Home | History | Annotate | Download | only in CodeGen
      1 //===----- AggressiveAntiDepBreaker.cpp - Anti-dep breaker ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the AggressiveAntiDepBreaker class, which
     11 // implements register anti-dependence breaking during post-RA
     12 // scheduling. It attempts to break all anti-dependencies within a
     13 // block.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "AggressiveAntiDepBreaker.h"
     18 #include "llvm/CodeGen/MachineBasicBlock.h"
     19 #include "llvm/CodeGen/MachineFrameInfo.h"
     20 #include "llvm/CodeGen/MachineInstr.h"
     21 #include "llvm/CodeGen/RegisterClassInfo.h"
     22 #include "llvm/Support/CommandLine.h"
     23 #include "llvm/Support/Debug.h"
     24 #include "llvm/Support/ErrorHandling.h"
     25 #include "llvm/Support/raw_ostream.h"
     26 #include "llvm/Target/TargetInstrInfo.h"
     27 #include "llvm/Target/TargetRegisterInfo.h"
     28 using namespace llvm;
     29 
     30 #define DEBUG_TYPE "post-RA-sched"
     31 
     32 // If DebugDiv > 0 then only break antidep with (ID % DebugDiv) == DebugMod
     33 static cl::opt<int>
     34 DebugDiv("agg-antidep-debugdiv",
     35          cl::desc("Debug control for aggressive anti-dep breaker"),
     36          cl::init(0), cl::Hidden);
     37 static cl::opt<int>
     38 DebugMod("agg-antidep-debugmod",
     39          cl::desc("Debug control for aggressive anti-dep breaker"),
     40          cl::init(0), cl::Hidden);
     41 
     42 AggressiveAntiDepState::AggressiveAntiDepState(const unsigned TargetRegs,
     43                                                MachineBasicBlock *BB) :
     44   NumTargetRegs(TargetRegs), GroupNodes(TargetRegs, 0),
     45   GroupNodeIndices(TargetRegs, 0),
     46   KillIndices(TargetRegs, 0),
     47   DefIndices(TargetRegs, 0)
     48 {
     49   const unsigned BBSize = BB->size();
     50   for (unsigned i = 0; i < NumTargetRegs; ++i) {
     51     // Initialize all registers to be in their own group. Initially we
     52     // assign the register to the same-indexed GroupNode.
     53     GroupNodeIndices[i] = i;
     54     // Initialize the indices to indicate that no registers are live.
     55     KillIndices[i] = ~0u;
     56     DefIndices[i] = BBSize;
     57   }
     58 }
     59 
     60 unsigned AggressiveAntiDepState::GetGroup(unsigned Reg) {
     61   unsigned Node = GroupNodeIndices[Reg];
     62   while (GroupNodes[Node] != Node)
     63     Node = GroupNodes[Node];
     64 
     65   return Node;
     66 }
     67 
     68 void AggressiveAntiDepState::GetGroupRegs(
     69   unsigned Group,
     70   std::vector<unsigned> &Regs,
     71   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference> *RegRefs)
     72 {
     73   for (unsigned Reg = 0; Reg != NumTargetRegs; ++Reg) {
     74     if ((GetGroup(Reg) == Group) && (RegRefs->count(Reg) > 0))
     75       Regs.push_back(Reg);
     76   }
     77 }
     78 
     79 unsigned AggressiveAntiDepState::UnionGroups(unsigned Reg1, unsigned Reg2)
     80 {
     81   assert(GroupNodes[0] == 0 && "GroupNode 0 not parent!");
     82   assert(GroupNodeIndices[0] == 0 && "Reg 0 not in Group 0!");
     83 
     84   // find group for each register
     85   unsigned Group1 = GetGroup(Reg1);
     86   unsigned Group2 = GetGroup(Reg2);
     87 
     88   // if either group is 0, then that must become the parent
     89   unsigned Parent = (Group1 == 0) ? Group1 : Group2;
     90   unsigned Other = (Parent == Group1) ? Group2 : Group1;
     91   GroupNodes.at(Other) = Parent;
     92   return Parent;
     93 }
     94 
     95 unsigned AggressiveAntiDepState::LeaveGroup(unsigned Reg)
     96 {
     97   // Create a new GroupNode for Reg. Reg's existing GroupNode must
     98   // stay as is because there could be other GroupNodes referring to
     99   // it.
    100   unsigned idx = GroupNodes.size();
    101   GroupNodes.push_back(idx);
    102   GroupNodeIndices[Reg] = idx;
    103   return idx;
    104 }
    105 
    106 bool AggressiveAntiDepState::IsLive(unsigned Reg)
    107 {
    108   // KillIndex must be defined and DefIndex not defined for a register
    109   // to be live.
    110   return((KillIndices[Reg] != ~0u) && (DefIndices[Reg] == ~0u));
    111 }
    112 
    113 AggressiveAntiDepBreaker::AggressiveAntiDepBreaker(
    114     MachineFunction &MFi, const RegisterClassInfo &RCI,
    115     TargetSubtargetInfo::RegClassVector &CriticalPathRCs)
    116     : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()),
    117       TII(MF.getSubtarget().getInstrInfo()),
    118       TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI),
    119       State(nullptr) {
    120   /* Collect a bitset of all registers that are only broken if they
    121      are on the critical path. */
    122   for (unsigned i = 0, e = CriticalPathRCs.size(); i < e; ++i) {
    123     BitVector CPSet = TRI->getAllocatableSet(MF, CriticalPathRCs[i]);
    124     if (CriticalPathSet.none())
    125       CriticalPathSet = CPSet;
    126     else
    127       CriticalPathSet |= CPSet;
    128    }
    129 
    130   DEBUG(dbgs() << "AntiDep Critical-Path Registers:");
    131   DEBUG(for (int r = CriticalPathSet.find_first(); r != -1;
    132              r = CriticalPathSet.find_next(r))
    133           dbgs() << " " << TRI->getName(r));
    134   DEBUG(dbgs() << '\n');
    135 }
    136 
    137 AggressiveAntiDepBreaker::~AggressiveAntiDepBreaker() {
    138   delete State;
    139 }
    140 
    141 void AggressiveAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
    142   assert(!State);
    143   State = new AggressiveAntiDepState(TRI->getNumRegs(), BB);
    144 
    145   bool IsReturnBlock = BB->isReturnBlock();
    146   std::vector<unsigned> &KillIndices = State->GetKillIndices();
    147   std::vector<unsigned> &DefIndices = State->GetDefIndices();
    148 
    149   // Examine the live-in regs of all successors.
    150   for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
    151          SE = BB->succ_end(); SI != SE; ++SI)
    152     for (const auto &LI : (*SI)->liveins()) {
    153       for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) {
    154         unsigned Reg = *AI;
    155         State->UnionGroups(Reg, 0);
    156         KillIndices[Reg] = BB->size();
    157         DefIndices[Reg] = ~0u;
    158       }
    159     }
    160 
    161   // Mark live-out callee-saved registers. In a return block this is
    162   // all callee-saved registers. In non-return this is any
    163   // callee-saved register that is not saved in the prolog.
    164   const MachineFrameInfo *MFI = MF.getFrameInfo();
    165   BitVector Pristine = MFI->getPristineRegs(MF);
    166   for (const MCPhysReg *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) {
    167     unsigned Reg = *I;
    168     if (!IsReturnBlock && !Pristine.test(Reg)) continue;
    169     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
    170       unsigned AliasReg = *AI;
    171       State->UnionGroups(AliasReg, 0);
    172       KillIndices[AliasReg] = BB->size();
    173       DefIndices[AliasReg] = ~0u;
    174     }
    175   }
    176 }
    177 
    178 void AggressiveAntiDepBreaker::FinishBlock() {
    179   delete State;
    180   State = nullptr;
    181 }
    182 
    183 void AggressiveAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count,
    184                                        unsigned InsertPosIndex) {
    185   assert(Count < InsertPosIndex && "Instruction index out of expected range!");
    186 
    187   std::set<unsigned> PassthruRegs;
    188   GetPassthruRegs(MI, PassthruRegs);
    189   PrescanInstruction(MI, Count, PassthruRegs);
    190   ScanInstruction(MI, Count);
    191 
    192   DEBUG(dbgs() << "Observe: ");
    193   DEBUG(MI.dump());
    194   DEBUG(dbgs() << "\tRegs:");
    195 
    196   std::vector<unsigned> &DefIndices = State->GetDefIndices();
    197   for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
    198     // If Reg is current live, then mark that it can't be renamed as
    199     // we don't know the extent of its live-range anymore (now that it
    200     // has been scheduled). If it is not live but was defined in the
    201     // previous schedule region, then set its def index to the most
    202     // conservative location (i.e. the beginning of the previous
    203     // schedule region).
    204     if (State->IsLive(Reg)) {
    205       DEBUG(if (State->GetGroup(Reg) != 0)
    206               dbgs() << " " << TRI->getName(Reg) << "=g" <<
    207                 State->GetGroup(Reg) << "->g0(region live-out)");
    208       State->UnionGroups(Reg, 0);
    209     } else if ((DefIndices[Reg] < InsertPosIndex)
    210                && (DefIndices[Reg] >= Count)) {
    211       DefIndices[Reg] = Count;
    212     }
    213   }
    214   DEBUG(dbgs() << '\n');
    215 }
    216 
    217 bool AggressiveAntiDepBreaker::IsImplicitDefUse(MachineInstr &MI,
    218                                                 MachineOperand &MO) {
    219   if (!MO.isReg() || !MO.isImplicit())
    220     return false;
    221 
    222   unsigned Reg = MO.getReg();
    223   if (Reg == 0)
    224     return false;
    225 
    226   MachineOperand *Op = nullptr;
    227   if (MO.isDef())
    228     Op = MI.findRegisterUseOperand(Reg, true);
    229   else
    230     Op = MI.findRegisterDefOperand(Reg);
    231 
    232   return(Op && Op->isImplicit());
    233 }
    234 
    235 void AggressiveAntiDepBreaker::GetPassthruRegs(
    236     MachineInstr &MI, std::set<unsigned> &PassthruRegs) {
    237   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    238     MachineOperand &MO = MI.getOperand(i);
    239     if (!MO.isReg()) continue;
    240     if ((MO.isDef() && MI.isRegTiedToUseOperand(i)) ||
    241         IsImplicitDefUse(MI, MO)) {
    242       const unsigned Reg = MO.getReg();
    243       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
    244            SubRegs.isValid(); ++SubRegs)
    245         PassthruRegs.insert(*SubRegs);
    246     }
    247   }
    248 }
    249 
    250 /// AntiDepEdges - Return in Edges the anti- and output- dependencies
    251 /// in SU that we want to consider for breaking.
    252 static void AntiDepEdges(const SUnit *SU, std::vector<const SDep*>& Edges) {
    253   SmallSet<unsigned, 4> RegSet;
    254   for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
    255        P != PE; ++P) {
    256     if ((P->getKind() == SDep::Anti) || (P->getKind() == SDep::Output)) {
    257       if (RegSet.insert(P->getReg()).second)
    258         Edges.push_back(&*P);
    259     }
    260   }
    261 }
    262 
    263 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up
    264 /// critical path.
    265 static const SUnit *CriticalPathStep(const SUnit *SU) {
    266   const SDep *Next = nullptr;
    267   unsigned NextDepth = 0;
    268   // Find the predecessor edge with the greatest depth.
    269   if (SU) {
    270     for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
    271          P != PE; ++P) {
    272       const SUnit *PredSU = P->getSUnit();
    273       unsigned PredLatency = P->getLatency();
    274       unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
    275       // In the case of a latency tie, prefer an anti-dependency edge over
    276       // other types of edges.
    277       if (NextDepth < PredTotalLatency ||
    278           (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
    279         NextDepth = PredTotalLatency;
    280         Next = &*P;
    281       }
    282     }
    283   }
    284 
    285   return (Next) ? Next->getSUnit() : nullptr;
    286 }
    287 
    288 void AggressiveAntiDepBreaker::HandleLastUse(unsigned Reg, unsigned KillIdx,
    289                                              const char *tag,
    290                                              const char *header,
    291                                              const char *footer) {
    292   std::vector<unsigned> &KillIndices = State->GetKillIndices();
    293   std::vector<unsigned> &DefIndices = State->GetDefIndices();
    294   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
    295     RegRefs = State->GetRegRefs();
    296 
    297   // FIXME: We must leave subregisters of live super registers as live, so that
    298   // we don't clear out the register tracking information for subregisters of
    299   // super registers we're still tracking (and with which we're unioning
    300   // subregister definitions).
    301   for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
    302     if (TRI->isSuperRegister(Reg, *AI) && State->IsLive(*AI)) {
    303       DEBUG(if (!header && footer) dbgs() << footer);
    304       return;
    305     }
    306 
    307   if (!State->IsLive(Reg)) {
    308     KillIndices[Reg] = KillIdx;
    309     DefIndices[Reg] = ~0u;
    310     RegRefs.erase(Reg);
    311     State->LeaveGroup(Reg);
    312     DEBUG(if (header) {
    313         dbgs() << header << TRI->getName(Reg); header = nullptr; });
    314     DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << tag);
    315     // Repeat for subregisters. Note that we only do this if the superregister
    316     // was not live because otherwise, regardless whether we have an explicit
    317     // use of the subregister, the subregister's contents are needed for the
    318     // uses of the superregister.
    319     for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
    320       unsigned SubregReg = *SubRegs;
    321       if (!State->IsLive(SubregReg)) {
    322         KillIndices[SubregReg] = KillIdx;
    323         DefIndices[SubregReg] = ~0u;
    324         RegRefs.erase(SubregReg);
    325         State->LeaveGroup(SubregReg);
    326         DEBUG(if (header) {
    327             dbgs() << header << TRI->getName(Reg); header = nullptr; });
    328         DEBUG(dbgs() << " " << TRI->getName(SubregReg) << "->g" <<
    329               State->GetGroup(SubregReg) << tag);
    330       }
    331     }
    332   }
    333 
    334   DEBUG(if (!header && footer) dbgs() << footer);
    335 }
    336 
    337 void AggressiveAntiDepBreaker::PrescanInstruction(
    338     MachineInstr &MI, unsigned Count, std::set<unsigned> &PassthruRegs) {
    339   std::vector<unsigned> &DefIndices = State->GetDefIndices();
    340   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
    341     RegRefs = State->GetRegRefs();
    342 
    343   // Handle dead defs by simulating a last-use of the register just
    344   // after the def. A dead def can occur because the def is truly
    345   // dead, or because only a subregister is live at the def. If we
    346   // don't do this the dead def will be incorrectly merged into the
    347   // previous def.
    348   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    349     MachineOperand &MO = MI.getOperand(i);
    350     if (!MO.isReg() || !MO.isDef()) continue;
    351     unsigned Reg = MO.getReg();
    352     if (Reg == 0) continue;
    353 
    354     HandleLastUse(Reg, Count + 1, "", "\tDead Def: ", "\n");
    355   }
    356 
    357   DEBUG(dbgs() << "\tDef Groups:");
    358   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    359     MachineOperand &MO = MI.getOperand(i);
    360     if (!MO.isReg() || !MO.isDef()) continue;
    361     unsigned Reg = MO.getReg();
    362     if (Reg == 0) continue;
    363 
    364     DEBUG(dbgs() << " " << TRI->getName(Reg) << "=g" << State->GetGroup(Reg));
    365 
    366     // If MI's defs have a special allocation requirement, don't allow
    367     // any def registers to be changed. Also assume all registers
    368     // defined in a call must not be changed (ABI). Inline assembly may
    369     // reference either system calls or the register directly. Skip it until we
    370     // can tell user specified registers from compiler-specified.
    371     if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI) ||
    372         MI.isInlineAsm()) {
    373       DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)");
    374       State->UnionGroups(Reg, 0);
    375     }
    376 
    377     // Any aliased that are live at this point are completely or
    378     // partially defined here, so group those aliases with Reg.
    379     for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
    380       unsigned AliasReg = *AI;
    381       if (State->IsLive(AliasReg)) {
    382         State->UnionGroups(Reg, AliasReg);
    383         DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << "(via " <<
    384               TRI->getName(AliasReg) << ")");
    385       }
    386     }
    387 
    388     // Note register reference...
    389     const TargetRegisterClass *RC = nullptr;
    390     if (i < MI.getDesc().getNumOperands())
    391       RC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
    392     AggressiveAntiDepState::RegisterReference RR = { &MO, RC };
    393     RegRefs.insert(std::make_pair(Reg, RR));
    394   }
    395 
    396   DEBUG(dbgs() << '\n');
    397 
    398   // Scan the register defs for this instruction and update
    399   // live-ranges.
    400   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    401     MachineOperand &MO = MI.getOperand(i);
    402     if (!MO.isReg() || !MO.isDef()) continue;
    403     unsigned Reg = MO.getReg();
    404     if (Reg == 0) continue;
    405     // Ignore KILLs and passthru registers for liveness...
    406     if (MI.isKill() || (PassthruRegs.count(Reg) != 0))
    407       continue;
    408 
    409     // Update def for Reg and aliases.
    410     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
    411       // We need to be careful here not to define already-live super registers.
    412       // If the super register is already live, then this definition is not
    413       // a definition of the whole super register (just a partial insertion
    414       // into it). Earlier subregister definitions (which we've not yet visited
    415       // because we're iterating bottom-up) need to be linked to the same group
    416       // as this definition.
    417       if (TRI->isSuperRegister(Reg, *AI) && State->IsLive(*AI))
    418         continue;
    419 
    420       DefIndices[*AI] = Count;
    421     }
    422   }
    423 }
    424 
    425 void AggressiveAntiDepBreaker::ScanInstruction(MachineInstr &MI,
    426                                                unsigned Count) {
    427   DEBUG(dbgs() << "\tUse Groups:");
    428   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
    429     RegRefs = State->GetRegRefs();
    430 
    431   // If MI's uses have special allocation requirement, don't allow
    432   // any use registers to be changed. Also assume all registers
    433   // used in a call must not be changed (ABI).
    434   // Inline Assembly register uses also cannot be safely changed.
    435   // FIXME: The issue with predicated instruction is more complex. We are being
    436   // conservatively here because the kill markers cannot be trusted after
    437   // if-conversion:
    438   // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
    439   // ...
    440   // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
    441   // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
    442   // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
    443   //
    444   // The first R6 kill is not really a kill since it's killed by a predicated
    445   // instruction which may not be executed. The second R6 def may or may not
    446   // re-define R6 so it's not safe to change it since the last R6 use cannot be
    447   // changed.
    448   bool Special = MI.isCall() || MI.hasExtraSrcRegAllocReq() ||
    449                  TII->isPredicated(MI) || MI.isInlineAsm();
    450 
    451   // Scan the register uses for this instruction and update
    452   // live-ranges, groups and RegRefs.
    453   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    454     MachineOperand &MO = MI.getOperand(i);
    455     if (!MO.isReg() || !MO.isUse()) continue;
    456     unsigned Reg = MO.getReg();
    457     if (Reg == 0) continue;
    458 
    459     DEBUG(dbgs() << " " << TRI->getName(Reg) << "=g" <<
    460           State->GetGroup(Reg));
    461 
    462     // It wasn't previously live but now it is, this is a kill. Forget
    463     // the previous live-range information and start a new live-range
    464     // for the register.
    465     HandleLastUse(Reg, Count, "(last-use)");
    466 
    467     if (Special) {
    468       DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)");
    469       State->UnionGroups(Reg, 0);
    470     }
    471 
    472     // Note register reference...
    473     const TargetRegisterClass *RC = nullptr;
    474     if (i < MI.getDesc().getNumOperands())
    475       RC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
    476     AggressiveAntiDepState::RegisterReference RR = { &MO, RC };
    477     RegRefs.insert(std::make_pair(Reg, RR));
    478   }
    479 
    480   DEBUG(dbgs() << '\n');
    481 
    482   // Form a group of all defs and uses of a KILL instruction to ensure
    483   // that all registers are renamed as a group.
    484   if (MI.isKill()) {
    485     DEBUG(dbgs() << "\tKill Group:");
    486 
    487     unsigned FirstReg = 0;
    488     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    489       MachineOperand &MO = MI.getOperand(i);
    490       if (!MO.isReg()) continue;
    491       unsigned Reg = MO.getReg();
    492       if (Reg == 0) continue;
    493 
    494       if (FirstReg != 0) {
    495         DEBUG(dbgs() << "=" << TRI->getName(Reg));
    496         State->UnionGroups(FirstReg, Reg);
    497       } else {
    498         DEBUG(dbgs() << " " << TRI->getName(Reg));
    499         FirstReg = Reg;
    500       }
    501     }
    502 
    503     DEBUG(dbgs() << "->g" << State->GetGroup(FirstReg) << '\n');
    504   }
    505 }
    506 
    507 BitVector AggressiveAntiDepBreaker::GetRenameRegisters(unsigned Reg) {
    508   BitVector BV(TRI->getNumRegs(), false);
    509   bool first = true;
    510 
    511   // Check all references that need rewriting for Reg. For each, use
    512   // the corresponding register class to narrow the set of registers
    513   // that are appropriate for renaming.
    514   for (const auto &Q : make_range(State->GetRegRefs().equal_range(Reg))) {
    515     const TargetRegisterClass *RC = Q.second.RC;
    516     if (!RC) continue;
    517 
    518     BitVector RCBV = TRI->getAllocatableSet(MF, RC);
    519     if (first) {
    520       BV |= RCBV;
    521       first = false;
    522     } else {
    523       BV &= RCBV;
    524     }
    525 
    526     DEBUG(dbgs() << " " << TRI->getRegClassName(RC));
    527   }
    528 
    529   return BV;
    530 }
    531 
    532 bool AggressiveAntiDepBreaker::FindSuitableFreeRegisters(
    533                                 unsigned AntiDepGroupIndex,
    534                                 RenameOrderType& RenameOrder,
    535                                 std::map<unsigned, unsigned> &RenameMap) {
    536   std::vector<unsigned> &KillIndices = State->GetKillIndices();
    537   std::vector<unsigned> &DefIndices = State->GetDefIndices();
    538   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
    539     RegRefs = State->GetRegRefs();
    540 
    541   // Collect all referenced registers in the same group as
    542   // AntiDepReg. These all need to be renamed together if we are to
    543   // break the anti-dependence.
    544   std::vector<unsigned> Regs;
    545   State->GetGroupRegs(AntiDepGroupIndex, Regs, &RegRefs);
    546   assert(Regs.size() > 0 && "Empty register group!");
    547   if (Regs.size() == 0)
    548     return false;
    549 
    550   // Find the "superest" register in the group. At the same time,
    551   // collect the BitVector of registers that can be used to rename
    552   // each register.
    553   DEBUG(dbgs() << "\tRename Candidates for Group g" << AntiDepGroupIndex
    554         << ":\n");
    555   std::map<unsigned, BitVector> RenameRegisterMap;
    556   unsigned SuperReg = 0;
    557   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
    558     unsigned Reg = Regs[i];
    559     if ((SuperReg == 0) || TRI->isSuperRegister(SuperReg, Reg))
    560       SuperReg = Reg;
    561 
    562     // If Reg has any references, then collect possible rename regs
    563     if (RegRefs.count(Reg) > 0) {
    564       DEBUG(dbgs() << "\t\t" << TRI->getName(Reg) << ":");
    565 
    566       BitVector &BV = RenameRegisterMap[Reg];
    567       assert(BV.empty());
    568       BV = GetRenameRegisters(Reg);
    569 
    570       DEBUG({
    571         dbgs() << " ::";
    572         for (int r = BV.find_first(); r != -1; r = BV.find_next(r))
    573           dbgs() << " " << TRI->getName(r);
    574         dbgs() << "\n";
    575       });
    576     }
    577   }
    578 
    579   // All group registers should be a subreg of SuperReg.
    580   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
    581     unsigned Reg = Regs[i];
    582     if (Reg == SuperReg) continue;
    583     bool IsSub = TRI->isSubRegister(SuperReg, Reg);
    584     // FIXME: remove this once PR18663 has been properly fixed. For now,
    585     // return a conservative answer:
    586     // assert(IsSub && "Expecting group subregister");
    587     if (!IsSub)
    588       return false;
    589   }
    590 
    591 #ifndef NDEBUG
    592   // If DebugDiv > 0 then only rename (renamecnt % DebugDiv) == DebugMod
    593   if (DebugDiv > 0) {
    594     static int renamecnt = 0;
    595     if (renamecnt++ % DebugDiv != DebugMod)
    596       return false;
    597 
    598     dbgs() << "*** Performing rename " << TRI->getName(SuperReg) <<
    599       " for debug ***\n";
    600   }
    601 #endif
    602 
    603   // Check each possible rename register for SuperReg in round-robin
    604   // order. If that register is available, and the corresponding
    605   // registers are available for the other group subregisters, then we
    606   // can use those registers to rename.
    607 
    608   // FIXME: Using getMinimalPhysRegClass is very conservative. We should
    609   // check every use of the register and find the largest register class
    610   // that can be used in all of them.
    611   const TargetRegisterClass *SuperRC =
    612     TRI->getMinimalPhysRegClass(SuperReg, MVT::Other);
    613 
    614   ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(SuperRC);
    615   if (Order.empty()) {
    616     DEBUG(dbgs() << "\tEmpty Super Regclass!!\n");
    617     return false;
    618   }
    619 
    620   DEBUG(dbgs() << "\tFind Registers:");
    621 
    622   RenameOrder.insert(RenameOrderType::value_type(SuperRC, Order.size()));
    623 
    624   unsigned OrigR = RenameOrder[SuperRC];
    625   unsigned EndR = ((OrigR == Order.size()) ? 0 : OrigR);
    626   unsigned R = OrigR;
    627   do {
    628     if (R == 0) R = Order.size();
    629     --R;
    630     const unsigned NewSuperReg = Order[R];
    631     // Don't consider non-allocatable registers
    632     if (!MRI.isAllocatable(NewSuperReg)) continue;
    633     // Don't replace a register with itself.
    634     if (NewSuperReg == SuperReg) continue;
    635 
    636     DEBUG(dbgs() << " [" << TRI->getName(NewSuperReg) << ':');
    637     RenameMap.clear();
    638 
    639     // For each referenced group register (which must be a SuperReg or
    640     // a subregister of SuperReg), find the corresponding subregister
    641     // of NewSuperReg and make sure it is free to be renamed.
    642     for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
    643       unsigned Reg = Regs[i];
    644       unsigned NewReg = 0;
    645       if (Reg == SuperReg) {
    646         NewReg = NewSuperReg;
    647       } else {
    648         unsigned NewSubRegIdx = TRI->getSubRegIndex(SuperReg, Reg);
    649         if (NewSubRegIdx != 0)
    650           NewReg = TRI->getSubReg(NewSuperReg, NewSubRegIdx);
    651       }
    652 
    653       DEBUG(dbgs() << " " << TRI->getName(NewReg));
    654 
    655       // Check if Reg can be renamed to NewReg.
    656       if (!RenameRegisterMap[Reg].test(NewReg)) {
    657         DEBUG(dbgs() << "(no rename)");
    658         goto next_super_reg;
    659       }
    660 
    661       // If NewReg is dead and NewReg's most recent def is not before
    662       // Regs's kill, it's safe to replace Reg with NewReg. We
    663       // must also check all aliases of NewReg, because we can't define a
    664       // register when any sub or super is already live.
    665       if (State->IsLive(NewReg) || (KillIndices[Reg] > DefIndices[NewReg])) {
    666         DEBUG(dbgs() << "(live)");
    667         goto next_super_reg;
    668       } else {
    669         bool found = false;
    670         for (MCRegAliasIterator AI(NewReg, TRI, false); AI.isValid(); ++AI) {
    671           unsigned AliasReg = *AI;
    672           if (State->IsLive(AliasReg) ||
    673               (KillIndices[Reg] > DefIndices[AliasReg])) {
    674             DEBUG(dbgs() << "(alias " << TRI->getName(AliasReg) << " live)");
    675             found = true;
    676             break;
    677           }
    678         }
    679         if (found)
    680           goto next_super_reg;
    681       }
    682 
    683       // We cannot rename 'Reg' to 'NewReg' if one of the uses of 'Reg' also
    684       // defines 'NewReg' via an early-clobber operand.
    685       for (const auto &Q : make_range(RegRefs.equal_range(Reg))) {
    686         MachineInstr *UseMI = Q.second.Operand->getParent();
    687         int Idx = UseMI->findRegisterDefOperandIdx(NewReg, false, true, TRI);
    688         if (Idx == -1)
    689           continue;
    690 
    691         if (UseMI->getOperand(Idx).isEarlyClobber()) {
    692           DEBUG(dbgs() << "(ec)");
    693           goto next_super_reg;
    694         }
    695       }
    696 
    697       // Also, we cannot rename 'Reg' to 'NewReg' if the instruction defining
    698       // 'Reg' is an early-clobber define and that instruction also uses
    699       // 'NewReg'.
    700       for (const auto &Q : make_range(RegRefs.equal_range(Reg))) {
    701         if (!Q.second.Operand->isDef() || !Q.second.Operand->isEarlyClobber())
    702           continue;
    703 
    704         MachineInstr *DefMI = Q.second.Operand->getParent();
    705         if (DefMI->readsRegister(NewReg, TRI)) {
    706           DEBUG(dbgs() << "(ec)");
    707           goto next_super_reg;
    708         }
    709       }
    710 
    711       // Record that 'Reg' can be renamed to 'NewReg'.
    712       RenameMap.insert(std::pair<unsigned, unsigned>(Reg, NewReg));
    713     }
    714 
    715     // If we fall-out here, then every register in the group can be
    716     // renamed, as recorded in RenameMap.
    717     RenameOrder.erase(SuperRC);
    718     RenameOrder.insert(RenameOrderType::value_type(SuperRC, R));
    719     DEBUG(dbgs() << "]\n");
    720     return true;
    721 
    722   next_super_reg:
    723     DEBUG(dbgs() << ']');
    724   } while (R != EndR);
    725 
    726   DEBUG(dbgs() << '\n');
    727 
    728   // No registers are free and available!
    729   return false;
    730 }
    731 
    732 /// BreakAntiDependencies - Identifiy anti-dependencies within the
    733 /// ScheduleDAG and break them by renaming registers.
    734 ///
    735 unsigned AggressiveAntiDepBreaker::BreakAntiDependencies(
    736                               const std::vector<SUnit>& SUnits,
    737                               MachineBasicBlock::iterator Begin,
    738                               MachineBasicBlock::iterator End,
    739                               unsigned InsertPosIndex,
    740                               DbgValueVector &DbgValues) {
    741 
    742   std::vector<unsigned> &KillIndices = State->GetKillIndices();
    743   std::vector<unsigned> &DefIndices = State->GetDefIndices();
    744   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
    745     RegRefs = State->GetRegRefs();
    746 
    747   // The code below assumes that there is at least one instruction,
    748   // so just duck out immediately if the block is empty.
    749   if (SUnits.empty()) return 0;
    750 
    751   // For each regclass the next register to use for renaming.
    752   RenameOrderType RenameOrder;
    753 
    754   // ...need a map from MI to SUnit.
    755   std::map<MachineInstr *, const SUnit *> MISUnitMap;
    756   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
    757     const SUnit *SU = &SUnits[i];
    758     MISUnitMap.insert(std::pair<MachineInstr *, const SUnit *>(SU->getInstr(),
    759                                                                SU));
    760   }
    761 
    762   // Track progress along the critical path through the SUnit graph as
    763   // we walk the instructions. This is needed for regclasses that only
    764   // break critical-path anti-dependencies.
    765   const SUnit *CriticalPathSU = nullptr;
    766   MachineInstr *CriticalPathMI = nullptr;
    767   if (CriticalPathSet.any()) {
    768     for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
    769       const SUnit *SU = &SUnits[i];
    770       if (!CriticalPathSU ||
    771           ((SU->getDepth() + SU->Latency) >
    772            (CriticalPathSU->getDepth() + CriticalPathSU->Latency))) {
    773         CriticalPathSU = SU;
    774       }
    775     }
    776 
    777     CriticalPathMI = CriticalPathSU->getInstr();
    778   }
    779 
    780 #ifndef NDEBUG
    781   DEBUG(dbgs() << "\n===== Aggressive anti-dependency breaking\n");
    782   DEBUG(dbgs() << "Available regs:");
    783   for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
    784     if (!State->IsLive(Reg))
    785       DEBUG(dbgs() << " " << TRI->getName(Reg));
    786   }
    787   DEBUG(dbgs() << '\n');
    788 #endif
    789 
    790   BitVector RegAliases(TRI->getNumRegs());
    791 
    792   // Attempt to break anti-dependence edges. Walk the instructions
    793   // from the bottom up, tracking information about liveness as we go
    794   // to help determine which registers are available.
    795   unsigned Broken = 0;
    796   unsigned Count = InsertPosIndex - 1;
    797   for (MachineBasicBlock::iterator I = End, E = Begin;
    798        I != E; --Count) {
    799     MachineInstr &MI = *--I;
    800 
    801     if (MI.isDebugValue())
    802       continue;
    803 
    804     DEBUG(dbgs() << "Anti: ");
    805     DEBUG(MI.dump());
    806 
    807     std::set<unsigned> PassthruRegs;
    808     GetPassthruRegs(MI, PassthruRegs);
    809 
    810     // Process the defs in MI...
    811     PrescanInstruction(MI, Count, PassthruRegs);
    812 
    813     // The dependence edges that represent anti- and output-
    814     // dependencies that are candidates for breaking.
    815     std::vector<const SDep *> Edges;
    816     const SUnit *PathSU = MISUnitMap[&MI];
    817     AntiDepEdges(PathSU, Edges);
    818 
    819     // If MI is not on the critical path, then we don't rename
    820     // registers in the CriticalPathSet.
    821     BitVector *ExcludeRegs = nullptr;
    822     if (&MI == CriticalPathMI) {
    823       CriticalPathSU = CriticalPathStep(CriticalPathSU);
    824       CriticalPathMI = (CriticalPathSU) ? CriticalPathSU->getInstr() : nullptr;
    825     } else if (CriticalPathSet.any()) {
    826       ExcludeRegs = &CriticalPathSet;
    827     }
    828 
    829     // Ignore KILL instructions (they form a group in ScanInstruction
    830     // but don't cause any anti-dependence breaking themselves)
    831     if (!MI.isKill()) {
    832       // Attempt to break each anti-dependency...
    833       for (unsigned i = 0, e = Edges.size(); i != e; ++i) {
    834         const SDep *Edge = Edges[i];
    835         SUnit *NextSU = Edge->getSUnit();
    836 
    837         if ((Edge->getKind() != SDep::Anti) &&
    838             (Edge->getKind() != SDep::Output)) continue;
    839 
    840         unsigned AntiDepReg = Edge->getReg();
    841         DEBUG(dbgs() << "\tAntidep reg: " << TRI->getName(AntiDepReg));
    842         assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
    843 
    844         if (!MRI.isAllocatable(AntiDepReg)) {
    845           // Don't break anti-dependencies on non-allocatable registers.
    846           DEBUG(dbgs() << " (non-allocatable)\n");
    847           continue;
    848         } else if (ExcludeRegs && ExcludeRegs->test(AntiDepReg)) {
    849           // Don't break anti-dependencies for critical path registers
    850           // if not on the critical path
    851           DEBUG(dbgs() << " (not critical-path)\n");
    852           continue;
    853         } else if (PassthruRegs.count(AntiDepReg) != 0) {
    854           // If the anti-dep register liveness "passes-thru", then
    855           // don't try to change it. It will be changed along with
    856           // the use if required to break an earlier antidep.
    857           DEBUG(dbgs() << " (passthru)\n");
    858           continue;
    859         } else {
    860           // No anti-dep breaking for implicit deps
    861           MachineOperand *AntiDepOp = MI.findRegisterDefOperand(AntiDepReg);
    862           assert(AntiDepOp && "Can't find index for defined register operand");
    863           if (!AntiDepOp || AntiDepOp->isImplicit()) {
    864             DEBUG(dbgs() << " (implicit)\n");
    865             continue;
    866           }
    867 
    868           // If the SUnit has other dependencies on the SUnit that
    869           // it anti-depends on, don't bother breaking the
    870           // anti-dependency since those edges would prevent such
    871           // units from being scheduled past each other
    872           // regardless.
    873           //
    874           // Also, if there are dependencies on other SUnits with the
    875           // same register as the anti-dependency, don't attempt to
    876           // break it.
    877           for (SUnit::const_pred_iterator P = PathSU->Preds.begin(),
    878                  PE = PathSU->Preds.end(); P != PE; ++P) {
    879             if (P->getSUnit() == NextSU ?
    880                 (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
    881                 (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
    882               AntiDepReg = 0;
    883               break;
    884             }
    885           }
    886           for (SUnit::const_pred_iterator P = PathSU->Preds.begin(),
    887                  PE = PathSU->Preds.end(); P != PE; ++P) {
    888             if ((P->getSUnit() == NextSU) && (P->getKind() != SDep::Anti) &&
    889                 (P->getKind() != SDep::Output)) {
    890               DEBUG(dbgs() << " (real dependency)\n");
    891               AntiDepReg = 0;
    892               break;
    893             } else if ((P->getSUnit() != NextSU) &&
    894                        (P->getKind() == SDep::Data) &&
    895                        (P->getReg() == AntiDepReg)) {
    896               DEBUG(dbgs() << " (other dependency)\n");
    897               AntiDepReg = 0;
    898               break;
    899             }
    900           }
    901 
    902           if (AntiDepReg == 0) continue;
    903 
    904           // If the definition of the anti-dependency register does not start
    905           // a new live range, bail out. This can happen if the anti-dep
    906           // register is a sub-register of another register whose live range
    907           // spans over PathSU. In such case, PathSU defines only a part of
    908           // the larger register.
    909           RegAliases.reset();
    910           for (MCRegAliasIterator AI(AntiDepReg, TRI, true); AI.isValid(); ++AI)
    911             RegAliases.set(*AI);
    912           for (SDep S : PathSU->Succs) {
    913             SDep::Kind K = S.getKind();
    914             if (K != SDep::Data && K != SDep::Output && K != SDep::Anti)
    915               continue;
    916             unsigned R = S.getReg();
    917             if (!RegAliases[R])
    918               continue;
    919             if (R == AntiDepReg || TRI->isSubRegister(AntiDepReg, R))
    920               continue;
    921             AntiDepReg = 0;
    922             break;
    923           }
    924 
    925           if (AntiDepReg == 0) continue;
    926         }
    927 
    928         assert(AntiDepReg != 0);
    929         if (AntiDepReg == 0) continue;
    930 
    931         // Determine AntiDepReg's register group.
    932         const unsigned GroupIndex = State->GetGroup(AntiDepReg);
    933         if (GroupIndex == 0) {
    934           DEBUG(dbgs() << " (zero group)\n");
    935           continue;
    936         }
    937 
    938         DEBUG(dbgs() << '\n');
    939 
    940         // Look for a suitable register to use to break the anti-dependence.
    941         std::map<unsigned, unsigned> RenameMap;
    942         if (FindSuitableFreeRegisters(GroupIndex, RenameOrder, RenameMap)) {
    943           DEBUG(dbgs() << "\tBreaking anti-dependence edge on "
    944                 << TRI->getName(AntiDepReg) << ":");
    945 
    946           // Handle each group register...
    947           for (std::map<unsigned, unsigned>::iterator
    948                  S = RenameMap.begin(), E = RenameMap.end(); S != E; ++S) {
    949             unsigned CurrReg = S->first;
    950             unsigned NewReg = S->second;
    951 
    952             DEBUG(dbgs() << " " << TRI->getName(CurrReg) << "->" <<
    953                   TRI->getName(NewReg) << "(" <<
    954                   RegRefs.count(CurrReg) << " refs)");
    955 
    956             // Update the references to the old register CurrReg to
    957             // refer to the new register NewReg.
    958             for (const auto &Q : make_range(RegRefs.equal_range(CurrReg))) {
    959               Q.second.Operand->setReg(NewReg);
    960               // If the SU for the instruction being updated has debug
    961               // information related to the anti-dependency register, make
    962               // sure to update that as well.
    963               const SUnit *SU = MISUnitMap[Q.second.Operand->getParent()];
    964               if (!SU) continue;
    965               for (DbgValueVector::iterator DVI = DbgValues.begin(),
    966                      DVE = DbgValues.end(); DVI != DVE; ++DVI)
    967                 if (DVI->second == Q.second.Operand->getParent())
    968                   UpdateDbgValue(*DVI->first, AntiDepReg, NewReg);
    969             }
    970 
    971             // We just went back in time and modified history; the
    972             // liveness information for CurrReg is now inconsistent. Set
    973             // the state as if it were dead.
    974             State->UnionGroups(NewReg, 0);
    975             RegRefs.erase(NewReg);
    976             DefIndices[NewReg] = DefIndices[CurrReg];
    977             KillIndices[NewReg] = KillIndices[CurrReg];
    978 
    979             State->UnionGroups(CurrReg, 0);
    980             RegRefs.erase(CurrReg);
    981             DefIndices[CurrReg] = KillIndices[CurrReg];
    982             KillIndices[CurrReg] = ~0u;
    983             assert(((KillIndices[CurrReg] == ~0u) !=
    984                     (DefIndices[CurrReg] == ~0u)) &&
    985                    "Kill and Def maps aren't consistent for AntiDepReg!");
    986           }
    987 
    988           ++Broken;
    989           DEBUG(dbgs() << '\n');
    990         }
    991       }
    992     }
    993 
    994     ScanInstruction(MI, Count);
    995   }
    996 
    997   return Broken;
    998 }
    999