a storage mode
   1980       // but on ARM64 we only have one storage mode so it isn't necessary. Check
   1981       // this understanding is correct.
   1982       __ Call(code, RelocInfo::CODE_TARGET, TypeFeedbackId::None());
   1983     } else {
   1984       DCHECK(instr->target()->IsRegister());
   1985       Register target = ToRegister(instr->target());
   1986       generator.BeforeCall(__ CallSize(target));
   1987       __ Add(target, target, Code::kHeaderSize - kHeapObjectTag);
   1988       __ Call(target);
   1989     }
   1990     generator.AfterCall();
   1991   }
   1992 
   1993   RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
   1994 }
   1995 
   1996 
   1997 void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
   1998   CallRuntime(instr->function(), instr->arity(), instr);
   1999   RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
   2000 }
   2001 
   2002 
   2003 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
   2004   GenerateOsrPrologue();
   2005 }
   2006 
   2007 
   2008 void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
   2009   Register temp = ToRegister(instr->temp());
   2010   {
   2011     PushSafepointRegistersScope scope(this);
   2012     __ Push(object);
   2013     __ Mov(cp, 0);
   2014     __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
   2015     RecordSafepointWithRegisters(
   2016         instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
   2017     __ StoreToSafepointRegisterSlot(x0, temp);
   2018   }
   2019   DeoptimizeIfSmi(temp, instr, Deoptimizer::kInstanceMigrationFailed);
   2020 }
   2021 
   2022 
   2023 void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
   2024   class DeferredCheckMaps: public LDeferredCode {
   2025    public:
   2026     DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
   2027         : LDeferredCode(codegen), instr_(instr), object_(object) {
   2028       SetExit(check_maps());
   2029     }
   2030     virtual void Generate() {
   2031       codegen()->DoDeferredInstanceMigration(instr_, object_);
   2032     }
   2033     Label* check_maps() { return &check_maps_; }
   2034     virtual LInstruction* instr() { return instr_; }
   2035    private:
   2036     LCheckMaps* instr_;
   2037     Label check_maps_;
   2038     Register object_;
   2039   };
   2040 
   2041   if (instr->hydrogen()->IsStabilityCheck()) {
   2042     const UniqueSet<Map>* maps = instr->hydrogen()->maps();
   2043     for (int i = 0; i < maps->size(); ++i) {
   2044       AddStabilityDependency(maps->at(i).handle());
   2045     }
   2046     return;
   2047   }
   2048 
   2049   Register object = ToRegister(instr->value());
   2050   Register map_reg = ToRegister(instr->temp());
   2051 
   2052   __ Ldr(map_reg, FieldMemOperand(object, HeapObject::kMapOffset));
   2053 
   2054   DeferredCheckMaps* deferred = NULL;
   2055   if (instr->hydrogen()->HasMigrationTarget()) {
   2056     deferred = new(zone()) DeferredCheckMaps(this, instr, object);
   2057     __ Bind(deferred->check_maps());
   2058   }
   2059 
   2060   const UniqueSet<Map>* maps = instr->hydrogen()->maps();
   2061   Label success;
   2062   for (int i = 0; i < maps->size() - 1; i++) {
   2063     Handle<Map> map = maps->at(i).handle();
   2064     __ CompareMap(map_reg, map);
   2065     __ B(eq, &success);
   2066   }
   2067   Handle<Map> map = maps->at(maps->size() - 1).handle();
   2068   __ CompareMap(map_reg, map);
   2069 
   2070   // We didn't match a map.
   2071   if (instr->hydrogen()->HasMigrationTarget()) {
   2072     __ B(ne, deferred->entry());
   2073   } else {
   2074     DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap);
   2075   }
   2076 
   2077   __ Bind(&success);
   2078 }
   2079 
   2080 
   2081 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
   2082   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
   2083     DeoptimizeIfSmi(ToRegister(instr->value()), instr, Deoptimizer::kSmi);
   2084   }
   2085 }
   2086 
   2087 
   2088 void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
   2089   Register value = ToRegister(instr->value());
   2090   DCHECK(!instr->result() || ToRegister(instr->result()).Is(value));
   2091   DeoptimizeIfNotSmi(value, instr, Deoptimizer::kNotASmi);
   2092 }
   2093 
   2094 
   2095 void LCodeGen::DoCheckArrayBufferNotNeutered(
   2096     LCheckArrayBufferNotNeutered* instr) {
   2097   UseScratchRegisterScope temps(masm());
   2098   Register view = ToRegister(instr->view());
   2099   Register scratch = temps.AcquireX();
   2100 
   2101   __ Ldr(scratch, FieldMemOperand(view, JSArrayBufferView::kBufferOffset));
   2102   __ Ldr(scratch, FieldMemOperand(scratch, JSArrayBuffer::kBitFieldOffset));
   2103   __ Tst(scratch, Operand(1 << JSArrayBuffer::WasNeutered::kShift));
   2104   DeoptimizeIf(ne, instr, Deoptimizer::kOutOfBounds);
   2105 }
   2106 
   2107 
   2108 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
   2109   Register input = ToRegister(instr->value());
   2110   Register scratch = ToRegister(instr->temp());
   2111 
   2112   __ Ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
   2113   __ Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
   2114 
   2115   if (instr->hydrogen()->is_interval_check()) {
   2116     InstanceType first, last;
   2117     instr->hydrogen()->GetCheckInterval(&first, &last);
   2118 
   2119     __ Cmp(scratch, first);
   2120     if (first == last) {
   2121       // If there is only one type in the interval check for equality.
   2122       DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType);
   2123     } else if (last == LAST_TYPE) {
   2124       // We don't need to compare with the higher bound of the interval.
   2125       DeoptimizeIf(lo, instr, Deoptimizer::kWrongInstanceType);
   2126     } else {
   2127       // If we are below the lower bound, set the C flag and clear the Z flag
   2128       // to force a deopt.
   2129       __ Ccmp(scratch, last, CFlag, hs);
   2130       DeoptimizeIf(hi, instr, Deoptimizer::kWrongInstanceType);
   2131     }
   2132   } else {
   2133     uint8_t mask;
   2134     uint8_t tag;
   2135     instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
   2136 
   2137     if (base::bits::IsPowerOfTwo32(mask)) {
   2138       DCHECK((tag == 0) || (tag == mask));
   2139       if (tag == 0) {
   2140         DeoptimizeIfBitSet(scratch, MaskToBit(mask), instr,
   2141                            Deoptimizer::kWrongInstanceType);
   2142       } else {
   2143         DeoptimizeIfBitClear(scratch, MaskToBit(mask), instr,
   2144                              Deoptimizer::kWrongInstanceType);
   2145       }
   2146     } else {
   2147       if (tag == 0) {
   2148         __ Tst(scratch, mask);
   2149       } else {
   2150         __ And(scratch, scratch, mask);
   2151         __ Cmp(scratch, tag);
   2152       }
   2153       DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType);
   2154     }
   2155   }
   2156 }
   2157 
   2158 
   2159 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
   2160   DoubleRegister input = ToDoubleRegister(instr->unclamped());
   2161   Register result = ToRegister32(instr->result());
   2162   __ ClampDoubleToUint8(result, input, double_scratch());
   2163 }
   2164 
   2165 
   2166 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
   2167   Register input = ToRegister32(instr->unclamped());
   2168   Register result = ToRegister32(instr->result());
   2169   __ ClampInt32ToUint8(result, input);
   2170 }
   2171 
   2172 
   2173 void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
   2174   Register input = ToRegister(instr->unclamped());
   2175   Register result = ToRegister32(instr->result());
   2176   Label done;
   2177 
   2178   // Both smi and heap number cases are handled.
   2179   Label is_not_smi;
   2180   __ JumpIfNotSmi(input, &is_not_smi);
   2181   __ SmiUntag(result.X(), input);
   2182   __ ClampInt32ToUint8(result);
   2183   __ B(&done);
   2184 
   2185   __ Bind(&is_not_smi);
   2186 
   2187   // Check for heap number.
   2188   Label is_heap_number;
   2189   __ JumpIfHeapNumber(input, &is_heap_number);
   2190 
   2191   // Check for undefined. Undefined is coverted to zero for clamping conversion.
   2192   DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr,
   2193                       Deoptimizer::kNotAHeapNumberUndefined);
   2194   __ Mov(result, 0);
   2195   __ B(&done);
   2196 
   2197   // Heap number case.
   2198   __ Bind(&is_heap_number);
   2199   DoubleRegister dbl_scratch = double_scratch();
   2200   DoubleRegister dbl_scratch2 = ToDoubleRegister(instr->temp1());
   2201   __ Ldr(dbl_scratch, FieldMemOperand(input, HeapNumber::kValueOffset));
   2202   __ ClampDoubleToUint8(result, dbl_scratch, dbl_scratch2);
   2203 
   2204   __ Bind(&done);
   2205 }
   2206 
   2207 
   2208 void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
   2209   DoubleRegister value_reg = ToDoubleRegister(instr->value());
   2210   Register result_reg = ToRegister(instr->result());
   2211   if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
   2212     __ Fmov(result_reg, value_reg);
   2213     __ Lsr(result_reg, result_reg, 32);
   2214   } else {
   2215     __ Fmov(result_reg.W(), value_reg.S());
   2216   }
   2217 }
   2218 
   2219 
   2220 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
   2221   Handle<String> class_name = instr->hydrogen()->class_name();
   2222   Label* true_label = instr->TrueLabel(chunk_);
   2223   Label* false_label = instr->FalseLabel(chunk_);
   2224   Register input = ToRegister(instr->value());
   2225   Register scratch1 = ToRegister(instr->temp1());
   2226   Register scratch2 = ToRegister(instr->temp2());
   2227 
   2228   __ JumpIfSmi(input, false_label);
   2229 
   2230   Register map = scratch2;
   2231   __ CompareObjectType(input, map, scratch1, FIRST_FUNCTION_TYPE);
   2232   STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE);
   2233   if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
   2234     __ B(hs, true_label);
   2235   } else {
   2236     __ B(hs, false_label);
   2237   }
   2238 
   2239   // Check if the constructor in the map is a function.
   2240   {
   2241     UseScratchRegisterScope temps(masm());
   2242     Register instance_type = temps.AcquireX();
   2243     __ GetMapConstructor(scratch1, map, scratch2, instance_type);
   2244     __ Cmp(instance_type, JS_FUNCTION_TYPE);
   2245   }
   2246   // Objects with a non-function constructor have class 'Object'.
   2247   if (String::Equals(class_name, isolate()->factory()->Object_string())) {
   2248     __ B(ne, true_label);
   2249   } else {
   2250     __ B(ne, false_label);
   2251   }
   2252 
   2253   // The constructor function is in scratch1. Get its instance class name.
   2254   __ Ldr(scratch1,
   2255          FieldMemOperand(scratch1, JSFunction::kSharedFunctionInfoOffset));
   2256   __ Ldr(scratch1,
   2257          FieldMemOperand(scratch1,
   2258                          SharedFunctionInfo::kInstanceClassNameOffset));
   2259 
   2260   // The class name we are testing against is internalized since it's a literal.
   2261   // The name in the constructor is internalized because of the way the context
   2262   // is booted. This routine isn't expected to work for random API-created
   2263   // classes and it doesn't have to because you can't access it with natives
   2264   // syntax. Since both sides are internalized it is sufficient to use an
   2265   // identity comparison.
   2266   EmitCompareAndBranch(instr, eq, scratch1, Operand(class_name));
   2267 }
   2268 
   2269 
   2270 void LCodeGen::DoCmpHoleAndBranchD(LCmpHoleAndBranchD* instr) {
   2271   DCHECK(instr->hydrogen()->representation().IsDouble());
   2272   FPRegister object = ToDoubleRegister(instr->object());
   2273   Register temp = ToRegister(instr->temp());
   2274 
   2275   // If we don't have a NaN, we don't have the hole, so branch now to avoid the
   2276   // (relatively expensive) hole-NaN check.
   2277   __ Fcmp(object, object);
   2278   __ B(vc, instr->FalseLabel(chunk_));
   2279 
   2280   // We have a NaN, but is it the hole?
   2281   __ Fmov(temp, object);
   2282   EmitCompareAndBranch(instr, eq, temp, kHoleNanInt64);
   2283 }
   2284 
   2285 
   2286 void LCodeGen::DoCmpHoleAndBranchT(LCmpHoleAndBranchT* instr) {
   2287   DCHECK(instr->hydrogen()->representation().IsTagged());
   2288   Register object = ToRegister(instr->object());
   2289 
   2290   EmitBranchIfRoot(instr, object, Heap::kTheHoleValueRootIndex);
   2291 }
   2292 
   2293 
   2294 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
   2295   Register value = ToRegister(instr->value());
   2296   Register map = ToRegister(instr->temp());
   2297 
   2298   __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
   2299   EmitCompareAndBranch(instr, eq, map, Operand(instr->map()));
   2300 }
   2301 
   2302 
   2303 void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
   2304   LOperand* left = instr->left();
   2305   LOperand* right = instr->right();
   2306   bool is_unsigned =
   2307       instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
   2308       instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
   2309   Condition cond = TokenToCondition(instr->op(), is_unsigned);
   2310 
   2311   if (left->IsConstantOperand() && right->IsConstantOperand()) {
   2312     // We can statically evaluate the comparison.
   2313     double left_val = ToDouble(LConstantOperand::cast(left));
   2314     double right_val = ToDouble(LConstantOperand::cast(right));
   2315     int next_block = Token::EvalComparison(instr->op(), left_val, right_val)
   2316                          ? instr->TrueDestination(chunk_)
   2317                          : instr->FalseDestination(chunk_);
   2318     EmitGoto(next_block);
   2319   } else {
   2320     if (instr->is_double()) {
   2321       __ Fcmp(ToDoubleRegister(left), ToDoubleRegister(right));
   2322 
   2323       // If a NaN is involved, i.e. the result is unordered (V set),
   2324       // jump to false block label.
   2325       __ B(vs, instr->FalseLabel(chunk_));
   2326       EmitBranch(instr, cond);
   2327     } else {
   2328       if (instr->hydrogen_value()->representation().IsInteger32()) {
   2329         if (right->IsConstantOperand()) {
   2330           EmitCompareAndBranch(instr, cond, ToRegister32(left),
   2331                                ToOperand32(right));
   2332         } else {
   2333           // Commute the operands and the condition.
   2334           EmitCompareAndBranch(instr, CommuteCondition(cond),
   2335                                ToRegister32(right), ToOperand32(left));
   2336         }
   2337       } else {
   2338         DCHECK(instr->hydrogen_value()->representation().IsSmi());
   2339         if (right->IsConstantOperand()) {
   2340           int32_t value = ToInteger32(LConstantOperand::cast(right));
   2341           EmitCompareAndBranch(instr,
   2342                                cond,
   2343                                ToRegister(left),
   2344                                Operand(Smi::FromInt(value)));
   2345         } else if (left->IsConstantOperand()) {
   2346           // Commute the operands and the condition.
   2347           int32_t value = ToInteger32(LConstantOperand::cast(left));
   2348           EmitCompareAndBranch(instr,
   2349                                CommuteCondition(cond),
   2350                                ToRegister(right),
   2351                                Operand(Smi::FromInt(value)));
   2352         } else {
   2353           EmitCompareAndBranch(instr,
   2354                                cond,
   2355                                ToRegister(left),
   2356                                ToRegister(right));
   2357         }
   2358       }
   2359     }
   2360   }
   2361 }
   2362 
   2363 
   2364 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
   2365   Register left = ToRegister(instr->left());
   2366   Register right = ToRegister(instr->right());
   2367   EmitCompareAndBranch(instr, eq, left, right);
   2368 }
   2369 
   2370 
   2371 void LCodeGen::DoCmpT(LCmpT* instr) {
   2372   DCHECK(ToRegister(instr->context()).is(cp));
   2373   Token::Value op = instr->op();
   2374   Condition cond = TokenToCondition(op, false);
   2375 
   2376   DCHECK(ToRegister(instr->left()).Is(x1));
   2377   DCHECK(ToRegister(instr->right()).Is(x0));
   2378   Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
   2379   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   2380   // Signal that we don't inline smi code before this stub.
   2381   InlineSmiCheckInfo::EmitNotInlined(masm());
   2382 
   2383   // Return true or false depending on CompareIC result.
   2384   // This instruction is marked as call. We can clobber any register.
   2385   DCHECK(instr->IsMarkedAsCall());
   2386   __ LoadTrueFalseRoots(x1, x2);
   2387   __ Cmp(x0, 0);
   2388   __ Csel(ToRegister(instr->result()), x1, x2, cond);
   2389 }
   2390 
   2391 
   2392 void LCodeGen::DoConstantD(LConstantD* instr) {
   2393   DCHECK(instr->result()->IsDoubleRegister());
   2394   DoubleRegister result = ToDoubleRegister(instr->result());
   2395   if (instr->value() == 0) {
   2396     if (copysign(1.0, instr->value()) == 1.0) {
   2397       __ Fmov(result, fp_zero);
   2398     } else {
   2399       __ Fneg(result, fp_zero);
   2400     }
   2401   } else {
   2402     __ Fmov(result, instr->value());
   2403   }
   2404 }
   2405 
   2406 
   2407 void LCodeGen::DoConstantE(LConstantE* instr) {
   2408   __ Mov(ToRegister(instr->result()), Operand(instr->value()));
   2409 }
   2410 
   2411 
   2412 void LCodeGen::DoConstantI(LConstantI* instr) {
   2413   DCHECK(is_int32(instr->value()));
   2414   // Cast the value here to ensure that the value isn't sign extended by the
   2415   // implicit Operand constructor.
   2416   __ Mov(ToRegister32(instr->result()), static_cast<uint32_t>(instr->value()));
   2417 }
   2418 
   2419 
   2420 void LCodeGen::DoConstantS(LConstantS* instr) {
   2421   __ Mov(ToRegister(instr->result()), Operand(instr->value()));
   2422 }
   2423 
   2424 
   2425 void LCodeGen::DoConstantT(LConstantT* instr) {
   2426   Handle<Object> object = instr->value(isolate());
   2427   AllowDeferredHandleDereference smi_check;
   2428   __ LoadObject(ToRegister(instr->result()), object);
   2429 }
   2430 
   2431 
   2432 void LCodeGen::DoContext(LContext* instr) {
   2433   // If there is a non-return use, the context must be moved to a register.
   2434   Register result = ToRegister(instr->result());
   2435   if (info()->IsOptimizing()) {
   2436     __ Ldr(result, MemOperand(fp, StandardFrameConstants::kContextOffset));
   2437   } else {
   2438     // If there is no frame, the context must be in cp.
   2439     DCHECK(result.is(cp));
   2440   }
   2441 }
   2442 
   2443 
   2444 void LCodeGen::DoCheckValue(LCheckValue* instr) {
   2445   Register reg = ToRegister(instr->value());
   2446   Handle<HeapObject> object = instr->hydrogen()->object().handle();
   2447   AllowDeferredHandleDereference smi_check;
   2448   if (isolate()->heap()->InNewSpace(*object)) {
   2449     UseScratchRegisterScope temps(masm());
   2450     Register temp = temps.AcquireX();
   2451     Handle<Cell> cell = isolate()->factory()->NewCell(object);
   2452     __ Mov(temp, Operand(cell));
   2453     __ Ldr(temp, FieldMemOperand(temp, Cell::kValueOffset));
   2454     __ Cmp(reg, temp);
   2455   } else {
   2456     __ Cmp(reg, Operand(object));
   2457   }
   2458   DeoptimizeIf(ne, instr, Deoptimizer::kValueMismatch);
   2459 }
   2460 
   2461 
   2462 void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
   2463   last_lazy_deopt_pc_ = masm()->pc_offset();
   2464   DCHECK(instr->HasEnvironment());
   2465   LEnvironment* env = instr->environment();
   2466   RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
   2467   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
   2468 }
   2469 
   2470 
   2471 void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
   2472   Deoptimizer::BailoutType type = instr->hydrogen()->type();
   2473   // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
   2474   // needed return address), even though the implementation of LAZY and EAGER is
   2475   // now identical. When LAZY is eventually completely folded into EAGER, remove
   2476   // the special case below.
   2477   if (info()->IsStub() && (type == Deoptimizer::EAGER)) {
   2478     type = Deoptimizer::LAZY;
   2479   }
   2480 
   2481   Deoptimize(instr, instr->hydrogen()->reason(), &type);
   2482 }
   2483 
   2484 
   2485 void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
   2486   Register dividend = ToRegister32(instr->dividend());
   2487   int32_t divisor = instr->divisor();
   2488   Register result = ToRegister32(instr->result());
   2489   DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
   2490   DCHECK(!result.is(dividend));
   2491 
   2492   // Check for (0 / -x) that will produce negative zero.
   2493   HDiv* hdiv = instr->hydrogen();
   2494   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
   2495     DeoptimizeIfZero(dividend, instr, Deoptimizer::kDivisionByZero);
   2496   }
   2497   // Check for (kMinInt / -1).
   2498   if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
   2499     // Test dividend for kMinInt by subtracting one (cmp) and checking for
   2500     // overflow.
   2501     __ Cmp(dividend, 1);
   2502     DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
   2503   }
   2504   // Deoptimize if remainder will not be 0.
   2505   if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
   2506       divisor != 1 && divisor != -1) {
   2507     int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
   2508     __ Tst(dividend, mask);
   2509     DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision);
   2510   }
   2511 
   2512   if (divisor == -1) {  // Nice shortcut, not needed for correctness.
   2513     __ Neg(result, dividend);
   2514     return;
   2515   }
   2516   int32_t shift = WhichPowerOf2Abs(divisor);
   2517   if (shift == 0) {
   2518     __ Mov(result, dividend);
   2519   } else if (shift == 1) {
   2520     __ Add(result, dividend, Operand(dividend, LSR, 31));
   2521   } else {
   2522     __ Mov(result, Operand(dividend, ASR, 31));
   2523     __ Add(result, dividend, Operand(result, LSR, 32 - shift));
   2524   }
   2525   if (shift > 0) __ Mov(result, Operand(result, ASR, shift));
   2526   if (divisor < 0) __ Neg(result, result);
   2527 }
   2528 
   2529 
   2530 void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
   2531   Register dividend = ToRegister32(instr->dividend());
   2532   int32_t divisor = instr->divisor();
   2533   Register result = ToRegister32(instr->result());
   2534   DCHECK(!AreAliased(dividend, result));
   2535 
   2536   if (divisor == 0) {
   2537     Deoptimize(instr, Deoptimizer::kDivisionByZero);
   2538     return;
   2539   }
   2540 
   2541   // Check for (0 / -x) that will produce negative zero.
   2542   HDiv* hdiv = instr->hydrogen();
   2543   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
   2544     DeoptimizeIfZero(dividend, instr, Deoptimizer::kMinusZero);
   2545   }
   2546 
   2547   __ TruncatingDiv(result, dividend, Abs(divisor));
   2548   if (divisor < 0) __ Neg(result, result);
   2549 
   2550   if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
   2551     Register temp = ToRegister32(instr->temp());
   2552     DCHECK(!AreAliased(dividend, result, temp));
   2553     __ Sxtw(dividend.X(), dividend);
   2554     __ Mov(temp, divisor);
   2555     __ Smsubl(temp.X(), result, temp, dividend.X());
   2556     DeoptimizeIfNotZero(temp, instr, Deoptimizer::kLostPrecision);
   2557   }
   2558 }
   2559 
   2560 
   2561 // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
   2562 void LCodeGen::DoDivI(LDivI* instr) {
   2563   HBinaryOperation* hdiv = instr->hydrogen();
   2564   Register dividend = ToRegister32(instr->dividend());
   2565   Register divisor = ToRegister32(instr->divisor());
   2566   Register result = ToRegister32(instr->result());
   2567 
   2568   // Issue the division first, and then check for any deopt cases whilst the
   2569   // result is computed.
   2570   __ Sdiv(result, dividend, divisor);
   2571 
   2572   if (hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
   2573     DCHECK(!instr->temp());
   2574     return;
   2575   }
   2576 
   2577   // Check for x / 0.
   2578   if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
   2579     DeoptimizeIfZero(divisor, instr, Deoptimizer::kDivisionByZero);
   2580   }
   2581 
   2582   // Check for (0 / -x) as that will produce negative zero.
   2583   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
   2584     __ Cmp(divisor, 0);
   2585 
   2586     // If the divisor < 0 (mi), compare the dividend, and deopt if it is
   2587     // zero, ie. zero dividend with negative divisor deopts.
   2588     // If the divisor >= 0 (pl, the opposite of mi) set the flags to
   2589     // condition ne, so we don't deopt, ie. positive divisor doesn't deopt.
   2590     __ Ccmp(dividend, 0, NoFlag, mi);
   2591     DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
   2592   }
   2593 
   2594   // Check for (kMinInt / -1).
   2595   if (hdiv->CheckFlag(HValue::kCanOverflow)) {
   2596     // Test dividend for kMinInt by subtracting one (cmp) and checking for
   2597     // overflow.
   2598     __ Cmp(dividend, 1);
   2599     // If overflow is set, ie. dividend = kMinInt, compare the divisor with
   2600     // -1. If overflow is clear, set the flags for condition ne, as the
   2601     // dividend isn't -1, and thus we shouldn't deopt.
   2602     __ Ccmp(divisor, -1, NoFlag, vs);
   2603     DeoptimizeIf(eq, instr, Deoptimizer::kOverflow);
   2604   }
   2605 
   2606   // Compute remainder and deopt if it's not zero.
   2607   Register remainder = ToRegister32(instr->temp());
   2608   __ Msub(remainder, result, divisor, dividend);
   2609   DeoptimizeIfNotZero(remainder, instr, Deoptimizer::kLostPrecision);
   2610 }
   2611 
   2612 
   2613 void LCodeGen::DoDoubleToIntOrSmi(LDoubleToIntOrSmi* instr) {
   2614   DoubleRegister input = ToDoubleRegister(instr->value());
   2615   Register result = ToRegister32(instr->result());
   2616 
   2617   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   2618     DeoptimizeIfMinusZero(input, instr, Deoptimizer::kMinusZero);
   2619   }
   2620 
   2621   __ TryRepresentDoubleAsInt32(result, input, double_scratch());
   2622   DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN);
   2623 
   2624   if (instr->tag_result()) {
   2625     __ SmiTag(result.X());
   2626   }
   2627 }
   2628 
   2629 
   2630 void LCodeGen::DoDrop(LDrop* instr) {
   2631   __ Drop(instr->count());
   2632 
   2633   RecordPushedArgumentsDelta(instr->hydrogen_value()->argument_delta());
   2634 }
   2635 
   2636 
   2637 void LCodeGen::DoDummy(LDummy* instr) {
   2638   // Nothing to see here, move on!
   2639 }
   2640 
   2641 
   2642 void LCodeGen::DoDummyUse(LDummyUse* instr) {
   2643   // Nothing to see here, move on!
   2644 }
   2645 
   2646 
   2647 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
   2648   Register map = ToRegister(instr->map());
   2649   Register result = ToRegister(instr->result());
   2650   Label load_cache, done;
   2651 
   2652   __ EnumLengthUntagged(result, map);
   2653   __ Cbnz(result, &load_cache);
   2654 
   2655   __ Mov(result, Operand(isolate()->factory()->empty_fixed_array()));
   2656   __ B(&done);
   2657 
   2658   __ Bind(&load_cache);
   2659   __ LoadInstanceDescriptors(map, result);
   2660   __ Ldr(result, FieldMemOperand(result, DescriptorArray::kEnumCacheOffset));
   2661   __ Ldr(result, FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
   2662   DeoptimizeIfZero(result, instr, Deoptimizer::kNoCache);
   2663 
   2664   __ Bind(&done);
   2665 }
   2666 
   2667 
   2668 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
   2669   Register object = ToRegister(instr->object());
   2670 
   2671   DCHECK(instr->IsMarkedAsCall());
   2672   DCHECK(object.Is(x0));
   2673 
   2674   Label use_cache, call_runtime;
   2675   __ CheckEnumCache(object, x5, x1, x2, x3, x4, &call_runtime);
   2676 
   2677   __ Ldr(object, FieldMemOperand(object, HeapObject::kMapOffset));
   2678   __ B(&use_cache);
   2679 
   2680   // Get the set of properties to enumerate.
   2681   __ Bind(&call_runtime);
   2682   __ Push(object);
   2683   CallRuntime(Runtime::kForInEnumerate, instr);
   2684   __ Bind(&use_cache);
   2685 }
   2686 
   2687 
   2688 void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
   2689   Register input = ToRegister(instr->value());
   2690   Register result = ToRegister(instr->result());
   2691 
   2692   __ AssertString(input);
   2693 
   2694   // Assert that we can use a W register load to get the hash.
   2695   DCHECK((String::kHashShift + String::kArrayIndexValueBits) < kWRegSizeInBits);
   2696   __ Ldr(result.W(), FieldMemOperand(input, String::kHashFieldOffset));
   2697   __ IndexFromHash(result, result);
   2698 }
   2699 
   2700 
   2701 void LCodeGen::EmitGoto(int block) {
   2702   // Do not emit jump if we are emitting a goto to the next block.
   2703   if (!IsNextEmittedBlock(block)) {
   2704     __ B(chunk_->GetAssemblyLabel(LookupDestination(block)));
   2705   }
   2706 }
   2707 
   2708 
   2709 void LCodeGen::DoGoto(LGoto* instr) {
   2710   EmitGoto(instr->block_id());
   2711 }
   2712 
   2713 
   2714 void LCodeGen::DoHasCachedArrayIndexAndBranch(
   2715     LHasCachedArrayIndexAndBranch* instr) {
   2716   Register input = ToRegister(instr->value());
   2717   Register temp = ToRegister32(instr->temp());
   2718 
   2719   // Assert that the cache status bits fit in a W register.
   2720   DCHECK(is_uint32(String::kContainsCachedArrayIndexMask));
   2721   __ Ldr(temp, FieldMemOperand(input, String::kHashFieldOffset));
   2722   __ Tst(temp, String::kContainsCachedArrayIndexMask);
   2723   EmitBranch(instr, eq);
   2724 }
   2725 
   2726 
   2727 // HHasInstanceTypeAndBranch instruction is built with an interval of type
   2728 // to test but is only used in very restricted ways. The only possible kinds
   2729 // of intervals are:
   2730 //  - [ FIRST_TYPE, instr->to() ]
   2731 //  - [ instr->form(), LAST_TYPE ]
   2732 //  - instr->from() == instr->to()
   2733 //
   2734 // These kinds of intervals can be check with only one compare instruction
   2735 // providing the correct value and test condition are used.
   2736 //
   2737 // TestType() will return the value to use in the compare instruction and
   2738 // BranchCondition() will return the condition to use depending on the kind
   2739 // of interval actually specified in the instruction.
   2740 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
   2741   InstanceType from = instr->from();
   2742   InstanceType to = instr->to();
   2743   if (from == FIRST_TYPE) return to;
   2744   DCHECK((from == to) || (to == LAST_TYPE));
   2745   return from;
   2746 }
   2747 
   2748 
   2749 // See comment above TestType function for what this function does.
   2750 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
   2751   InstanceType from = instr->from();
   2752   InstanceType to = instr->to();
   2753   if (from == to) return eq;
   2754   if (to == LAST_TYPE) return hs;
   2755   if (from == FIRST_TYPE) return ls;
   2756   UNREACHABLE();
   2757   return eq;
   2758 }
   2759 
   2760 
   2761 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
   2762   Register input = ToRegister(instr->value());
   2763   Register scratch = ToRegister(instr->temp());
   2764 
   2765   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
   2766     __ JumpIfSmi(input, instr->FalseLabel(chunk_));
   2767   }
   2768   __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen()));
   2769   EmitBranch(instr, BranchCondition(instr->hydrogen()));
   2770 }
   2771 
   2772 
   2773 void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
   2774   Register result = ToRegister(instr->result());
   2775   Register base = ToRegister(instr->base_object());
   2776   if (instr->offset()->IsConstantOperand()) {
   2777     __ Add(result, base, ToOperand32(instr->offset()));
   2778   } else {
   2779     __ Add(result, base, Operand(ToRegister32(instr->offset()), SXTW));
   2780   }
   2781 }
   2782 
   2783 
   2784 void LCodeGen::DoHasInPrototypeChainAndBranch(
   2785     LHasInPrototypeChainAndBranch* instr) {
   2786   Register const object = ToRegister(instr->object());
   2787   Register const object_map = ToRegister(instr->scratch1());
   2788   Register const object_instance_type = ToRegister(instr->scratch2());
   2789   Register const object_prototype = object_map;
   2790   Register const prototype = ToRegister(instr->prototype());
   2791 
   2792   // The {object} must be a spec object.  It's sufficient to know that {object}
   2793   // is not a smi, since all other non-spec objects have {null} prototypes and
   2794   // will be ruled out below.
   2795   if (instr->hydrogen()->ObjectNeedsSmiCheck()) {
   2796     __ JumpIfSmi(object, instr->FalseLabel(chunk_));
   2797   }
   2798 
   2799   // Loop through the {object}s prototype chain looking for the {prototype}.
   2800   __ Ldr(object_map, FieldMemOperand(object, HeapObject::kMapOffset));
   2801   Label loop;
   2802   __ Bind(&loop);
   2803 
   2804   // Deoptimize if the object needs to be access checked.
   2805   __ Ldrb(object_instance_type,
   2806           FieldMemOperand(object_map, Map::kBitFieldOffset));
   2807   __ Tst(object_instance_type, Operand(1 << Map::kIsAccessCheckNeeded));
   2808   DeoptimizeIf(ne, instr, Deoptimizer::kAccessCheck);
   2809   // Deoptimize for proxies.
   2810   __ CompareInstanceType(object_map, object_instance_type, JS_PROXY_TYPE);
   2811   DeoptimizeIf(eq, instr, Deoptimizer::kProxy);
   2812 
   2813   __ Ldr(object_prototype, FieldMemOperand(object_map, Map::kPrototypeOffset));
   2814   __ CompareRoot(object_prototype, Heap::kNullValueRootIndex);
   2815   __ B(eq, instr->FalseLabel(chunk_));
   2816   __ Cmp(object_prototype, prototype);
   2817   __ B(eq, instr->TrueLabel(chunk_));
   2818   __ Ldr(object_map, FieldMemOperand(object_prototype, HeapObject::kMapOffset));
   2819   __ B(&loop);
   2820 }
   2821 
   2822 
   2823 void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
   2824   DoGap(instr);
   2825 }
   2826 
   2827 
   2828 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
   2829   Register value = ToRegister32(instr->value());
   2830   DoubleRegister result = ToDoubleRegister(instr->result());
   2831   __ Scvtf(result, value);
   2832 }
   2833 
   2834 void LCodeGen::PrepareForTailCall(const ParameterCount& actual,
   2835                                   Register scratch1, Register scratch2,
   2836                                   Register scratch3) {
   2837 #if DEBUG
   2838   if (actual.is_reg()) {
   2839     DCHECK(!AreAliased(actual.reg(), scratch1, scratch2, scratch3));
   2840   } else {
   2841     DCHECK(!AreAliased(scratch1, scratch2, scratch3));
   2842   }
   2843 #endif
   2844   if (FLAG_code_comments) {
   2845     if (actual.is_reg()) {
   2846       Comment(";;; PrepareForTailCall, actual: %s {",
   2847               RegisterConfiguration::Crankshaft()->GetGeneralRegisterName(
   2848                   actual.reg().code()));
   2849     } else {
   2850       Comment(";;; PrepareForTailCall, actual: %d {", actual.immediate());
   2851     }
   2852   }
   2853 
   2854   // Check if next frame is an arguments adaptor frame.
   2855   Register caller_args_count_reg = scratch1;
   2856   Label no_arguments_adaptor, formal_parameter_count_loaded;
   2857   __ Ldr(scratch2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
   2858   __ Ldr(scratch3,
   2859          MemOperand(scratch2, StandardFrameConstants::kContextOffset));
   2860   __ Cmp(scratch3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   2861   __ B(ne, &no_arguments_adaptor);
   2862 
   2863   // Drop current frame and load arguments count from arguments adaptor frame.
   2864   __ mov(fp, scratch2);
   2865   __ Ldr(caller_args_count_reg,
   2866          MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
   2867   __ SmiUntag(caller_args_count_reg);
   2868   __ B(&formal_parameter_count_loaded);
   2869 
   2870   __ bind(&no_arguments_adaptor);
   2871   // Load caller's formal parameter count
   2872   __ Mov(caller_args_count_reg,
   2873          Immediate(info()->literal()->parameter_count()));
   2874 
   2875   __ bind(&formal_parameter_count_loaded);
   2876   __ PrepareForTailCall(actual, caller_args_count_reg, scratch2, scratch3);
   2877 
   2878   Comment(";;; }");
   2879 }
   2880 
   2881 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
   2882   HInvokeFunction* hinstr = instr->hydrogen();
   2883   DCHECK(ToRegister(instr->context()).is(cp));
   2884   // The function is required to be in x1.
   2885   DCHECK(ToRegister(instr->function()).is(x1));
   2886   DCHECK(instr->HasPointerMap());
   2887 
   2888   bool is_tail_call = hinstr->tail_call_mode() == TailCallMode::kAllow;
   2889 
   2890   if (is_tail_call) {
   2891     DCHECK(!info()->saves_caller_doubles());
   2892     ParameterCount actual(instr->arity());
   2893     // It is safe to use x3, x4 and x5 as scratch registers here given that
   2894     // 1) we are not going to return to caller function anyway,
   2895     // 2) x3 (new.target) will be initialized below.
   2896     PrepareForTailCall(actual, x3, x4, x5);
   2897   }
   2898 
   2899   Handle<JSFunction> known_function = hinstr->known_function();
   2900   if (known_function.is_null()) {
   2901     LPointerMap* pointers = instr->pointer_map();
   2902     SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
   2903     ParameterCount actual(instr->arity());
   2904     InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
   2905     __ InvokeFunction(x1, no_reg, actual, flag, generator);
   2906   } else {
   2907     CallKnownFunction(known_function, hinstr->formal_parameter_count(),
   2908                       instr->arity(), is_tail_call, instr);
   2909   }
   2910   RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
   2911 }
   2912 
   2913 
   2914 Condition LCodeGen::EmitIsString(Register input,
   2915                                  Register temp1,
   2916                                  Label* is_not_string,
   2917                                  SmiCheck check_needed = INLINE_SMI_CHECK) {
   2918   if (check_needed == INLINE_SMI_CHECK) {
   2919     __ JumpIfSmi(input, is_not_string);
   2920   }
   2921   __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE);
   2922 
   2923   return lt;
   2924 }
   2925 
   2926 
   2927 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
   2928   Register val = ToRegister(instr->value());
   2929   Register scratch = ToRegister(instr->temp());
   2930 
   2931   SmiCheck check_needed =
   2932       instr->hydrogen()->value()->type().IsHeapObject()
   2933           ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
   2934   Condition true_cond =
   2935       EmitIsString(val, scratch, instr->FalseLabel(chunk_), check_needed);
   2936 
   2937   EmitBranch(instr, true_cond);
   2938 }
   2939 
   2940 
   2941 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
   2942   Register value = ToRegister(instr->value());
   2943   STATIC_ASSERT(kSmiTag == 0);
   2944   EmitTestAndBranch(instr, eq, value, kSmiTagMask);
   2945 }
   2946 
   2947 
   2948 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
   2949   Register input = ToRegister(instr->value());
   2950   Register temp = ToRegister(instr->temp());
   2951 
   2952   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
   2953     __ JumpIfSmi(input, instr->FalseLabel(chunk_));
   2954   }
   2955   __ Ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset));
   2956   __ Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
   2957 
   2958   EmitTestAndBranch(instr, ne, temp, 1 << Map::kIsUndetectable);
   2959 }
   2960 
   2961 
   2962 static const char* LabelType(LLabel* label) {
   2963   if (label->is_loop_header()) return " (loop header)";
   2964   if (label->is_osr_entry()) return " (OSR entry)";
   2965   return "";
   2966 }
   2967 
   2968 
   2969 void LCodeGen::DoLabel(LLabel* label) {
   2970   Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
   2971           current_instruction_,
   2972           label->hydrogen_value()->id(),
   2973           label->block_id(),
   2974           LabelType(label));
   2975 
   2976   // Inherit pushed_arguments_ from the predecessor's argument count.
   2977   if (label->block()->HasPredecessor()) {
   2978     pushed_arguments_ = label->block()->predecessors()->at(0)->argument_count();
   2979 #ifdef DEBUG
   2980     for (auto p : *label->block()->predecessors()) {
   2981       DCHECK_EQ(p->argument_count(), pushed_arguments_);
   2982     }
   2983 #endif
   2984   }
   2985 
   2986   __ Bind(label->label());
   2987   current_block_ = label->block_id();
   2988   DoGap(label);
   2989 }
   2990 
   2991 
   2992 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
   2993   Register context = ToRegister(instr->context());
   2994   Register result = ToRegister(instr->result());
   2995   __ Ldr(result, ContextMemOperand(context, instr->slot_index()));
   2996   if (instr->hydrogen()->RequiresHoleCheck()) {
   2997     if (instr->hydrogen()->DeoptimizesOnHole()) {
   2998       DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr,
   2999                        Deoptimizer::kHole);
   3000     } else {
   3001       Label not_the_hole;
   3002       __ JumpIfNotRoot(result, Heap::kTheHoleValueRootIndex, &not_the_hole);
   3003       __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
   3004       __ Bind(&not_the_hole);
   3005     }
   3006   }
   3007 }
   3008 
   3009 
   3010 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
   3011   Register function = ToRegister(instr->function());
   3012   Register result = ToRegister(instr->result());
   3013   Register temp = ToRegister(instr->temp());
   3014 
   3015   // Get the prototype or initial map from the function.
   3016   __ Ldr(result, FieldMemOperand(function,
   3017                                  JSFunction::kPrototypeOrInitialMapOffset));
   3018 
   3019   // Check that the function has a prototype or an initial map.
   3020   DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr,
   3021                    Deoptimizer::kHole);
   3022 
   3023   // If the function does not have an initial map, we're done.
   3024   Label done;
   3025   __ CompareObjectType(result, temp, temp, MAP_TYPE);
   3026   __ B(ne, &done);
   3027 
   3028   // Get the prototype from the initial map.
   3029   __ Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
   3030 
   3031   // All done.
   3032   __ Bind(&done);
   3033 }
   3034 
   3035 
   3036 template <class T>
   3037 void LCodeGen::EmitVectorLoadICRegisters(T* instr) {
   3038   Register vector_register = ToRegister(instr->temp_vector());
   3039   Register slot_register = LoadWithVectorDescriptor::SlotRegister();
   3040   DCHECK(vector_register.is(LoadWithVectorDescriptor::VectorRegister()));
   3041   DCHECK(slot_register.is(x0));
   3042 
   3043   AllowDeferredHandleDereference vector_structure_check;
   3044   Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
   3045   __ Mov(vector_register, vector);
   3046   // No need to allocate this register.
   3047   FeedbackVectorSlot slot = instr->hydrogen()->slot();
   3048   int index = vector->GetIndex(slot);
   3049   __ Mov(slot_register, Smi::FromInt(index));
   3050 }
   3051 
   3052 
   3053 template <class T>
   3054 void LCodeGen::EmitVectorStoreICRegisters(T* instr) {
   3055   Register vector_register = ToRegister(instr->temp_vector());
   3056   Register slot_register = ToRegister(instr->temp_slot());
   3057 
   3058   AllowDeferredHandleDereference vector_structure_check;
   3059   Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
   3060   __ Mov(vector_register, vector);
   3061   FeedbackVectorSlot slot = instr->hydrogen()->slot();
   3062   int index = vector->GetIndex(slot);
   3063   __ Mov(slot_register, Smi::FromInt(index));
   3064 }
   3065 
   3066 
   3067 void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
   3068   DCHECK(ToRegister(instr->context()).is(cp));
   3069   DCHECK(ToRegister(instr->result()).Is(x0));
   3070 
   3071   EmitVectorLoadICRegisters<LLoadGlobalGeneric>(instr);
   3072   Handle<Code> ic =
   3073       CodeFactory::LoadGlobalICInOptimizedCode(isolate(), instr->typeof_mode())
   3074           .code();
   3075   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   3076 }
   3077 
   3078 
   3079 MemOperand LCodeGen::PrepareKeyedExternalArrayOperand(
   3080     Register key,
   3081     Register base,
   3082     Register scratch,
   3083     bool key_is_smi,
   3084     bool key_is_constant,
   3085     int constant_key,
   3086     ElementsKind elements_kind,
   3087     int base_offset) {
   3088   int element_size_shift = ElementsKindToShiftSize(elements_kind);
   3089 
   3090   if (key_is_constant) {
   3091     int key_offset = constant_key << element_size_shift;
   3092     return MemOperand(base, key_offset + base_offset);
   3093   }
   3094 
   3095   if (key_is_smi) {
   3096     __ Add(scratch, base, Operand::UntagSmiAndScale(key, element_size_shift));
   3097     return MemOperand(scratch, base_offset);
   3098   }
   3099 
   3100   if (base_offset == 0) {
   3101     return MemOperand(base, key, SXTW, element_size_shift);
   3102   }
   3103 
   3104   DCHECK(!AreAliased(scratch, key));
   3105   __ Add(scratch, base, base_offset);
   3106   return MemOperand(scratch, key, SXTW, element_size_shift);
   3107 }
   3108 
   3109 
   3110 void LCodeGen::DoLoadKeyedExternal(LLoadKeyedExternal* instr) {
   3111   Register ext_ptr = ToRegister(instr->elements());
   3112   Register scratch;
   3113   ElementsKind elements_kind = instr->elements_kind();
   3114 
   3115   bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
   3116   bool key_is_constant = instr->key()->IsConstantOperand();
   3117   Register key = no_reg;
   3118   int constant_key = 0;
   3119   if (key_is_constant) {
   3120     DCHECK(instr->temp() == NULL);
   3121     constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
   3122     if (constant_key & 0xf0000000) {
   3123       Abort(kArrayIndexConstantValueTooBig);
   3124     }
   3125   } else {
   3126     scratch = ToRegister(instr->temp());
   3127     key = ToRegister(instr->key());
   3128   }
   3129 
   3130   MemOperand mem_op =
   3131       PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi,
   3132                                        key_is_constant, constant_key,
   3133                                        elements_kind,
   3134                                        instr->base_offset());
   3135 
   3136   if (elements_kind == FLOAT32_ELEMENTS) {
   3137     DoubleRegister result = ToDoubleRegister(instr->result());
   3138     __ Ldr(result.S(), mem_op);
   3139     __ Fcvt(result, result.S());
   3140   } else if (elements_kind == FLOAT64_ELEMENTS) {
   3141     DoubleRegister result = ToDoubleRegister(instr->result());
   3142     __ Ldr(result, mem_op);
   3143   } else {
   3144     Register result = ToRegister(instr->result());
   3145 
   3146     switch (elements_kind) {
   3147       case INT8_ELEMENTS:
   3148         __ Ldrsb(result, mem_op);
   3149         break;
   3150       case UINT8_ELEMENTS:
   3151       case UINT8_CLAMPED_ELEMENTS:
   3152         __ Ldrb(result, mem_op);
   3153         break;
   3154       case INT16_ELEMENTS:
   3155         __ Ldrsh(result, mem_op);
   3156         break;
   3157       case UINT16_ELEMENTS:
   3158         __ Ldrh(result, mem_op);
   3159         break;
   3160       case INT32_ELEMENTS:
   3161         __ Ldrsw(result, mem_op);
   3162         break;
   3163       case UINT32_ELEMENTS:
   3164         __ Ldr(result.W(), mem_op);
   3165         if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
   3166           // Deopt if value > 0x80000000.
   3167           __ Tst(result, 0xFFFFFFFF80000000);
   3168           DeoptimizeIf(ne, instr, Deoptimizer::kNegativeValue);
   3169         }
   3170         break;
   3171       case FLOAT32_ELEMENTS:
   3172       case FLOAT64_ELEMENTS:
   3173       case FAST_HOLEY_DOUBLE_ELEMENTS:
   3174       case FAST_HOLEY_ELEMENTS:
   3175       case FAST_HOLEY_SMI_ELEMENTS:
   3176       case FAST_DOUBLE_ELEMENTS:
   3177       case FAST_ELEMENTS:
   3178       case FAST_SMI_ELEMENTS:
   3179       case DICTIONARY_ELEMENTS:
   3180       case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
   3181       case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
   3182       case FAST_STRING_WRAPPER_ELEMENTS:
   3183       case SLOW_STRING_WRAPPER_ELEMENTS:
   3184       case NO_ELEMENTS:
   3185         UNREACHABLE();
   3186         break;
   3187     }
   3188   }
   3189 }
   3190 
   3191 
   3192 MemOperand LCodeGen::PrepareKeyedArrayOperand(Register base,
   3193                                               Register elements,
   3194                                               Register key,
   3195                                               bool key_is_tagged,
   3196                                               ElementsKind elements_kind,
   3197                                               Representation representation,
   3198                                               int base_offset) {
   3199   STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
   3200   STATIC_ASSERT(kSmiTag == 0);
   3201   int element_size_shift = ElementsKindToShiftSize(elements_kind);
   3202 
   3203   // Even though the HLoad/StoreKeyed instructions force the input
   3204   // representation for the key to be an integer, the input gets replaced during
   3205   // bounds check elimination with the index argument to the bounds check, which
   3206   // can be tagged, so that case must be handled here, too.
   3207   if (key_is_tagged) {
   3208     __ Add(base, elements, Operand::UntagSmiAndScale(key, element_size_shift));
   3209     if (representation.IsInteger32()) {
   3210       DCHECK(elements_kind == FAST_SMI_ELEMENTS);
   3211       // Read or write only the smi payload in the case of fast smi arrays.
   3212       return UntagSmiMemOperand(base, base_offset);
   3213     } else {
   3214       return MemOperand(base, base_offset);
   3215     }
   3216   } else {
   3217     // Sign extend key because it could be a 32-bit negative value or contain
   3218     // garbage in the top 32-bits. The address computation happens in 64-bit.
   3219     DCHECK((element_size_shift >= 0) && (element_size_shift <= 4));
   3220     if (representation.IsInteger32()) {
   3221       DCHECK(elements_kind == FAST_SMI_ELEMENTS);
   3222       // Read or write only the smi payload in the case of fast smi arrays.
   3223       __ Add(base, elements, Operand(key, SXTW, element_size_shift));
   3224       return UntagSmiMemOperand(base, base_offset);
   3225     } else {
   3226       __ Add(base, elements, base_offset);
   3227       return MemOperand(base, key, SXTW, element_size_shift);
   3228     }
   3229   }
   3230 }
   3231 
   3232 
   3233 void LCodeGen::DoLoadKeyedFixedDouble(LLoadKeyedFixedDouble* instr) {
   3234   Register elements = ToRegister(instr->elements());
   3235   DoubleRegister result = ToDoubleRegister(instr->result());
   3236   MemOperand mem_op;
   3237 
   3238   if (instr->key()->IsConstantOperand()) {
   3239     DCHECK(instr->hydrogen()->RequiresHoleCheck() ||
   3240            (instr->temp() == NULL));
   3241 
   3242     int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
   3243     if (constant_key & 0xf0000000) {
   3244       Abort(kArrayIndexConstantValueTooBig);
   3245     }
   3246     int offset = instr->base_offset() + constant_key * kDoubleSize;
   3247     mem_op = MemOperand(elements, offset);
   3248   } else {
   3249     Register load_base = ToRegister(instr->temp());
   3250     Register key = ToRegister(instr->key());
   3251     bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
   3252     mem_op = PrepareKeyedArrayOperand(load_base, elements, key, key_is_tagged,
   3253                                       instr->hydrogen()->elements_kind(),
   3254                                       instr->hydrogen()->representation(),
   3255                                       instr->base_offset());
   3256   }
   3257 
   3258   __ Ldr(result, mem_op);
   3259 
   3260   if (instr->hydrogen()->RequiresHoleCheck()) {
   3261     Register scratch = ToRegister(instr->temp());
   3262     __ Fmov(scratch, result);
   3263     __ Eor(scratch, scratch, kHoleNanInt64);
   3264     DeoptimizeIfZero(scratch, instr, Deoptimizer::kHole);
   3265   }
   3266 }
   3267 
   3268 
   3269 void LCodeGen::DoLoadKeyedFixed(LLoadKeyedFixed* instr) {
   3270   Register elements = ToRegister(instr->elements());
   3271   Register result = ToRegister(instr->result());
   3272   MemOperand mem_op;
   3273 
   3274   Representation representation = instr->hydrogen()->representation();
   3275   if (instr->key()->IsConstantOperand()) {
   3276     DCHECK(instr->temp() == NULL);
   3277     LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
   3278     int offset = instr->base_offset() +
   3279         ToInteger32(const_operand) * kPointerSize;
   3280     if (representation.IsInteger32()) {
   3281       DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS);
   3282       STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
   3283       STATIC_ASSERT(kSmiTag == 0);
   3284       mem_op = UntagSmiMemOperand(elements, offset);
   3285     } else {
   3286       mem_op = MemOperand(elements, offset);
   3287     }
   3288   } else {
   3289     Register load_base = ToRegister(instr->temp());
   3290     Register key = ToRegister(instr->key());
   3291     bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
   3292 
   3293     mem_op = PrepareKeyedArrayOperand(load_base, elements, key, key_is_tagged,
   3294                                       instr->hydrogen()->elements_kind(),
   3295                                       representation, instr->base_offset());
   3296   }
   3297 
   3298   __ Load(result, mem_op, representation);
   3299 
   3300   if (instr->hydrogen()->RequiresHoleCheck()) {
   3301     if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
   3302       DeoptimizeIfNotSmi(result, instr, Deoptimizer::kNotASmi);
   3303     } else {
   3304       DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr,
   3305                        Deoptimizer::kHole);
   3306     }
   3307   } else if (instr->hydrogen()->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
   3308     DCHECK(instr->hydrogen()->elements_kind() == FAST_HOLEY_ELEMENTS);
   3309     Label done;
   3310     __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
   3311     __ B(ne, &done);
   3312     if (info()->IsStub()) {
   3313       // A stub can safely convert the hole to undefined only if the array
   3314       // protector cell contains (Smi) Isolate::kArrayProtectorValid. Otherwise
   3315       // it needs to bail out.
   3316       __ LoadRoot(result, Heap::kArrayProtectorRootIndex);
   3317       __ Ldr(result, FieldMemOperand(result, Cell::kValueOffset));
   3318       __ Cmp(result, Operand(Smi::FromInt(Isolate::kArrayProtectorValid)));
   3319       DeoptimizeIf(ne, instr, Deoptimizer::kHole);
   3320     }
   3321     __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
   3322     __ Bind(&done);
   3323   }
   3324 }
   3325 
   3326 
   3327 void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
   3328   DCHECK(ToRegister(instr->context()).is(cp));
   3329   DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
   3330   DCHECK(ToRegister(instr->key()).is(LoadDescriptor::NameRegister()));
   3331 
   3332   EmitVectorLoadICRegisters<LLoadKeyedGeneric>(instr);
   3333 
   3334   Handle<Code> ic = CodeFactory::KeyedLoadICInOptimizedCode(isolate()).code();
   3335   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   3336 
   3337   DCHECK(ToRegister(instr->result()).Is(x0));
   3338 }
   3339 
   3340 
   3341 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
   3342   HObjectAccess access = instr->hydrogen()->access();
   3343   int offset = access.offset();
   3344   Register object = ToRegister(instr->object());
   3345 
   3346   if (access.IsExternalMemory()) {
   3347     Register result = ToRegister(instr->result());
   3348     __ Load(result, MemOperand(object, offset), access.representation());
   3349     return;
   3350   }
   3351 
   3352   if (instr->hydrogen()->representation().IsDouble()) {
   3353     DCHECK(access.IsInobject());
   3354     FPRegister result = ToDoubleRegister(instr->result());
   3355     __ Ldr(result, FieldMemOperand(object, offset));
   3356     return;
   3357   }
   3358 
   3359   Register result = ToRegister(instr->result());
   3360   Register source;
   3361   if (access.IsInobject()) {
   3362     source = object;
   3363   } else {
   3364     // Load the properties array, using result as a scratch register.
   3365     __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
   3366     source = result;
   3367   }
   3368 
   3369   if (access.representation().IsSmi() &&
   3370       instr->hydrogen()->representation().IsInteger32()) {
   3371     // Read int value directly from upper half of the smi.
   3372     STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
   3373     STATIC_ASSERT(kSmiTag == 0);
   3374     __ Load(result, UntagSmiFieldMemOperand(source, offset),
   3375             Representation::Integer32());
   3376   } else {
   3377     __ Load(result, FieldMemOperand(source, offset), access.representation());
   3378   }
   3379 }
   3380 
   3381 
   3382 void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
   3383   DCHECK(ToRegister(instr->context()).is(cp));
   3384   // LoadIC expects name and receiver in registers.
   3385   DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
   3386   __ Mov(LoadDescriptor::NameRegister(), Operand(instr->name()));
   3387   EmitVectorLoadICRegisters<LLoadNamedGeneric>(instr);
   3388   Handle<Code> ic = CodeFactory::LoadICInOptimizedCode(isolate()).code();
   3389   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   3390 
   3391   DCHECK(ToRegister(instr->result()).is(x0));
   3392 }
   3393 
   3394 
   3395 void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
   3396   Register result = ToRegister(instr->result());
   3397   __ LoadRoot(result, instr->index());
   3398 }
   3399 
   3400 
   3401 void LCodeGen::DoMathAbs(LMathAbs* instr) {
   3402   Representation r = instr->hydrogen()->value()->representation();
   3403   if (r.IsDouble()) {
   3404     DoubleRegister input = ToDoubleRegister(instr->value());
   3405     DoubleRegister result = ToDoubleRegister(instr->result());
   3406     __ Fabs(result, input);
   3407   } else if (r.IsSmi() || r.IsInteger32()) {
   3408     Register input = r.IsSmi() ? ToRegister(instr->value())
   3409                                : ToRegister32(instr->value());
   3410     Register result = r.IsSmi() ? ToRegister(instr->result())
   3411                                 : ToRegister32(instr->result());
   3412     __ Abs(result, input);
   3413     DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
   3414   }
   3415 }
   3416 
   3417 
   3418 void LCodeGen::DoDeferredMathAbsTagged(LMathAbsTagged* instr,
   3419                                        Label* exit,
   3420                                        Label* allocation_entry) {
   3421   // Handle the tricky cases of MathAbsTagged:
   3422   //  - HeapNumber inputs.
   3423   //    - Negative inputs produce a positive result, so a new HeapNumber is
   3424   //      allocated to hold it.
   3425   //    - Positive inputs are returned as-is, since there is no need to allocate
   3426   //      a new HeapNumber for the result.
   3427   //  - The (smi) input -0x80000000, produces +0x80000000, which does not fit
   3428   //    a smi. In this case, the inline code sets the result and jumps directly
   3429   //    to the allocation_entry label.
   3430   DCHECK(instr->context() != NULL);
   3431   DCHECK(ToRegister(instr->context()).is(cp));
   3432   Register input = ToRegister(instr->value());
   3433   Register temp1 = ToRegister(instr->temp1());
   3434   Register temp2 = ToRegister(instr->temp2());
   3435   Register result_bits = ToRegister(instr->temp3());
   3436   Register result = ToRegister(instr->result());
   3437 
   3438   Label runtime_allocation;
   3439 
   3440   // Deoptimize if the input is not a HeapNumber.
   3441   DeoptimizeIfNotHeapNumber(input, instr);
   3442 
   3443   // If the argument is positive, we can return it as-is, without any need to
   3444   // allocate a new HeapNumber for the result. We have to do this in integer
   3445   // registers (rather than with fabs) because we need to be able to distinguish
   3446   // the two zeroes.
   3447   __ Ldr(result_bits, FieldMemOperand(input, HeapNumber::kValueOffset));
   3448   __ Mov(result, input);
   3449   __ Tbz(result_bits, kXSignBit, exit);
   3450 
   3451   // Calculate abs(input) by clearing the sign bit.
   3452   __ Bic(result_bits, result_bits, kXSignMask);
   3453 
   3454   // Allocate a new HeapNumber to hold the result.
   3455   //  result_bits   The bit representation of the (double) result.
   3456   __ Bind(allocation_entry);
   3457   __ AllocateHeapNumber(result, &runtime_allocation, temp1, temp2);
   3458   // The inline (non-deferred) code will store result_bits into result.
   3459   __ B(exit);
   3460 
   3461   __ Bind(&runtime_allocation);
   3462   if (FLAG_debug_code) {
   3463     // Because result is in the pointer map, we need to make sure it has a valid
   3464     // tagged value before we call the runtime. We speculatively set it to the
   3465     // input (for abs(+x)) or to a smi (for abs(-SMI_MIN)), so it should already
   3466     // be valid.
   3467     Label result_ok;
   3468     Register input = ToRegister(instr->value());
   3469     __ JumpIfSmi(result, &result_ok);
   3470     __ Cmp(input, result);
   3471     __ Assert(eq, kUnexpectedValue);
   3472     __ Bind(&result_ok);
   3473   }
   3474 
   3475   { PushSafepointRegistersScope scope(this);
   3476     CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr,
   3477                             instr->context());
   3478     __ StoreToSafepointRegisterSlot(x0, result);
   3479   }
   3480   // The inline (non-deferred) code will store result_bits into result.
   3481 }
   3482 
   3483 
   3484 void LCodeGen::DoMathAbsTagged(LMathAbsTagged* instr) {
   3485   // Class for deferred case.
   3486   class DeferredMathAbsTagged: public LDeferredCode {
   3487    public:
   3488     DeferredMathAbsTagged(LCodeGen* codegen, LMathAbsTagged* instr)
   3489         : LDeferredCode(codegen), instr_(instr) { }
   3490     virtual void Generate() {
   3491       codegen()->DoDeferredMathAbsTagged(instr_, exit(),
   3492                                          allocation_entry());
   3493     }
   3494     virtual LInstruction* instr() { return instr_; }
   3495     Label* allocation_entry() { return &allocation; }
   3496    private:
   3497     LMathAbsTagged* instr_;
   3498     Label allocation;
   3499   };
   3500 
   3501   // TODO(jbramley): The early-exit mechanism would skip the new frame handling
   3502   // in GenerateDeferredCode. Tidy this up.
   3503   DCHECK(!NeedsDeferredFrame());
   3504 
   3505   DeferredMathAbsTagged* deferred =
   3506       new(zone()) DeferredMathAbsTagged(this, instr);
   3507 
   3508   DCHECK(instr->hydrogen()->value()->representation().IsTagged() ||
   3509          instr->hydrogen()->value()->representation().IsSmi());
   3510   Register input = ToRegister(instr->value());
   3511   Register result_bits = ToRegister(instr->temp3());
   3512   Register result = ToRegister(instr->result());
   3513   Label done;
   3514 
   3515   // Handle smis inline.
   3516   // We can treat smis as 64-bit integers, since the (low-order) tag bits will
   3517   // never get set by the negation. This is therefore the same as the Integer32
   3518   // case in DoMathAbs, except that it operates on 64-bit values.
   3519   STATIC_ASSERT((kSmiValueSize == 32) && (kSmiShift == 32) && (kSmiTag == 0));
   3520 
   3521   __ JumpIfNotSmi(input, deferred->entry());
   3522 
   3523   __ Abs(result, input, NULL, &done);
   3524 
   3525   // The result is the magnitude (abs) of the smallest value a smi can
   3526   // represent, encoded as a double.
   3527   __ Mov(result_bits, double_to_rawbits(0x80000000));
   3528   __ B(deferred->allocation_entry());
   3529 
   3530   __ Bind(deferred->exit());
   3531   __ Str(result_bits, FieldMemOperand(result, HeapNumber::kValueOffset));
   3532 
   3533   __ Bind(&done);
   3534 }
   3535 
   3536 void LCodeGen::DoMathCos(LMathCos* instr) {
   3537   DCHECK(instr->IsMarkedAsCall());
   3538   DCHECK(ToDoubleRegister(instr->value()).is(d0));
   3539   __ CallCFunction(ExternalReference::ieee754_cos_function(isolate()), 0, 1);
   3540   DCHECK(ToDoubleRegister(instr->result()).Is(d0));
   3541 }
   3542 
   3543 void LCodeGen::DoMathSin(LMathSin* instr) {
   3544   DCHECK(instr->IsMarkedAsCall());
   3545   DCHECK(ToDoubleRegister(instr->value()).is(d0));
   3546   __ CallCFunction(ExternalReference::ieee754_sin_function(isolate()), 0, 1);
   3547   DCHECK(ToDoubleRegister(instr->result()).Is(d0));
   3548 }
   3549 
   3550 void LCodeGen::DoMathExp(LMathExp* instr) {
   3551   DCHECK(instr->IsMarkedAsCall());
   3552   DCHECK(ToDoubleRegister(instr->value()).is(d0));
   3553   __ CallCFunction(ExternalReference::ieee754_exp_function(isolate()), 0, 1);
   3554   DCHECK(ToDoubleRegister(instr->result()).Is(d0));
   3555 }
   3556 
   3557 
   3558 void LCodeGen::DoMathFloorD(LMathFloorD* instr) {
   3559   DoubleRegister input = ToDoubleRegister(instr->value());
   3560   DoubleRegister result = ToDoubleRegister(instr->result());
   3561 
   3562   __ Frintm(result, input);
   3563 }
   3564 
   3565 
   3566 void LCodeGen::DoMathFloorI(LMathFloorI* instr) {
   3567   DoubleRegister input = ToDoubleRegister(instr->value());
   3568   Register result = ToRegister(instr->result());
   3569 
   3570   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   3571     DeoptimizeIfMinusZero(input, instr, Deoptimizer::kMinusZero);
   3572   }
   3573 
   3574   __ Fcvtms(result, input);
   3575 
   3576   // Check that the result fits into a 32-bit integer.
   3577   //  - The result did not overflow.
   3578   __ Cmp(result, Operand(result, SXTW));
   3579   //  - The input was not NaN.
   3580   __ Fccmp(input, input, NoFlag, eq);
   3581   DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN);
   3582 }
   3583 
   3584 
   3585 void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
   3586   Register dividend = ToRegister32(instr->dividend());
   3587   Register result = ToRegister32(instr->result());
   3588   int32_t divisor = instr->divisor();
   3589 
   3590   // If the divisor is 1, return the dividend.
   3591   if (divisor == 1) {
   3592     __ Mov(result, dividend, kDiscardForSameWReg);
   3593     return;
   3594   }
   3595 
   3596   // If the divisor is positive, things are easy: There can be no deopts and we
   3597   // can simply do an arithmetic right shift.
   3598   int32_t shift = WhichPowerOf2Abs(divisor);
   3599   if (divisor > 1) {
   3600     __ Mov(result, Operand(dividend, ASR, shift));
   3601     return;
   3602   }
   3603 
   3604   // If the divisor is negative, we have to negate and handle edge cases.
   3605   __ Negs(result, dividend);
   3606   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   3607     DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
   3608   }
   3609 
   3610   // Dividing by -1 is basically negation, unless we overflow.
   3611   if (divisor == -1) {
   3612     if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
   3613       DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
   3614     }
   3615     return;
   3616   }
   3617 
   3618   // If the negation could not overflow, simply shifting is OK.
   3619   if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
   3620     __ Mov(result, Operand(dividend, ASR, shift));
   3621     return;
   3622   }
   3623 
   3624   __ Asr(result, result, shift);
   3625   __ Csel(result, result, kMinInt / divisor, vc);
   3626 }
   3627 
   3628 
   3629 void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
   3630   Register dividend = ToRegister32(instr->dividend());
   3631   int32_t divisor = instr->divisor();
   3632   Register result = ToRegister32(instr->result());
   3633   DCHECK(!AreAliased(dividend, result));
   3634 
   3635   if (divisor == 0) {
   3636     Deoptimize(instr, Deoptimizer::kDivisionByZero);
   3637     return;
   3638   }
   3639 
   3640   // Check for (0 / -x) that will produce negative zero.
   3641   HMathFloorOfDiv* hdiv = instr->hydrogen();
   3642   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
   3643     DeoptimizeIfZero(dividend, instr, Deoptimizer::kMinusZero);
   3644   }
   3645 
   3646   // Easy case: We need no dynamic check for the dividend and the flooring
   3647   // division is the same as the truncating division.
   3648   if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
   3649       (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
   3650     __ TruncatingDiv(result, dividend, Abs(divisor));
   3651     if (divisor < 0) __ Neg(result, result);
   3652     return;
   3653   }
   3654 
   3655   // In the general case we may need to adjust before and after the truncating
   3656   // division to get a flooring division.
   3657   Register temp = ToRegister32(instr->temp());
   3658   DCHECK(!AreAliased(temp, dividend, result));
   3659   Label needs_adjustment, done;
   3660   __ Cmp(dividend, 0);
   3661   __ B(divisor > 0 ? lt : gt, &needs_adjustment);
   3662   __ TruncatingDiv(result, dividend, Abs(divisor));
   3663   if (divisor < 0) __ Neg(result, result);
   3664   __ B(&done);
   3665   __ Bind(&needs_adjustment);
   3666   __ Add(temp, dividend, Operand(divisor > 0 ? 1 : -1));
   3667   __ TruncatingDiv(result, temp, Abs(divisor));
   3668   if (divisor < 0) __ Neg(result, result);
   3669   __ Sub(result, result, Operand(1));
   3670   __ Bind(&done);
   3671 }
   3672 
   3673 
   3674 // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
   3675 void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
   3676   Register dividend = ToRegister32(instr->dividend());
   3677   Register divisor = ToRegister32(instr->divisor());
   3678   Register remainder = ToRegister32(instr->temp());
   3679   Register result = ToRegister32(instr->result());
   3680 
   3681   // This can't cause an exception on ARM, so we can speculatively
   3682   // execute it already now.
   3683   __ Sdiv(result, dividend, divisor);
   3684 
   3685   // Check for x / 0.
   3686   DeoptimizeIfZero(divisor, instr, Deoptimizer::kDivisionByZero);
   3687 
   3688   // Check for (kMinInt / -1).
   3689   if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
   3690     // The V flag will be set iff dividend == kMinInt.
   3691     __ Cmp(dividend, 1);
   3692     __ Ccmp(divisor, -1, NoFlag, vs);
   3693     DeoptimizeIf(eq, instr, Deoptimizer::kOverflow);
   3694   }
   3695 
   3696   // Check for (0 / -x) that will produce negative zero.
   3697   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   3698     __ Cmp(divisor, 0);
   3699     __ Ccmp(dividend, 0, ZFlag, mi);
   3700     // "divisor" can't be null because the code would have already been
   3701     // deoptimized. The Z flag is set only if (divisor < 0) and (dividend == 0).
   3702     // In this case we need to deoptimize to produce a -0.
   3703     DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
   3704   }
   3705 
   3706   Label done;
   3707   // If both operands have the same sign then we are done.
   3708   __ Eor(remainder, dividend, divisor);
   3709   __ Tbz(remainder, kWSignBit, &done);
   3710 
   3711   // Check if the result needs to be corrected.
   3712   __ Msub(remainder, result, divisor, dividend);
   3713   __ Cbz(remainder, &done);
   3714   __ Sub(result, result, 1);
   3715 
   3716   __ Bind(&done);
   3717 }
   3718 
   3719 
   3720 void LCodeGen::DoMathLog(LMathLog* instr) {
   3721   DCHECK(instr->IsMarkedAsCall());
   3722   DCHECK(ToDoubleRegister(instr->value()).is(d0));
   3723   __ CallCFunction(ExternalReference::ieee754_log_function(isolate()), 0, 1);
   3724   DCHECK(ToDoubleRegister(instr->result()).Is(d0));
   3725 }
   3726 
   3727 
   3728 void LCodeGen::DoMathClz32(LMathClz32* instr) {
   3729   Register input = ToRegister32(instr->value());
   3730   Register result = ToRegister32(instr->result());
   3731   __ Clz(result, input);
   3732 }
   3733 
   3734 
   3735 void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
   3736   DoubleRegister input = ToDoubleRegister(instr->value());
   3737   DoubleRegister result = ToDoubleRegister(instr->result());
   3738   Label done;
   3739 
   3740   // Math.pow(x, 0.5) differs from fsqrt(x) in the following cases:
   3741   //  Math.pow(-Infinity, 0.5) == +Infinity
   3742   //  Math.pow(-0.0, 0.5) == +0.0
   3743 
   3744   // Catch -infinity inputs first.
   3745   // TODO(jbramley): A constant infinity register would be helpful here.
   3746   __ Fmov(double_scratch(), kFP64NegativeInfinity);
   3747   __ Fcmp(double_scratch(), input);
   3748   __ Fabs(result, input);
   3749   __ B(&done, eq);
   3750 
   3751   // Add +0.0 to convert -0.0 to +0.0.
   3752   __ Fadd(double_scratch(), input, fp_zero);
   3753   __ Fsqrt(result, double_scratch());
   3754 
   3755   __ Bind(&done);
   3756 }
   3757 
   3758 
   3759 void LCodeGen::DoPower(LPower* instr) {
   3760   Representation exponent_type = instr->hydrogen()->right()->representation();
   3761   // Having marked this as a call, we can use any registers.
   3762   // Just make sure that the input/output registers are the expected ones.
   3763   Register tagged_exponent = MathPowTaggedDescriptor::exponent();
   3764   Register integer_exponent = MathPowIntegerDescriptor::exponent();
   3765   DCHECK(!instr->right()->IsDoubleRegister() ||
   3766          ToDoubleRegister(instr->right()).is(d1));
   3767   DCHECK(exponent_type.IsInteger32() || !instr->right()->IsRegister() ||
   3768          ToRegister(instr->right()).is(tagged_exponent));
   3769   DCHECK(!exponent_type.IsInteger32() ||
   3770          ToRegister(instr->right()).is(integer_exponent));
   3771   DCHECK(ToDoubleRegister(instr->left()).is(d0));
   3772   DCHECK(ToDoubleRegister(instr->result()).is(d0));
   3773 
   3774   if (exponent_type.IsSmi()) {
   3775     MathPowStub stub(isolate(), MathPowStub::TAGGED);
   3776     __ CallStub(&stub);
   3777   } else if (exponent_type.IsTagged()) {
   3778     Label no_deopt;
   3779     __ JumpIfSmi(tagged_exponent, &no_deopt);
   3780     DeoptimizeIfNotHeapNumber(tagged_exponent, instr);
   3781     __ Bind(&no_deopt);
   3782     MathPowStub stub(isolate(), MathPowStub::TAGGED);
   3783     __ CallStub(&stub);
   3784   } else if (exponent_type.IsInteger32()) {
   3785     // Ensure integer exponent has no garbage in top 32-bits, as MathPowStub
   3786     // supports large integer exponents.
   3787     __ Sxtw(integer_exponent, integer_exponent);
   3788     MathPowStub stub(isolate(), MathPowStub::INTEGER);
   3789     __ CallStub(&stub);
   3790   } else {
   3791     DCHECK(exponent_type.IsDouble());
   3792     MathPowStub stub(isolate(), MathPowStub::DOUBLE);
   3793     __ CallStub(&stub);
   3794   }
   3795 }
   3796 
   3797 
   3798 void LCodeGen::DoMathRoundD(LMathRoundD* instr) {
   3799   DoubleRegister input = ToDoubleRegister(instr->value());
   3800   DoubleRegister result = ToDoubleRegister(instr->result());
   3801   DoubleRegister scratch_d = double_scratch();
   3802 
   3803   DCHECK(!AreAliased(input, result, scratch_d));
   3804 
   3805   Label done;
   3806 
   3807   __ Frinta(result, input);
   3808   __ Fcmp(input, 0.0);
   3809   __ Fccmp(result, input, ZFlag, lt);
   3810   // The result is correct if the input was in [-0, +infinity], or was a
   3811   // negative integral value.
   3812   __ B(eq, &done);
   3813 
   3814   // Here the input is negative, non integral, with an exponent lower than 52.
   3815   // We do not have to worry about the 0.49999999999999994 (0x3fdfffffffffffff)
   3816   // case. So we can safely add 0.5.
   3817   __ Fmov(scratch_d, 0.5);
   3818   __ Fadd(result, input, scratch_d);
   3819   __ Frintm(result, result);
   3820   // The range [-0.5, -0.0[ yielded +0.0. Force the sign to negative.
   3821   __ Fabs(result, result);
   3822   __ Fneg(result, result);
   3823 
   3824   __ Bind(&done);
   3825 }
   3826 
   3827 
   3828 void LCodeGen::DoMathRoundI(LMathRoundI* instr) {
   3829   DoubleRegister input = ToDoubleRegister(instr->value());
   3830   DoubleRegister temp = ToDoubleRegister(instr->temp1());
   3831   DoubleRegister dot_five = double_scratch();
   3832   Register result = ToRegister(instr->result());
   3833   Label done;
   3834 
   3835   // Math.round() rounds to the nearest integer, with ties going towards
   3836   // +infinity. This does not match any IEEE-754 rounding mode.
   3837   //  - Infinities and NaNs are propagated unchanged, but cause deopts because
   3838   //    they can't be represented as integers.
   3839   //  - The sign of the result is the same as the sign of the input. This means
   3840   //    that -0.0 rounds to itself, and values -0.5 <= input < 0 also produce a
   3841   //    result of -0.0.
   3842 
   3843   // Add 0.5 and round towards -infinity.
   3844   __ Fmov(dot_five, 0.5);
   3845   __ Fadd(temp, input, dot_five);
   3846   __ Fcvtms(result, temp);
   3847 
   3848   // The result is correct if:
   3849   //  result is not 0, as the input could be NaN or [-0.5, -0.0].
   3850   //  result is not 1, as 0.499...94 will wrongly map to 1.
   3851   //  result fits in 32 bits.
   3852   __ Cmp(result, Operand(result.W(), SXTW));
   3853   __ Ccmp(result, 1, ZFlag, eq);
   3854   __ B(hi, &done);
   3855 
   3856   // At this point, we have to handle possible inputs of NaN or numbers in the
   3857   // range [-0.5, 1.5[, or numbers larger than 32 bits.
   3858 
   3859   // Deoptimize if the result > 1, as it must be larger than 32 bits.
   3860   __ Cmp(result, 1);
   3861   DeoptimizeIf(hi, instr, Deoptimizer::kOverflow);
   3862 
   3863   // Deoptimize for negative inputs, which at this point are only numbers in
   3864   // the range [-0.5, -0.0]
   3865   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   3866     __ Fmov(result, input);
   3867     DeoptimizeIfNegative(result, instr, Deoptimizer::kMinusZero);
   3868   }
   3869 
   3870   // Deoptimize if the input was NaN.
   3871   __ Fcmp(input, dot_five);
   3872   DeoptimizeIf(vs, instr, Deoptimizer::kNaN);
   3873 
   3874   // Now, the only unhandled inputs are in the range [0.0, 1.5[ (or [-0.5, 1.5[
   3875   // if we didn't generate a -0.0 bailout). If input >= 0.5 then return 1,
   3876   // else 0; we avoid dealing with 0.499...94 directly.
   3877   __ Cset(result, ge);
   3878   __ Bind(&done);
   3879 }
   3880 
   3881 
   3882 void LCodeGen::DoMathFround(LMathFround* instr) {
   3883   DoubleRegister input = ToDoubleRegister(instr->value());
   3884   DoubleRegister result = ToDoubleRegister(instr->result());
   3885   __ Fcvt(result.S(), input);
   3886   __ Fcvt(result, result.S());
   3887 }
   3888 
   3889 
   3890 void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
   3891   DoubleRegister input = ToDoubleRegister(instr->value());
   3892   DoubleRegister result = ToDoubleRegister(instr->result());
   3893   __ Fsqrt(result, input);
   3894 }
   3895 
   3896 
   3897 void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
   3898   HMathMinMax::Operation op = instr->hydrogen()->operation();
   3899   if (instr->hydrogen()->representation().IsInteger32()) {
   3900     Register result = ToRegister32(instr->result());
   3901     Register left = ToRegister32(instr->left());
   3902     Operand right = ToOperand32(instr->right());
   3903 
   3904     __ Cmp(left, right);
   3905     __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le);
   3906   } else if (instr->hydrogen()->representation().IsSmi()) {
   3907     Register result = ToRegister(instr->result());
   3908     Register left = ToRegister(instr->left());
   3909     Operand right = ToOperand(instr->right());
   3910 
   3911     __ Cmp(left, right);
   3912     __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le);
   3913   } else {
   3914     DCHECK(instr->hydrogen()->representation().IsDouble());
   3915     DoubleRegister result = ToDoubleRegister(instr->result());
   3916     DoubleRegister left = ToDoubleRegister(instr->left());
   3917     DoubleRegister right = ToDoubleRegister(instr->right());
   3918 
   3919     if (op == HMathMinMax::kMathMax) {
   3920       __ Fmax(result, left, right);
   3921     } else {
   3922       DCHECK(op == HMathMinMax::kMathMin);
   3923       __ Fmin(result, left, right);
   3924     }
   3925   }
   3926 }
   3927 
   3928 
   3929 void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
   3930   Register dividend = ToRegister32(instr->dividend());
   3931   int32_t divisor = instr->divisor();
   3932   DCHECK(dividend.is(ToRegister32(instr->result())));
   3933 
   3934   // Theoretically, a variation of the branch-free code for integer division by
   3935   // a power of 2 (calculating the remainder via an additional multiplication
   3936   // (which gets simplified to an 'and') and subtraction) should be faster, and
   3937   // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
   3938   // indicate that positive dividends are heavily favored, so the branching
   3939   // version performs better.
   3940   HMod* hmod = instr->hydrogen();
   3941   int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
   3942   Label dividend_is_not_negative, done;
   3943   if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
   3944     __ Tbz(dividend, kWSignBit, &dividend_is_not_negative);
   3945     // Note that this is correct even for kMinInt operands.
   3946     __ Neg(dividend, dividend);
   3947     __ And(dividend, dividend, mask);
   3948     __ Negs(dividend, dividend);
   3949     if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
   3950       DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
   3951     }
   3952     __ B(&done);
   3953   }
   3954 
   3955   __ bind(&dividend_is_not_negative);
   3956   __ And(dividend, dividend, mask);
   3957   __ bind(&done);
   3958 }
   3959 
   3960 
   3961 void LCodeGen::DoModByConstI(LModByConstI* instr) {
   3962   Register dividend = ToRegister32(instr->dividend());
   3963   int32_t divisor = instr->divisor();
   3964   Register result = ToRegister32(instr->result());
   3965   Register temp = ToRegister32(instr->temp());
   3966   DCHECK(!AreAliased(dividend, result, temp));
   3967 
   3968   if (divisor == 0) {
   3969     Deoptimize(instr, Deoptimizer::kDivisionByZero);
   3970     return;
   3971   }
   3972 
   3973   __ TruncatingDiv(result, dividend, Abs(divisor));
   3974   __ Sxtw(dividend.X(), dividend);
   3975   __ Mov(temp, Abs(divisor));
   3976   __ Smsubl(result.X(), result, temp, dividend.X());
   3977 
   3978   // Check for negative zero.
   3979   HMod* hmod = instr->hydrogen();
   3980   if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
   3981     Label remainder_not_zero;
   3982     __ Cbnz(result, &remainder_not_zero);
   3983     DeoptimizeIfNegative(dividend, instr, Deoptimizer::kMinusZero);
   3984     __ bind(&remainder_not_zero);
   3985   }
   3986 }
   3987 
   3988 
   3989 void LCodeGen::DoModI(LModI* instr) {
   3990   Register dividend = ToRegister32(instr->left());
   3991   Register divisor = ToRegister32(instr->right());
   3992   Register result = ToRegister32(instr->result());
   3993 
   3994   Label done;
   3995   // modulo = dividend - quotient * divisor
   3996   __ Sdiv(result, dividend, divisor);
   3997   if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
   3998     DeoptimizeIfZero(divisor, instr, Deoptimizer::kDivisionByZero);
   3999   }
   4000   __ Msub(result, result, divisor, dividend);
   4001   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   4002     __ Cbnz(result, &done);
   4003     DeoptimizeIfNegative(dividend, instr, Deoptimizer::kMinusZero);
   4004   }
   4005   __ Bind(&done);
   4006 }
   4007 
   4008 
   4009 void LCodeGen::DoMulConstIS(LMulConstIS* instr) {
   4010   DCHECK(instr->hydrogen()->representation().IsSmiOrInteger32());
   4011   bool is_smi = instr->hydrogen()->representation().IsSmi();
   4012   Register result =
   4013       is_smi ? ToRegister(instr->result()) : ToRegister32(instr->result());
   4014   Register left =
   4015       is_smi ? ToRegister(instr->left()) : ToRegister32(instr->left());
   4016   int32_t right = ToInteger32(instr->right());
   4017   DCHECK((right > -kMaxInt) && (right < kMaxInt));
   4018 
   4019   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
   4020   bool bailout_on_minus_zero =
   4021     instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
   4022 
   4023   if (bailout_on_minus_zero) {
   4024     if (right < 0) {
   4025       // The result is -0 if right is negative and left is zero.
   4026       DeoptimizeIfZero(left, instr, Deoptimizer::kMinusZero);
   4027     } else if (right == 0) {
   4028       // The result is -0 if the right is zero and the left is negative.
   4029       DeoptimizeIfNegative(left, instr, Deoptimizer::kMinusZero);
   4030     }
   4031   }
   4032 
   4033   switch (right) {
   4034     // Cases which can detect overflow.
   4035     case -1:
   4036       if (can_overflow) {
   4037         // Only 0x80000000 can overflow here.
   4038         __ Negs(result, left);
   4039         DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
   4040       } else {
   4041         __ Neg(result, left);
   4042       }
   4043       break;
   4044     case 0:
   4045       // This case can never overflow.
   4046       __ Mov(result, 0);
   4047       break;
   4048     case 1:
   4049       // This case can never overflow.
   4050       __ Mov(result, left, kDiscardForSameWReg);
   4051       break;
   4052     case 2:
   4053       if (can_overflow) {
   4054         __ Adds(result, left, left);
   4055         DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
   4056       } else {
   4057         __ Add(result, left, left);
   4058       }
   4059       break;
   4060 
   4061     default:
   4062       // Multiplication by constant powers of two (and some related values)
   4063       // can be done efficiently with shifted operands.
   4064       int32_t right_abs = Abs(right);
   4065 
   4066       if (base::bits::IsPowerOfTwo32(right_abs)) {
   4067         int right_log2 = WhichPowerOf2(right_abs);
   4068 
   4069         if (can_overflow) {
   4070           Register scratch = result;
   4071           DCHECK(!AreAliased(scratch, left));
   4072           __ Cls(scratch, left);
   4073           __ Cmp(scratch, right_log2);
   4074           DeoptimizeIf(lt, instr, Deoptimizer::kOverflow);
   4075         }
   4076 
   4077         if (right >= 0) {
   4078           // result = left << log2(right)
   4079           __ Lsl(result, left, right_log2);
   4080         } else {
   4081           // result = -left << log2(-right)
   4082           if (can_overflow) {
   4083             __ Negs(result, Operand(left, LSL, right_log2));
   4084             DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
   4085           } else {
   4086             __ Neg(result, Operand(left, LSL, right_log2));
   4087           }
   4088         }
   4089         return;
   4090       }
   4091 
   4092 
   4093       // For the following cases, we could perform a conservative overflow check
   4094       // with CLS as above. However the few cycles saved are likely not worth
   4095       // the risk of deoptimizing more often than required.
   4096       DCHECK(!can_overflow);
   4097 
   4098       if (right >= 0) {
   4099         if (base::bits::IsPowerOfTwo32(right - 1)) {
   4100           // result = left + left << log2(right - 1)
   4101           __ Add(result, left, Operand(left, LSL, WhichPowerOf2(right - 1)));
   4102         } else if (base::bits::IsPowerOfTwo32(right + 1)) {
   4103           // result = -left + left << log2(right + 1)
   4104           __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(right + 1)));
   4105           __ Neg(result, result);
   4106         } else {
   4107           UNREACHABLE();
   4108         }
   4109       } else {
   4110         if (base::bits::IsPowerOfTwo32(-right + 1)) {
   4111           // result = left - left << log2(-right + 1)
   4112           __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(-right + 1)));
   4113         } else if (base::bits::IsPowerOfTwo32(-right - 1)) {
   4114           // result = -left - left << log2(-right - 1)
   4115           __ Add(result, left, Operand(left, LSL, WhichPowerOf2(-right - 1)));
   4116           __ Neg(result, result);
   4117         } else {
   4118           UNREACHABLE();
   4119         }
   4120       }
   4121   }
   4122 }
   4123 
   4124 
   4125 void LCodeGen::DoMulI(LMulI* instr) {
   4126   Register result = ToRegister32(instr->result());
   4127   Register left = ToRegister32(instr->left());
   4128   Register right = ToRegister32(instr->right());
   4129 
   4130   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
   4131   bool bailout_on_minus_zero =
   4132     instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
   4133 
   4134   if (bailout_on_minus_zero && !left.Is(right)) {
   4135     // If one operand is zero and the other is negative, the result is -0.
   4136     //  - Set Z (eq) if either left or right, or both, are 0.
   4137     __ Cmp(left, 0);
   4138     __ Ccmp(right, 0, ZFlag, ne);
   4139     //  - If so (eq), set N (mi) if left + right is negative.
   4140     //  - Otherwise, clear N.
   4141     __ Ccmn(left, right, NoFlag, eq);
   4142     DeoptimizeIf(mi, instr, Deoptimizer::kMinusZero);
   4143   }
   4144 
   4145   if (can_overflow) {
   4146     __ Smull(result.X(), left, right);
   4147     __ Cmp(result.X(), Operand(result, SXTW));
   4148     DeoptimizeIf(ne, instr, Deoptimizer::kOverflow);
   4149   } else {
   4150     __ Mul(result, left, right);
   4151   }
   4152 }
   4153 
   4154 
   4155 void LCodeGen::DoMulS(LMulS* instr) {
   4156   Register result = ToRegister(instr->result());
   4157   Register left = ToRegister(instr->left());
   4158   Register right = ToRegister(instr->right());
   4159 
   4160   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
   4161   bool bailout_on_minus_zero =
   4162     instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
   4163 
   4164   if (bailout_on_minus_zero && !left.Is(right)) {
   4165     // If one operand is zero and the other is negative, the result is -0.
   4166     //  - Set Z (eq) if either left or right, or both, are 0.
   4167     __ Cmp(left, 0);
   4168     __ Ccmp(right, 0, ZFlag, ne);
   4169     //  - If so (eq), set N (mi) if left + right is negative.
   4170     //  - Otherwise, clear N.
   4171     __ Ccmn(left, right, NoFlag, eq);
   4172     DeoptimizeIf(mi, instr, Deoptimizer::kMinusZero);
   4173   }
   4174 
   4175   STATIC_ASSERT((kSmiShift == 32) && (kSmiTag == 0));
   4176   if (can_overflow) {
   4177     __ Smulh(result, left, right);
   4178     __ Cmp(result, Operand(result.W(), SXTW));
   4179     __ SmiTag(result);
   4180     DeoptimizeIf(ne, instr, Deoptimizer::kOverflow);
   4181   } else {
   4182     if (AreAliased(result, left, right)) {
   4183       // All three registers are the same: half untag the input and then
   4184       // multiply, giving a tagged result.
   4185       STATIC_ASSERT((kSmiShift % 2) == 0);
   4186       __ Asr(result, left, kSmiShift / 2);
   4187       __ Mul(result, result, result);
   4188     } else if (result.Is(left) && !left.Is(right)) {
   4189       // Registers result and left alias, right is distinct: untag left into
   4190       // result, and then multiply by right, giving a tagged result.
   4191       __ SmiUntag(result, left);
   4192       __ Mul(result, result, right);
   4193     } else {
   4194       DCHECK(!left.Is(result));
   4195       // Registers result and right alias, left is distinct, or all registers
   4196       // are distinct: untag right into result, and then multiply by left,
   4197       // giving a tagged result.
   4198       __ SmiUntag(result, right);
   4199       __ Mul(result, left, result);
   4200     }
   4201   }
   4202 }
   4203 
   4204 
   4205 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
   4206   // TODO(3095996): Get rid of this. For now, we need to make the
   4207   // result register contain a valid pointer because it is already
   4208   // contained in the register pointer map.
   4209   Register result = ToRegister(instr->result());
   4210   __ Mov(result, 0);
   4211 
   4212   PushSafepointRegistersScope scope(this);
   4213   // NumberTagU and NumberTagD use the context from the frame, rather than
   4214   // the environment's HContext or HInlinedContext value.
   4215   // They only call Runtime::kAllocateHeapNumber.
   4216   // The corresponding HChange instructions are added in a phase that does
   4217   // not have easy access to the local context.
   4218   __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
   4219   __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
   4220   RecordSafepointWithRegisters(
   4221       instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
   4222   __ StoreToSafepointRegisterSlot(x0, result);
   4223 }
   4224 
   4225 
   4226 void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
   4227   class DeferredNumberTagD: public LDeferredCode {
   4228    public:
   4229     DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
   4230         : LDeferredCode(codegen), instr_(instr) { }
   4231     virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); }
   4232     virtual LInstruction* instr() { return instr_; }
   4233    private:
   4234     LNumberTagD* instr_;
   4235   };
   4236 
   4237   DoubleRegister input = ToDoubleRegister(instr->value());
   4238   Register result = ToRegister(instr->result());
   4239   Register temp1 = ToRegister(instr->temp1());
   4240   Register temp2 = ToRegister(instr->temp2());
   4241 
   4242   DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr);
   4243   if (FLAG_inline_new) {
   4244     __ AllocateHeapNumber(result, deferred->entry(), temp1, temp2);
   4245   } else {
   4246     __ B(deferred->entry());
   4247   }
   4248 
   4249   __ Bind(deferred->exit());
   4250   __ Str(input, FieldMemOperand(result, HeapNumber::kValueOffset));
   4251 }
   4252 
   4253 
   4254 void LCodeGen::DoDeferredNumberTagU(LInstruction* instr,
   4255                                     LOperand* value,
   4256                                     LOperand* temp1,
   4257                                     LOperand* temp2) {
   4258   Label slow, convert_and_store;
   4259   Register src = ToRegister32(value);
   4260   Register dst = ToRegister(instr->result());
   4261   Register scratch1 = ToRegister(temp1);
   4262 
   4263   if (FLAG_inline_new) {
   4264     Register scratch2 = ToRegister(temp2);
   4265     __ AllocateHeapNumber(dst, &slow, scratch1, scratch2);
   4266     __ B(&convert_and_store);
   4267   }
   4268 
   4269   // Slow case: call the runtime system to do the number allocation.
   4270   __ Bind(&slow);
   4271   // TODO(3095996): Put a valid pointer value in the stack slot where the result
   4272   // register is stored, as this register is in the pointer map, but contains an
   4273   // integer value.
   4274   __ Mov(dst, 0);
   4275   {
   4276     // Preserve the value of all registers.
   4277     PushSafepointRegistersScope scope(this);
   4278 
   4279     // NumberTagU and NumberTagD use the context from the frame, rather than
   4280     // the environment's HContext or HInlinedContext value.
   4281     // They only call Runtime::kAllocateHeapNumber.
   4282     // The corresponding HChange instructions are added in a phase that does
   4283     // not have easy access to the local context.
   4284     __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
   4285     __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
   4286     RecordSafepointWithRegisters(
   4287       instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
   4288     __ StoreToSafepointRegisterSlot(x0, dst);
   4289   }
   4290 
   4291   // Convert number to floating point and store in the newly allocated heap
   4292   // number.
   4293   __ Bind(&convert_and_store);
   4294   DoubleRegister dbl_scratch = double_scratch();
   4295   __ Ucvtf(dbl_scratch, src);
   4296   __ Str(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset));
   4297 }
   4298 
   4299 
   4300 void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
   4301   class DeferredNumberTagU: public LDeferredCode {
   4302    public:
   4303     DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
   4304         : LDeferredCode(codegen), instr_(instr) { }
   4305     virtual void Generate() {
   4306       codegen()->DoDeferredNumberTagU(instr_,
   4307                                       instr_->value(),
   4308                                       instr_->temp1(),
   4309                                       instr_->temp2());
   4310     }
   4311     virtual LInstruction* instr() { return instr_; }
   4312    private:
   4313     LNumberTagU* instr_;
   4314   };
   4315 
   4316   Register value = ToRegister32(instr->value());
   4317   Register result = ToRegister(instr->result());
   4318 
   4319   DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr);
   4320   __ Cmp(value, Smi::kMaxValue);
   4321   __ B(hi, deferred->entry());
   4322   __ SmiTag(result, value.X());
   4323   __ Bind(deferred->exit());
   4324 }
   4325 
   4326 
   4327 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
   4328   Register input = ToRegister(instr->value());
   4329   Register scratch = ToRegister(instr->temp());
   4330   DoubleRegister result = ToDoubleRegister(instr->result());
   4331   bool can_convert_undefined_to_nan =
   4332       instr->hydrogen()->can_convert_undefined_to_nan();
   4333 
   4334   Label done, load_smi;
   4335 
   4336   // Work out what untag mode we're working with.
   4337   HValue* value = instr->hydrogen()->value();
   4338   NumberUntagDMode mode = value->representation().IsSmi()
   4339       ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
   4340 
   4341   if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
   4342     __ JumpIfSmi(input, &load_smi);
   4343 
   4344     Label convert_undefined;
   4345 
   4346     // Heap number map check.
   4347     if (can_convert_undefined_to_nan) {
   4348       __ JumpIfNotHeapNumber(input, &convert_undefined);
   4349     } else {
   4350       DeoptimizeIfNotHeapNumber(input, instr);
   4351     }
   4352 
   4353     // Load heap number.
   4354     __ Ldr(result, FieldMemOperand(input, HeapNumber::kValueOffset));
   4355     if (instr->hydrogen()->deoptimize_on_minus_zero()) {
   4356       DeoptimizeIfMinusZero(result, instr, Deoptimizer::kMinusZero);
   4357     }
   4358     __ B(&done);
   4359 
   4360     if (can_convert_undefined_to_nan) {
   4361       __ Bind(&convert_undefined);
   4362       DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr,
   4363                           Deoptimizer::kNotAHeapNumberUndefined);
   4364 
   4365       __ LoadRoot(scratch, Heap::kNanValueRootIndex);
   4366       __ Ldr(result, FieldMemOperand(scratch, HeapNumber::kValueOffset));
   4367       __ B(&done);
   4368     }
   4369 
   4370   } else {
   4371     DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
   4372     // Fall through to load_smi.
   4373   }
   4374 
   4375   // Smi to double register conversion.
   4376   __ Bind(&load_smi);
   4377   __ SmiUntagToDouble(result, input);
   4378 
   4379   __ Bind(&done);
   4380 }
   4381 
   4382 
   4383 void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
   4384   // This is a pseudo-instruction that ensures that the environment here is
   4385   // properly registered for deoptimization and records the assembler's PC
   4386   // offset.
   4387   LEnvironment* environment = instr->environment();
   4388 
   4389   // If the environment were already registered, we would have no way of
   4390   // backpatching it with the spill slot operands.
   4391   DCHECK(!environment->HasBeenRegistered());
   4392   RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
   4393 
   4394   GenerateOsrPrologue();
   4395 }
   4396 
   4397 
   4398 void LCodeGen::DoParameter(LParameter* instr) {
   4399   // Nothing to do.
   4400 }
   4401 
   4402 
   4403 void LCodeGen::DoPreparePushArguments(LPreparePushArguments* instr) {
   4404   __ PushPreamble(instr->argc(), kPointerSize);
   4405 }
   4406 
   4407 
   4408 void LCodeGen::DoPushArguments(LPushArguments* instr) {
   4409   MacroAssembler::PushPopQueue args(masm());
   4410 
   4411   for (int i = 0; i < instr->ArgumentCount(); ++i) {
   4412     LOperand* arg = instr->argument(i);
   4413     if (arg->IsDoubleRegister() || arg->IsDoubleStackSlot()) {
   4414       Abort(kDoPushArgumentNotImplementedForDoubleType);
   4415       return;
   4416     }
   4417     args.Queue(ToRegister(arg));
   4418   }
   4419 
   4420   // The preamble was done by LPreparePushArguments.
   4421   args.PushQueued(MacroAssembler::PushPopQueue::SKIP_PREAMBLE);
   4422 
   4423   RecordPushedArgumentsDelta(instr->ArgumentCount());
   4424 }
   4425 
   4426 
   4427 void LCodeGen::DoReturn(LReturn* instr) {
   4428   if (FLAG_trace && info()->IsOptimizing()) {
   4429     // Push the return value on the stack as the parameter.
   4430     // Runtime::TraceExit returns its parameter in x0.  We're leaving the code
   4431     // managed by the register allocator and tearing down the frame, it's
   4432     // safe to write to the context register.
   4433     __ Push(x0);
   4434     __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
   4435     __ CallRuntime(Runtime::kTraceExit);
   4436   }
   4437 
   4438   if (info()->saves_caller_doubles()) {
   4439     RestoreCallerDoubles();
   4440   }
   4441 
   4442   if (NeedsEagerFrame()) {
   4443     Register stack_pointer = masm()->StackPointer();
   4444     __ Mov(stack_pointer, fp);
   4445     __ Pop(fp, lr);
   4446   }
   4447 
   4448   if (instr->has_constant_parameter_count()) {
   4449     int parameter_count = ToInteger32(instr->constant_parameter_count());
   4450     __ Drop(parameter_count + 1);
   4451   } else {
   4452     DCHECK(info()->IsStub());  // Functions would need to drop one more value.
   4453     Register parameter_count = ToRegister(instr->parameter_count());
   4454     __ DropBySMI(parameter_count);
   4455   }
   4456   __ Ret();
   4457 }
   4458 
   4459 
   4460 MemOperand LCodeGen::BuildSeqStringOperand(Register string,
   4461                                            Register temp,
   4462                                            LOperand* index,
   4463                                            String::Encoding encoding) {
   4464   if (index->IsConstantOperand()) {
   4465     int offset = ToInteger32(LConstantOperand::cast(index));
   4466     if (encoding == String::TWO_BYTE_ENCODING) {
   4467       offset *= kUC16Size;
   4468     }
   4469     STATIC_ASSERT(kCharSize == 1);
   4470     return FieldMemOperand(string, SeqString::kHeaderSize + offset);
   4471   }
   4472 
   4473   __ Add(temp, string, SeqString::kHeaderSize - kHeapObjectTag);
   4474   if (encoding == String::ONE_BYTE_ENCODING) {
   4475     return MemOperand(temp, ToRegister32(index), SXTW);
   4476   } else {
   4477     STATIC_ASSERT(kUC16Size == 2);
   4478     return MemOperand(temp, ToRegister32(index), SXTW, 1);
   4479   }
   4480 }
   4481 
   4482 
   4483 void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
   4484   String::Encoding encoding = instr->hydrogen()->encoding();
   4485   Register string = ToRegister(instr->string());
   4486   Register result = ToRegister(instr->result());
   4487   Register temp = ToRegister(instr->temp());
   4488 
   4489   if (FLAG_debug_code) {
   4490     // Even though this lithium instruction comes with a temp register, we
   4491     // can't use it here because we want to use "AtStart" constraints on the
   4492     // inputs and the debug code here needs a scratch register.
   4493     UseScratchRegisterScope temps(masm());
   4494     Register dbg_temp = temps.AcquireX();
   4495 
   4496     __ Ldr(dbg_temp, FieldMemOperand(string, HeapObject::kMapOffset));
   4497     __ Ldrb(dbg_temp, FieldMemOperand(dbg_temp, Map::kInstanceTypeOffset));
   4498 
   4499     __ And(dbg_temp, dbg_temp,
   4500            Operand(kStringRepresentationMask | kStringEncodingMask));
   4501     static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
   4502     static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
   4503     __ Cmp(dbg_temp, Operand(encoding == String::ONE_BYTE_ENCODING
   4504                              ? one_byte_seq_type : two_byte_seq_type));
   4505     __ Check(eq, kUnexpectedStringType);
   4506   }
   4507 
   4508   MemOperand operand =
   4509       BuildSeqStringOperand(string, temp, instr->index(), encoding);
   4510   if (encoding == String::ONE_BYTE_ENCODING) {
   4511     __ Ldrb(result, operand);
   4512   } else {
   4513     __ Ldrh(result, operand);
   4514   }
   4515 }
   4516 
   4517 
   4518 void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
   4519   String::Encoding encoding = instr->hydrogen()->encoding();
   4520   Register string = ToRegister(instr->string());
   4521   Register value = ToRegister(instr->value());
   4522   Register temp = ToRegister(instr->temp());
   4523 
   4524   if (FLAG_debug_code) {
   4525     DCHECK(ToRegister(instr->context()).is(cp));
   4526     Register index = ToRegister(instr->index());
   4527     static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
   4528     static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
   4529     int encoding_mask =
   4530         instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
   4531         ? one_byte_seq_type : two_byte_seq_type;
   4532     __ EmitSeqStringSetCharCheck(string, index, kIndexIsInteger32, temp,
   4533                                  encoding_mask);
   4534   }
   4535   MemOperand operand =
   4536       BuildSeqStringOperand(string, temp, instr->index(), encoding);
   4537   if (encoding == String::ONE_BYTE_ENCODING) {
   4538     __ Strb(value, operand);
   4539   } else {
   4540     __ Strh(value, operand);
   4541   }
   4542 }
   4543 
   4544 
   4545 void LCodeGen::DoSmiTag(LSmiTag* instr) {
   4546   HChange* hchange = instr->hydrogen();
   4547   Register input = ToRegister(instr->value());
   4548   Register output = ToRegister(instr->result());
   4549   if (hchange->CheckFlag(HValue::kCanOverflow) &&
   4550       hchange->value()->CheckFlag(HValue::kUint32)) {
   4551     DeoptimizeIfNegative(input.W(), instr, Deoptimizer::kOverflow);
   4552   }
   4553   __ SmiTag(output, input);
   4554 }
   4555 
   4556 
   4557 void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
   4558   Register input = ToRegister(instr->value());
   4559   Register result = ToRegister(instr->result());
   4560   Label done, untag;
   4561 
   4562   if (instr->needs_check()) {
   4563     DeoptimizeIfNotSmi(input, instr, Deoptimizer::kNotASmi);
   4564   }
   4565 
   4566   __ Bind(&untag);
   4567   __ SmiUntag(result, input);
   4568   __ Bind(&done);
   4569 }
   4570 
   4571 
   4572 void LCodeGen::DoShiftI(LShiftI* instr) {
   4573   LOperand* right_op = instr->right();
   4574   Register left = ToRegister32(instr->left());
   4575   Register result = ToRegister32(instr->result());
   4576 
   4577   if (right_op->IsRegister()) {
   4578     Register right = ToRegister32(instr->right());
   4579     switch (instr->op()) {
   4580       case Token::ROR: __ Ror(result, left, right); break;
   4581       case Token::SAR: __ Asr(result, left, right); break;
   4582       case Token::SHL: __ Lsl(result, left, right); break;
   4583       case Token::SHR:
   4584         __ Lsr(result, left, right);
   4585         if (instr->can_deopt()) {
   4586           // If `left >>> right` >= 0x80000000, the result is not representable
   4587           // in a signed 32-bit smi.
   4588           DeoptimizeIfNegative(result, instr, Deoptimizer::kNegativeValue);
   4589         }
   4590         break;
   4591       default: UNREACHABLE();
   4592     }
   4593   } else {
   4594     DCHECK(right_op->IsConstantOperand());
   4595     int shift_count = JSShiftAmountFromLConstant(right_op);
   4596     if (shift_count == 0) {
   4597       if ((instr->op() == Token::SHR) && instr->can_deopt()) {
   4598         DeoptimizeIfNegative(left, instr, Deoptimizer::kNegativeValue);
   4599       }
   4600       __ Mov(result, left, kDiscardForSameWReg);
   4601     } else {
   4602       switch (instr->op()) {
   4603         case Token::ROR: __ Ror(result, left, shift_count); break;
   4604         case Token::SAR: __ Asr(result, left, shift_count); break;
   4605         case Token::SHL: __ Lsl(result, left, shift_count); break;
   4606         case Token::SHR: __ Lsr(result, left, shift_count); break;
   4607         default: UNREACHABLE();
   4608       }
   4609     }
   4610   }
   4611 }
   4612 
   4613 
   4614 void LCodeGen::DoShiftS(LShiftS* instr) {
   4615   LOperand* right_op = instr->right();
   4616   Register left = ToRegister(instr->left());
   4617   Register result = ToRegister(instr->result());
   4618 
   4619   if (right_op->IsRegister()) {
   4620     Register right = ToRegister(instr->right());
   4621 
   4622     // JavaScript shifts only look at the bottom 5 bits of the 'right' operand.
   4623     // Since we're handling smis in X registers, we have to extract these bits
   4624     // explicitly.
   4625     __ Ubfx(result, right, kSmiShift, 5);
   4626 
   4627     switch (instr->op()) {
   4628       case Token::ROR: {
   4629         // This is the only case that needs a scratch register. To keep things
   4630         // simple for the other cases, borrow a MacroAssembler scratch register.
   4631         UseScratchRegisterScope temps(masm());
   4632         Register temp = temps.AcquireW();
   4633         __ SmiUntag(temp, left);
   4634         __ Ror(result.W(), temp.W(), result.W());
   4635         __ SmiTag(result);
   4636         break;
   4637       }
   4638       case Token::SAR:
   4639         __ Asr(result, left, result);
   4640         __ Bic(result, result, kSmiShiftMask);
   4641         break;
   4642       case Token::SHL:
   4643         __ Lsl(result, left, result);
   4644         break;
   4645       case Token::SHR:
   4646         __ Lsr(result, left, result);
   4647         __ Bic(result, result, kSmiShiftMask);
   4648         if (instr->can_deopt()) {
   4649           // If `left >>> right` >= 0x80000000, the result is not representable
   4650           // in a signed 32-bit smi.
   4651           DeoptimizeIfNegative(result, instr, Deoptimizer::kNegativeValue);
   4652         }
   4653         break;
   4654       default: UNREACHABLE();
   4655     }
   4656   } else {
   4657     DCHECK(right_op->IsConstantOperand());
   4658     int shift_count = JSShiftAmountFromLConstant(right_op);
   4659     if (shift_count == 0) {
   4660       if ((instr->op() == Token::SHR) && instr->can_deopt()) {
   4661         DeoptimizeIfNegative(left, instr, Deoptimizer::kNegativeValue);
   4662       }
   4663       __ Mov(result, left);
   4664     } else {
   4665       switch (instr->op()) {
   4666         case Token::ROR:
   4667           __ SmiUntag(result, left);
   4668           __ Ror(result.W(), result.W(), shift_count);
   4669           __ SmiTag(result);
   4670           break;
   4671         case Token::SAR:
   4672           __ Asr(result, left, shift_count);
   4673           __ Bic(result, result, kSmiShiftMask);
   4674           break;
   4675         case Token::SHL:
   4676           __ Lsl(result, left, shift_count);
   4677           break;
   4678         case Token::SHR:
   4679           __ Lsr(result, left, shift_count);
   4680           __ Bic(result, result, kSmiShiftMask);
   4681           break;
   4682         default: UNREACHABLE();
   4683       }
   4684     }
   4685   }
   4686 }
   4687 
   4688 
   4689 void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
   4690   __ Debug("LDebugBreak", 0, BREAK);
   4691 }
   4692 
   4693 
   4694 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
   4695   DCHECK(ToRegister(instr->context()).is(cp));
   4696   Register scratch1 = x5;
   4697   Register scratch2 = x6;
   4698   DCHECK(instr->IsMarkedAsCall());
   4699 
   4700   // TODO(all): if Mov could handle object in new space then it could be used
   4701   // here.
   4702   __ LoadHeapObject(scratch1, instr->hydrogen()->pairs());
   4703   __ Mov(scratch2, Smi::FromInt(instr->hydrogen()->flags()));
   4704   __ Push(scratch1, scratch2);
   4705   CallRuntime(Runtime::kDeclareGlobals, instr);
   4706 }
   4707 
   4708 
   4709 void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
   4710   PushSafepointRegistersScope scope(this);
   4711   LoadContextFromDeferred(instr->context());
   4712   __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
   4713   RecordSafepointWithLazyDeopt(
   4714       instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
   4715   DCHECK(instr->HasEnvironment());
   4716   LEnvironment* env = instr->environment();
   4717   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
   4718 }
   4719 
   4720 
   4721 void LCodeGen::DoStackCheck(LStackCheck* instr) {
   4722   class DeferredStackCheck: public LDeferredCode {
   4723    public:
   4724     DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
   4725         : LDeferredCode(codegen), instr_(instr) { }
   4726     virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); }
   4727     virtual LInstruction* instr() { return instr_; }
   4728    private:
   4729     LStackCheck* instr_;
   4730   };
   4731 
   4732   DCHECK(instr->HasEnvironment());
   4733   LEnvironment* env = instr->environment();
   4734   // There is no LLazyBailout instruction for stack-checks. We have to
   4735   // prepare for lazy deoptimization explicitly here.
   4736   if (instr->hydrogen()->is_function_entry()) {
   4737     // Perform stack overflow check.
   4738     Label done;
   4739     __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex);
   4740     __ B(hs, &done);
   4741 
   4742     PredictableCodeSizeScope predictable(masm_,
   4743                                          Assembler::kCallSizeWithRelocation);
   4744     DCHECK(instr->context()->IsRegister());
   4745     DCHECK(ToRegister(instr->context()).is(cp));
   4746     CallCode(isolate()->builtins()->StackCheck(),
   4747              RelocInfo::CODE_TARGET,
   4748              instr);
   4749     __ Bind(&done);
   4750   } else {
   4751     DCHECK(instr->hydrogen()->is_backwards_branch());
   4752     // Perform stack overflow check if this goto needs it before jumping.
   4753     DeferredStackCheck* deferred_stack_check =
   4754         new(zone()) DeferredStackCheck(this, instr);
   4755     __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex);
   4756     __ B(lo, deferred_stack_check->entry());
   4757 
   4758     EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
   4759     __ Bind(instr->done_label());
   4760     deferred_stack_check->SetExit(instr->done_label());
   4761     RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
   4762     // Don't record a deoptimization index for the safepoint here.
   4763     // This will be done explicitly when emitting call and the safepoint in
   4764     // the deferred code.
   4765   }
   4766 }
   4767 
   4768 
   4769 void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
   4770   Register function = ToRegister(instr->function());
   4771   Register code_object = ToRegister(instr->code_object());
   4772   Register temp = ToRegister(instr->temp());
   4773   __ Add(temp, code_object, Code::kHeaderSize - kHeapObjectTag);
   4774   __ Str(temp, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
   4775 }
   4776 
   4777 
   4778 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
   4779   Register context = ToRegister(instr->context());
   4780   Register value = ToRegister(instr->value());
   4781   Register scratch = ToRegister(instr->temp());
   4782   MemOperand target = ContextMemOperand(context, instr->slot_index());
   4783 
   4784   Label skip_assignment;
   4785 
   4786   if (instr->hydrogen()->RequiresHoleCheck()) {
   4787     __ Ldr(scratch, target);
   4788     if (instr->hydrogen()->DeoptimizesOnHole()) {
   4789       DeoptimizeIfRoot(scratch, Heap::kTheHoleValueRootIndex, instr,
   4790                        Deoptimizer::kHole);
   4791     } else {
   4792       __ JumpIfNotRoot(scratch, Heap::kTheHoleValueRootIndex, &skip_assignment);
   4793     }
   4794   }
   4795 
   4796   __ Str(value, target);
   4797   if (instr->hydrogen()->NeedsWriteBarrier()) {
   4798     SmiCheck check_needed =
   4799         instr->hydrogen()->value()->type().IsHeapObject()
   4800             ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
   4801     __ RecordWriteContextSlot(context, static_cast<int>(target.offset()), value,
   4802                               scratch, GetLinkRegisterState(), kSaveFPRegs,
   4803                               EMIT_REMEMBERED_SET, check_needed);
   4804   }
   4805   __ Bind(&skip_assignment);
   4806 }
   4807 
   4808 
   4809 void LCodeGen::DoStoreKeyedExternal(LStoreKeyedExternal* instr) {
   4810   Register ext_ptr = ToRegister(instr->elements());
   4811   Register key = no_reg;
   4812   Register scratch;
   4813   ElementsKind elements_kind = instr->elements_kind();
   4814 
   4815   bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
   4816   bool key_is_constant = instr->key()->IsConstantOperand();
   4817   int constant_key = 0;
   4818   if (key_is_constant) {
   4819     DCHECK(instr->temp() == NULL);
   4820     constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
   4821     if (constant_key & 0xf0000000) {
   4822       Abort(kArrayIndexConstantValueTooBig);
   4823     }
   4824   } else {
   4825     key = ToRegister(instr->key());
   4826     scratch = ToRegister(instr->temp());
   4827   }
   4828 
   4829   MemOperand dst =
   4830     PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi,
   4831                                      key_is_constant, constant_key,
   4832                                      elements_kind,
   4833                                      instr->base_offset());
   4834 
   4835   if (elements_kind == FLOAT32_ELEMENTS) {
   4836     DoubleRegister value = ToDoubleRegister(instr->value());
   4837     DoubleRegister dbl_scratch = double_scratch();
   4838     __ Fcvt(dbl_scratch.S(), value);
   4839     __ Str(dbl_scratch.S(), dst);
   4840   } else if (elements_kind == FLOAT64_ELEMENTS) {
   4841     DoubleRegister value = ToDoubleRegister(instr->value());
   4842     __ Str(value, dst);
   4843   } else {
   4844     Register value = ToRegister(instr->value());
   4845 
   4846     switch (elements_kind) {
   4847       case UINT8_ELEMENTS:
   4848       case UINT8_CLAMPED_ELEMENTS:
   4849       case INT8_ELEMENTS:
   4850         __ Strb(value, dst);
   4851         break;
   4852       case INT16_ELEMENTS:
   4853       case UINT16_ELEMENTS:
   4854         __ Strh(value, dst);
   4855         break;
   4856       case INT32_ELEMENTS:
   4857       case UINT32_ELEMENTS:
   4858         __ Str(value.W(), dst);
   4859         break;
   4860       case FLOAT32_ELEMENTS:
   4861       case FLOAT64_ELEMENTS:
   4862       case FAST_DOUBLE_ELEMENTS:
   4863       case FAST_ELEMENTS:
   4864       case FAST_SMI_ELEMENTS:
   4865       case FAST_HOLEY_DOUBLE_ELEMENTS:
   4866       case FAST_HOLEY_ELEMENTS:
   4867       case FAST_HOLEY_SMI_ELEMENTS:
   4868       case DICTIONARY_ELEMENTS:
   4869       case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
   4870       case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
   4871       case FAST_STRING_WRAPPER_ELEMENTS:
   4872       case SLOW_STRING_WRAPPER_ELEMENTS:
   4873       case NO_ELEMENTS:
   4874         UNREACHABLE();
   4875         break;
   4876     }
   4877   }
   4878 }
   4879 
   4880 
   4881 void LCodeGen::DoStoreKeyedFixedDouble(LStoreKeyedFixedDouble* instr) {
   4882   Register elements = ToRegister(instr->elements());
   4883   DoubleRegister value = ToDoubleRegister(instr->value());
   4884   MemOperand mem_op;
   4885 
   4886   if (instr->key()->IsConstantOperand()) {
   4887     int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
   4888     if (constant_key & 0xf0000000) {
   4889       Abort(kArrayIndexConstantValueTooBig);
   4890     }
   4891     int offset = instr->base_offset() + constant_key * kDoubleSize;
   4892     mem_op = MemOperand(elements, offset);
   4893   } else {
   4894     Register store_base = ToRegister(instr->temp());
   4895     Register key = ToRegister(instr->key());
   4896     bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
   4897     mem_op = PrepareKeyedArrayOperand(store_base, elements, key, key_is_tagged,
   4898                                       instr->hydrogen()->elements_kind(),
   4899                                       instr->hydrogen()->representation(),
   4900                                       instr->base_offset());
   4901   }
   4902 
   4903   if (instr->NeedsCanonicalization()) {
   4904     __ CanonicalizeNaN(double_scratch(), value);
   4905     __ Str(double_scratch(), mem_op);
   4906   } else {
   4907     __ Str(value, mem_op);
   4908   }
   4909 }
   4910 
   4911 
   4912 void LCodeGen::DoStoreKeyedFixed(LStoreKeyedFixed* instr) {
   4913   Register value = ToRegister(instr->value());
   4914   Register elements = ToRegister(instr->elements());
   4915   Register scratch = no_reg;
   4916   Register store_base = no_reg;
   4917   Register key = no_reg;
   4918   MemOperand mem_op;
   4919 
   4920   if (!instr->key()->IsConstantOperand() ||
   4921       instr->hydrogen()->NeedsWriteBarrier()) {
   4922     scratch = ToRegister(instr->temp());
   4923   }
   4924 
   4925   Representation representation = instr->hydrogen()->value()->representation();
   4926   if (instr->key()->IsConstantOperand()) {
   4927     LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
   4928     int offset = instr->base_offset() +
   4929         ToInteger32(const_operand) * kPointerSize;
   4930     store_base = elements;
   4931     if (representation.IsInteger32()) {
   4932       DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
   4933       DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS);
   4934       STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
   4935       STATIC_ASSERT(kSmiTag == 0);
   4936       mem_op = UntagSmiMemOperand(store_base, offset);
   4937     } else {
   4938       mem_op = MemOperand(store_base, offset);
   4939     }
   4940   } else {
   4941     store_base = scratch;
   4942     key = ToRegister(instr->key());
   4943     bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
   4944 
   4945     mem_op = PrepareKeyedArrayOperand(store_base, elements, key, key_is_tagged,
   4946                                       instr->hydrogen()->elements_kind(),
   4947                                       representation, instr->base_offset());
   4948   }
   4949 
   4950   __ Store(value, mem_op, representation);
   4951 
   4952   if (instr->hydrogen()->NeedsWriteBarrier()) {
   4953     DCHECK(representation.IsTagged());
   4954     // This assignment may cause element_addr to alias store_base.
   4955     Register element_addr = scratch;
   4956     SmiCheck check_needed =
   4957         instr->hydrogen()->value()->type().IsHeapObject()
   4958             ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
   4959     // Compute address of modified element and store it into key register.
   4960     __ Add(element_addr, mem_op.base(), mem_op.OffsetAsOperand());
   4961     __ RecordWrite(elements, element_addr, value, GetLinkRegisterState(),
   4962                    kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed,
   4963                    instr->hydrogen()->PointersToHereCheckForValue());
   4964   }
   4965 }
   4966 
   4967 
   4968 void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
   4969   DCHECK(ToRegister(instr->context()).is(cp));
   4970   DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
   4971   DCHECK(ToRegister(instr->key()).is(StoreDescriptor::NameRegister()));
   4972   DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
   4973 
   4974   EmitVectorStoreICRegisters<LStoreKeyedGeneric>(instr);
   4975 
   4976   Handle<Code> ic = CodeFactory::KeyedStoreICInOptimizedCode(
   4977                         isolate(), instr->language_mode())
   4978                         .code();
   4979   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   4980 }
   4981 
   4982 
   4983 void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) {
   4984   class DeferredMaybeGrowElements final : public LDeferredCode {
   4985    public:
   4986     DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr)
   4987         : LDeferredCode(codegen), instr_(instr) {}
   4988     void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); }
   4989     LInstruction* instr() override { return instr_; }
   4990 
   4991    private:
   4992     LMaybeGrowElements* instr_;
   4993   };
   4994 
   4995   Register result = x0;
   4996   DeferredMaybeGrowElements* deferred =
   4997       new (zone()) DeferredMaybeGrowElements(this, instr);
   4998   LOperand* key = instr->key();
   4999   LOperand* current_capacity = instr->current_capacity();
   5000 
   5001   DCHECK(instr->hydrogen()->key()->representation().IsInteger32());
   5002   DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32());
   5003   DCHECK(key->IsConstantOperand() || key->IsRegister());
   5004   DCHECK(current_capacity->IsConstantOperand() ||
   5005          current_capacity->IsRegister());
   5006 
   5007   if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) {
   5008     int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
   5009     int32_t constant_capacity =
   5010         ToInteger32(LConstantOperand::cast(current_capacity));
   5011     if (constant_key >= constant_capacity) {
   5012       // Deferred case.
   5013       __ B(deferred->entry());
   5014     }
   5015   } else if (key->IsConstantOperand()) {
   5016     int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
   5017     __ Cmp(ToRegister(current_capacity), Operand(constant_key));
   5018     __ B(le, deferred->entry());
   5019   } else if (current_capacity->IsConstantOperand()) {
   5020     int32_t constant_capacity =
   5021         ToInteger32(LConstantOperand::cast(current_capacity));
   5022     __ Cmp(ToRegister(key), Operand(constant_capacity));
   5023     __ B(ge, deferred->entry());
   5024   } else {
   5025     __ Cmp(ToRegister(key), ToRegister(current_capacity));
   5026     __ B(ge, deferred->entry());
   5027   }
   5028 
   5029   __ Mov(result, ToRegister(instr->elements()));
   5030 
   5031   __ Bind(deferred->exit());
   5032 }
   5033 
   5034 
   5035 void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) {
   5036   // TODO(3095996): Get rid of this. For now, we need to make the
   5037   // result register contain a valid pointer because it is already
   5038   // contained in the register pointer map.
   5039   Register result = x0;
   5040   __ Mov(result, 0);
   5041 
   5042   // We have to call a stub.
   5043   {
   5044     PushSafepointRegistersScope scope(this);
   5045     __ Move(result, ToRegister(instr->object()));
   5046 
   5047     LOperand* key = instr->key();
   5048     if (key->IsConstantOperand()) {
   5049       __ Mov(x3, Operand(ToSmi(LConstantOperand::cast(key))));
   5050     } else {
   5051       __ Mov(x3, ToRegister(key));
   5052       __ SmiTag(x3);
   5053     }
   5054 
   5055     GrowArrayElementsStub stub(isolate(), instr->hydrogen()->is_js_array(),
   5056                                instr->hydrogen()->kind());
   5057     __ CallStub(&stub);
   5058     RecordSafepointWithLazyDeopt(
   5059         instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
   5060     __ StoreToSafepointRegisterSlot(result, result);
   5061   }
   5062 
   5063   // Deopt on smi, which means the elements array changed to dictionary mode.
   5064   DeoptimizeIfSmi(result, instr, Deoptimizer::kSmi);
   5065 }
   5066 
   5067 
   5068 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
   5069   Representation representation = instr->representation();
   5070 
   5071   Register object = ToRegister(instr->object());
   5072   HObjectAccess access = instr->hydrogen()->access();
   5073   int offset = access.offset();
   5074 
   5075   if (access.IsExternalMemory()) {
   5076     DCHECK(!instr->hydrogen()->has_transition());
   5077     DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
   5078     Register value = ToRegister(instr->value());
   5079     __ Store(value, MemOperand(object, offset), representation);
   5080     return;
   5081   }
   5082 
   5083   __ AssertNotSmi(object);
   5084 
   5085   if (!FLAG_unbox_double_fields && representation.IsDouble()) {
   5086     DCHECK(access.IsInobject());
   5087     DCHECK(!instr->hydrogen()->has_transition());
   5088     DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
   5089     FPRegister value = ToDoubleRegister(instr->value());
   5090     __ Str(value, FieldMemOperand(object, offset));
   5091     return;
   5092   }
   5093 
   5094   DCHECK(!representation.IsSmi() ||
   5095          !instr->value()->IsConstantOperand() ||
   5096          IsInteger32Constant(LConstantOperand::cast(instr->value())));
   5097 
   5098   if (instr->hydrogen()->has_transition()) {
   5099     Handle<Map> transition = instr->hydrogen()->transition_map();
   5100     AddDeprecationDependency(transition);
   5101     // Store the new map value.
   5102     Register new_map_value = ToRegister(instr->temp0());
   5103     __ Mov(new_map_value, Operand(transition));
   5104     __ Str(new_map_value, FieldMemOperand(object, HeapObject::kMapOffset));
   5105     if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
   5106       // Update the write barrier for the map field.
   5107       __ RecordWriteForMap(object,
   5108                            new_map_value,
   5109                            ToRegister(instr->temp1()),
   5110                            GetLinkRegisterState(),
   5111                            kSaveFPRegs);
   5112     }
   5113   }
   5114 
   5115   // Do the store.
   5116   Register destination;
   5117   if (access.IsInobject()) {
   5118     destination = object;
   5119   } else {
   5120     Register temp0 = ToRegister(instr->temp0());
   5121     __ Ldr(temp0, FieldMemOperand(object, JSObject::kPropertiesOffset));
   5122     destination = temp0;
   5123   }
   5124 
   5125   if (FLAG_unbox_double_fields && representation.IsDouble()) {
   5126     DCHECK(access.IsInobject());
   5127     FPRegister value = ToDoubleRegister(instr->value());
   5128     __ Str(value, FieldMemOperand(object, offset));
   5129   } else if (representation.IsSmi() &&
   5130              instr->hydrogen()->value()->representation().IsInteger32()) {
   5131     DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
   5132 #ifdef DEBUG
   5133     Register temp0 = ToRegister(instr->temp0());
   5134     __ Ldr(temp0, FieldMemOperand(destination, offset));
   5135     __ AssertSmi(temp0);
   5136     // If destination aliased temp0, restore it to the address calculated
   5137     // earlier.
   5138     if (destination.Is(temp0)) {
   5139       DCHECK(!access.IsInobject());
   5140       __ Ldr(destination, FieldMemOperand(object, JSObject::kPropertiesOffset));
   5141     }
   5142 #endif
   5143     STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
   5144     STATIC_ASSERT(kSmiTag == 0);
   5145     Register value = ToRegister(instr->value());
   5146     __ Store(value, UntagSmiFieldMemOperand(destination, offset),
   5147              Representation::Integer32());
   5148   } else {
   5149     Register value = ToRegister(instr->value());
   5150     __ Store(value, FieldMemOperand(destination, offset), representation);
   5151   }
   5152   if (instr->hydrogen()->NeedsWriteBarrier()) {
   5153     Register value = ToRegister(instr->value());
   5154     __ RecordWriteField(destination,
   5155                         offset,
   5156                         value,                        // Clobbered.
   5157                         ToRegister(instr->temp1()),   // Clobbered.
   5158                         GetLinkRegisterState(),
   5159                         kSaveFPRegs,
   5160                         EMIT_REMEMBERED_SET,
   5161                         instr->hydrogen()->SmiCheckForWriteBarrier(),
   5162                         instr->hydrogen()->PointersToHereCheckForValue());
   5163   }
   5164 }
   5165 
   5166 
   5167 void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
   5168   DCHECK(ToRegister(instr->context()).is(cp));
   5169   DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
   5170   DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
   5171 
   5172   EmitVectorStoreICRegisters<LStoreNamedGeneric>(instr);
   5173 
   5174   __ Mov(StoreDescriptor::NameRegister(), Operand(instr->name()));
   5175   Handle<Code> ic =
   5176       CodeFactory::StoreICInOptimizedCode(isolate(), instr->language_mode())
   5177           .code();
   5178   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   5179 }
   5180 
   5181 
   5182 void LCodeGen::DoStringAdd(LStringAdd* instr) {
   5183   DCHECK(ToRegister(instr->context()).is(cp));
   5184   DCHECK(ToRegister(instr->left()).Is(x1));
   5185   DCHECK(ToRegister(instr->right()).Is(x0));
   5186   StringAddStub stub(isolate(),
   5187                      instr->hydrogen()->flags(),
   5188                      instr->hydrogen()->pretenure_flag());
   5189   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   5190 }
   5191 
   5192 
   5193 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
   5194   class DeferredStringCharCodeAt: public LDeferredCode {
   5195    public:
   5196     DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
   5197         : LDeferredCode(codegen), instr_(instr) { }
   5198     virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); }
   5199     virtual LInstruction* instr() { return instr_; }
   5200    private:
   5201     LStringCharCodeAt* instr_;
   5202   };
   5203 
   5204   DeferredStringCharCodeAt* deferred =
   5205       new(zone()) DeferredStringCharCodeAt(this, instr);
   5206 
   5207   StringCharLoadGenerator::Generate(masm(),
   5208                                     ToRegister(instr->string()),
   5209                                     ToRegister32(instr->index()),
   5210                                     ToRegister(instr->result()),
   5211                                     deferred->entry());
   5212   __ Bind(deferred->exit());
   5213 }
   5214 
   5215 
   5216 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
   5217   Register string = ToRegister(instr->string());
   5218   Register result = ToRegister(instr->result());
   5219 
   5220   // TODO(3095996): Get rid of this. For now, we need to make the
   5221   // result register contain a valid pointer because it is already
   5222   // contained in the register pointer map.
   5223   __ Mov(result, 0);
   5224 
   5225   PushSafepointRegistersScope scope(this);
   5226   __ Push(string);
   5227   // Push the index as a smi. This is safe because of the checks in
   5228   // DoStringCharCodeAt above.
   5229   Register index = ToRegister(instr->index());
   5230   __ SmiTagAndPush(index);
   5231 
   5232   CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr,
   5233                           instr->context());
   5234   __ AssertSmi(x0);
   5235   __ SmiUntag(x0);
   5236   __ StoreToSafepointRegisterSlot(x0, result);
   5237 }
   5238 
   5239 
   5240 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
   5241   class DeferredStringCharFromCode: public LDeferredCode {
   5242    public:
   5243     DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
   5244         : LDeferredCode(codegen), instr_(instr) { }
   5245     virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); }
   5246     virtual LInstruction* instr() { return instr_; }
   5247    private:
   5248     LStringCharFromCode* instr_;
   5249   };
   5250 
   5251   DeferredStringCharFromCode* deferred =
   5252       new(zone()) DeferredStringCharFromCode(this, instr);
   5253 
   5254   DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
   5255   Register char_code = ToRegister32(instr->char_code());
   5256   Register result = ToRegister(instr->result());
   5257 
   5258   __ Cmp(char_code, String::kMaxOneByteCharCode);
   5259   __ B(hi, deferred->entry());
   5260   __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
   5261   __ Add(result, result, FixedArray::kHeaderSize - kHeapObjectTag);
   5262   __ Ldr(result, MemOperand(result, char_code, SXTW, kPointerSizeLog2));
   5263   __ CompareRoot(result, Heap::kUndefinedValueRootIndex);
   5264   __ B(eq, deferred->entry());
   5265   __ Bind(deferred->exit());
   5266 }
   5267 
   5268 
   5269 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
   5270   Register char_code = ToRegister(instr->char_code());
   5271   Register result = ToRegister(instr->result());
   5272 
   5273   // TODO(3095996): Get rid of this. For now, we need to make the
   5274   // result register contain a valid pointer because it is already
   5275   // contained in the register pointer map.
   5276   __ Mov(result, 0);
   5277 
   5278   PushSafepointRegistersScope scope(this);
   5279   __ SmiTagAndPush(char_code);
   5280   CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr,
   5281                           instr->context());
   5282   __ StoreToSafepointRegisterSlot(x0, result);
   5283 }
   5284 
   5285 
   5286 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
   5287   DCHECK(ToRegister(instr->context()).is(cp));
   5288   DCHECK(ToRegister(instr->left()).is(x1));
   5289   DCHECK(ToRegister(instr->right()).is(x0));
   5290 
   5291   Handle<Code> code = CodeFactory::StringCompare(isolate(), instr->op()).code();
   5292   CallCode(code, RelocInfo::CODE_TARGET, instr);
   5293   __ CompareRoot(x0, Heap::kTrueValueRootIndex);
   5294   EmitBranch(instr, eq);
   5295 }
   5296 
   5297 
   5298 void LCodeGen::DoSubI(LSubI* instr) {
   5299   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
   5300   Register result = ToRegister32(instr->result());
   5301   Register left = ToRegister32(instr->left());
   5302   Operand right = ToShiftedRightOperand32(instr->right(), instr);
   5303 
   5304   if (can_overflow) {
   5305     __ Subs(result, left, right);
   5306     DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
   5307   } else {
   5308     __ Sub(result, left, right);
   5309   }
   5310 }
   5311 
   5312 
   5313 void LCodeGen::DoSubS(LSubS* instr) {
   5314   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
   5315   Register result = ToRegister(instr->result());
   5316   Register left = ToRegister(instr->left());
   5317   Operand right = ToOperand(instr->right());
   5318   if (can_overflow) {
   5319     __ Subs(result, left, right);
   5320     DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
   5321   } else {
   5322     __ Sub(result, left, right);
   5323   }
   5324 }
   5325 
   5326 
   5327 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr,
   5328                                    LOperand* value,
   5329                                    LOperand* temp1,
   5330                                    LOperand* temp2) {
   5331   Register input = ToRegister(value);
   5332   Register scratch1 = ToRegister(temp1);
   5333   DoubleRegister dbl_scratch1 = double_scratch();
   5334 
   5335   Label done;
   5336 
   5337   if (instr->truncating()) {
   5338     Register output = ToRegister(instr->result());
   5339     Label check_bools;
   5340 
   5341     // If it's not a heap number, jump to undefined check.
   5342     __ JumpIfNotHeapNumber(input, &check_bools);
   5343 
   5344     // A heap number: load value and convert to int32 using truncating function.
   5345     __ TruncateHeapNumberToI(output, input);
   5346     __ B(&done);
   5347 
   5348     __ Bind(&check_bools);
   5349 
   5350     Register true_root = output;
   5351     Register false_root = scratch1;
   5352     __ LoadTrueFalseRoots(true_root, false_root);
   5353     __ Cmp(input, true_root);
   5354     __ Cset(output, eq);
   5355     __ Ccmp(input, false_root, ZFlag, ne);
   5356     __ B(eq, &done);
   5357 
   5358     // Output contains zero, undefined is converted to zero for truncating
   5359     // conversions.
   5360     DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr,
   5361                         Deoptimizer::kNotAHeapNumberUndefinedBoolean);
   5362   } else {
   5363     Register output = ToRegister32(instr->result());
   5364     DoubleRegister dbl_scratch2 = ToDoubleRegister(temp2);
   5365 
   5366     DeoptimizeIfNotHeapNumber(input, instr);
   5367 
   5368     // A heap number: load value and convert to int32 using non-truncating
   5369     // function. If the result is out of range, branch to deoptimize.
   5370     __ Ldr(dbl_scratch1, FieldMemOperand(input, HeapNumber::kValueOffset));
   5371     __ TryRepresentDoubleAsInt32(output, dbl_scratch1, dbl_scratch2);
   5372     DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN);
   5373 
   5374     if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   5375       __ Cmp(output, 0);
   5376       __ B(ne, &done);
   5377       __ Fmov(scratch1, dbl_scratch1);
   5378       DeoptimizeIfNegative(scratch1, instr, Deoptimizer::kMinusZero);
   5379     }
   5380   }
   5381   __ Bind(&done);
   5382 }
   5383 
   5384 
   5385 void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
   5386   class DeferredTaggedToI: public LDeferredCode {
   5387    public:
   5388     DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
   5389         : LDeferredCode(codegen), instr_(instr) { }
   5390     virtual void Generate() {
   5391       codegen()->DoDeferredTaggedToI(instr_, instr_->value(), instr_->temp1(),
   5392                                      instr_->temp2());
   5393     }
   5394 
   5395     virtual LInstruction* instr() { return instr_; }
   5396    private:
   5397     LTaggedToI* instr_;
   5398   };
   5399 
   5400   Register input = ToRegister(instr->value());
   5401   Register output = ToRegister(instr->result());
   5402 
   5403   if (instr->hydrogen()->value()->representation().IsSmi()) {
   5404     __ SmiUntag(output, input);
   5405   } else {
   5406     DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
   5407 
   5408     __ JumpIfNotSmi(input, deferred->entry());
   5409     __ SmiUntag(output, input);
   5410     __ Bind(deferred->exit());
   5411   }
   5412 }
   5413 
   5414 
   5415 void LCodeGen::DoThisFunction(LThisFunction* instr) {
   5416   Register result = ToRegister(instr->result());
   5417   __ Ldr(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
   5418 }
   5419 
   5420 
   5421 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
   5422   Register object = ToRegister(instr->object());
   5423 
   5424   Handle<Map> from_map = instr->original_map();
   5425   Handle<Map> to_map = instr->transitioned_map();
   5426   ElementsKind from_kind = instr->from_kind();
   5427   ElementsKind to_kind = instr->to_kind();
   5428 
   5429   Label not_applicable;
   5430 
   5431   if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
   5432     Register temp1 = ToRegister(instr->temp1());
   5433     Register new_map = ToRegister(instr->temp2());
   5434     __ CheckMap(object, temp1, from_map, &not_applicable, DONT_DO_SMI_CHECK);
   5435     __ Mov(new_map, Operand(to_map));
   5436     __ Str(new_map, FieldMemOperand(object, HeapObject::kMapOffset));
   5437     // Write barrier.
   5438     __ RecordWriteForMap(object, new_map, temp1, GetLinkRegisterState(),
   5439                          kDontSaveFPRegs);
   5440   } else {
   5441     {
   5442       UseScratchRegisterScope temps(masm());
   5443       // Use the temp register only in a restricted scope - the codegen checks
   5444       // that we do not use any register across a call.
   5445       __ CheckMap(object, temps.AcquireX(), from_map, &not_applicable,
   5446                   DONT_DO_SMI_CHECK);
   5447     }
   5448     DCHECK(object.is(x0));
   5449     DCHECK(ToRegister(instr->context()).is(cp));
   5450     PushSafepointRegistersScope scope(this);
   5451     __ Mov(x1, Operand(to_map));
   5452     TransitionElementsKindStub stub(isolate(), from_kind, to_kind);
   5453     __ CallStub(&stub);
   5454     RecordSafepointWithRegisters(
   5455         instr->pointer_map(), 0, Safepoint::kLazyDeopt);
   5456   }
   5457   __ Bind(&not_applicable);
   5458 }
   5459 
   5460 
   5461 void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
   5462   Register object = ToRegister(instr->object());
   5463   Register temp1 = ToRegister(instr->temp1());
   5464   Register temp2 = ToRegister(instr->temp2());
   5465 
   5466   Label no_memento_found;
   5467   __ TestJSArrayForAllocationMemento(object, temp1, temp2, &no_memento_found);
   5468   DeoptimizeIf(eq, instr, Deoptimizer::kMementoFound);
   5469   __ Bind(&no_memento_found);
   5470 }
   5471 
   5472 
   5473 void LCodeGen::DoTruncateDoubleToIntOrSmi(LTruncateDoubleToIntOrSmi* instr) {
   5474   DoubleRegister input = ToDoubleRegister(instr->value());
   5475   Register result = ToRegister(instr->result());
   5476   __ TruncateDoubleToI(result, input);
   5477   if (instr->tag_result()) {
   5478     __ SmiTag(result, result);
   5479   }
   5480 }
   5481 
   5482 
   5483 void LCodeGen::DoTypeof(LTypeof* instr) {
   5484   DCHECK(ToRegister(instr->value()).is(x3));
   5485   DCHECK(ToRegister(instr->result()).is(x0));
   5486   Label end, do_call;
   5487   Register value_register = ToRegister(instr->value());
   5488   __ JumpIfNotSmi(value_register, &do_call);
   5489   __ Mov(x0, Immediate(isolate()->factory()->number_string()));
   5490   __ B(&end);
   5491   __ Bind(&do_call);
   5492   TypeofStub stub(isolate());
   5493   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   5494   __ Bind(&end);
   5495 }
   5496 
   5497 
   5498 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
   5499   Handle<String> type_name = instr->type_literal();
   5500   Label* true_label = instr->TrueLabel(chunk_);
   5501   Label* false_label = instr->FalseLabel(chunk_);
   5502   Register value = ToRegister(instr->value());
   5503 
   5504   Factory* factory = isolate()->factory();
   5505   if (String::Equals(type_name, factory->number_string())) {
   5506     __ JumpIfSmi(value, true_label);
   5507 
   5508     int true_block = instr->TrueDestination(chunk_);
   5509     int false_block = instr->FalseDestination(chunk_);
   5510     int next_block = GetNextEmittedBlock();
   5511 
   5512     if (true_block == false_block) {
   5513       EmitGoto(true_block);
   5514     } else if (true_block == next_block) {
   5515       __ JumpIfNotHeapNumber(value, chunk_->GetAssemblyLabel(false_block));
   5516     } else {
   5517       __ JumpIfHeapNumber(value, chunk_->GetAssemblyLabel(true_block));
   5518       if (false_block != next_block) {
   5519         __ B(chunk_->GetAssemblyLabel(false_block));
   5520       }
   5521     }
   5522 
   5523   } else if (String::Equals(type_name, factory->string_string())) {
   5524     DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
   5525     Register map = ToRegister(instr->temp1());
   5526     Register scratch = ToRegister(instr->temp2());
   5527 
   5528     __ JumpIfSmi(value, false_label);
   5529     __ CompareObjectType(value, map, scratch, FIRST_NONSTRING_TYPE);
   5530     EmitBranch(instr, lt);
   5531 
   5532   } else if (String::Equals(type_name, factory->symbol_string())) {
   5533     DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
   5534     Register map = ToRegister(instr->temp1());
   5535     Register scratch = ToRegister(instr->temp2());
   5536 
   5537     __ JumpIfSmi(value, false_label);
   5538     __ CompareObjectType(value, map, scratch, SYMBOL_TYPE);
   5539     EmitBranch(instr, eq);
   5540 
   5541   } else if (String::Equals(type_name, factory->boolean_string())) {
   5542     __ JumpIfRoot(value, Heap::kTrueValueRootIndex, true_label);
   5543     __ CompareRoot(value, Heap::kFalseValueRootIndex);
   5544     EmitBranch(instr, eq);
   5545 
   5546   } else if (String::Equals(type_name, factory->undefined_string())) {
   5547     DCHECK(instr->temp1() != NULL);
   5548     Register scratch = ToRegister(instr->temp1());
   5549 
   5550     __ JumpIfRoot(value, Heap::kNullValueRootIndex, false_label);
   5551     __ JumpIfSmi(value, false_label);
   5552     // Check for undetectable objects and jump to the true branch in this case.
   5553     __ Ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
   5554     __ Ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
   5555     EmitTestAndBranch(instr, ne, scratch, 1 << Map::kIsUndetectable);
   5556 
   5557   } else if (String::Equals(type_name, factory->function_string())) {
   5558     DCHECK(instr->temp1() != NULL);
   5559     Register scratch = ToRegister(instr->temp1());
   5560 
   5561     __ JumpIfSmi(value, false_label);
   5562     __ Ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
   5563     __ Ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
   5564     __ And(scratch, scratch,
   5565            (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable));
   5566     EmitCompareAndBranch(instr, eq, scratch, 1 << Map::kIsCallable);
   5567 
   5568   } else if (String::Equals(type_name, factory->object_string())) {
   5569     DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
   5570     Register map = ToRegister(instr->temp1());
   5571     Register scratch = ToRegister(instr->temp2());
   5572 
   5573     __ JumpIfSmi(value, false_label);
   5574     __ JumpIfRoot(value, Heap::kNullValueRootIndex, true_label);
   5575     STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
   5576     __ JumpIfObjectType(value, map, scratch, FIRST_JS_RECEIVER_TYPE,
   5577                         false_label, lt);
   5578     // Check for callable or undetectable objects => false.
   5579     __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
   5580     EmitTestAndBranch(instr, eq, scratch,
   5581                       (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable));
   5582 
   5583 // clang-format off
   5584 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type)       \
   5585   } else if (String::Equals(type_name, factory->type##_string())) { \
   5586     DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));   \
   5587     Register map = ToRegister(instr->temp1());                      \
   5588                                                                     \
   5589     __ JumpIfSmi(value, false_label);                               \
   5590     __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));    \
   5591     __ CompareRoot(map, Heap::k##Type##MapRootIndex);               \
   5592     EmitBranch(instr, eq);
   5593   SIMD128_TYPES(SIMD128_TYPE)
   5594 #undef SIMD128_TYPE
   5595     // clang-format on
   5596 
   5597   } else {
   5598     __ B(false_label);
   5599   }
   5600 }
   5601 
   5602 
   5603 void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
   5604   __ Ucvtf(ToDoubleRegister(instr->result()), ToRegister32(instr->value()));
   5605 }
   5606 
   5607 
   5608 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
   5609   Register object = ToRegister(instr->value());
   5610   Register map = ToRegister(instr->map());
   5611   Register temp = ToRegister(instr->temp());
   5612   __ Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
   5613   __ Cmp(map, temp);
   5614   DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap);
   5615 }
   5616 
   5617 
   5618 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
   5619   Register receiver = ToRegister(instr->receiver());
   5620   Register function = ToRegister(instr->function());
   5621   Register result = ToRegister(instr->result());
   5622 
   5623   // If the receiver is null or undefined, we have to pass the global object as
   5624   // a receiver to normal functions. Values have to be passed unchanged to
   5625   // builtins and strict-mode functions.
   5626   Label global_object, done, copy_receiver;
   5627 
   5628   if (!instr->hydrogen()->known_function()) {
   5629     __ Ldr(result, FieldMemOperand(function,
   5630                                    JSFunction::kSharedFunctionInfoOffset));
   5631 
   5632     // CompilerHints is an int32 field. See objects.h.
   5633     __ Ldr(result.W(),
   5634            FieldMemOperand(result, SharedFunctionInfo::kCompilerHintsOffset));
   5635 
   5636     // Do not transform the receiver to object for strict mode functions.
   5637     __ Tbnz(result, SharedFunctionInfo::kStrictModeFunction, &copy_receiver);
   5638 
   5639     // Do not transform the receiver to object for builtins.
   5640     __ Tbnz(result, SharedFunctionInfo::kNative, &copy_receiver);
   5641   }
   5642 
   5643   // Normal function. Replace undefined or null with global receiver.
   5644   __ JumpIfRoot(receiver, Heap::kNullValueRootIndex, &global_object);
   5645   __ JumpIfRoot(receiver, Heap::kUndefinedValueRootIndex, &global_object);
   5646 
   5647   // Deoptimize if the receiver is not a JS object.
   5648   DeoptimizeIfSmi(receiver, instr, Deoptimizer::kSmi);
   5649   __ CompareObjectType(receiver, result, result, FIRST_JS_RECEIVER_TYPE);
   5650   __ B(ge, &copy_receiver);
   5651   Deoptimize(instr, Deoptimizer::kNotAJavaScriptObject);
   5652 
   5653   __ Bind(&global_object);
   5654   __ Ldr(result, FieldMemOperand(function, JSFunction::kContextOffset));
   5655   __ Ldr(result, ContextMemOperand(result, Context::NATIVE_CONTEXT_INDEX));
   5656   __ Ldr(result, ContextMemOperand(result, Context::GLOBAL_PROXY_INDEX));
   5657   __ B(&done);
   5658 
   5659   __ Bind(&copy_receiver);
   5660   __ Mov(result, receiver);
   5661   __ Bind(&done);
   5662 }
   5663 
   5664 
   5665 void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
   5666                                            Register result,
   5667                                            Register object,
   5668                                            Register index) {
   5669   PushSafepointRegistersScope scope(this);
   5670   __ Push(object);
   5671   __ Push(index);
   5672   __ Mov(cp, 0);
   5673   __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
   5674   RecordSafepointWithRegisters(
   5675       instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
   5676   __ StoreToSafepointRegisterSlot(x0, result);
   5677 }
   5678 
   5679 
   5680 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
   5681   class DeferredLoadMutableDouble final : public LDeferredCode {
   5682    public:
   5683     DeferredLoadMutableDouble(LCodeGen* codegen,
   5684                               LLoadFieldByIndex* instr,
   5685                               Register result,
   5686                               Register object,
   5687                               Register index)
   5688         : LDeferredCode(codegen),
   5689           instr_(instr),
   5690           result_(result),
   5691           object_(object),
   5692           index_(index) {
   5693     }
   5694     void Generate() override {
   5695       codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_);
   5696     }
   5697     LInstruction* instr() override { return instr_; }
   5698 
   5699    private:
   5700     LLoadFieldByIndex* instr_;
   5701     Register result_;
   5702     Register object_;
   5703     Register index_;
   5704   };
   5705   Register object = ToRegister(instr->object());
   5706   Register index = ToRegister(instr->index());
   5707   Register result = ToRegister(instr->result());
   5708 
   5709   __ AssertSmi(index);
   5710 
   5711   DeferredLoadMutableDouble* deferred;
   5712   deferred = new(zone()) DeferredLoadMutableDouble(
   5713       this, instr, result, object, index);
   5714 
   5715   Label out_of_object, done;
   5716 
   5717   __ TestAndBranchIfAnySet(
   5718       index, reinterpret_cast<uint64_t>(Smi::FromInt(1)), deferred->entry());
   5719   __ Mov(index, Operand(index, ASR, 1));
   5720 
   5721   __ Cmp(index, Smi::FromInt(0));
   5722   __ B(lt, &out_of_object);
   5723 
   5724   STATIC_ASSERT(kPointerSizeLog2 > kSmiTagSize);
   5725   __ Add(result, object, Operand::UntagSmiAndScale(index, kPointerSizeLog2));
   5726   __ Ldr(result, FieldMemOperand(result, JSObject::kHeaderSize));
   5727 
   5728   __ B(&done);
   5729 
   5730   __ Bind(&out_of_object);
   5731   __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
   5732   // Index is equal to negated out of object property index plus 1.
   5733   __ Sub(result, result, Operand::UntagSmiAndScale(index, kPointerSizeLog2));
   5734   __ Ldr(result, FieldMemOperand(result,
   5735                                  FixedArray::kHeaderSize - kPointerSize));
   5736   __ Bind(deferred->exit());
   5737   __ Bind(&done);
   5738 }
   5739 
   5740 }  // namespace internal
   5741 }  // namespace v8
   5742