Home | History | Annotate | Download | only in gradients
      1 /*
      2  * Copyright 2006 The Android Open Source Project
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include <algorithm>
      9 #include "Sk4fLinearGradient.h"
     10 #include "SkColorSpace_XYZ.h"
     11 #include "SkGradientShaderPriv.h"
     12 #include "SkHalf.h"
     13 #include "SkLinearGradient.h"
     14 #include "SkMallocPixelRef.h"
     15 #include "SkRadialGradient.h"
     16 #include "SkSweepGradient.h"
     17 #include "SkTwoPointConicalGradient.h"
     18 #include "../../jumper/SkJumper.h"
     19 
     20 
     21 enum GradientSerializationFlags {
     22     // Bits 29:31 used for various boolean flags
     23     kHasPosition_GSF    = 0x80000000,
     24     kHasLocalMatrix_GSF = 0x40000000,
     25     kHasColorSpace_GSF  = 0x20000000,
     26 
     27     // Bits 12:28 unused
     28 
     29     // Bits 8:11 for fTileMode
     30     kTileModeShift_GSF  = 8,
     31     kTileModeMask_GSF   = 0xF,
     32 
     33     // Bits 0:7 for fGradFlags (note that kForce4fContext_PrivateFlag is 0x80)
     34     kGradFlagsShift_GSF = 0,
     35     kGradFlagsMask_GSF  = 0xFF,
     36 };
     37 
     38 void SkGradientShaderBase::Descriptor::flatten(SkWriteBuffer& buffer) const {
     39     uint32_t flags = 0;
     40     if (fPos) {
     41         flags |= kHasPosition_GSF;
     42     }
     43     if (fLocalMatrix) {
     44         flags |= kHasLocalMatrix_GSF;
     45     }
     46     sk_sp<SkData> colorSpaceData = fColorSpace ? fColorSpace->serialize() : nullptr;
     47     if (colorSpaceData) {
     48         flags |= kHasColorSpace_GSF;
     49     }
     50     SkASSERT(static_cast<uint32_t>(fTileMode) <= kTileModeMask_GSF);
     51     flags |= (fTileMode << kTileModeShift_GSF);
     52     SkASSERT(fGradFlags <= kGradFlagsMask_GSF);
     53     flags |= (fGradFlags << kGradFlagsShift_GSF);
     54 
     55     buffer.writeUInt(flags);
     56 
     57     buffer.writeColor4fArray(fColors, fCount);
     58     if (colorSpaceData) {
     59         buffer.writeDataAsByteArray(colorSpaceData.get());
     60     }
     61     if (fPos) {
     62         buffer.writeScalarArray(fPos, fCount);
     63     }
     64     if (fLocalMatrix) {
     65         buffer.writeMatrix(*fLocalMatrix);
     66     }
     67 }
     68 
     69 bool SkGradientShaderBase::DescriptorScope::unflatten(SkReadBuffer& buffer) {
     70     // New gradient format. Includes floating point color, color space, densely packed flags
     71     uint32_t flags = buffer.readUInt();
     72 
     73     fTileMode = (SkShader::TileMode)((flags >> kTileModeShift_GSF) & kTileModeMask_GSF);
     74     fGradFlags = (flags >> kGradFlagsShift_GSF) & kGradFlagsMask_GSF;
     75 
     76     fCount = buffer.getArrayCount();
     77     if (fCount > kStorageCount) {
     78         size_t allocSize = (sizeof(SkColor4f) + sizeof(SkScalar)) * fCount;
     79         fDynamicStorage.reset(allocSize);
     80         fColors = (SkColor4f*)fDynamicStorage.get();
     81         fPos = (SkScalar*)(fColors + fCount);
     82     } else {
     83         fColors = fColorStorage;
     84         fPos = fPosStorage;
     85     }
     86     if (!buffer.readColor4fArray(mutableColors(), fCount)) {
     87         return false;
     88     }
     89     if (SkToBool(flags & kHasColorSpace_GSF)) {
     90         sk_sp<SkData> data = buffer.readByteArrayAsData();
     91         fColorSpace = SkColorSpace::Deserialize(data->data(), data->size());
     92     } else {
     93         fColorSpace = nullptr;
     94     }
     95     if (SkToBool(flags & kHasPosition_GSF)) {
     96         if (!buffer.readScalarArray(mutablePos(), fCount)) {
     97             return false;
     98         }
     99     } else {
    100         fPos = nullptr;
    101     }
    102     if (SkToBool(flags & kHasLocalMatrix_GSF)) {
    103         fLocalMatrix = &fLocalMatrixStorage;
    104         buffer.readMatrix(&fLocalMatrixStorage);
    105     } else {
    106         fLocalMatrix = nullptr;
    107     }
    108     return buffer.isValid();
    109 }
    110 
    111 ////////////////////////////////////////////////////////////////////////////////////////////
    112 
    113 SkGradientShaderBase::SkGradientShaderBase(const Descriptor& desc, const SkMatrix& ptsToUnit)
    114     : INHERITED(desc.fLocalMatrix)
    115     , fPtsToUnit(ptsToUnit)
    116 {
    117     fPtsToUnit.getType();  // Precache so reads are threadsafe.
    118     SkASSERT(desc.fCount > 1);
    119 
    120     fGradFlags = static_cast<uint8_t>(desc.fGradFlags);
    121 
    122     SkASSERT((unsigned)desc.fTileMode < SkShader::kTileModeCount);
    123     SkASSERT(SkShader::kTileModeCount == SK_ARRAY_COUNT(gTileProcs));
    124     fTileMode = desc.fTileMode;
    125     fTileProc = gTileProcs[desc.fTileMode];
    126 
    127     /*  Note: we let the caller skip the first and/or last position.
    128         i.e. pos[0] = 0.3, pos[1] = 0.7
    129         In these cases, we insert dummy entries to ensure that the final data
    130         will be bracketed by [0, 1].
    131         i.e. our_pos[0] = 0, our_pos[1] = 0.3, our_pos[2] = 0.7, our_pos[3] = 1
    132 
    133         Thus colorCount (the caller's value, and fColorCount (our value) may
    134         differ by up to 2. In the above example:
    135             colorCount = 2
    136             fColorCount = 4
    137      */
    138     fColorCount = desc.fCount;
    139     // check if we need to add in dummy start and/or end position/colors
    140     bool dummyFirst = false;
    141     bool dummyLast = false;
    142     if (desc.fPos) {
    143         dummyFirst = desc.fPos[0] != 0;
    144         dummyLast = desc.fPos[desc.fCount - 1] != SK_Scalar1;
    145         fColorCount += dummyFirst + dummyLast;
    146     }
    147 
    148     if (fColorCount > kColorStorageCount) {
    149         size_t size = sizeof(SkColor) + sizeof(SkColor4f) + sizeof(Rec);
    150         if (desc.fPos) {
    151             size += sizeof(SkScalar);
    152         }
    153         fOrigColors = reinterpret_cast<SkColor*>(sk_malloc_throw(size * fColorCount));
    154     }
    155     else {
    156         fOrigColors = fStorage;
    157     }
    158 
    159     fOrigColors4f = (SkColor4f*)(fOrigColors + fColorCount);
    160 
    161     // Now copy over the colors, adding the dummies as needed
    162     SkColor4f* origColors = fOrigColors4f;
    163     if (dummyFirst) {
    164         *origColors++ = desc.fColors[0];
    165     }
    166     memcpy(origColors, desc.fColors, desc.fCount * sizeof(SkColor4f));
    167     if (dummyLast) {
    168         origColors += desc.fCount;
    169         *origColors = desc.fColors[desc.fCount - 1];
    170     }
    171 
    172     // Convert our SkColor4f colors to SkColor as well. Note that this is incorrect if the
    173     // source colors are not in sRGB gamut. We would need to do a gamut transformation, but
    174     // SkColorSpaceXform can't do that (yet). GrColorSpaceXform can, but we may not have GPU
    175     // support compiled in here. For the common case (sRGB colors), this does the right thing.
    176     for (int i = 0; i < fColorCount; ++i) {
    177         fOrigColors[i] = fOrigColors4f[i].toSkColor();
    178     }
    179 
    180     if (!desc.fColorSpace) {
    181         // This happens if we were constructed from SkColors, so our colors are really sRGB
    182         fColorSpace = SkColorSpace::MakeSRGBLinear();
    183     } else {
    184         // The color space refers to the float colors, so it must be linear gamma
    185         SkASSERT(desc.fColorSpace->gammaIsLinear());
    186         fColorSpace = desc.fColorSpace;
    187     }
    188 
    189     if (desc.fPos && fColorCount) {
    190         fOrigPos = (SkScalar*)(fOrigColors4f + fColorCount);
    191         fRecs = (Rec*)(fOrigPos + fColorCount);
    192     } else {
    193         fOrigPos = nullptr;
    194         fRecs = (Rec*)(fOrigColors4f + fColorCount);
    195     }
    196 
    197     if (fColorCount > 2) {
    198         Rec* recs = fRecs;
    199         recs->fPos = 0;
    200         //  recs->fScale = 0; // unused;
    201         recs += 1;
    202         if (desc.fPos) {
    203             SkScalar* origPosPtr = fOrigPos;
    204             *origPosPtr++ = 0;
    205 
    206             /*  We need to convert the user's array of relative positions into
    207                 fixed-point positions and scale factors. We need these results
    208                 to be strictly monotonic (no two values equal or out of order).
    209                 Hence this complex loop that just jams a zero for the scale
    210                 value if it sees a segment out of order, and it assures that
    211                 we start at 0 and end at 1.0
    212             */
    213             SkScalar prev = 0;
    214             int startIndex = dummyFirst ? 0 : 1;
    215             int count = desc.fCount + dummyLast;
    216             for (int i = startIndex; i < count; i++) {
    217                 // force the last value to be 1.0
    218                 SkScalar curr;
    219                 if (i == desc.fCount) {  // we're really at the dummyLast
    220                     curr = 1;
    221                 } else {
    222                     curr = SkScalarPin(desc.fPos[i], 0, 1);
    223                 }
    224                 *origPosPtr++ = curr;
    225 
    226                 recs->fPos = SkScalarToFixed(curr);
    227                 SkFixed diff = SkScalarToFixed(curr - prev);
    228                 if (diff > 0) {
    229                     recs->fScale = (1 << 24) / diff;
    230                 } else {
    231                     recs->fScale = 0; // ignore this segment
    232                 }
    233                 // get ready for the next value
    234                 prev = curr;
    235                 recs += 1;
    236             }
    237         } else {    // assume even distribution
    238             fOrigPos = nullptr;
    239 
    240             SkFixed dp = SK_Fixed1 / (desc.fCount - 1);
    241             SkFixed p = dp;
    242             SkFixed scale = (desc.fCount - 1) << 8;  // (1 << 24) / dp
    243             for (int i = 1; i < desc.fCount - 1; i++) {
    244                 recs->fPos   = p;
    245                 recs->fScale = scale;
    246                 recs += 1;
    247                 p += dp;
    248             }
    249             recs->fPos = SK_Fixed1;
    250             recs->fScale = scale;
    251         }
    252     } else if (desc.fPos) {
    253         SkASSERT(2 == fColorCount);
    254         fOrigPos[0] = SkScalarPin(desc.fPos[0], 0, 1);
    255         fOrigPos[1] = SkScalarPin(desc.fPos[1], fOrigPos[0], 1);
    256         if (0 == fOrigPos[0] && 1 == fOrigPos[1]) {
    257             fOrigPos = nullptr;
    258         }
    259     }
    260     this->initCommon();
    261 }
    262 
    263 SkGradientShaderBase::~SkGradientShaderBase() {
    264     if (fOrigColors != fStorage) {
    265         sk_free(fOrigColors);
    266     }
    267 }
    268 
    269 void SkGradientShaderBase::initCommon() {
    270     unsigned colorAlpha = 0xFF;
    271     for (int i = 0; i < fColorCount; i++) {
    272         colorAlpha &= SkColorGetA(fOrigColors[i]);
    273     }
    274     fColorsAreOpaque = colorAlpha == 0xFF;
    275 }
    276 
    277 void SkGradientShaderBase::flatten(SkWriteBuffer& buffer) const {
    278     Descriptor desc;
    279     desc.fColors = fOrigColors4f;
    280     desc.fColorSpace = fColorSpace;
    281     desc.fPos = fOrigPos;
    282     desc.fCount = fColorCount;
    283     desc.fTileMode = fTileMode;
    284     desc.fGradFlags = fGradFlags;
    285 
    286     const SkMatrix& m = this->getLocalMatrix();
    287     desc.fLocalMatrix = m.isIdentity() ? nullptr : &m;
    288     desc.flatten(buffer);
    289 }
    290 
    291 void SkGradientShaderBase::FlipGradientColors(SkColor* colorDst, Rec* recDst,
    292                                               SkColor* colorSrc, Rec* recSrc,
    293                                               int count) {
    294     SkAutoSTArray<8, SkColor> colorsTemp(count);
    295     for (int i = 0; i < count; ++i) {
    296         int offset = count - i - 1;
    297         colorsTemp[i] = colorSrc[offset];
    298     }
    299     if (count > 2) {
    300         SkAutoSTArray<8, Rec> recsTemp(count);
    301         for (int i = 0; i < count; ++i) {
    302             int offset = count - i - 1;
    303             recsTemp[i].fPos = SK_Fixed1 - recSrc[offset].fPos;
    304             recsTemp[i].fScale = recSrc[offset].fScale;
    305         }
    306         memcpy(recDst, recsTemp.get(), count * sizeof(Rec));
    307     }
    308     memcpy(colorDst, colorsTemp.get(), count * sizeof(SkColor));
    309 }
    310 
    311 static void add_stop_color(SkJumper_GradientCtx* ctx, size_t stop, SkPM4f Fs, SkPM4f Bs) {
    312     (ctx->fs[0])[stop] = Fs.r();
    313     (ctx->fs[1])[stop] = Fs.g();
    314     (ctx->fs[2])[stop] = Fs.b();
    315     (ctx->fs[3])[stop] = Fs.a();
    316     (ctx->bs[0])[stop] = Bs.r();
    317     (ctx->bs[1])[stop] = Bs.g();
    318     (ctx->bs[2])[stop] = Bs.b();
    319     (ctx->bs[3])[stop] = Bs.a();
    320 }
    321 
    322 static void add_const_color(SkJumper_GradientCtx* ctx, size_t stop, SkPM4f color) {
    323     add_stop_color(ctx, stop, SkPM4f::FromPremulRGBA(0,0,0,0), color);
    324 }
    325 
    326 // Calculate a factor F and a bias B so that color = F*t + B when t is in range of
    327 // the stop. Assume that the distance between stops is 1/gapCount.
    328 static void init_stop_evenly(
    329     SkJumper_GradientCtx* ctx, float gapCount, size_t stop, SkPM4f c_l, SkPM4f c_r) {
    330     // Clankium's GCC 4.9 targeting ARMv7 is barfing when we use Sk4f math here, so go scalar...
    331     SkPM4f Fs = {{
    332         (c_r.r() - c_l.r()) * gapCount,
    333         (c_r.g() - c_l.g()) * gapCount,
    334         (c_r.b() - c_l.b()) * gapCount,
    335         (c_r.a() - c_l.a()) * gapCount,
    336     }};
    337     SkPM4f Bs = {{
    338         c_l.r() - Fs.r()*(stop/gapCount),
    339         c_l.g() - Fs.g()*(stop/gapCount),
    340         c_l.b() - Fs.b()*(stop/gapCount),
    341         c_l.a() - Fs.a()*(stop/gapCount),
    342     }};
    343     add_stop_color(ctx, stop, Fs, Bs);
    344 }
    345 
    346 // For each stop we calculate a bias B and a scale factor F, such that
    347 // for any t between stops n and n+1, the color we want is B[n] + F[n]*t.
    348 static void init_stop_pos(
    349     SkJumper_GradientCtx* ctx, size_t stop, float t_l, float t_r, SkPM4f c_l, SkPM4f c_r) {
    350     // See note about Clankium's old compiler in init_stop_evenly().
    351     SkPM4f Fs = {{
    352         (c_r.r() - c_l.r()) / (t_r - t_l),
    353         (c_r.g() - c_l.g()) / (t_r - t_l),
    354         (c_r.b() - c_l.b()) / (t_r - t_l),
    355         (c_r.a() - c_l.a()) / (t_r - t_l),
    356     }};
    357     SkPM4f Bs = {{
    358         c_l.r() - Fs.r()*t_l,
    359         c_l.g() - Fs.g()*t_l,
    360         c_l.b() - Fs.b()*t_l,
    361         c_l.a() - Fs.a()*t_l,
    362     }};
    363     ctx->ts[stop] = t_l;
    364     add_stop_color(ctx, stop, Fs, Bs);
    365 }
    366 
    367 bool SkGradientShaderBase::onAppendStages(SkRasterPipeline* p,
    368                                           SkColorSpace* dstCS,
    369                                           SkArenaAlloc* alloc,
    370                                           const SkMatrix& ctm,
    371                                           const SkPaint& paint,
    372                                           const SkMatrix* localM) const {
    373     SkMatrix matrix;
    374     if (!this->computeTotalInverse(ctm, localM, &matrix)) {
    375         return false;
    376     }
    377 
    378     SkRasterPipeline_<256> tPipeline;
    379     SkRasterPipeline_<256> postPipeline;
    380     if (!this->adjustMatrixAndAppendStages(alloc, &matrix, &tPipeline, &postPipeline)) {
    381         return false;
    382     }
    383 
    384     p->append(SkRasterPipeline::seed_shader);
    385     p->append_matrix(alloc, matrix);
    386     p->extend(tPipeline);
    387 
    388     switch(fTileMode) {
    389         case kMirror_TileMode: p->append(SkRasterPipeline::mirror_x_1); break;
    390         case kRepeat_TileMode: p->append(SkRasterPipeline::repeat_x_1); break;
    391         case kClamp_TileMode:
    392             if (!fOrigPos) {
    393                 // We clamp only when the stops are evenly spaced.
    394                 // If not, there may be hard stops, and clamping ruins hard stops at 0 and/or 1.
    395                 // In that case, we must make sure we're using the general "gradient" stage,
    396                 // which is the only stage that will correctly handle unclamped t.
    397                 p->append(SkRasterPipeline::clamp_x_1);
    398             }
    399     }
    400 
    401     const bool premulGrad = fGradFlags & SkGradientShader::kInterpolateColorsInPremul_Flag;
    402     auto prepareColor = [premulGrad, dstCS, this](int i) {
    403         SkColor4f c = this->getXformedColor(i, dstCS);
    404         return premulGrad ? c.premul()
    405                           : SkPM4f::From4f(Sk4f::Load(&c));
    406     };
    407 
    408     // The two-stop case with stops at 0 and 1.
    409     if (fColorCount == 2 && fOrigPos == nullptr) {
    410         const SkPM4f c_l = prepareColor(0),
    411             c_r = prepareColor(1);
    412 
    413         // See F and B below.
    414         auto* f_and_b = alloc->makeArrayDefault<SkPM4f>(2);
    415         f_and_b[0] = SkPM4f::From4f(c_r.to4f() - c_l.to4f());
    416         f_and_b[1] = c_l;
    417 
    418         p->append(SkRasterPipeline::evenly_spaced_2_stop_gradient, f_and_b);
    419     } else {
    420         auto* ctx = alloc->make<SkJumper_GradientCtx>();
    421 
    422         // Note: In order to handle clamps in search, the search assumes a stop conceptully placed
    423         // at -inf. Therefore, the max number of stops is fColorCount+1.
    424         for (int i = 0; i < 4; i++) {
    425             // Allocate at least at for the AVX2 gather from a YMM register.
    426             ctx->fs[i] = alloc->makeArray<float>(std::max(fColorCount+1, 8));
    427             ctx->bs[i] = alloc->makeArray<float>(std::max(fColorCount+1, 8));
    428         }
    429 
    430         if (fOrigPos == nullptr) {
    431             // Handle evenly distributed stops.
    432 
    433             size_t stopCount = fColorCount;
    434             float gapCount = stopCount - 1;
    435 
    436             SkPM4f c_l = prepareColor(0);
    437             for (size_t i = 0; i < stopCount - 1; i++) {
    438                 SkPM4f c_r = prepareColor(i + 1);
    439                 init_stop_evenly(ctx, gapCount, i, c_l, c_r);
    440                 c_l = c_r;
    441             }
    442             add_const_color(ctx, stopCount - 1, c_l);
    443 
    444             ctx->stopCount = stopCount;
    445             p->append(SkRasterPipeline::evenly_spaced_gradient, ctx);
    446         } else {
    447             // Handle arbitrary stops.
    448 
    449             ctx->ts = alloc->makeArray<float>(fColorCount+1);
    450 
    451             // Remove the dummy stops inserted by SkGradientShaderBase::SkGradientShaderBase
    452             // because they are naturally handled by the search method.
    453             int firstStop;
    454             int lastStop;
    455             if (fColorCount > 2) {
    456                 firstStop = fOrigColors4f[0] != fOrigColors4f[1] ? 0 : 1;
    457                 lastStop = fOrigColors4f[fColorCount - 2] != fOrigColors4f[fColorCount - 1]
    458                            ? fColorCount - 1 : fColorCount - 2;
    459             } else {
    460                 firstStop = 0;
    461                 lastStop = 1;
    462             }
    463 
    464             size_t stopCount = 0;
    465             float  t_l = fOrigPos[firstStop];
    466             SkPM4f c_l = prepareColor(firstStop);
    467             add_const_color(ctx, stopCount++, c_l);
    468             // N.B. lastStop is the index of the last stop, not one after.
    469             for (int i = firstStop; i < lastStop; i++) {
    470                 float  t_r = fOrigPos[i + 1];
    471                 SkPM4f c_r = prepareColor(i + 1);
    472                 if (t_l < t_r) {
    473                     init_stop_pos(ctx, stopCount, t_l, t_r, c_l, c_r);
    474                     stopCount += 1;
    475                 }
    476                 t_l = t_r;
    477                 c_l = c_r;
    478             }
    479 
    480             ctx->ts[stopCount] = t_l;
    481             add_const_color(ctx, stopCount++, c_l);
    482 
    483             ctx->stopCount = stopCount;
    484             p->append(SkRasterPipeline::gradient, ctx);
    485         }
    486     }
    487 
    488     if (!premulGrad && !this->colorsAreOpaque()) {
    489         p->append(SkRasterPipeline::premul);
    490     }
    491 
    492     p->extend(postPipeline);
    493 
    494     return true;
    495 }
    496 
    497 
    498 bool SkGradientShaderBase::isOpaque() const {
    499     return fColorsAreOpaque;
    500 }
    501 
    502 static unsigned rounded_divide(unsigned numer, unsigned denom) {
    503     return (numer + (denom >> 1)) / denom;
    504 }
    505 
    506 bool SkGradientShaderBase::onAsLuminanceColor(SkColor* lum) const {
    507     // we just compute an average color.
    508     // possibly we could weight this based on the proportional width for each color
    509     //   assuming they are not evenly distributed in the fPos array.
    510     int r = 0;
    511     int g = 0;
    512     int b = 0;
    513     const int n = fColorCount;
    514     for (int i = 0; i < n; ++i) {
    515         SkColor c = fOrigColors[i];
    516         r += SkColorGetR(c);
    517         g += SkColorGetG(c);
    518         b += SkColorGetB(c);
    519     }
    520     *lum = SkColorSetRGB(rounded_divide(r, n), rounded_divide(g, n), rounded_divide(b, n));
    521     return true;
    522 }
    523 
    524 SkGradientShaderBase::GradientShaderBaseContext::GradientShaderBaseContext(
    525         const SkGradientShaderBase& shader, const ContextRec& rec)
    526     : INHERITED(shader, rec)
    527 #ifdef SK_SUPPORT_LEGACY_GRADIENT_DITHERING
    528     , fDither(true)
    529 #else
    530     , fDither(rec.fPaint->isDither())
    531 #endif
    532     , fCache(shader.refCache(getPaintAlpha(), fDither))
    533 {
    534     const SkMatrix& inverse = this->getTotalInverse();
    535 
    536     fDstToIndex.setConcat(shader.fPtsToUnit, inverse);
    537     SkASSERT(!fDstToIndex.hasPerspective());
    538 
    539     fDstToIndexProc = fDstToIndex.getMapXYProc();
    540 
    541     // now convert our colors in to PMColors
    542     unsigned paintAlpha = this->getPaintAlpha();
    543 
    544     fFlags = this->INHERITED::getFlags();
    545     if (shader.fColorsAreOpaque && paintAlpha == 0xFF) {
    546         fFlags |= kOpaqueAlpha_Flag;
    547     }
    548 }
    549 
    550 bool SkGradientShaderBase::GradientShaderBaseContext::isValid() const {
    551     return fDstToIndex.isFinite();
    552 }
    553 
    554 SkGradientShaderBase::GradientShaderCache::GradientShaderCache(
    555         U8CPU alpha, bool dither, const SkGradientShaderBase& shader)
    556     : fCacheAlpha(alpha)
    557     , fCacheDither(dither)
    558     , fShader(shader)
    559 {
    560     // Only initialize the cache in getCache32.
    561     fCache32 = nullptr;
    562 }
    563 
    564 SkGradientShaderBase::GradientShaderCache::~GradientShaderCache() {}
    565 
    566 /*
    567  *  r,g,b used to be SkFixed, but on gcc (4.2.1 mac and 4.6.3 goobuntu) in
    568  *  release builds, we saw a compiler error where the 0xFF parameter in
    569  *  SkPackARGB32() was being totally ignored whenever it was called with
    570  *  a non-zero add (e.g. 0x8000).
    571  *
    572  *  We found two work-arounds:
    573  *      1. change r,g,b to unsigned (or just one of them)
    574  *      2. change SkPackARGB32 to + its (a << SK_A32_SHIFT) value instead
    575  *         of using |
    576  *
    577  *  We chose #1 just because it was more localized.
    578  *  See http://code.google.com/p/skia/issues/detail?id=1113
    579  *
    580  *  The type SkUFixed encapsulate this need for unsigned, but logically Fixed.
    581  */
    582 typedef uint32_t SkUFixed;
    583 
    584 void SkGradientShaderBase::GradientShaderCache::Build32bitCache(
    585         SkPMColor cache[], SkColor c0, SkColor c1,
    586         int count, U8CPU paintAlpha, uint32_t gradFlags, bool dither) {
    587     SkASSERT(count > 1);
    588 
    589     // need to apply paintAlpha to our two endpoints
    590     uint32_t a0 = SkMulDiv255Round(SkColorGetA(c0), paintAlpha);
    591     uint32_t a1 = SkMulDiv255Round(SkColorGetA(c1), paintAlpha);
    592 
    593 
    594     const bool interpInPremul = SkToBool(gradFlags &
    595                            SkGradientShader::kInterpolateColorsInPremul_Flag);
    596 
    597     uint32_t r0 = SkColorGetR(c0);
    598     uint32_t g0 = SkColorGetG(c0);
    599     uint32_t b0 = SkColorGetB(c0);
    600 
    601     uint32_t r1 = SkColorGetR(c1);
    602     uint32_t g1 = SkColorGetG(c1);
    603     uint32_t b1 = SkColorGetB(c1);
    604 
    605     if (interpInPremul) {
    606         r0 = SkMulDiv255Round(r0, a0);
    607         g0 = SkMulDiv255Round(g0, a0);
    608         b0 = SkMulDiv255Round(b0, a0);
    609 
    610         r1 = SkMulDiv255Round(r1, a1);
    611         g1 = SkMulDiv255Round(g1, a1);
    612         b1 = SkMulDiv255Round(b1, a1);
    613     }
    614 
    615     SkFixed da = SkIntToFixed(a1 - a0) / (count - 1);
    616     SkFixed dr = SkIntToFixed(r1 - r0) / (count - 1);
    617     SkFixed dg = SkIntToFixed(g1 - g0) / (count - 1);
    618     SkFixed db = SkIntToFixed(b1 - b0) / (count - 1);
    619 
    620     /*  We pre-add 1/8 to avoid having to add this to our [0] value each time
    621         in the loop. Without this, the bias for each would be
    622             0x2000  0xA000  0xE000  0x6000
    623         With this trick, we can add 0 for the first (no-op) and just adjust the
    624         others.
    625      */
    626     const SkUFixed bias0 = dither ? 0x2000 : 0x8000;
    627     const SkUFixed bias1 = dither ? 0x8000 : 0;
    628     const SkUFixed bias2 = dither ? 0xC000 : 0;
    629     const SkUFixed bias3 = dither ? 0x4000 : 0;
    630 
    631     SkUFixed a = SkIntToFixed(a0) + bias0;
    632     SkUFixed r = SkIntToFixed(r0) + bias0;
    633     SkUFixed g = SkIntToFixed(g0) + bias0;
    634     SkUFixed b = SkIntToFixed(b0) + bias0;
    635 
    636     /*
    637      *  Our dither-cell (spatially) is
    638      *      0 2
    639      *      3 1
    640      *  Where
    641      *      [0] -> [-1/8 ... 1/8 ) values near 0
    642      *      [1] -> [ 1/8 ... 3/8 ) values near 1/4
    643      *      [2] -> [ 3/8 ... 5/8 ) values near 1/2
    644      *      [3] -> [ 5/8 ... 7/8 ) values near 3/4
    645      */
    646 
    647     if (0xFF == a0 && 0 == da) {
    648         do {
    649             cache[kCache32Count*0] = SkPackARGB32(0xFF, (r + 0    ) >> 16,
    650                                                         (g + 0    ) >> 16,
    651                                                         (b + 0    ) >> 16);
    652             cache[kCache32Count*1] = SkPackARGB32(0xFF, (r + bias1) >> 16,
    653                                                         (g + bias1) >> 16,
    654                                                         (b + bias1) >> 16);
    655             cache[kCache32Count*2] = SkPackARGB32(0xFF, (r + bias2) >> 16,
    656                                                         (g + bias2) >> 16,
    657                                                         (b + bias2) >> 16);
    658             cache[kCache32Count*3] = SkPackARGB32(0xFF, (r + bias3) >> 16,
    659                                                         (g + bias3) >> 16,
    660                                                         (b + bias3) >> 16);
    661             cache += 1;
    662             r += dr;
    663             g += dg;
    664             b += db;
    665         } while (--count != 0);
    666     } else if (interpInPremul) {
    667         do {
    668             cache[kCache32Count*0] = SkPackARGB32((a + 0    ) >> 16,
    669                                                   (r + 0    ) >> 16,
    670                                                   (g + 0    ) >> 16,
    671                                                   (b + 0    ) >> 16);
    672             cache[kCache32Count*1] = SkPackARGB32((a + bias1) >> 16,
    673                                                   (r + bias1) >> 16,
    674                                                   (g + bias1) >> 16,
    675                                                   (b + bias1) >> 16);
    676             cache[kCache32Count*2] = SkPackARGB32((a + bias2) >> 16,
    677                                                   (r + bias2) >> 16,
    678                                                   (g + bias2) >> 16,
    679                                                   (b + bias2) >> 16);
    680             cache[kCache32Count*3] = SkPackARGB32((a + bias3) >> 16,
    681                                                   (r + bias3) >> 16,
    682                                                   (g + bias3) >> 16,
    683                                                   (b + bias3) >> 16);
    684             cache += 1;
    685             a += da;
    686             r += dr;
    687             g += dg;
    688             b += db;
    689         } while (--count != 0);
    690     } else {    // interpolate in unpreml space
    691         do {
    692             cache[kCache32Count*0] = SkPremultiplyARGBInline((a + 0     ) >> 16,
    693                                                              (r + 0     ) >> 16,
    694                                                              (g + 0     ) >> 16,
    695                                                              (b + 0     ) >> 16);
    696             cache[kCache32Count*1] = SkPremultiplyARGBInline((a + bias1) >> 16,
    697                                                              (r + bias1) >> 16,
    698                                                              (g + bias1) >> 16,
    699                                                              (b + bias1) >> 16);
    700             cache[kCache32Count*2] = SkPremultiplyARGBInline((a + bias2) >> 16,
    701                                                              (r + bias2) >> 16,
    702                                                              (g + bias2) >> 16,
    703                                                              (b + bias2) >> 16);
    704             cache[kCache32Count*3] = SkPremultiplyARGBInline((a + bias3) >> 16,
    705                                                              (r + bias3) >> 16,
    706                                                              (g + bias3) >> 16,
    707                                                              (b + bias3) >> 16);
    708             cache += 1;
    709             a += da;
    710             r += dr;
    711             g += dg;
    712             b += db;
    713         } while (--count != 0);
    714     }
    715 }
    716 
    717 static inline int SkFixedToFFFF(SkFixed x) {
    718     SkASSERT((unsigned)x <= SK_Fixed1);
    719     return x - (x >> 16);
    720 }
    721 
    722 const SkPMColor* SkGradientShaderBase::GradientShaderCache::getCache32() {
    723     fCache32InitOnce(SkGradientShaderBase::GradientShaderCache::initCache32, this);
    724     SkASSERT(fCache32);
    725     return fCache32;
    726 }
    727 
    728 void SkGradientShaderBase::GradientShaderCache::initCache32(GradientShaderCache* cache) {
    729     const int kNumberOfDitherRows = 4;
    730     const SkImageInfo info = SkImageInfo::MakeN32Premul(kCache32Count, kNumberOfDitherRows);
    731 
    732     SkASSERT(nullptr == cache->fCache32PixelRef);
    733     cache->fCache32PixelRef = SkMallocPixelRef::MakeAllocate(info, 0);
    734     cache->fCache32 = (SkPMColor*)cache->fCache32PixelRef->pixels();
    735     if (cache->fShader.fColorCount == 2) {
    736         Build32bitCache(cache->fCache32, cache->fShader.fOrigColors[0],
    737                         cache->fShader.fOrigColors[1], kCache32Count, cache->fCacheAlpha,
    738                         cache->fShader.fGradFlags, cache->fCacheDither);
    739     } else {
    740         Rec* rec = cache->fShader.fRecs;
    741         int prevIndex = 0;
    742         for (int i = 1; i < cache->fShader.fColorCount; i++) {
    743             int nextIndex = SkFixedToFFFF(rec[i].fPos) >> kCache32Shift;
    744             SkASSERT(nextIndex < kCache32Count);
    745 
    746             if (nextIndex > prevIndex)
    747                 Build32bitCache(cache->fCache32 + prevIndex, cache->fShader.fOrigColors[i-1],
    748                                 cache->fShader.fOrigColors[i], nextIndex - prevIndex + 1,
    749                                 cache->fCacheAlpha, cache->fShader.fGradFlags, cache->fCacheDither);
    750             prevIndex = nextIndex;
    751         }
    752     }
    753 }
    754 
    755 void SkGradientShaderBase::initLinearBitmap(SkBitmap* bitmap) const {
    756     const bool interpInPremul = SkToBool(fGradFlags &
    757                                          SkGradientShader::kInterpolateColorsInPremul_Flag);
    758     SkHalf* pixelsF16 = reinterpret_cast<SkHalf*>(bitmap->getPixels());
    759     uint32_t* pixelsS32 = reinterpret_cast<uint32_t*>(bitmap->getPixels());
    760 
    761     typedef std::function<void(const Sk4f&, int)> pixelWriteFn_t;
    762 
    763     pixelWriteFn_t writeF16Pixel = [&](const Sk4f& x, int index) {
    764         Sk4h c = SkFloatToHalf_finite_ftz(x);
    765         pixelsF16[4*index+0] = c[0];
    766         pixelsF16[4*index+1] = c[1];
    767         pixelsF16[4*index+2] = c[2];
    768         pixelsF16[4*index+3] = c[3];
    769     };
    770     pixelWriteFn_t writeS32Pixel = [&](const Sk4f& c, int index) {
    771         pixelsS32[index] = Sk4f_toS32(c);
    772     };
    773 
    774     pixelWriteFn_t writeSizedPixel =
    775         (kRGBA_F16_SkColorType == bitmap->colorType()) ? writeF16Pixel : writeS32Pixel;
    776     pixelWriteFn_t writeUnpremulPixel = [&](const Sk4f& c, int index) {
    777         writeSizedPixel(c * Sk4f(c[3], c[3], c[3], 1.0f), index);
    778     };
    779 
    780     pixelWriteFn_t writePixel = interpInPremul ? writeSizedPixel : writeUnpremulPixel;
    781 
    782     int prevIndex = 0;
    783     for (int i = 1; i < fColorCount; i++) {
    784         int nextIndex = (fColorCount == 2) ? (kCache32Count - 1)
    785             : SkFixedToFFFF(fRecs[i].fPos) >> kCache32Shift;
    786         SkASSERT(nextIndex < kCache32Count);
    787 
    788         if (nextIndex > prevIndex) {
    789             Sk4f c0 = Sk4f::Load(fOrigColors4f[i - 1].vec());
    790             Sk4f c1 = Sk4f::Load(fOrigColors4f[i].vec());
    791             if (interpInPremul) {
    792                 c0 = c0 * Sk4f(c0[3], c0[3], c0[3], 1.0f);
    793                 c1 = c1 * Sk4f(c1[3], c1[3], c1[3], 1.0f);
    794             }
    795 
    796             Sk4f step = Sk4f(1.0f / static_cast<float>(nextIndex - prevIndex));
    797             Sk4f delta = (c1 - c0) * step;
    798 
    799             for (int curIndex = prevIndex; curIndex <= nextIndex; ++curIndex) {
    800                 writePixel(c0, curIndex);
    801                 c0 += delta;
    802             }
    803         }
    804         prevIndex = nextIndex;
    805     }
    806     SkASSERT(prevIndex == kCache32Count - 1);
    807 }
    808 
    809 /*
    810  *  The gradient holds a cache for the most recent value of alpha. Successive
    811  *  callers with the same alpha value will share the same cache.
    812  */
    813 sk_sp<SkGradientShaderBase::GradientShaderCache> SkGradientShaderBase::refCache(U8CPU alpha,
    814                                                                           bool dither) const {
    815     SkAutoMutexAcquire ama(fCacheMutex);
    816     if (!fCache || fCache->getAlpha() != alpha || fCache->getDither() != dither) {
    817         fCache.reset(new GradientShaderCache(alpha, dither, *this));
    818     }
    819     // Increment the ref counter inside the mutex to ensure the returned pointer is still valid.
    820     // Otherwise, the pointer may have been overwritten on a different thread before the object's
    821     // ref count was incremented.
    822     return fCache;
    823 }
    824 
    825 SkColor4f SkGradientShaderBase::getXformedColor(size_t i, SkColorSpace* dstCS) const {
    826     return dstCS ? to_colorspace(fOrigColors4f[i], fColorSpace.get(), dstCS)
    827                  : SkColor4f_from_SkColor(fOrigColors[i], nullptr);
    828 }
    829 
    830 SK_DECLARE_STATIC_MUTEX(gGradientCacheMutex);
    831 /*
    832  *  Because our caller might rebuild the same (logically the same) gradient
    833  *  over and over, we'd like to return exactly the same "bitmap" if possible,
    834  *  allowing the client to utilize a cache of our bitmap (e.g. with a GPU).
    835  *  To do that, we maintain a private cache of built-bitmaps, based on our
    836  *  colors and positions. Note: we don't try to flatten the fMapper, so if one
    837  *  is present, we skip the cache for now.
    838  */
    839 void SkGradientShaderBase::getGradientTableBitmap(SkBitmap* bitmap,
    840                                                   GradientBitmapType bitmapType) const {
    841     // our caller assumes no external alpha, so we ensure that our cache is built with 0xFF
    842     sk_sp<GradientShaderCache> cache(this->refCache(0xFF, true));
    843 
    844     // build our key: [numColors + colors[] + {positions[]} + flags + colorType ]
    845     int count = 1 + fColorCount + 1 + 1;
    846     if (fColorCount > 2) {
    847         count += fColorCount - 1;    // fRecs[].fPos
    848     }
    849 
    850     SkAutoSTMalloc<16, int32_t> storage(count);
    851     int32_t* buffer = storage.get();
    852 
    853     *buffer++ = fColorCount;
    854     memcpy(buffer, fOrigColors, fColorCount * sizeof(SkColor));
    855     buffer += fColorCount;
    856     if (fColorCount > 2) {
    857         for (int i = 1; i < fColorCount; i++) {
    858             *buffer++ = fRecs[i].fPos;
    859         }
    860     }
    861     *buffer++ = fGradFlags;
    862     *buffer++ = static_cast<int32_t>(bitmapType);
    863     SkASSERT(buffer - storage.get() == count);
    864 
    865     ///////////////////////////////////
    866 
    867     static SkGradientBitmapCache* gCache;
    868     // each cache cost 1K or 2K of RAM, since each bitmap will be 1x256 at either 32bpp or 64bpp
    869     static const int MAX_NUM_CACHED_GRADIENT_BITMAPS = 32;
    870     SkAutoMutexAcquire ama(gGradientCacheMutex);
    871 
    872     if (nullptr == gCache) {
    873         gCache = new SkGradientBitmapCache(MAX_NUM_CACHED_GRADIENT_BITMAPS);
    874     }
    875     size_t size = count * sizeof(int32_t);
    876 
    877     if (!gCache->find(storage.get(), size, bitmap)) {
    878         if (GradientBitmapType::kLegacy == bitmapType) {
    879             // force our cache32pixelref to be built
    880             (void)cache->getCache32();
    881             bitmap->setInfo(SkImageInfo::MakeN32Premul(kCache32Count, 1));
    882             bitmap->setPixelRef(sk_ref_sp(cache->getCache32PixelRef()), 0, 0);
    883         } else {
    884             // For these cases we use the bitmap cache, but not the GradientShaderCache. So just
    885             // allocate and populate the bitmap's data directly.
    886 
    887             SkImageInfo info;
    888             switch (bitmapType) {
    889                 case GradientBitmapType::kSRGB:
    890                     info = SkImageInfo::Make(kCache32Count, 1, kRGBA_8888_SkColorType,
    891                                              kPremul_SkAlphaType,
    892                                              SkColorSpace::MakeSRGB());
    893                     break;
    894                 case GradientBitmapType::kHalfFloat:
    895                     info = SkImageInfo::Make(
    896                         kCache32Count, 1, kRGBA_F16_SkColorType, kPremul_SkAlphaType,
    897                         SkColorSpace::MakeSRGBLinear());
    898                     break;
    899                 default:
    900                     SkFAIL("Unexpected bitmap type");
    901                     return;
    902             }
    903             bitmap->allocPixels(info);
    904             this->initLinearBitmap(bitmap);
    905         }
    906         gCache->add(storage.get(), size, *bitmap);
    907     }
    908 }
    909 
    910 void SkGradientShaderBase::commonAsAGradient(GradientInfo* info, bool flipGrad) const {
    911     if (info) {
    912         if (info->fColorCount >= fColorCount) {
    913             SkColor* colorLoc;
    914             Rec*     recLoc;
    915             SkAutoSTArray<8, SkColor> colorStorage;
    916             SkAutoSTArray<8, Rec> recStorage;
    917             if (flipGrad && (info->fColors || info->fColorOffsets)) {
    918                 colorStorage.reset(fColorCount);
    919                 recStorage.reset(fColorCount);
    920                 colorLoc = colorStorage.get();
    921                 recLoc = recStorage.get();
    922                 FlipGradientColors(colorLoc, recLoc, fOrigColors, fRecs, fColorCount);
    923             } else {
    924                 colorLoc = fOrigColors;
    925                 recLoc = fRecs;
    926             }
    927             if (info->fColors) {
    928                 memcpy(info->fColors, colorLoc, fColorCount * sizeof(SkColor));
    929             }
    930             if (info->fColorOffsets) {
    931                 if (fColorCount == 2) {
    932                     info->fColorOffsets[0] = 0;
    933                     info->fColorOffsets[1] = SK_Scalar1;
    934                 } else if (fColorCount > 2) {
    935                     for (int i = 0; i < fColorCount; ++i) {
    936                         info->fColorOffsets[i] = SkFixedToScalar(recLoc[i].fPos);
    937                     }
    938                 }
    939             }
    940         }
    941         info->fColorCount = fColorCount;
    942         info->fTileMode = fTileMode;
    943         info->fGradientFlags = fGradFlags;
    944     }
    945 }
    946 
    947 #ifndef SK_IGNORE_TO_STRING
    948 void SkGradientShaderBase::toString(SkString* str) const {
    949 
    950     str->appendf("%d colors: ", fColorCount);
    951 
    952     for (int i = 0; i < fColorCount; ++i) {
    953         str->appendHex(fOrigColors[i], 8);
    954         if (i < fColorCount-1) {
    955             str->append(", ");
    956         }
    957     }
    958 
    959     if (fColorCount > 2) {
    960         str->append(" points: (");
    961         for (int i = 0; i < fColorCount; ++i) {
    962             str->appendScalar(SkFixedToScalar(fRecs[i].fPos));
    963             if (i < fColorCount-1) {
    964                 str->append(", ");
    965             }
    966         }
    967         str->append(")");
    968     }
    969 
    970     static const char* gTileModeName[SkShader::kTileModeCount] = {
    971         "clamp", "repeat", "mirror"
    972     };
    973 
    974     str->append(" ");
    975     str->append(gTileModeName[fTileMode]);
    976 
    977     this->INHERITED::toString(str);
    978 }
    979 #endif
    980 
    981 ///////////////////////////////////////////////////////////////////////////////
    982 ///////////////////////////////////////////////////////////////////////////////
    983 
    984 // Return true if these parameters are valid/legal/safe to construct a gradient
    985 //
    986 static bool valid_grad(const SkColor4f colors[], const SkScalar pos[], int count,
    987                        unsigned tileMode) {
    988     return nullptr != colors && count >= 1 && tileMode < (unsigned)SkShader::kTileModeCount;
    989 }
    990 
    991 static void desc_init(SkGradientShaderBase::Descriptor* desc,
    992                       const SkColor4f colors[], sk_sp<SkColorSpace> colorSpace,
    993                       const SkScalar pos[], int colorCount,
    994                       SkShader::TileMode mode, uint32_t flags, const SkMatrix* localMatrix) {
    995     SkASSERT(colorCount > 1);
    996 
    997     desc->fColors       = colors;
    998     desc->fColorSpace   = std::move(colorSpace);
    999     desc->fPos          = pos;
   1000     desc->fCount        = colorCount;
   1001     desc->fTileMode     = mode;
   1002     desc->fGradFlags    = flags;
   1003     desc->fLocalMatrix  = localMatrix;
   1004 }
   1005 
   1006 // assumes colors is SkColor4f* and pos is SkScalar*
   1007 #define EXPAND_1_COLOR(count)                \
   1008      SkColor4f tmp[2];                       \
   1009      do {                                    \
   1010          if (1 == count) {                   \
   1011              tmp[0] = tmp[1] = colors[0];    \
   1012              colors = tmp;                   \
   1013              pos = nullptr;                  \
   1014              count = 2;                      \
   1015          }                                   \
   1016      } while (0)
   1017 
   1018 struct ColorStopOptimizer {
   1019     ColorStopOptimizer(const SkColor4f* colors, const SkScalar* pos,
   1020                        int count, SkShader::TileMode mode)
   1021         : fColors(colors)
   1022         , fPos(pos)
   1023         , fCount(count) {
   1024 
   1025             if (!pos || count != 3) {
   1026                 return;
   1027             }
   1028 
   1029             if (SkScalarNearlyEqual(pos[0], 0.0f) &&
   1030                 SkScalarNearlyEqual(pos[1], 0.0f) &&
   1031                 SkScalarNearlyEqual(pos[2], 1.0f)) {
   1032 
   1033                 if (SkShader::kRepeat_TileMode == mode ||
   1034                     SkShader::kMirror_TileMode == mode ||
   1035                     colors[0] == colors[1]) {
   1036 
   1037                     // Ignore the leftmost color/pos.
   1038                     fColors += 1;
   1039                     fPos    += 1;
   1040                     fCount   = 2;
   1041                 }
   1042             } else if (SkScalarNearlyEqual(pos[0], 0.0f) &&
   1043                        SkScalarNearlyEqual(pos[1], 1.0f) &&
   1044                        SkScalarNearlyEqual(pos[2], 1.0f)) {
   1045 
   1046                 if (SkShader::kRepeat_TileMode == mode ||
   1047                     SkShader::kMirror_TileMode == mode ||
   1048                     colors[1] == colors[2]) {
   1049 
   1050                     // Ignore the rightmost color/pos.
   1051                     fCount  = 2;
   1052                 }
   1053             }
   1054     }
   1055 
   1056     const SkColor4f* fColors;
   1057     const SkScalar*  fPos;
   1058     int              fCount;
   1059 };
   1060 
   1061 struct ColorConverter {
   1062     ColorConverter(const SkColor* colors, int count) {
   1063         for (int i = 0; i < count; ++i) {
   1064             fColors4f.push_back(SkColor4f::FromColor(colors[i]));
   1065         }
   1066     }
   1067 
   1068     SkSTArray<2, SkColor4f, true> fColors4f;
   1069 };
   1070 
   1071 sk_sp<SkShader> SkGradientShader::MakeLinear(const SkPoint pts[2],
   1072                                              const SkColor colors[],
   1073                                              const SkScalar pos[], int colorCount,
   1074                                              SkShader::TileMode mode,
   1075                                              uint32_t flags,
   1076                                              const SkMatrix* localMatrix) {
   1077     ColorConverter converter(colors, colorCount);
   1078     return MakeLinear(pts, converter.fColors4f.begin(), nullptr, pos, colorCount, mode, flags,
   1079                       localMatrix);
   1080 }
   1081 
   1082 sk_sp<SkShader> SkGradientShader::MakeLinear(const SkPoint pts[2],
   1083                                              const SkColor4f colors[],
   1084                                              sk_sp<SkColorSpace> colorSpace,
   1085                                              const SkScalar pos[], int colorCount,
   1086                                              SkShader::TileMode mode,
   1087                                              uint32_t flags,
   1088                                              const SkMatrix* localMatrix) {
   1089     if (!pts || !SkScalarIsFinite((pts[1] - pts[0]).length())) {
   1090         return nullptr;
   1091     }
   1092     if (!valid_grad(colors, pos, colorCount, mode)) {
   1093         return nullptr;
   1094     }
   1095     if (1 == colorCount) {
   1096         return SkShader::MakeColorShader(colors[0], std::move(colorSpace));
   1097     }
   1098     if (localMatrix && !localMatrix->invert(nullptr)) {
   1099         return nullptr;
   1100     }
   1101 
   1102     ColorStopOptimizer opt(colors, pos, colorCount, mode);
   1103 
   1104     SkGradientShaderBase::Descriptor desc;
   1105     desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags,
   1106               localMatrix);
   1107     return sk_make_sp<SkLinearGradient>(pts, desc);
   1108 }
   1109 
   1110 sk_sp<SkShader> SkGradientShader::MakeRadial(const SkPoint& center, SkScalar radius,
   1111                                              const SkColor colors[],
   1112                                              const SkScalar pos[], int colorCount,
   1113                                              SkShader::TileMode mode,
   1114                                              uint32_t flags,
   1115                                              const SkMatrix* localMatrix) {
   1116     ColorConverter converter(colors, colorCount);
   1117     return MakeRadial(center, radius, converter.fColors4f.begin(), nullptr, pos, colorCount, mode,
   1118                       flags, localMatrix);
   1119 }
   1120 
   1121 sk_sp<SkShader> SkGradientShader::MakeRadial(const SkPoint& center, SkScalar radius,
   1122                                              const SkColor4f colors[],
   1123                                              sk_sp<SkColorSpace> colorSpace,
   1124                                              const SkScalar pos[], int colorCount,
   1125                                              SkShader::TileMode mode,
   1126                                              uint32_t flags,
   1127                                              const SkMatrix* localMatrix) {
   1128     if (radius <= 0) {
   1129         return nullptr;
   1130     }
   1131     if (!valid_grad(colors, pos, colorCount, mode)) {
   1132         return nullptr;
   1133     }
   1134     if (1 == colorCount) {
   1135         return SkShader::MakeColorShader(colors[0], std::move(colorSpace));
   1136     }
   1137     if (localMatrix && !localMatrix->invert(nullptr)) {
   1138         return nullptr;
   1139     }
   1140 
   1141     ColorStopOptimizer opt(colors, pos, colorCount, mode);
   1142 
   1143     SkGradientShaderBase::Descriptor desc;
   1144     desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags,
   1145               localMatrix);
   1146     return sk_make_sp<SkRadialGradient>(center, radius, desc);
   1147 }
   1148 
   1149 sk_sp<SkShader> SkGradientShader::MakeTwoPointConical(const SkPoint& start,
   1150                                                       SkScalar startRadius,
   1151                                                       const SkPoint& end,
   1152                                                       SkScalar endRadius,
   1153                                                       const SkColor colors[],
   1154                                                       const SkScalar pos[],
   1155                                                       int colorCount,
   1156                                                       SkShader::TileMode mode,
   1157                                                       uint32_t flags,
   1158                                                       const SkMatrix* localMatrix) {
   1159     ColorConverter converter(colors, colorCount);
   1160     return MakeTwoPointConical(start, startRadius, end, endRadius, converter.fColors4f.begin(),
   1161                                nullptr, pos, colorCount, mode, flags, localMatrix);
   1162 }
   1163 
   1164 sk_sp<SkShader> SkGradientShader::MakeTwoPointConical(const SkPoint& start,
   1165                                                       SkScalar startRadius,
   1166                                                       const SkPoint& end,
   1167                                                       SkScalar endRadius,
   1168                                                       const SkColor4f colors[],
   1169                                                       sk_sp<SkColorSpace> colorSpace,
   1170                                                       const SkScalar pos[],
   1171                                                       int colorCount,
   1172                                                       SkShader::TileMode mode,
   1173                                                       uint32_t flags,
   1174                                                       const SkMatrix* localMatrix) {
   1175     if (startRadius < 0 || endRadius < 0) {
   1176         return nullptr;
   1177     }
   1178     if (SkScalarNearlyZero((start - end).length()) && SkScalarNearlyZero(startRadius)) {
   1179         // We can treat this gradient as radial, which is faster.
   1180         return MakeRadial(start, endRadius, colors, std::move(colorSpace), pos, colorCount,
   1181                           mode, flags, localMatrix);
   1182     }
   1183     if (!valid_grad(colors, pos, colorCount, mode)) {
   1184         return nullptr;
   1185     }
   1186     if (startRadius == endRadius) {
   1187         if (start == end || startRadius == 0) {
   1188             return SkShader::MakeEmptyShader();
   1189         }
   1190     }
   1191     if (localMatrix && !localMatrix->invert(nullptr)) {
   1192         return nullptr;
   1193     }
   1194     EXPAND_1_COLOR(colorCount);
   1195 
   1196     ColorStopOptimizer opt(colors, pos, colorCount, mode);
   1197 
   1198     bool flipGradient = startRadius > endRadius;
   1199 
   1200     SkGradientShaderBase::Descriptor desc;
   1201 
   1202     if (!flipGradient) {
   1203         desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags,
   1204                   localMatrix);
   1205         return sk_make_sp<SkTwoPointConicalGradient>(start, startRadius, end, endRadius,
   1206                                                      flipGradient, desc);
   1207     } else {
   1208         SkAutoSTArray<8, SkColor4f> colorsNew(opt.fCount);
   1209         SkAutoSTArray<8, SkScalar> posNew(opt.fCount);
   1210         for (int i = 0; i < opt.fCount; ++i) {
   1211             colorsNew[i] = opt.fColors[opt.fCount - i - 1];
   1212         }
   1213 
   1214         if (pos) {
   1215             for (int i = 0; i < opt.fCount; ++i) {
   1216                 posNew[i] = 1 - opt.fPos[opt.fCount - i - 1];
   1217             }
   1218             desc_init(&desc, colorsNew.get(), std::move(colorSpace), posNew.get(), opt.fCount, mode,
   1219                       flags, localMatrix);
   1220         } else {
   1221             desc_init(&desc, colorsNew.get(), std::move(colorSpace), nullptr, opt.fCount, mode,
   1222                       flags, localMatrix);
   1223         }
   1224 
   1225         return sk_make_sp<SkTwoPointConicalGradient>(end, endRadius, start, startRadius,
   1226                                                      flipGradient, desc);
   1227     }
   1228 }
   1229 
   1230 sk_sp<SkShader> SkGradientShader::MakeSweep(SkScalar cx, SkScalar cy,
   1231                                             const SkColor colors[],
   1232                                             const SkScalar pos[],
   1233                                             int colorCount,
   1234                                             uint32_t flags,
   1235                                             const SkMatrix* localMatrix) {
   1236     ColorConverter converter(colors, colorCount);
   1237     return MakeSweep(cx, cy, converter.fColors4f.begin(), nullptr, pos, colorCount, flags,
   1238                      localMatrix);
   1239 }
   1240 
   1241 sk_sp<SkShader> SkGradientShader::MakeSweep(SkScalar cx, SkScalar cy,
   1242                                             const SkColor4f colors[],
   1243                                             sk_sp<SkColorSpace> colorSpace,
   1244                                             const SkScalar pos[],
   1245                                             int colorCount,
   1246                                             uint32_t flags,
   1247                                             const SkMatrix* localMatrix) {
   1248     if (!valid_grad(colors, pos, colorCount, SkShader::kClamp_TileMode)) {
   1249         return nullptr;
   1250     }
   1251     if (1 == colorCount) {
   1252         return SkShader::MakeColorShader(colors[0], std::move(colorSpace));
   1253     }
   1254     if (localMatrix && !localMatrix->invert(nullptr)) {
   1255         return nullptr;
   1256     }
   1257 
   1258     auto mode = SkShader::kClamp_TileMode;
   1259 
   1260     ColorStopOptimizer opt(colors, pos, colorCount, mode);
   1261 
   1262     SkGradientShaderBase::Descriptor desc;
   1263     desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags,
   1264               localMatrix);
   1265     return sk_make_sp<SkSweepGradient>(cx, cy, desc);
   1266 }
   1267 
   1268 SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkGradientShader)
   1269     SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkLinearGradient)
   1270     SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkRadialGradient)
   1271     SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkSweepGradient)
   1272     SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkTwoPointConicalGradient)
   1273 SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END
   1274 
   1275 ///////////////////////////////////////////////////////////////////////////////
   1276 
   1277 #if SK_SUPPORT_GPU
   1278 
   1279 #include "GrContext.h"
   1280 #include "GrShaderCaps.h"
   1281 #include "GrTextureStripAtlas.h"
   1282 #include "gl/GrGLContext.h"
   1283 #include "glsl/GrGLSLColorSpaceXformHelper.h"
   1284 #include "glsl/GrGLSLFragmentShaderBuilder.h"
   1285 #include "glsl/GrGLSLProgramDataManager.h"
   1286 #include "glsl/GrGLSLUniformHandler.h"
   1287 #include "SkGr.h"
   1288 
   1289 static inline bool close_to_one_half(const SkFixed& val) {
   1290     return SkScalarNearlyEqual(SkFixedToScalar(val), SK_ScalarHalf);
   1291 }
   1292 
   1293 static inline int color_type_to_color_count(GrGradientEffect::ColorType colorType) {
   1294     switch (colorType) {
   1295 #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS
   1296         case GrGradientEffect::kSingleHardStop_ColorType:
   1297             return 4;
   1298         case GrGradientEffect::kHardStopLeftEdged_ColorType:
   1299         case GrGradientEffect::kHardStopRightEdged_ColorType:
   1300             return 3;
   1301 #endif
   1302         case GrGradientEffect::kTwo_ColorType:
   1303             return 2;
   1304         case GrGradientEffect::kThree_ColorType:
   1305             return 3;
   1306         case GrGradientEffect::kTexture_ColorType:
   1307             return 0;
   1308     }
   1309 
   1310     SkDEBUGFAIL("Unhandled ColorType in color_type_to_color_count()");
   1311     return -1;
   1312 }
   1313 
   1314 GrGradientEffect::ColorType GrGradientEffect::determineColorType(
   1315         const SkGradientShaderBase& shader) {
   1316 #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS
   1317     if (shader.fOrigPos) {
   1318         if (4 == shader.fColorCount) {
   1319             if (SkScalarNearlyEqual(shader.fOrigPos[0], 0.0f) &&
   1320                 SkScalarNearlyEqual(shader.fOrigPos[1], shader.fOrigPos[2]) &&
   1321                 SkScalarNearlyEqual(shader.fOrigPos[3], 1.0f)) {
   1322 
   1323                 return kSingleHardStop_ColorType;
   1324             }
   1325         } else if (3 == shader.fColorCount) {
   1326             if (SkScalarNearlyEqual(shader.fOrigPos[0], 0.0f) &&
   1327                 SkScalarNearlyEqual(shader.fOrigPos[1], 0.0f) &&
   1328                 SkScalarNearlyEqual(shader.fOrigPos[2], 1.0f)) {
   1329 
   1330                 return kHardStopLeftEdged_ColorType;
   1331             } else if (SkScalarNearlyEqual(shader.fOrigPos[0], 0.0f) &&
   1332                        SkScalarNearlyEqual(shader.fOrigPos[1], 1.0f) &&
   1333                        SkScalarNearlyEqual(shader.fOrigPos[2], 1.0f)) {
   1334 
   1335                 return kHardStopRightEdged_ColorType;
   1336             }
   1337         }
   1338     }
   1339 #endif
   1340 
   1341     if (SkShader::kClamp_TileMode == shader.getTileMode()) {
   1342         if (2 == shader.fColorCount) {
   1343             return kTwo_ColorType;
   1344         } else if (3 == shader.fColorCount &&
   1345                    close_to_one_half(shader.getRecs()[1].fPos)) {
   1346             return kThree_ColorType;
   1347         }
   1348     }
   1349 
   1350     return kTexture_ColorType;
   1351 }
   1352 
   1353 void GrGradientEffect::GLSLProcessor::emitUniforms(GrGLSLUniformHandler* uniformHandler,
   1354                                                    const GrGradientEffect& ge) {
   1355     if (int colorCount = color_type_to_color_count(ge.getColorType())) {
   1356         fColorsUni = uniformHandler->addUniformArray(kFragment_GrShaderFlag,
   1357                                                      kVec4f_GrSLType,
   1358                                                      kDefault_GrSLPrecision,
   1359                                                      "Colors",
   1360                                                      colorCount);
   1361         if (ge.fColorType == kSingleHardStop_ColorType) {
   1362             fHardStopT = uniformHandler->addUniform(kFragment_GrShaderFlag, kFloat_GrSLType,
   1363                                                     kDefault_GrSLPrecision, "HardStopT");
   1364         }
   1365     } else {
   1366         fFSYUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
   1367                                              kFloat_GrSLType, kDefault_GrSLPrecision,
   1368                                              "GradientYCoordFS");
   1369     }
   1370 }
   1371 
   1372 static inline void set_after_interp_color_uni_array(
   1373                                                   const GrGLSLProgramDataManager& pdman,
   1374                                                   const GrGLSLProgramDataManager::UniformHandle uni,
   1375                                                   const SkTDArray<SkColor4f>& colors,
   1376                                                   const GrColorSpaceXform* colorSpaceXform) {
   1377     int count = colors.count();
   1378     if (colorSpaceXform) {
   1379         constexpr int kSmallCount = 10;
   1380         SkAutoSTArray<4 * kSmallCount, float> vals(4 * count);
   1381 
   1382         for (int i = 0; i < count; i++) {
   1383             colorSpaceXform->srcToDst().mapScalars(colors[i].vec(), &vals[4 * i]);
   1384         }
   1385 
   1386         pdman.set4fv(uni, count, vals.get());
   1387     } else {
   1388         pdman.set4fv(uni, count, (float*)&colors[0]);
   1389     }
   1390 }
   1391 
   1392 static inline void set_before_interp_color_uni_array(
   1393                                                   const GrGLSLProgramDataManager& pdman,
   1394                                                   const GrGLSLProgramDataManager::UniformHandle uni,
   1395                                                   const SkTDArray<SkColor4f>& colors,
   1396                                                   const GrColorSpaceXform* colorSpaceXform) {
   1397     int count = colors.count();
   1398     constexpr int kSmallCount = 10;
   1399     SkAutoSTArray<4 * kSmallCount, float> vals(4 * count);
   1400 
   1401     for (int i = 0; i < count; i++) {
   1402         float a = colors[i].fA;
   1403         vals[4 * i + 0] = colors[i].fR * a;
   1404         vals[4 * i + 1] = colors[i].fG * a;
   1405         vals[4 * i + 2] = colors[i].fB * a;
   1406         vals[4 * i + 3] = a;
   1407     }
   1408 
   1409     if (colorSpaceXform) {
   1410         for (int i = 0; i < count; i++) {
   1411             colorSpaceXform->srcToDst().mapScalars(&vals[4 * i]);
   1412         }
   1413     }
   1414 
   1415     pdman.set4fv(uni, count, vals.get());
   1416 }
   1417 
   1418 static inline void set_after_interp_color_uni_array(const GrGLSLProgramDataManager& pdman,
   1419                                        const GrGLSLProgramDataManager::UniformHandle uni,
   1420                                        const SkTDArray<SkColor>& colors) {
   1421     int count = colors.count();
   1422     constexpr int kSmallCount = 10;
   1423 
   1424     SkAutoSTArray<4*kSmallCount, float> vals(4*count);
   1425 
   1426     for (int i = 0; i < colors.count(); i++) {
   1427         // RGBA
   1428         vals[4*i + 0] = SkColorGetR(colors[i]) / 255.f;
   1429         vals[4*i + 1] = SkColorGetG(colors[i]) / 255.f;
   1430         vals[4*i + 2] = SkColorGetB(colors[i]) / 255.f;
   1431         vals[4*i + 3] = SkColorGetA(colors[i]) / 255.f;
   1432     }
   1433 
   1434     pdman.set4fv(uni, colors.count(), vals.get());
   1435 }
   1436 
   1437 static inline void set_before_interp_color_uni_array(const GrGLSLProgramDataManager& pdman,
   1438                                               const GrGLSLProgramDataManager::UniformHandle uni,
   1439                                               const SkTDArray<SkColor>& colors) {
   1440     int count = colors.count();
   1441     constexpr int kSmallCount = 10;
   1442 
   1443     SkAutoSTArray<4*kSmallCount, float> vals(4*count);
   1444 
   1445     for (int i = 0; i < count; i++) {
   1446         float a = SkColorGetA(colors[i]) / 255.f;
   1447         float aDiv255 = a / 255.f;
   1448 
   1449         // RGBA
   1450         vals[4*i + 0] = SkColorGetR(colors[i]) * aDiv255;
   1451         vals[4*i + 1] = SkColorGetG(colors[i]) * aDiv255;
   1452         vals[4*i + 2] = SkColorGetB(colors[i]) * aDiv255;
   1453         vals[4*i + 3] = a;
   1454     }
   1455 
   1456     pdman.set4fv(uni, count, vals.get());
   1457 }
   1458 
   1459 void GrGradientEffect::GLSLProcessor::onSetData(const GrGLSLProgramDataManager& pdman,
   1460                                                 const GrFragmentProcessor& processor) {
   1461     const GrGradientEffect& e = processor.cast<GrGradientEffect>();
   1462 
   1463     switch (e.getColorType()) {
   1464 #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS
   1465         case GrGradientEffect::kSingleHardStop_ColorType:
   1466             pdman.set1f(fHardStopT, e.fPositions[1]);
   1467             // fall through
   1468         case GrGradientEffect::kHardStopLeftEdged_ColorType:
   1469         case GrGradientEffect::kHardStopRightEdged_ColorType:
   1470 #endif
   1471         case GrGradientEffect::kTwo_ColorType:
   1472         case GrGradientEffect::kThree_ColorType: {
   1473             if (e.fColors4f.count() > 0) {
   1474                 // Gamma-correct / color-space aware
   1475                 if (GrGradientEffect::kBeforeInterp_PremulType == e.getPremulType()) {
   1476                     set_before_interp_color_uni_array(pdman, fColorsUni, e.fColors4f,
   1477                                                       e.fColorSpaceXform.get());
   1478                 } else {
   1479                     set_after_interp_color_uni_array(pdman, fColorsUni, e.fColors4f,
   1480                                                      e.fColorSpaceXform.get());
   1481                 }
   1482             } else {
   1483                 // Legacy mode. Would be nice if we had converted the 8-bit colors to float earlier
   1484                 if (GrGradientEffect::kBeforeInterp_PremulType == e.getPremulType()) {
   1485                     set_before_interp_color_uni_array(pdman, fColorsUni, e.fColors);
   1486                 } else {
   1487                     set_after_interp_color_uni_array(pdman, fColorsUni, e.fColors);
   1488                 }
   1489             }
   1490 
   1491             break;
   1492         }
   1493 
   1494         case GrGradientEffect::kTexture_ColorType: {
   1495             SkScalar yCoord = e.getYCoord();
   1496             if (yCoord != fCachedYCoord) {
   1497                 pdman.set1f(fFSYUni, yCoord);
   1498                 fCachedYCoord = yCoord;
   1499             }
   1500             if (SkToBool(e.fColorSpaceXform)) {
   1501                 fColorSpaceHelper.setData(pdman, e.fColorSpaceXform.get());
   1502             }
   1503             break;
   1504         }
   1505     }
   1506 }
   1507 
   1508 uint32_t GrGradientEffect::GLSLProcessor::GenBaseGradientKey(const GrProcessor& processor) {
   1509     const GrGradientEffect& e = processor.cast<GrGradientEffect>();
   1510 
   1511     uint32_t key = 0;
   1512 
   1513     if (GrGradientEffect::kBeforeInterp_PremulType == e.getPremulType()) {
   1514         key |= kPremulBeforeInterpKey;
   1515     }
   1516 
   1517     if (GrGradientEffect::kTwo_ColorType == e.getColorType()) {
   1518         key |= kTwoColorKey;
   1519     } else if (GrGradientEffect::kThree_ColorType == e.getColorType()) {
   1520         key |= kThreeColorKey;
   1521     }
   1522 #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS
   1523     else if (GrGradientEffect::kSingleHardStop_ColorType == e.getColorType()) {
   1524         key |= kHardStopCenteredKey;
   1525     } else if (GrGradientEffect::kHardStopLeftEdged_ColorType == e.getColorType()) {
   1526         key |= kHardStopZeroZeroOneKey;
   1527     } else if (GrGradientEffect::kHardStopRightEdged_ColorType == e.getColorType()) {
   1528         key |= kHardStopZeroOneOneKey;
   1529     }
   1530 
   1531     if (SkShader::TileMode::kClamp_TileMode == e.fTileMode) {
   1532         key |= kClampTileMode;
   1533     } else if (SkShader::TileMode::kRepeat_TileMode == e.fTileMode) {
   1534         key |= kRepeatTileMode;
   1535     } else {
   1536         key |= kMirrorTileMode;
   1537     }
   1538 #endif
   1539 
   1540     key |= GrColorSpaceXform::XformKey(e.fColorSpaceXform.get()) << kReservedBits;
   1541 
   1542     return key;
   1543 }
   1544 
   1545 void GrGradientEffect::GLSLProcessor::emitColor(GrGLSLFPFragmentBuilder* fragBuilder,
   1546                                                 GrGLSLUniformHandler* uniformHandler,
   1547                                                 const GrShaderCaps* shaderCaps,
   1548                                                 const GrGradientEffect& ge,
   1549                                                 const char* gradientTValue,
   1550                                                 const char* outputColor,
   1551                                                 const char* inputColor,
   1552                                                 const TextureSamplers& texSamplers) {
   1553     switch (ge.getColorType()) {
   1554 #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS
   1555         case kSingleHardStop_ColorType: {
   1556             const char* t      = gradientTValue;
   1557             const char* colors = uniformHandler->getUniformCStr(fColorsUni);
   1558             const char* stopT = uniformHandler->getUniformCStr(fHardStopT);
   1559 
   1560             fragBuilder->codeAppendf("float clamp_t = clamp(%s, 0.0, 1.0);", t);
   1561 
   1562             // Account for tile mode
   1563             if (SkShader::kRepeat_TileMode == ge.fTileMode) {
   1564                 fragBuilder->codeAppendf("clamp_t = fract(%s);", t);
   1565             } else if (SkShader::kMirror_TileMode == ge.fTileMode) {
   1566                 fragBuilder->codeAppendf("if (%s < 0.0 || %s > 1.0) {", t, t);
   1567                 fragBuilder->codeAppendf("    if (mod(floor(%s), 2.0) == 0.0) {", t);
   1568                 fragBuilder->codeAppendf("        clamp_t = fract(%s);", t);
   1569                 fragBuilder->codeAppendf("    } else {");
   1570                 fragBuilder->codeAppendf("        clamp_t = 1.0 - fract(%s);", t);
   1571                 fragBuilder->codeAppendf("    }");
   1572                 fragBuilder->codeAppendf("}");
   1573             }
   1574 
   1575             // Calculate color
   1576             fragBuilder->codeAppend ("vec4 start, end;");
   1577             fragBuilder->codeAppend ("float relative_t;");
   1578             fragBuilder->codeAppendf("if (clamp_t < %s) {", stopT);
   1579             fragBuilder->codeAppendf("    start = %s[0];", colors);
   1580             fragBuilder->codeAppendf("    end   = %s[1];", colors);
   1581             fragBuilder->codeAppendf("    relative_t = clamp_t / %s;", stopT);
   1582             fragBuilder->codeAppend ("} else {");
   1583             fragBuilder->codeAppendf("    start = %s[2];", colors);
   1584             fragBuilder->codeAppendf("    end   = %s[3];", colors);
   1585             fragBuilder->codeAppendf("    relative_t = (clamp_t - %s) / (1 - %s);", stopT, stopT);
   1586             fragBuilder->codeAppend ("}");
   1587             fragBuilder->codeAppend ("vec4 colorTemp = mix(start, end, relative_t);");
   1588 
   1589             if (GrGradientEffect::kAfterInterp_PremulType == ge.getPremulType()) {
   1590                 fragBuilder->codeAppend("colorTemp.rgb *= colorTemp.a;");
   1591             }
   1592             if (ge.fColorSpaceXform) {
   1593                 fragBuilder->codeAppend("colorTemp.rgb = clamp(colorTemp.rgb, 0, colorTemp.a);");
   1594             }
   1595             fragBuilder->codeAppendf("%s = %s * colorTemp;", outputColor, inputColor);
   1596 
   1597             break;
   1598         }
   1599 
   1600         case kHardStopLeftEdged_ColorType: {
   1601             const char* t      = gradientTValue;
   1602             const char* colors = uniformHandler->getUniformCStr(fColorsUni);
   1603 
   1604             fragBuilder->codeAppendf("float clamp_t = clamp(%s, 0.0, 1.0);", t);
   1605 
   1606             // Account for tile mode
   1607             if (SkShader::kRepeat_TileMode == ge.fTileMode) {
   1608                 fragBuilder->codeAppendf("clamp_t = fract(%s);", t);
   1609             } else if (SkShader::kMirror_TileMode == ge.fTileMode) {
   1610                 fragBuilder->codeAppendf("if (%s < 0.0 || %s > 1.0) {", t, t);
   1611                 fragBuilder->codeAppendf("    if (mod(floor(%s), 2.0) == 0.0) {", t);
   1612                 fragBuilder->codeAppendf("        clamp_t = fract(%s);", t);
   1613                 fragBuilder->codeAppendf("    } else {");
   1614                 fragBuilder->codeAppendf("        clamp_t = 1.0 - fract(%s);", t);
   1615                 fragBuilder->codeAppendf("    }");
   1616                 fragBuilder->codeAppendf("}");
   1617             }
   1618 
   1619             fragBuilder->codeAppendf("vec4 colorTemp = mix(%s[1], %s[2], clamp_t);", colors,
   1620                                      colors);
   1621             if (SkShader::kClamp_TileMode == ge.fTileMode) {
   1622                 fragBuilder->codeAppendf("if (%s < 0.0) {", t);
   1623                 fragBuilder->codeAppendf("    colorTemp = %s[0];", colors);
   1624                 fragBuilder->codeAppendf("}");
   1625             }
   1626 
   1627             if (GrGradientEffect::kAfterInterp_PremulType == ge.getPremulType()) {
   1628                 fragBuilder->codeAppend("colorTemp.rgb *= colorTemp.a;");
   1629             }
   1630             if (ge.fColorSpaceXform) {
   1631                 fragBuilder->codeAppend("colorTemp.rgb = clamp(colorTemp.rgb, 0, colorTemp.a);");
   1632             }
   1633             fragBuilder->codeAppendf("%s = %s * colorTemp;", outputColor, inputColor);
   1634 
   1635             break;
   1636         }
   1637 
   1638         case kHardStopRightEdged_ColorType: {
   1639             const char* t      = gradientTValue;
   1640             const char* colors = uniformHandler->getUniformCStr(fColorsUni);
   1641 
   1642             fragBuilder->codeAppendf("float clamp_t = clamp(%s, 0.0, 1.0);", t);
   1643 
   1644             // Account for tile mode
   1645             if (SkShader::kRepeat_TileMode == ge.fTileMode) {
   1646                 fragBuilder->codeAppendf("clamp_t = fract(%s);", t);
   1647             } else if (SkShader::kMirror_TileMode == ge.fTileMode) {
   1648                 fragBuilder->codeAppendf("if (%s < 0.0 || %s > 1.0) {", t, t);
   1649                 fragBuilder->codeAppendf("    if (mod(floor(%s), 2.0) == 0.0) {", t);
   1650                 fragBuilder->codeAppendf("        clamp_t = fract(%s);", t);
   1651                 fragBuilder->codeAppendf("    } else {");
   1652                 fragBuilder->codeAppendf("        clamp_t = 1.0 - fract(%s);", t);
   1653                 fragBuilder->codeAppendf("    }");
   1654                 fragBuilder->codeAppendf("}");
   1655             }
   1656 
   1657             fragBuilder->codeAppendf("vec4 colorTemp = mix(%s[0], %s[1], clamp_t);", colors,
   1658                                      colors);
   1659             if (SkShader::kClamp_TileMode == ge.fTileMode) {
   1660                 fragBuilder->codeAppendf("if (%s > 1.0) {", t);
   1661                 fragBuilder->codeAppendf("    colorTemp = %s[2];", colors);
   1662                 fragBuilder->codeAppendf("}");
   1663             }
   1664 
   1665             if (GrGradientEffect::kAfterInterp_PremulType == ge.getPremulType()) {
   1666                 fragBuilder->codeAppend("colorTemp.rgb *= colorTemp.a;");
   1667             }
   1668             if (ge.fColorSpaceXform) {
   1669                 fragBuilder->codeAppend("colorTemp.rgb = clamp(colorTemp.rgb, 0, colorTemp.a);");
   1670             }
   1671             fragBuilder->codeAppendf("%s = %s * colorTemp;", outputColor, inputColor);
   1672 
   1673             break;
   1674         }
   1675 #endif
   1676 
   1677         case kTwo_ColorType: {
   1678             const char* t      = gradientTValue;
   1679             const char* colors = uniformHandler->getUniformCStr(fColorsUni);
   1680 
   1681             fragBuilder->codeAppendf("vec4 colorTemp = mix(%s[0], %s[1], clamp(%s, 0.0, 1.0));",
   1682                                      colors, colors, t);
   1683 
   1684             // We could skip this step if both colors are known to be opaque. Two
   1685             // considerations:
   1686             // The gradient SkShader reporting opaque is more restrictive than necessary in the two
   1687             // pt case. Make sure the key reflects this optimization (and note that it can use the
   1688             // same shader as thekBeforeIterp case). This same optimization applies to the 3 color
   1689             // case below.
   1690             if (GrGradientEffect::kAfterInterp_PremulType == ge.getPremulType()) {
   1691                 fragBuilder->codeAppend("colorTemp.rgb *= colorTemp.a;");
   1692             }
   1693             if (ge.fColorSpaceXform) {
   1694                 fragBuilder->codeAppend("colorTemp.rgb = clamp(colorTemp.rgb, 0, colorTemp.a);");
   1695             }
   1696 
   1697             fragBuilder->codeAppendf("%s = %s * colorTemp;", outputColor, inputColor);
   1698 
   1699             break;
   1700         }
   1701 
   1702         case kThree_ColorType: {
   1703             const char* t      = gradientTValue;
   1704             const char* colors = uniformHandler->getUniformCStr(fColorsUni);
   1705 
   1706             fragBuilder->codeAppendf("float oneMinus2t = 1.0 - (2.0 * %s);", t);
   1707             fragBuilder->codeAppendf("vec4 colorTemp = clamp(oneMinus2t, 0.0, 1.0) * %s[0];",
   1708                                      colors);
   1709             if (!shaderCaps->canUseMinAndAbsTogether()) {
   1710                 // The Tegra3 compiler will sometimes never return if we have
   1711                 // min(abs(oneMinus2t), 1.0), or do the abs first in a separate expression.
   1712                 fragBuilder->codeAppendf("float minAbs = abs(oneMinus2t);");
   1713                 fragBuilder->codeAppendf("minAbs = minAbs > 1.0 ? 1.0 : minAbs;");
   1714                 fragBuilder->codeAppendf("colorTemp += (1.0 - minAbs) * %s[1];", colors);
   1715             } else {
   1716                 fragBuilder->codeAppendf("colorTemp += (1.0 - min(abs(oneMinus2t), 1.0)) * %s[1];",
   1717                                          colors);
   1718             }
   1719             fragBuilder->codeAppendf("colorTemp += clamp(-oneMinus2t, 0.0, 1.0) * %s[2];", colors);
   1720 
   1721             if (GrGradientEffect::kAfterInterp_PremulType == ge.getPremulType()) {
   1722                 fragBuilder->codeAppend("colorTemp.rgb *= colorTemp.a;");
   1723             }
   1724             if (ge.fColorSpaceXform) {
   1725                 fragBuilder->codeAppend("colorTemp.rgb = clamp(colorTemp.rgb, 0, colorTemp.a);");
   1726             }
   1727 
   1728             fragBuilder->codeAppendf("%s = %s * colorTemp;", outputColor, inputColor);
   1729 
   1730             break;
   1731         }
   1732 
   1733         case kTexture_ColorType: {
   1734             fColorSpaceHelper.emitCode(uniformHandler, ge.fColorSpaceXform.get());
   1735 
   1736             const char* fsyuni = uniformHandler->getUniformCStr(fFSYUni);
   1737 
   1738             fragBuilder->codeAppendf("vec2 coord = vec2(%s, %s);", gradientTValue, fsyuni);
   1739             fragBuilder->codeAppendf("%s = ", outputColor);
   1740             fragBuilder->appendTextureLookupAndModulate(inputColor, texSamplers[0], "coord",
   1741                                                         kVec2f_GrSLType, &fColorSpaceHelper);
   1742             fragBuilder->codeAppend(";");
   1743 
   1744             break;
   1745         }
   1746     }
   1747 }
   1748 
   1749 /////////////////////////////////////////////////////////////////////
   1750 
   1751 inline GrFragmentProcessor::OptimizationFlags GrGradientEffect::OptFlags(bool isOpaque) {
   1752     return isOpaque
   1753                    ? kPreservesOpaqueInput_OptimizationFlag |
   1754                              kCompatibleWithCoverageAsAlpha_OptimizationFlag
   1755                    : kCompatibleWithCoverageAsAlpha_OptimizationFlag;
   1756 }
   1757 
   1758 GrGradientEffect::GrGradientEffect(const CreateArgs& args, bool isOpaque)
   1759         : INHERITED(OptFlags(isOpaque)) {
   1760     const SkGradientShaderBase& shader(*args.fShader);
   1761 
   1762     fIsOpaque = shader.isOpaque();
   1763 
   1764     fColorType = this->determineColorType(shader);
   1765     fColorSpaceXform = std::move(args.fColorSpaceXform);
   1766 
   1767     if (kTexture_ColorType != fColorType) {
   1768         SkASSERT(shader.fOrigColors && shader.fOrigColors4f);
   1769         if (args.fGammaCorrect) {
   1770             fColors4f = SkTDArray<SkColor4f>(shader.fOrigColors4f, shader.fColorCount);
   1771         } else {
   1772             fColors = SkTDArray<SkColor>(shader.fOrigColors, shader.fColorCount);
   1773         }
   1774 
   1775 #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS
   1776         if (shader.fOrigPos) {
   1777             fPositions = SkTDArray<SkScalar>(shader.fOrigPos, shader.fColorCount);
   1778         }
   1779 #endif
   1780     }
   1781 
   1782 #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS
   1783     fTileMode = args.fTileMode;
   1784 #endif
   1785 
   1786     switch (fColorType) {
   1787         // The two and three color specializations do not currently support tiling.
   1788         case kTwo_ColorType:
   1789         case kThree_ColorType:
   1790 #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS
   1791         case kHardStopLeftEdged_ColorType:
   1792         case kHardStopRightEdged_ColorType:
   1793         case kSingleHardStop_ColorType:
   1794 #endif
   1795             fRow = -1;
   1796 
   1797             if (SkGradientShader::kInterpolateColorsInPremul_Flag & shader.getGradFlags()) {
   1798                 fPremulType = kBeforeInterp_PremulType;
   1799             } else {
   1800                 fPremulType = kAfterInterp_PremulType;
   1801             }
   1802 
   1803             fCoordTransform.reset(*args.fMatrix);
   1804 
   1805             break;
   1806         case kTexture_ColorType:
   1807             // doesn't matter how this is set, just be consistent because it is part of the
   1808             // effect key.
   1809             fPremulType = kBeforeInterp_PremulType;
   1810 
   1811             SkGradientShaderBase::GradientBitmapType bitmapType =
   1812                 SkGradientShaderBase::GradientBitmapType::kLegacy;
   1813             if (args.fGammaCorrect) {
   1814                 // Try to use F16 if we can
   1815                 if (args.fContext->caps()->isConfigTexturable(kRGBA_half_GrPixelConfig)) {
   1816                     bitmapType = SkGradientShaderBase::GradientBitmapType::kHalfFloat;
   1817                 } else if (args.fContext->caps()->isConfigTexturable(kSRGBA_8888_GrPixelConfig)) {
   1818                     bitmapType = SkGradientShaderBase::GradientBitmapType::kSRGB;
   1819                 } else {
   1820                     // This can happen, but only if someone explicitly creates an unsupported
   1821                     // (eg sRGB) surface. Just fall back to legacy behavior.
   1822                 }
   1823             }
   1824 
   1825             SkBitmap bitmap;
   1826             shader.getGradientTableBitmap(&bitmap, bitmapType);
   1827             SkASSERT(1 == bitmap.height() && SkIsPow2(bitmap.width()));
   1828 
   1829 
   1830             GrTextureStripAtlas::Desc desc;
   1831             desc.fWidth  = bitmap.width();
   1832             desc.fHeight = 32;
   1833             desc.fRowHeight = bitmap.height();
   1834             desc.fContext = args.fContext;
   1835             desc.fConfig = SkImageInfo2GrPixelConfig(bitmap.info(), *args.fContext->caps());
   1836             fAtlas = GrTextureStripAtlas::GetAtlas(desc);
   1837             SkASSERT(fAtlas);
   1838 
   1839             // We always filter the gradient table. Each table is one row of a texture, always
   1840             // y-clamp.
   1841             GrSamplerParams params;
   1842             params.setFilterMode(GrSamplerParams::kBilerp_FilterMode);
   1843             params.setTileModeX(args.fTileMode);
   1844 
   1845             fRow = fAtlas->lockRow(bitmap);
   1846             if (-1 != fRow) {
   1847                 fYCoord = fAtlas->getYOffset(fRow)+SK_ScalarHalf*fAtlas->getNormalizedTexelHeight();
   1848                 // This is 1/2 places where auto-normalization is disabled
   1849                 fCoordTransform.reset(*args.fMatrix, fAtlas->asTextureProxyRef().get(), false);
   1850                 fTextureSampler.reset(fAtlas->asTextureProxyRef(), params);
   1851             } else {
   1852                 // In this instance we know the params are:
   1853                 //   clampY, bilerp
   1854                 // and the proxy is:
   1855                 //   exact fit, power of two in both dimensions
   1856                 // Only the x-tileMode is unknown. However, given all the other knowns we know
   1857                 // that GrMakeCachedBitmapProxy is sufficient (i.e., it won't need to be
   1858                 // extracted to a subset or mipmapped).
   1859                 sk_sp<GrTextureProxy> proxy = GrMakeCachedBitmapProxy(
   1860                                                                 args.fContext->resourceProvider(),
   1861                                                                 bitmap);
   1862                 if (!proxy) {
   1863                     SkDebugf("Gradient won't draw. Could not create texture.");
   1864                     return;
   1865                 }
   1866                 // This is 2/2 places where auto-normalization is disabled
   1867                 fCoordTransform.reset(*args.fMatrix, proxy.get(), false);
   1868                 fTextureSampler.reset(std::move(proxy), params);
   1869                 fYCoord = SK_ScalarHalf;
   1870             }
   1871 
   1872             this->addTextureSampler(&fTextureSampler);
   1873 
   1874             break;
   1875     }
   1876 
   1877     this->addCoordTransform(&fCoordTransform);
   1878 }
   1879 
   1880 GrGradientEffect::~GrGradientEffect() {
   1881     if (this->useAtlas()) {
   1882         fAtlas->unlockRow(fRow);
   1883     }
   1884 }
   1885 
   1886 bool GrGradientEffect::onIsEqual(const GrFragmentProcessor& processor) const {
   1887     const GrGradientEffect& ge = processor.cast<GrGradientEffect>();
   1888 
   1889     if (this->fColorType != ge.getColorType()) {
   1890         return false;
   1891     }
   1892     SkASSERT(this->useAtlas() == ge.useAtlas());
   1893     if (kTexture_ColorType == fColorType) {
   1894         if (fYCoord != ge.getYCoord()) {
   1895             return false;
   1896         }
   1897     } else {
   1898         if (kSingleHardStop_ColorType == fColorType) {
   1899             if (!SkScalarNearlyEqual(ge.fPositions[1], fPositions[1])) {
   1900                 return false;
   1901             }
   1902         }
   1903         if (this->getPremulType() != ge.getPremulType() ||
   1904             this->fColors.count() != ge.fColors.count() ||
   1905             this->fColors4f.count() != ge.fColors4f.count()) {
   1906             return false;
   1907         }
   1908 
   1909         for (int i = 0; i < this->fColors.count(); i++) {
   1910             if (*this->getColors(i) != *ge.getColors(i)) {
   1911                 return false;
   1912             }
   1913         }
   1914         for (int i = 0; i < this->fColors4f.count(); i++) {
   1915             if (*this->getColors4f(i) != *ge.getColors4f(i)) {
   1916                 return false;
   1917             }
   1918         }
   1919     }
   1920     return GrColorSpaceXform::Equals(this->fColorSpaceXform.get(), ge.fColorSpaceXform.get());
   1921 }
   1922 
   1923 #if GR_TEST_UTILS
   1924 GrGradientEffect::RandomGradientParams::RandomGradientParams(SkRandom* random) {
   1925     // Set color count to min of 2 so that we don't trigger the const color optimization and make
   1926     // a non-gradient processor.
   1927     fColorCount = random->nextRangeU(2, kMaxRandomGradientColors);
   1928     fUseColors4f = random->nextBool();
   1929 
   1930     // if one color, omit stops, otherwise randomly decide whether or not to
   1931     if (fColorCount == 1 || (fColorCount >= 2 && random->nextBool())) {
   1932         fStops = nullptr;
   1933     } else {
   1934         fStops = fStopStorage;
   1935     }
   1936 
   1937     // if using SkColor4f, attach a random (possibly null) color space (with linear gamma)
   1938     if (fUseColors4f) {
   1939         fColorSpace = GrTest::TestColorSpace(random);
   1940         if (fColorSpace) {
   1941             SkASSERT(SkColorSpace_Base::Type::kXYZ == as_CSB(fColorSpace)->type());
   1942             fColorSpace = static_cast<SkColorSpace_XYZ*>(fColorSpace.get())->makeLinearGamma();
   1943         }
   1944     }
   1945 
   1946     SkScalar stop = 0.f;
   1947     for (int i = 0; i < fColorCount; ++i) {
   1948         if (fUseColors4f) {
   1949             fColors4f[i].fR = random->nextUScalar1();
   1950             fColors4f[i].fG = random->nextUScalar1();
   1951             fColors4f[i].fB = random->nextUScalar1();
   1952             fColors4f[i].fA = random->nextUScalar1();
   1953         } else {
   1954             fColors[i] = random->nextU();
   1955         }
   1956         if (fStops) {
   1957             fStops[i] = stop;
   1958             stop = i < fColorCount - 1 ? stop + random->nextUScalar1() * (1.f - stop) : 1.f;
   1959         }
   1960     }
   1961     fTileMode = static_cast<SkShader::TileMode>(random->nextULessThan(SkShader::kTileModeCount));
   1962 }
   1963 #endif
   1964 
   1965 #endif
   1966