Home | History | Annotate | Download | only in CodeGen
      1 //===-- IfConversion.cpp - Machine code if conversion pass. ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the machine instruction level if-conversion pass, which
     11 // tries to convert conditional branches into predicated instructions.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/CodeGen/Passes.h"
     16 #include "BranchFolding.h"
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "llvm/ADT/SmallSet.h"
     19 #include "llvm/ADT/Statistic.h"
     20 #include "llvm/CodeGen/LivePhysRegs.h"
     21 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
     22 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
     23 #include "llvm/CodeGen/MachineFunctionPass.h"
     24 #include "llvm/CodeGen/MachineInstrBuilder.h"
     25 #include "llvm/CodeGen/MachineModuleInfo.h"
     26 #include "llvm/CodeGen/MachineRegisterInfo.h"
     27 #include "llvm/CodeGen/TargetSchedule.h"
     28 #include "llvm/Support/CommandLine.h"
     29 #include "llvm/Support/Debug.h"
     30 #include "llvm/Support/ErrorHandling.h"
     31 #include "llvm/Support/raw_ostream.h"
     32 #include "llvm/Target/TargetInstrInfo.h"
     33 #include "llvm/Target/TargetLowering.h"
     34 #include "llvm/Target/TargetRegisterInfo.h"
     35 #include "llvm/Target/TargetSubtargetInfo.h"
     36 #include <algorithm>
     37 #include <utility>
     38 
     39 using namespace llvm;
     40 
     41 #define DEBUG_TYPE "ifcvt"
     42 
     43 // Hidden options for help debugging.
     44 static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden);
     45 static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden);
     46 static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden);
     47 static cl::opt<bool> DisableSimple("disable-ifcvt-simple",
     48                                    cl::init(false), cl::Hidden);
     49 static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false",
     50                                     cl::init(false), cl::Hidden);
     51 static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle",
     52                                      cl::init(false), cl::Hidden);
     53 static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev",
     54                                       cl::init(false), cl::Hidden);
     55 static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false",
     56                                       cl::init(false), cl::Hidden);
     57 static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev",
     58                                        cl::init(false), cl::Hidden);
     59 static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond",
     60                                     cl::init(false), cl::Hidden);
     61 static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold",
     62                                      cl::init(true), cl::Hidden);
     63 
     64 STATISTIC(NumSimple,       "Number of simple if-conversions performed");
     65 STATISTIC(NumSimpleFalse,  "Number of simple (F) if-conversions performed");
     66 STATISTIC(NumTriangle,     "Number of triangle if-conversions performed");
     67 STATISTIC(NumTriangleRev,  "Number of triangle (R) if-conversions performed");
     68 STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed");
     69 STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed");
     70 STATISTIC(NumDiamonds,     "Number of diamond if-conversions performed");
     71 STATISTIC(NumIfConvBBs,    "Number of if-converted blocks");
     72 STATISTIC(NumDupBBs,       "Number of duplicated blocks");
     73 STATISTIC(NumUnpred,       "Number of true blocks of diamonds unpredicated");
     74 
     75 namespace {
     76   class IfConverter : public MachineFunctionPass {
     77     enum IfcvtKind {
     78       ICNotClassfied,  // BB data valid, but not classified.
     79       ICSimpleFalse,   // Same as ICSimple, but on the false path.
     80       ICSimple,        // BB is entry of an one split, no rejoin sub-CFG.
     81       ICTriangleFRev,  // Same as ICTriangleFalse, but false path rev condition.
     82       ICTriangleRev,   // Same as ICTriangle, but true path rev condition.
     83       ICTriangleFalse, // Same as ICTriangle, but on the false path.
     84       ICTriangle,      // BB is entry of a triangle sub-CFG.
     85       ICDiamond        // BB is entry of a diamond sub-CFG.
     86     };
     87 
     88     /// BBInfo - One per MachineBasicBlock, this is used to cache the result
     89     /// if-conversion feasibility analysis. This includes results from
     90     /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its
     91     /// classification, and common tail block of its successors (if it's a
     92     /// diamond shape), its size, whether it's predicable, and whether any
     93     /// instruction can clobber the 'would-be' predicate.
     94     ///
     95     /// IsDone          - True if BB is not to be considered for ifcvt.
     96     /// IsBeingAnalyzed - True if BB is currently being analyzed.
     97     /// IsAnalyzed      - True if BB has been analyzed (info is still valid).
     98     /// IsEnqueued      - True if BB has been enqueued to be ifcvt'ed.
     99     /// IsBrAnalyzable  - True if analyzeBranch() returns false.
    100     /// HasFallThrough  - True if BB may fallthrough to the following BB.
    101     /// IsUnpredicable  - True if BB is known to be unpredicable.
    102     /// ClobbersPred    - True if BB could modify predicates (e.g. has
    103     ///                   cmp, call, etc.)
    104     /// NonPredSize     - Number of non-predicated instructions.
    105     /// ExtraCost       - Extra cost for multi-cycle instructions.
    106     /// ExtraCost2      - Some instructions are slower when predicated
    107     /// BB              - Corresponding MachineBasicBlock.
    108     /// TrueBB / FalseBB- See analyzeBranch().
    109     /// BrCond          - Conditions for end of block conditional branches.
    110     /// Predicate       - Predicate used in the BB.
    111     struct BBInfo {
    112       bool IsDone          : 1;
    113       bool IsBeingAnalyzed : 1;
    114       bool IsAnalyzed      : 1;
    115       bool IsEnqueued      : 1;
    116       bool IsBrAnalyzable  : 1;
    117       bool HasFallThrough  : 1;
    118       bool IsUnpredicable  : 1;
    119       bool CannotBeCopied  : 1;
    120       bool ClobbersPred    : 1;
    121       unsigned NonPredSize;
    122       unsigned ExtraCost;
    123       unsigned ExtraCost2;
    124       MachineBasicBlock *BB;
    125       MachineBasicBlock *TrueBB;
    126       MachineBasicBlock *FalseBB;
    127       SmallVector<MachineOperand, 4> BrCond;
    128       SmallVector<MachineOperand, 4> Predicate;
    129       BBInfo() : IsDone(false), IsBeingAnalyzed(false),
    130                  IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false),
    131                  HasFallThrough(false), IsUnpredicable(false),
    132                  CannotBeCopied(false), ClobbersPred(false), NonPredSize(0),
    133                  ExtraCost(0), ExtraCost2(0), BB(nullptr), TrueBB(nullptr),
    134                  FalseBB(nullptr) {}
    135     };
    136 
    137     /// IfcvtToken - Record information about pending if-conversions to attempt:
    138     /// BBI             - Corresponding BBInfo.
    139     /// Kind            - Type of block. See IfcvtKind.
    140     /// NeedSubsumption - True if the to-be-predicated BB has already been
    141     ///                   predicated.
    142     /// NumDups      - Number of instructions that would be duplicated due
    143     ///                   to this if-conversion. (For diamonds, the number of
    144     ///                   identical instructions at the beginnings of both
    145     ///                   paths).
    146     /// NumDups2     - For diamonds, the number of identical instructions
    147     ///                   at the ends of both paths.
    148     struct IfcvtToken {
    149       BBInfo &BBI;
    150       IfcvtKind Kind;
    151       bool NeedSubsumption;
    152       unsigned NumDups;
    153       unsigned NumDups2;
    154       IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0)
    155         : BBI(b), Kind(k), NeedSubsumption(s), NumDups(d), NumDups2(d2) {}
    156     };
    157 
    158     /// BBAnalysis - Results of if-conversion feasibility analysis indexed by
    159     /// basic block number.
    160     std::vector<BBInfo> BBAnalysis;
    161     TargetSchedModel SchedModel;
    162 
    163     const TargetLoweringBase *TLI;
    164     const TargetInstrInfo *TII;
    165     const TargetRegisterInfo *TRI;
    166     const MachineBranchProbabilityInfo *MBPI;
    167     MachineRegisterInfo *MRI;
    168 
    169     LivePhysRegs Redefs;
    170     LivePhysRegs DontKill;
    171 
    172     bool PreRegAlloc;
    173     bool MadeChange;
    174     int FnNum;
    175     std::function<bool(const Function &)> PredicateFtor;
    176 
    177   public:
    178     static char ID;
    179     IfConverter(std::function<bool(const Function &)> Ftor = nullptr)
    180         : MachineFunctionPass(ID), FnNum(-1), PredicateFtor(std::move(Ftor)) {
    181       initializeIfConverterPass(*PassRegistry::getPassRegistry());
    182     }
    183 
    184     void getAnalysisUsage(AnalysisUsage &AU) const override {
    185       AU.addRequired<MachineBlockFrequencyInfo>();
    186       AU.addRequired<MachineBranchProbabilityInfo>();
    187       MachineFunctionPass::getAnalysisUsage(AU);
    188     }
    189 
    190     bool runOnMachineFunction(MachineFunction &MF) override;
    191 
    192     MachineFunctionProperties getRequiredProperties() const override {
    193       return MachineFunctionProperties().set(
    194           MachineFunctionProperties::Property::AllVRegsAllocated);
    195     }
    196 
    197   private:
    198     bool ReverseBranchCondition(BBInfo &BBI);
    199     bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
    200                      BranchProbability Prediction) const;
    201     bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
    202                        bool FalseBranch, unsigned &Dups,
    203                        BranchProbability Prediction) const;
    204     bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
    205                       unsigned &Dups1, unsigned &Dups2) const;
    206     void ScanInstructions(BBInfo &BBI);
    207     void AnalyzeBlock(MachineBasicBlock *MBB,
    208                       std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
    209     bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Cond,
    210                              bool isTriangle = false, bool RevBranch = false);
    211     void AnalyzeBlocks(MachineFunction &MF,
    212                        std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
    213     void InvalidatePreds(MachineBasicBlock *BB);
    214     void RemoveExtraEdges(BBInfo &BBI);
    215     bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind);
    216     bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind);
    217     bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
    218                           unsigned NumDups1, unsigned NumDups2);
    219     void PredicateBlock(BBInfo &BBI,
    220                         MachineBasicBlock::iterator E,
    221                         SmallVectorImpl<MachineOperand> &Cond,
    222                         SmallSet<unsigned, 4> *LaterRedefs = nullptr);
    223     void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
    224                                SmallVectorImpl<MachineOperand> &Cond,
    225                                bool IgnoreBr = false);
    226     void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true);
    227 
    228     bool MeetIfcvtSizeLimit(MachineBasicBlock &BB,
    229                             unsigned Cycle, unsigned Extra,
    230                             BranchProbability Prediction) const {
    231       return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra,
    232                                                    Prediction);
    233     }
    234 
    235     bool MeetIfcvtSizeLimit(MachineBasicBlock &TBB,
    236                             unsigned TCycle, unsigned TExtra,
    237                             MachineBasicBlock &FBB,
    238                             unsigned FCycle, unsigned FExtra,
    239                             BranchProbability Prediction) const {
    240       return TCycle > 0 && FCycle > 0 &&
    241         TII->isProfitableToIfCvt(TBB, TCycle, TExtra, FBB, FCycle, FExtra,
    242                                  Prediction);
    243     }
    244 
    245     // blockAlwaysFallThrough - Block ends without a terminator.
    246     bool blockAlwaysFallThrough(BBInfo &BBI) const {
    247       return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr;
    248     }
    249 
    250     // IfcvtTokenCmp - Used to sort if-conversion candidates.
    251     static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1,
    252                               const std::unique_ptr<IfcvtToken> &C2) {
    253       int Incr1 = (C1->Kind == ICDiamond)
    254         ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups;
    255       int Incr2 = (C2->Kind == ICDiamond)
    256         ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups;
    257       if (Incr1 > Incr2)
    258         return true;
    259       else if (Incr1 == Incr2) {
    260         // Favors subsumption.
    261         if (!C1->NeedSubsumption && C2->NeedSubsumption)
    262           return true;
    263         else if (C1->NeedSubsumption == C2->NeedSubsumption) {
    264           // Favors diamond over triangle, etc.
    265           if ((unsigned)C1->Kind < (unsigned)C2->Kind)
    266             return true;
    267           else if (C1->Kind == C2->Kind)
    268             return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber();
    269         }
    270       }
    271       return false;
    272     }
    273   };
    274 
    275   char IfConverter::ID = 0;
    276 }
    277 
    278 char &llvm::IfConverterID = IfConverter::ID;
    279 
    280 INITIALIZE_PASS_BEGIN(IfConverter, "if-converter", "If Converter", false, false)
    281 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
    282 INITIALIZE_PASS_END(IfConverter, "if-converter", "If Converter", false, false)
    283 
    284 bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
    285   if (skipFunction(*MF.getFunction()) ||
    286       (PredicateFtor && !PredicateFtor(*MF.getFunction())))
    287     return false;
    288 
    289   const TargetSubtargetInfo &ST = MF.getSubtarget();
    290   TLI = ST.getTargetLowering();
    291   TII = ST.getInstrInfo();
    292   TRI = ST.getRegisterInfo();
    293   BranchFolder::MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>());
    294   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
    295   MRI = &MF.getRegInfo();
    296   SchedModel.init(ST.getSchedModel(), &ST, TII);
    297 
    298   if (!TII) return false;
    299 
    300   PreRegAlloc = MRI->isSSA();
    301 
    302   bool BFChange = false;
    303   if (!PreRegAlloc) {
    304     // Tail merge tend to expose more if-conversion opportunities.
    305     BranchFolder BF(true, false, MBFI, *MBPI);
    306     BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo(),
    307                                    getAnalysisIfAvailable<MachineModuleInfo>());
    308   }
    309 
    310   DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum <<  ") \'"
    311                << MF.getName() << "\'");
    312 
    313   if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) {
    314     DEBUG(dbgs() << " skipped\n");
    315     return false;
    316   }
    317   DEBUG(dbgs() << "\n");
    318 
    319   MF.RenumberBlocks();
    320   BBAnalysis.resize(MF.getNumBlockIDs());
    321 
    322   std::vector<std::unique_ptr<IfcvtToken>> Tokens;
    323   MadeChange = false;
    324   unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle +
    325     NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds;
    326   while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) {
    327     // Do an initial analysis for each basic block and find all the potential
    328     // candidates to perform if-conversion.
    329     bool Change = false;
    330     AnalyzeBlocks(MF, Tokens);
    331     while (!Tokens.empty()) {
    332       std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back());
    333       Tokens.pop_back();
    334       BBInfo &BBI = Token->BBI;
    335       IfcvtKind Kind = Token->Kind;
    336       unsigned NumDups = Token->NumDups;
    337       unsigned NumDups2 = Token->NumDups2;
    338 
    339       // If the block has been evicted out of the queue or it has already been
    340       // marked dead (due to it being predicated), then skip it.
    341       if (BBI.IsDone)
    342         BBI.IsEnqueued = false;
    343       if (!BBI.IsEnqueued)
    344         continue;
    345 
    346       BBI.IsEnqueued = false;
    347 
    348       bool RetVal = false;
    349       switch (Kind) {
    350       default: llvm_unreachable("Unexpected!");
    351       case ICSimple:
    352       case ICSimpleFalse: {
    353         bool isFalse = Kind == ICSimpleFalse;
    354         if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break;
    355         DEBUG(dbgs() << "Ifcvt (Simple" << (Kind == ICSimpleFalse ?
    356                                             " false" : "")
    357                      << "): BB#" << BBI.BB->getNumber() << " ("
    358                      << ((Kind == ICSimpleFalse)
    359                          ? BBI.FalseBB->getNumber()
    360                          : BBI.TrueBB->getNumber()) << ") ");
    361         RetVal = IfConvertSimple(BBI, Kind);
    362         DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
    363         if (RetVal) {
    364           if (isFalse) ++NumSimpleFalse;
    365           else         ++NumSimple;
    366         }
    367        break;
    368       }
    369       case ICTriangle:
    370       case ICTriangleRev:
    371       case ICTriangleFalse:
    372       case ICTriangleFRev: {
    373         bool isFalse = Kind == ICTriangleFalse;
    374         bool isRev   = (Kind == ICTriangleRev || Kind == ICTriangleFRev);
    375         if (DisableTriangle && !isFalse && !isRev) break;
    376         if (DisableTriangleR && !isFalse && isRev) break;
    377         if (DisableTriangleF && isFalse && !isRev) break;
    378         if (DisableTriangleFR && isFalse && isRev) break;
    379         DEBUG(dbgs() << "Ifcvt (Triangle");
    380         if (isFalse)
    381           DEBUG(dbgs() << " false");
    382         if (isRev)
    383           DEBUG(dbgs() << " rev");
    384         DEBUG(dbgs() << "): BB#" << BBI.BB->getNumber() << " (T:"
    385                      << BBI.TrueBB->getNumber() << ",F:"
    386                      << BBI.FalseBB->getNumber() << ") ");
    387         RetVal = IfConvertTriangle(BBI, Kind);
    388         DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
    389         if (RetVal) {
    390           if (isFalse) {
    391             if (isRev) ++NumTriangleFRev;
    392             else       ++NumTriangleFalse;
    393           } else {
    394             if (isRev) ++NumTriangleRev;
    395             else       ++NumTriangle;
    396           }
    397         }
    398         break;
    399       }
    400       case ICDiamond: {
    401         if (DisableDiamond) break;
    402         DEBUG(dbgs() << "Ifcvt (Diamond): BB#" << BBI.BB->getNumber() << " (T:"
    403                      << BBI.TrueBB->getNumber() << ",F:"
    404                      << BBI.FalseBB->getNumber() << ") ");
    405         RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2);
    406         DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
    407         if (RetVal) ++NumDiamonds;
    408         break;
    409       }
    410       }
    411 
    412       Change |= RetVal;
    413 
    414       NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev +
    415         NumTriangleFalse + NumTriangleFRev + NumDiamonds;
    416       if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit)
    417         break;
    418     }
    419 
    420     if (!Change)
    421       break;
    422     MadeChange |= Change;
    423   }
    424 
    425   Tokens.clear();
    426   BBAnalysis.clear();
    427 
    428   if (MadeChange && IfCvtBranchFold) {
    429     BranchFolder BF(false, false, MBFI, *MBPI);
    430     BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
    431                         getAnalysisIfAvailable<MachineModuleInfo>());
    432   }
    433 
    434   MadeChange |= BFChange;
    435   return MadeChange;
    436 }
    437 
    438 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given
    439 /// its 'true' successor.
    440 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
    441                                          MachineBasicBlock *TrueBB) {
    442   for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
    443          E = BB->succ_end(); SI != E; ++SI) {
    444     MachineBasicBlock *SuccBB = *SI;
    445     if (SuccBB != TrueBB)
    446       return SuccBB;
    447   }
    448   return nullptr;
    449 }
    450 
    451 /// ReverseBranchCondition - Reverse the condition of the end of the block
    452 /// branch. Swap block's 'true' and 'false' successors.
    453 bool IfConverter::ReverseBranchCondition(BBInfo &BBI) {
    454   DebugLoc dl;  // FIXME: this is nowhere
    455   if (!TII->ReverseBranchCondition(BBI.BrCond)) {
    456     TII->RemoveBranch(*BBI.BB);
    457     TII->InsertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl);
    458     std::swap(BBI.TrueBB, BBI.FalseBB);
    459     return true;
    460   }
    461   return false;
    462 }
    463 
    464 /// getNextBlock - Returns the next block in the function blocks ordering. If
    465 /// it is the end, returns NULL.
    466 static inline MachineBasicBlock *getNextBlock(MachineBasicBlock *BB) {
    467   MachineFunction::iterator I = BB->getIterator();
    468   MachineFunction::iterator E = BB->getParent()->end();
    469   if (++I == E)
    470     return nullptr;
    471   return &*I;
    472 }
    473 
    474 /// ValidSimple - Returns true if the 'true' block (along with its
    475 /// predecessor) forms a valid simple shape for ifcvt. It also returns the
    476 /// number of instructions that the ifcvt would need to duplicate if performed
    477 /// in Dups.
    478 bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
    479                               BranchProbability Prediction) const {
    480   Dups = 0;
    481   if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
    482     return false;
    483 
    484   if (TrueBBI.IsBrAnalyzable)
    485     return false;
    486 
    487   if (TrueBBI.BB->pred_size() > 1) {
    488     if (TrueBBI.CannotBeCopied ||
    489         !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize,
    490                                         Prediction))
    491       return false;
    492     Dups = TrueBBI.NonPredSize;
    493   }
    494 
    495   return true;
    496 }
    497 
    498 /// ValidTriangle - Returns true if the 'true' and 'false' blocks (along
    499 /// with their common predecessor) forms a valid triangle shape for ifcvt.
    500 /// If 'FalseBranch' is true, it checks if 'true' block's false branch
    501 /// branches to the 'false' block rather than the other way around. It also
    502 /// returns the number of instructions that the ifcvt would need to duplicate
    503 /// if performed in 'Dups'.
    504 bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
    505                                 bool FalseBranch, unsigned &Dups,
    506                                 BranchProbability Prediction) const {
    507   Dups = 0;
    508   if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
    509     return false;
    510 
    511   if (TrueBBI.BB->pred_size() > 1) {
    512     if (TrueBBI.CannotBeCopied)
    513       return false;
    514 
    515     unsigned Size = TrueBBI.NonPredSize;
    516     if (TrueBBI.IsBrAnalyzable) {
    517       if (TrueBBI.TrueBB && TrueBBI.BrCond.empty())
    518         // Ends with an unconditional branch. It will be removed.
    519         --Size;
    520       else {
    521         MachineBasicBlock *FExit = FalseBranch
    522           ? TrueBBI.TrueBB : TrueBBI.FalseBB;
    523         if (FExit)
    524           // Require a conditional branch
    525           ++Size;
    526       }
    527     }
    528     if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction))
    529       return false;
    530     Dups = Size;
    531   }
    532 
    533   MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB;
    534   if (!TExit && blockAlwaysFallThrough(TrueBBI)) {
    535     MachineFunction::iterator I = TrueBBI.BB->getIterator();
    536     if (++I == TrueBBI.BB->getParent()->end())
    537       return false;
    538     TExit = &*I;
    539   }
    540   return TExit && TExit == FalseBBI.BB;
    541 }
    542 
    543 /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along
    544 /// with their common predecessor) forms a valid diamond shape for ifcvt.
    545 bool IfConverter::ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
    546                                unsigned &Dups1, unsigned &Dups2) const {
    547   Dups1 = Dups2 = 0;
    548   if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
    549       FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
    550     return false;
    551 
    552   MachineBasicBlock *TT = TrueBBI.TrueBB;
    553   MachineBasicBlock *FT = FalseBBI.TrueBB;
    554 
    555   if (!TT && blockAlwaysFallThrough(TrueBBI))
    556     TT = getNextBlock(TrueBBI.BB);
    557   if (!FT && blockAlwaysFallThrough(FalseBBI))
    558     FT = getNextBlock(FalseBBI.BB);
    559   if (TT != FT)
    560     return false;
    561   if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable))
    562     return false;
    563   if  (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
    564     return false;
    565 
    566   // FIXME: Allow true block to have an early exit?
    567   if (TrueBBI.FalseBB || FalseBBI.FalseBB ||
    568       (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred))
    569     return false;
    570 
    571   // Count duplicate instructions at the beginning of the true and false blocks.
    572   MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
    573   MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
    574   MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
    575   MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
    576   while (TIB != TIE && FIB != FIE) {
    577     // Skip dbg_value instructions. These do not count.
    578     if (TIB->isDebugValue()) {
    579       while (TIB != TIE && TIB->isDebugValue())
    580         ++TIB;
    581       if (TIB == TIE)
    582         break;
    583     }
    584     if (FIB->isDebugValue()) {
    585       while (FIB != FIE && FIB->isDebugValue())
    586         ++FIB;
    587       if (FIB == FIE)
    588         break;
    589     }
    590     if (!TIB->isIdenticalTo(*FIB))
    591       break;
    592     ++Dups1;
    593     ++TIB;
    594     ++FIB;
    595   }
    596 
    597   // Now, in preparation for counting duplicate instructions at the ends of the
    598   // blocks, move the end iterators up past any branch instructions.
    599   // If both blocks are returning don't skip the branches, since they will
    600   // likely be both identical return instructions. In such cases the return
    601   // can be left unpredicated.
    602   // Check for already containing all of the block.
    603   if (TIB == TIE || FIB == FIE)
    604     return true;
    605   --TIE;
    606   --FIE;
    607   if (!TrueBBI.BB->succ_empty() || !FalseBBI.BB->succ_empty()) {
    608     while (TIE != TIB && TIE->isBranch())
    609       --TIE;
    610     while (FIE != FIB && FIE->isBranch())
    611       --FIE;
    612   }
    613 
    614   // If Dups1 includes all of a block, then don't count duplicate
    615   // instructions at the end of the blocks.
    616   if (TIB == TIE || FIB == FIE)
    617     return true;
    618 
    619   // Count duplicate instructions at the ends of the blocks.
    620   while (TIE != TIB && FIE != FIB) {
    621     // Skip dbg_value instructions. These do not count.
    622     if (TIE->isDebugValue()) {
    623       while (TIE != TIB && TIE->isDebugValue())
    624         --TIE;
    625       if (TIE == TIB)
    626         break;
    627     }
    628     if (FIE->isDebugValue()) {
    629       while (FIE != FIB && FIE->isDebugValue())
    630         --FIE;
    631       if (FIE == FIB)
    632         break;
    633     }
    634     if (!TIE->isIdenticalTo(*FIE))
    635       break;
    636     ++Dups2;
    637     --TIE;
    638     --FIE;
    639   }
    640 
    641   return true;
    642 }
    643 
    644 /// ScanInstructions - Scan all the instructions in the block to determine if
    645 /// the block is predicable. In most cases, that means all the instructions
    646 /// in the block are isPredicable(). Also checks if the block contains any
    647 /// instruction which can clobber a predicate (e.g. condition code register).
    648 /// If so, the block is not predicable unless it's the last instruction.
    649 void IfConverter::ScanInstructions(BBInfo &BBI) {
    650   if (BBI.IsDone)
    651     return;
    652 
    653   bool AlreadyPredicated = !BBI.Predicate.empty();
    654   // First analyze the end of BB branches.
    655   BBI.TrueBB = BBI.FalseBB = nullptr;
    656   BBI.BrCond.clear();
    657   BBI.IsBrAnalyzable =
    658       !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond);
    659   BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr;
    660 
    661   if (BBI.BrCond.size()) {
    662     // No false branch. This BB must end with a conditional branch and a
    663     // fallthrough.
    664     if (!BBI.FalseBB)
    665       BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB);
    666     if (!BBI.FalseBB) {
    667       // Malformed bcc? True and false blocks are the same?
    668       BBI.IsUnpredicable = true;
    669       return;
    670     }
    671   }
    672 
    673   // Then scan all the instructions.
    674   BBI.NonPredSize = 0;
    675   BBI.ExtraCost = 0;
    676   BBI.ExtraCost2 = 0;
    677   BBI.ClobbersPred = false;
    678   for (auto &MI : *BBI.BB) {
    679     if (MI.isDebugValue())
    680       continue;
    681 
    682     // It's unsafe to duplicate convergent instructions in this context, so set
    683     // BBI.CannotBeCopied to true if MI is convergent.  To see why, consider the
    684     // following CFG, which is subject to our "simple" transformation.
    685     //
    686     //    BB0     // if (c1) goto BB1; else goto BB2;
    687     //   /   \
    688     //  BB1   |
    689     //   |   BB2  // if (c2) goto TBB; else goto FBB;
    690     //   |   / |
    691     //   |  /  |
    692     //   TBB   |
    693     //    |    |
    694     //    |   FBB
    695     //    |
    696     //    exit
    697     //
    698     // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd
    699     // be unconditional, and in BB2, they'd be predicated upon c2), and suppose
    700     // TBB contains a convergent instruction.  This is safe iff doing so does
    701     // not add a control-flow dependency to the convergent instruction -- i.e.,
    702     // it's safe iff the set of control flows that leads us to the convergent
    703     // instruction does not get smaller after the transformation.
    704     //
    705     // Originally we executed TBB if c1 || c2.  After the transformation, there
    706     // are two copies of TBB's instructions.  We get to the first if c1, and we
    707     // get to the second if !c1 && c2.
    708     //
    709     // There are clearly fewer ways to satisfy the condition "c1" than
    710     // "c1 || c2".  Since we've shrunk the set of control flows which lead to
    711     // our convergent instruction, the transformation is unsafe.
    712     if (MI.isNotDuplicable() || MI.isConvergent())
    713       BBI.CannotBeCopied = true;
    714 
    715     bool isPredicated = TII->isPredicated(MI);
    716     bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch();
    717 
    718     // A conditional branch is not predicable, but it may be eliminated.
    719     if (isCondBr)
    720       continue;
    721 
    722     if (!isPredicated) {
    723       BBI.NonPredSize++;
    724       unsigned ExtraPredCost = TII->getPredicationCost(MI);
    725       unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false);
    726       if (NumCycles > 1)
    727         BBI.ExtraCost += NumCycles-1;
    728       BBI.ExtraCost2 += ExtraPredCost;
    729     } else if (!AlreadyPredicated) {
    730       // FIXME: This instruction is already predicated before the
    731       // if-conversion pass. It's probably something like a conditional move.
    732       // Mark this block unpredicable for now.
    733       BBI.IsUnpredicable = true;
    734       return;
    735     }
    736 
    737     if (BBI.ClobbersPred && !isPredicated) {
    738       // Predicate modification instruction should end the block (except for
    739       // already predicated instructions and end of block branches).
    740       // Predicate may have been modified, the subsequent (currently)
    741       // unpredicated instructions cannot be correctly predicated.
    742       BBI.IsUnpredicable = true;
    743       return;
    744     }
    745 
    746     // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are
    747     // still potentially predicable.
    748     std::vector<MachineOperand> PredDefs;
    749     if (TII->DefinesPredicate(MI, PredDefs))
    750       BBI.ClobbersPred = true;
    751 
    752     if (!TII->isPredicable(MI)) {
    753       BBI.IsUnpredicable = true;
    754       return;
    755     }
    756   }
    757 }
    758 
    759 /// FeasibilityAnalysis - Determine if the block is a suitable candidate to be
    760 /// predicated by the specified predicate.
    761 bool IfConverter::FeasibilityAnalysis(BBInfo &BBI,
    762                                       SmallVectorImpl<MachineOperand> &Pred,
    763                                       bool isTriangle, bool RevBranch) {
    764   // If the block is dead or unpredicable, then it cannot be predicated.
    765   if (BBI.IsDone || BBI.IsUnpredicable)
    766     return false;
    767 
    768   // If it is already predicated but we couldn't analyze its terminator, the
    769   // latter might fallthrough, but we can't determine where to.
    770   // Conservatively avoid if-converting again.
    771   if (BBI.Predicate.size() && !BBI.IsBrAnalyzable)
    772     return false;
    773 
    774   // If it is already predicated, check if the new predicate subsumes
    775   // its predicate.
    776   if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate))
    777     return false;
    778 
    779   if (BBI.BrCond.size()) {
    780     if (!isTriangle)
    781       return false;
    782 
    783     // Test predicate subsumption.
    784     SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end());
    785     SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
    786     if (RevBranch) {
    787       if (TII->ReverseBranchCondition(Cond))
    788         return false;
    789     }
    790     if (TII->ReverseBranchCondition(RevPred) ||
    791         !TII->SubsumesPredicate(Cond, RevPred))
    792       return false;
    793   }
    794 
    795   return true;
    796 }
    797 
    798 /// AnalyzeBlock - Analyze the structure of the sub-CFG starting from
    799 /// the specified block. Record its successors and whether it looks like an
    800 /// if-conversion candidate.
    801 void IfConverter::AnalyzeBlock(
    802     MachineBasicBlock *MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
    803   struct BBState {
    804     BBState(MachineBasicBlock *BB) : MBB(BB), SuccsAnalyzed(false) {}
    805     MachineBasicBlock *MBB;
    806 
    807     /// This flag is true if MBB's successors have been analyzed.
    808     bool SuccsAnalyzed;
    809   };
    810 
    811   // Push MBB to the stack.
    812   SmallVector<BBState, 16> BBStack(1, MBB);
    813 
    814   while (!BBStack.empty()) {
    815     BBState &State = BBStack.back();
    816     MachineBasicBlock *BB = State.MBB;
    817     BBInfo &BBI = BBAnalysis[BB->getNumber()];
    818 
    819     if (!State.SuccsAnalyzed) {
    820       if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) {
    821         BBStack.pop_back();
    822         continue;
    823       }
    824 
    825       BBI.BB = BB;
    826       BBI.IsBeingAnalyzed = true;
    827 
    828       ScanInstructions(BBI);
    829 
    830       // Unanalyzable or ends with fallthrough or unconditional branch, or if is
    831       // not considered for ifcvt anymore.
    832       if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) {
    833         BBI.IsBeingAnalyzed = false;
    834         BBI.IsAnalyzed = true;
    835         BBStack.pop_back();
    836         continue;
    837       }
    838 
    839       // Do not ifcvt if either path is a back edge to the entry block.
    840       if (BBI.TrueBB == BB || BBI.FalseBB == BB) {
    841         BBI.IsBeingAnalyzed = false;
    842         BBI.IsAnalyzed = true;
    843         BBStack.pop_back();
    844         continue;
    845       }
    846 
    847       // Do not ifcvt if true and false fallthrough blocks are the same.
    848       if (!BBI.FalseBB) {
    849         BBI.IsBeingAnalyzed = false;
    850         BBI.IsAnalyzed = true;
    851         BBStack.pop_back();
    852         continue;
    853       }
    854 
    855       // Push the False and True blocks to the stack.
    856       State.SuccsAnalyzed = true;
    857       BBStack.push_back(BBI.FalseBB);
    858       BBStack.push_back(BBI.TrueBB);
    859       continue;
    860     }
    861 
    862     BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
    863     BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
    864 
    865     if (TrueBBI.IsDone && FalseBBI.IsDone) {
    866       BBI.IsBeingAnalyzed = false;
    867       BBI.IsAnalyzed = true;
    868       BBStack.pop_back();
    869       continue;
    870     }
    871 
    872     SmallVector<MachineOperand, 4>
    873         RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
    874     bool CanRevCond = !TII->ReverseBranchCondition(RevCond);
    875 
    876     unsigned Dups = 0;
    877     unsigned Dups2 = 0;
    878     bool TNeedSub = !TrueBBI.Predicate.empty();
    879     bool FNeedSub = !FalseBBI.Predicate.empty();
    880     bool Enqueued = false;
    881 
    882     BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB);
    883 
    884     if (CanRevCond && ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2) &&
    885         MeetIfcvtSizeLimit(*TrueBBI.BB, (TrueBBI.NonPredSize - (Dups + Dups2) +
    886                                          TrueBBI.ExtraCost), TrueBBI.ExtraCost2,
    887                            *FalseBBI.BB, (FalseBBI.NonPredSize - (Dups + Dups2) +
    888                                         FalseBBI.ExtraCost),FalseBBI.ExtraCost2,
    889                          Prediction) &&
    890         FeasibilityAnalysis(TrueBBI, BBI.BrCond) &&
    891         FeasibilityAnalysis(FalseBBI, RevCond)) {
    892       // Diamond:
    893       //   EBB
    894       //   / \_
    895       //  |   |
    896       // TBB FBB
    897       //   \ /
    898       //  TailBB
    899       // Note TailBB can be empty.
    900       Tokens.push_back(llvm::make_unique<IfcvtToken>(
    901           BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2));
    902       Enqueued = true;
    903     }
    904 
    905     if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) &&
    906         MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
    907                            TrueBBI.ExtraCost2, Prediction) &&
    908         FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) {
    909       // Triangle:
    910       //   EBB
    911       //   | \_
    912       //   |  |
    913       //   | TBB
    914       //   |  /
    915       //   FBB
    916       Tokens.push_back(
    917           llvm::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups));
    918       Enqueued = true;
    919     }
    920 
    921     if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) &&
    922         MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
    923                            TrueBBI.ExtraCost2, Prediction) &&
    924         FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) {
    925       Tokens.push_back(
    926           llvm::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups));
    927       Enqueued = true;
    928     }
    929 
    930     if (ValidSimple(TrueBBI, Dups, Prediction) &&
    931         MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
    932                            TrueBBI.ExtraCost2, Prediction) &&
    933         FeasibilityAnalysis(TrueBBI, BBI.BrCond)) {
    934       // Simple (split, no rejoin):
    935       //   EBB
    936       //   | \_
    937       //   |  |
    938       //   | TBB---> exit
    939       //   |
    940       //   FBB
    941       Tokens.push_back(
    942           llvm::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups));
    943       Enqueued = true;
    944     }
    945 
    946     if (CanRevCond) {
    947       // Try the other path...
    948       if (ValidTriangle(FalseBBI, TrueBBI, false, Dups,
    949                         Prediction.getCompl()) &&
    950           MeetIfcvtSizeLimit(*FalseBBI.BB,
    951                              FalseBBI.NonPredSize + FalseBBI.ExtraCost,
    952                              FalseBBI.ExtraCost2, Prediction.getCompl()) &&
    953           FeasibilityAnalysis(FalseBBI, RevCond, true)) {
    954         Tokens.push_back(llvm::make_unique<IfcvtToken>(BBI, ICTriangleFalse,
    955                                                        FNeedSub, Dups));
    956         Enqueued = true;
    957       }
    958 
    959       if (ValidTriangle(FalseBBI, TrueBBI, true, Dups,
    960                         Prediction.getCompl()) &&
    961           MeetIfcvtSizeLimit(*FalseBBI.BB,
    962                              FalseBBI.NonPredSize + FalseBBI.ExtraCost,
    963                            FalseBBI.ExtraCost2, Prediction.getCompl()) &&
    964         FeasibilityAnalysis(FalseBBI, RevCond, true, true)) {
    965         Tokens.push_back(
    966             llvm::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups));
    967         Enqueued = true;
    968       }
    969 
    970       if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) &&
    971           MeetIfcvtSizeLimit(*FalseBBI.BB,
    972                              FalseBBI.NonPredSize + FalseBBI.ExtraCost,
    973                              FalseBBI.ExtraCost2, Prediction.getCompl()) &&
    974           FeasibilityAnalysis(FalseBBI, RevCond)) {
    975         Tokens.push_back(
    976             llvm::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups));
    977         Enqueued = true;
    978       }
    979     }
    980 
    981     BBI.IsEnqueued = Enqueued;
    982     BBI.IsBeingAnalyzed = false;
    983     BBI.IsAnalyzed = true;
    984     BBStack.pop_back();
    985   }
    986 }
    987 
    988 /// AnalyzeBlocks - Analyze all blocks and find entries for all if-conversion
    989 /// candidates.
    990 void IfConverter::AnalyzeBlocks(
    991     MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
    992   for (auto &BB : MF)
    993     AnalyzeBlock(&BB, Tokens);
    994 
    995   // Sort to favor more complex ifcvt scheme.
    996   std::stable_sort(Tokens.begin(), Tokens.end(), IfcvtTokenCmp);
    997 }
    998 
    999 /// canFallThroughTo - Returns true either if ToBB is the next block after BB or
   1000 /// that all the intervening blocks are empty (given BB can fall through to its
   1001 /// next block).
   1002 static bool canFallThroughTo(MachineBasicBlock *BB, MachineBasicBlock *ToBB) {
   1003   MachineFunction::iterator PI = BB->getIterator();
   1004   MachineFunction::iterator I = std::next(PI);
   1005   MachineFunction::iterator TI = ToBB->getIterator();
   1006   MachineFunction::iterator E = BB->getParent()->end();
   1007   while (I != TI) {
   1008     // Check isSuccessor to avoid case where the next block is empty, but
   1009     // it's not a successor.
   1010     if (I == E || !I->empty() || !PI->isSuccessor(&*I))
   1011       return false;
   1012     PI = I++;
   1013   }
   1014   return true;
   1015 }
   1016 
   1017 /// InvalidatePreds - Invalidate predecessor BB info so it would be re-analyzed
   1018 /// to determine if it can be if-converted. If predecessor is already enqueued,
   1019 /// dequeue it!
   1020 void IfConverter::InvalidatePreds(MachineBasicBlock *BB) {
   1021   for (const auto &Predecessor : BB->predecessors()) {
   1022     BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()];
   1023     if (PBBI.IsDone || PBBI.BB == BB)
   1024       continue;
   1025     PBBI.IsAnalyzed = false;
   1026     PBBI.IsEnqueued = false;
   1027   }
   1028 }
   1029 
   1030 /// InsertUncondBranch - Inserts an unconditional branch from BB to ToBB.
   1031 ///
   1032 static void InsertUncondBranch(MachineBasicBlock *BB, MachineBasicBlock *ToBB,
   1033                                const TargetInstrInfo *TII) {
   1034   DebugLoc dl;  // FIXME: this is nowhere
   1035   SmallVector<MachineOperand, 0> NoCond;
   1036   TII->InsertBranch(*BB, ToBB, nullptr, NoCond, dl);
   1037 }
   1038 
   1039 /// RemoveExtraEdges - Remove true / false edges if either / both are no longer
   1040 /// successors.
   1041 void IfConverter::RemoveExtraEdges(BBInfo &BBI) {
   1042   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
   1043   SmallVector<MachineOperand, 4> Cond;
   1044   if (!TII->analyzeBranch(*BBI.BB, TBB, FBB, Cond))
   1045     BBI.BB->CorrectExtraCFGEdges(TBB, FBB, !Cond.empty());
   1046 }
   1047 
   1048 /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all
   1049 /// values defined in MI which are not live/used by MI.
   1050 static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) {
   1051   SmallVector<std::pair<unsigned, const MachineOperand*>, 4> Clobbers;
   1052   Redefs.stepForward(MI, Clobbers);
   1053 
   1054   // Now add the implicit uses for each of the clobbered values.
   1055   for (auto Reg : Clobbers) {
   1056     // FIXME: Const cast here is nasty, but better than making StepForward
   1057     // take a mutable instruction instead of const.
   1058     MachineOperand &Op = const_cast<MachineOperand&>(*Reg.second);
   1059     MachineInstr *OpMI = Op.getParent();
   1060     MachineInstrBuilder MIB(*OpMI->getParent()->getParent(), OpMI);
   1061     if (Op.isRegMask()) {
   1062       // First handle regmasks.  They clobber any entries in the mask which
   1063       // means that we need a def for those registers.
   1064       MIB.addReg(Reg.first, RegState::Implicit | RegState::Undef);
   1065 
   1066       // We also need to add an implicit def of this register for the later
   1067       // use to read from.
   1068       // For the register allocator to have allocated a register clobbered
   1069       // by the call which is used later, it must be the case that
   1070       // the call doesn't return.
   1071       MIB.addReg(Reg.first, RegState::Implicit | RegState::Define);
   1072       continue;
   1073     }
   1074     assert(Op.isReg() && "Register operand required");
   1075     if (Op.isDead()) {
   1076       // If we found a dead def, but it needs to be live, then remove the dead
   1077       // flag.
   1078       if (Redefs.contains(Op.getReg()))
   1079         Op.setIsDead(false);
   1080     }
   1081     MIB.addReg(Reg.first, RegState::Implicit | RegState::Undef);
   1082   }
   1083 }
   1084 
   1085 /**
   1086  * Remove kill flags from operands with a registers in the @p DontKill set.
   1087  */
   1088 static void RemoveKills(MachineInstr &MI, const LivePhysRegs &DontKill) {
   1089   for (MIBundleOperands O(MI); O.isValid(); ++O) {
   1090     if (!O->isReg() || !O->isKill())
   1091       continue;
   1092     if (DontKill.contains(O->getReg()))
   1093       O->setIsKill(false);
   1094   }
   1095 }
   1096 
   1097 /**
   1098  * Walks a range of machine instructions and removes kill flags for registers
   1099  * in the @p DontKill set.
   1100  */
   1101 static void RemoveKills(MachineBasicBlock::iterator I,
   1102                         MachineBasicBlock::iterator E,
   1103                         const LivePhysRegs &DontKill,
   1104                         const MCRegisterInfo &MCRI) {
   1105   for ( ; I != E; ++I)
   1106     RemoveKills(*I, DontKill);
   1107 }
   1108 
   1109 /// IfConvertSimple - If convert a simple (split, no rejoin) sub-CFG.
   1110 ///
   1111 bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) {
   1112   BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
   1113   BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
   1114   BBInfo *CvtBBI = &TrueBBI;
   1115   BBInfo *NextBBI = &FalseBBI;
   1116 
   1117   SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
   1118   if (Kind == ICSimpleFalse)
   1119     std::swap(CvtBBI, NextBBI);
   1120 
   1121   if (CvtBBI->IsDone ||
   1122       (CvtBBI->CannotBeCopied && CvtBBI->BB->pred_size() > 1)) {
   1123     // Something has changed. It's no longer safe to predicate this block.
   1124     BBI.IsAnalyzed = false;
   1125     CvtBBI->IsAnalyzed = false;
   1126     return false;
   1127   }
   1128 
   1129   if (CvtBBI->BB->hasAddressTaken())
   1130     // Conservatively abort if-conversion if BB's address is taken.
   1131     return false;
   1132 
   1133   if (Kind == ICSimpleFalse)
   1134     if (TII->ReverseBranchCondition(Cond))
   1135       llvm_unreachable("Unable to reverse branch condition!");
   1136 
   1137   // Initialize liveins to the first BB. These are potentiall redefined by
   1138   // predicated instructions.
   1139   Redefs.init(TRI);
   1140   Redefs.addLiveIns(*CvtBBI->BB);
   1141   Redefs.addLiveIns(*NextBBI->BB);
   1142 
   1143   // Compute a set of registers which must not be killed by instructions in
   1144   // BB1: This is everything live-in to BB2.
   1145   DontKill.init(TRI);
   1146   DontKill.addLiveIns(*NextBBI->BB);
   1147 
   1148   if (CvtBBI->BB->pred_size() > 1) {
   1149     BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
   1150     // Copy instructions in the true block, predicate them, and add them to
   1151     // the entry block.
   1152     CopyAndPredicateBlock(BBI, *CvtBBI, Cond);
   1153 
   1154     // RemoveExtraEdges won't work if the block has an unanalyzable branch, so
   1155     // explicitly remove CvtBBI as a successor.
   1156     BBI.BB->removeSuccessor(CvtBBI->BB, true);
   1157   } else {
   1158     RemoveKills(CvtBBI->BB->begin(), CvtBBI->BB->end(), DontKill, *TRI);
   1159     PredicateBlock(*CvtBBI, CvtBBI->BB->end(), Cond);
   1160 
   1161     // Merge converted block into entry block.
   1162     BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
   1163     MergeBlocks(BBI, *CvtBBI);
   1164   }
   1165 
   1166   bool IterIfcvt = true;
   1167   if (!canFallThroughTo(BBI.BB, NextBBI->BB)) {
   1168     InsertUncondBranch(BBI.BB, NextBBI->BB, TII);
   1169     BBI.HasFallThrough = false;
   1170     // Now ifcvt'd block will look like this:
   1171     // BB:
   1172     // ...
   1173     // t, f = cmp
   1174     // if t op
   1175     // b BBf
   1176     //
   1177     // We cannot further ifcvt this block because the unconditional branch
   1178     // will have to be predicated on the new condition, that will not be
   1179     // available if cmp executes.
   1180     IterIfcvt = false;
   1181   }
   1182 
   1183   RemoveExtraEdges(BBI);
   1184 
   1185   // Update block info. BB can be iteratively if-converted.
   1186   if (!IterIfcvt)
   1187     BBI.IsDone = true;
   1188   InvalidatePreds(BBI.BB);
   1189   CvtBBI->IsDone = true;
   1190 
   1191   // FIXME: Must maintain LiveIns.
   1192   return true;
   1193 }
   1194 
   1195 /// IfConvertTriangle - If convert a triangle sub-CFG.
   1196 ///
   1197 bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
   1198   BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
   1199   BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
   1200   BBInfo *CvtBBI = &TrueBBI;
   1201   BBInfo *NextBBI = &FalseBBI;
   1202   DebugLoc dl;  // FIXME: this is nowhere
   1203 
   1204   SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
   1205   if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
   1206     std::swap(CvtBBI, NextBBI);
   1207 
   1208   if (CvtBBI->IsDone ||
   1209       (CvtBBI->CannotBeCopied && CvtBBI->BB->pred_size() > 1)) {
   1210     // Something has changed. It's no longer safe to predicate this block.
   1211     BBI.IsAnalyzed = false;
   1212     CvtBBI->IsAnalyzed = false;
   1213     return false;
   1214   }
   1215 
   1216   if (CvtBBI->BB->hasAddressTaken())
   1217     // Conservatively abort if-conversion if BB's address is taken.
   1218     return false;
   1219 
   1220   if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
   1221     if (TII->ReverseBranchCondition(Cond))
   1222       llvm_unreachable("Unable to reverse branch condition!");
   1223 
   1224   if (Kind == ICTriangleRev || Kind == ICTriangleFRev) {
   1225     if (ReverseBranchCondition(*CvtBBI)) {
   1226       // BB has been changed, modify its predecessors (except for this
   1227       // one) so they don't get ifcvt'ed based on bad intel.
   1228       for (MachineBasicBlock::pred_iterator PI = CvtBBI->BB->pred_begin(),
   1229              E = CvtBBI->BB->pred_end(); PI != E; ++PI) {
   1230         MachineBasicBlock *PBB = *PI;
   1231         if (PBB == BBI.BB)
   1232           continue;
   1233         BBInfo &PBBI = BBAnalysis[PBB->getNumber()];
   1234         if (PBBI.IsEnqueued) {
   1235           PBBI.IsAnalyzed = false;
   1236           PBBI.IsEnqueued = false;
   1237         }
   1238       }
   1239     }
   1240   }
   1241 
   1242   // Initialize liveins to the first BB. These are potentially redefined by
   1243   // predicated instructions.
   1244   Redefs.init(TRI);
   1245   Redefs.addLiveIns(*CvtBBI->BB);
   1246   Redefs.addLiveIns(*NextBBI->BB);
   1247 
   1248   DontKill.clear();
   1249 
   1250   bool HasEarlyExit = CvtBBI->FalseBB != nullptr;
   1251   BranchProbability CvtNext, CvtFalse, BBNext, BBCvt;
   1252 
   1253   if (HasEarlyExit) {
   1254     // Get probabilities before modifying CvtBBI->BB and BBI.BB.
   1255     CvtNext = MBPI->getEdgeProbability(CvtBBI->BB, NextBBI->BB);
   1256     CvtFalse = MBPI->getEdgeProbability(CvtBBI->BB, CvtBBI->FalseBB);
   1257     BBNext = MBPI->getEdgeProbability(BBI.BB, NextBBI->BB);
   1258     BBCvt = MBPI->getEdgeProbability(BBI.BB, CvtBBI->BB);
   1259   }
   1260 
   1261   if (CvtBBI->BB->pred_size() > 1) {
   1262     BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
   1263     // Copy instructions in the true block, predicate them, and add them to
   1264     // the entry block.
   1265     CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true);
   1266 
   1267     // RemoveExtraEdges won't work if the block has an unanalyzable branch, so
   1268     // explicitly remove CvtBBI as a successor.
   1269     BBI.BB->removeSuccessor(CvtBBI->BB, true);
   1270   } else {
   1271     // Predicate the 'true' block after removing its branch.
   1272     CvtBBI->NonPredSize -= TII->RemoveBranch(*CvtBBI->BB);
   1273     PredicateBlock(*CvtBBI, CvtBBI->BB->end(), Cond);
   1274 
   1275     // Now merge the entry of the triangle with the true block.
   1276     BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
   1277     MergeBlocks(BBI, *CvtBBI, false);
   1278   }
   1279 
   1280   // If 'true' block has a 'false' successor, add an exit branch to it.
   1281   if (HasEarlyExit) {
   1282     SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(),
   1283                                            CvtBBI->BrCond.end());
   1284     if (TII->ReverseBranchCondition(RevCond))
   1285       llvm_unreachable("Unable to reverse branch condition!");
   1286 
   1287     // Update the edge probability for both CvtBBI->FalseBB and NextBBI.
   1288     // NewNext = New_Prob(BBI.BB, NextBBI->BB) =
   1289     //   Prob(BBI.BB, NextBBI->BB) +
   1290     //   Prob(BBI.BB, CvtBBI->BB) * Prob(CvtBBI->BB, NextBBI->BB)
   1291     // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) =
   1292     //   Prob(BBI.BB, CvtBBI->BB) * Prob(CvtBBI->BB, CvtBBI->FalseBB)
   1293     auto NewTrueBB = getNextBlock(BBI.BB);
   1294     auto NewNext = BBNext + BBCvt * CvtNext;
   1295     auto NewTrueBBIter =
   1296         std::find(BBI.BB->succ_begin(), BBI.BB->succ_end(), NewTrueBB);
   1297     if (NewTrueBBIter != BBI.BB->succ_end())
   1298       BBI.BB->setSuccProbability(NewTrueBBIter, NewNext);
   1299 
   1300     auto NewFalse = BBCvt * CvtFalse;
   1301     TII->InsertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl);
   1302     BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse);
   1303   }
   1304 
   1305   // Merge in the 'false' block if the 'false' block has no other
   1306   // predecessors. Otherwise, add an unconditional branch to 'false'.
   1307   bool FalseBBDead = false;
   1308   bool IterIfcvt = true;
   1309   bool isFallThrough = canFallThroughTo(BBI.BB, NextBBI->BB);
   1310   if (!isFallThrough) {
   1311     // Only merge them if the true block does not fallthrough to the false
   1312     // block. By not merging them, we make it possible to iteratively
   1313     // ifcvt the blocks.
   1314     if (!HasEarlyExit &&
   1315         NextBBI->BB->pred_size() == 1 && !NextBBI->HasFallThrough &&
   1316         !NextBBI->BB->hasAddressTaken()) {
   1317       MergeBlocks(BBI, *NextBBI);
   1318       FalseBBDead = true;
   1319     } else {
   1320       InsertUncondBranch(BBI.BB, NextBBI->BB, TII);
   1321       BBI.HasFallThrough = false;
   1322     }
   1323     // Mixed predicated and unpredicated code. This cannot be iteratively
   1324     // predicated.
   1325     IterIfcvt = false;
   1326   }
   1327 
   1328   RemoveExtraEdges(BBI);
   1329 
   1330   // Update block info. BB can be iteratively if-converted.
   1331   if (!IterIfcvt)
   1332     BBI.IsDone = true;
   1333   InvalidatePreds(BBI.BB);
   1334   CvtBBI->IsDone = true;
   1335   if (FalseBBDead)
   1336     NextBBI->IsDone = true;
   1337 
   1338   // FIXME: Must maintain LiveIns.
   1339   return true;
   1340 }
   1341 
   1342 /// IfConvertDiamond - If convert a diamond sub-CFG.
   1343 ///
   1344 bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
   1345                                    unsigned NumDups1, unsigned NumDups2) {
   1346   BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
   1347   BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
   1348   MachineBasicBlock *TailBB = TrueBBI.TrueBB;
   1349   // True block must fall through or end with an unanalyzable terminator.
   1350   if (!TailBB) {
   1351     if (blockAlwaysFallThrough(TrueBBI))
   1352       TailBB = FalseBBI.TrueBB;
   1353     assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!");
   1354   }
   1355 
   1356   if (TrueBBI.IsDone || FalseBBI.IsDone ||
   1357       TrueBBI.BB->pred_size() > 1 ||
   1358       FalseBBI.BB->pred_size() > 1) {
   1359     // Something has changed. It's no longer safe to predicate these blocks.
   1360     BBI.IsAnalyzed = false;
   1361     TrueBBI.IsAnalyzed = false;
   1362     FalseBBI.IsAnalyzed = false;
   1363     return false;
   1364   }
   1365 
   1366   if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken())
   1367     // Conservatively abort if-conversion if either BB has its address taken.
   1368     return false;
   1369 
   1370   // Put the predicated instructions from the 'true' block before the
   1371   // instructions from the 'false' block, unless the true block would clobber
   1372   // the predicate, in which case, do the opposite.
   1373   BBInfo *BBI1 = &TrueBBI;
   1374   BBInfo *BBI2 = &FalseBBI;
   1375   SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
   1376   if (TII->ReverseBranchCondition(RevCond))
   1377     llvm_unreachable("Unable to reverse branch condition!");
   1378   SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond;
   1379   SmallVector<MachineOperand, 4> *Cond2 = &RevCond;
   1380 
   1381   // Figure out the more profitable ordering.
   1382   bool DoSwap = false;
   1383   if (TrueBBI.ClobbersPred && !FalseBBI.ClobbersPred)
   1384     DoSwap = true;
   1385   else if (TrueBBI.ClobbersPred == FalseBBI.ClobbersPred) {
   1386     if (TrueBBI.NonPredSize > FalseBBI.NonPredSize)
   1387       DoSwap = true;
   1388   }
   1389   if (DoSwap) {
   1390     std::swap(BBI1, BBI2);
   1391     std::swap(Cond1, Cond2);
   1392   }
   1393 
   1394   // Remove the conditional branch from entry to the blocks.
   1395   BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
   1396 
   1397   // Initialize liveins to the first BB. These are potentially redefined by
   1398   // predicated instructions.
   1399   Redefs.init(TRI);
   1400   Redefs.addLiveIns(*BBI1->BB);
   1401 
   1402   // Remove the duplicated instructions at the beginnings of both paths.
   1403   // Skip dbg_value instructions
   1404   MachineBasicBlock::iterator DI1 = BBI1->BB->getFirstNonDebugInstr();
   1405   MachineBasicBlock::iterator DI2 = BBI2->BB->getFirstNonDebugInstr();
   1406   BBI1->NonPredSize -= NumDups1;
   1407   BBI2->NonPredSize -= NumDups1;
   1408 
   1409   // Skip past the dups on each side separately since there may be
   1410   // differing dbg_value entries.
   1411   for (unsigned i = 0; i < NumDups1; ++DI1) {
   1412     if (!DI1->isDebugValue())
   1413       ++i;
   1414   }
   1415   while (NumDups1 != 0) {
   1416     ++DI2;
   1417     if (!DI2->isDebugValue())
   1418       --NumDups1;
   1419   }
   1420 
   1421   // Compute a set of registers which must not be killed by instructions in BB1:
   1422   // This is everything used+live in BB2 after the duplicated instructions. We
   1423   // can compute this set by simulating liveness backwards from the end of BB2.
   1424   DontKill.init(TRI);
   1425   for (MachineBasicBlock::reverse_iterator I = BBI2->BB->rbegin(),
   1426        E = MachineBasicBlock::reverse_iterator(DI2); I != E; ++I) {
   1427     DontKill.stepBackward(*I);
   1428   }
   1429 
   1430   for (MachineBasicBlock::const_iterator I = BBI1->BB->begin(), E = DI1; I != E;
   1431        ++I) {
   1432     SmallVector<std::pair<unsigned, const MachineOperand*>, 4> IgnoredClobbers;
   1433     Redefs.stepForward(*I, IgnoredClobbers);
   1434   }
   1435   BBI.BB->splice(BBI.BB->end(), BBI1->BB, BBI1->BB->begin(), DI1);
   1436   BBI2->BB->erase(BBI2->BB->begin(), DI2);
   1437 
   1438   // Remove branch from the 'true' block, unless it was not analyzable.
   1439   // Non-analyzable branches need to be preserved, since in such cases,
   1440   // the CFG structure is not an actual diamond (the join block may not
   1441   // be present).
   1442   if (BBI1->IsBrAnalyzable)
   1443     BBI1->NonPredSize -= TII->RemoveBranch(*BBI1->BB);
   1444   // Remove duplicated instructions.
   1445   DI1 = BBI1->BB->end();
   1446   for (unsigned i = 0; i != NumDups2; ) {
   1447     // NumDups2 only counted non-dbg_value instructions, so this won't
   1448     // run off the head of the list.
   1449     assert (DI1 != BBI1->BB->begin());
   1450     --DI1;
   1451     // skip dbg_value instructions
   1452     if (!DI1->isDebugValue())
   1453       ++i;
   1454   }
   1455   BBI1->BB->erase(DI1, BBI1->BB->end());
   1456 
   1457   // Kill flags in the true block for registers living into the false block
   1458   // must be removed.
   1459   RemoveKills(BBI1->BB->begin(), BBI1->BB->end(), DontKill, *TRI);
   1460 
   1461   // Remove 'false' block branch (unless it was not analyzable), and find
   1462   // the last instruction to predicate.
   1463   if (BBI2->IsBrAnalyzable)
   1464     BBI2->NonPredSize -= TII->RemoveBranch(*BBI2->BB);
   1465   DI2 = BBI2->BB->end();
   1466   while (NumDups2 != 0) {
   1467     // NumDups2 only counted non-dbg_value instructions, so this won't
   1468     // run off the head of the list.
   1469     assert (DI2 != BBI2->BB->begin());
   1470     --DI2;
   1471     // skip dbg_value instructions
   1472     if (!DI2->isDebugValue())
   1473       --NumDups2;
   1474   }
   1475 
   1476   // Remember which registers would later be defined by the false block.
   1477   // This allows us not to predicate instructions in the true block that would
   1478   // later be re-defined. That is, rather than
   1479   //   subeq  r0, r1, #1
   1480   //   addne  r0, r1, #1
   1481   // generate:
   1482   //   sub    r0, r1, #1
   1483   //   addne  r0, r1, #1
   1484   SmallSet<unsigned, 4> RedefsByFalse;
   1485   SmallSet<unsigned, 4> ExtUses;
   1486   if (TII->isProfitableToUnpredicate(*BBI1->BB, *BBI2->BB)) {
   1487     for (MachineBasicBlock::iterator FI = BBI2->BB->begin(); FI != DI2; ++FI) {
   1488       if (FI->isDebugValue())
   1489         continue;
   1490       SmallVector<unsigned, 4> Defs;
   1491       for (unsigned i = 0, e = FI->getNumOperands(); i != e; ++i) {
   1492         const MachineOperand &MO = FI->getOperand(i);
   1493         if (!MO.isReg())
   1494           continue;
   1495         unsigned Reg = MO.getReg();
   1496         if (!Reg)
   1497           continue;
   1498         if (MO.isDef()) {
   1499           Defs.push_back(Reg);
   1500         } else if (!RedefsByFalse.count(Reg)) {
   1501           // These are defined before ctrl flow reach the 'false' instructions.
   1502           // They cannot be modified by the 'true' instructions.
   1503           for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
   1504                SubRegs.isValid(); ++SubRegs)
   1505             ExtUses.insert(*SubRegs);
   1506         }
   1507       }
   1508 
   1509       for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
   1510         unsigned Reg = Defs[i];
   1511         if (!ExtUses.count(Reg)) {
   1512           for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
   1513                SubRegs.isValid(); ++SubRegs)
   1514             RedefsByFalse.insert(*SubRegs);
   1515         }
   1516       }
   1517     }
   1518   }
   1519 
   1520   // Predicate the 'true' block.
   1521   PredicateBlock(*BBI1, BBI1->BB->end(), *Cond1, &RedefsByFalse);
   1522 
   1523   // After predicating BBI1, if there is a predicated terminator in BBI1 and
   1524   // a non-predicated in BBI2, then we don't want to predicate the one from
   1525   // BBI2. The reason is that if we merged these blocks, we would end up with
   1526   // two predicated terminators in the same block.
   1527   if (!BBI2->BB->empty() && (DI2 == BBI2->BB->end())) {
   1528     MachineBasicBlock::iterator BBI1T = BBI1->BB->getFirstTerminator();
   1529     MachineBasicBlock::iterator BBI2T = BBI2->BB->getFirstTerminator();
   1530     if (BBI1T != BBI1->BB->end() && TII->isPredicated(*BBI1T) &&
   1531         BBI2T != BBI2->BB->end() && !TII->isPredicated(*BBI2T))
   1532       --DI2;
   1533   }
   1534 
   1535   // Predicate the 'false' block.
   1536   PredicateBlock(*BBI2, DI2, *Cond2);
   1537 
   1538   // Merge the true block into the entry of the diamond.
   1539   MergeBlocks(BBI, *BBI1, TailBB == nullptr);
   1540   MergeBlocks(BBI, *BBI2, TailBB == nullptr);
   1541 
   1542   // If the if-converted block falls through or unconditionally branches into
   1543   // the tail block, and the tail block does not have other predecessors, then
   1544   // fold the tail block in as well. Otherwise, unless it falls through to the
   1545   // tail, add a unconditional branch to it.
   1546   if (TailBB) {
   1547     BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()];
   1548     bool CanMergeTail = !TailBBI.HasFallThrough &&
   1549       !TailBBI.BB->hasAddressTaken();
   1550     // The if-converted block can still have a predicated terminator
   1551     // (e.g. a predicated return). If that is the case, we cannot merge
   1552     // it with the tail block.
   1553     MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator();
   1554     if (TI != BBI.BB->end() && TII->isPredicated(*TI))
   1555       CanMergeTail = false;
   1556     // There may still be a fall-through edge from BBI1 or BBI2 to TailBB;
   1557     // check if there are any other predecessors besides those.
   1558     unsigned NumPreds = TailBB->pred_size();
   1559     if (NumPreds > 1)
   1560       CanMergeTail = false;
   1561     else if (NumPreds == 1 && CanMergeTail) {
   1562       MachineBasicBlock::pred_iterator PI = TailBB->pred_begin();
   1563       if (*PI != BBI1->BB && *PI != BBI2->BB)
   1564         CanMergeTail = false;
   1565     }
   1566     if (CanMergeTail) {
   1567       MergeBlocks(BBI, TailBBI);
   1568       TailBBI.IsDone = true;
   1569     } else {
   1570       BBI.BB->addSuccessor(TailBB, BranchProbability::getOne());
   1571       InsertUncondBranch(BBI.BB, TailBB, TII);
   1572       BBI.HasFallThrough = false;
   1573     }
   1574   }
   1575 
   1576   // RemoveExtraEdges won't work if the block has an unanalyzable branch,
   1577   // which can happen here if TailBB is unanalyzable and is merged, so
   1578   // explicitly remove BBI1 and BBI2 as successors.
   1579   BBI.BB->removeSuccessor(BBI1->BB);
   1580   BBI.BB->removeSuccessor(BBI2->BB, true);
   1581   RemoveExtraEdges(BBI);
   1582 
   1583   // Update block info.
   1584   BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
   1585   InvalidatePreds(BBI.BB);
   1586 
   1587   // FIXME: Must maintain LiveIns.
   1588   return true;
   1589 }
   1590 
   1591 static bool MaySpeculate(const MachineInstr &MI,
   1592                          SmallSet<unsigned, 4> &LaterRedefs) {
   1593   bool SawStore = true;
   1594   if (!MI.isSafeToMove(nullptr, SawStore))
   1595     return false;
   1596 
   1597   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
   1598     const MachineOperand &MO = MI.getOperand(i);
   1599     if (!MO.isReg())
   1600       continue;
   1601     unsigned Reg = MO.getReg();
   1602     if (!Reg)
   1603       continue;
   1604     if (MO.isDef() && !LaterRedefs.count(Reg))
   1605       return false;
   1606   }
   1607 
   1608   return true;
   1609 }
   1610 
   1611 /// PredicateBlock - Predicate instructions from the start of the block to the
   1612 /// specified end with the specified condition.
   1613 void IfConverter::PredicateBlock(BBInfo &BBI,
   1614                                  MachineBasicBlock::iterator E,
   1615                                  SmallVectorImpl<MachineOperand> &Cond,
   1616                                  SmallSet<unsigned, 4> *LaterRedefs) {
   1617   bool AnyUnpred = false;
   1618   bool MaySpec = LaterRedefs != nullptr;
   1619   for (MachineInstr &I : llvm::make_range(BBI.BB->begin(), E)) {
   1620     if (I.isDebugValue() || TII->isPredicated(I))
   1621       continue;
   1622     // It may be possible not to predicate an instruction if it's the 'true'
   1623     // side of a diamond and the 'false' side may re-define the instruction's
   1624     // defs.
   1625     if (MaySpec && MaySpeculate(I, *LaterRedefs)) {
   1626       AnyUnpred = true;
   1627       continue;
   1628     }
   1629     // If any instruction is predicated, then every instruction after it must
   1630     // be predicated.
   1631     MaySpec = false;
   1632     if (!TII->PredicateInstruction(I, Cond)) {
   1633 #ifndef NDEBUG
   1634       dbgs() << "Unable to predicate " << I << "!\n";
   1635 #endif
   1636       llvm_unreachable(nullptr);
   1637     }
   1638 
   1639     // If the predicated instruction now redefines a register as the result of
   1640     // if-conversion, add an implicit kill.
   1641     UpdatePredRedefs(I, Redefs);
   1642   }
   1643 
   1644   BBI.Predicate.append(Cond.begin(), Cond.end());
   1645 
   1646   BBI.IsAnalyzed = false;
   1647   BBI.NonPredSize = 0;
   1648 
   1649   ++NumIfConvBBs;
   1650   if (AnyUnpred)
   1651     ++NumUnpred;
   1652 }
   1653 
   1654 /// CopyAndPredicateBlock - Copy and predicate instructions from source BB to
   1655 /// the destination block. Skip end of block branches if IgnoreBr is true.
   1656 void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
   1657                                         SmallVectorImpl<MachineOperand> &Cond,
   1658                                         bool IgnoreBr) {
   1659   MachineFunction &MF = *ToBBI.BB->getParent();
   1660 
   1661   for (auto &I : *FromBBI.BB) {
   1662     // Do not copy the end of the block branches.
   1663     if (IgnoreBr && I.isBranch())
   1664       break;
   1665 
   1666     MachineInstr *MI = MF.CloneMachineInstr(&I);
   1667     ToBBI.BB->insert(ToBBI.BB->end(), MI);
   1668     ToBBI.NonPredSize++;
   1669     unsigned ExtraPredCost = TII->getPredicationCost(I);
   1670     unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
   1671     if (NumCycles > 1)
   1672       ToBBI.ExtraCost += NumCycles-1;
   1673     ToBBI.ExtraCost2 += ExtraPredCost;
   1674 
   1675     if (!TII->isPredicated(I) && !MI->isDebugValue()) {
   1676       if (!TII->PredicateInstruction(*MI, Cond)) {
   1677 #ifndef NDEBUG
   1678         dbgs() << "Unable to predicate " << I << "!\n";
   1679 #endif
   1680         llvm_unreachable(nullptr);
   1681       }
   1682     }
   1683 
   1684     // If the predicated instruction now redefines a register as the result of
   1685     // if-conversion, add an implicit kill.
   1686     UpdatePredRedefs(*MI, Redefs);
   1687 
   1688     // Some kill flags may not be correct anymore.
   1689     if (!DontKill.empty())
   1690       RemoveKills(*MI, DontKill);
   1691   }
   1692 
   1693   if (!IgnoreBr) {
   1694     std::vector<MachineBasicBlock *> Succs(FromBBI.BB->succ_begin(),
   1695                                            FromBBI.BB->succ_end());
   1696     MachineBasicBlock *NBB = getNextBlock(FromBBI.BB);
   1697     MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
   1698 
   1699     for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
   1700       MachineBasicBlock *Succ = Succs[i];
   1701       // Fallthrough edge can't be transferred.
   1702       if (Succ == FallThrough)
   1703         continue;
   1704       ToBBI.BB->addSuccessor(Succ);
   1705     }
   1706   }
   1707 
   1708   ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
   1709   ToBBI.Predicate.append(Cond.begin(), Cond.end());
   1710 
   1711   ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
   1712   ToBBI.IsAnalyzed = false;
   1713 
   1714   ++NumDupBBs;
   1715 }
   1716 
   1717 /// MergeBlocks - Move all instructions from FromBB to the end of ToBB.
   1718 /// This will leave FromBB as an empty block, so remove all of its
   1719 /// successor edges except for the fall-through edge.  If AddEdges is true,
   1720 /// i.e., when FromBBI's branch is being moved, add those successor edges to
   1721 /// ToBBI.
   1722 void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) {
   1723   assert(!FromBBI.BB->hasAddressTaken() &&
   1724          "Removing a BB whose address is taken!");
   1725 
   1726   // In case FromBBI.BB contains terminators (e.g. return instruction),
   1727   // first move the non-terminator instructions, then the terminators.
   1728   MachineBasicBlock::iterator FromTI = FromBBI.BB->getFirstTerminator();
   1729   MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator();
   1730   ToBBI.BB->splice(ToTI, FromBBI.BB, FromBBI.BB->begin(), FromTI);
   1731 
   1732   // If FromBB has non-predicated terminator we should copy it at the end.
   1733   if (FromTI != FromBBI.BB->end() && !TII->isPredicated(*FromTI))
   1734     ToTI = ToBBI.BB->end();
   1735   ToBBI.BB->splice(ToTI, FromBBI.BB, FromTI, FromBBI.BB->end());
   1736 
   1737   // Force normalizing the successors' probabilities of ToBBI.BB to convert all
   1738   // unknown probabilities into known ones.
   1739   // FIXME: This usage is too tricky and in the future we would like to
   1740   // eliminate all unknown probabilities in MBB.
   1741   ToBBI.BB->normalizeSuccProbs();
   1742 
   1743   SmallVector<MachineBasicBlock *, 4> FromSuccs(FromBBI.BB->succ_begin(),
   1744                                                 FromBBI.BB->succ_end());
   1745   MachineBasicBlock *NBB = getNextBlock(FromBBI.BB);
   1746   MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
   1747   // The edge probability from ToBBI.BB to FromBBI.BB, which is only needed when
   1748   // AddEdges is true and FromBBI.BB is a successor of ToBBI.BB.
   1749   auto To2FromProb = BranchProbability::getZero();
   1750   if (AddEdges && ToBBI.BB->isSuccessor(FromBBI.BB)) {
   1751     To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, FromBBI.BB);
   1752     // Set the edge probability from ToBBI.BB to FromBBI.BB to zero to avoid the
   1753     // edge probability being merged to other edges when this edge is removed
   1754     // later.
   1755     ToBBI.BB->setSuccProbability(
   1756         std::find(ToBBI.BB->succ_begin(), ToBBI.BB->succ_end(), FromBBI.BB),
   1757         BranchProbability::getZero());
   1758   }
   1759 
   1760   for (unsigned i = 0, e = FromSuccs.size(); i != e; ++i) {
   1761     MachineBasicBlock *Succ = FromSuccs[i];
   1762     // Fallthrough edge can't be transferred.
   1763     if (Succ == FallThrough)
   1764       continue;
   1765 
   1766     auto NewProb = BranchProbability::getZero();
   1767     if (AddEdges) {
   1768       // Calculate the edge probability for the edge from ToBBI.BB to Succ,
   1769       // which is a portion of the edge probability from FromBBI.BB to Succ. The
   1770       // portion ratio is the edge probability from ToBBI.BB to FromBBI.BB (if
   1771       // FromBBI is a successor of ToBBI.BB. See comment below for excepion).
   1772       NewProb = MBPI->getEdgeProbability(FromBBI.BB, Succ);
   1773 
   1774       // To2FromProb is 0 when FromBBI.BB is not a successor of ToBBI.BB. This
   1775       // only happens when if-converting a diamond CFG and FromBBI.BB is the
   1776       // tail BB.  In this case FromBBI.BB post-dominates ToBBI.BB and hence we
   1777       // could just use the probabilities on FromBBI.BB's out-edges when adding
   1778       // new successors.
   1779       if (!To2FromProb.isZero())
   1780         NewProb *= To2FromProb;
   1781     }
   1782 
   1783     FromBBI.BB->removeSuccessor(Succ);
   1784 
   1785     if (AddEdges) {
   1786       // If the edge from ToBBI.BB to Succ already exists, update the
   1787       // probability of this edge by adding NewProb to it. An example is shown
   1788       // below, in which A is ToBBI.BB and B is FromBBI.BB. In this case we
   1789       // don't have to set C as A's successor as it already is. We only need to
   1790       // update the edge probability on A->C. Note that B will not be
   1791       // immediately removed from A's successors. It is possible that B->D is
   1792       // not removed either if D is a fallthrough of B. Later the edge A->D
   1793       // (generated here) and B->D will be combined into one edge. To maintain
   1794       // correct edge probability of this combined edge, we need to set the edge
   1795       // probability of A->B to zero, which is already done above. The edge
   1796       // probability on A->D is calculated by scaling the original probability
   1797       // on A->B by the probability of B->D.
   1798       //
   1799       // Before ifcvt:      After ifcvt (assume B->D is kept):
   1800       //
   1801       //       A                A
   1802       //      /|               /|\
   1803       //     / B              / B|
   1804       //    | /|             |  ||
   1805       //    |/ |             |  |/
   1806       //    C  D             C  D
   1807       //
   1808       if (ToBBI.BB->isSuccessor(Succ))
   1809         ToBBI.BB->setSuccProbability(
   1810             std::find(ToBBI.BB->succ_begin(), ToBBI.BB->succ_end(), Succ),
   1811             MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb);
   1812       else
   1813         ToBBI.BB->addSuccessor(Succ, NewProb);
   1814     }
   1815   }
   1816 
   1817   // Now FromBBI always falls through to the next block!
   1818   if (NBB && !FromBBI.BB->isSuccessor(NBB))
   1819     FromBBI.BB->addSuccessor(NBB);
   1820 
   1821   // Normalize the probabilities of ToBBI.BB's successors with all adjustment
   1822   // we've done above.
   1823   ToBBI.BB->normalizeSuccProbs();
   1824 
   1825   ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
   1826   FromBBI.Predicate.clear();
   1827 
   1828   ToBBI.NonPredSize += FromBBI.NonPredSize;
   1829   ToBBI.ExtraCost += FromBBI.ExtraCost;
   1830   ToBBI.ExtraCost2 += FromBBI.ExtraCost2;
   1831   FromBBI.NonPredSize = 0;
   1832   FromBBI.ExtraCost = 0;
   1833   FromBBI.ExtraCost2 = 0;
   1834 
   1835   ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
   1836   ToBBI.HasFallThrough = FromBBI.HasFallThrough;
   1837   ToBBI.IsAnalyzed = false;
   1838   FromBBI.IsAnalyzed = false;
   1839 }
   1840 
   1841 FunctionPass *
   1842 llvm::createIfConverter(std::function<bool(const Function &)> Ftor) {
   1843   return new IfConverter(std::move(Ftor));
   1844 }
   1845