Home | History | Annotate | Download | only in CodeGen
      1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the generic RegisterCoalescer interface which
     11 // is used as the common interface used by all clients and
     12 // implementations of register coalescing.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "RegisterCoalescer.h"
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "llvm/ADT/SmallSet.h"
     19 #include "llvm/ADT/Statistic.h"
     20 #include "llvm/Analysis/AliasAnalysis.h"
     21 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     22 #include "llvm/CodeGen/LiveRangeEdit.h"
     23 #include "llvm/CodeGen/MachineFrameInfo.h"
     24 #include "llvm/CodeGen/MachineInstr.h"
     25 #include "llvm/CodeGen/MachineLoopInfo.h"
     26 #include "llvm/CodeGen/MachineRegisterInfo.h"
     27 #include "llvm/CodeGen/Passes.h"
     28 #include "llvm/CodeGen/RegisterClassInfo.h"
     29 #include "llvm/CodeGen/VirtRegMap.h"
     30 #include "llvm/IR/Value.h"
     31 #include "llvm/Pass.h"
     32 #include "llvm/Support/CommandLine.h"
     33 #include "llvm/Support/Debug.h"
     34 #include "llvm/Support/ErrorHandling.h"
     35 #include "llvm/Support/raw_ostream.h"
     36 #include "llvm/Target/TargetInstrInfo.h"
     37 #include "llvm/Target/TargetMachine.h"
     38 #include "llvm/Target/TargetRegisterInfo.h"
     39 #include "llvm/Target/TargetSubtargetInfo.h"
     40 #include <algorithm>
     41 #include <cmath>
     42 using namespace llvm;
     43 
     44 #define DEBUG_TYPE "regalloc"
     45 
     46 STATISTIC(numJoins    , "Number of interval joins performed");
     47 STATISTIC(numCrossRCs , "Number of cross class joins performed");
     48 STATISTIC(numCommutes , "Number of instruction commuting performed");
     49 STATISTIC(numExtends  , "Number of copies extended");
     50 STATISTIC(NumReMats   , "Number of instructions re-materialized");
     51 STATISTIC(NumInflated , "Number of register classes inflated");
     52 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
     53 STATISTIC(NumLaneResolves,  "Number of dead lane conflicts resolved");
     54 
     55 static cl::opt<bool>
     56 EnableJoining("join-liveintervals",
     57               cl::desc("Coalesce copies (default=true)"),
     58               cl::init(true));
     59 
     60 static cl::opt<bool> UseTerminalRule("terminal-rule",
     61                                      cl::desc("Apply the terminal rule"),
     62                                      cl::init(false), cl::Hidden);
     63 
     64 /// Temporary flag to test critical edge unsplitting.
     65 static cl::opt<bool>
     66 EnableJoinSplits("join-splitedges",
     67   cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
     68 
     69 /// Temporary flag to test global copy optimization.
     70 static cl::opt<cl::boolOrDefault>
     71 EnableGlobalCopies("join-globalcopies",
     72   cl::desc("Coalesce copies that span blocks (default=subtarget)"),
     73   cl::init(cl::BOU_UNSET), cl::Hidden);
     74 
     75 static cl::opt<bool>
     76 VerifyCoalescing("verify-coalescing",
     77          cl::desc("Verify machine instrs before and after register coalescing"),
     78          cl::Hidden);
     79 
     80 namespace {
     81   class RegisterCoalescer : public MachineFunctionPass,
     82                             private LiveRangeEdit::Delegate {
     83     MachineFunction* MF;
     84     MachineRegisterInfo* MRI;
     85     const TargetMachine* TM;
     86     const TargetRegisterInfo* TRI;
     87     const TargetInstrInfo* TII;
     88     LiveIntervals *LIS;
     89     const MachineLoopInfo* Loops;
     90     AliasAnalysis *AA;
     91     RegisterClassInfo RegClassInfo;
     92 
     93     /// A LaneMask to remember on which subregister live ranges we need to call
     94     /// shrinkToUses() later.
     95     LaneBitmask ShrinkMask;
     96 
     97     /// True if the main range of the currently coalesced intervals should be
     98     /// checked for smaller live intervals.
     99     bool ShrinkMainRange;
    100 
    101     /// \brief True if the coalescer should aggressively coalesce global copies
    102     /// in favor of keeping local copies.
    103     bool JoinGlobalCopies;
    104 
    105     /// \brief True if the coalescer should aggressively coalesce fall-thru
    106     /// blocks exclusively containing copies.
    107     bool JoinSplitEdges;
    108 
    109     /// Copy instructions yet to be coalesced.
    110     SmallVector<MachineInstr*, 8> WorkList;
    111     SmallVector<MachineInstr*, 8> LocalWorkList;
    112 
    113     /// Set of instruction pointers that have been erased, and
    114     /// that may be present in WorkList.
    115     SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
    116 
    117     /// Dead instructions that are about to be deleted.
    118     SmallVector<MachineInstr*, 8> DeadDefs;
    119 
    120     /// Virtual registers to be considered for register class inflation.
    121     SmallVector<unsigned, 8> InflateRegs;
    122 
    123     /// Recursively eliminate dead defs in DeadDefs.
    124     void eliminateDeadDefs();
    125 
    126     /// LiveRangeEdit callback for eliminateDeadDefs().
    127     void LRE_WillEraseInstruction(MachineInstr *MI) override;
    128 
    129     /// Coalesce the LocalWorkList.
    130     void coalesceLocals();
    131 
    132     /// Join compatible live intervals
    133     void joinAllIntervals();
    134 
    135     /// Coalesce copies in the specified MBB, putting
    136     /// copies that cannot yet be coalesced into WorkList.
    137     void copyCoalesceInMBB(MachineBasicBlock *MBB);
    138 
    139     /// Tries to coalesce all copies in CurrList. Returns true if any progress
    140     /// was made.
    141     bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
    142 
    143     /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
    144     /// src/dst of the copy instruction CopyMI.  This returns true if the copy
    145     /// was successfully coalesced away. If it is not currently possible to
    146     /// coalesce this interval, but it may be possible if other things get
    147     /// coalesced, then it returns true by reference in 'Again'.
    148     bool joinCopy(MachineInstr *TheCopy, bool &Again);
    149 
    150     /// Attempt to join these two intervals.  On failure, this
    151     /// returns false.  The output "SrcInt" will not have been modified, so we
    152     /// can use this information below to update aliases.
    153     bool joinIntervals(CoalescerPair &CP);
    154 
    155     /// Attempt joining two virtual registers. Return true on success.
    156     bool joinVirtRegs(CoalescerPair &CP);
    157 
    158     /// Attempt joining with a reserved physreg.
    159     bool joinReservedPhysReg(CoalescerPair &CP);
    160 
    161     /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
    162     /// Subranges in @p LI which only partially interfere with the desired
    163     /// LaneMask are split as necessary. @p LaneMask are the lanes that
    164     /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
    165     /// lanemasks already adjusted to the coalesced register.
    166     void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
    167                            LaneBitmask LaneMask, CoalescerPair &CP);
    168 
    169     /// Join the liveranges of two subregisters. Joins @p RRange into
    170     /// @p LRange, @p RRange may be invalid afterwards.
    171     void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
    172                           LaneBitmask LaneMask, const CoalescerPair &CP);
    173 
    174     /// We found a non-trivially-coalescable copy. If the source value number is
    175     /// defined by a copy from the destination reg see if we can merge these two
    176     /// destination reg valno# into a single value number, eliminating a copy.
    177     /// This returns true if an interval was modified.
    178     bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
    179 
    180     /// Return true if there are definitions of IntB
    181     /// other than BValNo val# that can reach uses of AValno val# of IntA.
    182     bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
    183                               VNInfo *AValNo, VNInfo *BValNo);
    184 
    185     /// We found a non-trivially-coalescable copy.
    186     /// If the source value number is defined by a commutable instruction and
    187     /// its other operand is coalesced to the copy dest register, see if we
    188     /// can transform the copy into a noop by commuting the definition.
    189     /// This returns true if an interval was modified.
    190     bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI);
    191 
    192     /// If the source of a copy is defined by a
    193     /// trivial computation, replace the copy by rematerialize the definition.
    194     bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI,
    195                                  bool &IsDefCopy);
    196 
    197     /// Return true if a copy involving a physreg should be joined.
    198     bool canJoinPhys(const CoalescerPair &CP);
    199 
    200     /// Replace all defs and uses of SrcReg to DstReg and update the subregister
    201     /// number if it is not zero. If DstReg is a physical register and the
    202     /// existing subregister number of the def / use being updated is not zero,
    203     /// make sure to set it to the correct physical subregister.
    204     void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
    205 
    206     /// If the given machine operand reads only undefined lanes add an undef
    207     /// flag.
    208     /// This can happen when undef uses were previously concealed by a copy
    209     /// which we coalesced. Example:
    210     ///    %vreg0:sub0<def,read-undef> = ...
    211     ///    %vreg1 = COPY %vreg0       <-- Coalescing COPY reveals undef
    212     ///           = use %vreg1:sub1   <-- hidden undef use
    213     void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
    214                       MachineOperand &MO, unsigned SubRegIdx);
    215 
    216     /// Handle copies of undef values.
    217     /// Returns true if @p CopyMI was a copy of an undef value and eliminated.
    218     bool eliminateUndefCopy(MachineInstr *CopyMI);
    219 
    220     /// Check whether or not we should apply the terminal rule on the
    221     /// destination (Dst) of \p Copy.
    222     /// When the terminal rule applies, Copy is not profitable to
    223     /// coalesce.
    224     /// Dst is terminal if it has exactly one affinity (Dst, Src) and
    225     /// at least one interference (Dst, Dst2). If Dst is terminal, the
    226     /// terminal rule consists in checking that at least one of
    227     /// interfering node, say Dst2, has an affinity of equal or greater
    228     /// weight with Src.
    229     /// In that case, Dst2 and Dst will not be able to be both coalesced
    230     /// with Src. Since Dst2 exposes more coalescing opportunities than
    231     /// Dst, we can drop \p Copy.
    232     bool applyTerminalRule(const MachineInstr &Copy) const;
    233 
    234     /// Wrapper method for \see LiveIntervals::shrinkToUses.
    235     /// This method does the proper fixing of the live-ranges when the afore
    236     /// mentioned method returns true.
    237     void shrinkToUses(LiveInterval *LI,
    238                       SmallVectorImpl<MachineInstr * > *Dead = nullptr) {
    239       if (LIS->shrinkToUses(LI, Dead)) {
    240         /// Check whether or not \p LI is composed by multiple connected
    241         /// components and if that is the case, fix that.
    242         SmallVector<LiveInterval*, 8> SplitLIs;
    243         LIS->splitSeparateComponents(*LI, SplitLIs);
    244       }
    245     }
    246 
    247   public:
    248     static char ID; ///< Class identification, replacement for typeinfo
    249     RegisterCoalescer() : MachineFunctionPass(ID) {
    250       initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
    251     }
    252 
    253     void getAnalysisUsage(AnalysisUsage &AU) const override;
    254 
    255     void releaseMemory() override;
    256 
    257     /// This is the pass entry point.
    258     bool runOnMachineFunction(MachineFunction&) override;
    259 
    260     /// Implement the dump method.
    261     void print(raw_ostream &O, const Module* = nullptr) const override;
    262   };
    263 } // end anonymous namespace
    264 
    265 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
    266 
    267 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
    268                       "Simple Register Coalescing", false, false)
    269 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
    270 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
    271 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
    272 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
    273 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
    274                     "Simple Register Coalescing", false, false)
    275 
    276 char RegisterCoalescer::ID = 0;
    277 
    278 static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
    279                         unsigned &Src, unsigned &Dst,
    280                         unsigned &SrcSub, unsigned &DstSub) {
    281   if (MI->isCopy()) {
    282     Dst = MI->getOperand(0).getReg();
    283     DstSub = MI->getOperand(0).getSubReg();
    284     Src = MI->getOperand(1).getReg();
    285     SrcSub = MI->getOperand(1).getSubReg();
    286   } else if (MI->isSubregToReg()) {
    287     Dst = MI->getOperand(0).getReg();
    288     DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
    289                                       MI->getOperand(3).getImm());
    290     Src = MI->getOperand(2).getReg();
    291     SrcSub = MI->getOperand(2).getSubReg();
    292   } else
    293     return false;
    294   return true;
    295 }
    296 
    297 /// Return true if this block should be vacated by the coalescer to eliminate
    298 /// branches. The important cases to handle in the coalescer are critical edges
    299 /// split during phi elimination which contain only copies. Simple blocks that
    300 /// contain non-branches should also be vacated, but this can be handled by an
    301 /// earlier pass similar to early if-conversion.
    302 static bool isSplitEdge(const MachineBasicBlock *MBB) {
    303   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
    304     return false;
    305 
    306   for (const auto &MI : *MBB) {
    307     if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
    308       return false;
    309   }
    310   return true;
    311 }
    312 
    313 bool CoalescerPair::setRegisters(const MachineInstr *MI) {
    314   SrcReg = DstReg = 0;
    315   SrcIdx = DstIdx = 0;
    316   NewRC = nullptr;
    317   Flipped = CrossClass = false;
    318 
    319   unsigned Src, Dst, SrcSub, DstSub;
    320   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
    321     return false;
    322   Partial = SrcSub || DstSub;
    323 
    324   // If one register is a physreg, it must be Dst.
    325   if (TargetRegisterInfo::isPhysicalRegister(Src)) {
    326     if (TargetRegisterInfo::isPhysicalRegister(Dst))
    327       return false;
    328     std::swap(Src, Dst);
    329     std::swap(SrcSub, DstSub);
    330     Flipped = true;
    331   }
    332 
    333   const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
    334 
    335   if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
    336     // Eliminate DstSub on a physreg.
    337     if (DstSub) {
    338       Dst = TRI.getSubReg(Dst, DstSub);
    339       if (!Dst) return false;
    340       DstSub = 0;
    341     }
    342 
    343     // Eliminate SrcSub by picking a corresponding Dst superregister.
    344     if (SrcSub) {
    345       Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
    346       if (!Dst) return false;
    347     } else if (!MRI.getRegClass(Src)->contains(Dst)) {
    348       return false;
    349     }
    350   } else {
    351     // Both registers are virtual.
    352     const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
    353     const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
    354 
    355     // Both registers have subreg indices.
    356     if (SrcSub && DstSub) {
    357       // Copies between different sub-registers are never coalescable.
    358       if (Src == Dst && SrcSub != DstSub)
    359         return false;
    360 
    361       NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
    362                                          SrcIdx, DstIdx);
    363       if (!NewRC)
    364         return false;
    365     } else if (DstSub) {
    366       // SrcReg will be merged with a sub-register of DstReg.
    367       SrcIdx = DstSub;
    368       NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
    369     } else if (SrcSub) {
    370       // DstReg will be merged with a sub-register of SrcReg.
    371       DstIdx = SrcSub;
    372       NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
    373     } else {
    374       // This is a straight copy without sub-registers.
    375       NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
    376     }
    377 
    378     // The combined constraint may be impossible to satisfy.
    379     if (!NewRC)
    380       return false;
    381 
    382     // Prefer SrcReg to be a sub-register of DstReg.
    383     // FIXME: Coalescer should support subregs symmetrically.
    384     if (DstIdx && !SrcIdx) {
    385       std::swap(Src, Dst);
    386       std::swap(SrcIdx, DstIdx);
    387       Flipped = !Flipped;
    388     }
    389 
    390     CrossClass = NewRC != DstRC || NewRC != SrcRC;
    391   }
    392   // Check our invariants
    393   assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
    394   assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
    395          "Cannot have a physical SubIdx");
    396   SrcReg = Src;
    397   DstReg = Dst;
    398   return true;
    399 }
    400 
    401 bool CoalescerPair::flip() {
    402   if (TargetRegisterInfo::isPhysicalRegister(DstReg))
    403     return false;
    404   std::swap(SrcReg, DstReg);
    405   std::swap(SrcIdx, DstIdx);
    406   Flipped = !Flipped;
    407   return true;
    408 }
    409 
    410 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
    411   if (!MI)
    412     return false;
    413   unsigned Src, Dst, SrcSub, DstSub;
    414   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
    415     return false;
    416 
    417   // Find the virtual register that is SrcReg.
    418   if (Dst == SrcReg) {
    419     std::swap(Src, Dst);
    420     std::swap(SrcSub, DstSub);
    421   } else if (Src != SrcReg) {
    422     return false;
    423   }
    424 
    425   // Now check that Dst matches DstReg.
    426   if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
    427     if (!TargetRegisterInfo::isPhysicalRegister(Dst))
    428       return false;
    429     assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
    430     // DstSub could be set for a physreg from INSERT_SUBREG.
    431     if (DstSub)
    432       Dst = TRI.getSubReg(Dst, DstSub);
    433     // Full copy of Src.
    434     if (!SrcSub)
    435       return DstReg == Dst;
    436     // This is a partial register copy. Check that the parts match.
    437     return TRI.getSubReg(DstReg, SrcSub) == Dst;
    438   } else {
    439     // DstReg is virtual.
    440     if (DstReg != Dst)
    441       return false;
    442     // Registers match, do the subregisters line up?
    443     return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
    444            TRI.composeSubRegIndices(DstIdx, DstSub);
    445   }
    446 }
    447 
    448 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
    449   AU.setPreservesCFG();
    450   AU.addRequired<AAResultsWrapperPass>();
    451   AU.addRequired<LiveIntervals>();
    452   AU.addPreserved<LiveIntervals>();
    453   AU.addPreserved<SlotIndexes>();
    454   AU.addRequired<MachineLoopInfo>();
    455   AU.addPreserved<MachineLoopInfo>();
    456   AU.addPreservedID(MachineDominatorsID);
    457   MachineFunctionPass::getAnalysisUsage(AU);
    458 }
    459 
    460 void RegisterCoalescer::eliminateDeadDefs() {
    461   SmallVector<unsigned, 8> NewRegs;
    462   LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
    463                 nullptr, this).eliminateDeadDefs(DeadDefs);
    464 }
    465 
    466 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
    467   // MI may be in WorkList. Make sure we don't visit it.
    468   ErasedInstrs.insert(MI);
    469 }
    470 
    471 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
    472                                              MachineInstr *CopyMI) {
    473   assert(!CP.isPartial() && "This doesn't work for partial copies.");
    474   assert(!CP.isPhys() && "This doesn't work for physreg copies.");
    475 
    476   LiveInterval &IntA =
    477     LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
    478   LiveInterval &IntB =
    479     LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
    480   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
    481 
    482   // We have a non-trivially-coalescable copy with IntA being the source and
    483   // IntB being the dest, thus this defines a value number in IntB.  If the
    484   // source value number (in IntA) is defined by a copy from B, see if we can
    485   // merge these two pieces of B into a single value number, eliminating a copy.
    486   // For example:
    487   //
    488   //  A3 = B0
    489   //    ...
    490   //  B1 = A3      <- this copy
    491   //
    492   // In this case, B0 can be extended to where the B1 copy lives, allowing the
    493   // B1 value number to be replaced with B0 (which simplifies the B
    494   // liveinterval).
    495 
    496   // BValNo is a value number in B that is defined by a copy from A.  'B1' in
    497   // the example above.
    498   LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
    499   if (BS == IntB.end()) return false;
    500   VNInfo *BValNo = BS->valno;
    501 
    502   // Get the location that B is defined at.  Two options: either this value has
    503   // an unknown definition point or it is defined at CopyIdx.  If unknown, we
    504   // can't process it.
    505   if (BValNo->def != CopyIdx) return false;
    506 
    507   // AValNo is the value number in A that defines the copy, A3 in the example.
    508   SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
    509   LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
    510   // The live segment might not exist after fun with physreg coalescing.
    511   if (AS == IntA.end()) return false;
    512   VNInfo *AValNo = AS->valno;
    513 
    514   // If AValNo is defined as a copy from IntB, we can potentially process this.
    515   // Get the instruction that defines this value number.
    516   MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
    517   // Don't allow any partial copies, even if isCoalescable() allows them.
    518   if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
    519     return false;
    520 
    521   // Get the Segment in IntB that this value number starts with.
    522   LiveInterval::iterator ValS =
    523     IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
    524   if (ValS == IntB.end())
    525     return false;
    526 
    527   // Make sure that the end of the live segment is inside the same block as
    528   // CopyMI.
    529   MachineInstr *ValSEndInst =
    530     LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
    531   if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
    532     return false;
    533 
    534   // Okay, we now know that ValS ends in the same block that the CopyMI
    535   // live-range starts.  If there are no intervening live segments between them
    536   // in IntB, we can merge them.
    537   if (ValS+1 != BS) return false;
    538 
    539   DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI));
    540 
    541   SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
    542   // We are about to delete CopyMI, so need to remove it as the 'instruction
    543   // that defines this value #'. Update the valnum with the new defining
    544   // instruction #.
    545   BValNo->def = FillerStart;
    546 
    547   // Okay, we can merge them.  We need to insert a new liverange:
    548   // [ValS.end, BS.begin) of either value number, then we merge the
    549   // two value numbers.
    550   IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
    551 
    552   // Okay, merge "B1" into the same value number as "B0".
    553   if (BValNo != ValS->valno)
    554     IntB.MergeValueNumberInto(BValNo, ValS->valno);
    555 
    556   // Do the same for the subregister segments.
    557   for (LiveInterval::SubRange &S : IntB.subranges()) {
    558     VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
    559     S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
    560     VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
    561     if (SubBValNo != SubValSNo)
    562       S.MergeValueNumberInto(SubBValNo, SubValSNo);
    563   }
    564 
    565   DEBUG(dbgs() << "   result = " << IntB << '\n');
    566 
    567   // If the source instruction was killing the source register before the
    568   // merge, unset the isKill marker given the live range has been extended.
    569   int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true);
    570   if (UIdx != -1) {
    571     ValSEndInst->getOperand(UIdx).setIsKill(false);
    572   }
    573 
    574   // Rewrite the copy. If the copy instruction was killing the destination
    575   // register before the merge, find the last use and trim the live range. That
    576   // will also add the isKill marker.
    577   CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
    578   if (AS->end == CopyIdx)
    579     shrinkToUses(&IntA);
    580 
    581   ++numExtends;
    582   return true;
    583 }
    584 
    585 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
    586                                              LiveInterval &IntB,
    587                                              VNInfo *AValNo,
    588                                              VNInfo *BValNo) {
    589   // If AValNo has PHI kills, conservatively assume that IntB defs can reach
    590   // the PHI values.
    591   if (LIS->hasPHIKill(IntA, AValNo))
    592     return true;
    593 
    594   for (LiveRange::Segment &ASeg : IntA.segments) {
    595     if (ASeg.valno != AValNo) continue;
    596     LiveInterval::iterator BI =
    597       std::upper_bound(IntB.begin(), IntB.end(), ASeg.start);
    598     if (BI != IntB.begin())
    599       --BI;
    600     for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
    601       if (BI->valno == BValNo)
    602         continue;
    603       if (BI->start <= ASeg.start && BI->end > ASeg.start)
    604         return true;
    605       if (BI->start > ASeg.start && BI->start < ASeg.end)
    606         return true;
    607     }
    608   }
    609   return false;
    610 }
    611 
    612 /// Copy segements with value number @p SrcValNo from liverange @p Src to live
    613 /// range @Dst and use value number @p DstValNo there.
    614 static void addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo,
    615                                  const LiveRange &Src, const VNInfo *SrcValNo)
    616 {
    617   for (const LiveRange::Segment &S : Src.segments) {
    618     if (S.valno != SrcValNo)
    619       continue;
    620     Dst.addSegment(LiveRange::Segment(S.start, S.end, DstValNo));
    621   }
    622 }
    623 
    624 bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
    625                                                  MachineInstr *CopyMI) {
    626   assert(!CP.isPhys());
    627 
    628   LiveInterval &IntA =
    629       LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
    630   LiveInterval &IntB =
    631       LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
    632 
    633   // We found a non-trivially-coalescable copy with IntA being the source and
    634   // IntB being the dest, thus this defines a value number in IntB.  If the
    635   // source value number (in IntA) is defined by a commutable instruction and
    636   // its other operand is coalesced to the copy dest register, see if we can
    637   // transform the copy into a noop by commuting the definition. For example,
    638   //
    639   //  A3 = op A2 B0<kill>
    640   //    ...
    641   //  B1 = A3      <- this copy
    642   //    ...
    643   //     = op A3   <- more uses
    644   //
    645   // ==>
    646   //
    647   //  B2 = op B0 A2<kill>
    648   //    ...
    649   //  B1 = B2      <- now an identity copy
    650   //    ...
    651   //     = op B2   <- more uses
    652 
    653   // BValNo is a value number in B that is defined by a copy from A. 'B1' in
    654   // the example above.
    655   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
    656   VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
    657   assert(BValNo != nullptr && BValNo->def == CopyIdx);
    658 
    659   // AValNo is the value number in A that defines the copy, A3 in the example.
    660   VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
    661   assert(AValNo && !AValNo->isUnused() && "COPY source not live");
    662   if (AValNo->isPHIDef())
    663     return false;
    664   MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
    665   if (!DefMI)
    666     return false;
    667   if (!DefMI->isCommutable())
    668     return false;
    669   // If DefMI is a two-address instruction then commuting it will change the
    670   // destination register.
    671   int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
    672   assert(DefIdx != -1);
    673   unsigned UseOpIdx;
    674   if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
    675     return false;
    676 
    677   // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
    678   // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
    679   // passed to the method. That _other_ operand is chosen by
    680   // the findCommutedOpIndices() method.
    681   //
    682   // That is obviously an area for improvement in case of instructions having
    683   // more than 2 operands. For example, if some instruction has 3 commutable
    684   // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
    685   // op#2<->op#3) of commute transformation should be considered/tried here.
    686   unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex;
    687   if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx))
    688     return false;
    689 
    690   MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
    691   unsigned NewReg = NewDstMO.getReg();
    692   if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill())
    693     return false;
    694 
    695   // Make sure there are no other definitions of IntB that would reach the
    696   // uses which the new definition can reach.
    697   if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
    698     return false;
    699 
    700   // If some of the uses of IntA.reg is already coalesced away, return false.
    701   // It's not possible to determine whether it's safe to perform the coalescing.
    702   for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) {
    703     MachineInstr *UseMI = MO.getParent();
    704     unsigned OpNo = &MO - &UseMI->getOperand(0);
    705     SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI);
    706     LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
    707     if (US == IntA.end() || US->valno != AValNo)
    708       continue;
    709     // If this use is tied to a def, we can't rewrite the register.
    710     if (UseMI->isRegTiedToDefOperand(OpNo))
    711       return false;
    712   }
    713 
    714   DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
    715                << *DefMI);
    716 
    717   // At this point we have decided that it is legal to do this
    718   // transformation.  Start by commuting the instruction.
    719   MachineBasicBlock *MBB = DefMI->getParent();
    720   MachineInstr *NewMI =
    721       TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx);
    722   if (!NewMI)
    723     return false;
    724   if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
    725       TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
    726       !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
    727     return false;
    728   if (NewMI != DefMI) {
    729     LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI);
    730     MachineBasicBlock::iterator Pos = DefMI;
    731     MBB->insert(Pos, NewMI);
    732     MBB->erase(DefMI);
    733   }
    734 
    735   // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
    736   // A = or A, B
    737   // ...
    738   // B = A
    739   // ...
    740   // C = A<kill>
    741   // ...
    742   //   = B
    743 
    744   // Update uses of IntA of the specific Val# with IntB.
    745   for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
    746                                          UE = MRI->use_end();
    747        UI != UE; /* ++UI is below because of possible MI removal */) {
    748     MachineOperand &UseMO = *UI;
    749     ++UI;
    750     if (UseMO.isUndef())
    751       continue;
    752     MachineInstr *UseMI = UseMO.getParent();
    753     if (UseMI->isDebugValue()) {
    754       // FIXME These don't have an instruction index.  Not clear we have enough
    755       // info to decide whether to do this replacement or not.  For now do it.
    756       UseMO.setReg(NewReg);
    757       continue;
    758     }
    759     SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true);
    760     LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
    761     assert(US != IntA.end() && "Use must be live");
    762     if (US->valno != AValNo)
    763       continue;
    764     // Kill flags are no longer accurate. They are recomputed after RA.
    765     UseMO.setIsKill(false);
    766     if (TargetRegisterInfo::isPhysicalRegister(NewReg))
    767       UseMO.substPhysReg(NewReg, *TRI);
    768     else
    769       UseMO.setReg(NewReg);
    770     if (UseMI == CopyMI)
    771       continue;
    772     if (!UseMI->isCopy())
    773       continue;
    774     if (UseMI->getOperand(0).getReg() != IntB.reg ||
    775         UseMI->getOperand(0).getSubReg())
    776       continue;
    777 
    778     // This copy will become a noop. If it's defining a new val#, merge it into
    779     // BValNo.
    780     SlotIndex DefIdx = UseIdx.getRegSlot();
    781     VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
    782     if (!DVNI)
    783       continue;
    784     DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
    785     assert(DVNI->def == DefIdx);
    786     BValNo = IntB.MergeValueNumberInto(DVNI, BValNo);
    787     for (LiveInterval::SubRange &S : IntB.subranges()) {
    788       VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
    789       if (!SubDVNI)
    790         continue;
    791       VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
    792       assert(SubBValNo->def == CopyIdx);
    793       S.MergeValueNumberInto(SubDVNI, SubBValNo);
    794     }
    795 
    796     ErasedInstrs.insert(UseMI);
    797     LIS->RemoveMachineInstrFromMaps(*UseMI);
    798     UseMI->eraseFromParent();
    799   }
    800 
    801   // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
    802   // is updated.
    803   BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
    804   if (IntB.hasSubRanges()) {
    805     if (!IntA.hasSubRanges()) {
    806       LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg);
    807       IntA.createSubRangeFrom(Allocator, Mask, IntA);
    808     }
    809     SlotIndex AIdx = CopyIdx.getRegSlot(true);
    810     for (LiveInterval::SubRange &SA : IntA.subranges()) {
    811       VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
    812       assert(ASubValNo != nullptr);
    813 
    814       LaneBitmask AMask = SA.LaneMask;
    815       for (LiveInterval::SubRange &SB : IntB.subranges()) {
    816         LaneBitmask BMask = SB.LaneMask;
    817         LaneBitmask Common = BMask & AMask;
    818         if (Common == 0)
    819           continue;
    820 
    821         DEBUG( dbgs() << "\t\tCopy_Merge " << PrintLaneMask(BMask)
    822                       << " into " << PrintLaneMask(Common) << '\n');
    823         LaneBitmask BRest = BMask & ~AMask;
    824         LiveInterval::SubRange *CommonRange;
    825         if (BRest != 0) {
    826           SB.LaneMask = BRest;
    827           DEBUG(dbgs() << "\t\tReduce Lane to " << PrintLaneMask(BRest)
    828                        << '\n');
    829           // Duplicate SubRange for newly merged common stuff.
    830           CommonRange = IntB.createSubRangeFrom(Allocator, Common, SB);
    831         } else {
    832           // We van reuse the L SubRange.
    833           SB.LaneMask = Common;
    834           CommonRange = &SB;
    835         }
    836         LiveRange RangeCopy(SB, Allocator);
    837 
    838         VNInfo *BSubValNo = CommonRange->getVNInfoAt(CopyIdx);
    839         assert(BSubValNo->def == CopyIdx);
    840         BSubValNo->def = ASubValNo->def;
    841         addSegmentsWithValNo(*CommonRange, BSubValNo, SA, ASubValNo);
    842         AMask &= ~BMask;
    843       }
    844       if (AMask != 0) {
    845         DEBUG(dbgs() << "\t\tNew Lane " << PrintLaneMask(AMask) << '\n');
    846         LiveRange *NewRange = IntB.createSubRange(Allocator, AMask);
    847         VNInfo *BSubValNo = NewRange->getNextValue(CopyIdx, Allocator);
    848         addSegmentsWithValNo(*NewRange, BSubValNo, SA, ASubValNo);
    849       }
    850     }
    851   }
    852 
    853   BValNo->def = AValNo->def;
    854   addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
    855   DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
    856 
    857   LIS->removeVRegDefAt(IntA, AValNo->def);
    858 
    859   DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
    860   ++numCommutes;
    861   return true;
    862 }
    863 
    864 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
    865 /// defining a subregister.
    866 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) {
    867   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) &&
    868          "This code cannot handle physreg aliasing");
    869   for (const MachineOperand &Op : MI.operands()) {
    870     if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
    871       continue;
    872     // Return true if we define the full register or don't care about the value
    873     // inside other subregisters.
    874     if (Op.getSubReg() == 0 || Op.isUndef())
    875       return true;
    876   }
    877   return false;
    878 }
    879 
    880 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
    881                                                 MachineInstr *CopyMI,
    882                                                 bool &IsDefCopy) {
    883   IsDefCopy = false;
    884   unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
    885   unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
    886   unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
    887   unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
    888   if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
    889     return false;
    890 
    891   LiveInterval &SrcInt = LIS->getInterval(SrcReg);
    892   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
    893   VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
    894   assert(ValNo && "CopyMI input register not live");
    895   if (ValNo->isPHIDef() || ValNo->isUnused())
    896     return false;
    897   MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
    898   if (!DefMI)
    899     return false;
    900   if (DefMI->isCopyLike()) {
    901     IsDefCopy = true;
    902     return false;
    903   }
    904   if (!TII->isAsCheapAsAMove(*DefMI))
    905     return false;
    906   if (!TII->isTriviallyReMaterializable(*DefMI, AA))
    907     return false;
    908   if (!definesFullReg(*DefMI, SrcReg))
    909     return false;
    910   bool SawStore = false;
    911   if (!DefMI->isSafeToMove(AA, SawStore))
    912     return false;
    913   const MCInstrDesc &MCID = DefMI->getDesc();
    914   if (MCID.getNumDefs() != 1)
    915     return false;
    916   // Only support subregister destinations when the def is read-undef.
    917   MachineOperand &DstOperand = CopyMI->getOperand(0);
    918   unsigned CopyDstReg = DstOperand.getReg();
    919   if (DstOperand.getSubReg() && !DstOperand.isUndef())
    920     return false;
    921 
    922   // If both SrcIdx and DstIdx are set, correct rematerialization would widen
    923   // the register substantially (beyond both source and dest size). This is bad
    924   // for performance since it can cascade through a function, introducing many
    925   // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
    926   // around after a few subreg copies).
    927   if (SrcIdx && DstIdx)
    928     return false;
    929 
    930   const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
    931   if (!DefMI->isImplicitDef()) {
    932     if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
    933       unsigned NewDstReg = DstReg;
    934 
    935       unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
    936                                               DefMI->getOperand(0).getSubReg());
    937       if (NewDstIdx)
    938         NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
    939 
    940       // Finally, make sure that the physical subregister that will be
    941       // constructed later is permitted for the instruction.
    942       if (!DefRC->contains(NewDstReg))
    943         return false;
    944     } else {
    945       // Theoretically, some stack frame reference could exist. Just make sure
    946       // it hasn't actually happened.
    947       assert(TargetRegisterInfo::isVirtualRegister(DstReg) &&
    948              "Only expect to deal with virtual or physical registers");
    949     }
    950   }
    951 
    952   DebugLoc DL = CopyMI->getDebugLoc();
    953   MachineBasicBlock *MBB = CopyMI->getParent();
    954   MachineBasicBlock::iterator MII =
    955     std::next(MachineBasicBlock::iterator(CopyMI));
    956   TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI);
    957   MachineInstr &NewMI = *std::prev(MII);
    958   NewMI.setDebugLoc(DL);
    959 
    960   // In a situation like the following:
    961   //     %vreg0:subreg = instr              ; DefMI, subreg = DstIdx
    962   //     %vreg1        = copy %vreg0:subreg ; CopyMI, SrcIdx = 0
    963   // instead of widening %vreg1 to the register class of %vreg0 simply do:
    964   //     %vreg1 = instr
    965   const TargetRegisterClass *NewRC = CP.getNewRC();
    966   if (DstIdx != 0) {
    967     MachineOperand &DefMO = NewMI.getOperand(0);
    968     if (DefMO.getSubReg() == DstIdx) {
    969       assert(SrcIdx == 0 && CP.isFlipped()
    970              && "Shouldn't have SrcIdx+DstIdx at this point");
    971       const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
    972       const TargetRegisterClass *CommonRC =
    973         TRI->getCommonSubClass(DefRC, DstRC);
    974       if (CommonRC != nullptr) {
    975         NewRC = CommonRC;
    976         DstIdx = 0;
    977         DefMO.setSubReg(0);
    978       }
    979     }
    980   }
    981 
    982   // CopyMI may have implicit operands, save them so that we can transfer them
    983   // over to the newly materialized instruction after CopyMI is removed.
    984   SmallVector<MachineOperand, 4> ImplicitOps;
    985   ImplicitOps.reserve(CopyMI->getNumOperands() -
    986                       CopyMI->getDesc().getNumOperands());
    987   for (unsigned I = CopyMI->getDesc().getNumOperands(),
    988                 E = CopyMI->getNumOperands();
    989        I != E; ++I) {
    990     MachineOperand &MO = CopyMI->getOperand(I);
    991     if (MO.isReg()) {
    992       assert(MO.isImplicit() && "No explicit operands after implict operands.");
    993       // Discard VReg implicit defs.
    994       if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
    995         ImplicitOps.push_back(MO);
    996     }
    997   }
    998 
    999   LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI);
   1000   CopyMI->eraseFromParent();
   1001   ErasedInstrs.insert(CopyMI);
   1002 
   1003   // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
   1004   // We need to remember these so we can add intervals once we insert
   1005   // NewMI into SlotIndexes.
   1006   SmallVector<unsigned, 4> NewMIImplDefs;
   1007   for (unsigned i = NewMI.getDesc().getNumOperands(),
   1008                 e = NewMI.getNumOperands();
   1009        i != e; ++i) {
   1010     MachineOperand &MO = NewMI.getOperand(i);
   1011     if (MO.isReg() && MO.isDef()) {
   1012       assert(MO.isImplicit() && MO.isDead() &&
   1013              TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
   1014       NewMIImplDefs.push_back(MO.getReg());
   1015     }
   1016   }
   1017 
   1018   if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
   1019     unsigned NewIdx = NewMI.getOperand(0).getSubReg();
   1020 
   1021     if (DefRC != nullptr) {
   1022       if (NewIdx)
   1023         NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
   1024       else
   1025         NewRC = TRI->getCommonSubClass(NewRC, DefRC);
   1026       assert(NewRC && "subreg chosen for remat incompatible with instruction");
   1027     }
   1028     // Remap subranges to new lanemask and change register class.
   1029     LiveInterval &DstInt = LIS->getInterval(DstReg);
   1030     for (LiveInterval::SubRange &SR : DstInt.subranges()) {
   1031       SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask);
   1032     }
   1033     MRI->setRegClass(DstReg, NewRC);
   1034 
   1035     // Update machine operands and add flags.
   1036     updateRegDefsUses(DstReg, DstReg, DstIdx);
   1037     NewMI.getOperand(0).setSubReg(NewIdx);
   1038     // Add dead subregister definitions if we are defining the whole register
   1039     // but only part of it is live.
   1040     // This could happen if the rematerialization instruction is rematerializing
   1041     // more than actually is used in the register.
   1042     // An example would be:
   1043     // vreg1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
   1044     // ; Copying only part of the register here, but the rest is undef.
   1045     // vreg2:sub_16bit<def, read-undef> = COPY vreg1:sub_16bit
   1046     // ==>
   1047     // ; Materialize all the constants but only using one
   1048     // vreg2 = LOAD_CONSTANTS 5, 8
   1049     //
   1050     // at this point for the part that wasn't defined before we could have
   1051     // subranges missing the definition.
   1052     if (NewIdx == 0 && DstInt.hasSubRanges()) {
   1053       SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
   1054       SlotIndex DefIndex =
   1055           CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
   1056       LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg);
   1057       VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator();
   1058       for (LiveInterval::SubRange &SR : DstInt.subranges()) {
   1059         if (!SR.liveAt(DefIndex))
   1060           SR.createDeadDef(DefIndex, Alloc);
   1061         MaxMask &= ~SR.LaneMask;
   1062       }
   1063       if (MaxMask != 0) {
   1064         LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask);
   1065         SR->createDeadDef(DefIndex, Alloc);
   1066       }
   1067     }
   1068   } else if (NewMI.getOperand(0).getReg() != CopyDstReg) {
   1069     // The New instruction may be defining a sub-register of what's actually
   1070     // been asked for. If so it must implicitly define the whole thing.
   1071     assert(TargetRegisterInfo::isPhysicalRegister(DstReg) &&
   1072            "Only expect virtual or physical registers in remat");
   1073     NewMI.getOperand(0).setIsDead(true);
   1074     NewMI.addOperand(MachineOperand::CreateReg(
   1075         CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/));
   1076     // Record small dead def live-ranges for all the subregisters
   1077     // of the destination register.
   1078     // Otherwise, variables that live through may miss some
   1079     // interferences, thus creating invalid allocation.
   1080     // E.g., i386 code:
   1081     // vreg1 = somedef ; vreg1 GR8
   1082     // vreg2 = remat ; vreg2 GR32
   1083     // CL = COPY vreg2.sub_8bit
   1084     // = somedef vreg1 ; vreg1 GR8
   1085     // =>
   1086     // vreg1 = somedef ; vreg1 GR8
   1087     // ECX<def, dead> = remat ; CL<imp-def>
   1088     // = somedef vreg1 ; vreg1 GR8
   1089     // vreg1 will see the inteferences with CL but not with CH since
   1090     // no live-ranges would have been created for ECX.
   1091     // Fix that!
   1092     SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
   1093     for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI);
   1094          Units.isValid(); ++Units)
   1095       if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
   1096         LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
   1097   }
   1098 
   1099   if (NewMI.getOperand(0).getSubReg())
   1100     NewMI.getOperand(0).setIsUndef();
   1101 
   1102   // Transfer over implicit operands to the rematerialized instruction.
   1103   for (MachineOperand &MO : ImplicitOps)
   1104     NewMI.addOperand(MO);
   1105 
   1106   SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
   1107   for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
   1108     unsigned Reg = NewMIImplDefs[i];
   1109     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
   1110       if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
   1111         LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
   1112   }
   1113 
   1114   DEBUG(dbgs() << "Remat: " << NewMI);
   1115   ++NumReMats;
   1116 
   1117   // The source interval can become smaller because we removed a use.
   1118   shrinkToUses(&SrcInt, &DeadDefs);
   1119   if (!DeadDefs.empty()) {
   1120     // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
   1121     // to describe DstReg instead.
   1122     for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) {
   1123       MachineInstr *UseMI = UseMO.getParent();
   1124       if (UseMI->isDebugValue()) {
   1125         UseMO.setReg(DstReg);
   1126         DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
   1127       }
   1128     }
   1129     eliminateDeadDefs();
   1130   }
   1131 
   1132   return true;
   1133 }
   1134 
   1135 bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
   1136   // ProcessImpicitDefs may leave some copies of <undef> values, it only removes
   1137   // local variables. When we have a copy like:
   1138   //
   1139   //   %vreg1 = COPY %vreg2<undef>
   1140   //
   1141   // We delete the copy and remove the corresponding value number from %vreg1.
   1142   // Any uses of that value number are marked as <undef>.
   1143 
   1144   // Note that we do not query CoalescerPair here but redo isMoveInstr as the
   1145   // CoalescerPair may have a new register class with adjusted subreg indices
   1146   // at this point.
   1147   unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
   1148   isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx);
   1149 
   1150   SlotIndex Idx = LIS->getInstructionIndex(*CopyMI);
   1151   const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
   1152   // CopyMI is undef iff SrcReg is not live before the instruction.
   1153   if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
   1154     LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
   1155     for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
   1156       if ((SR.LaneMask & SrcMask) == 0)
   1157         continue;
   1158       if (SR.liveAt(Idx))
   1159         return false;
   1160     }
   1161   } else if (SrcLI.liveAt(Idx))
   1162     return false;
   1163 
   1164   DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
   1165 
   1166   // Remove any DstReg segments starting at the instruction.
   1167   LiveInterval &DstLI = LIS->getInterval(DstReg);
   1168   SlotIndex RegIndex = Idx.getRegSlot();
   1169   // Remove value or merge with previous one in case of a subregister def.
   1170   if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
   1171     VNInfo *VNI = DstLI.getVNInfoAt(RegIndex);
   1172     DstLI.MergeValueNumberInto(VNI, PrevVNI);
   1173 
   1174     // The affected subregister segments can be removed.
   1175     LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
   1176     for (LiveInterval::SubRange &SR : DstLI.subranges()) {
   1177       if ((SR.LaneMask & DstMask) == 0)
   1178         continue;
   1179 
   1180       VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
   1181       assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex));
   1182       SR.removeValNo(SVNI);
   1183     }
   1184     DstLI.removeEmptySubRanges();
   1185   } else
   1186     LIS->removeVRegDefAt(DstLI, RegIndex);
   1187 
   1188   // Mark uses as undef.
   1189   for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
   1190     if (MO.isDef() /*|| MO.isUndef()*/)
   1191       continue;
   1192     const MachineInstr &MI = *MO.getParent();
   1193     SlotIndex UseIdx = LIS->getInstructionIndex(MI);
   1194     LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
   1195     bool isLive;
   1196     if (UseMask != ~0u && DstLI.hasSubRanges()) {
   1197       isLive = false;
   1198       for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
   1199         if ((SR.LaneMask & UseMask) == 0)
   1200           continue;
   1201         if (SR.liveAt(UseIdx)) {
   1202           isLive = true;
   1203           break;
   1204         }
   1205       }
   1206     } else
   1207       isLive = DstLI.liveAt(UseIdx);
   1208     if (isLive)
   1209       continue;
   1210     MO.setIsUndef(true);
   1211     DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
   1212   }
   1213   return true;
   1214 }
   1215 
   1216 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
   1217                                      MachineOperand &MO, unsigned SubRegIdx) {
   1218   LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx);
   1219   if (MO.isDef())
   1220     Mask = ~Mask;
   1221   bool IsUndef = true;
   1222   for (const LiveInterval::SubRange &S : Int.subranges()) {
   1223     if ((S.LaneMask & Mask) == 0)
   1224       continue;
   1225     if (S.liveAt(UseIdx)) {
   1226       IsUndef = false;
   1227       break;
   1228     }
   1229   }
   1230   if (IsUndef) {
   1231     MO.setIsUndef(true);
   1232     // We found out some subregister use is actually reading an undefined
   1233     // value. In some cases the whole vreg has become undefined at this
   1234     // point so we have to potentially shrink the main range if the
   1235     // use was ending a live segment there.
   1236     LiveQueryResult Q = Int.Query(UseIdx);
   1237     if (Q.valueOut() == nullptr)
   1238       ShrinkMainRange = true;
   1239   }
   1240 }
   1241 
   1242 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
   1243                                           unsigned DstReg,
   1244                                           unsigned SubIdx) {
   1245   bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
   1246   LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
   1247 
   1248   if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) {
   1249     for (MachineOperand &MO : MRI->reg_operands(DstReg)) {
   1250       unsigned SubReg = MO.getSubReg();
   1251       if (SubReg == 0 || MO.isUndef())
   1252         continue;
   1253       MachineInstr &MI = *MO.getParent();
   1254       if (MI.isDebugValue())
   1255         continue;
   1256       SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true);
   1257       addUndefFlag(*DstInt, UseIdx, MO, SubReg);
   1258     }
   1259   }
   1260 
   1261   SmallPtrSet<MachineInstr*, 8> Visited;
   1262   for (MachineRegisterInfo::reg_instr_iterator
   1263        I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
   1264        I != E; ) {
   1265     MachineInstr *UseMI = &*(I++);
   1266 
   1267     // Each instruction can only be rewritten once because sub-register
   1268     // composition is not always idempotent. When SrcReg != DstReg, rewriting
   1269     // the UseMI operands removes them from the SrcReg use-def chain, but when
   1270     // SrcReg is DstReg we could encounter UseMI twice if it has multiple
   1271     // operands mentioning the virtual register.
   1272     if (SrcReg == DstReg && !Visited.insert(UseMI).second)
   1273       continue;
   1274 
   1275     SmallVector<unsigned,8> Ops;
   1276     bool Reads, Writes;
   1277     std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
   1278 
   1279     // If SrcReg wasn't read, it may still be the case that DstReg is live-in
   1280     // because SrcReg is a sub-register.
   1281     if (DstInt && !Reads && SubIdx)
   1282       Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI));
   1283 
   1284     // Replace SrcReg with DstReg in all UseMI operands.
   1285     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1286       MachineOperand &MO = UseMI->getOperand(Ops[i]);
   1287 
   1288       // Adjust <undef> flags in case of sub-register joins. We don't want to
   1289       // turn a full def into a read-modify-write sub-register def and vice
   1290       // versa.
   1291       if (SubIdx && MO.isDef())
   1292         MO.setIsUndef(!Reads);
   1293 
   1294       // A subreg use of a partially undef (super) register may be a complete
   1295       // undef use now and then has to be marked that way.
   1296       if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) {
   1297         if (!DstInt->hasSubRanges()) {
   1298           BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
   1299           LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg);
   1300           DstInt->createSubRangeFrom(Allocator, Mask, *DstInt);
   1301         }
   1302         SlotIndex MIIdx = UseMI->isDebugValue()
   1303                               ? LIS->getSlotIndexes()->getIndexBefore(*UseMI)
   1304                               : LIS->getInstructionIndex(*UseMI);
   1305         SlotIndex UseIdx = MIIdx.getRegSlot(true);
   1306         addUndefFlag(*DstInt, UseIdx, MO, SubIdx);
   1307       }
   1308 
   1309       if (DstIsPhys)
   1310         MO.substPhysReg(DstReg, *TRI);
   1311       else
   1312         MO.substVirtReg(DstReg, SubIdx, *TRI);
   1313     }
   1314 
   1315     DEBUG({
   1316         dbgs() << "\t\tupdated: ";
   1317         if (!UseMI->isDebugValue())
   1318           dbgs() << LIS->getInstructionIndex(*UseMI) << "\t";
   1319         dbgs() << *UseMI;
   1320       });
   1321   }
   1322 }
   1323 
   1324 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
   1325   // Always join simple intervals that are defined by a single copy from a
   1326   // reserved register. This doesn't increase register pressure, so it is
   1327   // always beneficial.
   1328   if (!MRI->isReserved(CP.getDstReg())) {
   1329     DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
   1330     return false;
   1331   }
   1332 
   1333   LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
   1334   if (JoinVInt.containsOneValue())
   1335     return true;
   1336 
   1337   DEBUG(dbgs() << "\tCannot join complex intervals into reserved register.\n");
   1338   return false;
   1339 }
   1340 
   1341 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
   1342 
   1343   Again = false;
   1344   DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI);
   1345 
   1346   CoalescerPair CP(*TRI);
   1347   if (!CP.setRegisters(CopyMI)) {
   1348     DEBUG(dbgs() << "\tNot coalescable.\n");
   1349     return false;
   1350   }
   1351 
   1352   if (CP.getNewRC()) {
   1353     auto SrcRC = MRI->getRegClass(CP.getSrcReg());
   1354     auto DstRC = MRI->getRegClass(CP.getDstReg());
   1355     unsigned SrcIdx = CP.getSrcIdx();
   1356     unsigned DstIdx = CP.getDstIdx();
   1357     if (CP.isFlipped()) {
   1358       std::swap(SrcIdx, DstIdx);
   1359       std::swap(SrcRC, DstRC);
   1360     }
   1361     if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
   1362                             CP.getNewRC())) {
   1363       DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
   1364       return false;
   1365     }
   1366   }
   1367 
   1368   // Dead code elimination. This really should be handled by MachineDCE, but
   1369   // sometimes dead copies slip through, and we can't generate invalid live
   1370   // ranges.
   1371   if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
   1372     DEBUG(dbgs() << "\tCopy is dead.\n");
   1373     DeadDefs.push_back(CopyMI);
   1374     eliminateDeadDefs();
   1375     return true;
   1376   }
   1377 
   1378   // Eliminate undefs.
   1379   if (!CP.isPhys() && eliminateUndefCopy(CopyMI)) {
   1380     LIS->RemoveMachineInstrFromMaps(*CopyMI);
   1381     CopyMI->eraseFromParent();
   1382     return false;  // Not coalescable.
   1383   }
   1384 
   1385   // Coalesced copies are normally removed immediately, but transformations
   1386   // like removeCopyByCommutingDef() can inadvertently create identity copies.
   1387   // When that happens, just join the values and remove the copy.
   1388   if (CP.getSrcReg() == CP.getDstReg()) {
   1389     LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
   1390     DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
   1391     const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
   1392     LiveQueryResult LRQ = LI.Query(CopyIdx);
   1393     if (VNInfo *DefVNI = LRQ.valueDefined()) {
   1394       VNInfo *ReadVNI = LRQ.valueIn();
   1395       assert(ReadVNI && "No value before copy and no <undef> flag.");
   1396       assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
   1397       LI.MergeValueNumberInto(DefVNI, ReadVNI);
   1398 
   1399       // Process subregister liveranges.
   1400       for (LiveInterval::SubRange &S : LI.subranges()) {
   1401         LiveQueryResult SLRQ = S.Query(CopyIdx);
   1402         if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
   1403           VNInfo *SReadVNI = SLRQ.valueIn();
   1404           S.MergeValueNumberInto(SDefVNI, SReadVNI);
   1405         }
   1406       }
   1407       DEBUG(dbgs() << "\tMerged values:          " << LI << '\n');
   1408     }
   1409     LIS->RemoveMachineInstrFromMaps(*CopyMI);
   1410     CopyMI->eraseFromParent();
   1411     return true;
   1412   }
   1413 
   1414   // Enforce policies.
   1415   if (CP.isPhys()) {
   1416     DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI)
   1417                  << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx())
   1418                  << '\n');
   1419     if (!canJoinPhys(CP)) {
   1420       // Before giving up coalescing, if definition of source is defined by
   1421       // trivial computation, try rematerializing it.
   1422       bool IsDefCopy;
   1423       if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
   1424         return true;
   1425       if (IsDefCopy)
   1426         Again = true;  // May be possible to coalesce later.
   1427       return false;
   1428     }
   1429   } else {
   1430     // When possible, let DstReg be the larger interval.
   1431     if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
   1432                            LIS->getInterval(CP.getDstReg()).size())
   1433       CP.flip();
   1434 
   1435     DEBUG({
   1436       dbgs() << "\tConsidering merging to "
   1437              << TRI->getRegClassName(CP.getNewRC()) << " with ";
   1438       if (CP.getDstIdx() && CP.getSrcIdx())
   1439         dbgs() << PrintReg(CP.getDstReg()) << " in "
   1440                << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
   1441                << PrintReg(CP.getSrcReg()) << " in "
   1442                << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
   1443       else
   1444         dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in "
   1445                << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
   1446     });
   1447   }
   1448 
   1449   ShrinkMask = 0;
   1450   ShrinkMainRange = false;
   1451 
   1452   // Okay, attempt to join these two intervals.  On failure, this returns false.
   1453   // Otherwise, if one of the intervals being joined is a physreg, this method
   1454   // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
   1455   // been modified, so we can use this information below to update aliases.
   1456   if (!joinIntervals(CP)) {
   1457     // Coalescing failed.
   1458 
   1459     // If definition of source is defined by trivial computation, try
   1460     // rematerializing it.
   1461     bool IsDefCopy;
   1462     if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
   1463       return true;
   1464 
   1465     // If we can eliminate the copy without merging the live segments, do so
   1466     // now.
   1467     if (!CP.isPartial() && !CP.isPhys()) {
   1468       if (adjustCopiesBackFrom(CP, CopyMI) ||
   1469           removeCopyByCommutingDef(CP, CopyMI)) {
   1470         LIS->RemoveMachineInstrFromMaps(*CopyMI);
   1471         CopyMI->eraseFromParent();
   1472         DEBUG(dbgs() << "\tTrivial!\n");
   1473         return true;
   1474       }
   1475     }
   1476 
   1477     // Otherwise, we are unable to join the intervals.
   1478     DEBUG(dbgs() << "\tInterference!\n");
   1479     Again = true;  // May be possible to coalesce later.
   1480     return false;
   1481   }
   1482 
   1483   // Coalescing to a virtual register that is of a sub-register class of the
   1484   // other. Make sure the resulting register is set to the right register class.
   1485   if (CP.isCrossClass()) {
   1486     ++numCrossRCs;
   1487     MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
   1488   }
   1489 
   1490   // Removing sub-register copies can ease the register class constraints.
   1491   // Make sure we attempt to inflate the register class of DstReg.
   1492   if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
   1493     InflateRegs.push_back(CP.getDstReg());
   1494 
   1495   // CopyMI has been erased by joinIntervals at this point. Remove it from
   1496   // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
   1497   // to the work list. This keeps ErasedInstrs from growing needlessly.
   1498   ErasedInstrs.erase(CopyMI);
   1499 
   1500   // Rewrite all SrcReg operands to DstReg.
   1501   // Also update DstReg operands to include DstIdx if it is set.
   1502   if (CP.getDstIdx())
   1503     updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
   1504   updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
   1505 
   1506   // Shrink subregister ranges if necessary.
   1507   if (ShrinkMask != 0) {
   1508     LiveInterval &LI = LIS->getInterval(CP.getDstReg());
   1509     for (LiveInterval::SubRange &S : LI.subranges()) {
   1510       if ((S.LaneMask & ShrinkMask) == 0)
   1511         continue;
   1512       DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask)
   1513                    << ")\n");
   1514       LIS->shrinkToUses(S, LI.reg);
   1515     }
   1516     LI.removeEmptySubRanges();
   1517   }
   1518   if (ShrinkMainRange) {
   1519     LiveInterval &LI = LIS->getInterval(CP.getDstReg());
   1520     shrinkToUses(&LI);
   1521   }
   1522 
   1523   // SrcReg is guaranteed to be the register whose live interval that is
   1524   // being merged.
   1525   LIS->removeInterval(CP.getSrcReg());
   1526 
   1527   // Update regalloc hint.
   1528   TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
   1529 
   1530   DEBUG({
   1531     dbgs() << "\tSuccess: " << PrintReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
   1532            << " -> " << PrintReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
   1533     dbgs() << "\tResult = ";
   1534     if (CP.isPhys())
   1535       dbgs() << PrintReg(CP.getDstReg(), TRI);
   1536     else
   1537       dbgs() << LIS->getInterval(CP.getDstReg());
   1538     dbgs() << '\n';
   1539   });
   1540 
   1541   ++numJoins;
   1542   return true;
   1543 }
   1544 
   1545 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
   1546   unsigned DstReg = CP.getDstReg();
   1547   assert(CP.isPhys() && "Must be a physreg copy");
   1548   assert(MRI->isReserved(DstReg) && "Not a reserved register");
   1549   LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
   1550   DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
   1551 
   1552   assert(RHS.containsOneValue() && "Invalid join with reserved register");
   1553 
   1554   // Optimization for reserved registers like ESP. We can only merge with a
   1555   // reserved physreg if RHS has a single value that is a copy of DstReg.
   1556   // The live range of the reserved register will look like a set of dead defs
   1557   // - we don't properly track the live range of reserved registers.
   1558 
   1559   // Deny any overlapping intervals.  This depends on all the reserved
   1560   // register live ranges to look like dead defs.
   1561   for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI)
   1562     if (RHS.overlaps(LIS->getRegUnit(*UI))) {
   1563       DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n');
   1564       return false;
   1565     }
   1566 
   1567   // Skip any value computations, we are not adding new values to the
   1568   // reserved register.  Also skip merging the live ranges, the reserved
   1569   // register live range doesn't need to be accurate as long as all the
   1570   // defs are there.
   1571 
   1572   // Delete the identity copy.
   1573   MachineInstr *CopyMI;
   1574   if (CP.isFlipped()) {
   1575     CopyMI = MRI->getVRegDef(RHS.reg);
   1576   } else {
   1577     if (!MRI->hasOneNonDBGUse(RHS.reg)) {
   1578       DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
   1579       return false;
   1580     }
   1581 
   1582     MachineInstr *DestMI = MRI->getVRegDef(RHS.reg);
   1583     CopyMI = &*MRI->use_instr_nodbg_begin(RHS.reg);
   1584     const SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
   1585     const SlotIndex DestRegIdx = LIS->getInstructionIndex(*DestMI).getRegSlot();
   1586 
   1587     // We checked above that there are no interfering defs of the physical
   1588     // register. However, for this case, where we intent to move up the def of
   1589     // the physical register, we also need to check for interfering uses.
   1590     SlotIndexes *Indexes = LIS->getSlotIndexes();
   1591     for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
   1592          SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
   1593       MachineInstr *MI = LIS->getInstructionFromIndex(SI);
   1594       if (MI->readsRegister(DstReg, TRI)) {
   1595         DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
   1596         return false;
   1597       }
   1598 
   1599       // We must also check for clobbers caused by regmasks.
   1600       for (const auto &MO : MI->operands()) {
   1601         if (MO.isRegMask() && MO.clobbersPhysReg(DstReg)) {
   1602           DEBUG(dbgs() << "\t\tInterference (regmask clobber): " << *MI);
   1603           return false;
   1604         }
   1605       }
   1606     }
   1607 
   1608     // We're going to remove the copy which defines a physical reserved
   1609     // register, so remove its valno, etc.
   1610     DEBUG(dbgs() << "\t\tRemoving phys reg def of " << DstReg << " at "
   1611           << CopyRegIdx << "\n");
   1612 
   1613     LIS->removePhysRegDefAt(DstReg, CopyRegIdx);
   1614     // Create a new dead def at the new def location.
   1615     for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
   1616       LiveRange &LR = LIS->getRegUnit(*UI);
   1617       LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator());
   1618     }
   1619   }
   1620 
   1621   LIS->RemoveMachineInstrFromMaps(*CopyMI);
   1622   CopyMI->eraseFromParent();
   1623 
   1624   // We don't track kills for reserved registers.
   1625   MRI->clearKillFlags(CP.getSrcReg());
   1626 
   1627   return true;
   1628 }
   1629 
   1630 //===----------------------------------------------------------------------===//
   1631 //                 Interference checking and interval joining
   1632 //===----------------------------------------------------------------------===//
   1633 //
   1634 // In the easiest case, the two live ranges being joined are disjoint, and
   1635 // there is no interference to consider. It is quite common, though, to have
   1636 // overlapping live ranges, and we need to check if the interference can be
   1637 // resolved.
   1638 //
   1639 // The live range of a single SSA value forms a sub-tree of the dominator tree.
   1640 // This means that two SSA values overlap if and only if the def of one value
   1641 // is contained in the live range of the other value. As a special case, the
   1642 // overlapping values can be defined at the same index.
   1643 //
   1644 // The interference from an overlapping def can be resolved in these cases:
   1645 //
   1646 // 1. Coalescable copies. The value is defined by a copy that would become an
   1647 //    identity copy after joining SrcReg and DstReg. The copy instruction will
   1648 //    be removed, and the value will be merged with the source value.
   1649 //
   1650 //    There can be several copies back and forth, causing many values to be
   1651 //    merged into one. We compute a list of ultimate values in the joined live
   1652 //    range as well as a mappings from the old value numbers.
   1653 //
   1654 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
   1655 //    predecessors have a live out value. It doesn't cause real interference,
   1656 //    and can be merged into the value it overlaps. Like a coalescable copy, it
   1657 //    can be erased after joining.
   1658 //
   1659 // 3. Copy of external value. The overlapping def may be a copy of a value that
   1660 //    is already in the other register. This is like a coalescable copy, but
   1661 //    the live range of the source register must be trimmed after erasing the
   1662 //    copy instruction:
   1663 //
   1664 //      %src = COPY %ext
   1665 //      %dst = COPY %ext  <-- Remove this COPY, trim the live range of %ext.
   1666 //
   1667 // 4. Clobbering undefined lanes. Vector registers are sometimes built by
   1668 //    defining one lane at a time:
   1669 //
   1670 //      %dst:ssub0<def,read-undef> = FOO
   1671 //      %src = BAR
   1672 //      %dst:ssub1<def> = COPY %src
   1673 //
   1674 //    The live range of %src overlaps the %dst value defined by FOO, but
   1675 //    merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
   1676 //    which was undef anyway.
   1677 //
   1678 //    The value mapping is more complicated in this case. The final live range
   1679 //    will have different value numbers for both FOO and BAR, but there is no
   1680 //    simple mapping from old to new values. It may even be necessary to add
   1681 //    new PHI values.
   1682 //
   1683 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
   1684 //    is live, but never read. This can happen because we don't compute
   1685 //    individual live ranges per lane.
   1686 //
   1687 //      %dst<def> = FOO
   1688 //      %src = BAR
   1689 //      %dst:ssub1<def> = COPY %src
   1690 //
   1691 //    This kind of interference is only resolved locally. If the clobbered
   1692 //    lane value escapes the block, the join is aborted.
   1693 
   1694 namespace {
   1695 /// Track information about values in a single virtual register about to be
   1696 /// joined. Objects of this class are always created in pairs - one for each
   1697 /// side of the CoalescerPair (or one for each lane of a side of the coalescer
   1698 /// pair)
   1699 class JoinVals {
   1700   /// Live range we work on.
   1701   LiveRange &LR;
   1702   /// (Main) register we work on.
   1703   const unsigned Reg;
   1704 
   1705   /// Reg (and therefore the values in this liverange) will end up as
   1706   /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
   1707   /// CP.SrcIdx.
   1708   const unsigned SubIdx;
   1709   /// The LaneMask that this liverange will occupy the coalesced register. May
   1710   /// be smaller than the lanemask produced by SubIdx when merging subranges.
   1711   const LaneBitmask LaneMask;
   1712 
   1713   /// This is true when joining sub register ranges, false when joining main
   1714   /// ranges.
   1715   const bool SubRangeJoin;
   1716   /// Whether the current LiveInterval tracks subregister liveness.
   1717   const bool TrackSubRegLiveness;
   1718 
   1719   /// Values that will be present in the final live range.
   1720   SmallVectorImpl<VNInfo*> &NewVNInfo;
   1721 
   1722   const CoalescerPair &CP;
   1723   LiveIntervals *LIS;
   1724   SlotIndexes *Indexes;
   1725   const TargetRegisterInfo *TRI;
   1726 
   1727   /// Value number assignments. Maps value numbers in LI to entries in
   1728   /// NewVNInfo. This is suitable for passing to LiveInterval::join().
   1729   SmallVector<int, 8> Assignments;
   1730 
   1731   /// Conflict resolution for overlapping values.
   1732   enum ConflictResolution {
   1733     /// No overlap, simply keep this value.
   1734     CR_Keep,
   1735 
   1736     /// Merge this value into OtherVNI and erase the defining instruction.
   1737     /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
   1738     /// values.
   1739     CR_Erase,
   1740 
   1741     /// Merge this value into OtherVNI but keep the defining instruction.
   1742     /// This is for the special case where OtherVNI is defined by the same
   1743     /// instruction.
   1744     CR_Merge,
   1745 
   1746     /// Keep this value, and have it replace OtherVNI where possible. This
   1747     /// complicates value mapping since OtherVNI maps to two different values
   1748     /// before and after this def.
   1749     /// Used when clobbering undefined or dead lanes.
   1750     CR_Replace,
   1751 
   1752     /// Unresolved conflict. Visit later when all values have been mapped.
   1753     CR_Unresolved,
   1754 
   1755     /// Unresolvable conflict. Abort the join.
   1756     CR_Impossible
   1757   };
   1758 
   1759   /// Per-value info for LI. The lane bit masks are all relative to the final
   1760   /// joined register, so they can be compared directly between SrcReg and
   1761   /// DstReg.
   1762   struct Val {
   1763     ConflictResolution Resolution;
   1764 
   1765     /// Lanes written by this def, 0 for unanalyzed values.
   1766     LaneBitmask WriteLanes;
   1767 
   1768     /// Lanes with defined values in this register. Other lanes are undef and
   1769     /// safe to clobber.
   1770     LaneBitmask ValidLanes;
   1771 
   1772     /// Value in LI being redefined by this def.
   1773     VNInfo *RedefVNI;
   1774 
   1775     /// Value in the other live range that overlaps this def, if any.
   1776     VNInfo *OtherVNI;
   1777 
   1778     /// Is this value an IMPLICIT_DEF that can be erased?
   1779     ///
   1780     /// IMPLICIT_DEF values should only exist at the end of a basic block that
   1781     /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
   1782     /// safely erased if they are overlapping a live value in the other live
   1783     /// interval.
   1784     ///
   1785     /// Weird control flow graphs and incomplete PHI handling in
   1786     /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
   1787     /// longer live ranges. Such IMPLICIT_DEF values should be treated like
   1788     /// normal values.
   1789     bool ErasableImplicitDef;
   1790 
   1791     /// True when the live range of this value will be pruned because of an
   1792     /// overlapping CR_Replace value in the other live range.
   1793     bool Pruned;
   1794 
   1795     /// True once Pruned above has been computed.
   1796     bool PrunedComputed;
   1797 
   1798     Val() : Resolution(CR_Keep), WriteLanes(0), ValidLanes(0),
   1799             RedefVNI(nullptr), OtherVNI(nullptr), ErasableImplicitDef(false),
   1800             Pruned(false), PrunedComputed(false) {}
   1801 
   1802     bool isAnalyzed() const { return WriteLanes != 0; }
   1803   };
   1804 
   1805   /// One entry per value number in LI.
   1806   SmallVector<Val, 8> Vals;
   1807 
   1808   /// Compute the bitmask of lanes actually written by DefMI.
   1809   /// Set Redef if there are any partial register definitions that depend on the
   1810   /// previous value of the register.
   1811   LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
   1812 
   1813   /// Find the ultimate value that VNI was copied from.
   1814   std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const;
   1815 
   1816   bool valuesIdentical(VNInfo *Val0, VNInfo *Val1, const JoinVals &Other) const;
   1817 
   1818   /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
   1819   /// Return a conflict resolution when possible, but leave the hard cases as
   1820   /// CR_Unresolved.
   1821   /// Recursively calls computeAssignment() on this and Other, guaranteeing that
   1822   /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
   1823   /// The recursion always goes upwards in the dominator tree, making loops
   1824   /// impossible.
   1825   ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
   1826 
   1827   /// Compute the value assignment for ValNo in RI.
   1828   /// This may be called recursively by analyzeValue(), but never for a ValNo on
   1829   /// the stack.
   1830   void computeAssignment(unsigned ValNo, JoinVals &Other);
   1831 
   1832   /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
   1833   /// the extent of the tainted lanes in the block.
   1834   ///
   1835   /// Multiple values in Other.LR can be affected since partial redefinitions
   1836   /// can preserve previously tainted lanes.
   1837   ///
   1838   ///   1 %dst = VLOAD           <-- Define all lanes in %dst
   1839   ///   2 %src = FOO             <-- ValNo to be joined with %dst:ssub0
   1840   ///   3 %dst:ssub1 = BAR       <-- Partial redef doesn't clear taint in ssub0
   1841   ///   4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
   1842   ///
   1843   /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
   1844   /// entry to TaintedVals.
   1845   ///
   1846   /// Returns false if the tainted lanes extend beyond the basic block.
   1847   bool taintExtent(unsigned, LaneBitmask, JoinVals&,
   1848                    SmallVectorImpl<std::pair<SlotIndex, LaneBitmask> >&);
   1849 
   1850   /// Return true if MI uses any of the given Lanes from Reg.
   1851   /// This does not include partial redefinitions of Reg.
   1852   bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const;
   1853 
   1854   /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
   1855   /// be pruned:
   1856   ///
   1857   ///   %dst = COPY %src
   1858   ///   %src = COPY %dst  <-- This value to be pruned.
   1859   ///   %dst = COPY %src  <-- This value is a copy of a pruned value.
   1860   bool isPrunedValue(unsigned ValNo, JoinVals &Other);
   1861 
   1862 public:
   1863   JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask,
   1864            SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp,
   1865            LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
   1866            bool TrackSubRegLiveness)
   1867     : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
   1868       SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
   1869       NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
   1870       TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums())
   1871   {}
   1872 
   1873   /// Analyze defs in LR and compute a value mapping in NewVNInfo.
   1874   /// Returns false if any conflicts were impossible to resolve.
   1875   bool mapValues(JoinVals &Other);
   1876 
   1877   /// Try to resolve conflicts that require all values to be mapped.
   1878   /// Returns false if any conflicts were impossible to resolve.
   1879   bool resolveConflicts(JoinVals &Other);
   1880 
   1881   /// Prune the live range of values in Other.LR where they would conflict with
   1882   /// CR_Replace values in LR. Collect end points for restoring the live range
   1883   /// after joining.
   1884   void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
   1885                    bool changeInstrs);
   1886 
   1887   /// Removes subranges starting at copies that get removed. This sometimes
   1888   /// happens when undefined subranges are copied around. These ranges contain
   1889   /// no useful information and can be removed.
   1890   void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
   1891 
   1892   /// Erase any machine instructions that have been coalesced away.
   1893   /// Add erased instructions to ErasedInstrs.
   1894   /// Add foreign virtual registers to ShrinkRegs if their live range ended at
   1895   /// the erased instrs.
   1896   void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
   1897                    SmallVectorImpl<unsigned> &ShrinkRegs);
   1898 
   1899   /// Remove liverange defs at places where implicit defs will be removed.
   1900   void removeImplicitDefs();
   1901 
   1902   /// Get the value assignments suitable for passing to LiveInterval::join.
   1903   const int *getAssignments() const { return Assignments.data(); }
   1904 };
   1905 } // end anonymous namespace
   1906 
   1907 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
   1908   const {
   1909   LaneBitmask L = 0;
   1910   for (const MachineOperand &MO : DefMI->operands()) {
   1911     if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef())
   1912       continue;
   1913     L |= TRI->getSubRegIndexLaneMask(
   1914            TRI->composeSubRegIndices(SubIdx, MO.getSubReg()));
   1915     if (MO.readsReg())
   1916       Redef = true;
   1917   }
   1918   return L;
   1919 }
   1920 
   1921 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain(
   1922     const VNInfo *VNI) const {
   1923   unsigned Reg = this->Reg;
   1924 
   1925   while (!VNI->isPHIDef()) {
   1926     SlotIndex Def = VNI->def;
   1927     MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
   1928     assert(MI && "No defining instruction");
   1929     if (!MI->isFullCopy())
   1930       return std::make_pair(VNI, Reg);
   1931     unsigned SrcReg = MI->getOperand(1).getReg();
   1932     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
   1933       return std::make_pair(VNI, Reg);
   1934 
   1935     const LiveInterval &LI = LIS->getInterval(SrcReg);
   1936     const VNInfo *ValueIn;
   1937     // No subrange involved.
   1938     if (!SubRangeJoin || !LI.hasSubRanges()) {
   1939       LiveQueryResult LRQ = LI.Query(Def);
   1940       ValueIn = LRQ.valueIn();
   1941     } else {
   1942       // Query subranges. Pick the first matching one.
   1943       ValueIn = nullptr;
   1944       for (const LiveInterval::SubRange &S : LI.subranges()) {
   1945         // Transform lanemask to a mask in the joined live interval.
   1946         LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
   1947         if ((SMask & LaneMask) == 0)
   1948           continue;
   1949         LiveQueryResult LRQ = S.Query(Def);
   1950         ValueIn = LRQ.valueIn();
   1951         break;
   1952       }
   1953     }
   1954     if (ValueIn == nullptr)
   1955       break;
   1956     VNI = ValueIn;
   1957     Reg = SrcReg;
   1958   }
   1959   return std::make_pair(VNI, Reg);
   1960 }
   1961 
   1962 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
   1963                                const JoinVals &Other) const {
   1964   const VNInfo *Orig0;
   1965   unsigned Reg0;
   1966   std::tie(Orig0, Reg0) = followCopyChain(Value0);
   1967   if (Orig0 == Value1)
   1968     return true;
   1969 
   1970   const VNInfo *Orig1;
   1971   unsigned Reg1;
   1972   std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
   1973 
   1974   // The values are equal if they are defined at the same place and use the
   1975   // same register. Note that we cannot compare VNInfos directly as some of
   1976   // them might be from a copy created in mergeSubRangeInto()  while the other
   1977   // is from the original LiveInterval.
   1978   return Orig0->def == Orig1->def && Reg0 == Reg1;
   1979 }
   1980 
   1981 JoinVals::ConflictResolution
   1982 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
   1983   Val &V = Vals[ValNo];
   1984   assert(!V.isAnalyzed() && "Value has already been analyzed!");
   1985   VNInfo *VNI = LR.getValNumInfo(ValNo);
   1986   if (VNI->isUnused()) {
   1987     V.WriteLanes = ~0u;
   1988     return CR_Keep;
   1989   }
   1990 
   1991   // Get the instruction defining this value, compute the lanes written.
   1992   const MachineInstr *DefMI = nullptr;
   1993   if (VNI->isPHIDef()) {
   1994     // Conservatively assume that all lanes in a PHI are valid.
   1995     LaneBitmask Lanes = SubRangeJoin ? 1 : TRI->getSubRegIndexLaneMask(SubIdx);
   1996     V.ValidLanes = V.WriteLanes = Lanes;
   1997   } else {
   1998     DefMI = Indexes->getInstructionFromIndex(VNI->def);
   1999     assert(DefMI != nullptr);
   2000     if (SubRangeJoin) {
   2001       // We don't care about the lanes when joining subregister ranges.
   2002       V.WriteLanes = V.ValidLanes = 1;
   2003       if (DefMI->isImplicitDef()) {
   2004         V.ValidLanes = 0;
   2005         V.ErasableImplicitDef = true;
   2006       }
   2007     } else {
   2008       bool Redef = false;
   2009       V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
   2010 
   2011       // If this is a read-modify-write instruction, there may be more valid
   2012       // lanes than the ones written by this instruction.
   2013       // This only covers partial redef operands. DefMI may have normal use
   2014       // operands reading the register. They don't contribute valid lanes.
   2015       //
   2016       // This adds ssub1 to the set of valid lanes in %src:
   2017       //
   2018       //   %src:ssub1<def> = FOO
   2019       //
   2020       // This leaves only ssub1 valid, making any other lanes undef:
   2021       //
   2022       //   %src:ssub1<def,read-undef> = FOO %src:ssub2
   2023       //
   2024       // The <read-undef> flag on the def operand means that old lane values are
   2025       // not important.
   2026       if (Redef) {
   2027         V.RedefVNI = LR.Query(VNI->def).valueIn();
   2028         assert((TrackSubRegLiveness || V.RedefVNI) &&
   2029                "Instruction is reading nonexistent value");
   2030         if (V.RedefVNI != nullptr) {
   2031           computeAssignment(V.RedefVNI->id, Other);
   2032           V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
   2033         }
   2034       }
   2035 
   2036       // An IMPLICIT_DEF writes undef values.
   2037       if (DefMI->isImplicitDef()) {
   2038         // We normally expect IMPLICIT_DEF values to be live only until the end
   2039         // of their block. If the value is really live longer and gets pruned in
   2040         // another block, this flag is cleared again.
   2041         V.ErasableImplicitDef = true;
   2042         V.ValidLanes &= ~V.WriteLanes;
   2043       }
   2044     }
   2045   }
   2046 
   2047   // Find the value in Other that overlaps VNI->def, if any.
   2048   LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
   2049 
   2050   // It is possible that both values are defined by the same instruction, or
   2051   // the values are PHIs defined in the same block. When that happens, the two
   2052   // values should be merged into one, but not into any preceding value.
   2053   // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
   2054   if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
   2055     assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
   2056 
   2057     // One value stays, the other is merged. Keep the earlier one, or the first
   2058     // one we see.
   2059     if (OtherVNI->def < VNI->def)
   2060       Other.computeAssignment(OtherVNI->id, *this);
   2061     else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
   2062       // This is an early-clobber def overlapping a live-in value in the other
   2063       // register. Not mergeable.
   2064       V.OtherVNI = OtherLRQ.valueIn();
   2065       return CR_Impossible;
   2066     }
   2067     V.OtherVNI = OtherVNI;
   2068     Val &OtherV = Other.Vals[OtherVNI->id];
   2069     // Keep this value, check for conflicts when analyzing OtherVNI.
   2070     if (!OtherV.isAnalyzed())
   2071       return CR_Keep;
   2072     // Both sides have been analyzed now.
   2073     // Allow overlapping PHI values. Any real interference would show up in a
   2074     // predecessor, the PHI itself can't introduce any conflicts.
   2075     if (VNI->isPHIDef())
   2076       return CR_Merge;
   2077     if (V.ValidLanes & OtherV.ValidLanes)
   2078       // Overlapping lanes can't be resolved.
   2079       return CR_Impossible;
   2080     else
   2081       return CR_Merge;
   2082   }
   2083 
   2084   // No simultaneous def. Is Other live at the def?
   2085   V.OtherVNI = OtherLRQ.valueIn();
   2086   if (!V.OtherVNI)
   2087     // No overlap, no conflict.
   2088     return CR_Keep;
   2089 
   2090   assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
   2091 
   2092   // We have overlapping values, or possibly a kill of Other.
   2093   // Recursively compute assignments up the dominator tree.
   2094   Other.computeAssignment(V.OtherVNI->id, *this);
   2095   Val &OtherV = Other.Vals[V.OtherVNI->id];
   2096 
   2097   // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
   2098   // This shouldn't normally happen, but ProcessImplicitDefs can leave such
   2099   // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
   2100   // technically.
   2101   //
   2102   // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
   2103   // to erase the IMPLICIT_DEF instruction.
   2104   if (OtherV.ErasableImplicitDef && DefMI &&
   2105       DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
   2106     DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
   2107                  << " extends into BB#" << DefMI->getParent()->getNumber()
   2108                  << ", keeping it.\n");
   2109     OtherV.ErasableImplicitDef = false;
   2110   }
   2111 
   2112   // Allow overlapping PHI values. Any real interference would show up in a
   2113   // predecessor, the PHI itself can't introduce any conflicts.
   2114   if (VNI->isPHIDef())
   2115     return CR_Replace;
   2116 
   2117   // Check for simple erasable conflicts.
   2118   if (DefMI->isImplicitDef()) {
   2119     // We need the def for the subregister if there is nothing else live at the
   2120     // subrange at this point.
   2121     if (TrackSubRegLiveness
   2122         && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)) == 0)
   2123       return CR_Replace;
   2124     return CR_Erase;
   2125   }
   2126 
   2127   // Include the non-conflict where DefMI is a coalescable copy that kills
   2128   // OtherVNI. We still want the copy erased and value numbers merged.
   2129   if (CP.isCoalescable(DefMI)) {
   2130     // Some of the lanes copied from OtherVNI may be undef, making them undef
   2131     // here too.
   2132     V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
   2133     return CR_Erase;
   2134   }
   2135 
   2136   // This may not be a real conflict if DefMI simply kills Other and defines
   2137   // VNI.
   2138   if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
   2139     return CR_Keep;
   2140 
   2141   // Handle the case where VNI and OtherVNI can be proven to be identical:
   2142   //
   2143   //   %other = COPY %ext
   2144   //   %this  = COPY %ext <-- Erase this copy
   2145   //
   2146   if (DefMI->isFullCopy() && !CP.isPartial()
   2147       && valuesIdentical(VNI, V.OtherVNI, Other))
   2148     return CR_Erase;
   2149 
   2150   // If the lanes written by this instruction were all undef in OtherVNI, it is
   2151   // still safe to join the live ranges. This can't be done with a simple value
   2152   // mapping, though - OtherVNI will map to multiple values:
   2153   //
   2154   //   1 %dst:ssub0 = FOO                <-- OtherVNI
   2155   //   2 %src = BAR                      <-- VNI
   2156   //   3 %dst:ssub1 = COPY %src<kill>    <-- Eliminate this copy.
   2157   //   4 BAZ %dst<kill>
   2158   //   5 QUUX %src<kill>
   2159   //
   2160   // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
   2161   // handles this complex value mapping.
   2162   if ((V.WriteLanes & OtherV.ValidLanes) == 0)
   2163     return CR_Replace;
   2164 
   2165   // If the other live range is killed by DefMI and the live ranges are still
   2166   // overlapping, it must be because we're looking at an early clobber def:
   2167   //
   2168   //   %dst<def,early-clobber> = ASM %src<kill>
   2169   //
   2170   // In this case, it is illegal to merge the two live ranges since the early
   2171   // clobber def would clobber %src before it was read.
   2172   if (OtherLRQ.isKill()) {
   2173     // This case where the def doesn't overlap the kill is handled above.
   2174     assert(VNI->def.isEarlyClobber() &&
   2175            "Only early clobber defs can overlap a kill");
   2176     return CR_Impossible;
   2177   }
   2178 
   2179   // VNI is clobbering live lanes in OtherVNI, but there is still the
   2180   // possibility that no instructions actually read the clobbered lanes.
   2181   // If we're clobbering all the lanes in OtherVNI, at least one must be read.
   2182   // Otherwise Other.RI wouldn't be live here.
   2183   if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes) == 0)
   2184     return CR_Impossible;
   2185 
   2186   // We need to verify that no instructions are reading the clobbered lanes. To
   2187   // save compile time, we'll only check that locally. Don't allow the tainted
   2188   // value to escape the basic block.
   2189   MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
   2190   if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
   2191     return CR_Impossible;
   2192 
   2193   // There are still some things that could go wrong besides clobbered lanes
   2194   // being read, for example OtherVNI may be only partially redefined in MBB,
   2195   // and some clobbered lanes could escape the block. Save this analysis for
   2196   // resolveConflicts() when all values have been mapped. We need to know
   2197   // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
   2198   // that now - the recursive analyzeValue() calls must go upwards in the
   2199   // dominator tree.
   2200   return CR_Unresolved;
   2201 }
   2202 
   2203 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
   2204   Val &V = Vals[ValNo];
   2205   if (V.isAnalyzed()) {
   2206     // Recursion should always move up the dominator tree, so ValNo is not
   2207     // supposed to reappear before it has been assigned.
   2208     assert(Assignments[ValNo] != -1 && "Bad recursion?");
   2209     return;
   2210   }
   2211   switch ((V.Resolution = analyzeValue(ValNo, Other))) {
   2212   case CR_Erase:
   2213   case CR_Merge:
   2214     // Merge this ValNo into OtherVNI.
   2215     assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
   2216     assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
   2217     Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
   2218     DEBUG(dbgs() << "\t\tmerge " << PrintReg(Reg) << ':' << ValNo << '@'
   2219                  << LR.getValNumInfo(ValNo)->def << " into "
   2220                  << PrintReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
   2221                  << V.OtherVNI->def << " --> @"
   2222                  << NewVNInfo[Assignments[ValNo]]->def << '\n');
   2223     break;
   2224   case CR_Replace:
   2225   case CR_Unresolved: {
   2226     // The other value is going to be pruned if this join is successful.
   2227     assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
   2228     Val &OtherV = Other.Vals[V.OtherVNI->id];
   2229     // We cannot erase an IMPLICIT_DEF if we don't have valid values for all
   2230     // its lanes.
   2231     if ((OtherV.WriteLanes & ~V.ValidLanes) != 0 && TrackSubRegLiveness)
   2232       OtherV.ErasableImplicitDef = false;
   2233     OtherV.Pruned = true;
   2234   }
   2235     // Fall through.
   2236   default:
   2237     // This value number needs to go in the final joined live range.
   2238     Assignments[ValNo] = NewVNInfo.size();
   2239     NewVNInfo.push_back(LR.getValNumInfo(ValNo));
   2240     break;
   2241   }
   2242 }
   2243 
   2244 bool JoinVals::mapValues(JoinVals &Other) {
   2245   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
   2246     computeAssignment(i, Other);
   2247     if (Vals[i].Resolution == CR_Impossible) {
   2248       DEBUG(dbgs() << "\t\tinterference at " << PrintReg(Reg) << ':' << i
   2249                    << '@' << LR.getValNumInfo(i)->def << '\n');
   2250       return false;
   2251     }
   2252   }
   2253   return true;
   2254 }
   2255 
   2256 bool JoinVals::
   2257 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
   2258             SmallVectorImpl<std::pair<SlotIndex, LaneBitmask> > &TaintExtent) {
   2259   VNInfo *VNI = LR.getValNumInfo(ValNo);
   2260   MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
   2261   SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
   2262 
   2263   // Scan Other.LR from VNI.def to MBBEnd.
   2264   LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
   2265   assert(OtherI != Other.LR.end() && "No conflict?");
   2266   do {
   2267     // OtherI is pointing to a tainted value. Abort the join if the tainted
   2268     // lanes escape the block.
   2269     SlotIndex End = OtherI->end;
   2270     if (End >= MBBEnd) {
   2271       DEBUG(dbgs() << "\t\ttaints global " << PrintReg(Other.Reg) << ':'
   2272                    << OtherI->valno->id << '@' << OtherI->start << '\n');
   2273       return false;
   2274     }
   2275     DEBUG(dbgs() << "\t\ttaints local " << PrintReg(Other.Reg) << ':'
   2276                  << OtherI->valno->id << '@' << OtherI->start
   2277                  << " to " << End << '\n');
   2278     // A dead def is not a problem.
   2279     if (End.isDead())
   2280       break;
   2281     TaintExtent.push_back(std::make_pair(End, TaintedLanes));
   2282 
   2283     // Check for another def in the MBB.
   2284     if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
   2285       break;
   2286 
   2287     // Lanes written by the new def are no longer tainted.
   2288     const Val &OV = Other.Vals[OtherI->valno->id];
   2289     TaintedLanes &= ~OV.WriteLanes;
   2290     if (!OV.RedefVNI)
   2291       break;
   2292   } while (TaintedLanes);
   2293   return true;
   2294 }
   2295 
   2296 bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx,
   2297                          LaneBitmask Lanes) const {
   2298   if (MI.isDebugValue())
   2299     return false;
   2300   for (const MachineOperand &MO : MI.operands()) {
   2301     if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg)
   2302       continue;
   2303     if (!MO.readsReg())
   2304       continue;
   2305     if (Lanes & TRI->getSubRegIndexLaneMask(
   2306                   TRI->composeSubRegIndices(SubIdx, MO.getSubReg())))
   2307       return true;
   2308   }
   2309   return false;
   2310 }
   2311 
   2312 bool JoinVals::resolveConflicts(JoinVals &Other) {
   2313   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
   2314     Val &V = Vals[i];
   2315     assert (V.Resolution != CR_Impossible && "Unresolvable conflict");
   2316     if (V.Resolution != CR_Unresolved)
   2317       continue;
   2318     DEBUG(dbgs() << "\t\tconflict at " << PrintReg(Reg) << ':' << i
   2319                  << '@' << LR.getValNumInfo(i)->def << '\n');
   2320     if (SubRangeJoin)
   2321       return false;
   2322 
   2323     ++NumLaneConflicts;
   2324     assert(V.OtherVNI && "Inconsistent conflict resolution.");
   2325     VNInfo *VNI = LR.getValNumInfo(i);
   2326     const Val &OtherV = Other.Vals[V.OtherVNI->id];
   2327 
   2328     // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
   2329     // join, those lanes will be tainted with a wrong value. Get the extent of
   2330     // the tainted lanes.
   2331     LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
   2332     SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent;
   2333     if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
   2334       // Tainted lanes would extend beyond the basic block.
   2335       return false;
   2336 
   2337     assert(!TaintExtent.empty() && "There should be at least one conflict.");
   2338 
   2339     // Now look at the instructions from VNI->def to TaintExtent (inclusive).
   2340     MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
   2341     MachineBasicBlock::iterator MI = MBB->begin();
   2342     if (!VNI->isPHIDef()) {
   2343       MI = Indexes->getInstructionFromIndex(VNI->def);
   2344       // No need to check the instruction defining VNI for reads.
   2345       ++MI;
   2346     }
   2347     assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
   2348            "Interference ends on VNI->def. Should have been handled earlier");
   2349     MachineInstr *LastMI =
   2350       Indexes->getInstructionFromIndex(TaintExtent.front().first);
   2351     assert(LastMI && "Range must end at a proper instruction");
   2352     unsigned TaintNum = 0;
   2353     for(;;) {
   2354       assert(MI != MBB->end() && "Bad LastMI");
   2355       if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
   2356         DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
   2357         return false;
   2358       }
   2359       // LastMI is the last instruction to use the current value.
   2360       if (&*MI == LastMI) {
   2361         if (++TaintNum == TaintExtent.size())
   2362           break;
   2363         LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
   2364         assert(LastMI && "Range must end at a proper instruction");
   2365         TaintedLanes = TaintExtent[TaintNum].second;
   2366       }
   2367       ++MI;
   2368     }
   2369 
   2370     // The tainted lanes are unused.
   2371     V.Resolution = CR_Replace;
   2372     ++NumLaneResolves;
   2373   }
   2374   return true;
   2375 }
   2376 
   2377 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
   2378   Val &V = Vals[ValNo];
   2379   if (V.Pruned || V.PrunedComputed)
   2380     return V.Pruned;
   2381 
   2382   if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
   2383     return V.Pruned;
   2384 
   2385   // Follow copies up the dominator tree and check if any intermediate value
   2386   // has been pruned.
   2387   V.PrunedComputed = true;
   2388   V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
   2389   return V.Pruned;
   2390 }
   2391 
   2392 void JoinVals::pruneValues(JoinVals &Other,
   2393                            SmallVectorImpl<SlotIndex> &EndPoints,
   2394                            bool changeInstrs) {
   2395   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
   2396     SlotIndex Def = LR.getValNumInfo(i)->def;
   2397     switch (Vals[i].Resolution) {
   2398     case CR_Keep:
   2399       break;
   2400     case CR_Replace: {
   2401       // This value takes precedence over the value in Other.LR.
   2402       LIS->pruneValue(Other.LR, Def, &EndPoints);
   2403       // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
   2404       // instructions are only inserted to provide a live-out value for PHI
   2405       // predecessors, so the instruction should simply go away once its value
   2406       // has been replaced.
   2407       Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
   2408       bool EraseImpDef = OtherV.ErasableImplicitDef &&
   2409                          OtherV.Resolution == CR_Keep;
   2410       if (!Def.isBlock()) {
   2411         if (changeInstrs) {
   2412           // Remove <def,read-undef> flags. This def is now a partial redef.
   2413           // Also remove <def,dead> flags since the joined live range will
   2414           // continue past this instruction.
   2415           for (MachineOperand &MO :
   2416                Indexes->getInstructionFromIndex(Def)->operands()) {
   2417             if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
   2418               MO.setIsUndef(EraseImpDef);
   2419               MO.setIsDead(false);
   2420             }
   2421           }
   2422         }
   2423         // This value will reach instructions below, but we need to make sure
   2424         // the live range also reaches the instruction at Def.
   2425         if (!EraseImpDef)
   2426           EndPoints.push_back(Def);
   2427       }
   2428       DEBUG(dbgs() << "\t\tpruned " << PrintReg(Other.Reg) << " at " << Def
   2429                    << ": " << Other.LR << '\n');
   2430       break;
   2431     }
   2432     case CR_Erase:
   2433     case CR_Merge:
   2434       if (isPrunedValue(i, Other)) {
   2435         // This value is ultimately a copy of a pruned value in LR or Other.LR.
   2436         // We can no longer trust the value mapping computed by
   2437         // computeAssignment(), the value that was originally copied could have
   2438         // been replaced.
   2439         LIS->pruneValue(LR, Def, &EndPoints);
   2440         DEBUG(dbgs() << "\t\tpruned all of " << PrintReg(Reg) << " at "
   2441                      << Def << ": " << LR << '\n');
   2442       }
   2443       break;
   2444     case CR_Unresolved:
   2445     case CR_Impossible:
   2446       llvm_unreachable("Unresolved conflicts");
   2447     }
   2448   }
   2449 }
   2450 
   2451 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask)
   2452 {
   2453   // Look for values being erased.
   2454   bool DidPrune = false;
   2455   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
   2456     if (Vals[i].Resolution != CR_Erase)
   2457       continue;
   2458 
   2459     // Check subranges at the point where the copy will be removed.
   2460     SlotIndex Def = LR.getValNumInfo(i)->def;
   2461     for (LiveInterval::SubRange &S : LI.subranges()) {
   2462       LiveQueryResult Q = S.Query(Def);
   2463 
   2464       // If a subrange starts at the copy then an undefined value has been
   2465       // copied and we must remove that subrange value as well.
   2466       VNInfo *ValueOut = Q.valueOutOrDead();
   2467       if (ValueOut != nullptr && Q.valueIn() == nullptr) {
   2468         DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask)
   2469                      << " at " << Def << "\n");
   2470         LIS->pruneValue(S, Def, nullptr);
   2471         DidPrune = true;
   2472         // Mark value number as unused.
   2473         ValueOut->markUnused();
   2474         continue;
   2475       }
   2476       // If a subrange ends at the copy, then a value was copied but only
   2477       // partially used later. Shrink the subregister range appropriately.
   2478       if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) {
   2479         DEBUG(dbgs() << "\t\tDead uses at sublane " << PrintLaneMask(S.LaneMask)
   2480                      << " at " << Def << "\n");
   2481         ShrinkMask |= S.LaneMask;
   2482       }
   2483     }
   2484   }
   2485   if (DidPrune)
   2486     LI.removeEmptySubRanges();
   2487 }
   2488 
   2489 void JoinVals::removeImplicitDefs() {
   2490   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
   2491     Val &V = Vals[i];
   2492     if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
   2493       continue;
   2494 
   2495     VNInfo *VNI = LR.getValNumInfo(i);
   2496     VNI->markUnused();
   2497     LR.removeValNo(VNI);
   2498   }
   2499 }
   2500 
   2501 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
   2502                            SmallVectorImpl<unsigned> &ShrinkRegs) {
   2503   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
   2504     // Get the def location before markUnused() below invalidates it.
   2505     SlotIndex Def = LR.getValNumInfo(i)->def;
   2506     switch (Vals[i].Resolution) {
   2507     case CR_Keep: {
   2508       // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
   2509       // longer. The IMPLICIT_DEF instructions are only inserted by
   2510       // PHIElimination to guarantee that all PHI predecessors have a value.
   2511       if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
   2512         break;
   2513       // Remove value number i from LR.
   2514       VNInfo *VNI = LR.getValNumInfo(i);
   2515       LR.removeValNo(VNI);
   2516       // Note that this VNInfo is reused and still referenced in NewVNInfo,
   2517       // make it appear like an unused value number.
   2518       VNI->markUnused();
   2519       DEBUG(dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n');
   2520       // FALL THROUGH.
   2521     }
   2522 
   2523     case CR_Erase: {
   2524       MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
   2525       assert(MI && "No instruction to erase");
   2526       if (MI->isCopy()) {
   2527         unsigned Reg = MI->getOperand(1).getReg();
   2528         if (TargetRegisterInfo::isVirtualRegister(Reg) &&
   2529             Reg != CP.getSrcReg() && Reg != CP.getDstReg())
   2530           ShrinkRegs.push_back(Reg);
   2531       }
   2532       ErasedInstrs.insert(MI);
   2533       DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
   2534       LIS->RemoveMachineInstrFromMaps(*MI);
   2535       MI->eraseFromParent();
   2536       break;
   2537     }
   2538     default:
   2539       break;
   2540     }
   2541   }
   2542 }
   2543 
   2544 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
   2545                                          LaneBitmask LaneMask,
   2546                                          const CoalescerPair &CP) {
   2547   SmallVector<VNInfo*, 16> NewVNInfo;
   2548   JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
   2549                    NewVNInfo, CP, LIS, TRI, true, true);
   2550   JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
   2551                    NewVNInfo, CP, LIS, TRI, true, true);
   2552 
   2553   // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
   2554   // We should be able to resolve all conflicts here as we could successfully do
   2555   // it on the mainrange already. There is however a problem when multiple
   2556   // ranges get mapped to the "overflow" lane mask bit which creates unexpected
   2557   // interferences.
   2558   if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
   2559     // We already determined that it is legal to merge the intervals, so this
   2560     // should never fail.
   2561     llvm_unreachable("*** Couldn't join subrange!\n");
   2562   }
   2563   if (!LHSVals.resolveConflicts(RHSVals) ||
   2564       !RHSVals.resolveConflicts(LHSVals)) {
   2565     // We already determined that it is legal to merge the intervals, so this
   2566     // should never fail.
   2567     llvm_unreachable("*** Couldn't join subrange!\n");
   2568   }
   2569 
   2570   // The merging algorithm in LiveInterval::join() can't handle conflicting
   2571   // value mappings, so we need to remove any live ranges that overlap a
   2572   // CR_Replace resolution. Collect a set of end points that can be used to
   2573   // restore the live range after joining.
   2574   SmallVector<SlotIndex, 8> EndPoints;
   2575   LHSVals.pruneValues(RHSVals, EndPoints, false);
   2576   RHSVals.pruneValues(LHSVals, EndPoints, false);
   2577 
   2578   LHSVals.removeImplicitDefs();
   2579   RHSVals.removeImplicitDefs();
   2580 
   2581   LRange.verify();
   2582   RRange.verify();
   2583 
   2584   // Join RRange into LHS.
   2585   LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
   2586               NewVNInfo);
   2587 
   2588   DEBUG(dbgs() << "\t\tjoined lanes: " << LRange << "\n");
   2589   if (EndPoints.empty())
   2590     return;
   2591 
   2592   // Recompute the parts of the live range we had to remove because of
   2593   // CR_Replace conflicts.
   2594   DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size()
   2595                << " points: " << LRange << '\n');
   2596   LIS->extendToIndices(LRange, EndPoints);
   2597 }
   2598 
   2599 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
   2600                                           const LiveRange &ToMerge,
   2601                                           LaneBitmask LaneMask,
   2602                                           CoalescerPair &CP) {
   2603   BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
   2604   for (LiveInterval::SubRange &R : LI.subranges()) {
   2605     LaneBitmask RMask = R.LaneMask;
   2606     // LaneMask of subregisters common to subrange R and ToMerge.
   2607     LaneBitmask Common = RMask & LaneMask;
   2608     // There is nothing to do without common subregs.
   2609     if (Common == 0)
   2610       continue;
   2611 
   2612     DEBUG(dbgs() << "\t\tCopy+Merge " << PrintLaneMask(RMask) << " into "
   2613                  << PrintLaneMask(Common) << '\n');
   2614     // LaneMask of subregisters contained in the R range but not in ToMerge,
   2615     // they have to split into their own subrange.
   2616     LaneBitmask LRest = RMask & ~LaneMask;
   2617     LiveInterval::SubRange *CommonRange;
   2618     if (LRest != 0) {
   2619       R.LaneMask = LRest;
   2620       DEBUG(dbgs() << "\t\tReduce Lane to " << PrintLaneMask(LRest) << '\n');
   2621       // Duplicate SubRange for newly merged common stuff.
   2622       CommonRange = LI.createSubRangeFrom(Allocator, Common, R);
   2623     } else {
   2624       // Reuse the existing range.
   2625       R.LaneMask = Common;
   2626       CommonRange = &R;
   2627     }
   2628     LiveRange RangeCopy(ToMerge, Allocator);
   2629     joinSubRegRanges(*CommonRange, RangeCopy, Common, CP);
   2630     LaneMask &= ~RMask;
   2631   }
   2632 
   2633   if (LaneMask != 0) {
   2634     DEBUG(dbgs() << "\t\tNew Lane " << PrintLaneMask(LaneMask) << '\n');
   2635     LI.createSubRangeFrom(Allocator, LaneMask, ToMerge);
   2636   }
   2637 }
   2638 
   2639 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
   2640   SmallVector<VNInfo*, 16> NewVNInfo;
   2641   LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
   2642   LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
   2643   bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
   2644   JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), 0, NewVNInfo, CP, LIS,
   2645                    TRI, false, TrackSubRegLiveness);
   2646   JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), 0, NewVNInfo, CP, LIS,
   2647                    TRI, false, TrackSubRegLiveness);
   2648 
   2649   DEBUG(dbgs() << "\t\tRHS = " << RHS
   2650                << "\n\t\tLHS = " << LHS
   2651                << '\n');
   2652 
   2653   // First compute NewVNInfo and the simple value mappings.
   2654   // Detect impossible conflicts early.
   2655   if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
   2656     return false;
   2657 
   2658   // Some conflicts can only be resolved after all values have been mapped.
   2659   if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
   2660     return false;
   2661 
   2662   // All clear, the live ranges can be merged.
   2663   if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
   2664     BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
   2665 
   2666     // Transform lanemasks from the LHS to masks in the coalesced register and
   2667     // create initial subranges if necessary.
   2668     unsigned DstIdx = CP.getDstIdx();
   2669     if (!LHS.hasSubRanges()) {
   2670       LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
   2671                                      : TRI->getSubRegIndexLaneMask(DstIdx);
   2672       // LHS must support subregs or we wouldn't be in this codepath.
   2673       assert(Mask != 0);
   2674       LHS.createSubRangeFrom(Allocator, Mask, LHS);
   2675     } else if (DstIdx != 0) {
   2676       // Transform LHS lanemasks to new register class if necessary.
   2677       for (LiveInterval::SubRange &R : LHS.subranges()) {
   2678         LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
   2679         R.LaneMask = Mask;
   2680       }
   2681     }
   2682     DEBUG(dbgs() << "\t\tLHST = " << PrintReg(CP.getDstReg())
   2683                  << ' ' << LHS << '\n');
   2684 
   2685     // Determine lanemasks of RHS in the coalesced register and merge subranges.
   2686     unsigned SrcIdx = CP.getSrcIdx();
   2687     if (!RHS.hasSubRanges()) {
   2688       LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
   2689                                      : TRI->getSubRegIndexLaneMask(SrcIdx);
   2690       mergeSubRangeInto(LHS, RHS, Mask, CP);
   2691     } else {
   2692       // Pair up subranges and merge.
   2693       for (LiveInterval::SubRange &R : RHS.subranges()) {
   2694         LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
   2695         mergeSubRangeInto(LHS, R, Mask, CP);
   2696       }
   2697     }
   2698     DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
   2699 
   2700     LHSVals.pruneSubRegValues(LHS, ShrinkMask);
   2701     RHSVals.pruneSubRegValues(LHS, ShrinkMask);
   2702   }
   2703 
   2704   // The merging algorithm in LiveInterval::join() can't handle conflicting
   2705   // value mappings, so we need to remove any live ranges that overlap a
   2706   // CR_Replace resolution. Collect a set of end points that can be used to
   2707   // restore the live range after joining.
   2708   SmallVector<SlotIndex, 8> EndPoints;
   2709   LHSVals.pruneValues(RHSVals, EndPoints, true);
   2710   RHSVals.pruneValues(LHSVals, EndPoints, true);
   2711 
   2712   // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
   2713   // registers to require trimming.
   2714   SmallVector<unsigned, 8> ShrinkRegs;
   2715   LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
   2716   RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
   2717   while (!ShrinkRegs.empty())
   2718     shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
   2719 
   2720   // Join RHS into LHS.
   2721   LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
   2722 
   2723   // Kill flags are going to be wrong if the live ranges were overlapping.
   2724   // Eventually, we should simply clear all kill flags when computing live
   2725   // ranges. They are reinserted after register allocation.
   2726   MRI->clearKillFlags(LHS.reg);
   2727   MRI->clearKillFlags(RHS.reg);
   2728 
   2729   if (!EndPoints.empty()) {
   2730     // Recompute the parts of the live range we had to remove because of
   2731     // CR_Replace conflicts.
   2732     DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size()
   2733                  << " points: " << LHS << '\n');
   2734     LIS->extendToIndices((LiveRange&)LHS, EndPoints);
   2735   }
   2736 
   2737   return true;
   2738 }
   2739 
   2740 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
   2741   return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
   2742 }
   2743 
   2744 namespace {
   2745 /// Information concerning MBB coalescing priority.
   2746 struct MBBPriorityInfo {
   2747   MachineBasicBlock *MBB;
   2748   unsigned Depth;
   2749   bool IsSplit;
   2750 
   2751   MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
   2752     : MBB(mbb), Depth(depth), IsSplit(issplit) {}
   2753 };
   2754 }
   2755 
   2756 /// C-style comparator that sorts first based on the loop depth of the basic
   2757 /// block (the unsigned), and then on the MBB number.
   2758 ///
   2759 /// EnableGlobalCopies assumes that the primary sort key is loop depth.
   2760 static int compareMBBPriority(const MBBPriorityInfo *LHS,
   2761                               const MBBPriorityInfo *RHS) {
   2762   // Deeper loops first
   2763   if (LHS->Depth != RHS->Depth)
   2764     return LHS->Depth > RHS->Depth ? -1 : 1;
   2765 
   2766   // Try to unsplit critical edges next.
   2767   if (LHS->IsSplit != RHS->IsSplit)
   2768     return LHS->IsSplit ? -1 : 1;
   2769 
   2770   // Prefer blocks that are more connected in the CFG. This takes care of
   2771   // the most difficult copies first while intervals are short.
   2772   unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
   2773   unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
   2774   if (cl != cr)
   2775     return cl > cr ? -1 : 1;
   2776 
   2777   // As a last resort, sort by block number.
   2778   return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
   2779 }
   2780 
   2781 /// \returns true if the given copy uses or defines a local live range.
   2782 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
   2783   if (!Copy->isCopy())
   2784     return false;
   2785 
   2786   if (Copy->getOperand(1).isUndef())
   2787     return false;
   2788 
   2789   unsigned SrcReg = Copy->getOperand(1).getReg();
   2790   unsigned DstReg = Copy->getOperand(0).getReg();
   2791   if (TargetRegisterInfo::isPhysicalRegister(SrcReg)
   2792       || TargetRegisterInfo::isPhysicalRegister(DstReg))
   2793     return false;
   2794 
   2795   return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
   2796     || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
   2797 }
   2798 
   2799 bool RegisterCoalescer::
   2800 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
   2801   bool Progress = false;
   2802   for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
   2803     if (!CurrList[i])
   2804       continue;
   2805     // Skip instruction pointers that have already been erased, for example by
   2806     // dead code elimination.
   2807     if (ErasedInstrs.erase(CurrList[i])) {
   2808       CurrList[i] = nullptr;
   2809       continue;
   2810     }
   2811     bool Again = false;
   2812     bool Success = joinCopy(CurrList[i], Again);
   2813     Progress |= Success;
   2814     if (Success || !Again)
   2815       CurrList[i] = nullptr;
   2816   }
   2817   return Progress;
   2818 }
   2819 
   2820 /// Check if DstReg is a terminal node.
   2821 /// I.e., it does not have any affinity other than \p Copy.
   2822 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy,
   2823                           const MachineRegisterInfo *MRI) {
   2824   assert(Copy.isCopyLike());
   2825   // Check if the destination of this copy as any other affinity.
   2826   for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg))
   2827     if (&MI != &Copy && MI.isCopyLike())
   2828       return false;
   2829   return true;
   2830 }
   2831 
   2832 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
   2833   assert(Copy.isCopyLike());
   2834   if (!UseTerminalRule)
   2835     return false;
   2836   unsigned DstReg, DstSubReg, SrcReg, SrcSubReg;
   2837   isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg);
   2838   // Check if the destination of this copy has any other affinity.
   2839   if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
   2840       // If SrcReg is a physical register, the copy won't be coalesced.
   2841       // Ignoring it may have other side effect (like missing
   2842       // rematerialization). So keep it.
   2843       TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
   2844       !isTerminalReg(DstReg, Copy, MRI))
   2845     return false;
   2846 
   2847   // DstReg is a terminal node. Check if it interferes with any other
   2848   // copy involving SrcReg.
   2849   const MachineBasicBlock *OrigBB = Copy.getParent();
   2850   const LiveInterval &DstLI = LIS->getInterval(DstReg);
   2851   for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) {
   2852     // Technically we should check if the weight of the new copy is
   2853     // interesting compared to the other one and update the weight
   2854     // of the copies accordingly. However, this would only work if
   2855     // we would gather all the copies first then coalesce, whereas
   2856     // right now we interleave both actions.
   2857     // For now, just consider the copies that are in the same block.
   2858     if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
   2859       continue;
   2860     unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg;
   2861     isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
   2862                 OtherSubReg);
   2863     if (OtherReg == SrcReg)
   2864       OtherReg = OtherSrcReg;
   2865     // Check if OtherReg is a non-terminal.
   2866     if (TargetRegisterInfo::isPhysicalRegister(OtherReg) ||
   2867         isTerminalReg(OtherReg, MI, MRI))
   2868       continue;
   2869     // Check that OtherReg interfere with DstReg.
   2870     if (LIS->getInterval(OtherReg).overlaps(DstLI)) {
   2871       DEBUG(dbgs() << "Apply terminal rule for: " << PrintReg(DstReg) << '\n');
   2872       return true;
   2873     }
   2874   }
   2875   return false;
   2876 }
   2877 
   2878 void
   2879 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
   2880   DEBUG(dbgs() << MBB->getName() << ":\n");
   2881 
   2882   // Collect all copy-like instructions in MBB. Don't start coalescing anything
   2883   // yet, it might invalidate the iterator.
   2884   const unsigned PrevSize = WorkList.size();
   2885   if (JoinGlobalCopies) {
   2886     SmallVector<MachineInstr*, 2> LocalTerminals;
   2887     SmallVector<MachineInstr*, 2> GlobalTerminals;
   2888     // Coalesce copies bottom-up to coalesce local defs before local uses. They
   2889     // are not inherently easier to resolve, but slightly preferable until we
   2890     // have local live range splitting. In particular this is required by
   2891     // cmp+jmp macro fusion.
   2892     for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
   2893          MII != E; ++MII) {
   2894       if (!MII->isCopyLike())
   2895         continue;
   2896       bool ApplyTerminalRule = applyTerminalRule(*MII);
   2897       if (isLocalCopy(&(*MII), LIS)) {
   2898         if (ApplyTerminalRule)
   2899           LocalTerminals.push_back(&(*MII));
   2900         else
   2901           LocalWorkList.push_back(&(*MII));
   2902       } else {
   2903         if (ApplyTerminalRule)
   2904           GlobalTerminals.push_back(&(*MII));
   2905         else
   2906           WorkList.push_back(&(*MII));
   2907       }
   2908     }
   2909     // Append the copies evicted by the terminal rule at the end of the list.
   2910     LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end());
   2911     WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end());
   2912   }
   2913   else {
   2914     SmallVector<MachineInstr*, 2> Terminals;
   2915     for (MachineInstr &MII : *MBB)
   2916       if (MII.isCopyLike()) {
   2917         if (applyTerminalRule(MII))
   2918           Terminals.push_back(&MII);
   2919         else
   2920           WorkList.push_back(&MII);
   2921       }
   2922     // Append the copies evicted by the terminal rule at the end of the list.
   2923     WorkList.append(Terminals.begin(), Terminals.end());
   2924   }
   2925   // Try coalescing the collected copies immediately, and remove the nulls.
   2926   // This prevents the WorkList from getting too large since most copies are
   2927   // joinable on the first attempt.
   2928   MutableArrayRef<MachineInstr*>
   2929     CurrList(WorkList.begin() + PrevSize, WorkList.end());
   2930   if (copyCoalesceWorkList(CurrList))
   2931     WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
   2932                                (MachineInstr*)nullptr), WorkList.end());
   2933 }
   2934 
   2935 void RegisterCoalescer::coalesceLocals() {
   2936   copyCoalesceWorkList(LocalWorkList);
   2937   for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
   2938     if (LocalWorkList[j])
   2939       WorkList.push_back(LocalWorkList[j]);
   2940   }
   2941   LocalWorkList.clear();
   2942 }
   2943 
   2944 void RegisterCoalescer::joinAllIntervals() {
   2945   DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
   2946   assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
   2947 
   2948   std::vector<MBBPriorityInfo> MBBs;
   2949   MBBs.reserve(MF->size());
   2950   for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) {
   2951     MachineBasicBlock *MBB = &*I;
   2952     MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
   2953                                    JoinSplitEdges && isSplitEdge(MBB)));
   2954   }
   2955   array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
   2956 
   2957   // Coalesce intervals in MBB priority order.
   2958   unsigned CurrDepth = UINT_MAX;
   2959   for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
   2960     // Try coalescing the collected local copies for deeper loops.
   2961     if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
   2962       coalesceLocals();
   2963       CurrDepth = MBBs[i].Depth;
   2964     }
   2965     copyCoalesceInMBB(MBBs[i].MBB);
   2966   }
   2967   coalesceLocals();
   2968 
   2969   // Joining intervals can allow other intervals to be joined.  Iteratively join
   2970   // until we make no progress.
   2971   while (copyCoalesceWorkList(WorkList))
   2972     /* empty */ ;
   2973 }
   2974 
   2975 void RegisterCoalescer::releaseMemory() {
   2976   ErasedInstrs.clear();
   2977   WorkList.clear();
   2978   DeadDefs.clear();
   2979   InflateRegs.clear();
   2980 }
   2981 
   2982 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
   2983   MF = &fn;
   2984   MRI = &fn.getRegInfo();
   2985   TM = &fn.getTarget();
   2986   const TargetSubtargetInfo &STI = fn.getSubtarget();
   2987   TRI = STI.getRegisterInfo();
   2988   TII = STI.getInstrInfo();
   2989   LIS = &getAnalysis<LiveIntervals>();
   2990   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
   2991   Loops = &getAnalysis<MachineLoopInfo>();
   2992   if (EnableGlobalCopies == cl::BOU_UNSET)
   2993     JoinGlobalCopies = STI.enableJoinGlobalCopies();
   2994   else
   2995     JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
   2996 
   2997   // The MachineScheduler does not currently require JoinSplitEdges. This will
   2998   // either be enabled unconditionally or replaced by a more general live range
   2999   // splitting optimization.
   3000   JoinSplitEdges = EnableJoinSplits;
   3001 
   3002   DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
   3003                << "********** Function: " << MF->getName() << '\n');
   3004 
   3005   if (VerifyCoalescing)
   3006     MF->verify(this, "Before register coalescing");
   3007 
   3008   RegClassInfo.runOnMachineFunction(fn);
   3009 
   3010   // Join (coalesce) intervals if requested.
   3011   if (EnableJoining)
   3012     joinAllIntervals();
   3013 
   3014   // After deleting a lot of copies, register classes may be less constrained.
   3015   // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
   3016   // DPR inflation.
   3017   array_pod_sort(InflateRegs.begin(), InflateRegs.end());
   3018   InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
   3019                     InflateRegs.end());
   3020   DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n");
   3021   for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
   3022     unsigned Reg = InflateRegs[i];
   3023     if (MRI->reg_nodbg_empty(Reg))
   3024       continue;
   3025     if (MRI->recomputeRegClass(Reg)) {
   3026       DEBUG(dbgs() << PrintReg(Reg) << " inflated to "
   3027                    << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
   3028       ++NumInflated;
   3029 
   3030       LiveInterval &LI = LIS->getInterval(Reg);
   3031       if (LI.hasSubRanges()) {
   3032         // If the inflated register class does not support subregisters anymore
   3033         // remove the subranges.
   3034         if (!MRI->shouldTrackSubRegLiveness(Reg)) {
   3035           LI.clearSubRanges();
   3036         } else {
   3037 #ifndef NDEBUG
   3038           LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
   3039           // If subranges are still supported, then the same subregs
   3040           // should still be supported.
   3041           for (LiveInterval::SubRange &S : LI.subranges()) {
   3042             assert((S.LaneMask & ~MaxMask) == 0);
   3043           }
   3044 #endif
   3045         }
   3046       }
   3047     }
   3048   }
   3049 
   3050   DEBUG(dump());
   3051   if (VerifyCoalescing)
   3052     MF->verify(this, "After register coalescing");
   3053   return true;
   3054 }
   3055 
   3056 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
   3057    LIS->print(O, m);
   3058 }
   3059