Home | History | Annotate | Download | only in WebAssembly
      1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// \brief This file implements a register stacking pass.
     12 ///
     13 /// This pass reorders instructions to put register uses and defs in an order
     14 /// such that they form single-use expression trees. Registers fitting this form
     15 /// are then marked as "stackified", meaning references to them are replaced by
     16 /// "push" and "pop" from the stack.
     17 ///
     18 /// This is primarily a code size optimization, since temporary values on the
     19 /// expression don't need to be named.
     20 ///
     21 //===----------------------------------------------------------------------===//
     22 
     23 #include "WebAssembly.h"
     24 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_*
     25 #include "WebAssemblyMachineFunctionInfo.h"
     26 #include "WebAssemblySubtarget.h"
     27 #include "llvm/Analysis/AliasAnalysis.h"
     28 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     29 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
     30 #include "llvm/CodeGen/MachineDominators.h"
     31 #include "llvm/CodeGen/MachineInstrBuilder.h"
     32 #include "llvm/CodeGen/MachineRegisterInfo.h"
     33 #include "llvm/CodeGen/Passes.h"
     34 #include "llvm/Support/Debug.h"
     35 #include "llvm/Support/raw_ostream.h"
     36 using namespace llvm;
     37 
     38 #define DEBUG_TYPE "wasm-reg-stackify"
     39 
     40 namespace {
     41 class WebAssemblyRegStackify final : public MachineFunctionPass {
     42   const char *getPassName() const override {
     43     return "WebAssembly Register Stackify";
     44   }
     45 
     46   void getAnalysisUsage(AnalysisUsage &AU) const override {
     47     AU.setPreservesCFG();
     48     AU.addRequired<AAResultsWrapperPass>();
     49     AU.addRequired<MachineDominatorTree>();
     50     AU.addRequired<LiveIntervals>();
     51     AU.addPreserved<MachineBlockFrequencyInfo>();
     52     AU.addPreserved<SlotIndexes>();
     53     AU.addPreserved<LiveIntervals>();
     54     AU.addPreservedID(LiveVariablesID);
     55     AU.addPreserved<MachineDominatorTree>();
     56     MachineFunctionPass::getAnalysisUsage(AU);
     57   }
     58 
     59   bool runOnMachineFunction(MachineFunction &MF) override;
     60 
     61 public:
     62   static char ID; // Pass identification, replacement for typeid
     63   WebAssemblyRegStackify() : MachineFunctionPass(ID) {}
     64 };
     65 } // end anonymous namespace
     66 
     67 char WebAssemblyRegStackify::ID = 0;
     68 FunctionPass *llvm::createWebAssemblyRegStackify() {
     69   return new WebAssemblyRegStackify();
     70 }
     71 
     72 // Decorate the given instruction with implicit operands that enforce the
     73 // expression stack ordering constraints for an instruction which is on
     74 // the expression stack.
     75 static void ImposeStackOrdering(MachineInstr *MI) {
     76   // Write the opaque EXPR_STACK register.
     77   if (!MI->definesRegister(WebAssembly::EXPR_STACK))
     78     MI->addOperand(MachineOperand::CreateReg(WebAssembly::EXPR_STACK,
     79                                              /*isDef=*/true,
     80                                              /*isImp=*/true));
     81 
     82   // Also read the opaque EXPR_STACK register.
     83   if (!MI->readsRegister(WebAssembly::EXPR_STACK))
     84     MI->addOperand(MachineOperand::CreateReg(WebAssembly::EXPR_STACK,
     85                                              /*isDef=*/false,
     86                                              /*isImp=*/true));
     87 }
     88 
     89 // Determine whether a call to the callee referenced by
     90 // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side
     91 // effects.
     92 static void QueryCallee(const MachineInstr &MI, unsigned CalleeOpNo, bool &Read,
     93                         bool &Write, bool &Effects, bool &StackPointer) {
     94   // All calls can use the stack pointer.
     95   StackPointer = true;
     96 
     97   const MachineOperand &MO = MI.getOperand(CalleeOpNo);
     98   if (MO.isGlobal()) {
     99     const Constant *GV = MO.getGlobal();
    100     if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
    101       if (!GA->isInterposable())
    102         GV = GA->getAliasee();
    103 
    104     if (const Function *F = dyn_cast<Function>(GV)) {
    105       if (!F->doesNotThrow())
    106         Effects = true;
    107       if (F->doesNotAccessMemory())
    108         return;
    109       if (F->onlyReadsMemory()) {
    110         Read = true;
    111         return;
    112       }
    113     }
    114   }
    115 
    116   // Assume the worst.
    117   Write = true;
    118   Read = true;
    119   Effects = true;
    120 }
    121 
    122 // Determine whether MI reads memory, writes memory, has side effects,
    123 // and/or uses the __stack_pointer value.
    124 static void Query(const MachineInstr &MI, AliasAnalysis &AA, bool &Read,
    125                   bool &Write, bool &Effects, bool &StackPointer) {
    126   assert(!MI.isPosition());
    127   assert(!MI.isTerminator());
    128 
    129   if (MI.isDebugValue())
    130     return;
    131 
    132   // Check for loads.
    133   if (MI.mayLoad() && !MI.isInvariantLoad(&AA))
    134     Read = true;
    135 
    136   // Check for stores.
    137   if (MI.mayStore()) {
    138     Write = true;
    139 
    140     // Check for stores to __stack_pointer.
    141     for (auto MMO : MI.memoperands()) {
    142       const MachinePointerInfo &MPI = MMO->getPointerInfo();
    143       if (MPI.V.is<const PseudoSourceValue *>()) {
    144         auto PSV = MPI.V.get<const PseudoSourceValue *>();
    145         if (const ExternalSymbolPseudoSourceValue *EPSV =
    146                 dyn_cast<ExternalSymbolPseudoSourceValue>(PSV))
    147           if (StringRef(EPSV->getSymbol()) == "__stack_pointer")
    148             StackPointer = true;
    149       }
    150     }
    151   } else if (MI.hasOrderedMemoryRef()) {
    152     switch (MI.getOpcode()) {
    153     case WebAssembly::DIV_S_I32: case WebAssembly::DIV_S_I64:
    154     case WebAssembly::REM_S_I32: case WebAssembly::REM_S_I64:
    155     case WebAssembly::DIV_U_I32: case WebAssembly::DIV_U_I64:
    156     case WebAssembly::REM_U_I32: case WebAssembly::REM_U_I64:
    157     case WebAssembly::I32_TRUNC_S_F32: case WebAssembly::I64_TRUNC_S_F32:
    158     case WebAssembly::I32_TRUNC_S_F64: case WebAssembly::I64_TRUNC_S_F64:
    159     case WebAssembly::I32_TRUNC_U_F32: case WebAssembly::I64_TRUNC_U_F32:
    160     case WebAssembly::I32_TRUNC_U_F64: case WebAssembly::I64_TRUNC_U_F64:
    161       // These instruction have hasUnmodeledSideEffects() returning true
    162       // because they trap on overflow and invalid so they can't be arbitrarily
    163       // moved, however hasOrderedMemoryRef() interprets this plus their lack
    164       // of memoperands as having a potential unknown memory reference.
    165       break;
    166     default:
    167       // Record volatile accesses, unless it's a call, as calls are handled
    168       // specially below.
    169       if (!MI.isCall()) {
    170         Write = true;
    171         Effects = true;
    172       }
    173       break;
    174     }
    175   }
    176 
    177   // Check for side effects.
    178   if (MI.hasUnmodeledSideEffects()) {
    179     switch (MI.getOpcode()) {
    180     case WebAssembly::DIV_S_I32: case WebAssembly::DIV_S_I64:
    181     case WebAssembly::REM_S_I32: case WebAssembly::REM_S_I64:
    182     case WebAssembly::DIV_U_I32: case WebAssembly::DIV_U_I64:
    183     case WebAssembly::REM_U_I32: case WebAssembly::REM_U_I64:
    184     case WebAssembly::I32_TRUNC_S_F32: case WebAssembly::I64_TRUNC_S_F32:
    185     case WebAssembly::I32_TRUNC_S_F64: case WebAssembly::I64_TRUNC_S_F64:
    186     case WebAssembly::I32_TRUNC_U_F32: case WebAssembly::I64_TRUNC_U_F32:
    187     case WebAssembly::I32_TRUNC_U_F64: case WebAssembly::I64_TRUNC_U_F64:
    188       // These instructions have hasUnmodeledSideEffects() returning true
    189       // because they trap on overflow and invalid so they can't be arbitrarily
    190       // moved, however in the specific case of register stackifying, it is safe
    191       // to move them because overflow and invalid are Undefined Behavior.
    192       break;
    193     default:
    194       Effects = true;
    195       break;
    196     }
    197   }
    198 
    199   // Analyze calls.
    200   if (MI.isCall()) {
    201     switch (MI.getOpcode()) {
    202     case WebAssembly::CALL_VOID:
    203     case WebAssembly::CALL_INDIRECT_VOID:
    204       QueryCallee(MI, 0, Read, Write, Effects, StackPointer);
    205       break;
    206     case WebAssembly::CALL_I32: case WebAssembly::CALL_I64:
    207     case WebAssembly::CALL_F32: case WebAssembly::CALL_F64:
    208     case WebAssembly::CALL_INDIRECT_I32: case WebAssembly::CALL_INDIRECT_I64:
    209     case WebAssembly::CALL_INDIRECT_F32: case WebAssembly::CALL_INDIRECT_F64:
    210       QueryCallee(MI, 1, Read, Write, Effects, StackPointer);
    211       break;
    212     default:
    213       llvm_unreachable("unexpected call opcode");
    214     }
    215   }
    216 }
    217 
    218 // Test whether Def is safe and profitable to rematerialize.
    219 static bool ShouldRematerialize(const MachineInstr &Def, AliasAnalysis &AA,
    220                                 const WebAssemblyInstrInfo *TII) {
    221   return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def, &AA);
    222 }
    223 
    224 // Identify the definition for this register at this point. This is a
    225 // generalization of MachineRegisterInfo::getUniqueVRegDef that uses
    226 // LiveIntervals to handle complex cases.
    227 static MachineInstr *GetVRegDef(unsigned Reg, const MachineInstr *Insert,
    228                                 const MachineRegisterInfo &MRI,
    229                                 const LiveIntervals &LIS)
    230 {
    231   // Most registers are in SSA form here so we try a quick MRI query first.
    232   if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg))
    233     return Def;
    234 
    235   // MRI doesn't know what the Def is. Try asking LIS.
    236   if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore(
    237           LIS.getInstructionIndex(*Insert)))
    238     return LIS.getInstructionFromIndex(ValNo->def);
    239 
    240   return nullptr;
    241 }
    242 
    243 // Test whether Reg, as defined at Def, has exactly one use. This is a
    244 // generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals
    245 // to handle complex cases.
    246 static bool HasOneUse(unsigned Reg, MachineInstr *Def,
    247                       MachineRegisterInfo &MRI, MachineDominatorTree &MDT,
    248                       LiveIntervals &LIS) {
    249   // Most registers are in SSA form here so we try a quick MRI query first.
    250   if (MRI.hasOneUse(Reg))
    251     return true;
    252 
    253   bool HasOne = false;
    254   const LiveInterval &LI = LIS.getInterval(Reg);
    255   const VNInfo *DefVNI = LI.getVNInfoAt(
    256       LIS.getInstructionIndex(*Def).getRegSlot());
    257   assert(DefVNI);
    258   for (auto I : MRI.use_nodbg_operands(Reg)) {
    259     const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent()));
    260     if (Result.valueIn() == DefVNI) {
    261       if (!Result.isKill())
    262         return false;
    263       if (HasOne)
    264         return false;
    265       HasOne = true;
    266     }
    267   }
    268   return HasOne;
    269 }
    270 
    271 // Test whether it's safe to move Def to just before Insert.
    272 // TODO: Compute memory dependencies in a way that doesn't require always
    273 // walking the block.
    274 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be
    275 // more precise.
    276 static bool IsSafeToMove(const MachineInstr *Def, const MachineInstr *Insert,
    277                          AliasAnalysis &AA, const LiveIntervals &LIS,
    278                          const MachineRegisterInfo &MRI) {
    279   assert(Def->getParent() == Insert->getParent());
    280 
    281   // Check for register dependencies.
    282   for (const MachineOperand &MO : Def->operands()) {
    283     if (!MO.isReg() || MO.isUndef())
    284       continue;
    285     unsigned Reg = MO.getReg();
    286 
    287     // If the register is dead here and at Insert, ignore it.
    288     if (MO.isDead() && Insert->definesRegister(Reg) &&
    289         !Insert->readsRegister(Reg))
    290       continue;
    291 
    292     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
    293       // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions
    294       // from moving down, and we've already checked for that.
    295       if (Reg == WebAssembly::ARGUMENTS)
    296         continue;
    297       // If the physical register is never modified, ignore it.
    298       if (!MRI.isPhysRegModified(Reg))
    299         continue;
    300       // Otherwise, it's a physical register with unknown liveness.
    301       return false;
    302     }
    303 
    304     // Ask LiveIntervals whether moving this virtual register use or def to
    305     // Insert will change which value numbers are seen.
    306     //
    307     // If the operand is a use of a register that is also defined in the same
    308     // instruction, test that the newly defined value reaches the insert point,
    309     // since the operand will be moving along with the def.
    310     const LiveInterval &LI = LIS.getInterval(Reg);
    311     VNInfo *DefVNI =
    312         (MO.isDef() || Def->definesRegister(Reg)) ?
    313         LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot()) :
    314         LI.getVNInfoBefore(LIS.getInstructionIndex(*Def));
    315     assert(DefVNI && "Instruction input missing value number");
    316     VNInfo *InsVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*Insert));
    317     if (InsVNI && DefVNI != InsVNI)
    318       return false;
    319   }
    320 
    321   bool Read = false, Write = false, Effects = false, StackPointer = false;
    322   Query(*Def, AA, Read, Write, Effects, StackPointer);
    323 
    324   // If the instruction does not access memory and has no side effects, it has
    325   // no additional dependencies.
    326   if (!Read && !Write && !Effects && !StackPointer)
    327     return true;
    328 
    329   // Scan through the intervening instructions between Def and Insert.
    330   MachineBasicBlock::const_iterator D(Def), I(Insert);
    331   for (--I; I != D; --I) {
    332     bool InterveningRead = false;
    333     bool InterveningWrite = false;
    334     bool InterveningEffects = false;
    335     bool InterveningStackPointer = false;
    336     Query(*I, AA, InterveningRead, InterveningWrite, InterveningEffects,
    337           InterveningStackPointer);
    338     if (Effects && InterveningEffects)
    339       return false;
    340     if (Read && InterveningWrite)
    341       return false;
    342     if (Write && (InterveningRead || InterveningWrite))
    343       return false;
    344     if (StackPointer && InterveningStackPointer)
    345       return false;
    346   }
    347 
    348   return true;
    349 }
    350 
    351 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses.
    352 static bool OneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse,
    353                                      const MachineBasicBlock &MBB,
    354                                      const MachineRegisterInfo &MRI,
    355                                      const MachineDominatorTree &MDT,
    356                                      LiveIntervals &LIS,
    357                                      WebAssemblyFunctionInfo &MFI) {
    358   const LiveInterval &LI = LIS.getInterval(Reg);
    359 
    360   const MachineInstr *OneUseInst = OneUse.getParent();
    361   VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst));
    362 
    363   for (const MachineOperand &Use : MRI.use_operands(Reg)) {
    364     if (&Use == &OneUse)
    365       continue;
    366 
    367     const MachineInstr *UseInst = Use.getParent();
    368     VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst));
    369 
    370     if (UseVNI != OneUseVNI)
    371       continue;
    372 
    373     const MachineInstr *OneUseInst = OneUse.getParent();
    374     if (UseInst == OneUseInst) {
    375       // Another use in the same instruction. We need to ensure that the one
    376       // selected use happens "before" it.
    377       if (&OneUse > &Use)
    378         return false;
    379     } else {
    380       // Test that the use is dominated by the one selected use.
    381       while (!MDT.dominates(OneUseInst, UseInst)) {
    382         // Actually, dominating is over-conservative. Test that the use would
    383         // happen after the one selected use in the stack evaluation order.
    384         //
    385         // This is needed as a consequence of using implicit get_locals for
    386         // uses and implicit set_locals for defs.
    387         if (UseInst->getDesc().getNumDefs() == 0)
    388           return false;
    389         const MachineOperand &MO = UseInst->getOperand(0);
    390         if (!MO.isReg())
    391           return false;
    392         unsigned DefReg = MO.getReg();
    393         if (!TargetRegisterInfo::isVirtualRegister(DefReg) ||
    394             !MFI.isVRegStackified(DefReg))
    395           return false;
    396         assert(MRI.hasOneUse(DefReg));
    397         const MachineOperand &NewUse = *MRI.use_begin(DefReg);
    398         const MachineInstr *NewUseInst = NewUse.getParent();
    399         if (NewUseInst == OneUseInst) {
    400           if (&OneUse > &NewUse)
    401             return false;
    402           break;
    403         }
    404         UseInst = NewUseInst;
    405       }
    406     }
    407   }
    408   return true;
    409 }
    410 
    411 /// Get the appropriate tee_local opcode for the given register class.
    412 static unsigned GetTeeLocalOpcode(const TargetRegisterClass *RC) {
    413   if (RC == &WebAssembly::I32RegClass)
    414     return WebAssembly::TEE_LOCAL_I32;
    415   if (RC == &WebAssembly::I64RegClass)
    416     return WebAssembly::TEE_LOCAL_I64;
    417   if (RC == &WebAssembly::F32RegClass)
    418     return WebAssembly::TEE_LOCAL_F32;
    419   if (RC == &WebAssembly::F64RegClass)
    420     return WebAssembly::TEE_LOCAL_F64;
    421   llvm_unreachable("Unexpected register class");
    422 }
    423 
    424 // Shrink LI to its uses, cleaning up LI.
    425 static void ShrinkToUses(LiveInterval &LI, LiveIntervals &LIS) {
    426   if (LIS.shrinkToUses(&LI)) {
    427     SmallVector<LiveInterval*, 4> SplitLIs;
    428     LIS.splitSeparateComponents(LI, SplitLIs);
    429   }
    430 }
    431 
    432 /// A single-use def in the same block with no intervening memory or register
    433 /// dependencies; move the def down and nest it with the current instruction.
    434 static MachineInstr *MoveForSingleUse(unsigned Reg, MachineOperand& Op,
    435                                       MachineInstr *Def,
    436                                       MachineBasicBlock &MBB,
    437                                       MachineInstr *Insert, LiveIntervals &LIS,
    438                                       WebAssemblyFunctionInfo &MFI,
    439                                       MachineRegisterInfo &MRI) {
    440   DEBUG(dbgs() << "Move for single use: "; Def->dump());
    441 
    442   MBB.splice(Insert, &MBB, Def);
    443   LIS.handleMove(*Def);
    444 
    445   if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) {
    446     // No one else is using this register for anything so we can just stackify
    447     // it in place.
    448     MFI.stackifyVReg(Reg);
    449   } else {
    450     // The register may have unrelated uses or defs; create a new register for
    451     // just our one def and use so that we can stackify it.
    452     unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
    453     Def->getOperand(0).setReg(NewReg);
    454     Op.setReg(NewReg);
    455 
    456     // Tell LiveIntervals about the new register.
    457     LIS.createAndComputeVirtRegInterval(NewReg);
    458 
    459     // Tell LiveIntervals about the changes to the old register.
    460     LiveInterval &LI = LIS.getInterval(Reg);
    461     LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(),
    462                      LIS.getInstructionIndex(*Op.getParent()).getRegSlot(),
    463                      /*RemoveDeadValNo=*/true);
    464 
    465     MFI.stackifyVReg(NewReg);
    466 
    467     DEBUG(dbgs() << " - Replaced register: "; Def->dump());
    468   }
    469 
    470   ImposeStackOrdering(Def);
    471   return Def;
    472 }
    473 
    474 /// A trivially cloneable instruction; clone it and nest the new copy with the
    475 /// current instruction.
    476 static MachineInstr *RematerializeCheapDef(
    477     unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB,
    478     MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS,
    479     WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI,
    480     const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) {
    481   DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump());
    482   DEBUG(dbgs() << " - for use in "; Op.getParent()->dump());
    483 
    484   unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
    485   TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI);
    486   Op.setReg(NewReg);
    487   MachineInstr *Clone = &*std::prev(Insert);
    488   LIS.InsertMachineInstrInMaps(*Clone);
    489   LIS.createAndComputeVirtRegInterval(NewReg);
    490   MFI.stackifyVReg(NewReg);
    491   ImposeStackOrdering(Clone);
    492 
    493   DEBUG(dbgs() << " - Cloned to "; Clone->dump());
    494 
    495   // Shrink the interval.
    496   bool IsDead = MRI.use_empty(Reg);
    497   if (!IsDead) {
    498     LiveInterval &LI = LIS.getInterval(Reg);
    499     ShrinkToUses(LI, LIS);
    500     IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot());
    501   }
    502 
    503   // If that was the last use of the original, delete the original.
    504   if (IsDead) {
    505     DEBUG(dbgs() << " - Deleting original\n");
    506     SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot();
    507     LIS.removePhysRegDefAt(WebAssembly::ARGUMENTS, Idx);
    508     LIS.removeInterval(Reg);
    509     LIS.RemoveMachineInstrFromMaps(Def);
    510     Def.eraseFromParent();
    511   }
    512 
    513   return Clone;
    514 }
    515 
    516 /// A multiple-use def in the same block with no intervening memory or register
    517 /// dependencies; move the def down, nest it with the current instruction, and
    518 /// insert a tee_local to satisfy the rest of the uses. As an illustration,
    519 /// rewrite this:
    520 ///
    521 ///    Reg = INST ...        // Def
    522 ///    INST ..., Reg, ...    // Insert
    523 ///    INST ..., Reg, ...
    524 ///    INST ..., Reg, ...
    525 ///
    526 /// to this:
    527 ///
    528 ///    DefReg = INST ...     // Def (to become the new Insert)
    529 ///    TeeReg, Reg = TEE_LOCAL_... DefReg
    530 ///    INST ..., TeeReg, ... // Insert
    531 ///    INST ..., Reg, ...
    532 ///    INST ..., Reg, ...
    533 ///
    534 /// with DefReg and TeeReg stackified. This eliminates a get_local from the
    535 /// resulting code.
    536 static MachineInstr *MoveAndTeeForMultiUse(
    537     unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB,
    538     MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI,
    539     MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) {
    540   DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump());
    541 
    542   // Move Def into place.
    543   MBB.splice(Insert, &MBB, Def);
    544   LIS.handleMove(*Def);
    545 
    546   // Create the Tee and attach the registers.
    547   const auto *RegClass = MRI.getRegClass(Reg);
    548   unsigned TeeReg = MRI.createVirtualRegister(RegClass);
    549   unsigned DefReg = MRI.createVirtualRegister(RegClass);
    550   MachineOperand &DefMO = Def->getOperand(0);
    551   MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(),
    552                               TII->get(GetTeeLocalOpcode(RegClass)), TeeReg)
    553                           .addReg(Reg, RegState::Define)
    554                           .addReg(DefReg, getUndefRegState(DefMO.isDead()));
    555   Op.setReg(TeeReg);
    556   DefMO.setReg(DefReg);
    557   SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot();
    558   SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot();
    559 
    560   // Tell LiveIntervals we moved the original vreg def from Def to Tee.
    561   LiveInterval &LI = LIS.getInterval(Reg);
    562   LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx);
    563   VNInfo *ValNo = LI.getVNInfoAt(DefIdx);
    564   I->start = TeeIdx;
    565   ValNo->def = TeeIdx;
    566   ShrinkToUses(LI, LIS);
    567 
    568   // Finish stackifying the new regs.
    569   LIS.createAndComputeVirtRegInterval(TeeReg);
    570   LIS.createAndComputeVirtRegInterval(DefReg);
    571   MFI.stackifyVReg(DefReg);
    572   MFI.stackifyVReg(TeeReg);
    573   ImposeStackOrdering(Def);
    574   ImposeStackOrdering(Tee);
    575 
    576   DEBUG(dbgs() << " - Replaced register: "; Def->dump());
    577   DEBUG(dbgs() << " - Tee instruction: "; Tee->dump());
    578   return Def;
    579 }
    580 
    581 namespace {
    582 /// A stack for walking the tree of instructions being built, visiting the
    583 /// MachineOperands in DFS order.
    584 class TreeWalkerState {
    585   typedef MachineInstr::mop_iterator mop_iterator;
    586   typedef std::reverse_iterator<mop_iterator> mop_reverse_iterator;
    587   typedef iterator_range<mop_reverse_iterator> RangeTy;
    588   SmallVector<RangeTy, 4> Worklist;
    589 
    590 public:
    591   explicit TreeWalkerState(MachineInstr *Insert) {
    592     const iterator_range<mop_iterator> &Range = Insert->explicit_uses();
    593     if (Range.begin() != Range.end())
    594       Worklist.push_back(reverse(Range));
    595   }
    596 
    597   bool Done() const { return Worklist.empty(); }
    598 
    599   MachineOperand &Pop() {
    600     RangeTy &Range = Worklist.back();
    601     MachineOperand &Op = *Range.begin();
    602     Range = drop_begin(Range, 1);
    603     if (Range.begin() == Range.end())
    604       Worklist.pop_back();
    605     assert((Worklist.empty() ||
    606             Worklist.back().begin() != Worklist.back().end()) &&
    607            "Empty ranges shouldn't remain in the worklist");
    608     return Op;
    609   }
    610 
    611   /// Push Instr's operands onto the stack to be visited.
    612   void PushOperands(MachineInstr *Instr) {
    613     const iterator_range<mop_iterator> &Range(Instr->explicit_uses());
    614     if (Range.begin() != Range.end())
    615       Worklist.push_back(reverse(Range));
    616   }
    617 
    618   /// Some of Instr's operands are on the top of the stack; remove them and
    619   /// re-insert them starting from the beginning (because we've commuted them).
    620   void ResetTopOperands(MachineInstr *Instr) {
    621     assert(HasRemainingOperands(Instr) &&
    622            "Reseting operands should only be done when the instruction has "
    623            "an operand still on the stack");
    624     Worklist.back() = reverse(Instr->explicit_uses());
    625   }
    626 
    627   /// Test whether Instr has operands remaining to be visited at the top of
    628   /// the stack.
    629   bool HasRemainingOperands(const MachineInstr *Instr) const {
    630     if (Worklist.empty())
    631       return false;
    632     const RangeTy &Range = Worklist.back();
    633     return Range.begin() != Range.end() && Range.begin()->getParent() == Instr;
    634   }
    635 
    636   /// Test whether the given register is present on the stack, indicating an
    637   /// operand in the tree that we haven't visited yet. Moving a definition of
    638   /// Reg to a point in the tree after that would change its value.
    639   ///
    640   /// This is needed as a consequence of using implicit get_locals for
    641   /// uses and implicit set_locals for defs.
    642   bool IsOnStack(unsigned Reg) const {
    643     for (const RangeTy &Range : Worklist)
    644       for (const MachineOperand &MO : Range)
    645         if (MO.isReg() && MO.getReg() == Reg)
    646           return true;
    647     return false;
    648   }
    649 };
    650 
    651 /// State to keep track of whether commuting is in flight or whether it's been
    652 /// tried for the current instruction and didn't work.
    653 class CommutingState {
    654   /// There are effectively three states: the initial state where we haven't
    655   /// started commuting anything and we don't know anything yet, the tenative
    656   /// state where we've commuted the operands of the current instruction and are
    657   /// revisting it, and the declined state where we've reverted the operands
    658   /// back to their original order and will no longer commute it further.
    659   bool TentativelyCommuting;
    660   bool Declined;
    661 
    662   /// During the tentative state, these hold the operand indices of the commuted
    663   /// operands.
    664   unsigned Operand0, Operand1;
    665 
    666 public:
    667   CommutingState() : TentativelyCommuting(false), Declined(false) {}
    668 
    669   /// Stackification for an operand was not successful due to ordering
    670   /// constraints. If possible, and if we haven't already tried it and declined
    671   /// it, commute Insert's operands and prepare to revisit it.
    672   void MaybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker,
    673                     const WebAssemblyInstrInfo *TII) {
    674     if (TentativelyCommuting) {
    675       assert(!Declined &&
    676              "Don't decline commuting until you've finished trying it");
    677       // Commuting didn't help. Revert it.
    678       TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
    679       TentativelyCommuting = false;
    680       Declined = true;
    681     } else if (!Declined && TreeWalker.HasRemainingOperands(Insert)) {
    682       Operand0 = TargetInstrInfo::CommuteAnyOperandIndex;
    683       Operand1 = TargetInstrInfo::CommuteAnyOperandIndex;
    684       if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) {
    685         // Tentatively commute the operands and try again.
    686         TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
    687         TreeWalker.ResetTopOperands(Insert);
    688         TentativelyCommuting = true;
    689         Declined = false;
    690       }
    691     }
    692   }
    693 
    694   /// Stackification for some operand was successful. Reset to the default
    695   /// state.
    696   void Reset() {
    697     TentativelyCommuting = false;
    698     Declined = false;
    699   }
    700 };
    701 } // end anonymous namespace
    702 
    703 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) {
    704   DEBUG(dbgs() << "********** Register Stackifying **********\n"
    705                   "********** Function: "
    706                << MF.getName() << '\n');
    707 
    708   bool Changed = false;
    709   MachineRegisterInfo &MRI = MF.getRegInfo();
    710   WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
    711   const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
    712   const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo();
    713   AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
    714   MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
    715   LiveIntervals &LIS = getAnalysis<LiveIntervals>();
    716 
    717   // Walk the instructions from the bottom up. Currently we don't look past
    718   // block boundaries, and the blocks aren't ordered so the block visitation
    719   // order isn't significant, but we may want to change this in the future.
    720   for (MachineBasicBlock &MBB : MF) {
    721     // Don't use a range-based for loop, because we modify the list as we're
    722     // iterating over it and the end iterator may change.
    723     for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) {
    724       MachineInstr *Insert = &*MII;
    725       // Don't nest anything inside an inline asm, because we don't have
    726       // constraints for $push inputs.
    727       if (Insert->getOpcode() == TargetOpcode::INLINEASM)
    728         continue;
    729 
    730       // Ignore debugging intrinsics.
    731       if (Insert->getOpcode() == TargetOpcode::DBG_VALUE)
    732         continue;
    733 
    734       // Iterate through the inputs in reverse order, since we'll be pulling
    735       // operands off the stack in LIFO order.
    736       CommutingState Commuting;
    737       TreeWalkerState TreeWalker(Insert);
    738       while (!TreeWalker.Done()) {
    739         MachineOperand &Op = TreeWalker.Pop();
    740 
    741         // We're only interested in explicit virtual register operands.
    742         if (!Op.isReg())
    743           continue;
    744 
    745         unsigned Reg = Op.getReg();
    746         assert(Op.isUse() && "explicit_uses() should only iterate over uses");
    747         assert(!Op.isImplicit() &&
    748                "explicit_uses() should only iterate over explicit operands");
    749         if (TargetRegisterInfo::isPhysicalRegister(Reg))
    750           continue;
    751 
    752         // Identify the definition for this register at this point. Most
    753         // registers are in SSA form here so we try a quick MRI query first.
    754         MachineInstr *Def = GetVRegDef(Reg, Insert, MRI, LIS);
    755         if (!Def)
    756           continue;
    757 
    758         // Don't nest an INLINE_ASM def into anything, because we don't have
    759         // constraints for $pop outputs.
    760         if (Def->getOpcode() == TargetOpcode::INLINEASM)
    761           continue;
    762 
    763         // Argument instructions represent live-in registers and not real
    764         // instructions.
    765         if (Def->getOpcode() == WebAssembly::ARGUMENT_I32 ||
    766             Def->getOpcode() == WebAssembly::ARGUMENT_I64 ||
    767             Def->getOpcode() == WebAssembly::ARGUMENT_F32 ||
    768             Def->getOpcode() == WebAssembly::ARGUMENT_F64)
    769           continue;
    770 
    771         // Decide which strategy to take. Prefer to move a single-use value
    772         // over cloning it, and prefer cloning over introducing a tee_local.
    773         // For moving, we require the def to be in the same block as the use;
    774         // this makes things simpler (LiveIntervals' handleMove function only
    775         // supports intra-block moves) and it's MachineSink's job to catch all
    776         // the sinking opportunities anyway.
    777         bool SameBlock = Def->getParent() == &MBB;
    778         bool CanMove = SameBlock && IsSafeToMove(Def, Insert, AA, LIS, MRI) &&
    779                        !TreeWalker.IsOnStack(Reg);
    780         if (CanMove && HasOneUse(Reg, Def, MRI, MDT, LIS)) {
    781           Insert = MoveForSingleUse(Reg, Op, Def, MBB, Insert, LIS, MFI, MRI);
    782         } else if (ShouldRematerialize(*Def, AA, TII)) {
    783           Insert =
    784               RematerializeCheapDef(Reg, Op, *Def, MBB, Insert->getIterator(),
    785                                     LIS, MFI, MRI, TII, TRI);
    786         } else if (CanMove &&
    787                    OneUseDominatesOtherUses(Reg, Op, MBB, MRI, MDT, LIS, MFI)) {
    788           Insert = MoveAndTeeForMultiUse(Reg, Op, Def, MBB, Insert, LIS, MFI,
    789                                          MRI, TII);
    790         } else {
    791           // We failed to stackify the operand. If the problem was ordering
    792           // constraints, Commuting may be able to help.
    793           if (!CanMove && SameBlock)
    794             Commuting.MaybeCommute(Insert, TreeWalker, TII);
    795           // Proceed to the next operand.
    796           continue;
    797         }
    798 
    799         // We stackified an operand. Add the defining instruction's operands to
    800         // the worklist stack now to continue to build an ever deeper tree.
    801         Commuting.Reset();
    802         TreeWalker.PushOperands(Insert);
    803       }
    804 
    805       // If we stackified any operands, skip over the tree to start looking for
    806       // the next instruction we can build a tree on.
    807       if (Insert != &*MII) {
    808         ImposeStackOrdering(&*MII);
    809         MII = std::prev(
    810             llvm::make_reverse_iterator(MachineBasicBlock::iterator(Insert)));
    811         Changed = true;
    812       }
    813     }
    814   }
    815 
    816   // If we used EXPR_STACK anywhere, add it to the live-in sets everywhere so
    817   // that it never looks like a use-before-def.
    818   if (Changed) {
    819     MF.getRegInfo().addLiveIn(WebAssembly::EXPR_STACK);
    820     for (MachineBasicBlock &MBB : MF)
    821       MBB.addLiveIn(WebAssembly::EXPR_STACK);
    822   }
    823 
    824 #ifndef NDEBUG
    825   // Verify that pushes and pops are performed in LIFO order.
    826   SmallVector<unsigned, 0> Stack;
    827   for (MachineBasicBlock &MBB : MF) {
    828     for (MachineInstr &MI : MBB) {
    829       if (MI.isDebugValue())
    830         continue;
    831       for (MachineOperand &MO : reverse(MI.explicit_operands())) {
    832         if (!MO.isReg())
    833           continue;
    834         unsigned Reg = MO.getReg();
    835 
    836         if (MFI.isVRegStackified(Reg)) {
    837           if (MO.isDef())
    838             Stack.push_back(Reg);
    839           else
    840             assert(Stack.pop_back_val() == Reg &&
    841                    "Register stack pop should be paired with a push");
    842         }
    843       }
    844     }
    845     // TODO: Generalize this code to support keeping values on the stack across
    846     // basic block boundaries.
    847     assert(Stack.empty() &&
    848            "Register stack pushes and pops should be balanced");
    849   }
    850 #endif
    851 
    852   return Changed;
    853 }
    854