Home | History | Annotate | Download | only in blorp
      1 /*
      2  * Copyright  2012 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21  * IN THE SOFTWARE.
     22  */
     23 
     24 #include "compiler/nir/nir_builder.h"
     25 
     26 #include "blorp_priv.h"
     27 #include "brw_meta_util.h"
     28 
     29 /* header-only include needed for _mesa_unorm_to_float and friends. */
     30 #include "mesa/main/format_utils.h"
     31 
     32 #define FILE_DEBUG_FLAG DEBUG_BLORP
     33 
     34 static const bool split_blorp_blit_debug = false;
     35 
     36 /**
     37  * Enum to specify the order of arguments in a sampler message
     38  */
     39 enum sampler_message_arg
     40 {
     41    SAMPLER_MESSAGE_ARG_U_FLOAT,
     42    SAMPLER_MESSAGE_ARG_V_FLOAT,
     43    SAMPLER_MESSAGE_ARG_U_INT,
     44    SAMPLER_MESSAGE_ARG_V_INT,
     45    SAMPLER_MESSAGE_ARG_R_INT,
     46    SAMPLER_MESSAGE_ARG_SI_INT,
     47    SAMPLER_MESSAGE_ARG_MCS_INT,
     48    SAMPLER_MESSAGE_ARG_ZERO_INT,
     49 };
     50 
     51 struct brw_blorp_blit_vars {
     52    /* Input values from brw_blorp_wm_inputs */
     53    nir_variable *v_discard_rect;
     54    nir_variable *v_rect_grid;
     55    nir_variable *v_coord_transform;
     56    nir_variable *v_src_z;
     57    nir_variable *v_src_offset;
     58    nir_variable *v_dst_offset;
     59 
     60    /* gl_FragCoord */
     61    nir_variable *frag_coord;
     62 
     63    /* gl_FragColor */
     64    nir_variable *color_out;
     65 };
     66 
     67 static void
     68 brw_blorp_blit_vars_init(nir_builder *b, struct brw_blorp_blit_vars *v,
     69                          const struct brw_blorp_blit_prog_key *key)
     70 {
     71     /* Blended and scaled blits never use pixel discard. */
     72     assert(!key->use_kill || !(key->blend && key->blit_scaled));
     73 
     74 #define LOAD_INPUT(name, type)\
     75    v->v_##name = BLORP_CREATE_NIR_INPUT(b->shader, name, type);
     76 
     77    LOAD_INPUT(discard_rect, glsl_vec4_type())
     78    LOAD_INPUT(rect_grid, glsl_vec4_type())
     79    LOAD_INPUT(coord_transform, glsl_vec4_type())
     80    LOAD_INPUT(src_z, glsl_uint_type())
     81    LOAD_INPUT(src_offset, glsl_vector_type(GLSL_TYPE_UINT, 2))
     82    LOAD_INPUT(dst_offset, glsl_vector_type(GLSL_TYPE_UINT, 2))
     83 
     84 #undef LOAD_INPUT
     85 
     86    v->frag_coord = nir_variable_create(b->shader, nir_var_shader_in,
     87                                        glsl_vec4_type(), "gl_FragCoord");
     88    v->frag_coord->data.location = VARYING_SLOT_POS;
     89    v->frag_coord->data.origin_upper_left = true;
     90 
     91    v->color_out = nir_variable_create(b->shader, nir_var_shader_out,
     92                                       glsl_vec4_type(), "gl_FragColor");
     93    v->color_out->data.location = FRAG_RESULT_COLOR;
     94 }
     95 
     96 static nir_ssa_def *
     97 blorp_blit_get_frag_coords(nir_builder *b,
     98                            const struct brw_blorp_blit_prog_key *key,
     99                            struct brw_blorp_blit_vars *v)
    100 {
    101    nir_ssa_def *coord = nir_f2i(b, nir_load_var(b, v->frag_coord));
    102 
    103    /* Account for destination surface intratile offset
    104     *
    105     * Transformation parameters giving translation from destination to source
    106     * coordinates don't take into account possible intra-tile destination
    107     * offset.  Therefore it has to be first subtracted from the incoming
    108     * coordinates.  Vertices are set up based on coordinates containing the
    109     * intra-tile offset.
    110     */
    111    if (key->need_dst_offset)
    112       coord = nir_isub(b, coord, nir_load_var(b, v->v_dst_offset));
    113 
    114    if (key->persample_msaa_dispatch) {
    115       return nir_vec3(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1),
    116                       nir_load_sample_id(b));
    117    } else {
    118       return nir_vec2(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1));
    119    }
    120 }
    121 
    122 /**
    123  * Emit code to translate from destination (X, Y) coordinates to source (X, Y)
    124  * coordinates.
    125  */
    126 static nir_ssa_def *
    127 blorp_blit_apply_transform(nir_builder *b, nir_ssa_def *src_pos,
    128                            struct brw_blorp_blit_vars *v)
    129 {
    130    nir_ssa_def *coord_transform = nir_load_var(b, v->v_coord_transform);
    131 
    132    nir_ssa_def *offset = nir_vec2(b, nir_channel(b, coord_transform, 1),
    133                                      nir_channel(b, coord_transform, 3));
    134    nir_ssa_def *mul = nir_vec2(b, nir_channel(b, coord_transform, 0),
    135                                   nir_channel(b, coord_transform, 2));
    136 
    137    return nir_ffma(b, src_pos, mul, offset);
    138 }
    139 
    140 static inline void
    141 blorp_nir_discard_if_outside_rect(nir_builder *b, nir_ssa_def *pos,
    142                                   struct brw_blorp_blit_vars *v)
    143 {
    144    nir_ssa_def *c0, *c1, *c2, *c3;
    145    nir_ssa_def *discard_rect = nir_load_var(b, v->v_discard_rect);
    146    nir_ssa_def *dst_x0 = nir_channel(b, discard_rect, 0);
    147    nir_ssa_def *dst_x1 = nir_channel(b, discard_rect, 1);
    148    nir_ssa_def *dst_y0 = nir_channel(b, discard_rect, 2);
    149    nir_ssa_def *dst_y1 = nir_channel(b, discard_rect, 3);
    150 
    151    c0 = nir_ult(b, nir_channel(b, pos, 0), dst_x0);
    152    c1 = nir_uge(b, nir_channel(b, pos, 0), dst_x1);
    153    c2 = nir_ult(b, nir_channel(b, pos, 1), dst_y0);
    154    c3 = nir_uge(b, nir_channel(b, pos, 1), dst_y1);
    155 
    156    nir_ssa_def *oob = nir_ior(b, nir_ior(b, c0, c1), nir_ior(b, c2, c3));
    157 
    158    nir_intrinsic_instr *discard =
    159       nir_intrinsic_instr_create(b->shader, nir_intrinsic_discard_if);
    160    discard->src[0] = nir_src_for_ssa(oob);
    161    nir_builder_instr_insert(b, &discard->instr);
    162 }
    163 
    164 static nir_tex_instr *
    165 blorp_create_nir_tex_instr(nir_builder *b, struct brw_blorp_blit_vars *v,
    166                            nir_texop op, nir_ssa_def *pos, unsigned num_srcs,
    167                            nir_alu_type dst_type)
    168 {
    169    nir_tex_instr *tex = nir_tex_instr_create(b->shader, num_srcs);
    170 
    171    tex->op = op;
    172 
    173    tex->dest_type = dst_type;
    174    tex->is_array = false;
    175    tex->is_shadow = false;
    176 
    177    /* Blorp only has one texture and it's bound at unit 0 */
    178    tex->texture = NULL;
    179    tex->sampler = NULL;
    180    tex->texture_index = 0;
    181    tex->sampler_index = 0;
    182 
    183    /* To properly handle 3-D and 2-D array textures, we pull the Z component
    184     * from an input.  TODO: This is a bit magic; we should probably make this
    185     * more explicit in the future.
    186     */
    187    assert(pos->num_components >= 2);
    188    pos = nir_vec3(b, nir_channel(b, pos, 0), nir_channel(b, pos, 1),
    189                      nir_load_var(b, v->v_src_z));
    190 
    191    tex->src[0].src_type = nir_tex_src_coord;
    192    tex->src[0].src = nir_src_for_ssa(pos);
    193    tex->coord_components = 3;
    194 
    195    nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, NULL);
    196 
    197    return tex;
    198 }
    199 
    200 static nir_ssa_def *
    201 blorp_nir_tex(nir_builder *b, struct brw_blorp_blit_vars *v,
    202               nir_ssa_def *pos, nir_alu_type dst_type)
    203 {
    204    nir_tex_instr *tex =
    205       blorp_create_nir_tex_instr(b, v, nir_texop_tex, pos, 2, dst_type);
    206 
    207    assert(pos->num_components == 2);
    208    tex->sampler_dim = GLSL_SAMPLER_DIM_2D;
    209    tex->src[1].src_type = nir_tex_src_lod;
    210    tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
    211 
    212    nir_builder_instr_insert(b, &tex->instr);
    213 
    214    return &tex->dest.ssa;
    215 }
    216 
    217 static nir_ssa_def *
    218 blorp_nir_txf(nir_builder *b, struct brw_blorp_blit_vars *v,
    219               nir_ssa_def *pos, nir_alu_type dst_type)
    220 {
    221    nir_tex_instr *tex =
    222       blorp_create_nir_tex_instr(b, v, nir_texop_txf, pos, 2, dst_type);
    223 
    224    tex->sampler_dim = GLSL_SAMPLER_DIM_3D;
    225    tex->src[1].src_type = nir_tex_src_lod;
    226    tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
    227 
    228    nir_builder_instr_insert(b, &tex->instr);
    229 
    230    return &tex->dest.ssa;
    231 }
    232 
    233 static nir_ssa_def *
    234 blorp_nir_txf_ms(nir_builder *b, struct brw_blorp_blit_vars *v,
    235                  nir_ssa_def *pos, nir_ssa_def *mcs, nir_alu_type dst_type)
    236 {
    237    nir_tex_instr *tex =
    238       blorp_create_nir_tex_instr(b, v, nir_texop_txf_ms, pos,
    239                                  mcs != NULL ? 3 : 2, dst_type);
    240 
    241    tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
    242 
    243    tex->src[1].src_type = nir_tex_src_ms_index;
    244    if (pos->num_components == 2) {
    245       tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
    246    } else {
    247       assert(pos->num_components == 3);
    248       tex->src[1].src = nir_src_for_ssa(nir_channel(b, pos, 2));
    249    }
    250 
    251    if (mcs) {
    252       tex->src[2].src_type = nir_tex_src_ms_mcs;
    253       tex->src[2].src = nir_src_for_ssa(mcs);
    254    }
    255 
    256    nir_builder_instr_insert(b, &tex->instr);
    257 
    258    return &tex->dest.ssa;
    259 }
    260 
    261 static nir_ssa_def *
    262 blorp_nir_txf_ms_mcs(nir_builder *b, struct brw_blorp_blit_vars *v, nir_ssa_def *pos)
    263 {
    264    nir_tex_instr *tex =
    265       blorp_create_nir_tex_instr(b, v, nir_texop_txf_ms_mcs,
    266                                  pos, 1, nir_type_int);
    267 
    268    tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
    269 
    270    nir_builder_instr_insert(b, &tex->instr);
    271 
    272    return &tex->dest.ssa;
    273 }
    274 
    275 static nir_ssa_def *
    276 nir_mask_shift_or(struct nir_builder *b, nir_ssa_def *dst, nir_ssa_def *src,
    277                   uint32_t src_mask, int src_left_shift)
    278 {
    279    nir_ssa_def *masked = nir_iand(b, src, nir_imm_int(b, src_mask));
    280 
    281    nir_ssa_def *shifted;
    282    if (src_left_shift > 0) {
    283       shifted = nir_ishl(b, masked, nir_imm_int(b, src_left_shift));
    284    } else if (src_left_shift < 0) {
    285       shifted = nir_ushr(b, masked, nir_imm_int(b, -src_left_shift));
    286    } else {
    287       assert(src_left_shift == 0);
    288       shifted = masked;
    289    }
    290 
    291    return nir_ior(b, dst, shifted);
    292 }
    293 
    294 /**
    295  * Emit code to compensate for the difference between Y and W tiling.
    296  *
    297  * This code modifies the X and Y coordinates according to the formula:
    298  *
    299  *   (X', Y', S') = detile(W-MAJOR, tile(Y-MAJOR, X, Y, S))
    300  *
    301  * (See brw_blorp_build_nir_shader).
    302  */
    303 static inline nir_ssa_def *
    304 blorp_nir_retile_y_to_w(nir_builder *b, nir_ssa_def *pos)
    305 {
    306    assert(pos->num_components == 2);
    307    nir_ssa_def *x_Y = nir_channel(b, pos, 0);
    308    nir_ssa_def *y_Y = nir_channel(b, pos, 1);
    309 
    310    /* Given X and Y coordinates that describe an address using Y tiling,
    311     * translate to the X and Y coordinates that describe the same address
    312     * using W tiling.
    313     *
    314     * If we break down the low order bits of X and Y, using a
    315     * single letter to represent each low-order bit:
    316     *
    317     *   X = A << 7 | 0bBCDEFGH
    318     *   Y = J << 5 | 0bKLMNP                                       (1)
    319     *
    320     * Then we can apply the Y tiling formula to see the memory offset being
    321     * addressed:
    322     *
    323     *   offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH       (2)
    324     *
    325     * If we apply the W detiling formula to this memory location, that the
    326     * corresponding X' and Y' coordinates are:
    327     *
    328     *   X' = A << 6 | 0bBCDPFH                                     (3)
    329     *   Y' = J << 6 | 0bKLMNEG
    330     *
    331     * Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
    332     * we need to make the following computation:
    333     *
    334     *   X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1         (4)
    335     *   Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
    336     */
    337    nir_ssa_def *x_W = nir_imm_int(b, 0);
    338    x_W = nir_mask_shift_or(b, x_W, x_Y, 0xfffffff4, -1);
    339    x_W = nir_mask_shift_or(b, x_W, y_Y, 0x1, 2);
    340    x_W = nir_mask_shift_or(b, x_W, x_Y, 0x1, 0);
    341 
    342    nir_ssa_def *y_W = nir_imm_int(b, 0);
    343    y_W = nir_mask_shift_or(b, y_W, y_Y, 0xfffffffe, 1);
    344    y_W = nir_mask_shift_or(b, y_W, x_Y, 0x8, -2);
    345    y_W = nir_mask_shift_or(b, y_W, x_Y, 0x2, -1);
    346 
    347    return nir_vec2(b, x_W, y_W);
    348 }
    349 
    350 /**
    351  * Emit code to compensate for the difference between Y and W tiling.
    352  *
    353  * This code modifies the X and Y coordinates according to the formula:
    354  *
    355  *   (X', Y', S') = detile(Y-MAJOR, tile(W-MAJOR, X, Y, S))
    356  *
    357  * (See brw_blorp_build_nir_shader).
    358  */
    359 static inline nir_ssa_def *
    360 blorp_nir_retile_w_to_y(nir_builder *b, nir_ssa_def *pos)
    361 {
    362    assert(pos->num_components == 2);
    363    nir_ssa_def *x_W = nir_channel(b, pos, 0);
    364    nir_ssa_def *y_W = nir_channel(b, pos, 1);
    365 
    366    /* Applying the same logic as above, but in reverse, we obtain the
    367     * formulas:
    368     *
    369     * X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
    370     * Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
    371     */
    372    nir_ssa_def *x_Y = nir_imm_int(b, 0);
    373    x_Y = nir_mask_shift_or(b, x_Y, x_W, 0xfffffffa, 1);
    374    x_Y = nir_mask_shift_or(b, x_Y, y_W, 0x2, 2);
    375    x_Y = nir_mask_shift_or(b, x_Y, y_W, 0x1, 1);
    376    x_Y = nir_mask_shift_or(b, x_Y, x_W, 0x1, 0);
    377 
    378    nir_ssa_def *y_Y = nir_imm_int(b, 0);
    379    y_Y = nir_mask_shift_or(b, y_Y, y_W, 0xfffffffc, -1);
    380    y_Y = nir_mask_shift_or(b, y_Y, x_W, 0x4, -2);
    381 
    382    return nir_vec2(b, x_Y, y_Y);
    383 }
    384 
    385 /**
    386  * Emit code to compensate for the difference between MSAA and non-MSAA
    387  * surfaces.
    388  *
    389  * This code modifies the X and Y coordinates according to the formula:
    390  *
    391  *   (X', Y', S') = encode_msaa(num_samples, IMS, X, Y, S)
    392  *
    393  * (See brw_blorp_blit_program).
    394  */
    395 static inline nir_ssa_def *
    396 blorp_nir_encode_msaa(nir_builder *b, nir_ssa_def *pos,
    397                       unsigned num_samples, enum isl_msaa_layout layout)
    398 {
    399    assert(pos->num_components == 2 || pos->num_components == 3);
    400 
    401    switch (layout) {
    402    case ISL_MSAA_LAYOUT_NONE:
    403       assert(pos->num_components == 2);
    404       return pos;
    405    case ISL_MSAA_LAYOUT_ARRAY:
    406       /* No translation needed */
    407       return pos;
    408    case ISL_MSAA_LAYOUT_INTERLEAVED: {
    409       nir_ssa_def *x_in = nir_channel(b, pos, 0);
    410       nir_ssa_def *y_in = nir_channel(b, pos, 1);
    411       nir_ssa_def *s_in = pos->num_components == 2 ? nir_imm_int(b, 0) :
    412                                                      nir_channel(b, pos, 2);
    413 
    414       nir_ssa_def *x_out = nir_imm_int(b, 0);
    415       nir_ssa_def *y_out = nir_imm_int(b, 0);
    416       switch (num_samples) {
    417       case 2:
    418       case 4:
    419          /* encode_msaa(2, IMS, X, Y, S) = (X', Y', 0)
    420           *   where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
    421           *         Y' = Y
    422           *
    423           * encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
    424           *   where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
    425           *         Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
    426           */
    427          x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 1);
    428          x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
    429          x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
    430          if (num_samples == 2) {
    431             y_out = y_in;
    432          } else {
    433             y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 1);
    434             y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
    435             y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
    436          }
    437          break;
    438 
    439       case 8:
    440          /* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
    441           *   where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
    442           *              | (X & 0b1)
    443           *         Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
    444           */
    445          x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 2);
    446          x_out = nir_mask_shift_or(b, x_out, s_in, 0x4, 0);
    447          x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
    448          x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
    449          y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 1);
    450          y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
    451          y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
    452          break;
    453 
    454       case 16:
    455          /* encode_msaa(16, IMS, X, Y, S) = (X', Y', 0)
    456           *   where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
    457           *              | (X & 0b1)
    458           *         Y' = (Y & ~0b1) << 2 | (S & 0b1000) >> 1 (S & 0b10)
    459           *              | (Y & 0b1)
    460           */
    461          x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 2);
    462          x_out = nir_mask_shift_or(b, x_out, s_in, 0x4, 0);
    463          x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
    464          x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
    465          y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 2);
    466          y_out = nir_mask_shift_or(b, y_out, s_in, 0x8, -1);
    467          y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
    468          y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
    469          break;
    470 
    471       default:
    472          unreachable("Invalid number of samples for IMS layout");
    473       }
    474 
    475       return nir_vec2(b, x_out, y_out);
    476    }
    477 
    478    default:
    479       unreachable("Invalid MSAA layout");
    480    }
    481 }
    482 
    483 /**
    484  * Emit code to compensate for the difference between MSAA and non-MSAA
    485  * surfaces.
    486  *
    487  * This code modifies the X and Y coordinates according to the formula:
    488  *
    489  *   (X', Y', S) = decode_msaa(num_samples, IMS, X, Y, S)
    490  *
    491  * (See brw_blorp_blit_program).
    492  */
    493 static inline nir_ssa_def *
    494 blorp_nir_decode_msaa(nir_builder *b, nir_ssa_def *pos,
    495                       unsigned num_samples, enum isl_msaa_layout layout)
    496 {
    497    assert(pos->num_components == 2 || pos->num_components == 3);
    498 
    499    switch (layout) {
    500    case ISL_MSAA_LAYOUT_NONE:
    501       /* No translation necessary, and S should already be zero. */
    502       assert(pos->num_components == 2);
    503       return pos;
    504    case ISL_MSAA_LAYOUT_ARRAY:
    505       /* No translation necessary. */
    506       return pos;
    507    case ISL_MSAA_LAYOUT_INTERLEAVED: {
    508       assert(pos->num_components == 2);
    509 
    510       nir_ssa_def *x_in = nir_channel(b, pos, 0);
    511       nir_ssa_def *y_in = nir_channel(b, pos, 1);
    512 
    513       nir_ssa_def *x_out = nir_imm_int(b, 0);
    514       nir_ssa_def *y_out = nir_imm_int(b, 0);
    515       nir_ssa_def *s_out = nir_imm_int(b, 0);
    516       switch (num_samples) {
    517       case 2:
    518       case 4:
    519          /* decode_msaa(2, IMS, X, Y, 0) = (X', Y', S)
    520           *   where X' = (X & ~0b11) >> 1 | (X & 0b1)
    521           *         S = (X & 0b10) >> 1
    522           *
    523           * decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
    524           *   where X' = (X & ~0b11) >> 1 | (X & 0b1)
    525           *         Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
    526           *         S = (Y & 0b10) | (X & 0b10) >> 1
    527           */
    528          x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffc, -1);
    529          x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
    530          if (num_samples == 2) {
    531             y_out = y_in;
    532             s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
    533          } else {
    534             y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffc, -1);
    535             y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
    536             s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
    537             s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
    538          }
    539          break;
    540 
    541       case 8:
    542          /* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
    543           *   where X' = (X & ~0b111) >> 2 | (X & 0b1)
    544           *         Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
    545           *         S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
    546           */
    547          x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffff8, -2);
    548          x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
    549          y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffc, -1);
    550          y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
    551          s_out = nir_mask_shift_or(b, s_out, x_in, 0x4, 0);
    552          s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
    553          s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
    554          break;
    555 
    556       case 16:
    557          /* decode_msaa(16, IMS, X, Y, 0) = (X', Y', S)
    558           *   where X' = (X & ~0b111) >> 2 | (X & 0b1)
    559           *         Y' = (Y & ~0b111) >> 2 | (Y & 0b1)
    560           *         S = (Y & 0b100) << 1 | (X & 0b100) |
    561           *             (Y & 0b10) | (X & 0b10) >> 1
    562           */
    563          x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffff8, -2);
    564          x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
    565          y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffff8, -2);
    566          y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
    567          s_out = nir_mask_shift_or(b, s_out, y_in, 0x4, 1);
    568          s_out = nir_mask_shift_or(b, s_out, x_in, 0x4, 0);
    569          s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
    570          s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
    571          break;
    572 
    573       default:
    574          unreachable("Invalid number of samples for IMS layout");
    575       }
    576 
    577       return nir_vec3(b, x_out, y_out, s_out);
    578    }
    579 
    580    default:
    581       unreachable("Invalid MSAA layout");
    582    }
    583 }
    584 
    585 /**
    586  * Count the number of trailing 1 bits in the given value.  For example:
    587  *
    588  * count_trailing_one_bits(0) == 0
    589  * count_trailing_one_bits(7) == 3
    590  * count_trailing_one_bits(11) == 2
    591  */
    592 static inline int count_trailing_one_bits(unsigned value)
    593 {
    594 #ifdef HAVE___BUILTIN_CTZ
    595    return __builtin_ctz(~value);
    596 #else
    597    return _mesa_bitcount(value & ~(value + 1));
    598 #endif
    599 }
    600 
    601 static nir_ssa_def *
    602 blorp_nir_manual_blend_average(nir_builder *b, struct brw_blorp_blit_vars *v,
    603                                nir_ssa_def *pos, unsigned tex_samples,
    604                                enum isl_aux_usage tex_aux_usage,
    605                                nir_alu_type dst_type)
    606 {
    607    /* If non-null, this is the outer-most if statement */
    608    nir_if *outer_if = NULL;
    609 
    610    nir_variable *color =
    611       nir_local_variable_create(b->impl, glsl_vec4_type(), "color");
    612 
    613    nir_ssa_def *mcs = NULL;
    614    if (tex_aux_usage == ISL_AUX_USAGE_MCS)
    615       mcs = blorp_nir_txf_ms_mcs(b, v, pos);
    616 
    617    /* We add together samples using a binary tree structure, e.g. for 4x MSAA:
    618     *
    619     *   result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4
    620     *
    621     * This ensures that when all samples have the same value, no numerical
    622     * precision is lost, since each addition operation always adds two equal
    623     * values, and summing two equal floating point values does not lose
    624     * precision.
    625     *
    626     * We perform this computation by treating the texture_data array as a
    627     * stack and performing the following operations:
    628     *
    629     * - push sample 0 onto stack
    630     * - push sample 1 onto stack
    631     * - add top two stack entries
    632     * - push sample 2 onto stack
    633     * - push sample 3 onto stack
    634     * - add top two stack entries
    635     * - add top two stack entries
    636     * - divide top stack entry by 4
    637     *
    638     * Note that after pushing sample i onto the stack, the number of add
    639     * operations we do is equal to the number of trailing 1 bits in i.  This
    640     * works provided the total number of samples is a power of two, which it
    641     * always is for i965.
    642     *
    643     * For integer formats, we replace the add operations with average
    644     * operations and skip the final division.
    645     */
    646    nir_ssa_def *texture_data[5];
    647    unsigned stack_depth = 0;
    648    for (unsigned i = 0; i < tex_samples; ++i) {
    649       assert(stack_depth == _mesa_bitcount(i)); /* Loop invariant */
    650 
    651       /* Push sample i onto the stack */
    652       assert(stack_depth < ARRAY_SIZE(texture_data));
    653 
    654       nir_ssa_def *ms_pos = nir_vec3(b, nir_channel(b, pos, 0),
    655                                         nir_channel(b, pos, 1),
    656                                         nir_imm_int(b, i));
    657       texture_data[stack_depth++] = blorp_nir_txf_ms(b, v, ms_pos, mcs, dst_type);
    658 
    659       if (i == 0 && tex_aux_usage == ISL_AUX_USAGE_MCS) {
    660          /* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface)
    661           * suggests an optimization:
    662           *
    663           *     "A simple optimization with probable large return in
    664           *     performance is to compare the MCS value to zero (indicating
    665           *     all samples are on sample slice 0), and sample only from
    666           *     sample slice 0 using ld2dss if MCS is zero."
    667           *
    668           * Note that in the case where the MCS value is zero, sampling from
    669           * sample slice 0 using ld2dss and sampling from sample 0 using
    670           * ld2dms are equivalent (since all samples are on sample slice 0).
    671           * Since we have already sampled from sample 0, all we need to do is
    672           * skip the remaining fetches and averaging if MCS is zero.
    673           */
    674          nir_ssa_def *mcs_zero =
    675             nir_ieq(b, nir_channel(b, mcs, 0), nir_imm_int(b, 0));
    676          if (tex_samples == 16) {
    677             mcs_zero = nir_iand(b, mcs_zero,
    678                nir_ieq(b, nir_channel(b, mcs, 1), nir_imm_int(b, 0)));
    679          }
    680 
    681          nir_if *if_stmt = nir_if_create(b->shader);
    682          if_stmt->condition = nir_src_for_ssa(mcs_zero);
    683          nir_cf_node_insert(b->cursor, &if_stmt->cf_node);
    684 
    685          b->cursor = nir_after_cf_list(&if_stmt->then_list);
    686          nir_store_var(b, color, texture_data[0], 0xf);
    687 
    688          b->cursor = nir_after_cf_list(&if_stmt->else_list);
    689          outer_if = if_stmt;
    690       }
    691 
    692       for (int j = 0; j < count_trailing_one_bits(i); j++) {
    693          assert(stack_depth >= 2);
    694          --stack_depth;
    695 
    696          assert(dst_type == nir_type_float);
    697          texture_data[stack_depth - 1] =
    698             nir_fadd(b, texture_data[stack_depth - 1],
    699                         texture_data[stack_depth]);
    700       }
    701    }
    702 
    703    /* We should have just 1 sample on the stack now. */
    704    assert(stack_depth == 1);
    705 
    706    texture_data[0] = nir_fmul(b, texture_data[0],
    707                               nir_imm_float(b, 1.0 / tex_samples));
    708 
    709    nir_store_var(b, color, texture_data[0], 0xf);
    710 
    711    if (outer_if)
    712       b->cursor = nir_after_cf_node(&outer_if->cf_node);
    713 
    714    return nir_load_var(b, color);
    715 }
    716 
    717 static inline nir_ssa_def *
    718 nir_imm_vec2(nir_builder *build, float x, float y)
    719 {
    720    nir_const_value v;
    721 
    722    memset(&v, 0, sizeof(v));
    723    v.f32[0] = x;
    724    v.f32[1] = y;
    725 
    726    return nir_build_imm(build, 4, 32, v);
    727 }
    728 
    729 static nir_ssa_def *
    730 blorp_nir_manual_blend_bilinear(nir_builder *b, nir_ssa_def *pos,
    731                                 unsigned tex_samples,
    732                                 const struct brw_blorp_blit_prog_key *key,
    733                                 struct brw_blorp_blit_vars *v)
    734 {
    735    nir_ssa_def *pos_xy = nir_channels(b, pos, 0x3);
    736    nir_ssa_def *rect_grid = nir_load_var(b, v->v_rect_grid);
    737    nir_ssa_def *scale = nir_imm_vec2(b, key->x_scale, key->y_scale);
    738 
    739    /* Translate coordinates to lay out the samples in a rectangular  grid
    740     * roughly corresponding to sample locations.
    741     */
    742    pos_xy = nir_fmul(b, pos_xy, scale);
    743    /* Adjust coordinates so that integers represent pixel centers rather
    744     * than pixel edges.
    745     */
    746    pos_xy = nir_fadd(b, pos_xy, nir_imm_float(b, -0.5));
    747    /* Clamp the X, Y texture coordinates to properly handle the sampling of
    748     * texels on texture edges.
    749     */
    750    pos_xy = nir_fmin(b, nir_fmax(b, pos_xy, nir_imm_float(b, 0.0)),
    751                         nir_vec2(b, nir_channel(b, rect_grid, 0),
    752                                     nir_channel(b, rect_grid, 1)));
    753 
    754    /* Store the fractional parts to be used as bilinear interpolation
    755     * coefficients.
    756     */
    757    nir_ssa_def *frac_xy = nir_ffract(b, pos_xy);
    758    /* Round the float coordinates down to nearest integer */
    759    pos_xy = nir_fdiv(b, nir_ftrunc(b, pos_xy), scale);
    760 
    761    nir_ssa_def *tex_data[4];
    762    for (unsigned i = 0; i < 4; ++i) {
    763       float sample_off_x = (float)(i & 0x1) / key->x_scale;
    764       float sample_off_y = (float)((i >> 1) & 0x1) / key->y_scale;
    765       nir_ssa_def *sample_off = nir_imm_vec2(b, sample_off_x, sample_off_y);
    766 
    767       nir_ssa_def *sample_coords = nir_fadd(b, pos_xy, sample_off);
    768       nir_ssa_def *sample_coords_int = nir_f2i(b, sample_coords);
    769 
    770       /* The MCS value we fetch has to match up with the pixel that we're
    771        * sampling from. Since we sample from different pixels in each
    772        * iteration of this "for" loop, the call to mcs_fetch() should be
    773        * here inside the loop after computing the pixel coordinates.
    774        */
    775       nir_ssa_def *mcs = NULL;
    776       if (key->tex_aux_usage == ISL_AUX_USAGE_MCS)
    777          mcs = blorp_nir_txf_ms_mcs(b, v, sample_coords_int);
    778 
    779       /* Compute sample index and map the sample index to a sample number.
    780        * Sample index layout shows the numbering of slots in a rectangular
    781        * grid of samples with in a pixel. Sample number layout shows the
    782        * rectangular grid of samples roughly corresponding to the real sample
    783        * locations with in a pixel.
    784        * In case of 4x MSAA, layout of sample indices matches the layout of
    785        * sample numbers:
    786        *           ---------
    787        *           | 0 | 1 |
    788        *           ---------
    789        *           | 2 | 3 |
    790        *           ---------
    791        *
    792        * In case of 8x MSAA the two layouts don't match.
    793        * sample index layout :  ---------    sample number layout :  ---------
    794        *                        | 0 | 1 |                            | 3 | 7 |
    795        *                        ---------                            ---------
    796        *                        | 2 | 3 |                            | 5 | 0 |
    797        *                        ---------                            ---------
    798        *                        | 4 | 5 |                            | 1 | 2 |
    799        *                        ---------                            ---------
    800        *                        | 6 | 7 |                            | 4 | 6 |
    801        *                        ---------                            ---------
    802        *
    803        * Fortunately, this can be done fairly easily as:
    804        * S' = (0x17306425 >> (S * 4)) & 0xf
    805        *
    806        * In the case of 16x MSAA the two layouts don't match.
    807        * Sample index layout:                Sample number layout:
    808        * ---------------------               ---------------------
    809        * |  0 |  1 |  2 |  3 |               | 15 | 10 |  9 |  7 |
    810        * ---------------------               ---------------------
    811        * |  4 |  5 |  6 |  7 |               |  4 |  1 |  3 | 13 |
    812        * ---------------------               ---------------------
    813        * |  8 |  9 | 10 | 11 |               | 12 |  2 |  0 |  6 |
    814        * ---------------------               ---------------------
    815        * | 12 | 13 | 14 | 15 |               | 11 |  8 |  5 | 14 |
    816        * ---------------------               ---------------------
    817        *
    818        * This is equivalent to
    819        * S' = (0xe58b602cd31479af >> (S * 4)) & 0xf
    820        */
    821       nir_ssa_def *frac = nir_ffract(b, sample_coords);
    822       nir_ssa_def *sample =
    823          nir_fdot2(b, frac, nir_imm_vec2(b, key->x_scale,
    824                                             key->x_scale * key->y_scale));
    825       sample = nir_f2i(b, sample);
    826 
    827       if (tex_samples == 8) {
    828          sample = nir_iand(b, nir_ishr(b, nir_imm_int(b, 0x64210573),
    829                                        nir_ishl(b, sample, nir_imm_int(b, 2))),
    830                            nir_imm_int(b, 0xf));
    831       } else if (tex_samples == 16) {
    832          nir_ssa_def *sample_low =
    833             nir_iand(b, nir_ishr(b, nir_imm_int(b, 0xd31479af),
    834                                  nir_ishl(b, sample, nir_imm_int(b, 2))),
    835                      nir_imm_int(b, 0xf));
    836          nir_ssa_def *sample_high =
    837             nir_iand(b, nir_ishr(b, nir_imm_int(b, 0xe58b602c),
    838                                  nir_ishl(b, nir_iadd(b, sample,
    839                                                       nir_imm_int(b, -8)),
    840                                           nir_imm_int(b, 2))),
    841                      nir_imm_int(b, 0xf));
    842 
    843          sample = nir_bcsel(b, nir_ilt(b, sample, nir_imm_int(b, 8)),
    844                             sample_low, sample_high);
    845       }
    846       nir_ssa_def *pos_ms = nir_vec3(b, nir_channel(b, sample_coords_int, 0),
    847                                         nir_channel(b, sample_coords_int, 1),
    848                                         sample);
    849       tex_data[i] = blorp_nir_txf_ms(b, v, pos_ms, mcs, key->texture_data_type);
    850    }
    851 
    852    nir_ssa_def *frac_x = nir_channel(b, frac_xy, 0);
    853    nir_ssa_def *frac_y = nir_channel(b, frac_xy, 1);
    854    return nir_flrp(b, nir_flrp(b, tex_data[0], tex_data[1], frac_x),
    855                       nir_flrp(b, tex_data[2], tex_data[3], frac_x),
    856                       frac_y);
    857 }
    858 
    859 /** Perform a color bit-cast operation
    860  *
    861  * For copy operations involving CCS, we may need to use different formats for
    862  * the source and destination surfaces.  The two formats must both be UINT
    863  * formats and must have the same size but may have different bit layouts.
    864  * For instance, we may be copying from R8G8B8A8_UINT to R32_UINT or R32_UINT
    865  * to R16G16_UINT.  This function generates code to shuffle bits around to get
    866  * us from one to the other.
    867  */
    868 static nir_ssa_def *
    869 bit_cast_color(struct nir_builder *b, nir_ssa_def *color,
    870                const struct brw_blorp_blit_prog_key *key)
    871 {
    872    assert(key->texture_data_type == nir_type_uint);
    873 
    874    if (key->dst_bpc > key->src_bpc) {
    875       nir_ssa_def *u = nir_ssa_undef(b, 1, 32);
    876       nir_ssa_def *dst_chan[2] = { u, u };
    877       unsigned shift = 0;
    878       unsigned dst_idx = 0;
    879       for (unsigned i = 0; i < 4; i++) {
    880          nir_ssa_def *shifted = nir_ishl(b, nir_channel(b, color, i),
    881                                             nir_imm_int(b, shift));
    882          if (shift == 0) {
    883             dst_chan[dst_idx] = shifted;
    884          } else {
    885             dst_chan[dst_idx] = nir_ior(b, dst_chan[dst_idx], shifted);
    886          }
    887 
    888          shift += key->src_bpc;
    889          if (shift >= key->dst_bpc) {
    890             dst_idx++;
    891             shift = 0;
    892          }
    893       }
    894 
    895       return nir_vec4(b, dst_chan[0], dst_chan[1], u, u);
    896    } else {
    897       assert(key->dst_bpc < key->src_bpc);
    898 
    899       nir_ssa_def *mask = nir_imm_int(b, ~0u >> (32 - key->dst_bpc));
    900 
    901       nir_ssa_def *dst_chan[4];
    902       unsigned src_idx = 0;
    903       unsigned shift = 0;
    904       for (unsigned i = 0; i < 4; i++) {
    905          dst_chan[i] = nir_iand(b, nir_ushr(b, nir_channel(b, color, src_idx),
    906                                                nir_imm_int(b, shift)),
    907                                    mask);
    908          shift += key->dst_bpc;
    909          if (shift >= key->src_bpc) {
    910             src_idx++;
    911             shift = 0;
    912          }
    913       }
    914 
    915       return nir_vec4(b, dst_chan[0], dst_chan[1], dst_chan[2], dst_chan[3]);
    916    }
    917 }
    918 
    919 /**
    920  * Generator for WM programs used in BLORP blits.
    921  *
    922  * The bulk of the work done by the WM program is to wrap and unwrap the
    923  * coordinate transformations used by the hardware to store surfaces in
    924  * memory.  The hardware transforms a pixel location (X, Y, S) (where S is the
    925  * sample index for a multisampled surface) to a memory offset by the
    926  * following formulas:
    927  *
    928  *   offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S))
    929  *   (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset))
    930  *
    931  * For a single-sampled surface, or for a multisampled surface using
    932  * INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity
    933  * function:
    934  *
    935  *   encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
    936  *   decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
    937  *   encode_msaa(n, UMS, X, Y, S) = (X, Y, S)
    938  *   decode_msaa(n, UMS, X, Y, S) = (X, Y, S)
    939  *
    940  * For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
    941  * embeds the sample number into bit 1 of the X and Y coordinates:
    942  *
    943  *   encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
    944  *     where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
    945  *           Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
    946  *   decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
    947  *     where X' = (X & ~0b11) >> 1 | (X & 0b1)
    948  *           Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
    949  *           S = (Y & 0b10) | (X & 0b10) >> 1
    950  *
    951  * For an 8x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
    952  * embeds the sample number into bits 1 and 2 of the X coordinate and bit 1 of
    953  * the Y coordinate:
    954  *
    955  *   encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
    956  *     where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 | (X & 0b1)
    957  *           Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
    958  *   decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
    959  *     where X' = (X & ~0b111) >> 2 | (X & 0b1)
    960  *           Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
    961  *           S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
    962  *
    963  * For X tiling, tile() combines together the low-order bits of the X and Y
    964  * coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512
    965  * bytes wide and 8 rows high:
    966  *
    967  *   tile(x_tiled, X, Y, S) = A
    968  *     where A = tile_num << 12 | offset
    969  *           tile_num = (Y' >> 3) * tile_pitch + (X' >> 9)
    970  *           offset = (Y' & 0b111) << 9
    971  *                    | (X & 0b111111111)
    972  *           X' = X * cpp
    973  *           Y' = Y + S * qpitch
    974  *   detile(x_tiled, A) = (X, Y, S)
    975  *     where X = X' / cpp
    976  *           Y = Y' % qpitch
    977  *           S = Y' / qpitch
    978  *           Y' = (tile_num / tile_pitch) << 3
    979  *                | (A & 0b111000000000) >> 9
    980  *           X' = (tile_num % tile_pitch) << 9
    981  *                | (A & 0b111111111)
    982  *
    983  * (In all tiling formulas, cpp is the number of bytes occupied by a single
    984  * sample ("chars per pixel"), tile_pitch is the number of 4k tiles required
    985  * to fill the width of the surface, and qpitch is the spacing (in rows)
    986  * between array slices).
    987  *
    988  * For Y tiling, tile() combines together the low-order bits of the X and Y
    989  * coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128
    990  * bytes wide and 32 rows high:
    991  *
    992  *   tile(y_tiled, X, Y, S) = A
    993  *     where A = tile_num << 12 | offset
    994  *           tile_num = (Y' >> 5) * tile_pitch + (X' >> 7)
    995  *           offset = (X' & 0b1110000) << 5
    996  *                    | (Y' & 0b11111) << 4
    997  *                    | (X' & 0b1111)
    998  *           X' = X * cpp
    999  *           Y' = Y + S * qpitch
   1000  *   detile(y_tiled, A) = (X, Y, S)
   1001  *     where X = X' / cpp
   1002  *           Y = Y' % qpitch
   1003  *           S = Y' / qpitch
   1004  *           Y' = (tile_num / tile_pitch) << 5
   1005  *                | (A & 0b111110000) >> 4
   1006  *           X' = (tile_num % tile_pitch) << 7
   1007  *                | (A & 0b111000000000) >> 5
   1008  *                | (A & 0b1111)
   1009  *
   1010  * For W tiling, tile() combines together the low-order bits of the X and Y
   1011  * coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64
   1012  * bytes wide and 64 rows high (note that W tiling is only used for stencil
   1013  * buffers, which always have cpp = 1 and S=0):
   1014  *
   1015  *   tile(w_tiled, X, Y, S) = A
   1016  *     where A = tile_num << 12 | offset
   1017  *           tile_num = (Y' >> 6) * tile_pitch + (X' >> 6)
   1018  *           offset = (X' & 0b111000) << 6
   1019  *                    | (Y' & 0b111100) << 3
   1020  *                    | (X' & 0b100) << 2
   1021  *                    | (Y' & 0b10) << 2
   1022  *                    | (X' & 0b10) << 1
   1023  *                    | (Y' & 0b1) << 1
   1024  *                    | (X' & 0b1)
   1025  *           X' = X * cpp = X
   1026  *           Y' = Y + S * qpitch
   1027  *   detile(w_tiled, A) = (X, Y, S)
   1028  *     where X = X' / cpp = X'
   1029  *           Y = Y' % qpitch = Y'
   1030  *           S = Y / qpitch = 0
   1031  *           Y' = (tile_num / tile_pitch) << 6
   1032  *                | (A & 0b111100000) >> 3
   1033  *                | (A & 0b1000) >> 2
   1034  *                | (A & 0b10) >> 1
   1035  *           X' = (tile_num % tile_pitch) << 6
   1036  *                | (A & 0b111000000000) >> 6
   1037  *                | (A & 0b10000) >> 2
   1038  *                | (A & 0b100) >> 1
   1039  *                | (A & 0b1)
   1040  *
   1041  * Finally, for a non-tiled surface, tile() simply combines together the X and
   1042  * Y coordinates in the natural way:
   1043  *
   1044  *   tile(untiled, X, Y, S) = A
   1045  *     where A = Y * pitch + X'
   1046  *           X' = X * cpp
   1047  *           Y' = Y + S * qpitch
   1048  *   detile(untiled, A) = (X, Y, S)
   1049  *     where X = X' / cpp
   1050  *           Y = Y' % qpitch
   1051  *           S = Y' / qpitch
   1052  *           X' = A % pitch
   1053  *           Y' = A / pitch
   1054  *
   1055  * (In these formulas, pitch is the number of bytes occupied by a single row
   1056  * of samples).
   1057  */
   1058 static nir_shader *
   1059 brw_blorp_build_nir_shader(struct blorp_context *blorp, void *mem_ctx,
   1060                            const struct brw_blorp_blit_prog_key *key)
   1061 {
   1062    const struct gen_device_info *devinfo = blorp->isl_dev->info;
   1063    nir_ssa_def *src_pos, *dst_pos, *color;
   1064 
   1065    /* Sanity checks */
   1066    if (key->dst_tiled_w && key->rt_samples > 1) {
   1067       /* If the destination image is W tiled and multisampled, then the thread
   1068        * must be dispatched once per sample, not once per pixel.  This is
   1069        * necessary because after conversion between W and Y tiling, there's no
   1070        * guarantee that all samples corresponding to a single pixel will still
   1071        * be together.
   1072        */
   1073       assert(key->persample_msaa_dispatch);
   1074    }
   1075 
   1076    if (key->blend) {
   1077       /* We are blending, which means we won't have an opportunity to
   1078        * translate the tiling and sample count for the texture surface.  So
   1079        * the surface state for the texture must be configured with the correct
   1080        * tiling and sample count.
   1081        */
   1082       assert(!key->src_tiled_w);
   1083       assert(key->tex_samples == key->src_samples);
   1084       assert(key->tex_layout == key->src_layout);
   1085       assert(key->tex_samples > 0);
   1086    }
   1087 
   1088    if (key->persample_msaa_dispatch) {
   1089       /* It only makes sense to do persample dispatch if the render target is
   1090        * configured as multisampled.
   1091        */
   1092       assert(key->rt_samples > 0);
   1093    }
   1094 
   1095    /* Make sure layout is consistent with sample count */
   1096    assert((key->tex_layout == ISL_MSAA_LAYOUT_NONE) ==
   1097           (key->tex_samples <= 1));
   1098    assert((key->rt_layout == ISL_MSAA_LAYOUT_NONE) ==
   1099           (key->rt_samples <= 1));
   1100    assert((key->src_layout == ISL_MSAA_LAYOUT_NONE) ==
   1101           (key->src_samples <= 1));
   1102    assert((key->dst_layout == ISL_MSAA_LAYOUT_NONE) ==
   1103           (key->dst_samples <= 1));
   1104 
   1105    nir_builder b;
   1106    nir_builder_init_simple_shader(&b, mem_ctx, MESA_SHADER_FRAGMENT, NULL);
   1107 
   1108    struct brw_blorp_blit_vars v;
   1109    brw_blorp_blit_vars_init(&b, &v, key);
   1110 
   1111    dst_pos = blorp_blit_get_frag_coords(&b, key, &v);
   1112 
   1113    /* Render target and texture hardware don't support W tiling until Gen8. */
   1114    const bool rt_tiled_w = false;
   1115    const bool tex_tiled_w = devinfo->gen >= 8 && key->src_tiled_w;
   1116 
   1117    /* The address that data will be written to is determined by the
   1118     * coordinates supplied to the WM thread and the tiling and sample count of
   1119     * the render target, according to the formula:
   1120     *
   1121     * (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
   1122     *
   1123     * If the actual tiling and sample count of the destination surface are not
   1124     * the same as the configuration of the render target, then these
   1125     * coordinates are wrong and we have to adjust them to compensate for the
   1126     * difference.
   1127     */
   1128    if (rt_tiled_w != key->dst_tiled_w ||
   1129        key->rt_samples != key->dst_samples ||
   1130        key->rt_layout != key->dst_layout) {
   1131       dst_pos = blorp_nir_encode_msaa(&b, dst_pos, key->rt_samples,
   1132                                       key->rt_layout);
   1133       /* Now (X, Y, S) = detile(rt_tiling, offset) */
   1134       if (rt_tiled_w != key->dst_tiled_w)
   1135          dst_pos = blorp_nir_retile_y_to_w(&b, dst_pos);
   1136       /* Now (X, Y, S) = detile(rt_tiling, offset) */
   1137       dst_pos = blorp_nir_decode_msaa(&b, dst_pos, key->dst_samples,
   1138                                       key->dst_layout);
   1139    }
   1140 
   1141    /* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
   1142     *
   1143     * That is: X, Y and S now contain the true coordinates and sample index of
   1144     * the data that the WM thread should output.
   1145     *
   1146     * If we need to kill pixels that are outside the destination rectangle,
   1147     * now is the time to do it.
   1148     */
   1149    if (key->use_kill) {
   1150       assert(!(key->blend && key->blit_scaled));
   1151       blorp_nir_discard_if_outside_rect(&b, dst_pos, &v);
   1152    }
   1153 
   1154    src_pos = blorp_blit_apply_transform(&b, nir_i2f(&b, dst_pos), &v);
   1155    if (dst_pos->num_components == 3) {
   1156       /* The sample coordinate is an integer that we want left alone but
   1157        * blorp_blit_apply_transform() blindly applies the transform to all
   1158        * three coordinates.  Grab the original sample index.
   1159        */
   1160       src_pos = nir_vec3(&b, nir_channel(&b, src_pos, 0),
   1161                              nir_channel(&b, src_pos, 1),
   1162                              nir_channel(&b, dst_pos, 2));
   1163    }
   1164 
   1165    /* If the source image is not multisampled, then we want to fetch sample
   1166     * number 0, because that's the only sample there is.
   1167     */
   1168    if (key->src_samples == 1)
   1169       src_pos = nir_channels(&b, src_pos, 0x3);
   1170 
   1171    /* X, Y, and S are now the coordinates of the pixel in the source image
   1172     * that we want to texture from.  Exception: if we are blending, then S is
   1173     * irrelevant, because we are going to fetch all samples.
   1174     */
   1175    if (key->blend && !key->blit_scaled) {
   1176       /* Resolves (effecively) use texelFetch, so we need integers and we
   1177        * don't care about the sample index if we got one.
   1178        */
   1179       src_pos = nir_f2i(&b, nir_channels(&b, src_pos, 0x3));
   1180 
   1181       if (devinfo->gen == 6) {
   1182          /* Because gen6 only supports 4x interleved MSAA, we can do all the
   1183           * blending we need with a single linear-interpolated texture lookup
   1184           * at the center of the sample. The texture coordinates to be odd
   1185           * integers so that they correspond to the center of a 2x2 block
   1186           * representing the four samples that maxe up a pixel.  So we need
   1187           * to multiply our X and Y coordinates each by 2 and then add 1.
   1188           */
   1189          src_pos = nir_ishl(&b, src_pos, nir_imm_int(&b, 1));
   1190          src_pos = nir_iadd(&b, src_pos, nir_imm_int(&b, 1));
   1191          src_pos = nir_i2f(&b, src_pos);
   1192          color = blorp_nir_tex(&b, &v, src_pos, key->texture_data_type);
   1193       } else {
   1194          /* Gen7+ hardware doesn't automaticaly blend. */
   1195          color = blorp_nir_manual_blend_average(&b, &v, src_pos, key->src_samples,
   1196                                                 key->tex_aux_usage,
   1197                                                 key->texture_data_type);
   1198       }
   1199    } else if (key->blend && key->blit_scaled) {
   1200       assert(!key->use_kill);
   1201       color = blorp_nir_manual_blend_bilinear(&b, src_pos, key->src_samples, key, &v);
   1202    } else {
   1203       if (key->bilinear_filter) {
   1204          color = blorp_nir_tex(&b, &v, src_pos, key->texture_data_type);
   1205       } else {
   1206          /* We're going to use texelFetch, so we need integers */
   1207          if (src_pos->num_components == 2) {
   1208             src_pos = nir_f2i(&b, src_pos);
   1209          } else {
   1210             assert(src_pos->num_components == 3);
   1211             src_pos = nir_vec3(&b, nir_channel(&b, nir_f2i(&b, src_pos), 0),
   1212                                    nir_channel(&b, nir_f2i(&b, src_pos), 1),
   1213                                    nir_channel(&b, src_pos, 2));
   1214          }
   1215 
   1216          /* We aren't blending, which means we just want to fetch a single
   1217           * sample from the source surface.  The address that we want to fetch
   1218           * from is related to the X, Y and S values according to the formula:
   1219           *
   1220           * (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
   1221           *
   1222           * If the actual tiling and sample count of the source surface are
   1223           * not the same as the configuration of the texture, then we need to
   1224           * adjust the coordinates to compensate for the difference.
   1225           */
   1226          if (tex_tiled_w != key->src_tiled_w ||
   1227              key->tex_samples != key->src_samples ||
   1228              key->tex_layout != key->src_layout) {
   1229             src_pos = blorp_nir_encode_msaa(&b, src_pos, key->src_samples,
   1230                                             key->src_layout);
   1231             /* Now (X, Y, S) = detile(src_tiling, offset) */
   1232             if (tex_tiled_w != key->src_tiled_w)
   1233                src_pos = blorp_nir_retile_w_to_y(&b, src_pos);
   1234             /* Now (X, Y, S) = detile(tex_tiling, offset) */
   1235             src_pos = blorp_nir_decode_msaa(&b, src_pos, key->tex_samples,
   1236                                             key->tex_layout);
   1237          }
   1238 
   1239          if (key->need_src_offset)
   1240             src_pos = nir_iadd(&b, src_pos, nir_load_var(&b, v.v_src_offset));
   1241 
   1242          /* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
   1243           *
   1244           * In other words: X, Y, and S now contain values which, when passed to
   1245           * the texturing unit, will cause data to be read from the correct
   1246           * memory location.  So we can fetch the texel now.
   1247           */
   1248          if (key->src_samples == 1) {
   1249             color = blorp_nir_txf(&b, &v, src_pos, key->texture_data_type);
   1250          } else {
   1251             nir_ssa_def *mcs = NULL;
   1252             if (key->tex_aux_usage == ISL_AUX_USAGE_MCS)
   1253                mcs = blorp_nir_txf_ms_mcs(&b, &v, src_pos);
   1254 
   1255             color = blorp_nir_txf_ms(&b, &v, src_pos, mcs, key->texture_data_type);
   1256          }
   1257       }
   1258    }
   1259 
   1260    if (key->dst_bpc != key->src_bpc)
   1261       color = bit_cast_color(&b, color, key);
   1262 
   1263    if (key->dst_rgb) {
   1264       /* The destination image is bound as a red texture three times as wide
   1265        * as the actual image.  Our shader is effectively running one color
   1266        * component at a time.  We need to pick off the appropriate component
   1267        * from the source color and write that to destination red.
   1268        */
   1269       assert(dst_pos->num_components == 2);
   1270       nir_ssa_def *comp =
   1271          nir_umod(&b, nir_channel(&b, dst_pos, 0), nir_imm_int(&b, 3));
   1272 
   1273       nir_ssa_def *color_component =
   1274          nir_bcsel(&b, nir_ieq(&b, comp, nir_imm_int(&b, 0)),
   1275                        nir_channel(&b, color, 0),
   1276                        nir_bcsel(&b, nir_ieq(&b, comp, nir_imm_int(&b, 1)),
   1277                                      nir_channel(&b, color, 1),
   1278                                      nir_channel(&b, color, 2)));
   1279 
   1280       nir_ssa_def *u = nir_ssa_undef(&b, 1, 32);
   1281       color = nir_vec4(&b, color_component, u, u, u);
   1282    }
   1283 
   1284    nir_store_var(&b, v.color_out, color, 0xf);
   1285 
   1286    return b.shader;
   1287 }
   1288 
   1289 static void
   1290 brw_blorp_get_blit_kernel(struct blorp_context *blorp,
   1291                           struct blorp_params *params,
   1292                           const struct brw_blorp_blit_prog_key *prog_key)
   1293 {
   1294    if (blorp->lookup_shader(blorp, prog_key, sizeof(*prog_key),
   1295                             &params->wm_prog_kernel, &params->wm_prog_data))
   1296       return;
   1297 
   1298    void *mem_ctx = ralloc_context(NULL);
   1299 
   1300    const unsigned *program;
   1301    unsigned program_size;
   1302    struct brw_wm_prog_data prog_data;
   1303 
   1304    nir_shader *nir = brw_blorp_build_nir_shader(blorp, mem_ctx, prog_key);
   1305    struct brw_wm_prog_key wm_key;
   1306    brw_blorp_init_wm_prog_key(&wm_key);
   1307    wm_key.tex.compressed_multisample_layout_mask =
   1308       prog_key->tex_aux_usage == ISL_AUX_USAGE_MCS;
   1309    wm_key.tex.msaa_16 = prog_key->tex_samples == 16;
   1310    wm_key.multisample_fbo = prog_key->rt_samples > 1;
   1311 
   1312    program = blorp_compile_fs(blorp, mem_ctx, nir, &wm_key, false,
   1313                               &prog_data, &program_size);
   1314 
   1315    blorp->upload_shader(blorp, prog_key, sizeof(*prog_key),
   1316                         program, program_size,
   1317                         &prog_data.base, sizeof(prog_data),
   1318                         &params->wm_prog_kernel, &params->wm_prog_data);
   1319 
   1320    ralloc_free(mem_ctx);
   1321 }
   1322 
   1323 static void
   1324 brw_blorp_setup_coord_transform(struct brw_blorp_coord_transform *xform,
   1325                                 GLfloat src0, GLfloat src1,
   1326                                 GLfloat dst0, GLfloat dst1,
   1327                                 bool mirror)
   1328 {
   1329    double scale = (double)(src1 - src0) / (double)(dst1 - dst0);
   1330    if (!mirror) {
   1331       /* When not mirroring a coordinate (say, X), we need:
   1332        *   src_x - src_x0 = (dst_x - dst_x0 + 0.5) * scale
   1333        * Therefore:
   1334        *   src_x = src_x0 + (dst_x - dst_x0 + 0.5) * scale
   1335        *
   1336        * blorp program uses "round toward zero" to convert the
   1337        * transformed floating point coordinates to integer coordinates,
   1338        * whereas the behaviour we actually want is "round to nearest",
   1339        * so 0.5 provides the necessary correction.
   1340        */
   1341       xform->multiplier = scale;
   1342       xform->offset = src0 + (-(double)dst0 + 0.5) * scale;
   1343    } else {
   1344       /* When mirroring X we need:
   1345        *   src_x - src_x0 = dst_x1 - dst_x - 0.5
   1346        * Therefore:
   1347        *   src_x = src_x0 + (dst_x1 -dst_x - 0.5) * scale
   1348        */
   1349       xform->multiplier = -scale;
   1350       xform->offset = src0 + ((double)dst1 - 0.5) * scale;
   1351    }
   1352 }
   1353 
   1354 static inline void
   1355 surf_get_intratile_offset_px(struct brw_blorp_surface_info *info,
   1356                              uint32_t *tile_x_px, uint32_t *tile_y_px)
   1357 {
   1358    if (info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
   1359       struct isl_extent2d px_size_sa =
   1360          isl_get_interleaved_msaa_px_size_sa(info->surf.samples);
   1361       assert(info->tile_x_sa % px_size_sa.width == 0);
   1362       assert(info->tile_y_sa % px_size_sa.height == 0);
   1363       *tile_x_px = info->tile_x_sa / px_size_sa.width;
   1364       *tile_y_px = info->tile_y_sa / px_size_sa.height;
   1365    } else {
   1366       *tile_x_px = info->tile_x_sa;
   1367       *tile_y_px = info->tile_y_sa;
   1368    }
   1369 }
   1370 
   1371 static void
   1372 surf_convert_to_single_slice(const struct isl_device *isl_dev,
   1373                              struct brw_blorp_surface_info *info)
   1374 {
   1375    /* Just bail if we have nothing to do. */
   1376    if (info->surf.dim == ISL_SURF_DIM_2D &&
   1377        info->view.base_level == 0 && info->view.base_array_layer == 0 &&
   1378        info->surf.levels == 1 && info->surf.logical_level0_px.array_len == 1)
   1379       return;
   1380 
   1381    /* If this gets triggered then we've gotten here twice which.  This
   1382     * shouldn't happen thanks to the above early return.
   1383     */
   1384    assert(info->tile_x_sa == 0 && info->tile_y_sa == 0);
   1385 
   1386    uint32_t layer = 0, z = 0;
   1387    if (info->surf.dim == ISL_SURF_DIM_3D)
   1388       z = info->view.base_array_layer + info->z_offset;
   1389    else
   1390       layer = info->view.base_array_layer;
   1391 
   1392    uint32_t x_offset_sa, y_offset_sa;
   1393    isl_surf_get_image_offset_sa(&info->surf, info->view.base_level,
   1394                                 layer, z, &x_offset_sa, &y_offset_sa);
   1395 
   1396    uint32_t byte_offset;
   1397    isl_tiling_get_intratile_offset_sa(isl_dev, info->surf.tiling,
   1398                                       info->surf.format, info->surf.row_pitch,
   1399                                       x_offset_sa, y_offset_sa,
   1400                                       &byte_offset,
   1401                                       &info->tile_x_sa, &info->tile_y_sa);
   1402    info->addr.offset += byte_offset;
   1403 
   1404    const uint32_t slice_width_px =
   1405       minify(info->surf.logical_level0_px.width, info->view.base_level);
   1406    const uint32_t slice_height_px =
   1407       minify(info->surf.logical_level0_px.height, info->view.base_level);
   1408 
   1409    uint32_t tile_x_px, tile_y_px;
   1410    surf_get_intratile_offset_px(info, &tile_x_px, &tile_y_px);
   1411 
   1412    struct isl_surf_init_info init_info = {
   1413       .dim = ISL_SURF_DIM_2D,
   1414       .format = info->surf.format,
   1415       .width = slice_width_px + tile_x_px,
   1416       .height = slice_height_px + tile_y_px,
   1417       .depth = 1,
   1418       .levels = 1,
   1419       .array_len = 1,
   1420       .samples = info->surf.samples,
   1421       .min_pitch = info->surf.row_pitch,
   1422       .usage = info->surf.usage,
   1423       .tiling_flags = 1 << info->surf.tiling,
   1424    };
   1425 
   1426    isl_surf_init_s(isl_dev, &info->surf, &init_info);
   1427    assert(info->surf.row_pitch == init_info.min_pitch);
   1428 
   1429    /* The view is also different now. */
   1430    info->view.base_level = 0;
   1431    info->view.levels = 1;
   1432    info->view.base_array_layer = 0;
   1433    info->view.array_len = 1;
   1434    info->z_offset = 0;
   1435 }
   1436 
   1437 static void
   1438 surf_fake_interleaved_msaa(const struct isl_device *isl_dev,
   1439                            struct brw_blorp_surface_info *info)
   1440 {
   1441    assert(info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED);
   1442 
   1443    /* First, we need to convert it to a simple 1-level 1-layer 2-D surface */
   1444    surf_convert_to_single_slice(isl_dev, info);
   1445 
   1446    info->surf.logical_level0_px = info->surf.phys_level0_sa;
   1447    info->surf.samples = 1;
   1448    info->surf.msaa_layout = ISL_MSAA_LAYOUT_NONE;
   1449 }
   1450 
   1451 static void
   1452 surf_retile_w_to_y(const struct isl_device *isl_dev,
   1453                    struct brw_blorp_surface_info *info)
   1454 {
   1455    assert(info->surf.tiling == ISL_TILING_W);
   1456 
   1457    /* First, we need to convert it to a simple 1-level 1-layer 2-D surface */
   1458    surf_convert_to_single_slice(isl_dev, info);
   1459 
   1460    /* On gen7+, we don't have interleaved multisampling for color render
   1461     * targets so we have to fake it.
   1462     *
   1463     * TODO: Are we sure we don't also need to fake it on gen6?
   1464     */
   1465    if (isl_dev->info->gen > 6 &&
   1466        info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
   1467       surf_fake_interleaved_msaa(isl_dev, info);
   1468    }
   1469 
   1470    if (isl_dev->info->gen == 6) {
   1471       /* Gen6 stencil buffers have a very large alignment coming in from the
   1472        * miptree.  It's out-of-bounds for what the surface state can handle.
   1473        * Since we have a single layer and level, it doesn't really matter as
   1474        * long as we don't pass a bogus value into isl_surf_fill_state().
   1475        */
   1476       info->surf.image_alignment_el = isl_extent3d(4, 2, 1);
   1477    }
   1478 
   1479    /* Now that we've converted everything to a simple 2-D surface with only
   1480     * one miplevel, we can go about retiling it.
   1481     */
   1482    const unsigned x_align = 8, y_align = info->surf.samples != 0 ? 8 : 4;
   1483    info->surf.tiling = ISL_TILING_Y0;
   1484    info->surf.logical_level0_px.width =
   1485       ALIGN(info->surf.logical_level0_px.width, x_align) * 2;
   1486    info->surf.logical_level0_px.height =
   1487       ALIGN(info->surf.logical_level0_px.height, y_align) / 2;
   1488    info->tile_x_sa *= 2;
   1489    info->tile_y_sa /= 2;
   1490 }
   1491 
   1492 static bool
   1493 can_shrink_surface(const struct brw_blorp_surface_info *surf)
   1494 {
   1495    /* The current code doesn't support offsets into the aux buffers. This
   1496     * should be possible, but we need to make sure the offset is page
   1497     * aligned for both the surface and the aux buffer surface. Generally
   1498     * this mean using the page aligned offset for the aux buffer.
   1499     *
   1500     * Currently the cases where we must split the blit are limited to cases
   1501     * where we don't have a aux buffer.
   1502     */
   1503    if (surf->aux_addr.buffer != NULL)
   1504       return false;
   1505 
   1506    /* We can't support splitting the blit for gen <= 7, because the qpitch
   1507     * size is calculated by the hardware based on the surface height for
   1508     * gen <= 7. In gen >= 8, the qpitch is controlled by the driver.
   1509     */
   1510    if (surf->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY)
   1511       return false;
   1512 
   1513    return true;
   1514 }
   1515 
   1516 static bool
   1517 can_shrink_surfaces(const struct blorp_params *params)
   1518 {
   1519    return
   1520       can_shrink_surface(&params->src) &&
   1521       can_shrink_surface(&params->dst);
   1522 }
   1523 
   1524 static unsigned
   1525 get_max_surface_size(const struct gen_device_info *devinfo,
   1526                      const struct blorp_params *params)
   1527 {
   1528    const unsigned max = devinfo->gen >= 7 ? 16384 : 8192;
   1529    if (split_blorp_blit_debug && can_shrink_surfaces(params))
   1530       return max >> 4; /* A smaller restriction when debug is enabled */
   1531    else
   1532       return max;
   1533 }
   1534 
   1535 struct blt_axis {
   1536    double src0, src1, dst0, dst1;
   1537    bool mirror;
   1538 };
   1539 
   1540 struct blt_coords {
   1541    struct blt_axis x, y;
   1542 };
   1543 
   1544 static void
   1545 surf_fake_rgb_with_red(const struct isl_device *isl_dev,
   1546                        struct brw_blorp_surface_info *info,
   1547                        uint32_t *x, uint32_t *width)
   1548 {
   1549    surf_convert_to_single_slice(isl_dev, info);
   1550 
   1551    info->surf.logical_level0_px.width *= 3;
   1552    info->surf.phys_level0_sa.width *= 3;
   1553    *x *= 3;
   1554    *width *= 3;
   1555 
   1556    enum isl_format red_format;
   1557    switch (info->view.format) {
   1558    case ISL_FORMAT_R8G8B8_UNORM:
   1559       red_format = ISL_FORMAT_R8_UNORM;
   1560       break;
   1561    case ISL_FORMAT_R8G8B8_UINT:
   1562       red_format = ISL_FORMAT_R8_UINT;
   1563       break;
   1564    case ISL_FORMAT_R16G16B16_UNORM:
   1565       red_format = ISL_FORMAT_R16_UNORM;
   1566       break;
   1567    case ISL_FORMAT_R16G16B16_UINT:
   1568       red_format = ISL_FORMAT_R16_UINT;
   1569       break;
   1570    case ISL_FORMAT_R32G32B32_UINT:
   1571       red_format = ISL_FORMAT_R32_UINT;
   1572       break;
   1573    default:
   1574       unreachable("Invalid RGB copy destination format");
   1575    }
   1576    assert(isl_format_get_layout(red_format)->channels.r.type ==
   1577           isl_format_get_layout(info->view.format)->channels.r.type);
   1578    assert(isl_format_get_layout(red_format)->channels.r.bits ==
   1579           isl_format_get_layout(info->view.format)->channels.r.bits);
   1580 
   1581    info->surf.format = info->view.format = red_format;
   1582 }
   1583 
   1584 static void
   1585 fake_dest_rgb_with_red(const struct isl_device *dev,
   1586                        struct blorp_params *params,
   1587                        struct brw_blorp_blit_prog_key *wm_prog_key,
   1588                        struct blt_coords *coords)
   1589 {
   1590    /* Handle RGB destinations for blorp_copy */
   1591    const struct isl_format_layout *dst_fmtl =
   1592       isl_format_get_layout(params->dst.surf.format);
   1593 
   1594    if (dst_fmtl->bpb % 3 == 0) {
   1595       uint32_t dst_x = coords->x.dst0;
   1596       uint32_t dst_width = coords->x.dst1 - dst_x;
   1597       surf_fake_rgb_with_red(dev, &params->dst,
   1598                              &dst_x, &dst_width);
   1599       coords->x.dst0 = dst_x;
   1600       coords->x.dst1 = dst_x + dst_width;
   1601       wm_prog_key->dst_rgb = true;
   1602       wm_prog_key->need_dst_offset = true;
   1603    }
   1604 }
   1605 
   1606 enum blit_shrink_status {
   1607    BLIT_NO_SHRINK = 0,
   1608    BLIT_WIDTH_SHRINK = 1,
   1609    BLIT_HEIGHT_SHRINK = 2,
   1610 };
   1611 
   1612 /* Try to blit. If the surface parameters exceed the size allowed by hardware,
   1613  * then enum blit_shrink_status will be returned. If BLIT_NO_SHRINK is
   1614  * returned, then the blit was successful.
   1615  */
   1616 static enum blit_shrink_status
   1617 try_blorp_blit(struct blorp_batch *batch,
   1618                struct blorp_params *params,
   1619                struct brw_blorp_blit_prog_key *wm_prog_key,
   1620                struct blt_coords *coords)
   1621 {
   1622    const struct gen_device_info *devinfo = batch->blorp->isl_dev->info;
   1623 
   1624    fake_dest_rgb_with_red(batch->blorp->isl_dev, params, wm_prog_key, coords);
   1625 
   1626    if (isl_format_has_sint_channel(params->src.view.format)) {
   1627       wm_prog_key->texture_data_type = nir_type_int;
   1628    } else if (isl_format_has_uint_channel(params->src.view.format)) {
   1629       wm_prog_key->texture_data_type = nir_type_uint;
   1630    } else {
   1631       wm_prog_key->texture_data_type = nir_type_float;
   1632    }
   1633 
   1634    /* src_samples and dst_samples are the true sample counts */
   1635    wm_prog_key->src_samples = params->src.surf.samples;
   1636    wm_prog_key->dst_samples = params->dst.surf.samples;
   1637 
   1638    wm_prog_key->tex_aux_usage = params->src.aux_usage;
   1639 
   1640    /* src_layout and dst_layout indicate the true MSAA layout used by src and
   1641     * dst.
   1642     */
   1643    wm_prog_key->src_layout = params->src.surf.msaa_layout;
   1644    wm_prog_key->dst_layout = params->dst.surf.msaa_layout;
   1645 
   1646    /* Round floating point values to nearest integer to avoid "off by one texel"
   1647     * kind of errors when blitting.
   1648     */
   1649    params->x0 = params->wm_inputs.discard_rect.x0 = round(coords->x.dst0);
   1650    params->y0 = params->wm_inputs.discard_rect.y0 = round(coords->y.dst0);
   1651    params->x1 = params->wm_inputs.discard_rect.x1 = round(coords->x.dst1);
   1652    params->y1 = params->wm_inputs.discard_rect.y1 = round(coords->y.dst1);
   1653 
   1654    brw_blorp_setup_coord_transform(&params->wm_inputs.coord_transform[0],
   1655                                    coords->x.src0, coords->x.src1,
   1656                                    coords->x.dst0, coords->x.dst1,
   1657                                    coords->x.mirror);
   1658    brw_blorp_setup_coord_transform(&params->wm_inputs.coord_transform[1],
   1659                                    coords->y.src0, coords->y.src1,
   1660                                    coords->y.dst0, coords->y.dst1,
   1661                                    coords->y.mirror);
   1662 
   1663    if (devinfo->gen > 6 &&
   1664        params->dst.surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
   1665       assert(params->dst.surf.samples > 1);
   1666 
   1667       /* We must expand the rectangle we send through the rendering pipeline,
   1668        * to account for the fact that we are mapping the destination region as
   1669        * single-sampled when it is in fact multisampled.  We must also align
   1670        * it to a multiple of the multisampling pattern, because the
   1671        * differences between multisampled and single-sampled surface formats
   1672        * will mean that pixels are scrambled within the multisampling pattern.
   1673        * TODO: what if this makes the coordinates too large?
   1674        *
   1675        * Note: this only works if the destination surface uses the IMS layout.
   1676        * If it's UMS, then we have no choice but to set up the rendering
   1677        * pipeline as multisampled.
   1678        */
   1679       struct isl_extent2d px_size_sa =
   1680          isl_get_interleaved_msaa_px_size_sa(params->dst.surf.samples);
   1681       params->x0 = ROUND_DOWN_TO(params->x0, 2) * px_size_sa.width;
   1682       params->y0 = ROUND_DOWN_TO(params->y0, 2) * px_size_sa.height;
   1683       params->x1 = ALIGN(params->x1, 2) * px_size_sa.width;
   1684       params->y1 = ALIGN(params->y1, 2) * px_size_sa.height;
   1685 
   1686       surf_fake_interleaved_msaa(batch->blorp->isl_dev, &params->dst);
   1687 
   1688       wm_prog_key->use_kill = true;
   1689       wm_prog_key->need_dst_offset = true;
   1690    }
   1691 
   1692    if (params->dst.surf.tiling == ISL_TILING_W) {
   1693       /* We must modify the rectangle we send through the rendering pipeline
   1694        * (and the size and x/y offset of the destination surface), to account
   1695        * for the fact that we are mapping it as Y-tiled when it is in fact
   1696        * W-tiled.
   1697        *
   1698        * Both Y tiling and W tiling can be understood as organizations of
   1699        * 32-byte sub-tiles; within each 32-byte sub-tile, the layout of pixels
   1700        * is different, but the layout of the 32-byte sub-tiles within the 4k
   1701        * tile is the same (8 sub-tiles across by 16 sub-tiles down, in
   1702        * column-major order).  In Y tiling, the sub-tiles are 16 bytes wide
   1703        * and 2 rows high; in W tiling, they are 8 bytes wide and 4 rows high.
   1704        *
   1705        * Therefore, to account for the layout differences within the 32-byte
   1706        * sub-tiles, we must expand the rectangle so the X coordinates of its
   1707        * edges are multiples of 8 (the W sub-tile width), and its Y
   1708        * coordinates of its edges are multiples of 4 (the W sub-tile height).
   1709        * Then we need to scale the X and Y coordinates of the rectangle to
   1710        * account for the differences in aspect ratio between the Y and W
   1711        * sub-tiles.  We need to modify the layer width and height similarly.
   1712        *
   1713        * A correction needs to be applied when MSAA is in use: since
   1714        * INTEL_MSAA_LAYOUT_IMS uses an interleaving pattern whose height is 4,
   1715        * we need to align the Y coordinates to multiples of 8, so that when
   1716        * they are divided by two they are still multiples of 4.
   1717        *
   1718        * Note: Since the x/y offset of the surface will be applied using the
   1719        * SURFACE_STATE command packet, it will be invisible to the swizzling
   1720        * code in the shader; therefore it needs to be in a multiple of the
   1721        * 32-byte sub-tile size.  Fortunately it is, since the sub-tile is 8
   1722        * pixels wide and 4 pixels high (when viewed as a W-tiled stencil
   1723        * buffer), and the miplevel alignment used for stencil buffers is 8
   1724        * pixels horizontally and either 4 or 8 pixels vertically (see
   1725        * intel_horizontal_texture_alignment_unit() and
   1726        * intel_vertical_texture_alignment_unit()).
   1727        *
   1728        * Note: Also, since the SURFACE_STATE command packet can only apply
   1729        * offsets that are multiples of 4 pixels horizontally and 2 pixels
   1730        * vertically, it is important that the offsets will be multiples of
   1731        * these sizes after they are converted into Y-tiled coordinates.
   1732        * Fortunately they will be, since we know from above that the offsets
   1733        * are a multiple of the 32-byte sub-tile size, and in Y-tiled
   1734        * coordinates the sub-tile is 16 pixels wide and 2 pixels high.
   1735        *
   1736        * TODO: what if this makes the coordinates (or the texture size) too
   1737        * large?
   1738        */
   1739       const unsigned x_align = 8;
   1740       const unsigned y_align = params->dst.surf.samples != 0 ? 8 : 4;
   1741       params->x0 = ROUND_DOWN_TO(params->x0, x_align) * 2;
   1742       params->y0 = ROUND_DOWN_TO(params->y0, y_align) / 2;
   1743       params->x1 = ALIGN(params->x1, x_align) * 2;
   1744       params->y1 = ALIGN(params->y1, y_align) / 2;
   1745 
   1746       /* Retile the surface to Y-tiled */
   1747       surf_retile_w_to_y(batch->blorp->isl_dev, &params->dst);
   1748 
   1749       wm_prog_key->dst_tiled_w = true;
   1750       wm_prog_key->use_kill = true;
   1751       wm_prog_key->need_dst_offset = true;
   1752 
   1753       if (params->dst.surf.samples > 1) {
   1754          /* If the destination surface is a W-tiled multisampled stencil
   1755           * buffer that we're mapping as Y tiled, then we need to arrange for
   1756           * the WM program to run once per sample rather than once per pixel,
   1757           * because the memory layout of related samples doesn't match between
   1758           * W and Y tiling.
   1759           */
   1760          wm_prog_key->persample_msaa_dispatch = true;
   1761       }
   1762    }
   1763 
   1764    if (devinfo->gen < 8 && params->src.surf.tiling == ISL_TILING_W) {
   1765       /* On Haswell and earlier, we have to fake W-tiled sources as Y-tiled.
   1766        * Broadwell adds support for sampling from stencil.
   1767        *
   1768        * See the comments above concerning x/y offset alignment for the
   1769        * destination surface.
   1770        *
   1771        * TODO: what if this makes the texture size too large?
   1772        */
   1773       surf_retile_w_to_y(batch->blorp->isl_dev, &params->src);
   1774 
   1775       wm_prog_key->src_tiled_w = true;
   1776       wm_prog_key->need_src_offset = true;
   1777    }
   1778 
   1779    /* tex_samples and rt_samples are the sample counts that are set up in
   1780     * SURFACE_STATE.
   1781     */
   1782    wm_prog_key->tex_samples = params->src.surf.samples;
   1783    wm_prog_key->rt_samples  = params->dst.surf.samples;
   1784 
   1785    /* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will
   1786     * use to access the source and destination surfaces.
   1787     */
   1788    wm_prog_key->tex_layout = params->src.surf.msaa_layout;
   1789    wm_prog_key->rt_layout = params->dst.surf.msaa_layout;
   1790 
   1791    if (params->src.surf.samples > 0 && params->dst.surf.samples > 1) {
   1792       /* We are blitting from a multisample buffer to a multisample buffer, so
   1793        * we must preserve samples within a pixel.  This means we have to
   1794        * arrange for the WM program to run once per sample rather than once
   1795        * per pixel.
   1796        */
   1797       wm_prog_key->persample_msaa_dispatch = true;
   1798    }
   1799 
   1800    params->num_samples = params->dst.surf.samples;
   1801 
   1802    if (params->src.tile_x_sa || params->src.tile_y_sa) {
   1803       assert(wm_prog_key->need_src_offset);
   1804       surf_get_intratile_offset_px(&params->src,
   1805                                    &params->wm_inputs.src_offset.x,
   1806                                    &params->wm_inputs.src_offset.y);
   1807    }
   1808 
   1809    if (params->dst.tile_x_sa || params->dst.tile_y_sa) {
   1810       assert(wm_prog_key->need_dst_offset);
   1811       surf_get_intratile_offset_px(&params->dst,
   1812                                    &params->wm_inputs.dst_offset.x,
   1813                                    &params->wm_inputs.dst_offset.y);
   1814       params->x0 += params->wm_inputs.dst_offset.x;
   1815       params->y0 += params->wm_inputs.dst_offset.y;
   1816       params->x1 += params->wm_inputs.dst_offset.x;
   1817       params->y1 += params->wm_inputs.dst_offset.y;
   1818    }
   1819 
   1820    /* For some texture types, we need to pass the layer through the sampler. */
   1821    params->wm_inputs.src_z = params->src.z_offset;
   1822 
   1823    brw_blorp_get_blit_kernel(batch->blorp, params, wm_prog_key);
   1824 
   1825    unsigned result = 0;
   1826    unsigned max_surface_size = get_max_surface_size(devinfo, params);
   1827    if (params->src.surf.logical_level0_px.width > max_surface_size ||
   1828        params->dst.surf.logical_level0_px.width > max_surface_size)
   1829       result |= BLIT_WIDTH_SHRINK;
   1830    if (params->src.surf.logical_level0_px.height > max_surface_size ||
   1831        params->dst.surf.logical_level0_px.height > max_surface_size)
   1832       result |= BLIT_HEIGHT_SHRINK;
   1833 
   1834    if (result == 0) {
   1835       batch->blorp->exec(batch, params);
   1836    }
   1837 
   1838    return result;
   1839 }
   1840 
   1841 /* Adjust split blit source coordinates for the current destination
   1842  * coordinates.
   1843  */
   1844 static void
   1845 adjust_split_source_coords(const struct blt_axis *orig,
   1846                            struct blt_axis *split_coords,
   1847                            double scale)
   1848 {
   1849    /* When scale is greater than 0, then we are growing from the start, so
   1850     * src0 uses delta0, and src1 uses delta1. When scale is less than 0, the
   1851     * source range shrinks from the end. In that case src0 is adjusted by
   1852     * delta1, and src1 is adjusted by delta0.
   1853     */
   1854    double delta0 = scale * (split_coords->dst0 - orig->dst0);
   1855    double delta1 = scale * (split_coords->dst1 - orig->dst1);
   1856    split_coords->src0 = orig->src0 + (scale >= 0.0 ? delta0 : delta1);
   1857    split_coords->src1 = orig->src1 + (scale >= 0.0 ? delta1 : delta0);
   1858 }
   1859 
   1860 static const struct isl_extent2d
   1861 get_px_size_sa(const struct isl_surf *surf)
   1862 {
   1863    static const struct isl_extent2d one_to_one = { .w = 1, .h = 1 };
   1864 
   1865    if (surf->msaa_layout != ISL_MSAA_LAYOUT_INTERLEAVED)
   1866       return one_to_one;
   1867    else
   1868       return isl_get_interleaved_msaa_px_size_sa(surf->samples);
   1869 }
   1870 
   1871 static void
   1872 shrink_surface_params(const struct isl_device *dev,
   1873                       struct brw_blorp_surface_info *info,
   1874                       double *x0, double *x1, double *y0, double *y1)
   1875 {
   1876    uint32_t byte_offset, x_offset_sa, y_offset_sa, size;
   1877    struct isl_extent2d px_size_sa;
   1878    int adjust;
   1879 
   1880    surf_convert_to_single_slice(dev, info);
   1881 
   1882    px_size_sa = get_px_size_sa(&info->surf);
   1883 
   1884    /* Because this gets called after we lower compressed images, the tile
   1885     * offsets may be non-zero and we need to incorporate them in our
   1886     * calculations.
   1887     */
   1888    x_offset_sa = (uint32_t)*x0 * px_size_sa.w + info->tile_x_sa;
   1889    y_offset_sa = (uint32_t)*y0 * px_size_sa.h + info->tile_y_sa;
   1890    isl_tiling_get_intratile_offset_sa(dev, info->surf.tiling,
   1891                                       info->surf.format, info->surf.row_pitch,
   1892                                       x_offset_sa, y_offset_sa,
   1893                                       &byte_offset,
   1894                                       &info->tile_x_sa, &info->tile_y_sa);
   1895 
   1896    info->addr.offset += byte_offset;
   1897 
   1898    adjust = (int)info->tile_x_sa / px_size_sa.w - (int)*x0;
   1899    *x0 += adjust;
   1900    *x1 += adjust;
   1901    info->tile_x_sa = 0;
   1902 
   1903    adjust = (int)info->tile_y_sa / px_size_sa.h - (int)*y0;
   1904    *y0 += adjust;
   1905    *y1 += adjust;
   1906    info->tile_y_sa = 0;
   1907 
   1908    size = MIN2((uint32_t)ceil(*x1), info->surf.logical_level0_px.width);
   1909    info->surf.logical_level0_px.width = size;
   1910    info->surf.phys_level0_sa.width = size * px_size_sa.w;
   1911 
   1912    size = MIN2((uint32_t)ceil(*y1), info->surf.logical_level0_px.height);
   1913    info->surf.logical_level0_px.height = size;
   1914    info->surf.phys_level0_sa.height = size * px_size_sa.h;
   1915 }
   1916 
   1917 static void
   1918 shrink_surfaces(const struct isl_device *dev,
   1919                 struct blorp_params *params,
   1920                 struct brw_blorp_blit_prog_key *wm_prog_key,
   1921                 struct blt_coords *coords)
   1922 {
   1923    /* Shrink source surface */
   1924    shrink_surface_params(dev, &params->src, &coords->x.src0, &coords->x.src1,
   1925                          &coords->y.src0, &coords->y.src1);
   1926    wm_prog_key->need_src_offset = false;
   1927 
   1928    /* Shrink destination surface */
   1929    shrink_surface_params(dev, &params->dst, &coords->x.dst0, &coords->x.dst1,
   1930                          &coords->y.dst0, &coords->y.dst1);
   1931    wm_prog_key->need_dst_offset = false;
   1932 }
   1933 
   1934 static void
   1935 do_blorp_blit(struct blorp_batch *batch,
   1936               const struct blorp_params *orig_params,
   1937               struct brw_blorp_blit_prog_key *wm_prog_key,
   1938               const struct blt_coords *orig)
   1939 {
   1940    struct blorp_params params;
   1941    struct blt_coords blit_coords;
   1942    struct blt_coords split_coords = *orig;
   1943    double w = orig->x.dst1 - orig->x.dst0;
   1944    double h = orig->y.dst1 - orig->y.dst0;
   1945    double x_scale = (orig->x.src1 - orig->x.src0) / w;
   1946    double y_scale = (orig->y.src1 - orig->y.src0) / h;
   1947    if (orig->x.mirror)
   1948       x_scale = -x_scale;
   1949    if (orig->y.mirror)
   1950       y_scale = -y_scale;
   1951 
   1952    bool x_done, y_done;
   1953    bool shrink = split_blorp_blit_debug && can_shrink_surfaces(orig_params);
   1954    do {
   1955       params = *orig_params;
   1956       blit_coords = split_coords;
   1957       if (shrink)
   1958          shrink_surfaces(batch->blorp->isl_dev, &params, wm_prog_key,
   1959                          &blit_coords);
   1960       enum blit_shrink_status result =
   1961          try_blorp_blit(batch, &params, wm_prog_key, &blit_coords);
   1962 
   1963       if (result & BLIT_WIDTH_SHRINK) {
   1964          w /= 2.0;
   1965          assert(w >= 1.0);
   1966          split_coords.x.dst1 = MIN2(split_coords.x.dst0 + w, orig->x.dst1);
   1967          adjust_split_source_coords(&orig->x, &split_coords.x, x_scale);
   1968       }
   1969       if (result & BLIT_HEIGHT_SHRINK) {
   1970          h /= 2.0;
   1971          assert(h >= 1.0);
   1972          split_coords.y.dst1 = MIN2(split_coords.y.dst0 + h, orig->y.dst1);
   1973          adjust_split_source_coords(&orig->y, &split_coords.y, y_scale);
   1974       }
   1975 
   1976       if (result != 0) {
   1977          assert(can_shrink_surfaces(orig_params));
   1978          shrink = true;
   1979          continue;
   1980       }
   1981 
   1982       y_done = (orig->y.dst1 - split_coords.y.dst1 < 0.5);
   1983       x_done = y_done && (orig->x.dst1 - split_coords.x.dst1 < 0.5);
   1984       if (x_done) {
   1985          break;
   1986       } else if (y_done) {
   1987          split_coords.x.dst0 += w;
   1988          split_coords.x.dst1 = MIN2(split_coords.x.dst0 + w, orig->x.dst1);
   1989          split_coords.y.dst0 = orig->y.dst0;
   1990          split_coords.y.dst1 = MIN2(split_coords.y.dst0 + h, orig->y.dst1);
   1991          adjust_split_source_coords(&orig->x, &split_coords.x, x_scale);
   1992       } else {
   1993          split_coords.y.dst0 += h;
   1994          split_coords.y.dst1 = MIN2(split_coords.y.dst0 + h, orig->y.dst1);
   1995          adjust_split_source_coords(&orig->y, &split_coords.y, y_scale);
   1996       }
   1997    } while (true);
   1998 }
   1999 
   2000 void
   2001 blorp_blit(struct blorp_batch *batch,
   2002            const struct blorp_surf *src_surf,
   2003            unsigned src_level, unsigned src_layer,
   2004            enum isl_format src_format, struct isl_swizzle src_swizzle,
   2005            const struct blorp_surf *dst_surf,
   2006            unsigned dst_level, unsigned dst_layer,
   2007            enum isl_format dst_format, struct isl_swizzle dst_swizzle,
   2008            float src_x0, float src_y0,
   2009            float src_x1, float src_y1,
   2010            float dst_x0, float dst_y0,
   2011            float dst_x1, float dst_y1,
   2012            GLenum filter, bool mirror_x, bool mirror_y)
   2013 {
   2014    struct blorp_params params;
   2015    blorp_params_init(&params);
   2016 
   2017    brw_blorp_surface_info_init(batch->blorp, &params.src, src_surf, src_level,
   2018                                src_layer, src_format, false);
   2019    brw_blorp_surface_info_init(batch->blorp, &params.dst, dst_surf, dst_level,
   2020                                dst_layer, dst_format, true);
   2021 
   2022    params.src.view.swizzle = src_swizzle;
   2023    params.dst.view.swizzle = dst_swizzle;
   2024 
   2025    struct brw_blorp_blit_prog_key wm_prog_key = {
   2026       .shader_type = BLORP_SHADER_TYPE_BLIT
   2027    };
   2028 
   2029    /* Scaled blitting or not. */
   2030    wm_prog_key.blit_scaled =
   2031       ((dst_x1 - dst_x0) == (src_x1 - src_x0) &&
   2032        (dst_y1 - dst_y0) == (src_y1 - src_y0)) ? false : true;
   2033 
   2034    /* Scaling factors used for bilinear filtering in multisample scaled
   2035     * blits.
   2036     */
   2037    if (params.src.surf.samples == 16)
   2038       wm_prog_key.x_scale = 4.0f;
   2039    else
   2040       wm_prog_key.x_scale = 2.0f;
   2041    wm_prog_key.y_scale = params.src.surf.samples / wm_prog_key.x_scale;
   2042 
   2043    if (filter == GL_LINEAR &&
   2044        params.src.surf.samples <= 1 && params.dst.surf.samples <= 1)
   2045       wm_prog_key.bilinear_filter = true;
   2046 
   2047    if ((params.src.surf.usage & ISL_SURF_USAGE_DEPTH_BIT) == 0 &&
   2048        (params.src.surf.usage & ISL_SURF_USAGE_STENCIL_BIT) == 0 &&
   2049        !isl_format_has_int_channel(params.src.surf.format) &&
   2050        params.src.surf.samples > 1 && params.dst.surf.samples <= 1) {
   2051       /* We are downsampling a non-integer color buffer, so blend.
   2052        *
   2053        * Regarding integer color buffers, the OpenGL ES 3.2 spec says:
   2054        *
   2055        *    "If the source formats are integer types or stencil values, a
   2056        *    single sample's value is selected for each pixel."
   2057        *
   2058        * This implies we should not blend in that case.
   2059        */
   2060       wm_prog_key.blend = true;
   2061    }
   2062 
   2063    params.wm_inputs.rect_grid.x1 =
   2064       minify(params.src.surf.logical_level0_px.width, src_level) *
   2065       wm_prog_key.x_scale - 1.0f;
   2066    params.wm_inputs.rect_grid.y1 =
   2067       minify(params.src.surf.logical_level0_px.height, src_level) *
   2068       wm_prog_key.y_scale - 1.0f;
   2069 
   2070    struct blt_coords coords = {
   2071       .x = {
   2072          .src0 = src_x0,
   2073          .src1 = src_x1,
   2074          .dst0 = dst_x0,
   2075          .dst1 = dst_x1,
   2076          .mirror = mirror_x
   2077       },
   2078       .y = {
   2079          .src0 = src_y0,
   2080          .src1 = src_y1,
   2081          .dst0 = dst_y0,
   2082          .dst1 = dst_y1,
   2083          .mirror = mirror_y
   2084       }
   2085    };
   2086 
   2087    do_blorp_blit(batch, &params, &wm_prog_key, &coords);
   2088 }
   2089 
   2090 static enum isl_format
   2091 get_copy_format_for_bpb(const struct isl_device *isl_dev, unsigned bpb)
   2092 {
   2093    /* The choice of UNORM and UINT formats is very intentional here.  Most
   2094     * of the time, we want to use a UINT format to avoid any rounding error
   2095     * in the blit.  For stencil blits, R8_UINT is required by the hardware.
   2096     * (It's the only format allowed in conjunction with W-tiling.)  Also we
   2097     * intentionally use the 4-channel formats whenever we can.  This is so
   2098     * that, when we do a RGB <-> RGBX copy, the two formats will line up
   2099     * even though one of them is 3/4 the size of the other.  The choice of
   2100     * UNORM vs. UINT is also very intentional because we don't have 8 or
   2101     * 16-bit RGB UINT formats until Sky Lake so we have to use UNORM there.
   2102     * Fortunately, the only time we should ever use two different formats in
   2103     * the table below is for RGB -> RGBA blits and so we will never have any
   2104     * UNORM/UINT mismatch.
   2105     */
   2106    if (ISL_DEV_GEN(isl_dev) >= 9) {
   2107       switch (bpb) {
   2108       case 8:  return ISL_FORMAT_R8_UINT;
   2109       case 16: return ISL_FORMAT_R8G8_UINT;
   2110       case 24: return ISL_FORMAT_R8G8B8_UINT;
   2111       case 32: return ISL_FORMAT_R8G8B8A8_UINT;
   2112       case 48: return ISL_FORMAT_R16G16B16_UINT;
   2113       case 64: return ISL_FORMAT_R16G16B16A16_UINT;
   2114       case 96: return ISL_FORMAT_R32G32B32_UINT;
   2115       case 128:return ISL_FORMAT_R32G32B32A32_UINT;
   2116       default:
   2117          unreachable("Unknown format bpb");
   2118       }
   2119    } else {
   2120       switch (bpb) {
   2121       case 8:  return ISL_FORMAT_R8_UINT;
   2122       case 16: return ISL_FORMAT_R8G8_UINT;
   2123       case 24: return ISL_FORMAT_R8G8B8_UNORM;
   2124       case 32: return ISL_FORMAT_R8G8B8A8_UNORM;
   2125       case 48: return ISL_FORMAT_R16G16B16_UNORM;
   2126       case 64: return ISL_FORMAT_R16G16B16A16_UNORM;
   2127       case 96: return ISL_FORMAT_R32G32B32_UINT;
   2128       case 128:return ISL_FORMAT_R32G32B32A32_UINT;
   2129       default:
   2130          unreachable("Unknown format bpb");
   2131       }
   2132    }
   2133 }
   2134 
   2135 /** Returns a UINT format that is CCS-compatible with the given format
   2136  *
   2137  * The PRM's say absolutely nothing about how render compression works.  The
   2138  * only thing they provide is a list of formats on which it is and is not
   2139  * supported.  Empirical testing indicates that the compression is only based
   2140  * on the bit-layout of the format and the channel encoding doesn't matter.
   2141  * So, while texture views don't work in general, you can create a view as
   2142  * long as the bit-layout of the formats are the same.
   2143  *
   2144  * Fortunately, for every render compression capable format, the UINT format
   2145  * with the same bit layout also supports render compression.  This means that
   2146  * we only need to handle UINT formats for copy operations.  In order to do
   2147  * copies between formats with different bit layouts, we attach both with a
   2148  * UINT format and use bit_cast_color() to generate code to do the bit-cast
   2149  * operation between the two bit layouts.
   2150  */
   2151 static enum isl_format
   2152 get_ccs_compatible_uint_format(const struct isl_format_layout *fmtl)
   2153 {
   2154    switch (fmtl->format) {
   2155    case ISL_FORMAT_R32G32B32A32_FLOAT:
   2156    case ISL_FORMAT_R32G32B32A32_SINT:
   2157    case ISL_FORMAT_R32G32B32A32_UINT:
   2158    case ISL_FORMAT_R32G32B32A32_UNORM:
   2159    case ISL_FORMAT_R32G32B32A32_SNORM:
   2160       return ISL_FORMAT_R32G32B32A32_UINT;
   2161 
   2162    case ISL_FORMAT_R16G16B16A16_UNORM:
   2163    case ISL_FORMAT_R16G16B16A16_SNORM:
   2164    case ISL_FORMAT_R16G16B16A16_SINT:
   2165    case ISL_FORMAT_R16G16B16A16_UINT:
   2166    case ISL_FORMAT_R16G16B16A16_FLOAT:
   2167    case ISL_FORMAT_R16G16B16X16_UNORM:
   2168    case ISL_FORMAT_R16G16B16X16_FLOAT:
   2169       return ISL_FORMAT_R16G16B16A16_UINT;
   2170 
   2171    case ISL_FORMAT_R32G32_FLOAT:
   2172    case ISL_FORMAT_R32G32_SINT:
   2173    case ISL_FORMAT_R32G32_UINT:
   2174    case ISL_FORMAT_R32G32_UNORM:
   2175    case ISL_FORMAT_R32G32_SNORM:
   2176       return ISL_FORMAT_R32G32_UINT;
   2177 
   2178    case ISL_FORMAT_B8G8R8A8_UNORM:
   2179    case ISL_FORMAT_B8G8R8A8_UNORM_SRGB:
   2180    case ISL_FORMAT_R8G8B8A8_UNORM:
   2181    case ISL_FORMAT_R8G8B8A8_UNORM_SRGB:
   2182    case ISL_FORMAT_R8G8B8A8_SNORM:
   2183    case ISL_FORMAT_R8G8B8A8_SINT:
   2184    case ISL_FORMAT_R8G8B8A8_UINT:
   2185    case ISL_FORMAT_B8G8R8X8_UNORM:
   2186    case ISL_FORMAT_B8G8R8X8_UNORM_SRGB:
   2187    case ISL_FORMAT_R8G8B8X8_UNORM:
   2188    case ISL_FORMAT_R8G8B8X8_UNORM_SRGB:
   2189       return ISL_FORMAT_R8G8B8A8_UINT;
   2190 
   2191    case ISL_FORMAT_R16G16_UNORM:
   2192    case ISL_FORMAT_R16G16_SNORM:
   2193    case ISL_FORMAT_R16G16_SINT:
   2194    case ISL_FORMAT_R16G16_UINT:
   2195    case ISL_FORMAT_R16G16_FLOAT:
   2196       return ISL_FORMAT_R16G16_UINT;
   2197 
   2198    case ISL_FORMAT_R32_SINT:
   2199    case ISL_FORMAT_R32_UINT:
   2200    case ISL_FORMAT_R32_FLOAT:
   2201    case ISL_FORMAT_R32_UNORM:
   2202    case ISL_FORMAT_R32_SNORM:
   2203       return ISL_FORMAT_R32_UINT;
   2204 
   2205    default:
   2206       unreachable("Not a compressible format");
   2207    }
   2208 }
   2209 
   2210 /* Takes an isl_color_value and returns a color value that is the original
   2211  * color value only bit-casted to a UINT format.  This value, together with
   2212  * the format from get_ccs_compatible_uint_format, will yield the same bit
   2213  * value as the original color and format.
   2214  */
   2215 static union isl_color_value
   2216 bitcast_color_value_to_uint(union isl_color_value color,
   2217                             const struct isl_format_layout *fmtl)
   2218 {
   2219    /* All CCS formats have the same number of bits in each channel */
   2220    const struct isl_channel_layout *chan = &fmtl->channels.r;
   2221 
   2222    union isl_color_value bits;
   2223    switch (chan->type) {
   2224    case ISL_UINT:
   2225    case ISL_SINT:
   2226       /* Hardware will ignore the high bits so there's no need to cast */
   2227       bits = color;
   2228       break;
   2229 
   2230    case ISL_UNORM:
   2231       for (unsigned i = 0; i < 4; i++)
   2232          bits.u32[i] = _mesa_float_to_unorm(color.f32[i], chan->bits);
   2233       break;
   2234 
   2235    case ISL_SNORM:
   2236       for (unsigned i = 0; i < 4; i++)
   2237          bits.i32[i] = _mesa_float_to_snorm(color.f32[i], chan->bits);
   2238       break;
   2239 
   2240    case ISL_SFLOAT:
   2241       switch (chan->bits) {
   2242       case 16:
   2243          for (unsigned i = 0; i < 4; i++)
   2244             bits.u32[i] = _mesa_float_to_half(color.f32[i]);
   2245          break;
   2246 
   2247       case 32:
   2248          bits = color;
   2249          break;
   2250 
   2251       default:
   2252          unreachable("Invalid float format size");
   2253       }
   2254       break;
   2255 
   2256    default:
   2257       unreachable("Invalid channel type");
   2258    }
   2259 
   2260    switch (fmtl->format) {
   2261    case ISL_FORMAT_B8G8R8A8_UNORM:
   2262    case ISL_FORMAT_B8G8R8A8_UNORM_SRGB:
   2263    case ISL_FORMAT_B8G8R8X8_UNORM:
   2264    case ISL_FORMAT_B8G8R8X8_UNORM_SRGB: {
   2265       /* If it's a BGRA format, we need to swap blue and red */
   2266       uint32_t tmp = bits.u32[0];
   2267       bits.u32[0] = bits.u32[2];
   2268       bits.u32[2] = tmp;
   2269       break;
   2270    }
   2271 
   2272    default:
   2273       break; /* Nothing to do */
   2274    }
   2275 
   2276    return bits;
   2277 }
   2278 
   2279 static void
   2280 surf_convert_to_uncompressed(const struct isl_device *isl_dev,
   2281                              struct brw_blorp_surface_info *info,
   2282                              uint32_t *x, uint32_t *y,
   2283                              uint32_t *width, uint32_t *height)
   2284 {
   2285    const struct isl_format_layout *fmtl =
   2286       isl_format_get_layout(info->surf.format);
   2287 
   2288    assert(fmtl->bw > 1 || fmtl->bh > 1);
   2289 
   2290    /* This is a compressed surface.  We need to convert it to a single
   2291     * slice (because compressed layouts don't perfectly match uncompressed
   2292     * ones with the same bpb) and divide x, y, width, and height by the
   2293     * block size.
   2294     */
   2295    surf_convert_to_single_slice(isl_dev, info);
   2296 
   2297    if (width || height) {
   2298 #ifndef NDEBUG
   2299       uint32_t right_edge_px = info->tile_x_sa + *x + *width;
   2300       uint32_t bottom_edge_px = info->tile_y_sa + *y + *height;
   2301       assert(*width % fmtl->bw == 0 ||
   2302              right_edge_px == info->surf.logical_level0_px.width);
   2303       assert(*height % fmtl->bh == 0 ||
   2304              bottom_edge_px == info->surf.logical_level0_px.height);
   2305 #endif
   2306       *width = DIV_ROUND_UP(*width, fmtl->bw);
   2307       *height = DIV_ROUND_UP(*height, fmtl->bh);
   2308    }
   2309 
   2310    assert(*x % fmtl->bw == 0);
   2311    assert(*y % fmtl->bh == 0);
   2312    *x /= fmtl->bw;
   2313    *y /= fmtl->bh;
   2314 
   2315    info->surf.logical_level0_px.width =
   2316       DIV_ROUND_UP(info->surf.logical_level0_px.width, fmtl->bw);
   2317    info->surf.logical_level0_px.height =
   2318       DIV_ROUND_UP(info->surf.logical_level0_px.height, fmtl->bh);
   2319 
   2320    assert(info->surf.phys_level0_sa.width % fmtl->bw == 0);
   2321    assert(info->surf.phys_level0_sa.height % fmtl->bh == 0);
   2322    info->surf.phys_level0_sa.width /= fmtl->bw;
   2323    info->surf.phys_level0_sa.height /= fmtl->bh;
   2324 
   2325    assert(info->tile_x_sa % fmtl->bw == 0);
   2326    assert(info->tile_y_sa % fmtl->bh == 0);
   2327    info->tile_x_sa /= fmtl->bw;
   2328    info->tile_y_sa /= fmtl->bh;
   2329 
   2330    /* It's now an uncompressed surface so we need an uncompressed format */
   2331    info->surf.format = get_copy_format_for_bpb(isl_dev, fmtl->bpb);
   2332 }
   2333 
   2334 void
   2335 blorp_copy(struct blorp_batch *batch,
   2336            const struct blorp_surf *src_surf,
   2337            unsigned src_level, unsigned src_layer,
   2338            const struct blorp_surf *dst_surf,
   2339            unsigned dst_level, unsigned dst_layer,
   2340            uint32_t src_x, uint32_t src_y,
   2341            uint32_t dst_x, uint32_t dst_y,
   2342            uint32_t src_width, uint32_t src_height)
   2343 {
   2344    const struct isl_device *isl_dev = batch->blorp->isl_dev;
   2345    struct blorp_params params;
   2346 
   2347    if (src_width == 0 || src_height == 0)
   2348       return;
   2349 
   2350    blorp_params_init(&params);
   2351    brw_blorp_surface_info_init(batch->blorp, &params.src, src_surf, src_level,
   2352                                src_layer, ISL_FORMAT_UNSUPPORTED, false);
   2353    brw_blorp_surface_info_init(batch->blorp, &params.dst, dst_surf, dst_level,
   2354                                dst_layer, ISL_FORMAT_UNSUPPORTED, true);
   2355 
   2356    struct brw_blorp_blit_prog_key wm_prog_key = {
   2357       .shader_type = BLORP_SHADER_TYPE_BLIT
   2358    };
   2359 
   2360    const struct isl_format_layout *src_fmtl =
   2361       isl_format_get_layout(params.src.surf.format);
   2362    const struct isl_format_layout *dst_fmtl =
   2363       isl_format_get_layout(params.dst.surf.format);
   2364 
   2365    assert(params.src.aux_usage == ISL_AUX_USAGE_NONE ||
   2366           params.src.aux_usage == ISL_AUX_USAGE_MCS ||
   2367           params.src.aux_usage == ISL_AUX_USAGE_CCS_E);
   2368    assert(params.dst.aux_usage == ISL_AUX_USAGE_NONE ||
   2369           params.dst.aux_usage == ISL_AUX_USAGE_MCS ||
   2370           params.dst.aux_usage == ISL_AUX_USAGE_CCS_E);
   2371 
   2372    if (params.dst.aux_usage == ISL_AUX_USAGE_CCS_E) {
   2373       params.dst.view.format = get_ccs_compatible_uint_format(dst_fmtl);
   2374       if (params.src.aux_usage == ISL_AUX_USAGE_CCS_E) {
   2375          params.src.view.format = get_ccs_compatible_uint_format(src_fmtl);
   2376       } else if (src_fmtl->bpb == dst_fmtl->bpb) {
   2377          params.src.view.format = params.dst.view.format;
   2378       } else {
   2379          params.src.view.format =
   2380             get_copy_format_for_bpb(isl_dev, src_fmtl->bpb);
   2381       }
   2382    } else if (params.src.aux_usage == ISL_AUX_USAGE_CCS_E) {
   2383       params.src.view.format = get_ccs_compatible_uint_format(src_fmtl);
   2384       if (src_fmtl->bpb == dst_fmtl->bpb) {
   2385          params.dst.view.format = params.src.view.format;
   2386       } else {
   2387          params.dst.view.format =
   2388             get_copy_format_for_bpb(isl_dev, dst_fmtl->bpb);
   2389       }
   2390    } else {
   2391       params.dst.view.format = get_copy_format_for_bpb(isl_dev, dst_fmtl->bpb);
   2392       params.src.view.format = get_copy_format_for_bpb(isl_dev, src_fmtl->bpb);
   2393    }
   2394 
   2395    if (params.src.aux_usage == ISL_AUX_USAGE_CCS_E) {
   2396       params.src.clear_color =
   2397          bitcast_color_value_to_uint(params.src.clear_color, src_fmtl);
   2398    }
   2399 
   2400    if (params.dst.aux_usage == ISL_AUX_USAGE_CCS_E) {
   2401       params.dst.clear_color =
   2402          bitcast_color_value_to_uint(params.dst.clear_color, dst_fmtl);
   2403    }
   2404 
   2405    wm_prog_key.src_bpc =
   2406       isl_format_get_layout(params.src.view.format)->channels.r.bits;
   2407    wm_prog_key.dst_bpc =
   2408       isl_format_get_layout(params.dst.view.format)->channels.r.bits;
   2409 
   2410    if (src_fmtl->bw > 1 || src_fmtl->bh > 1) {
   2411       surf_convert_to_uncompressed(batch->blorp->isl_dev, &params.src,
   2412                                    &src_x, &src_y, &src_width, &src_height);
   2413       wm_prog_key.need_src_offset = true;
   2414    }
   2415 
   2416    if (dst_fmtl->bw > 1 || dst_fmtl->bh > 1) {
   2417       surf_convert_to_uncompressed(batch->blorp->isl_dev, &params.dst,
   2418                                    &dst_x, &dst_y, NULL, NULL);
   2419       wm_prog_key.need_dst_offset = true;
   2420    }
   2421 
   2422    /* Once both surfaces are stompped to uncompressed as needed, the
   2423     * destination size is the same as the source size.
   2424     */
   2425    uint32_t dst_width = src_width;
   2426    uint32_t dst_height = src_height;
   2427 
   2428    struct blt_coords coords = {
   2429       .x = {
   2430          .src0 = src_x,
   2431          .src1 = src_x + src_width,
   2432          .dst0 = dst_x,
   2433          .dst1 = dst_x + dst_width,
   2434          .mirror = false
   2435       },
   2436       .y = {
   2437          .src0 = src_y,
   2438          .src1 = src_y + src_height,
   2439          .dst0 = dst_y,
   2440          .dst1 = dst_y + dst_height,
   2441          .mirror = false
   2442       }
   2443    };
   2444 
   2445    do_blorp_blit(batch, &params, &wm_prog_key, &coords);
   2446 }
   2447