Home | History | Annotate | Download | only in CodeGen
      1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Pass to verify generated machine code. The following is checked:
     11 //
     12 // Operand counts: All explicit operands must be present.
     13 //
     14 // Register classes: All physical and virtual register operands must be
     15 // compatible with the register class required by the instruction descriptor.
     16 //
     17 // Register live intervals: Registers must be defined only once, and must be
     18 // defined before use.
     19 //
     20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
     21 // command-line option -verify-machineinstrs, or by defining the environment
     22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
     23 // the verifier errors.
     24 //===----------------------------------------------------------------------===//
     25 
     26 #include "llvm/CodeGen/Passes.h"
     27 #include "llvm/ADT/DenseSet.h"
     28 #include "llvm/ADT/DepthFirstIterator.h"
     29 #include "llvm/ADT/SetOperations.h"
     30 #include "llvm/ADT/SmallVector.h"
     31 #include "llvm/Analysis/EHPersonalities.h"
     32 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     33 #include "llvm/CodeGen/LiveStackAnalysis.h"
     34 #include "llvm/CodeGen/LiveVariables.h"
     35 #include "llvm/CodeGen/MachineFrameInfo.h"
     36 #include "llvm/CodeGen/MachineFunctionPass.h"
     37 #include "llvm/CodeGen/MachineMemOperand.h"
     38 #include "llvm/CodeGen/MachineRegisterInfo.h"
     39 #include "llvm/IR/BasicBlock.h"
     40 #include "llvm/IR/InlineAsm.h"
     41 #include "llvm/IR/Instructions.h"
     42 #include "llvm/MC/MCAsmInfo.h"
     43 #include "llvm/Support/Debug.h"
     44 #include "llvm/Support/ErrorHandling.h"
     45 #include "llvm/Support/FileSystem.h"
     46 #include "llvm/Support/raw_ostream.h"
     47 #include "llvm/Target/TargetInstrInfo.h"
     48 #include "llvm/Target/TargetMachine.h"
     49 #include "llvm/Target/TargetRegisterInfo.h"
     50 #include "llvm/Target/TargetSubtargetInfo.h"
     51 using namespace llvm;
     52 
     53 namespace {
     54   struct MachineVerifier {
     55 
     56     MachineVerifier(Pass *pass, const char *b) :
     57       PASS(pass),
     58       Banner(b)
     59       {}
     60 
     61     unsigned verify(MachineFunction &MF);
     62 
     63     Pass *const PASS;
     64     const char *Banner;
     65     const MachineFunction *MF;
     66     const TargetMachine *TM;
     67     const TargetInstrInfo *TII;
     68     const TargetRegisterInfo *TRI;
     69     const MachineRegisterInfo *MRI;
     70 
     71     unsigned foundErrors;
     72 
     73     typedef SmallVector<unsigned, 16> RegVector;
     74     typedef SmallVector<const uint32_t*, 4> RegMaskVector;
     75     typedef DenseSet<unsigned> RegSet;
     76     typedef DenseMap<unsigned, const MachineInstr*> RegMap;
     77     typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet;
     78 
     79     const MachineInstr *FirstTerminator;
     80     BlockSet FunctionBlocks;
     81 
     82     BitVector regsReserved;
     83     RegSet regsLive;
     84     RegVector regsDefined, regsDead, regsKilled;
     85     RegMaskVector regMasks;
     86     RegSet regsLiveInButUnused;
     87 
     88     SlotIndex lastIndex;
     89 
     90     // Add Reg and any sub-registers to RV
     91     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
     92       RV.push_back(Reg);
     93       if (TargetRegisterInfo::isPhysicalRegister(Reg))
     94         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
     95           RV.push_back(*SubRegs);
     96     }
     97 
     98     struct BBInfo {
     99       // Is this MBB reachable from the MF entry point?
    100       bool reachable;
    101 
    102       // Vregs that must be live in because they are used without being
    103       // defined. Map value is the user.
    104       RegMap vregsLiveIn;
    105 
    106       // Regs killed in MBB. They may be defined again, and will then be in both
    107       // regsKilled and regsLiveOut.
    108       RegSet regsKilled;
    109 
    110       // Regs defined in MBB and live out. Note that vregs passing through may
    111       // be live out without being mentioned here.
    112       RegSet regsLiveOut;
    113 
    114       // Vregs that pass through MBB untouched. This set is disjoint from
    115       // regsKilled and regsLiveOut.
    116       RegSet vregsPassed;
    117 
    118       // Vregs that must pass through MBB because they are needed by a successor
    119       // block. This set is disjoint from regsLiveOut.
    120       RegSet vregsRequired;
    121 
    122       // Set versions of block's predecessor and successor lists.
    123       BlockSet Preds, Succs;
    124 
    125       BBInfo() : reachable(false) {}
    126 
    127       // Add register to vregsPassed if it belongs there. Return true if
    128       // anything changed.
    129       bool addPassed(unsigned Reg) {
    130         if (!TargetRegisterInfo::isVirtualRegister(Reg))
    131           return false;
    132         if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
    133           return false;
    134         return vregsPassed.insert(Reg).second;
    135       }
    136 
    137       // Same for a full set.
    138       bool addPassed(const RegSet &RS) {
    139         bool changed = false;
    140         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
    141           if (addPassed(*I))
    142             changed = true;
    143         return changed;
    144       }
    145 
    146       // Add register to vregsRequired if it belongs there. Return true if
    147       // anything changed.
    148       bool addRequired(unsigned Reg) {
    149         if (!TargetRegisterInfo::isVirtualRegister(Reg))
    150           return false;
    151         if (regsLiveOut.count(Reg))
    152           return false;
    153         return vregsRequired.insert(Reg).second;
    154       }
    155 
    156       // Same for a full set.
    157       bool addRequired(const RegSet &RS) {
    158         bool changed = false;
    159         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
    160           if (addRequired(*I))
    161             changed = true;
    162         return changed;
    163       }
    164 
    165       // Same for a full map.
    166       bool addRequired(const RegMap &RM) {
    167         bool changed = false;
    168         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
    169           if (addRequired(I->first))
    170             changed = true;
    171         return changed;
    172       }
    173 
    174       // Live-out registers are either in regsLiveOut or vregsPassed.
    175       bool isLiveOut(unsigned Reg) const {
    176         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
    177       }
    178     };
    179 
    180     // Extra register info per MBB.
    181     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
    182 
    183     bool isReserved(unsigned Reg) {
    184       return Reg < regsReserved.size() && regsReserved.test(Reg);
    185     }
    186 
    187     bool isAllocatable(unsigned Reg) {
    188       return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg);
    189     }
    190 
    191     // Analysis information if available
    192     LiveVariables *LiveVars;
    193     LiveIntervals *LiveInts;
    194     LiveStacks *LiveStks;
    195     SlotIndexes *Indexes;
    196 
    197     void visitMachineFunctionBefore();
    198     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
    199     void visitMachineBundleBefore(const MachineInstr *MI);
    200     void visitMachineInstrBefore(const MachineInstr *MI);
    201     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
    202     void visitMachineInstrAfter(const MachineInstr *MI);
    203     void visitMachineBundleAfter(const MachineInstr *MI);
    204     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
    205     void visitMachineFunctionAfter();
    206 
    207     template <typename T> void report(const char *msg, ilist_iterator<T> I) {
    208       report(msg, &*I);
    209     }
    210     void report(const char *msg, const MachineFunction *MF);
    211     void report(const char *msg, const MachineBasicBlock *MBB);
    212     void report(const char *msg, const MachineInstr *MI);
    213     void report(const char *msg, const MachineOperand *MO, unsigned MONum);
    214 
    215     void report_context(const LiveInterval &LI) const;
    216     void report_context(const LiveRange &LR, unsigned Reg,
    217                         LaneBitmask LaneMask) const;
    218     void report_context(const LiveRange::Segment &S) const;
    219     void report_context(const VNInfo &VNI) const;
    220     void report_context(SlotIndex Pos) const;
    221     void report_context_liverange(const LiveRange &LR) const;
    222     void report_context_lanemask(LaneBitmask LaneMask) const;
    223     void report_context_vreg(unsigned VReg) const;
    224     void report_context_vreg_regunit(unsigned VRegOrRegUnit) const;
    225 
    226     void verifyInlineAsm(const MachineInstr *MI);
    227 
    228     void checkLiveness(const MachineOperand *MO, unsigned MONum);
    229     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
    230                             SlotIndex UseIdx, const LiveRange &LR, unsigned Reg,
    231                             LaneBitmask LaneMask = 0);
    232     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
    233                             SlotIndex DefIdx, const LiveRange &LR, unsigned Reg,
    234                             LaneBitmask LaneMask = 0);
    235 
    236     void markReachable(const MachineBasicBlock *MBB);
    237     void calcRegsPassed();
    238     void checkPHIOps(const MachineBasicBlock *MBB);
    239 
    240     void calcRegsRequired();
    241     void verifyLiveVariables();
    242     void verifyLiveIntervals();
    243     void verifyLiveInterval(const LiveInterval&);
    244     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
    245                               unsigned);
    246     void verifyLiveRangeSegment(const LiveRange&,
    247                                 const LiveRange::const_iterator I, unsigned,
    248                                 unsigned);
    249     void verifyLiveRange(const LiveRange&, unsigned, LaneBitmask LaneMask = 0);
    250 
    251     void verifyStackFrame();
    252 
    253     void verifySlotIndexes() const;
    254     void verifyProperties(const MachineFunction &MF);
    255   };
    256 
    257   struct MachineVerifierPass : public MachineFunctionPass {
    258     static char ID; // Pass ID, replacement for typeid
    259     const std::string Banner;
    260 
    261     MachineVerifierPass(const std::string &banner = nullptr)
    262       : MachineFunctionPass(ID), Banner(banner) {
    263         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
    264       }
    265 
    266     void getAnalysisUsage(AnalysisUsage &AU) const override {
    267       AU.setPreservesAll();
    268       MachineFunctionPass::getAnalysisUsage(AU);
    269     }
    270 
    271     bool runOnMachineFunction(MachineFunction &MF) override {
    272       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
    273       if (FoundErrors)
    274         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
    275       return false;
    276     }
    277   };
    278 
    279 }
    280 
    281 char MachineVerifierPass::ID = 0;
    282 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
    283                 "Verify generated machine code", false, false)
    284 
    285 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
    286   return new MachineVerifierPass(Banner);
    287 }
    288 
    289 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
    290     const {
    291   MachineFunction &MF = const_cast<MachineFunction&>(*this);
    292   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
    293   if (AbortOnErrors && FoundErrors)
    294     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
    295   return FoundErrors == 0;
    296 }
    297 
    298 void MachineVerifier::verifySlotIndexes() const {
    299   if (Indexes == nullptr)
    300     return;
    301 
    302   // Ensure the IdxMBB list is sorted by slot indexes.
    303   SlotIndex Last;
    304   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
    305        E = Indexes->MBBIndexEnd(); I != E; ++I) {
    306     assert(!Last.isValid() || I->first > Last);
    307     Last = I->first;
    308   }
    309 }
    310 
    311 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
    312   // If a pass has introduced virtual registers without clearing the
    313   // AllVRegsAllocated property (or set it without allocating the vregs)
    314   // then report an error.
    315   if (MF.getProperties().hasProperty(
    316           MachineFunctionProperties::Property::AllVRegsAllocated) &&
    317       MRI->getNumVirtRegs()) {
    318     report(
    319         "Function has AllVRegsAllocated property but there are VReg operands",
    320         &MF);
    321   }
    322 }
    323 
    324 unsigned MachineVerifier::verify(MachineFunction &MF) {
    325   foundErrors = 0;
    326 
    327   this->MF = &MF;
    328   TM = &MF.getTarget();
    329   TII = MF.getSubtarget().getInstrInfo();
    330   TRI = MF.getSubtarget().getRegisterInfo();
    331   MRI = &MF.getRegInfo();
    332 
    333   LiveVars = nullptr;
    334   LiveInts = nullptr;
    335   LiveStks = nullptr;
    336   Indexes = nullptr;
    337   if (PASS) {
    338     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
    339     // We don't want to verify LiveVariables if LiveIntervals is available.
    340     if (!LiveInts)
    341       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
    342     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
    343     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
    344   }
    345 
    346   verifySlotIndexes();
    347 
    348   verifyProperties(MF);
    349 
    350   visitMachineFunctionBefore();
    351   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
    352        MFI!=MFE; ++MFI) {
    353     visitMachineBasicBlockBefore(&*MFI);
    354     // Keep track of the current bundle header.
    355     const MachineInstr *CurBundle = nullptr;
    356     // Do we expect the next instruction to be part of the same bundle?
    357     bool InBundle = false;
    358 
    359     for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
    360            MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
    361       if (MBBI->getParent() != &*MFI) {
    362         report("Bad instruction parent pointer", MFI);
    363         errs() << "Instruction: " << *MBBI;
    364         continue;
    365       }
    366 
    367       // Check for consistent bundle flags.
    368       if (InBundle && !MBBI->isBundledWithPred())
    369         report("Missing BundledPred flag, "
    370                "BundledSucc was set on predecessor",
    371                &*MBBI);
    372       if (!InBundle && MBBI->isBundledWithPred())
    373         report("BundledPred flag is set, "
    374                "but BundledSucc not set on predecessor",
    375                &*MBBI);
    376 
    377       // Is this a bundle header?
    378       if (!MBBI->isInsideBundle()) {
    379         if (CurBundle)
    380           visitMachineBundleAfter(CurBundle);
    381         CurBundle = &*MBBI;
    382         visitMachineBundleBefore(CurBundle);
    383       } else if (!CurBundle)
    384         report("No bundle header", MBBI);
    385       visitMachineInstrBefore(&*MBBI);
    386       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
    387         const MachineInstr &MI = *MBBI;
    388         const MachineOperand &Op = MI.getOperand(I);
    389         if (Op.getParent() != &MI) {
    390           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
    391           // functions when replacing operands of a MachineInstr.
    392           report("Instruction has operand with wrong parent set", &MI);
    393         }
    394 
    395         visitMachineOperand(&Op, I);
    396       }
    397 
    398       visitMachineInstrAfter(&*MBBI);
    399 
    400       // Was this the last bundled instruction?
    401       InBundle = MBBI->isBundledWithSucc();
    402     }
    403     if (CurBundle)
    404       visitMachineBundleAfter(CurBundle);
    405     if (InBundle)
    406       report("BundledSucc flag set on last instruction in block", &MFI->back());
    407     visitMachineBasicBlockAfter(&*MFI);
    408   }
    409   visitMachineFunctionAfter();
    410 
    411   // Clean up.
    412   regsLive.clear();
    413   regsDefined.clear();
    414   regsDead.clear();
    415   regsKilled.clear();
    416   regMasks.clear();
    417   regsLiveInButUnused.clear();
    418   MBBInfoMap.clear();
    419 
    420   return foundErrors;
    421 }
    422 
    423 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
    424   assert(MF);
    425   errs() << '\n';
    426   if (!foundErrors++) {
    427     if (Banner)
    428       errs() << "# " << Banner << '\n';
    429     if (LiveInts != nullptr)
    430       LiveInts->print(errs());
    431     else
    432       MF->print(errs(), Indexes);
    433   }
    434   errs() << "*** Bad machine code: " << msg << " ***\n"
    435       << "- function:    " << MF->getName() << "\n";
    436 }
    437 
    438 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
    439   assert(MBB);
    440   report(msg, MBB->getParent());
    441   errs() << "- basic block: BB#" << MBB->getNumber()
    442       << ' ' << MBB->getName()
    443       << " (" << (const void*)MBB << ')';
    444   if (Indexes)
    445     errs() << " [" << Indexes->getMBBStartIdx(MBB)
    446         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
    447   errs() << '\n';
    448 }
    449 
    450 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
    451   assert(MI);
    452   report(msg, MI->getParent());
    453   errs() << "- instruction: ";
    454   if (Indexes && Indexes->hasIndex(*MI))
    455     errs() << Indexes->getInstructionIndex(*MI) << '\t';
    456   MI->print(errs(), /*SkipOpers=*/true);
    457   errs() << '\n';
    458 }
    459 
    460 void MachineVerifier::report(const char *msg,
    461                              const MachineOperand *MO, unsigned MONum) {
    462   assert(MO);
    463   report(msg, MO->getParent());
    464   errs() << "- operand " << MONum << ":   ";
    465   MO->print(errs(), TRI);
    466   errs() << "\n";
    467 }
    468 
    469 void MachineVerifier::report_context(SlotIndex Pos) const {
    470   errs() << "- at:          " << Pos << '\n';
    471 }
    472 
    473 void MachineVerifier::report_context(const LiveInterval &LI) const {
    474   errs() << "- interval:    " << LI << '\n';
    475 }
    476 
    477 void MachineVerifier::report_context(const LiveRange &LR, unsigned Reg,
    478                                      LaneBitmask LaneMask) const {
    479   report_context_liverange(LR);
    480   errs() << "- register:    " << PrintReg(Reg, TRI) << '\n';
    481   if (LaneMask != 0)
    482     report_context_lanemask(LaneMask);
    483 }
    484 
    485 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
    486   errs() << "- segment:     " << S << '\n';
    487 }
    488 
    489 void MachineVerifier::report_context(const VNInfo &VNI) const {
    490   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
    491 }
    492 
    493 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
    494   errs() << "- liverange:   " << LR << '\n';
    495 }
    496 
    497 void MachineVerifier::report_context_vreg(unsigned VReg) const {
    498   errs() << "- v. register: " << PrintReg(VReg, TRI) << '\n';
    499 }
    500 
    501 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
    502   if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
    503     report_context_vreg(VRegOrUnit);
    504   } else {
    505     errs() << "- regunit:     " << PrintRegUnit(VRegOrUnit, TRI) << '\n';
    506   }
    507 }
    508 
    509 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
    510   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
    511 }
    512 
    513 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
    514   BBInfo &MInfo = MBBInfoMap[MBB];
    515   if (!MInfo.reachable) {
    516     MInfo.reachable = true;
    517     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
    518            SuE = MBB->succ_end(); SuI != SuE; ++SuI)
    519       markReachable(*SuI);
    520   }
    521 }
    522 
    523 void MachineVerifier::visitMachineFunctionBefore() {
    524   lastIndex = SlotIndex();
    525   regsReserved = MRI->getReservedRegs();
    526 
    527   // A sub-register of a reserved register is also reserved
    528   for (int Reg = regsReserved.find_first(); Reg>=0;
    529        Reg = regsReserved.find_next(Reg)) {
    530     for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
    531       // FIXME: This should probably be:
    532       // assert(regsReserved.test(*SubRegs) && "Non-reserved sub-register");
    533       regsReserved.set(*SubRegs);
    534     }
    535   }
    536 
    537   markReachable(&MF->front());
    538 
    539   // Build a set of the basic blocks in the function.
    540   FunctionBlocks.clear();
    541   for (const auto &MBB : *MF) {
    542     FunctionBlocks.insert(&MBB);
    543     BBInfo &MInfo = MBBInfoMap[&MBB];
    544 
    545     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
    546     if (MInfo.Preds.size() != MBB.pred_size())
    547       report("MBB has duplicate entries in its predecessor list.", &MBB);
    548 
    549     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
    550     if (MInfo.Succs.size() != MBB.succ_size())
    551       report("MBB has duplicate entries in its successor list.", &MBB);
    552   }
    553 
    554   // Check that the register use lists are sane.
    555   MRI->verifyUseLists();
    556 
    557   verifyStackFrame();
    558 }
    559 
    560 // Does iterator point to a and b as the first two elements?
    561 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
    562                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
    563   if (*i == a)
    564     return *++i == b;
    565   if (*i == b)
    566     return *++i == a;
    567   return false;
    568 }
    569 
    570 void
    571 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
    572   FirstTerminator = nullptr;
    573 
    574   if (MRI->isSSA()) {
    575     // If this block has allocatable physical registers live-in, check that
    576     // it is an entry block or landing pad.
    577     for (const auto &LI : MBB->liveins()) {
    578       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
    579           MBB->getIterator() != MBB->getParent()->begin()) {
    580         report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB);
    581       }
    582     }
    583   }
    584 
    585   // Count the number of landing pad successors.
    586   SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
    587   for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
    588        E = MBB->succ_end(); I != E; ++I) {
    589     if ((*I)->isEHPad())
    590       LandingPadSuccs.insert(*I);
    591     if (!FunctionBlocks.count(*I))
    592       report("MBB has successor that isn't part of the function.", MBB);
    593     if (!MBBInfoMap[*I].Preds.count(MBB)) {
    594       report("Inconsistent CFG", MBB);
    595       errs() << "MBB is not in the predecessor list of the successor BB#"
    596           << (*I)->getNumber() << ".\n";
    597     }
    598   }
    599 
    600   // Check the predecessor list.
    601   for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
    602        E = MBB->pred_end(); I != E; ++I) {
    603     if (!FunctionBlocks.count(*I))
    604       report("MBB has predecessor that isn't part of the function.", MBB);
    605     if (!MBBInfoMap[*I].Succs.count(MBB)) {
    606       report("Inconsistent CFG", MBB);
    607       errs() << "MBB is not in the successor list of the predecessor BB#"
    608           << (*I)->getNumber() << ".\n";
    609     }
    610   }
    611 
    612   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
    613   const BasicBlock *BB = MBB->getBasicBlock();
    614   const Function *Fn = MF->getFunction();
    615   if (LandingPadSuccs.size() > 1 &&
    616       !(AsmInfo &&
    617         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
    618         BB && isa<SwitchInst>(BB->getTerminator())) &&
    619       !isFuncletEHPersonality(classifyEHPersonality(Fn->getPersonalityFn())))
    620     report("MBB has more than one landing pad successor", MBB);
    621 
    622   // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
    623   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
    624   SmallVector<MachineOperand, 4> Cond;
    625   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
    626                           Cond)) {
    627     // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
    628     // check whether its answers match up with reality.
    629     if (!TBB && !FBB) {
    630       // Block falls through to its successor.
    631       MachineFunction::const_iterator MBBI = MBB->getIterator();
    632       ++MBBI;
    633       if (MBBI == MF->end()) {
    634         // It's possible that the block legitimately ends with a noreturn
    635         // call or an unreachable, in which case it won't actually fall
    636         // out the bottom of the function.
    637       } else if (MBB->succ_size() == LandingPadSuccs.size()) {
    638         // It's possible that the block legitimately ends with a noreturn
    639         // call or an unreachable, in which case it won't actuall fall
    640         // out of the block.
    641       } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
    642         report("MBB exits via unconditional fall-through but doesn't have "
    643                "exactly one CFG successor!", MBB);
    644       } else if (!MBB->isSuccessor(&*MBBI)) {
    645         report("MBB exits via unconditional fall-through but its successor "
    646                "differs from its CFG successor!", MBB);
    647       }
    648       if (!MBB->empty() && MBB->back().isBarrier() &&
    649           !TII->isPredicated(MBB->back())) {
    650         report("MBB exits via unconditional fall-through but ends with a "
    651                "barrier instruction!", MBB);
    652       }
    653       if (!Cond.empty()) {
    654         report("MBB exits via unconditional fall-through but has a condition!",
    655                MBB);
    656       }
    657     } else if (TBB && !FBB && Cond.empty()) {
    658       // Block unconditionally branches somewhere.
    659       // If the block has exactly one successor, that happens to be a
    660       // landingpad, accept it as valid control flow.
    661       if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
    662           (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
    663            *MBB->succ_begin() != *LandingPadSuccs.begin())) {
    664         report("MBB exits via unconditional branch but doesn't have "
    665                "exactly one CFG successor!", MBB);
    666       } else if (!MBB->isSuccessor(TBB)) {
    667         report("MBB exits via unconditional branch but the CFG "
    668                "successor doesn't match the actual successor!", MBB);
    669       }
    670       if (MBB->empty()) {
    671         report("MBB exits via unconditional branch but doesn't contain "
    672                "any instructions!", MBB);
    673       } else if (!MBB->back().isBarrier()) {
    674         report("MBB exits via unconditional branch but doesn't end with a "
    675                "barrier instruction!", MBB);
    676       } else if (!MBB->back().isTerminator()) {
    677         report("MBB exits via unconditional branch but the branch isn't a "
    678                "terminator instruction!", MBB);
    679       }
    680     } else if (TBB && !FBB && !Cond.empty()) {
    681       // Block conditionally branches somewhere, otherwise falls through.
    682       MachineFunction::const_iterator MBBI = MBB->getIterator();
    683       ++MBBI;
    684       if (MBBI == MF->end()) {
    685         report("MBB conditionally falls through out of function!", MBB);
    686       } else if (MBB->succ_size() == 1) {
    687         // A conditional branch with only one successor is weird, but allowed.
    688         if (&*MBBI != TBB)
    689           report("MBB exits via conditional branch/fall-through but only has "
    690                  "one CFG successor!", MBB);
    691         else if (TBB != *MBB->succ_begin())
    692           report("MBB exits via conditional branch/fall-through but the CFG "
    693                  "successor don't match the actual successor!", MBB);
    694       } else if (MBB->succ_size() != 2) {
    695         report("MBB exits via conditional branch/fall-through but doesn't have "
    696                "exactly two CFG successors!", MBB);
    697       } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
    698         report("MBB exits via conditional branch/fall-through but the CFG "
    699                "successors don't match the actual successors!", MBB);
    700       }
    701       if (MBB->empty()) {
    702         report("MBB exits via conditional branch/fall-through but doesn't "
    703                "contain any instructions!", MBB);
    704       } else if (MBB->back().isBarrier()) {
    705         report("MBB exits via conditional branch/fall-through but ends with a "
    706                "barrier instruction!", MBB);
    707       } else if (!MBB->back().isTerminator()) {
    708         report("MBB exits via conditional branch/fall-through but the branch "
    709                "isn't a terminator instruction!", MBB);
    710       }
    711     } else if (TBB && FBB) {
    712       // Block conditionally branches somewhere, otherwise branches
    713       // somewhere else.
    714       if (MBB->succ_size() == 1) {
    715         // A conditional branch with only one successor is weird, but allowed.
    716         if (FBB != TBB)
    717           report("MBB exits via conditional branch/branch through but only has "
    718                  "one CFG successor!", MBB);
    719         else if (TBB != *MBB->succ_begin())
    720           report("MBB exits via conditional branch/branch through but the CFG "
    721                  "successor don't match the actual successor!", MBB);
    722       } else if (MBB->succ_size() != 2) {
    723         report("MBB exits via conditional branch/branch but doesn't have "
    724                "exactly two CFG successors!", MBB);
    725       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
    726         report("MBB exits via conditional branch/branch but the CFG "
    727                "successors don't match the actual successors!", MBB);
    728       }
    729       if (MBB->empty()) {
    730         report("MBB exits via conditional branch/branch but doesn't "
    731                "contain any instructions!", MBB);
    732       } else if (!MBB->back().isBarrier()) {
    733         report("MBB exits via conditional branch/branch but doesn't end with a "
    734                "barrier instruction!", MBB);
    735       } else if (!MBB->back().isTerminator()) {
    736         report("MBB exits via conditional branch/branch but the branch "
    737                "isn't a terminator instruction!", MBB);
    738       }
    739       if (Cond.empty()) {
    740         report("MBB exits via conditinal branch/branch but there's no "
    741                "condition!", MBB);
    742       }
    743     } else {
    744       report("AnalyzeBranch returned invalid data!", MBB);
    745     }
    746   }
    747 
    748   regsLive.clear();
    749   for (const auto &LI : MBB->liveins()) {
    750     if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) {
    751       report("MBB live-in list contains non-physical register", MBB);
    752       continue;
    753     }
    754     for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
    755          SubRegs.isValid(); ++SubRegs)
    756       regsLive.insert(*SubRegs);
    757   }
    758   regsLiveInButUnused = regsLive;
    759 
    760   const MachineFrameInfo *MFI = MF->getFrameInfo();
    761   assert(MFI && "Function has no frame info");
    762   BitVector PR = MFI->getPristineRegs(*MF);
    763   for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
    764     for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
    765          SubRegs.isValid(); ++SubRegs)
    766       regsLive.insert(*SubRegs);
    767   }
    768 
    769   regsKilled.clear();
    770   regsDefined.clear();
    771 
    772   if (Indexes)
    773     lastIndex = Indexes->getMBBStartIdx(MBB);
    774 }
    775 
    776 // This function gets called for all bundle headers, including normal
    777 // stand-alone unbundled instructions.
    778 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
    779   if (Indexes && Indexes->hasIndex(*MI)) {
    780     SlotIndex idx = Indexes->getInstructionIndex(*MI);
    781     if (!(idx > lastIndex)) {
    782       report("Instruction index out of order", MI);
    783       errs() << "Last instruction was at " << lastIndex << '\n';
    784     }
    785     lastIndex = idx;
    786   }
    787 
    788   // Ensure non-terminators don't follow terminators.
    789   // Ignore predicated terminators formed by if conversion.
    790   // FIXME: If conversion shouldn't need to violate this rule.
    791   if (MI->isTerminator() && !TII->isPredicated(*MI)) {
    792     if (!FirstTerminator)
    793       FirstTerminator = MI;
    794   } else if (FirstTerminator) {
    795     report("Non-terminator instruction after the first terminator", MI);
    796     errs() << "First terminator was:\t" << *FirstTerminator;
    797   }
    798 }
    799 
    800 // The operands on an INLINEASM instruction must follow a template.
    801 // Verify that the flag operands make sense.
    802 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
    803   // The first two operands on INLINEASM are the asm string and global flags.
    804   if (MI->getNumOperands() < 2) {
    805     report("Too few operands on inline asm", MI);
    806     return;
    807   }
    808   if (!MI->getOperand(0).isSymbol())
    809     report("Asm string must be an external symbol", MI);
    810   if (!MI->getOperand(1).isImm())
    811     report("Asm flags must be an immediate", MI);
    812   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
    813   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
    814   // and Extra_IsConvergent = 32.
    815   if (!isUInt<6>(MI->getOperand(1).getImm()))
    816     report("Unknown asm flags", &MI->getOperand(1), 1);
    817 
    818   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
    819 
    820   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
    821   unsigned NumOps;
    822   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
    823     const MachineOperand &MO = MI->getOperand(OpNo);
    824     // There may be implicit ops after the fixed operands.
    825     if (!MO.isImm())
    826       break;
    827     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
    828   }
    829 
    830   if (OpNo > MI->getNumOperands())
    831     report("Missing operands in last group", MI);
    832 
    833   // An optional MDNode follows the groups.
    834   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
    835     ++OpNo;
    836 
    837   // All trailing operands must be implicit registers.
    838   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
    839     const MachineOperand &MO = MI->getOperand(OpNo);
    840     if (!MO.isReg() || !MO.isImplicit())
    841       report("Expected implicit register after groups", &MO, OpNo);
    842   }
    843 }
    844 
    845 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
    846   const MCInstrDesc &MCID = MI->getDesc();
    847   if (MI->getNumOperands() < MCID.getNumOperands()) {
    848     report("Too few operands", MI);
    849     errs() << MCID.getNumOperands() << " operands expected, but "
    850         << MI->getNumOperands() << " given.\n";
    851   }
    852 
    853   // Check the tied operands.
    854   if (MI->isInlineAsm())
    855     verifyInlineAsm(MI);
    856 
    857   // Check the MachineMemOperands for basic consistency.
    858   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
    859        E = MI->memoperands_end(); I != E; ++I) {
    860     if ((*I)->isLoad() && !MI->mayLoad())
    861       report("Missing mayLoad flag", MI);
    862     if ((*I)->isStore() && !MI->mayStore())
    863       report("Missing mayStore flag", MI);
    864   }
    865 
    866   // Debug values must not have a slot index.
    867   // Other instructions must have one, unless they are inside a bundle.
    868   if (LiveInts) {
    869     bool mapped = !LiveInts->isNotInMIMap(*MI);
    870     if (MI->isDebugValue()) {
    871       if (mapped)
    872         report("Debug instruction has a slot index", MI);
    873     } else if (MI->isInsideBundle()) {
    874       if (mapped)
    875         report("Instruction inside bundle has a slot index", MI);
    876     } else {
    877       if (!mapped)
    878         report("Missing slot index", MI);
    879     }
    880   }
    881 
    882   StringRef ErrorInfo;
    883   if (!TII->verifyInstruction(*MI, ErrorInfo))
    884     report(ErrorInfo.data(), MI);
    885 }
    886 
    887 void
    888 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
    889   const MachineInstr *MI = MO->getParent();
    890   const MCInstrDesc &MCID = MI->getDesc();
    891   unsigned NumDefs = MCID.getNumDefs();
    892   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
    893     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
    894 
    895   // The first MCID.NumDefs operands must be explicit register defines
    896   if (MONum < NumDefs) {
    897     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
    898     if (!MO->isReg())
    899       report("Explicit definition must be a register", MO, MONum);
    900     else if (!MO->isDef() && !MCOI.isOptionalDef())
    901       report("Explicit definition marked as use", MO, MONum);
    902     else if (MO->isImplicit())
    903       report("Explicit definition marked as implicit", MO, MONum);
    904   } else if (MONum < MCID.getNumOperands()) {
    905     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
    906     // Don't check if it's the last operand in a variadic instruction. See,
    907     // e.g., LDM_RET in the arm back end.
    908     if (MO->isReg() &&
    909         !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
    910       if (MO->isDef() && !MCOI.isOptionalDef())
    911         report("Explicit operand marked as def", MO, MONum);
    912       if (MO->isImplicit())
    913         report("Explicit operand marked as implicit", MO, MONum);
    914     }
    915 
    916     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
    917     if (TiedTo != -1) {
    918       if (!MO->isReg())
    919         report("Tied use must be a register", MO, MONum);
    920       else if (!MO->isTied())
    921         report("Operand should be tied", MO, MONum);
    922       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
    923         report("Tied def doesn't match MCInstrDesc", MO, MONum);
    924     } else if (MO->isReg() && MO->isTied())
    925       report("Explicit operand should not be tied", MO, MONum);
    926   } else {
    927     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
    928     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
    929       report("Extra explicit operand on non-variadic instruction", MO, MONum);
    930   }
    931 
    932   switch (MO->getType()) {
    933   case MachineOperand::MO_Register: {
    934     const unsigned Reg = MO->getReg();
    935     if (!Reg)
    936       return;
    937     if (MRI->tracksLiveness() && !MI->isDebugValue())
    938       checkLiveness(MO, MONum);
    939 
    940     // Verify the consistency of tied operands.
    941     if (MO->isTied()) {
    942       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
    943       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
    944       if (!OtherMO.isReg())
    945         report("Must be tied to a register", MO, MONum);
    946       if (!OtherMO.isTied())
    947         report("Missing tie flags on tied operand", MO, MONum);
    948       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
    949         report("Inconsistent tie links", MO, MONum);
    950       if (MONum < MCID.getNumDefs()) {
    951         if (OtherIdx < MCID.getNumOperands()) {
    952           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
    953             report("Explicit def tied to explicit use without tie constraint",
    954                    MO, MONum);
    955         } else {
    956           if (!OtherMO.isImplicit())
    957             report("Explicit def should be tied to implicit use", MO, MONum);
    958         }
    959       }
    960     }
    961 
    962     // Verify two-address constraints after leaving SSA form.
    963     unsigned DefIdx;
    964     if (!MRI->isSSA() && MO->isUse() &&
    965         MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
    966         Reg != MI->getOperand(DefIdx).getReg())
    967       report("Two-address instruction operands must be identical", MO, MONum);
    968 
    969     // Check register classes.
    970     if (MONum < MCID.getNumOperands() && !MO->isImplicit()) {
    971       unsigned SubIdx = MO->getSubReg();
    972 
    973       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
    974         if (SubIdx) {
    975           report("Illegal subregister index for physical register", MO, MONum);
    976           return;
    977         }
    978         if (const TargetRegisterClass *DRC =
    979               TII->getRegClass(MCID, MONum, TRI, *MF)) {
    980           if (!DRC->contains(Reg)) {
    981             report("Illegal physical register for instruction", MO, MONum);
    982             errs() << TRI->getName(Reg) << " is not a "
    983                 << TRI->getRegClassName(DRC) << " register.\n";
    984           }
    985         }
    986       } else {
    987         // Virtual register.
    988         const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
    989         if (!RC) {
    990           // This is a generic virtual register.
    991           // It must have a size and it must not have a SubIdx.
    992           unsigned Size = MRI->getSize(Reg);
    993           if (!Size) {
    994             report("Generic virtual register must have a size", MO, MONum);
    995             return;
    996           }
    997           // Make sure the register fits into its register bank if any.
    998           const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
    999           if (RegBank && RegBank->getSize() < Size) {
   1000             report("Register bank is too small for virtual register", MO,
   1001                    MONum);
   1002             errs() << "Register bank " << RegBank->getName() << " too small("
   1003                    << RegBank->getSize() << ") to fit " << Size << "-bits\n";
   1004             return;
   1005           }
   1006           if (SubIdx)  {
   1007             report("Generic virtual register does not subregister index", MO, MONum);
   1008             return;
   1009           }
   1010           break;
   1011         }
   1012         if (SubIdx) {
   1013           const TargetRegisterClass *SRC =
   1014             TRI->getSubClassWithSubReg(RC, SubIdx);
   1015           if (!SRC) {
   1016             report("Invalid subregister index for virtual register", MO, MONum);
   1017             errs() << "Register class " << TRI->getRegClassName(RC)
   1018                 << " does not support subreg index " << SubIdx << "\n";
   1019             return;
   1020           }
   1021           if (RC != SRC) {
   1022             report("Invalid register class for subregister index", MO, MONum);
   1023             errs() << "Register class " << TRI->getRegClassName(RC)
   1024                 << " does not fully support subreg index " << SubIdx << "\n";
   1025             return;
   1026           }
   1027         }
   1028         if (const TargetRegisterClass *DRC =
   1029               TII->getRegClass(MCID, MONum, TRI, *MF)) {
   1030           if (SubIdx) {
   1031             const TargetRegisterClass *SuperRC =
   1032                 TRI->getLargestLegalSuperClass(RC, *MF);
   1033             if (!SuperRC) {
   1034               report("No largest legal super class exists.", MO, MONum);
   1035               return;
   1036             }
   1037             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
   1038             if (!DRC) {
   1039               report("No matching super-reg register class.", MO, MONum);
   1040               return;
   1041             }
   1042           }
   1043           if (!RC->hasSuperClassEq(DRC)) {
   1044             report("Illegal virtual register for instruction", MO, MONum);
   1045             errs() << "Expected a " << TRI->getRegClassName(DRC)
   1046                 << " register, but got a " << TRI->getRegClassName(RC)
   1047                 << " register\n";
   1048           }
   1049         }
   1050       }
   1051     }
   1052     break;
   1053   }
   1054 
   1055   case MachineOperand::MO_RegisterMask:
   1056     regMasks.push_back(MO->getRegMask());
   1057     break;
   1058 
   1059   case MachineOperand::MO_MachineBasicBlock:
   1060     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
   1061       report("PHI operand is not in the CFG", MO, MONum);
   1062     break;
   1063 
   1064   case MachineOperand::MO_FrameIndex:
   1065     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
   1066         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
   1067       int FI = MO->getIndex();
   1068       LiveInterval &LI = LiveStks->getInterval(FI);
   1069       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
   1070 
   1071       bool stores = MI->mayStore();
   1072       bool loads = MI->mayLoad();
   1073       // For a memory-to-memory move, we need to check if the frame
   1074       // index is used for storing or loading, by inspecting the
   1075       // memory operands.
   1076       if (stores && loads) {
   1077         for (auto *MMO : MI->memoperands()) {
   1078           const PseudoSourceValue *PSV = MMO->getPseudoValue();
   1079           if (PSV == nullptr) continue;
   1080           const FixedStackPseudoSourceValue *Value =
   1081             dyn_cast<FixedStackPseudoSourceValue>(PSV);
   1082           if (Value == nullptr) continue;
   1083           if (Value->getFrameIndex() != FI) continue;
   1084 
   1085           if (MMO->isStore())
   1086             loads = false;
   1087           else
   1088             stores = false;
   1089           break;
   1090         }
   1091         if (loads == stores)
   1092           report("Missing fixed stack memoperand.", MI);
   1093       }
   1094       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
   1095         report("Instruction loads from dead spill slot", MO, MONum);
   1096         errs() << "Live stack: " << LI << '\n';
   1097       }
   1098       if (stores && !LI.liveAt(Idx.getRegSlot())) {
   1099         report("Instruction stores to dead spill slot", MO, MONum);
   1100         errs() << "Live stack: " << LI << '\n';
   1101       }
   1102     }
   1103     break;
   1104 
   1105   default:
   1106     break;
   1107   }
   1108 }
   1109 
   1110 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
   1111     unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
   1112     LaneBitmask LaneMask) {
   1113   LiveQueryResult LRQ = LR.Query(UseIdx);
   1114   // Check if we have a segment at the use, note however that we only need one
   1115   // live subregister range, the others may be dead.
   1116   if (!LRQ.valueIn() && LaneMask == 0) {
   1117     report("No live segment at use", MO, MONum);
   1118     report_context_liverange(LR);
   1119     report_context_vreg_regunit(VRegOrUnit);
   1120     report_context(UseIdx);
   1121   }
   1122   if (MO->isKill() && !LRQ.isKill()) {
   1123     report("Live range continues after kill flag", MO, MONum);
   1124     report_context_liverange(LR);
   1125     report_context_vreg_regunit(VRegOrUnit);
   1126     if (LaneMask != 0)
   1127       report_context_lanemask(LaneMask);
   1128     report_context(UseIdx);
   1129   }
   1130 }
   1131 
   1132 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
   1133     unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
   1134     LaneBitmask LaneMask) {
   1135   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
   1136     assert(VNI && "NULL valno is not allowed");
   1137     if (VNI->def != DefIdx) {
   1138       report("Inconsistent valno->def", MO, MONum);
   1139       report_context_liverange(LR);
   1140       report_context_vreg_regunit(VRegOrUnit);
   1141       if (LaneMask != 0)
   1142         report_context_lanemask(LaneMask);
   1143       report_context(*VNI);
   1144       report_context(DefIdx);
   1145     }
   1146   } else {
   1147     report("No live segment at def", MO, MONum);
   1148     report_context_liverange(LR);
   1149     report_context_vreg_regunit(VRegOrUnit);
   1150     if (LaneMask != 0)
   1151       report_context_lanemask(LaneMask);
   1152     report_context(DefIdx);
   1153   }
   1154   // Check that, if the dead def flag is present, LiveInts agree.
   1155   if (MO->isDead()) {
   1156     LiveQueryResult LRQ = LR.Query(DefIdx);
   1157     if (!LRQ.isDeadDef()) {
   1158       // In case of physregs we can have a non-dead definition on another
   1159       // operand.
   1160       bool otherDef = false;
   1161       if (!TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
   1162         const MachineInstr &MI = *MO->getParent();
   1163         for (const MachineOperand &MO : MI.operands()) {
   1164           if (!MO.isReg() || !MO.isDef() || MO.isDead())
   1165             continue;
   1166           unsigned Reg = MO.getReg();
   1167           for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
   1168             if (*Units == VRegOrUnit) {
   1169               otherDef = true;
   1170               break;
   1171             }
   1172           }
   1173         }
   1174       }
   1175 
   1176       if (!otherDef) {
   1177         report("Live range continues after dead def flag", MO, MONum);
   1178         report_context_liverange(LR);
   1179         report_context_vreg_regunit(VRegOrUnit);
   1180         if (LaneMask != 0)
   1181           report_context_lanemask(LaneMask);
   1182       }
   1183     }
   1184   }
   1185 }
   1186 
   1187 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
   1188   const MachineInstr *MI = MO->getParent();
   1189   const unsigned Reg = MO->getReg();
   1190 
   1191   // Both use and def operands can read a register.
   1192   if (MO->readsReg()) {
   1193     regsLiveInButUnused.erase(Reg);
   1194 
   1195     if (MO->isKill())
   1196       addRegWithSubRegs(regsKilled, Reg);
   1197 
   1198     // Check that LiveVars knows this kill.
   1199     if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
   1200         MO->isKill()) {
   1201       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
   1202       if (std::find(VI.Kills.begin(), VI.Kills.end(), MI) == VI.Kills.end())
   1203         report("Kill missing from LiveVariables", MO, MONum);
   1204     }
   1205 
   1206     // Check LiveInts liveness and kill.
   1207     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
   1208       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
   1209       // Check the cached regunit intervals.
   1210       if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
   1211         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
   1212           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
   1213             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
   1214         }
   1215       }
   1216 
   1217       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
   1218         if (LiveInts->hasInterval(Reg)) {
   1219           // This is a virtual register interval.
   1220           const LiveInterval &LI = LiveInts->getInterval(Reg);
   1221           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
   1222 
   1223           if (LI.hasSubRanges() && !MO->isDef()) {
   1224             unsigned SubRegIdx = MO->getSubReg();
   1225             LaneBitmask MOMask = SubRegIdx != 0
   1226                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
   1227                                : MRI->getMaxLaneMaskForVReg(Reg);
   1228             LaneBitmask LiveInMask = 0;
   1229             for (const LiveInterval::SubRange &SR : LI.subranges()) {
   1230               if ((MOMask & SR.LaneMask) == 0)
   1231                 continue;
   1232               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
   1233               LiveQueryResult LRQ = SR.Query(UseIdx);
   1234               if (LRQ.valueIn())
   1235                 LiveInMask |= SR.LaneMask;
   1236             }
   1237             // At least parts of the register has to be live at the use.
   1238             if ((LiveInMask & MOMask) == 0) {
   1239               report("No live subrange at use", MO, MONum);
   1240               report_context(LI);
   1241               report_context(UseIdx);
   1242             }
   1243           }
   1244         } else {
   1245           report("Virtual register has no live interval", MO, MONum);
   1246         }
   1247       }
   1248     }
   1249 
   1250     // Use of a dead register.
   1251     if (!regsLive.count(Reg)) {
   1252       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
   1253         // Reserved registers may be used even when 'dead'.
   1254         bool Bad = !isReserved(Reg);
   1255         // We are fine if just any subregister has a defined value.
   1256         if (Bad) {
   1257           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
   1258                ++SubRegs) {
   1259             if (regsLive.count(*SubRegs)) {
   1260               Bad = false;
   1261               break;
   1262             }
   1263           }
   1264         }
   1265         // If there is an additional implicit-use of a super register we stop
   1266         // here. By definition we are fine if the super register is not
   1267         // (completely) dead, if the complete super register is dead we will
   1268         // get a report for its operand.
   1269         if (Bad) {
   1270           for (const MachineOperand &MOP : MI->uses()) {
   1271             if (!MOP.isReg())
   1272               continue;
   1273             if (!MOP.isImplicit())
   1274               continue;
   1275             for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
   1276                  ++SubRegs) {
   1277               if (*SubRegs == Reg) {
   1278                 Bad = false;
   1279                 break;
   1280               }
   1281             }
   1282           }
   1283         }
   1284         if (Bad)
   1285           report("Using an undefined physical register", MO, MONum);
   1286       } else if (MRI->def_empty(Reg)) {
   1287         report("Reading virtual register without a def", MO, MONum);
   1288       } else {
   1289         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
   1290         // We don't know which virtual registers are live in, so only complain
   1291         // if vreg was killed in this MBB. Otherwise keep track of vregs that
   1292         // must be live in. PHI instructions are handled separately.
   1293         if (MInfo.regsKilled.count(Reg))
   1294           report("Using a killed virtual register", MO, MONum);
   1295         else if (!MI->isPHI())
   1296           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
   1297       }
   1298     }
   1299   }
   1300 
   1301   if (MO->isDef()) {
   1302     // Register defined.
   1303     // TODO: verify that earlyclobber ops are not used.
   1304     if (MO->isDead())
   1305       addRegWithSubRegs(regsDead, Reg);
   1306     else
   1307       addRegWithSubRegs(regsDefined, Reg);
   1308 
   1309     // Verify SSA form.
   1310     if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
   1311         std::next(MRI->def_begin(Reg)) != MRI->def_end())
   1312       report("Multiple virtual register defs in SSA form", MO, MONum);
   1313 
   1314     // Check LiveInts for a live segment, but only for virtual registers.
   1315     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
   1316       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
   1317       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
   1318 
   1319       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
   1320         if (LiveInts->hasInterval(Reg)) {
   1321           const LiveInterval &LI = LiveInts->getInterval(Reg);
   1322           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
   1323 
   1324           if (LI.hasSubRanges()) {
   1325             unsigned SubRegIdx = MO->getSubReg();
   1326             LaneBitmask MOMask = SubRegIdx != 0
   1327               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
   1328               : MRI->getMaxLaneMaskForVReg(Reg);
   1329             for (const LiveInterval::SubRange &SR : LI.subranges()) {
   1330               if ((SR.LaneMask & MOMask) == 0)
   1331                 continue;
   1332               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, SR.LaneMask);
   1333             }
   1334           }
   1335         } else {
   1336           report("Virtual register has no Live interval", MO, MONum);
   1337         }
   1338       }
   1339     }
   1340   }
   1341 }
   1342 
   1343 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
   1344 }
   1345 
   1346 // This function gets called after visiting all instructions in a bundle. The
   1347 // argument points to the bundle header.
   1348 // Normal stand-alone instructions are also considered 'bundles', and this
   1349 // function is called for all of them.
   1350 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
   1351   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
   1352   set_union(MInfo.regsKilled, regsKilled);
   1353   set_subtract(regsLive, regsKilled); regsKilled.clear();
   1354   // Kill any masked registers.
   1355   while (!regMasks.empty()) {
   1356     const uint32_t *Mask = regMasks.pop_back_val();
   1357     for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
   1358       if (TargetRegisterInfo::isPhysicalRegister(*I) &&
   1359           MachineOperand::clobbersPhysReg(Mask, *I))
   1360         regsDead.push_back(*I);
   1361   }
   1362   set_subtract(regsLive, regsDead);   regsDead.clear();
   1363   set_union(regsLive, regsDefined);   regsDefined.clear();
   1364 }
   1365 
   1366 void
   1367 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
   1368   MBBInfoMap[MBB].regsLiveOut = regsLive;
   1369   regsLive.clear();
   1370 
   1371   if (Indexes) {
   1372     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
   1373     if (!(stop > lastIndex)) {
   1374       report("Block ends before last instruction index", MBB);
   1375       errs() << "Block ends at " << stop
   1376           << " last instruction was at " << lastIndex << '\n';
   1377     }
   1378     lastIndex = stop;
   1379   }
   1380 }
   1381 
   1382 // Calculate the largest possible vregsPassed sets. These are the registers that
   1383 // can pass through an MBB live, but may not be live every time. It is assumed
   1384 // that all vregsPassed sets are empty before the call.
   1385 void MachineVerifier::calcRegsPassed() {
   1386   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
   1387   // have any vregsPassed.
   1388   SmallPtrSet<const MachineBasicBlock*, 8> todo;
   1389   for (const auto &MBB : *MF) {
   1390     BBInfo &MInfo = MBBInfoMap[&MBB];
   1391     if (!MInfo.reachable)
   1392       continue;
   1393     for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
   1394            SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
   1395       BBInfo &SInfo = MBBInfoMap[*SuI];
   1396       if (SInfo.addPassed(MInfo.regsLiveOut))
   1397         todo.insert(*SuI);
   1398     }
   1399   }
   1400 
   1401   // Iteratively push vregsPassed to successors. This will converge to the same
   1402   // final state regardless of DenseSet iteration order.
   1403   while (!todo.empty()) {
   1404     const MachineBasicBlock *MBB = *todo.begin();
   1405     todo.erase(MBB);
   1406     BBInfo &MInfo = MBBInfoMap[MBB];
   1407     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
   1408            SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
   1409       if (*SuI == MBB)
   1410         continue;
   1411       BBInfo &SInfo = MBBInfoMap[*SuI];
   1412       if (SInfo.addPassed(MInfo.vregsPassed))
   1413         todo.insert(*SuI);
   1414     }
   1415   }
   1416 }
   1417 
   1418 // Calculate the set of virtual registers that must be passed through each basic
   1419 // block in order to satisfy the requirements of successor blocks. This is very
   1420 // similar to calcRegsPassed, only backwards.
   1421 void MachineVerifier::calcRegsRequired() {
   1422   // First push live-in regs to predecessors' vregsRequired.
   1423   SmallPtrSet<const MachineBasicBlock*, 8> todo;
   1424   for (const auto &MBB : *MF) {
   1425     BBInfo &MInfo = MBBInfoMap[&MBB];
   1426     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
   1427            PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
   1428       BBInfo &PInfo = MBBInfoMap[*PrI];
   1429       if (PInfo.addRequired(MInfo.vregsLiveIn))
   1430         todo.insert(*PrI);
   1431     }
   1432   }
   1433 
   1434   // Iteratively push vregsRequired to predecessors. This will converge to the
   1435   // same final state regardless of DenseSet iteration order.
   1436   while (!todo.empty()) {
   1437     const MachineBasicBlock *MBB = *todo.begin();
   1438     todo.erase(MBB);
   1439     BBInfo &MInfo = MBBInfoMap[MBB];
   1440     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
   1441            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
   1442       if (*PrI == MBB)
   1443         continue;
   1444       BBInfo &SInfo = MBBInfoMap[*PrI];
   1445       if (SInfo.addRequired(MInfo.vregsRequired))
   1446         todo.insert(*PrI);
   1447     }
   1448   }
   1449 }
   1450 
   1451 // Check PHI instructions at the beginning of MBB. It is assumed that
   1452 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
   1453 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
   1454   SmallPtrSet<const MachineBasicBlock*, 8> seen;
   1455   for (const auto &BBI : *MBB) {
   1456     if (!BBI.isPHI())
   1457       break;
   1458     seen.clear();
   1459 
   1460     for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) {
   1461       unsigned Reg = BBI.getOperand(i).getReg();
   1462       const MachineBasicBlock *Pre = BBI.getOperand(i + 1).getMBB();
   1463       if (!Pre->isSuccessor(MBB))
   1464         continue;
   1465       seen.insert(Pre);
   1466       BBInfo &PrInfo = MBBInfoMap[Pre];
   1467       if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
   1468         report("PHI operand is not live-out from predecessor",
   1469                &BBI.getOperand(i), i);
   1470     }
   1471 
   1472     // Did we see all predecessors?
   1473     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
   1474            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
   1475       if (!seen.count(*PrI)) {
   1476         report("Missing PHI operand", &BBI);
   1477         errs() << "BB#" << (*PrI)->getNumber()
   1478             << " is a predecessor according to the CFG.\n";
   1479       }
   1480     }
   1481   }
   1482 }
   1483 
   1484 void MachineVerifier::visitMachineFunctionAfter() {
   1485   calcRegsPassed();
   1486 
   1487   for (const auto &MBB : *MF) {
   1488     BBInfo &MInfo = MBBInfoMap[&MBB];
   1489 
   1490     // Skip unreachable MBBs.
   1491     if (!MInfo.reachable)
   1492       continue;
   1493 
   1494     checkPHIOps(&MBB);
   1495   }
   1496 
   1497   // Now check liveness info if available
   1498   calcRegsRequired();
   1499 
   1500   // Check for killed virtual registers that should be live out.
   1501   for (const auto &MBB : *MF) {
   1502     BBInfo &MInfo = MBBInfoMap[&MBB];
   1503     for (RegSet::iterator
   1504          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
   1505          ++I)
   1506       if (MInfo.regsKilled.count(*I)) {
   1507         report("Virtual register killed in block, but needed live out.", &MBB);
   1508         errs() << "Virtual register " << PrintReg(*I)
   1509             << " is used after the block.\n";
   1510       }
   1511   }
   1512 
   1513   if (!MF->empty()) {
   1514     BBInfo &MInfo = MBBInfoMap[&MF->front()];
   1515     for (RegSet::iterator
   1516          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
   1517          ++I) {
   1518       report("Virtual register defs don't dominate all uses.", MF);
   1519       report_context_vreg(*I);
   1520     }
   1521   }
   1522 
   1523   if (LiveVars)
   1524     verifyLiveVariables();
   1525   if (LiveInts)
   1526     verifyLiveIntervals();
   1527 }
   1528 
   1529 void MachineVerifier::verifyLiveVariables() {
   1530   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
   1531   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
   1532     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
   1533     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
   1534     for (const auto &MBB : *MF) {
   1535       BBInfo &MInfo = MBBInfoMap[&MBB];
   1536 
   1537       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
   1538       if (MInfo.vregsRequired.count(Reg)) {
   1539         if (!VI.AliveBlocks.test(MBB.getNumber())) {
   1540           report("LiveVariables: Block missing from AliveBlocks", &MBB);
   1541           errs() << "Virtual register " << PrintReg(Reg)
   1542               << " must be live through the block.\n";
   1543         }
   1544       } else {
   1545         if (VI.AliveBlocks.test(MBB.getNumber())) {
   1546           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
   1547           errs() << "Virtual register " << PrintReg(Reg)
   1548               << " is not needed live through the block.\n";
   1549         }
   1550       }
   1551     }
   1552   }
   1553 }
   1554 
   1555 void MachineVerifier::verifyLiveIntervals() {
   1556   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
   1557   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
   1558     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
   1559 
   1560     // Spilling and splitting may leave unused registers around. Skip them.
   1561     if (MRI->reg_nodbg_empty(Reg))
   1562       continue;
   1563 
   1564     if (!LiveInts->hasInterval(Reg)) {
   1565       report("Missing live interval for virtual register", MF);
   1566       errs() << PrintReg(Reg, TRI) << " still has defs or uses\n";
   1567       continue;
   1568     }
   1569 
   1570     const LiveInterval &LI = LiveInts->getInterval(Reg);
   1571     assert(Reg == LI.reg && "Invalid reg to interval mapping");
   1572     verifyLiveInterval(LI);
   1573   }
   1574 
   1575   // Verify all the cached regunit intervals.
   1576   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
   1577     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
   1578       verifyLiveRange(*LR, i);
   1579 }
   1580 
   1581 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
   1582                                            const VNInfo *VNI, unsigned Reg,
   1583                                            LaneBitmask LaneMask) {
   1584   if (VNI->isUnused())
   1585     return;
   1586 
   1587   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
   1588 
   1589   if (!DefVNI) {
   1590     report("Value not live at VNInfo def and not marked unused", MF);
   1591     report_context(LR, Reg, LaneMask);
   1592     report_context(*VNI);
   1593     return;
   1594   }
   1595 
   1596   if (DefVNI != VNI) {
   1597     report("Live segment at def has different VNInfo", MF);
   1598     report_context(LR, Reg, LaneMask);
   1599     report_context(*VNI);
   1600     return;
   1601   }
   1602 
   1603   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
   1604   if (!MBB) {
   1605     report("Invalid VNInfo definition index", MF);
   1606     report_context(LR, Reg, LaneMask);
   1607     report_context(*VNI);
   1608     return;
   1609   }
   1610 
   1611   if (VNI->isPHIDef()) {
   1612     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
   1613       report("PHIDef VNInfo is not defined at MBB start", MBB);
   1614       report_context(LR, Reg, LaneMask);
   1615       report_context(*VNI);
   1616     }
   1617     return;
   1618   }
   1619 
   1620   // Non-PHI def.
   1621   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
   1622   if (!MI) {
   1623     report("No instruction at VNInfo def index", MBB);
   1624     report_context(LR, Reg, LaneMask);
   1625     report_context(*VNI);
   1626     return;
   1627   }
   1628 
   1629   if (Reg != 0) {
   1630     bool hasDef = false;
   1631     bool isEarlyClobber = false;
   1632     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
   1633       if (!MOI->isReg() || !MOI->isDef())
   1634         continue;
   1635       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
   1636         if (MOI->getReg() != Reg)
   1637           continue;
   1638       } else {
   1639         if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
   1640             !TRI->hasRegUnit(MOI->getReg(), Reg))
   1641           continue;
   1642       }
   1643       if (LaneMask != 0 &&
   1644           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask) == 0)
   1645         continue;
   1646       hasDef = true;
   1647       if (MOI->isEarlyClobber())
   1648         isEarlyClobber = true;
   1649     }
   1650 
   1651     if (!hasDef) {
   1652       report("Defining instruction does not modify register", MI);
   1653       report_context(LR, Reg, LaneMask);
   1654       report_context(*VNI);
   1655     }
   1656 
   1657     // Early clobber defs begin at USE slots, but other defs must begin at
   1658     // DEF slots.
   1659     if (isEarlyClobber) {
   1660       if (!VNI->def.isEarlyClobber()) {
   1661         report("Early clobber def must be at an early-clobber slot", MBB);
   1662         report_context(LR, Reg, LaneMask);
   1663         report_context(*VNI);
   1664       }
   1665     } else if (!VNI->def.isRegister()) {
   1666       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
   1667       report_context(LR, Reg, LaneMask);
   1668       report_context(*VNI);
   1669     }
   1670   }
   1671 }
   1672 
   1673 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
   1674                                              const LiveRange::const_iterator I,
   1675                                              unsigned Reg, LaneBitmask LaneMask)
   1676 {
   1677   const LiveRange::Segment &S = *I;
   1678   const VNInfo *VNI = S.valno;
   1679   assert(VNI && "Live segment has no valno");
   1680 
   1681   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
   1682     report("Foreign valno in live segment", MF);
   1683     report_context(LR, Reg, LaneMask);
   1684     report_context(S);
   1685     report_context(*VNI);
   1686   }
   1687 
   1688   if (VNI->isUnused()) {
   1689     report("Live segment valno is marked unused", MF);
   1690     report_context(LR, Reg, LaneMask);
   1691     report_context(S);
   1692   }
   1693 
   1694   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
   1695   if (!MBB) {
   1696     report("Bad start of live segment, no basic block", MF);
   1697     report_context(LR, Reg, LaneMask);
   1698     report_context(S);
   1699     return;
   1700   }
   1701   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
   1702   if (S.start != MBBStartIdx && S.start != VNI->def) {
   1703     report("Live segment must begin at MBB entry or valno def", MBB);
   1704     report_context(LR, Reg, LaneMask);
   1705     report_context(S);
   1706   }
   1707 
   1708   const MachineBasicBlock *EndMBB =
   1709     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
   1710   if (!EndMBB) {
   1711     report("Bad end of live segment, no basic block", MF);
   1712     report_context(LR, Reg, LaneMask);
   1713     report_context(S);
   1714     return;
   1715   }
   1716 
   1717   // No more checks for live-out segments.
   1718   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
   1719     return;
   1720 
   1721   // RegUnit intervals are allowed dead phis.
   1722   if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
   1723       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
   1724     return;
   1725 
   1726   // The live segment is ending inside EndMBB
   1727   const MachineInstr *MI =
   1728     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
   1729   if (!MI) {
   1730     report("Live segment doesn't end at a valid instruction", EndMBB);
   1731     report_context(LR, Reg, LaneMask);
   1732     report_context(S);
   1733     return;
   1734   }
   1735 
   1736   // The block slot must refer to a basic block boundary.
   1737   if (S.end.isBlock()) {
   1738     report("Live segment ends at B slot of an instruction", EndMBB);
   1739     report_context(LR, Reg, LaneMask);
   1740     report_context(S);
   1741   }
   1742 
   1743   if (S.end.isDead()) {
   1744     // Segment ends on the dead slot.
   1745     // That means there must be a dead def.
   1746     if (!SlotIndex::isSameInstr(S.start, S.end)) {
   1747       report("Live segment ending at dead slot spans instructions", EndMBB);
   1748       report_context(LR, Reg, LaneMask);
   1749       report_context(S);
   1750     }
   1751   }
   1752 
   1753   // A live segment can only end at an early-clobber slot if it is being
   1754   // redefined by an early-clobber def.
   1755   if (S.end.isEarlyClobber()) {
   1756     if (I+1 == LR.end() || (I+1)->start != S.end) {
   1757       report("Live segment ending at early clobber slot must be "
   1758              "redefined by an EC def in the same instruction", EndMBB);
   1759       report_context(LR, Reg, LaneMask);
   1760       report_context(S);
   1761     }
   1762   }
   1763 
   1764   // The following checks only apply to virtual registers. Physreg liveness
   1765   // is too weird to check.
   1766   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
   1767     // A live segment can end with either a redefinition, a kill flag on a
   1768     // use, or a dead flag on a def.
   1769     bool hasRead = false;
   1770     bool hasSubRegDef = false;
   1771     bool hasDeadDef = false;
   1772     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
   1773       if (!MOI->isReg() || MOI->getReg() != Reg)
   1774         continue;
   1775       if (LaneMask != 0 &&
   1776           (LaneMask & TRI->getSubRegIndexLaneMask(MOI->getSubReg())) == 0)
   1777         continue;
   1778       if (MOI->isDef()) {
   1779         if (MOI->getSubReg() != 0)
   1780           hasSubRegDef = true;
   1781         if (MOI->isDead())
   1782           hasDeadDef = true;
   1783       }
   1784       if (MOI->readsReg())
   1785         hasRead = true;
   1786     }
   1787     if (S.end.isDead()) {
   1788       // Make sure that the corresponding machine operand for a "dead" live
   1789       // range has the dead flag. We cannot perform this check for subregister
   1790       // liveranges as partially dead values are allowed.
   1791       if (LaneMask == 0 && !hasDeadDef) {
   1792         report("Instruction ending live segment on dead slot has no dead flag",
   1793                MI);
   1794         report_context(LR, Reg, LaneMask);
   1795         report_context(S);
   1796       }
   1797     } else {
   1798       if (!hasRead) {
   1799         // When tracking subregister liveness, the main range must start new
   1800         // values on partial register writes, even if there is no read.
   1801         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask != 0 ||
   1802             !hasSubRegDef) {
   1803           report("Instruction ending live segment doesn't read the register",
   1804                  MI);
   1805           report_context(LR, Reg, LaneMask);
   1806           report_context(S);
   1807         }
   1808       }
   1809     }
   1810   }
   1811 
   1812   // Now check all the basic blocks in this live segment.
   1813   MachineFunction::const_iterator MFI = MBB->getIterator();
   1814   // Is this live segment the beginning of a non-PHIDef VN?
   1815   if (S.start == VNI->def && !VNI->isPHIDef()) {
   1816     // Not live-in to any blocks.
   1817     if (MBB == EndMBB)
   1818       return;
   1819     // Skip this block.
   1820     ++MFI;
   1821   }
   1822   for (;;) {
   1823     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
   1824     // We don't know how to track physregs into a landing pad.
   1825     if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
   1826         MFI->isEHPad()) {
   1827       if (&*MFI == EndMBB)
   1828         break;
   1829       ++MFI;
   1830       continue;
   1831     }
   1832 
   1833     // Is VNI a PHI-def in the current block?
   1834     bool IsPHI = VNI->isPHIDef() &&
   1835       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
   1836 
   1837     // Check that VNI is live-out of all predecessors.
   1838     for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
   1839          PE = MFI->pred_end(); PI != PE; ++PI) {
   1840       SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
   1841       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
   1842 
   1843       // All predecessors must have a live-out value if this is not a
   1844       // subregister liverange.
   1845       if (!PVNI && LaneMask == 0) {
   1846         report("Register not marked live out of predecessor", *PI);
   1847         report_context(LR, Reg, LaneMask);
   1848         report_context(*VNI);
   1849         errs() << " live into BB#" << MFI->getNumber()
   1850                << '@' << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
   1851                << PEnd << '\n';
   1852         continue;
   1853       }
   1854 
   1855       // Only PHI-defs can take different predecessor values.
   1856       if (!IsPHI && PVNI != VNI) {
   1857         report("Different value live out of predecessor", *PI);
   1858         report_context(LR, Reg, LaneMask);
   1859         errs() << "Valno #" << PVNI->id << " live out of BB#"
   1860                << (*PI)->getNumber() << '@' << PEnd << "\nValno #" << VNI->id
   1861                << " live into BB#" << MFI->getNumber() << '@'
   1862                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
   1863       }
   1864     }
   1865     if (&*MFI == EndMBB)
   1866       break;
   1867     ++MFI;
   1868   }
   1869 }
   1870 
   1871 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
   1872                                       LaneBitmask LaneMask) {
   1873   for (const VNInfo *VNI : LR.valnos)
   1874     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
   1875 
   1876   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
   1877     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
   1878 }
   1879 
   1880 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
   1881   unsigned Reg = LI.reg;
   1882   assert(TargetRegisterInfo::isVirtualRegister(Reg));
   1883   verifyLiveRange(LI, Reg);
   1884 
   1885   LaneBitmask Mask = 0;
   1886   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
   1887   for (const LiveInterval::SubRange &SR : LI.subranges()) {
   1888     if ((Mask & SR.LaneMask) != 0) {
   1889       report("Lane masks of sub ranges overlap in live interval", MF);
   1890       report_context(LI);
   1891     }
   1892     if ((SR.LaneMask & ~MaxMask) != 0) {
   1893       report("Subrange lanemask is invalid", MF);
   1894       report_context(LI);
   1895     }
   1896     if (SR.empty()) {
   1897       report("Subrange must not be empty", MF);
   1898       report_context(SR, LI.reg, SR.LaneMask);
   1899     }
   1900     Mask |= SR.LaneMask;
   1901     verifyLiveRange(SR, LI.reg, SR.LaneMask);
   1902     if (!LI.covers(SR)) {
   1903       report("A Subrange is not covered by the main range", MF);
   1904       report_context(LI);
   1905     }
   1906   }
   1907 
   1908   // Check the LI only has one connected component.
   1909   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
   1910   unsigned NumComp = ConEQ.Classify(LI);
   1911   if (NumComp > 1) {
   1912     report("Multiple connected components in live interval", MF);
   1913     report_context(LI);
   1914     for (unsigned comp = 0; comp != NumComp; ++comp) {
   1915       errs() << comp << ": valnos";
   1916       for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
   1917            E = LI.vni_end(); I!=E; ++I)
   1918         if (comp == ConEQ.getEqClass(*I))
   1919           errs() << ' ' << (*I)->id;
   1920       errs() << '\n';
   1921     }
   1922   }
   1923 }
   1924 
   1925 namespace {
   1926   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
   1927   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
   1928   // value is zero.
   1929   // We use a bool plus an integer to capture the stack state.
   1930   struct StackStateOfBB {
   1931     StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false),
   1932       ExitIsSetup(false) { }
   1933     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
   1934       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
   1935       ExitIsSetup(ExitSetup) { }
   1936     // Can be negative, which means we are setting up a frame.
   1937     int EntryValue;
   1938     int ExitValue;
   1939     bool EntryIsSetup;
   1940     bool ExitIsSetup;
   1941   };
   1942 }
   1943 
   1944 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
   1945 /// by a FrameDestroy <n>, stack adjustments are identical on all
   1946 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
   1947 void MachineVerifier::verifyStackFrame() {
   1948   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
   1949   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
   1950 
   1951   SmallVector<StackStateOfBB, 8> SPState;
   1952   SPState.resize(MF->getNumBlockIDs());
   1953   SmallPtrSet<const MachineBasicBlock*, 8> Reachable;
   1954 
   1955   // Visit the MBBs in DFS order.
   1956   for (df_ext_iterator<const MachineFunction*,
   1957                        SmallPtrSet<const MachineBasicBlock*, 8> >
   1958        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
   1959        DFI != DFE; ++DFI) {
   1960     const MachineBasicBlock *MBB = *DFI;
   1961 
   1962     StackStateOfBB BBState;
   1963     // Check the exit state of the DFS stack predecessor.
   1964     if (DFI.getPathLength() >= 2) {
   1965       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
   1966       assert(Reachable.count(StackPred) &&
   1967              "DFS stack predecessor is already visited.\n");
   1968       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
   1969       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
   1970       BBState.ExitValue = BBState.EntryValue;
   1971       BBState.ExitIsSetup = BBState.EntryIsSetup;
   1972     }
   1973 
   1974     // Update stack state by checking contents of MBB.
   1975     for (const auto &I : *MBB) {
   1976       if (I.getOpcode() == FrameSetupOpcode) {
   1977         // The first operand of a FrameOpcode should be i32.
   1978         int Size = I.getOperand(0).getImm();
   1979         assert(Size >= 0 &&
   1980           "Value should be non-negative in FrameSetup and FrameDestroy.\n");
   1981 
   1982         if (BBState.ExitIsSetup)
   1983           report("FrameSetup is after another FrameSetup", &I);
   1984         BBState.ExitValue -= Size;
   1985         BBState.ExitIsSetup = true;
   1986       }
   1987 
   1988       if (I.getOpcode() == FrameDestroyOpcode) {
   1989         // The first operand of a FrameOpcode should be i32.
   1990         int Size = I.getOperand(0).getImm();
   1991         assert(Size >= 0 &&
   1992           "Value should be non-negative in FrameSetup and FrameDestroy.\n");
   1993 
   1994         if (!BBState.ExitIsSetup)
   1995           report("FrameDestroy is not after a FrameSetup", &I);
   1996         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
   1997                                                BBState.ExitValue;
   1998         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
   1999           report("FrameDestroy <n> is after FrameSetup <m>", &I);
   2000           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
   2001               << AbsSPAdj << ">.\n";
   2002         }
   2003         BBState.ExitValue += Size;
   2004         BBState.ExitIsSetup = false;
   2005       }
   2006     }
   2007     SPState[MBB->getNumber()] = BBState;
   2008 
   2009     // Make sure the exit state of any predecessor is consistent with the entry
   2010     // state.
   2011     for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
   2012          E = MBB->pred_end(); I != E; ++I) {
   2013       if (Reachable.count(*I) &&
   2014           (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
   2015            SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
   2016         report("The exit stack state of a predecessor is inconsistent.", MBB);
   2017         errs() << "Predecessor BB#" << (*I)->getNumber() << " has exit state ("
   2018             << SPState[(*I)->getNumber()].ExitValue << ", "
   2019             << SPState[(*I)->getNumber()].ExitIsSetup
   2020             << "), while BB#" << MBB->getNumber() << " has entry state ("
   2021             << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
   2022       }
   2023     }
   2024 
   2025     // Make sure the entry state of any successor is consistent with the exit
   2026     // state.
   2027     for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
   2028          E = MBB->succ_end(); I != E; ++I) {
   2029       if (Reachable.count(*I) &&
   2030           (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
   2031            SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
   2032         report("The entry stack state of a successor is inconsistent.", MBB);
   2033         errs() << "Successor BB#" << (*I)->getNumber() << " has entry state ("
   2034             << SPState[(*I)->getNumber()].EntryValue << ", "
   2035             << SPState[(*I)->getNumber()].EntryIsSetup
   2036             << "), while BB#" << MBB->getNumber() << " has exit state ("
   2037             << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
   2038       }
   2039     }
   2040 
   2041     // Make sure a basic block with return ends with zero stack adjustment.
   2042     if (!MBB->empty() && MBB->back().isReturn()) {
   2043       if (BBState.ExitIsSetup)
   2044         report("A return block ends with a FrameSetup.", MBB);
   2045       if (BBState.ExitValue)
   2046         report("A return block ends with a nonzero stack adjustment.", MBB);
   2047     }
   2048   }
   2049 }
   2050