Home | History | Annotate | Download | only in Hexagon
      1 //===--- HexagonBitTracker.cpp --------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "llvm/CodeGen/MachineRegisterInfo.h"
     11 #include "llvm/IR/Module.h"
     12 #include "llvm/Support/Debug.h"
     13 #include "llvm/Support/raw_ostream.h"
     14 
     15 #include "Hexagon.h"
     16 #include "HexagonInstrInfo.h"
     17 #include "HexagonRegisterInfo.h"
     18 #include "HexagonTargetMachine.h"
     19 #include "HexagonBitTracker.h"
     20 
     21 using namespace llvm;
     22 
     23 typedef BitTracker BT;
     24 
     25 HexagonEvaluator::HexagonEvaluator(const HexagonRegisterInfo &tri,
     26                                    MachineRegisterInfo &mri,
     27                                    const HexagonInstrInfo &tii,
     28                                    MachineFunction &mf)
     29     : MachineEvaluator(tri, mri), MF(mf), MFI(*mf.getFrameInfo()), TII(tii) {
     30   // Populate the VRX map (VR to extension-type).
     31   // Go over all the formal parameters of the function. If a given parameter
     32   // P is sign- or zero-extended, locate the virtual register holding that
     33   // parameter and create an entry in the VRX map indicating the type of ex-
     34   // tension (and the source type).
     35   // This is a bit complicated to do accurately, since the memory layout in-
     36   // formation is necessary to precisely determine whether an aggregate para-
     37   // meter will be passed in a register or in memory. What is given in MRI
     38   // is the association between the physical register that is live-in (i.e.
     39   // holds an argument), and the virtual register that this value will be
     40   // copied into. This, by itself, is not sufficient to map back the virtual
     41   // register to a formal parameter from Function (since consecutive live-ins
     42   // from MRI may not correspond to consecutive formal parameters from Func-
     43   // tion). To avoid the complications with in-memory arguments, only consi-
     44   // der the initial sequence of formal parameters that are known to be
     45   // passed via registers.
     46   unsigned AttrIdx = 0;
     47   unsigned InVirtReg, InPhysReg = 0;
     48   const Function &F = *MF.getFunction();
     49   typedef Function::const_arg_iterator arg_iterator;
     50   for (arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
     51     AttrIdx++;
     52     const Argument &Arg = *I;
     53     Type *ATy = Arg.getType();
     54     unsigned Width = 0;
     55     if (ATy->isIntegerTy())
     56       Width = ATy->getIntegerBitWidth();
     57     else if (ATy->isPointerTy())
     58       Width = 32;
     59     // If pointer size is not set through target data, it will default to
     60     // Module::AnyPointerSize.
     61     if (Width == 0 || Width > 64)
     62       break;
     63     InPhysReg = getNextPhysReg(InPhysReg, Width);
     64     if (!InPhysReg)
     65       break;
     66     InVirtReg = getVirtRegFor(InPhysReg);
     67     if (!InVirtReg)
     68       continue;
     69     AttributeSet Attrs = F.getAttributes();
     70     if (Attrs.hasAttribute(AttrIdx, Attribute::SExt))
     71       VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::SExt, Width)));
     72     else if (Attrs.hasAttribute(AttrIdx, Attribute::ZExt))
     73       VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::ZExt, Width)));
     74   }
     75 }
     76 
     77 
     78 BT::BitMask HexagonEvaluator::mask(unsigned Reg, unsigned Sub) const {
     79   if (Sub == 0)
     80     return MachineEvaluator::mask(Reg, 0);
     81   using namespace Hexagon;
     82   const TargetRegisterClass *RC = MRI.getRegClass(Reg);
     83   unsigned ID = RC->getID();
     84   uint16_t RW = getRegBitWidth(RegisterRef(Reg, Sub));
     85   switch (ID) {
     86     case DoubleRegsRegClassID:
     87     case VecDblRegsRegClassID:
     88     case VecDblRegs128BRegClassID:
     89       return (Sub == subreg_loreg) ? BT::BitMask(0, RW-1)
     90                                    : BT::BitMask(RW, 2*RW-1);
     91     default:
     92       break;
     93   }
     94 #ifndef NDEBUG
     95   dbgs() << PrintReg(Reg, &TRI, Sub) << '\n';
     96 #endif
     97   llvm_unreachable("Unexpected register/subregister");
     98 }
     99 
    100 namespace {
    101 class RegisterRefs {
    102   std::vector<BT::RegisterRef> Vector;
    103 
    104 public:
    105   RegisterRefs(const MachineInstr &MI) : Vector(MI.getNumOperands()) {
    106     for (unsigned i = 0, n = Vector.size(); i < n; ++i) {
    107       const MachineOperand &MO = MI.getOperand(i);
    108       if (MO.isReg())
    109         Vector[i] = BT::RegisterRef(MO);
    110       // For indices that don't correspond to registers, the entry will
    111       // remain constructed via the default constructor.
    112     }
    113   }
    114 
    115   size_t size() const { return Vector.size(); }
    116   const BT::RegisterRef &operator[](unsigned n) const {
    117     // The main purpose of this operator is to assert with bad argument.
    118     assert(n < Vector.size());
    119     return Vector[n];
    120   }
    121 };
    122 }
    123 
    124 bool HexagonEvaluator::evaluate(const MachineInstr &MI,
    125                                 const CellMapType &Inputs,
    126                                 CellMapType &Outputs) const {
    127   unsigned NumDefs = 0;
    128 
    129   // Sanity verification: there should not be any defs with subregisters.
    130   for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) {
    131     const MachineOperand &MO = MI.getOperand(i);
    132     if (!MO.isReg() || !MO.isDef())
    133       continue;
    134     NumDefs++;
    135     assert(MO.getSubReg() == 0);
    136   }
    137 
    138   if (NumDefs == 0)
    139     return false;
    140 
    141   if (MI.mayLoad())
    142     return evaluateLoad(MI, Inputs, Outputs);
    143 
    144   // Check COPY instructions that copy formal parameters into virtual
    145   // registers. Such parameters can be sign- or zero-extended at the
    146   // call site, and we should take advantage of this knowledge. The MRI
    147   // keeps a list of pairs of live-in physical and virtual registers,
    148   // which provides information about which virtual registers will hold
    149   // the argument values. The function will still contain instructions
    150   // defining those virtual registers, and in practice those are COPY
    151   // instructions from a physical to a virtual register. In such cases,
    152   // applying the argument extension to the virtual register can be seen
    153   // as simply mirroring the extension that had already been applied to
    154   // the physical register at the call site. If the defining instruction
    155   // was not a COPY, it would not be clear how to mirror that extension
    156   // on the callee's side. For that reason, only check COPY instructions
    157   // for potential extensions.
    158   if (MI.isCopy()) {
    159     if (evaluateFormalCopy(MI, Inputs, Outputs))
    160       return true;
    161   }
    162 
    163   // Beyond this point, if any operand is a global, skip that instruction.
    164   // The reason is that certain instructions that can take an immediate
    165   // operand can also have a global symbol in that operand. To avoid
    166   // checking what kind of operand a given instruction has individually
    167   // for each instruction, do it here. Global symbols as operands gene-
    168   // rally do not provide any useful information.
    169   for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) {
    170     const MachineOperand &MO = MI.getOperand(i);
    171     if (MO.isGlobal() || MO.isBlockAddress() || MO.isSymbol() || MO.isJTI() ||
    172         MO.isCPI())
    173       return false;
    174   }
    175 
    176   RegisterRefs Reg(MI);
    177   unsigned Opc = MI.getOpcode();
    178   using namespace Hexagon;
    179 #define op(i) MI.getOperand(i)
    180 #define rc(i) RegisterCell::ref(getCell(Reg[i], Inputs))
    181 #define im(i) MI.getOperand(i).getImm()
    182 
    183   // If the instruction has no register operands, skip it.
    184   if (Reg.size() == 0)
    185     return false;
    186 
    187   // Record result for register in operand 0.
    188   auto rr0 = [this,Reg] (const BT::RegisterCell &Val, CellMapType &Outputs)
    189         -> bool {
    190     putCell(Reg[0], Val, Outputs);
    191     return true;
    192   };
    193   // Get the cell corresponding to the N-th operand.
    194   auto cop = [this, &Reg, &MI, &Inputs](unsigned N,
    195                                         uint16_t W) -> BT::RegisterCell {
    196     const MachineOperand &Op = MI.getOperand(N);
    197     if (Op.isImm())
    198       return eIMM(Op.getImm(), W);
    199     if (!Op.isReg())
    200       return RegisterCell::self(0, W);
    201     assert(getRegBitWidth(Reg[N]) == W && "Register width mismatch");
    202     return rc(N);
    203   };
    204   // Extract RW low bits of the cell.
    205   auto lo = [this] (const BT::RegisterCell &RC, uint16_t RW)
    206         -> BT::RegisterCell {
    207     assert(RW <= RC.width());
    208     return eXTR(RC, 0, RW);
    209   };
    210   // Extract RW high bits of the cell.
    211   auto hi = [this] (const BT::RegisterCell &RC, uint16_t RW)
    212         -> BT::RegisterCell {
    213     uint16_t W = RC.width();
    214     assert(RW <= W);
    215     return eXTR(RC, W-RW, W);
    216   };
    217   // Extract N-th halfword (counting from the least significant position).
    218   auto half = [this] (const BT::RegisterCell &RC, unsigned N)
    219         -> BT::RegisterCell {
    220     assert(N*16+16 <= RC.width());
    221     return eXTR(RC, N*16, N*16+16);
    222   };
    223   // Shuffle bits (pick even/odd from cells and merge into result).
    224   auto shuffle = [this] (const BT::RegisterCell &Rs, const BT::RegisterCell &Rt,
    225                          uint16_t BW, bool Odd) -> BT::RegisterCell {
    226     uint16_t I = Odd, Ws = Rs.width();
    227     assert(Ws == Rt.width());
    228     RegisterCell RC = eXTR(Rt, I*BW, I*BW+BW).cat(eXTR(Rs, I*BW, I*BW+BW));
    229     I += 2;
    230     while (I*BW < Ws) {
    231       RC.cat(eXTR(Rt, I*BW, I*BW+BW)).cat(eXTR(Rs, I*BW, I*BW+BW));
    232       I += 2;
    233     }
    234     return RC;
    235   };
    236 
    237   // The bitwidth of the 0th operand. In most (if not all) of the
    238   // instructions below, the 0th operand is the defined register.
    239   // Pre-compute the bitwidth here, because it is needed in many cases
    240   // cases below.
    241   uint16_t W0 = (Reg[0].Reg != 0) ? getRegBitWidth(Reg[0]) : 0;
    242 
    243   switch (Opc) {
    244     // Transfer immediate:
    245 
    246     case A2_tfrsi:
    247     case A2_tfrpi:
    248     case CONST32:
    249     case CONST32_Float_Real:
    250     case CONST32_Int_Real:
    251     case CONST64_Float_Real:
    252     case CONST64_Int_Real:
    253       return rr0(eIMM(im(1), W0), Outputs);
    254     case TFR_PdFalse:
    255       return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::Zero), Outputs);
    256     case TFR_PdTrue:
    257       return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::One), Outputs);
    258     case TFR_FI: {
    259       int FI = op(1).getIndex();
    260       int Off = op(2).getImm();
    261       unsigned A = MFI.getObjectAlignment(FI) + std::abs(Off);
    262       unsigned L = Log2_32(A);
    263       RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0);
    264       RC.fill(0, L, BT::BitValue::Zero);
    265       return rr0(RC, Outputs);
    266     }
    267 
    268     // Transfer register:
    269 
    270     case A2_tfr:
    271     case A2_tfrp:
    272     case C2_pxfer_map:
    273       return rr0(rc(1), Outputs);
    274     case C2_tfrpr: {
    275       uint16_t RW = W0;
    276       uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
    277       assert(PW <= RW);
    278       RegisterCell PC = eXTR(rc(1), 0, PW);
    279       RegisterCell RC = RegisterCell(RW).insert(PC, BT::BitMask(0, PW-1));
    280       RC.fill(PW, RW, BT::BitValue::Zero);
    281       return rr0(RC, Outputs);
    282     }
    283     case C2_tfrrp: {
    284       RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0);
    285       W0 = 8; // XXX Pred size
    286       return rr0(eINS(RC, eXTR(rc(1), 0, W0), 0), Outputs);
    287     }
    288 
    289     // Arithmetic:
    290 
    291     case A2_abs:
    292     case A2_absp:
    293       // TODO
    294       break;
    295 
    296     case A2_addsp: {
    297       uint16_t W1 = getRegBitWidth(Reg[1]);
    298       assert(W0 == 64 && W1 == 32);
    299       RegisterCell CW = RegisterCell(W0).insert(rc(1), BT::BitMask(0, W1-1));
    300       RegisterCell RC = eADD(eSXT(CW, W1), rc(2));
    301       return rr0(RC, Outputs);
    302     }
    303     case A2_add:
    304     case A2_addp:
    305       return rr0(eADD(rc(1), rc(2)), Outputs);
    306     case A2_addi:
    307       return rr0(eADD(rc(1), eIMM(im(2), W0)), Outputs);
    308     case S4_addi_asl_ri: {
    309       RegisterCell RC = eADD(eIMM(im(1), W0), eASL(rc(2), im(3)));
    310       return rr0(RC, Outputs);
    311     }
    312     case S4_addi_lsr_ri: {
    313       RegisterCell RC = eADD(eIMM(im(1), W0), eLSR(rc(2), im(3)));
    314       return rr0(RC, Outputs);
    315     }
    316     case S4_addaddi: {
    317       RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
    318       return rr0(RC, Outputs);
    319     }
    320     case M4_mpyri_addi: {
    321       RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
    322       RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
    323       return rr0(RC, Outputs);
    324     }
    325     case M4_mpyrr_addi: {
    326       RegisterCell M = eMLS(rc(2), rc(3));
    327       RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
    328       return rr0(RC, Outputs);
    329     }
    330     case M4_mpyri_addr_u2: {
    331       RegisterCell M = eMLS(eIMM(im(2), W0), rc(3));
    332       RegisterCell RC = eADD(rc(1), lo(M, W0));
    333       return rr0(RC, Outputs);
    334     }
    335     case M4_mpyri_addr: {
    336       RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
    337       RegisterCell RC = eADD(rc(1), lo(M, W0));
    338       return rr0(RC, Outputs);
    339     }
    340     case M4_mpyrr_addr: {
    341       RegisterCell M = eMLS(rc(2), rc(3));
    342       RegisterCell RC = eADD(rc(1), lo(M, W0));
    343       return rr0(RC, Outputs);
    344     }
    345     case S4_subaddi: {
    346       RegisterCell RC = eADD(rc(1), eSUB(eIMM(im(2), W0), rc(3)));
    347       return rr0(RC, Outputs);
    348     }
    349     case M2_accii: {
    350       RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
    351       return rr0(RC, Outputs);
    352     }
    353     case M2_acci: {
    354       RegisterCell RC = eADD(rc(1), eADD(rc(2), rc(3)));
    355       return rr0(RC, Outputs);
    356     }
    357     case M2_subacc: {
    358       RegisterCell RC = eADD(rc(1), eSUB(rc(2), rc(3)));
    359       return rr0(RC, Outputs);
    360     }
    361     case S2_addasl_rrri: {
    362       RegisterCell RC = eADD(rc(1), eASL(rc(2), im(3)));
    363       return rr0(RC, Outputs);
    364     }
    365     case C4_addipc: {
    366       RegisterCell RPC = RegisterCell::self(Reg[0].Reg, W0);
    367       RPC.fill(0, 2, BT::BitValue::Zero);
    368       return rr0(eADD(RPC, eIMM(im(2), W0)), Outputs);
    369     }
    370     case A2_sub:
    371     case A2_subp:
    372       return rr0(eSUB(rc(1), rc(2)), Outputs);
    373     case A2_subri:
    374       return rr0(eSUB(eIMM(im(1), W0), rc(2)), Outputs);
    375     case S4_subi_asl_ri: {
    376       RegisterCell RC = eSUB(eIMM(im(1), W0), eASL(rc(2), im(3)));
    377       return rr0(RC, Outputs);
    378     }
    379     case S4_subi_lsr_ri: {
    380       RegisterCell RC = eSUB(eIMM(im(1), W0), eLSR(rc(2), im(3)));
    381       return rr0(RC, Outputs);
    382     }
    383     case M2_naccii: {
    384       RegisterCell RC = eSUB(rc(1), eADD(rc(2), eIMM(im(3), W0)));
    385       return rr0(RC, Outputs);
    386     }
    387     case M2_nacci: {
    388       RegisterCell RC = eSUB(rc(1), eADD(rc(2), rc(3)));
    389       return rr0(RC, Outputs);
    390     }
    391     // 32-bit negation is done by "Rd = A2_subri 0, Rs"
    392     case A2_negp:
    393       return rr0(eSUB(eIMM(0, W0), rc(1)), Outputs);
    394 
    395     case M2_mpy_up: {
    396       RegisterCell M = eMLS(rc(1), rc(2));
    397       return rr0(hi(M, W0), Outputs);
    398     }
    399     case M2_dpmpyss_s0:
    400       return rr0(eMLS(rc(1), rc(2)), Outputs);
    401     case M2_dpmpyss_acc_s0:
    402       return rr0(eADD(rc(1), eMLS(rc(2), rc(3))), Outputs);
    403     case M2_dpmpyss_nac_s0:
    404       return rr0(eSUB(rc(1), eMLS(rc(2), rc(3))), Outputs);
    405     case M2_mpyi: {
    406       RegisterCell M = eMLS(rc(1), rc(2));
    407       return rr0(lo(M, W0), Outputs);
    408     }
    409     case M2_macsip: {
    410       RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
    411       RegisterCell RC = eADD(rc(1), lo(M, W0));
    412       return rr0(RC, Outputs);
    413     }
    414     case M2_macsin: {
    415       RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
    416       RegisterCell RC = eSUB(rc(1), lo(M, W0));
    417       return rr0(RC, Outputs);
    418     }
    419     case M2_maci: {
    420       RegisterCell M = eMLS(rc(2), rc(3));
    421       RegisterCell RC = eADD(rc(1), lo(M, W0));
    422       return rr0(RC, Outputs);
    423     }
    424     case M2_mpysmi: {
    425       RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
    426       return rr0(lo(M, 32), Outputs);
    427     }
    428     case M2_mpysin: {
    429       RegisterCell M = eMLS(rc(1), eIMM(-im(2), W0));
    430       return rr0(lo(M, 32), Outputs);
    431     }
    432     case M2_mpysip: {
    433       RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
    434       return rr0(lo(M, 32), Outputs);
    435     }
    436     case M2_mpyu_up: {
    437       RegisterCell M = eMLU(rc(1), rc(2));
    438       return rr0(hi(M, W0), Outputs);
    439     }
    440     case M2_dpmpyuu_s0:
    441       return rr0(eMLU(rc(1), rc(2)), Outputs);
    442     case M2_dpmpyuu_acc_s0:
    443       return rr0(eADD(rc(1), eMLU(rc(2), rc(3))), Outputs);
    444     case M2_dpmpyuu_nac_s0:
    445       return rr0(eSUB(rc(1), eMLU(rc(2), rc(3))), Outputs);
    446     //case M2_mpysu_up:
    447 
    448     // Logical/bitwise:
    449 
    450     case A2_andir:
    451       return rr0(eAND(rc(1), eIMM(im(2), W0)), Outputs);
    452     case A2_and:
    453     case A2_andp:
    454       return rr0(eAND(rc(1), rc(2)), Outputs);
    455     case A4_andn:
    456     case A4_andnp:
    457       return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
    458     case S4_andi_asl_ri: {
    459       RegisterCell RC = eAND(eIMM(im(1), W0), eASL(rc(2), im(3)));
    460       return rr0(RC, Outputs);
    461     }
    462     case S4_andi_lsr_ri: {
    463       RegisterCell RC = eAND(eIMM(im(1), W0), eLSR(rc(2), im(3)));
    464       return rr0(RC, Outputs);
    465     }
    466     case M4_and_and:
    467       return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
    468     case M4_and_andn:
    469       return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
    470     case M4_and_or:
    471       return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
    472     case M4_and_xor:
    473       return rr0(eAND(rc(1), eXOR(rc(2), rc(3))), Outputs);
    474     case A2_orir:
    475       return rr0(eORL(rc(1), eIMM(im(2), W0)), Outputs);
    476     case A2_or:
    477     case A2_orp:
    478       return rr0(eORL(rc(1), rc(2)), Outputs);
    479     case A4_orn:
    480     case A4_ornp:
    481       return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
    482     case S4_ori_asl_ri: {
    483       RegisterCell RC = eORL(eIMM(im(1), W0), eASL(rc(2), im(3)));
    484       return rr0(RC, Outputs);
    485     }
    486     case S4_ori_lsr_ri: {
    487       RegisterCell RC = eORL(eIMM(im(1), W0), eLSR(rc(2), im(3)));
    488       return rr0(RC, Outputs);
    489     }
    490     case M4_or_and:
    491       return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
    492     case M4_or_andn:
    493       return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
    494     case S4_or_andi:
    495     case S4_or_andix: {
    496       RegisterCell RC = eORL(rc(1), eAND(rc(2), eIMM(im(3), W0)));
    497       return rr0(RC, Outputs);
    498     }
    499     case S4_or_ori: {
    500       RegisterCell RC = eORL(rc(1), eORL(rc(2), eIMM(im(3), W0)));
    501       return rr0(RC, Outputs);
    502     }
    503     case M4_or_or:
    504       return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
    505     case M4_or_xor:
    506       return rr0(eORL(rc(1), eXOR(rc(2), rc(3))), Outputs);
    507     case A2_xor:
    508     case A2_xorp:
    509       return rr0(eXOR(rc(1), rc(2)), Outputs);
    510     case M4_xor_and:
    511       return rr0(eXOR(rc(1), eAND(rc(2), rc(3))), Outputs);
    512     case M4_xor_andn:
    513       return rr0(eXOR(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
    514     case M4_xor_or:
    515       return rr0(eXOR(rc(1), eORL(rc(2), rc(3))), Outputs);
    516     case M4_xor_xacc:
    517       return rr0(eXOR(rc(1), eXOR(rc(2), rc(3))), Outputs);
    518     case A2_not:
    519     case A2_notp:
    520       return rr0(eNOT(rc(1)), Outputs);
    521 
    522     case S2_asl_i_r:
    523     case S2_asl_i_p:
    524       return rr0(eASL(rc(1), im(2)), Outputs);
    525     case A2_aslh:
    526       return rr0(eASL(rc(1), 16), Outputs);
    527     case S2_asl_i_r_acc:
    528     case S2_asl_i_p_acc:
    529       return rr0(eADD(rc(1), eASL(rc(2), im(3))), Outputs);
    530     case S2_asl_i_r_nac:
    531     case S2_asl_i_p_nac:
    532       return rr0(eSUB(rc(1), eASL(rc(2), im(3))), Outputs);
    533     case S2_asl_i_r_and:
    534     case S2_asl_i_p_and:
    535       return rr0(eAND(rc(1), eASL(rc(2), im(3))), Outputs);
    536     case S2_asl_i_r_or:
    537     case S2_asl_i_p_or:
    538       return rr0(eORL(rc(1), eASL(rc(2), im(3))), Outputs);
    539     case S2_asl_i_r_xacc:
    540     case S2_asl_i_p_xacc:
    541       return rr0(eXOR(rc(1), eASL(rc(2), im(3))), Outputs);
    542     case S2_asl_i_vh:
    543     case S2_asl_i_vw:
    544       // TODO
    545       break;
    546 
    547     case S2_asr_i_r:
    548     case S2_asr_i_p:
    549       return rr0(eASR(rc(1), im(2)), Outputs);
    550     case A2_asrh:
    551       return rr0(eASR(rc(1), 16), Outputs);
    552     case S2_asr_i_r_acc:
    553     case S2_asr_i_p_acc:
    554       return rr0(eADD(rc(1), eASR(rc(2), im(3))), Outputs);
    555     case S2_asr_i_r_nac:
    556     case S2_asr_i_p_nac:
    557       return rr0(eSUB(rc(1), eASR(rc(2), im(3))), Outputs);
    558     case S2_asr_i_r_and:
    559     case S2_asr_i_p_and:
    560       return rr0(eAND(rc(1), eASR(rc(2), im(3))), Outputs);
    561     case S2_asr_i_r_or:
    562     case S2_asr_i_p_or:
    563       return rr0(eORL(rc(1), eASR(rc(2), im(3))), Outputs);
    564     case S2_asr_i_r_rnd: {
    565       // The input is first sign-extended to 64 bits, then the output
    566       // is truncated back to 32 bits.
    567       assert(W0 == 32);
    568       RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
    569       RegisterCell RC = eASR(eADD(eASR(XC, im(2)), eIMM(1, 2*W0)), 1);
    570       return rr0(eXTR(RC, 0, W0), Outputs);
    571     }
    572     case S2_asr_i_r_rnd_goodsyntax: {
    573       int64_t S = im(2);
    574       if (S == 0)
    575         return rr0(rc(1), Outputs);
    576       // Result: S2_asr_i_r_rnd Rs, u5-1
    577       RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
    578       RegisterCell RC = eLSR(eADD(eASR(XC, S-1), eIMM(1, 2*W0)), 1);
    579       return rr0(eXTR(RC, 0, W0), Outputs);
    580     }
    581     case S2_asr_r_vh:
    582     case S2_asr_i_vw:
    583     case S2_asr_i_svw_trun:
    584       // TODO
    585       break;
    586 
    587     case S2_lsr_i_r:
    588     case S2_lsr_i_p:
    589       return rr0(eLSR(rc(1), im(2)), Outputs);
    590     case S2_lsr_i_r_acc:
    591     case S2_lsr_i_p_acc:
    592       return rr0(eADD(rc(1), eLSR(rc(2), im(3))), Outputs);
    593     case S2_lsr_i_r_nac:
    594     case S2_lsr_i_p_nac:
    595       return rr0(eSUB(rc(1), eLSR(rc(2), im(3))), Outputs);
    596     case S2_lsr_i_r_and:
    597     case S2_lsr_i_p_and:
    598       return rr0(eAND(rc(1), eLSR(rc(2), im(3))), Outputs);
    599     case S2_lsr_i_r_or:
    600     case S2_lsr_i_p_or:
    601       return rr0(eORL(rc(1), eLSR(rc(2), im(3))), Outputs);
    602     case S2_lsr_i_r_xacc:
    603     case S2_lsr_i_p_xacc:
    604       return rr0(eXOR(rc(1), eLSR(rc(2), im(3))), Outputs);
    605 
    606     case S2_clrbit_i: {
    607       RegisterCell RC = rc(1);
    608       RC[im(2)] = BT::BitValue::Zero;
    609       return rr0(RC, Outputs);
    610     }
    611     case S2_setbit_i: {
    612       RegisterCell RC = rc(1);
    613       RC[im(2)] = BT::BitValue::One;
    614       return rr0(RC, Outputs);
    615     }
    616     case S2_togglebit_i: {
    617       RegisterCell RC = rc(1);
    618       uint16_t BX = im(2);
    619       RC[BX] = RC[BX].is(0) ? BT::BitValue::One
    620                             : RC[BX].is(1) ? BT::BitValue::Zero
    621                                            : BT::BitValue::self();
    622       return rr0(RC, Outputs);
    623     }
    624 
    625     case A4_bitspliti: {
    626       uint16_t W1 = getRegBitWidth(Reg[1]);
    627       uint16_t BX = im(2);
    628       // Res.uw[1] = Rs[bx+1:], Res.uw[0] = Rs[0:bx]
    629       const BT::BitValue Zero = BT::BitValue::Zero;
    630       RegisterCell RZ = RegisterCell(W0).fill(BX, W1, Zero)
    631                                         .fill(W1+(W1-BX), W0, Zero);
    632       RegisterCell BF1 = eXTR(rc(1), 0, BX), BF2 = eXTR(rc(1), BX, W1);
    633       RegisterCell RC = eINS(eINS(RZ, BF1, 0), BF2, W1);
    634       return rr0(RC, Outputs);
    635     }
    636     case S4_extract:
    637     case S4_extractp:
    638     case S2_extractu:
    639     case S2_extractup: {
    640       uint16_t Wd = im(2), Of = im(3);
    641       assert(Wd <= W0);
    642       if (Wd == 0)
    643         return rr0(eIMM(0, W0), Outputs);
    644       // If the width extends beyond the register size, pad the register
    645       // with 0 bits.
    646       RegisterCell Pad = (Wd+Of > W0) ? rc(1).cat(eIMM(0, Wd+Of-W0)) : rc(1);
    647       RegisterCell Ext = eXTR(Pad, Of, Wd+Of);
    648       // Ext is short, need to extend it with 0s or sign bit.
    649       RegisterCell RC = RegisterCell(W0).insert(Ext, BT::BitMask(0, Wd-1));
    650       if (Opc == S2_extractu || Opc == S2_extractup)
    651         return rr0(eZXT(RC, Wd), Outputs);
    652       return rr0(eSXT(RC, Wd), Outputs);
    653     }
    654     case S2_insert:
    655     case S2_insertp: {
    656       uint16_t Wd = im(3), Of = im(4);
    657       assert(Wd < W0 && Of < W0);
    658       // If Wd+Of exceeds W0, the inserted bits are truncated.
    659       if (Wd+Of > W0)
    660         Wd = W0-Of;
    661       if (Wd == 0)
    662         return rr0(rc(1), Outputs);
    663       return rr0(eINS(rc(1), eXTR(rc(2), 0, Wd), Of), Outputs);
    664     }
    665 
    666     // Bit permutations:
    667 
    668     case A2_combineii:
    669     case A4_combineii:
    670     case A4_combineir:
    671     case A4_combineri:
    672     case A2_combinew:
    673       assert(W0 % 2 == 0);
    674       return rr0(cop(2, W0/2).cat(cop(1, W0/2)), Outputs);
    675     case A2_combine_ll:
    676     case A2_combine_lh:
    677     case A2_combine_hl:
    678     case A2_combine_hh: {
    679       assert(W0 == 32);
    680       assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
    681       // Low half in the output is 0 for _ll and _hl, 1 otherwise:
    682       unsigned LoH = !(Opc == A2_combine_ll || Opc == A2_combine_hl);
    683       // High half in the output is 0 for _ll and _lh, 1 otherwise:
    684       unsigned HiH = !(Opc == A2_combine_ll || Opc == A2_combine_lh);
    685       RegisterCell R1 = rc(1);
    686       RegisterCell R2 = rc(2);
    687       RegisterCell RC = half(R2, LoH).cat(half(R1, HiH));
    688       return rr0(RC, Outputs);
    689     }
    690     case S2_packhl: {
    691       assert(W0 == 64);
    692       assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
    693       RegisterCell R1 = rc(1);
    694       RegisterCell R2 = rc(2);
    695       RegisterCell RC = half(R2, 0).cat(half(R1, 0)).cat(half(R2, 1))
    696                                    .cat(half(R1, 1));
    697       return rr0(RC, Outputs);
    698     }
    699     case S2_shuffeb: {
    700       RegisterCell RC = shuffle(rc(1), rc(2), 8, false);
    701       return rr0(RC, Outputs);
    702     }
    703     case S2_shuffeh: {
    704       RegisterCell RC = shuffle(rc(1), rc(2), 16, false);
    705       return rr0(RC, Outputs);
    706     }
    707     case S2_shuffob: {
    708       RegisterCell RC = shuffle(rc(1), rc(2), 8, true);
    709       return rr0(RC, Outputs);
    710     }
    711     case S2_shuffoh: {
    712       RegisterCell RC = shuffle(rc(1), rc(2), 16, true);
    713       return rr0(RC, Outputs);
    714     }
    715     case C2_mask: {
    716       uint16_t WR = W0;
    717       uint16_t WP = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
    718       assert(WR == 64 && WP == 8);
    719       RegisterCell R1 = rc(1);
    720       RegisterCell RC(WR);
    721       for (uint16_t i = 0; i < WP; ++i) {
    722         const BT::BitValue &V = R1[i];
    723         BT::BitValue F = (V.is(0) || V.is(1)) ? V : BT::BitValue::self();
    724         RC.fill(i*8, i*8+8, F);
    725       }
    726       return rr0(RC, Outputs);
    727     }
    728 
    729     // Mux:
    730 
    731     case C2_muxii:
    732     case C2_muxir:
    733     case C2_muxri:
    734     case C2_mux: {
    735       BT::BitValue PC0 = rc(1)[0];
    736       RegisterCell R2 = cop(2, W0);
    737       RegisterCell R3 = cop(3, W0);
    738       if (PC0.is(0) || PC0.is(1))
    739         return rr0(RegisterCell::ref(PC0 ? R2 : R3), Outputs);
    740       R2.meet(R3, Reg[0].Reg);
    741       return rr0(R2, Outputs);
    742     }
    743     case C2_vmux:
    744       // TODO
    745       break;
    746 
    747     // Sign- and zero-extension:
    748 
    749     case A2_sxtb:
    750       return rr0(eSXT(rc(1), 8), Outputs);
    751     case A2_sxth:
    752       return rr0(eSXT(rc(1), 16), Outputs);
    753     case A2_sxtw: {
    754       uint16_t W1 = getRegBitWidth(Reg[1]);
    755       assert(W0 == 64 && W1 == 32);
    756       RegisterCell RC = eSXT(rc(1).cat(eIMM(0, W1)), W1);
    757       return rr0(RC, Outputs);
    758     }
    759     case A2_zxtb:
    760       return rr0(eZXT(rc(1), 8), Outputs);
    761     case A2_zxth:
    762       return rr0(eZXT(rc(1), 16), Outputs);
    763 
    764     // Bit count:
    765 
    766     case S2_cl0:
    767     case S2_cl0p:
    768       // Always produce a 32-bit result.
    769       return rr0(eCLB(rc(1), 0/*bit*/, 32), Outputs);
    770     case S2_cl1:
    771     case S2_cl1p:
    772       return rr0(eCLB(rc(1), 1/*bit*/, 32), Outputs);
    773     case S2_clb:
    774     case S2_clbp: {
    775       uint16_t W1 = getRegBitWidth(Reg[1]);
    776       RegisterCell R1 = rc(1);
    777       BT::BitValue TV = R1[W1-1];
    778       if (TV.is(0) || TV.is(1))
    779         return rr0(eCLB(R1, TV, 32), Outputs);
    780       break;
    781     }
    782     case S2_ct0:
    783     case S2_ct0p:
    784       return rr0(eCTB(rc(1), 0/*bit*/, 32), Outputs);
    785     case S2_ct1:
    786     case S2_ct1p:
    787       return rr0(eCTB(rc(1), 1/*bit*/, 32), Outputs);
    788     case S5_popcountp:
    789       // TODO
    790       break;
    791 
    792     case C2_all8: {
    793       RegisterCell P1 = rc(1);
    794       bool Has0 = false, All1 = true;
    795       for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
    796         if (!P1[i].is(1))
    797           All1 = false;
    798         if (!P1[i].is(0))
    799           continue;
    800         Has0 = true;
    801         break;
    802       }
    803       if (!Has0 && !All1)
    804         break;
    805       RegisterCell RC(W0);
    806       RC.fill(0, W0, (All1 ? BT::BitValue::One : BT::BitValue::Zero));
    807       return rr0(RC, Outputs);
    808     }
    809     case C2_any8: {
    810       RegisterCell P1 = rc(1);
    811       bool Has1 = false, All0 = true;
    812       for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
    813         if (!P1[i].is(0))
    814           All0 = false;
    815         if (!P1[i].is(1))
    816           continue;
    817         Has1 = true;
    818         break;
    819       }
    820       if (!Has1 && !All0)
    821         break;
    822       RegisterCell RC(W0);
    823       RC.fill(0, W0, (Has1 ? BT::BitValue::One : BT::BitValue::Zero));
    824       return rr0(RC, Outputs);
    825     }
    826     case C2_and:
    827       return rr0(eAND(rc(1), rc(2)), Outputs);
    828     case C2_andn:
    829       return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
    830     case C2_not:
    831       return rr0(eNOT(rc(1)), Outputs);
    832     case C2_or:
    833       return rr0(eORL(rc(1), rc(2)), Outputs);
    834     case C2_orn:
    835       return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
    836     case C2_xor:
    837       return rr0(eXOR(rc(1), rc(2)), Outputs);
    838     case C4_and_and:
    839       return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
    840     case C4_and_andn:
    841       return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
    842     case C4_and_or:
    843       return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
    844     case C4_and_orn:
    845       return rr0(eAND(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
    846     case C4_or_and:
    847       return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
    848     case C4_or_andn:
    849       return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
    850     case C4_or_or:
    851       return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
    852     case C4_or_orn:
    853       return rr0(eORL(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
    854     case C2_bitsclr:
    855     case C2_bitsclri:
    856     case C2_bitsset:
    857     case C4_nbitsclr:
    858     case C4_nbitsclri:
    859     case C4_nbitsset:
    860       // TODO
    861       break;
    862     case S2_tstbit_i:
    863     case S4_ntstbit_i: {
    864       BT::BitValue V = rc(1)[im(2)];
    865       if (V.is(0) || V.is(1)) {
    866         // If instruction is S2_tstbit_i, test for 1, otherwise test for 0.
    867         bool TV = (Opc == S2_tstbit_i);
    868         BT::BitValue F = V.is(TV) ? BT::BitValue::One : BT::BitValue::Zero;
    869         return rr0(RegisterCell(W0).fill(0, W0, F), Outputs);
    870       }
    871       break;
    872     }
    873 
    874     default:
    875       return MachineEvaluator::evaluate(MI, Inputs, Outputs);
    876   }
    877   #undef im
    878   #undef rc
    879   #undef op
    880   return false;
    881 }
    882 
    883 bool HexagonEvaluator::evaluate(const MachineInstr &BI,
    884                                 const CellMapType &Inputs,
    885                                 BranchTargetList &Targets,
    886                                 bool &FallsThru) const {
    887   // We need to evaluate one branch at a time. TII::AnalyzeBranch checks
    888   // all the branches in a basic block at once, so we cannot use it.
    889   unsigned Opc = BI.getOpcode();
    890   bool SimpleBranch = false;
    891   bool Negated = false;
    892   switch (Opc) {
    893     case Hexagon::J2_jumpf:
    894     case Hexagon::J2_jumpfnew:
    895     case Hexagon::J2_jumpfnewpt:
    896       Negated = true;
    897     case Hexagon::J2_jumpt:
    898     case Hexagon::J2_jumptnew:
    899     case Hexagon::J2_jumptnewpt:
    900       // Simple branch:  if([!]Pn) jump ...
    901       // i.e. Op0 = predicate, Op1 = branch target.
    902       SimpleBranch = true;
    903       break;
    904     case Hexagon::J2_jump:
    905       Targets.insert(BI.getOperand(0).getMBB());
    906       FallsThru = false;
    907       return true;
    908     default:
    909       // If the branch is of unknown type, assume that all successors are
    910       // executable.
    911       return false;
    912   }
    913 
    914   if (!SimpleBranch)
    915     return false;
    916 
    917   // BI is a conditional branch if we got here.
    918   RegisterRef PR = BI.getOperand(0);
    919   RegisterCell PC = getCell(PR, Inputs);
    920   const BT::BitValue &Test = PC[0];
    921 
    922   // If the condition is neither true nor false, then it's unknown.
    923   if (!Test.is(0) && !Test.is(1))
    924     return false;
    925 
    926   // "Test.is(!Negated)" means "branch condition is true".
    927   if (!Test.is(!Negated)) {
    928     // Condition known to be false.
    929     FallsThru = true;
    930     return true;
    931   }
    932 
    933   Targets.insert(BI.getOperand(1).getMBB());
    934   FallsThru = false;
    935   return true;
    936 }
    937 
    938 bool HexagonEvaluator::evaluateLoad(const MachineInstr &MI,
    939                                     const CellMapType &Inputs,
    940                                     CellMapType &Outputs) const {
    941   if (TII.isPredicated(MI))
    942     return false;
    943   assert(MI.mayLoad() && "A load that mayn't?");
    944   unsigned Opc = MI.getOpcode();
    945 
    946   uint16_t BitNum;
    947   bool SignEx;
    948   using namespace Hexagon;
    949 
    950   switch (Opc) {
    951     default:
    952       return false;
    953 
    954 #if 0
    955     // memb_fifo
    956     case L2_loadalignb_pbr:
    957     case L2_loadalignb_pcr:
    958     case L2_loadalignb_pi:
    959     // memh_fifo
    960     case L2_loadalignh_pbr:
    961     case L2_loadalignh_pcr:
    962     case L2_loadalignh_pi:
    963     // membh
    964     case L2_loadbsw2_pbr:
    965     case L2_loadbsw2_pci:
    966     case L2_loadbsw2_pcr:
    967     case L2_loadbsw2_pi:
    968     case L2_loadbsw4_pbr:
    969     case L2_loadbsw4_pci:
    970     case L2_loadbsw4_pcr:
    971     case L2_loadbsw4_pi:
    972     // memubh
    973     case L2_loadbzw2_pbr:
    974     case L2_loadbzw2_pci:
    975     case L2_loadbzw2_pcr:
    976     case L2_loadbzw2_pi:
    977     case L2_loadbzw4_pbr:
    978     case L2_loadbzw4_pci:
    979     case L2_loadbzw4_pcr:
    980     case L2_loadbzw4_pi:
    981 #endif
    982 
    983     case L2_loadrbgp:
    984     case L2_loadrb_io:
    985     case L2_loadrb_pbr:
    986     case L2_loadrb_pci:
    987     case L2_loadrb_pcr:
    988     case L2_loadrb_pi:
    989     case L4_loadrb_abs:
    990     case L4_loadrb_ap:
    991     case L4_loadrb_rr:
    992     case L4_loadrb_ur:
    993       BitNum = 8;
    994       SignEx = true;
    995       break;
    996 
    997     case L2_loadrubgp:
    998     case L2_loadrub_io:
    999     case L2_loadrub_pbr:
   1000     case L2_loadrub_pci:
   1001     case L2_loadrub_pcr:
   1002     case L2_loadrub_pi:
   1003     case L4_loadrub_abs:
   1004     case L4_loadrub_ap:
   1005     case L4_loadrub_rr:
   1006     case L4_loadrub_ur:
   1007       BitNum = 8;
   1008       SignEx = false;
   1009       break;
   1010 
   1011     case L2_loadrhgp:
   1012     case L2_loadrh_io:
   1013     case L2_loadrh_pbr:
   1014     case L2_loadrh_pci:
   1015     case L2_loadrh_pcr:
   1016     case L2_loadrh_pi:
   1017     case L4_loadrh_abs:
   1018     case L4_loadrh_ap:
   1019     case L4_loadrh_rr:
   1020     case L4_loadrh_ur:
   1021       BitNum = 16;
   1022       SignEx = true;
   1023       break;
   1024 
   1025     case L2_loadruhgp:
   1026     case L2_loadruh_io:
   1027     case L2_loadruh_pbr:
   1028     case L2_loadruh_pci:
   1029     case L2_loadruh_pcr:
   1030     case L2_loadruh_pi:
   1031     case L4_loadruh_rr:
   1032     case L4_loadruh_abs:
   1033     case L4_loadruh_ap:
   1034     case L4_loadruh_ur:
   1035       BitNum = 16;
   1036       SignEx = false;
   1037       break;
   1038 
   1039     case L2_loadrigp:
   1040     case L2_loadri_io:
   1041     case L2_loadri_pbr:
   1042     case L2_loadri_pci:
   1043     case L2_loadri_pcr:
   1044     case L2_loadri_pi:
   1045     case L2_loadw_locked:
   1046     case L4_loadri_abs:
   1047     case L4_loadri_ap:
   1048     case L4_loadri_rr:
   1049     case L4_loadri_ur:
   1050     case LDriw_pred:
   1051       BitNum = 32;
   1052       SignEx = true;
   1053       break;
   1054 
   1055     case L2_loadrdgp:
   1056     case L2_loadrd_io:
   1057     case L2_loadrd_pbr:
   1058     case L2_loadrd_pci:
   1059     case L2_loadrd_pcr:
   1060     case L2_loadrd_pi:
   1061     case L4_loadd_locked:
   1062     case L4_loadrd_abs:
   1063     case L4_loadrd_ap:
   1064     case L4_loadrd_rr:
   1065     case L4_loadrd_ur:
   1066       BitNum = 64;
   1067       SignEx = true;
   1068       break;
   1069   }
   1070 
   1071   const MachineOperand &MD = MI.getOperand(0);
   1072   assert(MD.isReg() && MD.isDef());
   1073   RegisterRef RD = MD;
   1074 
   1075   uint16_t W = getRegBitWidth(RD);
   1076   assert(W >= BitNum && BitNum > 0);
   1077   RegisterCell Res(W);
   1078 
   1079   for (uint16_t i = 0; i < BitNum; ++i)
   1080     Res[i] = BT::BitValue::self(BT::BitRef(RD.Reg, i));
   1081 
   1082   if (SignEx) {
   1083     const BT::BitValue &Sign = Res[BitNum-1];
   1084     for (uint16_t i = BitNum; i < W; ++i)
   1085       Res[i] = BT::BitValue::ref(Sign);
   1086   } else {
   1087     for (uint16_t i = BitNum; i < W; ++i)
   1088       Res[i] = BT::BitValue::Zero;
   1089   }
   1090 
   1091   putCell(RD, Res, Outputs);
   1092   return true;
   1093 }
   1094 
   1095 bool HexagonEvaluator::evaluateFormalCopy(const MachineInstr &MI,
   1096                                           const CellMapType &Inputs,
   1097                                           CellMapType &Outputs) const {
   1098   // If MI defines a formal parameter, but is not a copy (loads are handled
   1099   // in evaluateLoad), then it's not clear what to do.
   1100   assert(MI.isCopy());
   1101 
   1102   RegisterRef RD = MI.getOperand(0);
   1103   RegisterRef RS = MI.getOperand(1);
   1104   assert(RD.Sub == 0);
   1105   if (!TargetRegisterInfo::isPhysicalRegister(RS.Reg))
   1106     return false;
   1107   RegExtMap::const_iterator F = VRX.find(RD.Reg);
   1108   if (F == VRX.end())
   1109     return false;
   1110 
   1111   uint16_t EW = F->second.Width;
   1112   // Store RD's cell into the map. This will associate the cell with a virtual
   1113   // register, and make zero-/sign-extends possible (otherwise we would be ex-
   1114   // tending "self" bit values, which will have no effect, since "self" values
   1115   // cannot be references to anything).
   1116   putCell(RD, getCell(RS, Inputs), Outputs);
   1117 
   1118   RegisterCell Res;
   1119   // Read RD's cell from the outputs instead of RS's cell from the inputs:
   1120   if (F->second.Type == ExtType::SExt)
   1121     Res = eSXT(getCell(RD, Outputs), EW);
   1122   else if (F->second.Type == ExtType::ZExt)
   1123     Res = eZXT(getCell(RD, Outputs), EW);
   1124 
   1125   putCell(RD, Res, Outputs);
   1126   return true;
   1127 }
   1128 
   1129 
   1130 unsigned HexagonEvaluator::getNextPhysReg(unsigned PReg, unsigned Width) const {
   1131   using namespace Hexagon;
   1132   bool Is64 = DoubleRegsRegClass.contains(PReg);
   1133   assert(PReg == 0 || Is64 || IntRegsRegClass.contains(PReg));
   1134 
   1135   static const unsigned Phys32[] = { R0, R1, R2, R3, R4, R5 };
   1136   static const unsigned Phys64[] = { D0, D1, D2 };
   1137   const unsigned Num32 = sizeof(Phys32)/sizeof(unsigned);
   1138   const unsigned Num64 = sizeof(Phys64)/sizeof(unsigned);
   1139 
   1140   // Return the first parameter register of the required width.
   1141   if (PReg == 0)
   1142     return (Width <= 32) ? Phys32[0] : Phys64[0];
   1143 
   1144   // Set Idx32, Idx64 in such a way that Idx+1 would give the index of the
   1145   // next register.
   1146   unsigned Idx32 = 0, Idx64 = 0;
   1147   if (!Is64) {
   1148     while (Idx32 < Num32) {
   1149       if (Phys32[Idx32] == PReg)
   1150         break;
   1151       Idx32++;
   1152     }
   1153     Idx64 = Idx32/2;
   1154   } else {
   1155     while (Idx64 < Num64) {
   1156       if (Phys64[Idx64] == PReg)
   1157         break;
   1158       Idx64++;
   1159     }
   1160     Idx32 = Idx64*2+1;
   1161   }
   1162 
   1163   if (Width <= 32)
   1164     return (Idx32+1 < Num32) ? Phys32[Idx32+1] : 0;
   1165   return (Idx64+1 < Num64) ? Phys64[Idx64+1] : 0;
   1166 }
   1167 
   1168 
   1169 unsigned HexagonEvaluator::getVirtRegFor(unsigned PReg) const {
   1170   typedef MachineRegisterInfo::livein_iterator iterator;
   1171   for (iterator I = MRI.livein_begin(), E = MRI.livein_end(); I != E; ++I) {
   1172     if (I->first == PReg)
   1173       return I->second;
   1174   }
   1175   return 0;
   1176 }
   1177