1 /* 2 * Copyright (c) 2014 Scott Mansell 3 * Copyright 2014 Broadcom 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 22 * IN THE SOFTWARE. 23 */ 24 25 #include <inttypes.h> 26 #include "util/u_format.h" 27 #include "util/crc32.h" 28 #include "util/u_math.h" 29 #include "util/u_memory.h" 30 #include "util/ralloc.h" 31 #include "util/hash_table.h" 32 #include "tgsi/tgsi_dump.h" 33 #include "tgsi/tgsi_parse.h" 34 #include "compiler/nir/nir.h" 35 #include "compiler/nir/nir_builder.h" 36 #include "nir/tgsi_to_nir.h" 37 #include "vc4_context.h" 38 #include "vc4_qpu.h" 39 #include "vc4_qir.h" 40 #include "mesa/state_tracker/st_glsl_types.h" 41 42 static struct qreg 43 ntq_get_src(struct vc4_compile *c, nir_src src, int i); 44 static void 45 ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list); 46 47 static void 48 resize_qreg_array(struct vc4_compile *c, 49 struct qreg **regs, 50 uint32_t *size, 51 uint32_t decl_size) 52 { 53 if (*size >= decl_size) 54 return; 55 56 uint32_t old_size = *size; 57 *size = MAX2(*size * 2, decl_size); 58 *regs = reralloc(c, *regs, struct qreg, *size); 59 if (!*regs) { 60 fprintf(stderr, "Malloc failure\n"); 61 abort(); 62 } 63 64 for (uint32_t i = old_size; i < *size; i++) 65 (*regs)[i] = c->undef; 66 } 67 68 static void 69 ntq_emit_thrsw(struct vc4_compile *c) 70 { 71 if (!c->fs_threaded) 72 return; 73 74 /* Always thread switch after each texture operation for now. 75 * 76 * We could do better by batching a bunch of texture fetches up and 77 * then doing one thread switch and collecting all their results 78 * afterward. 79 */ 80 qir_emit_nondef(c, qir_inst(QOP_THRSW, c->undef, 81 c->undef, c->undef)); 82 c->last_thrsw_at_top_level = (c->execute.file == QFILE_NULL); 83 } 84 85 static struct qreg 86 indirect_uniform_load(struct vc4_compile *c, nir_intrinsic_instr *intr) 87 { 88 struct qreg indirect_offset = ntq_get_src(c, intr->src[0], 0); 89 uint32_t offset = nir_intrinsic_base(intr); 90 struct vc4_compiler_ubo_range *range = NULL; 91 unsigned i; 92 for (i = 0; i < c->num_uniform_ranges; i++) { 93 range = &c->ubo_ranges[i]; 94 if (offset >= range->src_offset && 95 offset < range->src_offset + range->size) { 96 break; 97 } 98 } 99 /* The driver-location-based offset always has to be within a declared 100 * uniform range. 101 */ 102 assert(range); 103 if (!range->used) { 104 range->used = true; 105 range->dst_offset = c->next_ubo_dst_offset; 106 c->next_ubo_dst_offset += range->size; 107 c->num_ubo_ranges++; 108 } 109 110 offset -= range->src_offset; 111 112 /* Adjust for where we stored the TGSI register base. */ 113 indirect_offset = qir_ADD(c, indirect_offset, 114 qir_uniform_ui(c, (range->dst_offset + 115 offset))); 116 117 /* Clamp to [0, array size). Note that MIN/MAX are signed. */ 118 indirect_offset = qir_MAX(c, indirect_offset, qir_uniform_ui(c, 0)); 119 indirect_offset = qir_MIN_NOIMM(c, indirect_offset, 120 qir_uniform_ui(c, (range->dst_offset + 121 range->size - 4))); 122 123 qir_ADD_dest(c, qir_reg(QFILE_TEX_S_DIRECT, 0), 124 indirect_offset, 125 qir_uniform(c, QUNIFORM_UBO_ADDR, 0)); 126 127 c->num_texture_samples++; 128 129 ntq_emit_thrsw(c); 130 131 return qir_TEX_RESULT(c); 132 } 133 134 nir_ssa_def * 135 vc4_nir_get_swizzled_channel(nir_builder *b, nir_ssa_def **srcs, int swiz) 136 { 137 switch (swiz) { 138 default: 139 case PIPE_SWIZZLE_NONE: 140 fprintf(stderr, "warning: unknown swizzle\n"); 141 /* FALLTHROUGH */ 142 case PIPE_SWIZZLE_0: 143 return nir_imm_float(b, 0.0); 144 case PIPE_SWIZZLE_1: 145 return nir_imm_float(b, 1.0); 146 case PIPE_SWIZZLE_X: 147 case PIPE_SWIZZLE_Y: 148 case PIPE_SWIZZLE_Z: 149 case PIPE_SWIZZLE_W: 150 return srcs[swiz]; 151 } 152 } 153 154 static struct qreg * 155 ntq_init_ssa_def(struct vc4_compile *c, nir_ssa_def *def) 156 { 157 struct qreg *qregs = ralloc_array(c->def_ht, struct qreg, 158 def->num_components); 159 _mesa_hash_table_insert(c->def_ht, def, qregs); 160 return qregs; 161 } 162 163 /** 164 * This function is responsible for getting QIR results into the associated 165 * storage for a NIR instruction. 166 * 167 * If it's a NIR SSA def, then we just set the associated hash table entry to 168 * the new result. 169 * 170 * If it's a NIR reg, then we need to update the existing qreg assigned to the 171 * NIR destination with the incoming value. To do that without introducing 172 * new MOVs, we require that the incoming qreg either be a uniform, or be 173 * SSA-defined by the previous QIR instruction in the block and rewritable by 174 * this function. That lets us sneak ahead and insert the SF flag beforehand 175 * (knowing that the previous instruction doesn't depend on flags) and rewrite 176 * its destination to be the NIR reg's destination 177 */ 178 static void 179 ntq_store_dest(struct vc4_compile *c, nir_dest *dest, int chan, 180 struct qreg result) 181 { 182 struct qinst *last_inst = NULL; 183 if (!list_empty(&c->cur_block->instructions)) 184 last_inst = (struct qinst *)c->cur_block->instructions.prev; 185 186 assert(result.file == QFILE_UNIF || 187 (result.file == QFILE_TEMP && 188 last_inst && last_inst == c->defs[result.index])); 189 190 if (dest->is_ssa) { 191 assert(chan < dest->ssa.num_components); 192 193 struct qreg *qregs; 194 struct hash_entry *entry = 195 _mesa_hash_table_search(c->def_ht, &dest->ssa); 196 197 if (entry) 198 qregs = entry->data; 199 else 200 qregs = ntq_init_ssa_def(c, &dest->ssa); 201 202 qregs[chan] = result; 203 } else { 204 nir_register *reg = dest->reg.reg; 205 assert(dest->reg.base_offset == 0); 206 assert(reg->num_array_elems == 0); 207 struct hash_entry *entry = 208 _mesa_hash_table_search(c->def_ht, reg); 209 struct qreg *qregs = entry->data; 210 211 /* Insert a MOV if the source wasn't an SSA def in the 212 * previous instruction. 213 */ 214 if (result.file == QFILE_UNIF) { 215 result = qir_MOV(c, result); 216 last_inst = c->defs[result.index]; 217 } 218 219 /* We know they're both temps, so just rewrite index. */ 220 c->defs[last_inst->dst.index] = NULL; 221 last_inst->dst.index = qregs[chan].index; 222 223 /* If we're in control flow, then make this update of the reg 224 * conditional on the execution mask. 225 */ 226 if (c->execute.file != QFILE_NULL) { 227 last_inst->dst.index = qregs[chan].index; 228 229 /* Set the flags to the current exec mask. To insert 230 * the SF, we temporarily remove our SSA instruction. 231 */ 232 list_del(&last_inst->link); 233 qir_SF(c, c->execute); 234 list_addtail(&last_inst->link, 235 &c->cur_block->instructions); 236 237 last_inst->cond = QPU_COND_ZS; 238 last_inst->cond_is_exec_mask = true; 239 } 240 } 241 } 242 243 static struct qreg * 244 ntq_get_dest(struct vc4_compile *c, nir_dest *dest) 245 { 246 if (dest->is_ssa) { 247 struct qreg *qregs = ntq_init_ssa_def(c, &dest->ssa); 248 for (int i = 0; i < dest->ssa.num_components; i++) 249 qregs[i] = c->undef; 250 return qregs; 251 } else { 252 nir_register *reg = dest->reg.reg; 253 assert(dest->reg.base_offset == 0); 254 assert(reg->num_array_elems == 0); 255 struct hash_entry *entry = 256 _mesa_hash_table_search(c->def_ht, reg); 257 return entry->data; 258 } 259 } 260 261 static struct qreg 262 ntq_get_src(struct vc4_compile *c, nir_src src, int i) 263 { 264 struct hash_entry *entry; 265 if (src.is_ssa) { 266 entry = _mesa_hash_table_search(c->def_ht, src.ssa); 267 assert(i < src.ssa->num_components); 268 } else { 269 nir_register *reg = src.reg.reg; 270 entry = _mesa_hash_table_search(c->def_ht, reg); 271 assert(reg->num_array_elems == 0); 272 assert(src.reg.base_offset == 0); 273 assert(i < reg->num_components); 274 } 275 276 struct qreg *qregs = entry->data; 277 return qregs[i]; 278 } 279 280 static struct qreg 281 ntq_get_alu_src(struct vc4_compile *c, nir_alu_instr *instr, 282 unsigned src) 283 { 284 assert(util_is_power_of_two(instr->dest.write_mask)); 285 unsigned chan = ffs(instr->dest.write_mask) - 1; 286 struct qreg r = ntq_get_src(c, instr->src[src].src, 287 instr->src[src].swizzle[chan]); 288 289 assert(!instr->src[src].abs); 290 assert(!instr->src[src].negate); 291 292 return r; 293 }; 294 295 static inline struct qreg 296 qir_SAT(struct vc4_compile *c, struct qreg val) 297 { 298 return qir_FMAX(c, 299 qir_FMIN(c, val, qir_uniform_f(c, 1.0)), 300 qir_uniform_f(c, 0.0)); 301 } 302 303 static struct qreg 304 ntq_rcp(struct vc4_compile *c, struct qreg x) 305 { 306 struct qreg r = qir_RCP(c, x); 307 308 /* Apply a Newton-Raphson step to improve the accuracy. */ 309 r = qir_FMUL(c, r, qir_FSUB(c, 310 qir_uniform_f(c, 2.0), 311 qir_FMUL(c, x, r))); 312 313 return r; 314 } 315 316 static struct qreg 317 ntq_rsq(struct vc4_compile *c, struct qreg x) 318 { 319 struct qreg r = qir_RSQ(c, x); 320 321 /* Apply a Newton-Raphson step to improve the accuracy. */ 322 r = qir_FMUL(c, r, qir_FSUB(c, 323 qir_uniform_f(c, 1.5), 324 qir_FMUL(c, 325 qir_uniform_f(c, 0.5), 326 qir_FMUL(c, x, 327 qir_FMUL(c, r, r))))); 328 329 return r; 330 } 331 332 static struct qreg 333 ntq_umul(struct vc4_compile *c, struct qreg src0, struct qreg src1) 334 { 335 struct qreg src0_hi = qir_SHR(c, src0, 336 qir_uniform_ui(c, 24)); 337 struct qreg src1_hi = qir_SHR(c, src1, 338 qir_uniform_ui(c, 24)); 339 340 struct qreg hilo = qir_MUL24(c, src0_hi, src1); 341 struct qreg lohi = qir_MUL24(c, src0, src1_hi); 342 struct qreg lolo = qir_MUL24(c, src0, src1); 343 344 return qir_ADD(c, lolo, qir_SHL(c, 345 qir_ADD(c, hilo, lohi), 346 qir_uniform_ui(c, 24))); 347 } 348 349 static struct qreg 350 ntq_scale_depth_texture(struct vc4_compile *c, struct qreg src) 351 { 352 struct qreg depthf = qir_ITOF(c, qir_SHR(c, src, 353 qir_uniform_ui(c, 8))); 354 return qir_FMUL(c, depthf, qir_uniform_f(c, 1.0f/0xffffff)); 355 } 356 357 /** 358 * Emits a lowered TXF_MS from an MSAA texture. 359 * 360 * The addressing math has been lowered in NIR, and now we just need to read 361 * it like a UBO. 362 */ 363 static void 364 ntq_emit_txf(struct vc4_compile *c, nir_tex_instr *instr) 365 { 366 uint32_t tile_width = 32; 367 uint32_t tile_height = 32; 368 uint32_t tile_size = (tile_height * tile_width * 369 VC4_MAX_SAMPLES * sizeof(uint32_t)); 370 371 unsigned unit = instr->texture_index; 372 uint32_t w = align(c->key->tex[unit].msaa_width, tile_width); 373 uint32_t w_tiles = w / tile_width; 374 uint32_t h = align(c->key->tex[unit].msaa_height, tile_height); 375 uint32_t h_tiles = h / tile_height; 376 uint32_t size = w_tiles * h_tiles * tile_size; 377 378 struct qreg addr; 379 assert(instr->num_srcs == 1); 380 assert(instr->src[0].src_type == nir_tex_src_coord); 381 addr = ntq_get_src(c, instr->src[0].src, 0); 382 383 /* Perform the clamping required by kernel validation. */ 384 addr = qir_MAX(c, addr, qir_uniform_ui(c, 0)); 385 addr = qir_MIN_NOIMM(c, addr, qir_uniform_ui(c, size - 4)); 386 387 qir_ADD_dest(c, qir_reg(QFILE_TEX_S_DIRECT, 0), 388 addr, qir_uniform(c, QUNIFORM_TEXTURE_MSAA_ADDR, unit)); 389 390 ntq_emit_thrsw(c); 391 392 struct qreg tex = qir_TEX_RESULT(c); 393 c->num_texture_samples++; 394 395 enum pipe_format format = c->key->tex[unit].format; 396 if (util_format_is_depth_or_stencil(format)) { 397 struct qreg scaled = ntq_scale_depth_texture(c, tex); 398 for (int i = 0; i < 4; i++) 399 ntq_store_dest(c, &instr->dest, i, qir_MOV(c, scaled)); 400 } else { 401 for (int i = 0; i < 4; i++) 402 ntq_store_dest(c, &instr->dest, i, 403 qir_UNPACK_8_F(c, tex, i)); 404 } 405 } 406 407 static void 408 ntq_emit_tex(struct vc4_compile *c, nir_tex_instr *instr) 409 { 410 struct qreg s, t, r, lod, compare; 411 bool is_txb = false, is_txl = false; 412 unsigned unit = instr->texture_index; 413 414 if (instr->op == nir_texop_txf) { 415 ntq_emit_txf(c, instr); 416 return; 417 } 418 419 for (unsigned i = 0; i < instr->num_srcs; i++) { 420 switch (instr->src[i].src_type) { 421 case nir_tex_src_coord: 422 s = ntq_get_src(c, instr->src[i].src, 0); 423 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D) 424 t = qir_uniform_f(c, 0.5); 425 else 426 t = ntq_get_src(c, instr->src[i].src, 1); 427 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) 428 r = ntq_get_src(c, instr->src[i].src, 2); 429 break; 430 case nir_tex_src_bias: 431 lod = ntq_get_src(c, instr->src[i].src, 0); 432 is_txb = true; 433 break; 434 case nir_tex_src_lod: 435 lod = ntq_get_src(c, instr->src[i].src, 0); 436 is_txl = true; 437 break; 438 case nir_tex_src_comparator: 439 compare = ntq_get_src(c, instr->src[i].src, 0); 440 break; 441 default: 442 unreachable("unknown texture source"); 443 } 444 } 445 446 if (c->stage != QSTAGE_FRAG && !is_txl) { 447 /* From the GLSL 1.20 spec: 448 * 449 * "If it is mip-mapped and running on the vertex shader, 450 * then the base texture is used." 451 */ 452 is_txl = true; 453 lod = qir_uniform_ui(c, 0); 454 } 455 456 if (c->key->tex[unit].force_first_level) { 457 lod = qir_uniform(c, QUNIFORM_TEXTURE_FIRST_LEVEL, unit); 458 is_txl = true; 459 is_txb = false; 460 } 461 462 struct qreg texture_u[] = { 463 qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P0, unit), 464 qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P1, unit), 465 qir_uniform(c, QUNIFORM_CONSTANT, 0), 466 qir_uniform(c, QUNIFORM_CONSTANT, 0), 467 }; 468 uint32_t next_texture_u = 0; 469 470 /* There is no native support for GL texture rectangle coordinates, so 471 * we have to rescale from ([0, width], [0, height]) to ([0, 1], [0, 472 * 1]). 473 */ 474 if (instr->sampler_dim == GLSL_SAMPLER_DIM_RECT) { 475 s = qir_FMUL(c, s, 476 qir_uniform(c, QUNIFORM_TEXRECT_SCALE_X, unit)); 477 t = qir_FMUL(c, t, 478 qir_uniform(c, QUNIFORM_TEXRECT_SCALE_Y, unit)); 479 } 480 481 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE || is_txl) { 482 texture_u[2] = qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P2, 483 unit | (is_txl << 16)); 484 } 485 486 struct qinst *tmu; 487 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) { 488 tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_R, 0), r); 489 tmu->src[qir_get_tex_uniform_src(tmu)] = 490 texture_u[next_texture_u++]; 491 } else if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP_TO_BORDER || 492 c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP || 493 c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP_TO_BORDER || 494 c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) { 495 tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_R, 0), 496 qir_uniform(c, QUNIFORM_TEXTURE_BORDER_COLOR, 497 unit)); 498 tmu->src[qir_get_tex_uniform_src(tmu)] = 499 texture_u[next_texture_u++]; 500 } 501 502 if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP) { 503 s = qir_SAT(c, s); 504 } 505 506 if (c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) { 507 t = qir_SAT(c, t); 508 } 509 510 tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_T, 0), t); 511 tmu->src[qir_get_tex_uniform_src(tmu)] = 512 texture_u[next_texture_u++]; 513 514 if (is_txl || is_txb) { 515 tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_B, 0), lod); 516 tmu->src[qir_get_tex_uniform_src(tmu)] = 517 texture_u[next_texture_u++]; 518 } 519 520 tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_S, 0), s); 521 tmu->src[qir_get_tex_uniform_src(tmu)] = texture_u[next_texture_u++]; 522 523 c->num_texture_samples++; 524 525 ntq_emit_thrsw(c); 526 527 struct qreg tex = qir_TEX_RESULT(c); 528 529 enum pipe_format format = c->key->tex[unit].format; 530 531 struct qreg *dest = ntq_get_dest(c, &instr->dest); 532 if (util_format_is_depth_or_stencil(format)) { 533 struct qreg normalized = ntq_scale_depth_texture(c, tex); 534 struct qreg depth_output; 535 536 struct qreg u0 = qir_uniform_f(c, 0.0f); 537 struct qreg u1 = qir_uniform_f(c, 1.0f); 538 if (c->key->tex[unit].compare_mode) { 539 /* From the GL_ARB_shadow spec: 540 * 541 * "Let Dt (D subscript t) be the depth texture 542 * value, in the range [0, 1]. Let R be the 543 * interpolated texture coordinate clamped to the 544 * range [0, 1]." 545 */ 546 compare = qir_SAT(c, compare); 547 548 switch (c->key->tex[unit].compare_func) { 549 case PIPE_FUNC_NEVER: 550 depth_output = qir_uniform_f(c, 0.0f); 551 break; 552 case PIPE_FUNC_ALWAYS: 553 depth_output = u1; 554 break; 555 case PIPE_FUNC_EQUAL: 556 qir_SF(c, qir_FSUB(c, compare, normalized)); 557 depth_output = qir_SEL(c, QPU_COND_ZS, u1, u0); 558 break; 559 case PIPE_FUNC_NOTEQUAL: 560 qir_SF(c, qir_FSUB(c, compare, normalized)); 561 depth_output = qir_SEL(c, QPU_COND_ZC, u1, u0); 562 break; 563 case PIPE_FUNC_GREATER: 564 qir_SF(c, qir_FSUB(c, compare, normalized)); 565 depth_output = qir_SEL(c, QPU_COND_NC, u1, u0); 566 break; 567 case PIPE_FUNC_GEQUAL: 568 qir_SF(c, qir_FSUB(c, normalized, compare)); 569 depth_output = qir_SEL(c, QPU_COND_NS, u1, u0); 570 break; 571 case PIPE_FUNC_LESS: 572 qir_SF(c, qir_FSUB(c, compare, normalized)); 573 depth_output = qir_SEL(c, QPU_COND_NS, u1, u0); 574 break; 575 case PIPE_FUNC_LEQUAL: 576 qir_SF(c, qir_FSUB(c, normalized, compare)); 577 depth_output = qir_SEL(c, QPU_COND_NC, u1, u0); 578 break; 579 } 580 } else { 581 depth_output = normalized; 582 } 583 584 for (int i = 0; i < 4; i++) 585 dest[i] = depth_output; 586 } else { 587 for (int i = 0; i < 4; i++) 588 dest[i] = qir_UNPACK_8_F(c, tex, i); 589 } 590 } 591 592 /** 593 * Computes x - floor(x), which is tricky because our FTOI truncates (rounds 594 * to zero). 595 */ 596 static struct qreg 597 ntq_ffract(struct vc4_compile *c, struct qreg src) 598 { 599 struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src)); 600 struct qreg diff = qir_FSUB(c, src, trunc); 601 qir_SF(c, diff); 602 return qir_MOV(c, qir_SEL(c, QPU_COND_NS, 603 qir_FADD(c, diff, qir_uniform_f(c, 1.0)), 604 diff)); 605 } 606 607 /** 608 * Computes floor(x), which is tricky because our FTOI truncates (rounds to 609 * zero). 610 */ 611 static struct qreg 612 ntq_ffloor(struct vc4_compile *c, struct qreg src) 613 { 614 struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src)); 615 616 /* This will be < 0 if we truncated and the truncation was of a value 617 * that was < 0 in the first place. 618 */ 619 qir_SF(c, qir_FSUB(c, src, trunc)); 620 621 return qir_MOV(c, qir_SEL(c, QPU_COND_NS, 622 qir_FSUB(c, trunc, qir_uniform_f(c, 1.0)), 623 trunc)); 624 } 625 626 /** 627 * Computes ceil(x), which is tricky because our FTOI truncates (rounds to 628 * zero). 629 */ 630 static struct qreg 631 ntq_fceil(struct vc4_compile *c, struct qreg src) 632 { 633 struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src)); 634 635 /* This will be < 0 if we truncated and the truncation was of a value 636 * that was > 0 in the first place. 637 */ 638 qir_SF(c, qir_FSUB(c, trunc, src)); 639 640 return qir_MOV(c, qir_SEL(c, QPU_COND_NS, 641 qir_FADD(c, trunc, qir_uniform_f(c, 1.0)), 642 trunc)); 643 } 644 645 static struct qreg 646 ntq_fsin(struct vc4_compile *c, struct qreg src) 647 { 648 float coeff[] = { 649 -2.0 * M_PI, 650 pow(2.0 * M_PI, 3) / (3 * 2 * 1), 651 -pow(2.0 * M_PI, 5) / (5 * 4 * 3 * 2 * 1), 652 pow(2.0 * M_PI, 7) / (7 * 6 * 5 * 4 * 3 * 2 * 1), 653 -pow(2.0 * M_PI, 9) / (9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1), 654 }; 655 656 struct qreg scaled_x = 657 qir_FMUL(c, 658 src, 659 qir_uniform_f(c, 1.0 / (M_PI * 2.0))); 660 661 struct qreg x = qir_FADD(c, 662 ntq_ffract(c, scaled_x), 663 qir_uniform_f(c, -0.5)); 664 struct qreg x2 = qir_FMUL(c, x, x); 665 struct qreg sum = qir_FMUL(c, x, qir_uniform_f(c, coeff[0])); 666 for (int i = 1; i < ARRAY_SIZE(coeff); i++) { 667 x = qir_FMUL(c, x, x2); 668 sum = qir_FADD(c, 669 sum, 670 qir_FMUL(c, 671 x, 672 qir_uniform_f(c, coeff[i]))); 673 } 674 return sum; 675 } 676 677 static struct qreg 678 ntq_fcos(struct vc4_compile *c, struct qreg src) 679 { 680 float coeff[] = { 681 -1.0f, 682 pow(2.0 * M_PI, 2) / (2 * 1), 683 -pow(2.0 * M_PI, 4) / (4 * 3 * 2 * 1), 684 pow(2.0 * M_PI, 6) / (6 * 5 * 4 * 3 * 2 * 1), 685 -pow(2.0 * M_PI, 8) / (8 * 7 * 6 * 5 * 4 * 3 * 2 * 1), 686 pow(2.0 * M_PI, 10) / (10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1), 687 }; 688 689 struct qreg scaled_x = 690 qir_FMUL(c, src, 691 qir_uniform_f(c, 1.0f / (M_PI * 2.0f))); 692 struct qreg x_frac = qir_FADD(c, 693 ntq_ffract(c, scaled_x), 694 qir_uniform_f(c, -0.5)); 695 696 struct qreg sum = qir_uniform_f(c, coeff[0]); 697 struct qreg x2 = qir_FMUL(c, x_frac, x_frac); 698 struct qreg x = x2; /* Current x^2, x^4, or x^6 */ 699 for (int i = 1; i < ARRAY_SIZE(coeff); i++) { 700 if (i != 1) 701 x = qir_FMUL(c, x, x2); 702 703 struct qreg mul = qir_FMUL(c, 704 x, 705 qir_uniform_f(c, coeff[i])); 706 if (i == 0) 707 sum = mul; 708 else 709 sum = qir_FADD(c, sum, mul); 710 } 711 return sum; 712 } 713 714 static struct qreg 715 ntq_fsign(struct vc4_compile *c, struct qreg src) 716 { 717 struct qreg t = qir_get_temp(c); 718 719 qir_SF(c, src); 720 qir_MOV_dest(c, t, qir_uniform_f(c, 0.0)); 721 qir_MOV_dest(c, t, qir_uniform_f(c, 1.0))->cond = QPU_COND_ZC; 722 qir_MOV_dest(c, t, qir_uniform_f(c, -1.0))->cond = QPU_COND_NS; 723 return qir_MOV(c, t); 724 } 725 726 static void 727 emit_vertex_input(struct vc4_compile *c, int attr) 728 { 729 enum pipe_format format = c->vs_key->attr_formats[attr]; 730 uint32_t attr_size = util_format_get_blocksize(format); 731 732 c->vattr_sizes[attr] = align(attr_size, 4); 733 for (int i = 0; i < align(attr_size, 4) / 4; i++) { 734 c->inputs[attr * 4 + i] = 735 qir_MOV(c, qir_reg(QFILE_VPM, attr * 4 + i)); 736 c->num_inputs++; 737 } 738 } 739 740 static void 741 emit_fragcoord_input(struct vc4_compile *c, int attr) 742 { 743 c->inputs[attr * 4 + 0] = qir_ITOF(c, qir_reg(QFILE_FRAG_X, 0)); 744 c->inputs[attr * 4 + 1] = qir_ITOF(c, qir_reg(QFILE_FRAG_Y, 0)); 745 c->inputs[attr * 4 + 2] = 746 qir_FMUL(c, 747 qir_ITOF(c, qir_FRAG_Z(c)), 748 qir_uniform_f(c, 1.0 / 0xffffff)); 749 c->inputs[attr * 4 + 3] = qir_RCP(c, qir_FRAG_W(c)); 750 } 751 752 static struct qreg 753 emit_fragment_varying(struct vc4_compile *c, gl_varying_slot slot, 754 uint8_t swizzle) 755 { 756 uint32_t i = c->num_input_slots++; 757 struct qreg vary = { 758 QFILE_VARY, 759 i 760 }; 761 762 if (c->num_input_slots >= c->input_slots_array_size) { 763 c->input_slots_array_size = 764 MAX2(4, c->input_slots_array_size * 2); 765 766 c->input_slots = reralloc(c, c->input_slots, 767 struct vc4_varying_slot, 768 c->input_slots_array_size); 769 } 770 771 c->input_slots[i].slot = slot; 772 c->input_slots[i].swizzle = swizzle; 773 774 return qir_VARY_ADD_C(c, qir_FMUL(c, vary, qir_FRAG_W(c))); 775 } 776 777 static void 778 emit_fragment_input(struct vc4_compile *c, int attr, gl_varying_slot slot) 779 { 780 for (int i = 0; i < 4; i++) { 781 c->inputs[attr * 4 + i] = 782 emit_fragment_varying(c, slot, i); 783 c->num_inputs++; 784 } 785 } 786 787 static void 788 add_output(struct vc4_compile *c, 789 uint32_t decl_offset, 790 uint8_t slot, 791 uint8_t swizzle) 792 { 793 uint32_t old_array_size = c->outputs_array_size; 794 resize_qreg_array(c, &c->outputs, &c->outputs_array_size, 795 decl_offset + 1); 796 797 if (old_array_size != c->outputs_array_size) { 798 c->output_slots = reralloc(c, 799 c->output_slots, 800 struct vc4_varying_slot, 801 c->outputs_array_size); 802 } 803 804 c->output_slots[decl_offset].slot = slot; 805 c->output_slots[decl_offset].swizzle = swizzle; 806 } 807 808 static void 809 declare_uniform_range(struct vc4_compile *c, uint32_t start, uint32_t size) 810 { 811 unsigned array_id = c->num_uniform_ranges++; 812 if (array_id >= c->ubo_ranges_array_size) { 813 c->ubo_ranges_array_size = MAX2(c->ubo_ranges_array_size * 2, 814 array_id + 1); 815 c->ubo_ranges = reralloc(c, c->ubo_ranges, 816 struct vc4_compiler_ubo_range, 817 c->ubo_ranges_array_size); 818 } 819 820 c->ubo_ranges[array_id].dst_offset = 0; 821 c->ubo_ranges[array_id].src_offset = start; 822 c->ubo_ranges[array_id].size = size; 823 c->ubo_ranges[array_id].used = false; 824 } 825 826 static bool 827 ntq_src_is_only_ssa_def_user(nir_src *src) 828 { 829 if (!src->is_ssa) 830 return false; 831 832 if (!list_empty(&src->ssa->if_uses)) 833 return false; 834 835 return (src->ssa->uses.next == &src->use_link && 836 src->ssa->uses.next->next == &src->ssa->uses); 837 } 838 839 /** 840 * In general, emits a nir_pack_unorm_4x8 as a series of MOVs with the pack 841 * bit set. 842 * 843 * However, as an optimization, it tries to find the instructions generating 844 * the sources to be packed and just emit the pack flag there, if possible. 845 */ 846 static void 847 ntq_emit_pack_unorm_4x8(struct vc4_compile *c, nir_alu_instr *instr) 848 { 849 struct qreg result = qir_get_temp(c); 850 struct nir_alu_instr *vec4 = NULL; 851 852 /* If packing from a vec4 op (as expected), identify it so that we can 853 * peek back at what generated its sources. 854 */ 855 if (instr->src[0].src.is_ssa && 856 instr->src[0].src.ssa->parent_instr->type == nir_instr_type_alu && 857 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr)->op == 858 nir_op_vec4) { 859 vec4 = nir_instr_as_alu(instr->src[0].src.ssa->parent_instr); 860 } 861 862 /* If the pack is replicating the same channel 4 times, use the 8888 863 * pack flag. This is common for blending using the alpha 864 * channel. 865 */ 866 if (instr->src[0].swizzle[0] == instr->src[0].swizzle[1] && 867 instr->src[0].swizzle[0] == instr->src[0].swizzle[2] && 868 instr->src[0].swizzle[0] == instr->src[0].swizzle[3]) { 869 struct qreg rep = ntq_get_src(c, 870 instr->src[0].src, 871 instr->src[0].swizzle[0]); 872 ntq_store_dest(c, &instr->dest.dest, 0, qir_PACK_8888_F(c, rep)); 873 return; 874 } 875 876 for (int i = 0; i < 4; i++) { 877 int swiz = instr->src[0].swizzle[i]; 878 struct qreg src; 879 if (vec4) { 880 src = ntq_get_src(c, vec4->src[swiz].src, 881 vec4->src[swiz].swizzle[0]); 882 } else { 883 src = ntq_get_src(c, instr->src[0].src, swiz); 884 } 885 886 if (vec4 && 887 ntq_src_is_only_ssa_def_user(&vec4->src[swiz].src) && 888 src.file == QFILE_TEMP && 889 c->defs[src.index] && 890 qir_is_mul(c->defs[src.index]) && 891 !c->defs[src.index]->dst.pack) { 892 struct qinst *rewrite = c->defs[src.index]; 893 c->defs[src.index] = NULL; 894 rewrite->dst = result; 895 rewrite->dst.pack = QPU_PACK_MUL_8A + i; 896 continue; 897 } 898 899 qir_PACK_8_F(c, result, src, i); 900 } 901 902 ntq_store_dest(c, &instr->dest.dest, 0, qir_MOV(c, result)); 903 } 904 905 /** Handles sign-extended bitfield extracts for 16 bits. */ 906 static struct qreg 907 ntq_emit_ibfe(struct vc4_compile *c, struct qreg base, struct qreg offset, 908 struct qreg bits) 909 { 910 assert(bits.file == QFILE_UNIF && 911 c->uniform_contents[bits.index] == QUNIFORM_CONSTANT && 912 c->uniform_data[bits.index] == 16); 913 914 assert(offset.file == QFILE_UNIF && 915 c->uniform_contents[offset.index] == QUNIFORM_CONSTANT); 916 int offset_bit = c->uniform_data[offset.index]; 917 assert(offset_bit % 16 == 0); 918 919 return qir_UNPACK_16_I(c, base, offset_bit / 16); 920 } 921 922 /** Handles unsigned bitfield extracts for 8 bits. */ 923 static struct qreg 924 ntq_emit_ubfe(struct vc4_compile *c, struct qreg base, struct qreg offset, 925 struct qreg bits) 926 { 927 assert(bits.file == QFILE_UNIF && 928 c->uniform_contents[bits.index] == QUNIFORM_CONSTANT && 929 c->uniform_data[bits.index] == 8); 930 931 assert(offset.file == QFILE_UNIF && 932 c->uniform_contents[offset.index] == QUNIFORM_CONSTANT); 933 int offset_bit = c->uniform_data[offset.index]; 934 assert(offset_bit % 8 == 0); 935 936 return qir_UNPACK_8_I(c, base, offset_bit / 8); 937 } 938 939 /** 940 * If compare_instr is a valid comparison instruction, emits the 941 * compare_instr's comparison and returns the sel_instr's return value based 942 * on the compare_instr's result. 943 */ 944 static bool 945 ntq_emit_comparison(struct vc4_compile *c, struct qreg *dest, 946 nir_alu_instr *compare_instr, 947 nir_alu_instr *sel_instr) 948 { 949 enum qpu_cond cond; 950 951 switch (compare_instr->op) { 952 case nir_op_feq: 953 case nir_op_ieq: 954 case nir_op_seq: 955 cond = QPU_COND_ZS; 956 break; 957 case nir_op_fne: 958 case nir_op_ine: 959 case nir_op_sne: 960 cond = QPU_COND_ZC; 961 break; 962 case nir_op_fge: 963 case nir_op_ige: 964 case nir_op_uge: 965 case nir_op_sge: 966 cond = QPU_COND_NC; 967 break; 968 case nir_op_flt: 969 case nir_op_ilt: 970 case nir_op_slt: 971 cond = QPU_COND_NS; 972 break; 973 default: 974 return false; 975 } 976 977 struct qreg src0 = ntq_get_alu_src(c, compare_instr, 0); 978 struct qreg src1 = ntq_get_alu_src(c, compare_instr, 1); 979 980 unsigned unsized_type = 981 nir_alu_type_get_base_type(nir_op_infos[compare_instr->op].input_types[0]); 982 if (unsized_type == nir_type_float) 983 qir_SF(c, qir_FSUB(c, src0, src1)); 984 else 985 qir_SF(c, qir_SUB(c, src0, src1)); 986 987 switch (sel_instr->op) { 988 case nir_op_seq: 989 case nir_op_sne: 990 case nir_op_sge: 991 case nir_op_slt: 992 *dest = qir_SEL(c, cond, 993 qir_uniform_f(c, 1.0), qir_uniform_f(c, 0.0)); 994 break; 995 996 case nir_op_bcsel: 997 *dest = qir_SEL(c, cond, 998 ntq_get_alu_src(c, sel_instr, 1), 999 ntq_get_alu_src(c, sel_instr, 2)); 1000 break; 1001 1002 default: 1003 *dest = qir_SEL(c, cond, 1004 qir_uniform_ui(c, ~0), qir_uniform_ui(c, 0)); 1005 break; 1006 } 1007 1008 /* Make the temporary for nir_store_dest(). */ 1009 *dest = qir_MOV(c, *dest); 1010 1011 return true; 1012 } 1013 1014 /** 1015 * Attempts to fold a comparison generating a boolean result into the 1016 * condition code for selecting between two values, instead of comparing the 1017 * boolean result against 0 to generate the condition code. 1018 */ 1019 static struct qreg ntq_emit_bcsel(struct vc4_compile *c, nir_alu_instr *instr, 1020 struct qreg *src) 1021 { 1022 if (!instr->src[0].src.is_ssa) 1023 goto out; 1024 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu) 1025 goto out; 1026 nir_alu_instr *compare = 1027 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr); 1028 if (!compare) 1029 goto out; 1030 1031 struct qreg dest; 1032 if (ntq_emit_comparison(c, &dest, compare, instr)) 1033 return dest; 1034 1035 out: 1036 qir_SF(c, src[0]); 1037 return qir_MOV(c, qir_SEL(c, QPU_COND_NS, src[1], src[2])); 1038 } 1039 1040 static struct qreg 1041 ntq_fddx(struct vc4_compile *c, struct qreg src) 1042 { 1043 /* Make sure that we have a bare temp to use for MUL rotation, so it 1044 * can be allocated to an accumulator. 1045 */ 1046 if (src.pack || src.file != QFILE_TEMP) 1047 src = qir_MOV(c, src); 1048 1049 struct qreg from_left = qir_ROT_MUL(c, src, 1); 1050 struct qreg from_right = qir_ROT_MUL(c, src, 15); 1051 1052 /* Distinguish left/right pixels of the quad. */ 1053 qir_SF(c, qir_AND(c, qir_reg(QFILE_QPU_ELEMENT, 0), 1054 qir_uniform_ui(c, 1))); 1055 1056 return qir_MOV(c, qir_SEL(c, QPU_COND_ZS, 1057 qir_FSUB(c, from_right, src), 1058 qir_FSUB(c, src, from_left))); 1059 } 1060 1061 static struct qreg 1062 ntq_fddy(struct vc4_compile *c, struct qreg src) 1063 { 1064 if (src.pack || src.file != QFILE_TEMP) 1065 src = qir_MOV(c, src); 1066 1067 struct qreg from_bottom = qir_ROT_MUL(c, src, 2); 1068 struct qreg from_top = qir_ROT_MUL(c, src, 14); 1069 1070 /* Distinguish top/bottom pixels of the quad. */ 1071 qir_SF(c, qir_AND(c, 1072 qir_reg(QFILE_QPU_ELEMENT, 0), 1073 qir_uniform_ui(c, 2))); 1074 1075 return qir_MOV(c, qir_SEL(c, QPU_COND_ZS, 1076 qir_FSUB(c, from_top, src), 1077 qir_FSUB(c, src, from_bottom))); 1078 } 1079 1080 static void 1081 ntq_emit_alu(struct vc4_compile *c, nir_alu_instr *instr) 1082 { 1083 /* This should always be lowered to ALU operations for VC4. */ 1084 assert(!instr->dest.saturate); 1085 1086 /* Vectors are special in that they have non-scalarized writemasks, 1087 * and just take the first swizzle channel for each argument in order 1088 * into each writemask channel. 1089 */ 1090 if (instr->op == nir_op_vec2 || 1091 instr->op == nir_op_vec3 || 1092 instr->op == nir_op_vec4) { 1093 struct qreg srcs[4]; 1094 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) 1095 srcs[i] = ntq_get_src(c, instr->src[i].src, 1096 instr->src[i].swizzle[0]); 1097 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) 1098 ntq_store_dest(c, &instr->dest.dest, i, 1099 qir_MOV(c, srcs[i])); 1100 return; 1101 } 1102 1103 if (instr->op == nir_op_pack_unorm_4x8) { 1104 ntq_emit_pack_unorm_4x8(c, instr); 1105 return; 1106 } 1107 1108 if (instr->op == nir_op_unpack_unorm_4x8) { 1109 struct qreg src = ntq_get_src(c, instr->src[0].src, 1110 instr->src[0].swizzle[0]); 1111 for (int i = 0; i < 4; i++) { 1112 if (instr->dest.write_mask & (1 << i)) 1113 ntq_store_dest(c, &instr->dest.dest, i, 1114 qir_UNPACK_8_F(c, src, i)); 1115 } 1116 return; 1117 } 1118 1119 /* General case: We can just grab the one used channel per src. */ 1120 struct qreg src[nir_op_infos[instr->op].num_inputs]; 1121 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) { 1122 src[i] = ntq_get_alu_src(c, instr, i); 1123 } 1124 1125 struct qreg result; 1126 1127 switch (instr->op) { 1128 case nir_op_fmov: 1129 case nir_op_imov: 1130 result = qir_MOV(c, src[0]); 1131 break; 1132 case nir_op_fmul: 1133 result = qir_FMUL(c, src[0], src[1]); 1134 break; 1135 case nir_op_fadd: 1136 result = qir_FADD(c, src[0], src[1]); 1137 break; 1138 case nir_op_fsub: 1139 result = qir_FSUB(c, src[0], src[1]); 1140 break; 1141 case nir_op_fmin: 1142 result = qir_FMIN(c, src[0], src[1]); 1143 break; 1144 case nir_op_fmax: 1145 result = qir_FMAX(c, src[0], src[1]); 1146 break; 1147 1148 case nir_op_f2i: 1149 case nir_op_f2u: 1150 result = qir_FTOI(c, src[0]); 1151 break; 1152 case nir_op_i2f: 1153 case nir_op_u2f: 1154 result = qir_ITOF(c, src[0]); 1155 break; 1156 case nir_op_b2f: 1157 result = qir_AND(c, src[0], qir_uniform_f(c, 1.0)); 1158 break; 1159 case nir_op_b2i: 1160 result = qir_AND(c, src[0], qir_uniform_ui(c, 1)); 1161 break; 1162 case nir_op_i2b: 1163 case nir_op_f2b: 1164 qir_SF(c, src[0]); 1165 result = qir_MOV(c, qir_SEL(c, QPU_COND_ZC, 1166 qir_uniform_ui(c, ~0), 1167 qir_uniform_ui(c, 0))); 1168 break; 1169 1170 case nir_op_iadd: 1171 result = qir_ADD(c, src[0], src[1]); 1172 break; 1173 case nir_op_ushr: 1174 result = qir_SHR(c, src[0], src[1]); 1175 break; 1176 case nir_op_isub: 1177 result = qir_SUB(c, src[0], src[1]); 1178 break; 1179 case nir_op_ishr: 1180 result = qir_ASR(c, src[0], src[1]); 1181 break; 1182 case nir_op_ishl: 1183 result = qir_SHL(c, src[0], src[1]); 1184 break; 1185 case nir_op_imin: 1186 result = qir_MIN(c, src[0], src[1]); 1187 break; 1188 case nir_op_imax: 1189 result = qir_MAX(c, src[0], src[1]); 1190 break; 1191 case nir_op_iand: 1192 result = qir_AND(c, src[0], src[1]); 1193 break; 1194 case nir_op_ior: 1195 result = qir_OR(c, src[0], src[1]); 1196 break; 1197 case nir_op_ixor: 1198 result = qir_XOR(c, src[0], src[1]); 1199 break; 1200 case nir_op_inot: 1201 result = qir_NOT(c, src[0]); 1202 break; 1203 1204 case nir_op_imul: 1205 result = ntq_umul(c, src[0], src[1]); 1206 break; 1207 1208 case nir_op_seq: 1209 case nir_op_sne: 1210 case nir_op_sge: 1211 case nir_op_slt: 1212 case nir_op_feq: 1213 case nir_op_fne: 1214 case nir_op_fge: 1215 case nir_op_flt: 1216 case nir_op_ieq: 1217 case nir_op_ine: 1218 case nir_op_ige: 1219 case nir_op_uge: 1220 case nir_op_ilt: 1221 if (!ntq_emit_comparison(c, &result, instr, instr)) { 1222 fprintf(stderr, "Bad comparison instruction\n"); 1223 } 1224 break; 1225 1226 case nir_op_bcsel: 1227 result = ntq_emit_bcsel(c, instr, src); 1228 break; 1229 case nir_op_fcsel: 1230 qir_SF(c, src[0]); 1231 result = qir_MOV(c, qir_SEL(c, QPU_COND_ZC, src[1], src[2])); 1232 break; 1233 1234 case nir_op_frcp: 1235 result = ntq_rcp(c, src[0]); 1236 break; 1237 case nir_op_frsq: 1238 result = ntq_rsq(c, src[0]); 1239 break; 1240 case nir_op_fexp2: 1241 result = qir_EXP2(c, src[0]); 1242 break; 1243 case nir_op_flog2: 1244 result = qir_LOG2(c, src[0]); 1245 break; 1246 1247 case nir_op_ftrunc: 1248 result = qir_ITOF(c, qir_FTOI(c, src[0])); 1249 break; 1250 case nir_op_fceil: 1251 result = ntq_fceil(c, src[0]); 1252 break; 1253 case nir_op_ffract: 1254 result = ntq_ffract(c, src[0]); 1255 break; 1256 case nir_op_ffloor: 1257 result = ntq_ffloor(c, src[0]); 1258 break; 1259 1260 case nir_op_fsin: 1261 result = ntq_fsin(c, src[0]); 1262 break; 1263 case nir_op_fcos: 1264 result = ntq_fcos(c, src[0]); 1265 break; 1266 1267 case nir_op_fsign: 1268 result = ntq_fsign(c, src[0]); 1269 break; 1270 1271 case nir_op_fabs: 1272 result = qir_FMAXABS(c, src[0], src[0]); 1273 break; 1274 case nir_op_iabs: 1275 result = qir_MAX(c, src[0], 1276 qir_SUB(c, qir_uniform_ui(c, 0), src[0])); 1277 break; 1278 1279 case nir_op_ibitfield_extract: 1280 result = ntq_emit_ibfe(c, src[0], src[1], src[2]); 1281 break; 1282 1283 case nir_op_ubitfield_extract: 1284 result = ntq_emit_ubfe(c, src[0], src[1], src[2]); 1285 break; 1286 1287 case nir_op_usadd_4x8: 1288 result = qir_V8ADDS(c, src[0], src[1]); 1289 break; 1290 1291 case nir_op_ussub_4x8: 1292 result = qir_V8SUBS(c, src[0], src[1]); 1293 break; 1294 1295 case nir_op_umin_4x8: 1296 result = qir_V8MIN(c, src[0], src[1]); 1297 break; 1298 1299 case nir_op_umax_4x8: 1300 result = qir_V8MAX(c, src[0], src[1]); 1301 break; 1302 1303 case nir_op_umul_unorm_4x8: 1304 result = qir_V8MULD(c, src[0], src[1]); 1305 break; 1306 1307 case nir_op_fddx: 1308 case nir_op_fddx_coarse: 1309 case nir_op_fddx_fine: 1310 result = ntq_fddx(c, src[0]); 1311 break; 1312 1313 case nir_op_fddy: 1314 case nir_op_fddy_coarse: 1315 case nir_op_fddy_fine: 1316 result = ntq_fddy(c, src[0]); 1317 break; 1318 1319 default: 1320 fprintf(stderr, "unknown NIR ALU inst: "); 1321 nir_print_instr(&instr->instr, stderr); 1322 fprintf(stderr, "\n"); 1323 abort(); 1324 } 1325 1326 /* We have a scalar result, so the instruction should only have a 1327 * single channel written to. 1328 */ 1329 assert(util_is_power_of_two(instr->dest.write_mask)); 1330 ntq_store_dest(c, &instr->dest.dest, 1331 ffs(instr->dest.write_mask) - 1, result); 1332 } 1333 1334 static void 1335 emit_frag_end(struct vc4_compile *c) 1336 { 1337 struct qreg color; 1338 if (c->output_color_index != -1) { 1339 color = c->outputs[c->output_color_index]; 1340 } else { 1341 color = qir_uniform_ui(c, 0); 1342 } 1343 1344 uint32_t discard_cond = QPU_COND_ALWAYS; 1345 if (c->s->info->fs.uses_discard) { 1346 qir_SF(c, c->discard); 1347 discard_cond = QPU_COND_ZS; 1348 } 1349 1350 if (c->fs_key->stencil_enabled) { 1351 qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0), 1352 qir_uniform(c, QUNIFORM_STENCIL, 0)); 1353 if (c->fs_key->stencil_twoside) { 1354 qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0), 1355 qir_uniform(c, QUNIFORM_STENCIL, 1)); 1356 } 1357 if (c->fs_key->stencil_full_writemasks) { 1358 qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0), 1359 qir_uniform(c, QUNIFORM_STENCIL, 2)); 1360 } 1361 } 1362 1363 if (c->output_sample_mask_index != -1) { 1364 qir_MS_MASK(c, c->outputs[c->output_sample_mask_index]); 1365 } 1366 1367 if (c->fs_key->depth_enabled) { 1368 if (c->output_position_index != -1) { 1369 qir_FTOI_dest(c, qir_reg(QFILE_TLB_Z_WRITE, 0), 1370 qir_FMUL(c, 1371 c->outputs[c->output_position_index], 1372 qir_uniform_f(c, 0xffffff)))->cond = discard_cond; 1373 } else { 1374 qir_MOV_dest(c, qir_reg(QFILE_TLB_Z_WRITE, 0), 1375 qir_FRAG_Z(c))->cond = discard_cond; 1376 } 1377 } 1378 1379 if (!c->msaa_per_sample_output) { 1380 qir_MOV_dest(c, qir_reg(QFILE_TLB_COLOR_WRITE, 0), 1381 color)->cond = discard_cond; 1382 } else { 1383 for (int i = 0; i < VC4_MAX_SAMPLES; i++) { 1384 qir_MOV_dest(c, qir_reg(QFILE_TLB_COLOR_WRITE_MS, 0), 1385 c->sample_colors[i])->cond = discard_cond; 1386 } 1387 } 1388 } 1389 1390 static void 1391 emit_scaled_viewport_write(struct vc4_compile *c, struct qreg rcp_w) 1392 { 1393 struct qreg packed = qir_get_temp(c); 1394 1395 for (int i = 0; i < 2; i++) { 1396 struct qreg scale = 1397 qir_uniform(c, QUNIFORM_VIEWPORT_X_SCALE + i, 0); 1398 1399 struct qreg packed_chan = packed; 1400 packed_chan.pack = QPU_PACK_A_16A + i; 1401 1402 qir_FTOI_dest(c, packed_chan, 1403 qir_FMUL(c, 1404 qir_FMUL(c, 1405 c->outputs[c->output_position_index + i], 1406 scale), 1407 rcp_w)); 1408 } 1409 1410 qir_VPM_WRITE(c, packed); 1411 } 1412 1413 static void 1414 emit_zs_write(struct vc4_compile *c, struct qreg rcp_w) 1415 { 1416 struct qreg zscale = qir_uniform(c, QUNIFORM_VIEWPORT_Z_SCALE, 0); 1417 struct qreg zoffset = qir_uniform(c, QUNIFORM_VIEWPORT_Z_OFFSET, 0); 1418 1419 qir_VPM_WRITE(c, qir_FADD(c, qir_FMUL(c, qir_FMUL(c, 1420 c->outputs[c->output_position_index + 2], 1421 zscale), 1422 rcp_w), 1423 zoffset)); 1424 } 1425 1426 static void 1427 emit_rcp_wc_write(struct vc4_compile *c, struct qreg rcp_w) 1428 { 1429 qir_VPM_WRITE(c, rcp_w); 1430 } 1431 1432 static void 1433 emit_point_size_write(struct vc4_compile *c) 1434 { 1435 struct qreg point_size; 1436 1437 if (c->output_point_size_index != -1) 1438 point_size = c->outputs[c->output_point_size_index]; 1439 else 1440 point_size = qir_uniform_f(c, 1.0); 1441 1442 /* Workaround: HW-2726 PTB does not handle zero-size points (BCM2835, 1443 * BCM21553). 1444 */ 1445 point_size = qir_FMAX(c, point_size, qir_uniform_f(c, .125)); 1446 1447 qir_VPM_WRITE(c, point_size); 1448 } 1449 1450 /** 1451 * Emits a VPM read of the stub vertex attribute set up by vc4_draw.c. 1452 * 1453 * The simulator insists that there be at least one vertex attribute, so 1454 * vc4_draw.c will emit one if it wouldn't have otherwise. The simulator also 1455 * insists that all vertex attributes loaded get read by the VS/CS, so we have 1456 * to consume it here. 1457 */ 1458 static void 1459 emit_stub_vpm_read(struct vc4_compile *c) 1460 { 1461 if (c->num_inputs) 1462 return; 1463 1464 c->vattr_sizes[0] = 4; 1465 (void)qir_MOV(c, qir_reg(QFILE_VPM, 0)); 1466 c->num_inputs++; 1467 } 1468 1469 static void 1470 emit_vert_end(struct vc4_compile *c, 1471 struct vc4_varying_slot *fs_inputs, 1472 uint32_t num_fs_inputs) 1473 { 1474 struct qreg rcp_w = ntq_rcp(c, c->outputs[c->output_position_index + 3]); 1475 1476 emit_stub_vpm_read(c); 1477 1478 emit_scaled_viewport_write(c, rcp_w); 1479 emit_zs_write(c, rcp_w); 1480 emit_rcp_wc_write(c, rcp_w); 1481 if (c->vs_key->per_vertex_point_size) 1482 emit_point_size_write(c); 1483 1484 for (int i = 0; i < num_fs_inputs; i++) { 1485 struct vc4_varying_slot *input = &fs_inputs[i]; 1486 int j; 1487 1488 for (j = 0; j < c->num_outputs; j++) { 1489 struct vc4_varying_slot *output = 1490 &c->output_slots[j]; 1491 1492 if (input->slot == output->slot && 1493 input->swizzle == output->swizzle) { 1494 qir_VPM_WRITE(c, c->outputs[j]); 1495 break; 1496 } 1497 } 1498 /* Emit padding if we didn't find a declared VS output for 1499 * this FS input. 1500 */ 1501 if (j == c->num_outputs) 1502 qir_VPM_WRITE(c, qir_uniform_f(c, 0.0)); 1503 } 1504 } 1505 1506 static void 1507 emit_coord_end(struct vc4_compile *c) 1508 { 1509 struct qreg rcp_w = qir_RCP(c, c->outputs[c->output_position_index + 3]); 1510 1511 emit_stub_vpm_read(c); 1512 1513 for (int i = 0; i < 4; i++) 1514 qir_VPM_WRITE(c, c->outputs[c->output_position_index + i]); 1515 1516 emit_scaled_viewport_write(c, rcp_w); 1517 emit_zs_write(c, rcp_w); 1518 emit_rcp_wc_write(c, rcp_w); 1519 if (c->vs_key->per_vertex_point_size) 1520 emit_point_size_write(c); 1521 } 1522 1523 static void 1524 vc4_optimize_nir(struct nir_shader *s) 1525 { 1526 bool progress; 1527 1528 do { 1529 progress = false; 1530 1531 NIR_PASS_V(s, nir_lower_vars_to_ssa); 1532 NIR_PASS(progress, s, nir_lower_alu_to_scalar); 1533 NIR_PASS(progress, s, nir_lower_phis_to_scalar); 1534 NIR_PASS(progress, s, nir_copy_prop); 1535 NIR_PASS(progress, s, nir_opt_remove_phis); 1536 NIR_PASS(progress, s, nir_opt_dce); 1537 NIR_PASS(progress, s, nir_opt_dead_cf); 1538 NIR_PASS(progress, s, nir_opt_cse); 1539 NIR_PASS(progress, s, nir_opt_peephole_select, 8); 1540 NIR_PASS(progress, s, nir_opt_algebraic); 1541 NIR_PASS(progress, s, nir_opt_constant_folding); 1542 NIR_PASS(progress, s, nir_opt_undef); 1543 NIR_PASS(progress, s, nir_opt_loop_unroll, 1544 nir_var_shader_in | 1545 nir_var_shader_out | 1546 nir_var_local); 1547 } while (progress); 1548 } 1549 1550 static int 1551 driver_location_compare(const void *in_a, const void *in_b) 1552 { 1553 const nir_variable *const *a = in_a; 1554 const nir_variable *const *b = in_b; 1555 1556 return (*a)->data.driver_location - (*b)->data.driver_location; 1557 } 1558 1559 static void 1560 ntq_setup_inputs(struct vc4_compile *c) 1561 { 1562 unsigned num_entries = 0; 1563 nir_foreach_variable(var, &c->s->inputs) 1564 num_entries++; 1565 1566 nir_variable *vars[num_entries]; 1567 1568 unsigned i = 0; 1569 nir_foreach_variable(var, &c->s->inputs) 1570 vars[i++] = var; 1571 1572 /* Sort the variables so that we emit the input setup in 1573 * driver_location order. This is required for VPM reads, whose data 1574 * is fetched into the VPM in driver_location (TGSI register index) 1575 * order. 1576 */ 1577 qsort(&vars, num_entries, sizeof(*vars), driver_location_compare); 1578 1579 for (unsigned i = 0; i < num_entries; i++) { 1580 nir_variable *var = vars[i]; 1581 unsigned array_len = MAX2(glsl_get_length(var->type), 1); 1582 unsigned loc = var->data.driver_location; 1583 1584 assert(array_len == 1); 1585 (void)array_len; 1586 resize_qreg_array(c, &c->inputs, &c->inputs_array_size, 1587 (loc + 1) * 4); 1588 1589 if (c->stage == QSTAGE_FRAG) { 1590 if (var->data.location == VARYING_SLOT_POS) { 1591 emit_fragcoord_input(c, loc); 1592 } else if (var->data.location == VARYING_SLOT_PNTC || 1593 (var->data.location >= VARYING_SLOT_VAR0 && 1594 (c->fs_key->point_sprite_mask & 1595 (1 << (var->data.location - 1596 VARYING_SLOT_VAR0))))) { 1597 c->inputs[loc * 4 + 0] = c->point_x; 1598 c->inputs[loc * 4 + 1] = c->point_y; 1599 } else { 1600 emit_fragment_input(c, loc, var->data.location); 1601 } 1602 } else { 1603 emit_vertex_input(c, loc); 1604 } 1605 } 1606 } 1607 1608 static void 1609 ntq_setup_outputs(struct vc4_compile *c) 1610 { 1611 nir_foreach_variable(var, &c->s->outputs) { 1612 unsigned array_len = MAX2(glsl_get_length(var->type), 1); 1613 unsigned loc = var->data.driver_location * 4; 1614 1615 assert(array_len == 1); 1616 (void)array_len; 1617 1618 for (int i = 0; i < 4; i++) 1619 add_output(c, loc + i, var->data.location, i); 1620 1621 if (c->stage == QSTAGE_FRAG) { 1622 switch (var->data.location) { 1623 case FRAG_RESULT_COLOR: 1624 case FRAG_RESULT_DATA0: 1625 c->output_color_index = loc; 1626 break; 1627 case FRAG_RESULT_DEPTH: 1628 c->output_position_index = loc; 1629 break; 1630 case FRAG_RESULT_SAMPLE_MASK: 1631 c->output_sample_mask_index = loc; 1632 break; 1633 } 1634 } else { 1635 switch (var->data.location) { 1636 case VARYING_SLOT_POS: 1637 c->output_position_index = loc; 1638 break; 1639 case VARYING_SLOT_PSIZ: 1640 c->output_point_size_index = loc; 1641 break; 1642 } 1643 } 1644 } 1645 } 1646 1647 static void 1648 ntq_setup_uniforms(struct vc4_compile *c) 1649 { 1650 nir_foreach_variable(var, &c->s->uniforms) { 1651 uint32_t vec4_count = st_glsl_type_size(var->type); 1652 unsigned vec4_size = 4 * sizeof(float); 1653 1654 declare_uniform_range(c, var->data.driver_location * vec4_size, 1655 vec4_count * vec4_size); 1656 1657 } 1658 } 1659 1660 /** 1661 * Sets up the mapping from nir_register to struct qreg *. 1662 * 1663 * Each nir_register gets a struct qreg per 32-bit component being stored. 1664 */ 1665 static void 1666 ntq_setup_registers(struct vc4_compile *c, struct exec_list *list) 1667 { 1668 foreach_list_typed(nir_register, nir_reg, node, list) { 1669 unsigned array_len = MAX2(nir_reg->num_array_elems, 1); 1670 struct qreg *qregs = ralloc_array(c->def_ht, struct qreg, 1671 array_len * 1672 nir_reg->num_components); 1673 1674 _mesa_hash_table_insert(c->def_ht, nir_reg, qregs); 1675 1676 for (int i = 0; i < array_len * nir_reg->num_components; i++) 1677 qregs[i] = qir_get_temp(c); 1678 } 1679 } 1680 1681 static void 1682 ntq_emit_load_const(struct vc4_compile *c, nir_load_const_instr *instr) 1683 { 1684 struct qreg *qregs = ntq_init_ssa_def(c, &instr->def); 1685 for (int i = 0; i < instr->def.num_components; i++) 1686 qregs[i] = qir_uniform_ui(c, instr->value.u32[i]); 1687 1688 _mesa_hash_table_insert(c->def_ht, &instr->def, qregs); 1689 } 1690 1691 static void 1692 ntq_emit_ssa_undef(struct vc4_compile *c, nir_ssa_undef_instr *instr) 1693 { 1694 struct qreg *qregs = ntq_init_ssa_def(c, &instr->def); 1695 1696 /* QIR needs there to be *some* value, so pick 0 (same as for 1697 * ntq_setup_registers(). 1698 */ 1699 for (int i = 0; i < instr->def.num_components; i++) 1700 qregs[i] = qir_uniform_ui(c, 0); 1701 } 1702 1703 static void 1704 ntq_emit_intrinsic(struct vc4_compile *c, nir_intrinsic_instr *instr) 1705 { 1706 nir_const_value *const_offset; 1707 unsigned offset; 1708 1709 switch (instr->intrinsic) { 1710 case nir_intrinsic_load_uniform: 1711 assert(instr->num_components == 1); 1712 const_offset = nir_src_as_const_value(instr->src[0]); 1713 if (const_offset) { 1714 offset = nir_intrinsic_base(instr) + const_offset->u32[0]; 1715 assert(offset % 4 == 0); 1716 /* We need dwords */ 1717 offset = offset / 4; 1718 ntq_store_dest(c, &instr->dest, 0, 1719 qir_uniform(c, QUNIFORM_UNIFORM, 1720 offset)); 1721 } else { 1722 ntq_store_dest(c, &instr->dest, 0, 1723 indirect_uniform_load(c, instr)); 1724 } 1725 break; 1726 1727 case nir_intrinsic_load_user_clip_plane: 1728 for (int i = 0; i < instr->num_components; i++) { 1729 ntq_store_dest(c, &instr->dest, i, 1730 qir_uniform(c, QUNIFORM_USER_CLIP_PLANE, 1731 nir_intrinsic_ucp_id(instr) * 1732 4 + i)); 1733 } 1734 break; 1735 1736 case nir_intrinsic_load_blend_const_color_r_float: 1737 case nir_intrinsic_load_blend_const_color_g_float: 1738 case nir_intrinsic_load_blend_const_color_b_float: 1739 case nir_intrinsic_load_blend_const_color_a_float: 1740 ntq_store_dest(c, &instr->dest, 0, 1741 qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR_X + 1742 (instr->intrinsic - 1743 nir_intrinsic_load_blend_const_color_r_float), 1744 0)); 1745 break; 1746 1747 case nir_intrinsic_load_blend_const_color_rgba8888_unorm: 1748 ntq_store_dest(c, &instr->dest, 0, 1749 qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR_RGBA, 1750 0)); 1751 break; 1752 1753 case nir_intrinsic_load_blend_const_color_aaaa8888_unorm: 1754 ntq_store_dest(c, &instr->dest, 0, 1755 qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR_AAAA, 1756 0)); 1757 break; 1758 1759 case nir_intrinsic_load_alpha_ref_float: 1760 ntq_store_dest(c, &instr->dest, 0, 1761 qir_uniform(c, QUNIFORM_ALPHA_REF, 0)); 1762 break; 1763 1764 case nir_intrinsic_load_sample_mask_in: 1765 ntq_store_dest(c, &instr->dest, 0, 1766 qir_uniform(c, QUNIFORM_SAMPLE_MASK, 0)); 1767 break; 1768 1769 case nir_intrinsic_load_front_face: 1770 /* The register contains 0 (front) or 1 (back), and we need to 1771 * turn it into a NIR bool where true means front. 1772 */ 1773 ntq_store_dest(c, &instr->dest, 0, 1774 qir_ADD(c, 1775 qir_uniform_ui(c, -1), 1776 qir_reg(QFILE_FRAG_REV_FLAG, 0))); 1777 break; 1778 1779 case nir_intrinsic_load_input: 1780 assert(instr->num_components == 1); 1781 const_offset = nir_src_as_const_value(instr->src[0]); 1782 assert(const_offset && "vc4 doesn't support indirect inputs"); 1783 if (c->stage == QSTAGE_FRAG && 1784 nir_intrinsic_base(instr) >= VC4_NIR_TLB_COLOR_READ_INPUT) { 1785 assert(const_offset->u32[0] == 0); 1786 /* Reads of the per-sample color need to be done in 1787 * order. 1788 */ 1789 int sample_index = (nir_intrinsic_base(instr) - 1790 VC4_NIR_TLB_COLOR_READ_INPUT); 1791 for (int i = 0; i <= sample_index; i++) { 1792 if (c->color_reads[i].file == QFILE_NULL) { 1793 c->color_reads[i] = 1794 qir_TLB_COLOR_READ(c); 1795 } 1796 } 1797 ntq_store_dest(c, &instr->dest, 0, 1798 qir_MOV(c, c->color_reads[sample_index])); 1799 } else { 1800 offset = nir_intrinsic_base(instr) + const_offset->u32[0]; 1801 int comp = nir_intrinsic_component(instr); 1802 ntq_store_dest(c, &instr->dest, 0, 1803 qir_MOV(c, c->inputs[offset * 4 + comp])); 1804 } 1805 break; 1806 1807 case nir_intrinsic_store_output: 1808 const_offset = nir_src_as_const_value(instr->src[1]); 1809 assert(const_offset && "vc4 doesn't support indirect outputs"); 1810 offset = nir_intrinsic_base(instr) + const_offset->u32[0]; 1811 1812 /* MSAA color outputs are the only case where we have an 1813 * output that's not lowered to being a store of a single 32 1814 * bit value. 1815 */ 1816 if (c->stage == QSTAGE_FRAG && instr->num_components == 4) { 1817 assert(offset == c->output_color_index); 1818 for (int i = 0; i < 4; i++) { 1819 c->sample_colors[i] = 1820 qir_MOV(c, ntq_get_src(c, instr->src[0], 1821 i)); 1822 } 1823 } else { 1824 offset = offset * 4 + nir_intrinsic_component(instr); 1825 assert(instr->num_components == 1); 1826 c->outputs[offset] = 1827 qir_MOV(c, ntq_get_src(c, instr->src[0], 0)); 1828 c->num_outputs = MAX2(c->num_outputs, offset + 1); 1829 } 1830 break; 1831 1832 case nir_intrinsic_discard: 1833 if (c->execute.file != QFILE_NULL) { 1834 qir_SF(c, c->execute); 1835 qir_MOV_cond(c, QPU_COND_ZS, c->discard, 1836 qir_uniform_ui(c, ~0)); 1837 } else { 1838 qir_MOV_dest(c, c->discard, qir_uniform_ui(c, ~0)); 1839 } 1840 break; 1841 1842 case nir_intrinsic_discard_if: { 1843 /* true (~0) if we're discarding */ 1844 struct qreg cond = ntq_get_src(c, instr->src[0], 0); 1845 1846 if (c->execute.file != QFILE_NULL) { 1847 /* execute == 0 means the channel is active. Invert 1848 * the condition so that we can use zero as "executing 1849 * and discarding." 1850 */ 1851 qir_SF(c, qir_AND(c, c->execute, qir_NOT(c, cond))); 1852 qir_MOV_cond(c, QPU_COND_ZS, c->discard, cond); 1853 } else { 1854 qir_OR_dest(c, c->discard, c->discard, 1855 ntq_get_src(c, instr->src[0], 0)); 1856 } 1857 1858 break; 1859 } 1860 1861 default: 1862 fprintf(stderr, "Unknown intrinsic: "); 1863 nir_print_instr(&instr->instr, stderr); 1864 fprintf(stderr, "\n"); 1865 break; 1866 } 1867 } 1868 1869 /* Clears (activates) the execute flags for any channels whose jump target 1870 * matches this block. 1871 */ 1872 static void 1873 ntq_activate_execute_for_block(struct vc4_compile *c) 1874 { 1875 qir_SF(c, qir_SUB(c, 1876 c->execute, 1877 qir_uniform_ui(c, c->cur_block->index))); 1878 qir_MOV_cond(c, QPU_COND_ZS, c->execute, qir_uniform_ui(c, 0)); 1879 } 1880 1881 static void 1882 ntq_emit_if(struct vc4_compile *c, nir_if *if_stmt) 1883 { 1884 if (!c->vc4->screen->has_control_flow) { 1885 fprintf(stderr, 1886 "IF statement support requires updated kernel.\n"); 1887 return; 1888 } 1889 1890 nir_block *nir_else_block = nir_if_first_else_block(if_stmt); 1891 bool empty_else_block = 1892 (nir_else_block == nir_if_last_else_block(if_stmt) && 1893 exec_list_is_empty(&nir_else_block->instr_list)); 1894 1895 struct qblock *then_block = qir_new_block(c); 1896 struct qblock *after_block = qir_new_block(c); 1897 struct qblock *else_block; 1898 if (empty_else_block) 1899 else_block = after_block; 1900 else 1901 else_block = qir_new_block(c); 1902 1903 bool was_top_level = false; 1904 if (c->execute.file == QFILE_NULL) { 1905 c->execute = qir_MOV(c, qir_uniform_ui(c, 0)); 1906 was_top_level = true; 1907 } 1908 1909 /* Set ZS for executing (execute == 0) and jumping (if->condition == 1910 * 0) channels, and then update execute flags for those to point to 1911 * the ELSE block. 1912 */ 1913 qir_SF(c, qir_OR(c, 1914 c->execute, 1915 ntq_get_src(c, if_stmt->condition, 0))); 1916 qir_MOV_cond(c, QPU_COND_ZS, c->execute, 1917 qir_uniform_ui(c, else_block->index)); 1918 1919 /* Jump to ELSE if nothing is active for THEN, otherwise fall 1920 * through. 1921 */ 1922 qir_SF(c, c->execute); 1923 qir_BRANCH(c, QPU_COND_BRANCH_ALL_ZC); 1924 qir_link_blocks(c->cur_block, else_block); 1925 qir_link_blocks(c->cur_block, then_block); 1926 1927 /* Process the THEN block. */ 1928 qir_set_emit_block(c, then_block); 1929 ntq_emit_cf_list(c, &if_stmt->then_list); 1930 1931 if (!empty_else_block) { 1932 /* Handle the end of the THEN block. First, all currently 1933 * active channels update their execute flags to point to 1934 * ENDIF 1935 */ 1936 qir_SF(c, c->execute); 1937 qir_MOV_cond(c, QPU_COND_ZS, c->execute, 1938 qir_uniform_ui(c, after_block->index)); 1939 1940 /* If everything points at ENDIF, then jump there immediately. */ 1941 qir_SF(c, qir_SUB(c, c->execute, qir_uniform_ui(c, after_block->index))); 1942 qir_BRANCH(c, QPU_COND_BRANCH_ALL_ZS); 1943 qir_link_blocks(c->cur_block, after_block); 1944 qir_link_blocks(c->cur_block, else_block); 1945 1946 qir_set_emit_block(c, else_block); 1947 ntq_activate_execute_for_block(c); 1948 ntq_emit_cf_list(c, &if_stmt->else_list); 1949 } 1950 1951 qir_link_blocks(c->cur_block, after_block); 1952 1953 qir_set_emit_block(c, after_block); 1954 if (was_top_level) 1955 c->execute = c->undef; 1956 else 1957 ntq_activate_execute_for_block(c); 1958 1959 } 1960 1961 static void 1962 ntq_emit_jump(struct vc4_compile *c, nir_jump_instr *jump) 1963 { 1964 struct qblock *jump_block; 1965 switch (jump->type) { 1966 case nir_jump_break: 1967 jump_block = c->loop_break_block; 1968 break; 1969 case nir_jump_continue: 1970 jump_block = c->loop_cont_block; 1971 break; 1972 default: 1973 unreachable("Unsupported jump type\n"); 1974 } 1975 1976 qir_SF(c, c->execute); 1977 qir_MOV_cond(c, QPU_COND_ZS, c->execute, 1978 qir_uniform_ui(c, jump_block->index)); 1979 1980 /* Jump to the destination block if everyone has taken the jump. */ 1981 qir_SF(c, qir_SUB(c, c->execute, qir_uniform_ui(c, jump_block->index))); 1982 qir_BRANCH(c, QPU_COND_BRANCH_ALL_ZS); 1983 struct qblock *new_block = qir_new_block(c); 1984 qir_link_blocks(c->cur_block, jump_block); 1985 qir_link_blocks(c->cur_block, new_block); 1986 qir_set_emit_block(c, new_block); 1987 } 1988 1989 static void 1990 ntq_emit_instr(struct vc4_compile *c, nir_instr *instr) 1991 { 1992 switch (instr->type) { 1993 case nir_instr_type_alu: 1994 ntq_emit_alu(c, nir_instr_as_alu(instr)); 1995 break; 1996 1997 case nir_instr_type_intrinsic: 1998 ntq_emit_intrinsic(c, nir_instr_as_intrinsic(instr)); 1999 break; 2000 2001 case nir_instr_type_load_const: 2002 ntq_emit_load_const(c, nir_instr_as_load_const(instr)); 2003 break; 2004 2005 case nir_instr_type_ssa_undef: 2006 ntq_emit_ssa_undef(c, nir_instr_as_ssa_undef(instr)); 2007 break; 2008 2009 case nir_instr_type_tex: 2010 ntq_emit_tex(c, nir_instr_as_tex(instr)); 2011 break; 2012 2013 case nir_instr_type_jump: 2014 ntq_emit_jump(c, nir_instr_as_jump(instr)); 2015 break; 2016 2017 default: 2018 fprintf(stderr, "Unknown NIR instr type: "); 2019 nir_print_instr(instr, stderr); 2020 fprintf(stderr, "\n"); 2021 abort(); 2022 } 2023 } 2024 2025 static void 2026 ntq_emit_block(struct vc4_compile *c, nir_block *block) 2027 { 2028 nir_foreach_instr(instr, block) { 2029 ntq_emit_instr(c, instr); 2030 } 2031 } 2032 2033 static void ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list); 2034 2035 static void 2036 ntq_emit_loop(struct vc4_compile *c, nir_loop *loop) 2037 { 2038 if (!c->vc4->screen->has_control_flow) { 2039 fprintf(stderr, 2040 "loop support requires updated kernel.\n"); 2041 ntq_emit_cf_list(c, &loop->body); 2042 return; 2043 } 2044 2045 bool was_top_level = false; 2046 if (c->execute.file == QFILE_NULL) { 2047 c->execute = qir_MOV(c, qir_uniform_ui(c, 0)); 2048 was_top_level = true; 2049 } 2050 2051 struct qblock *save_loop_cont_block = c->loop_cont_block; 2052 struct qblock *save_loop_break_block = c->loop_break_block; 2053 2054 c->loop_cont_block = qir_new_block(c); 2055 c->loop_break_block = qir_new_block(c); 2056 2057 qir_link_blocks(c->cur_block, c->loop_cont_block); 2058 qir_set_emit_block(c, c->loop_cont_block); 2059 ntq_activate_execute_for_block(c); 2060 2061 ntq_emit_cf_list(c, &loop->body); 2062 2063 /* If anything had explicitly continued, or is here at the end of the 2064 * loop, then we need to loop again. SF updates are masked by the 2065 * instruction's condition, so we can do the OR of the two conditions 2066 * within SF. 2067 */ 2068 qir_SF(c, c->execute); 2069 struct qinst *cont_check = 2070 qir_SUB_dest(c, 2071 c->undef, 2072 c->execute, 2073 qir_uniform_ui(c, c->loop_cont_block->index)); 2074 cont_check->cond = QPU_COND_ZC; 2075 cont_check->sf = true; 2076 2077 qir_BRANCH(c, QPU_COND_BRANCH_ANY_ZS); 2078 qir_link_blocks(c->cur_block, c->loop_cont_block); 2079 qir_link_blocks(c->cur_block, c->loop_break_block); 2080 2081 qir_set_emit_block(c, c->loop_break_block); 2082 if (was_top_level) 2083 c->execute = c->undef; 2084 else 2085 ntq_activate_execute_for_block(c); 2086 2087 c->loop_break_block = save_loop_break_block; 2088 c->loop_cont_block = save_loop_cont_block; 2089 } 2090 2091 static void 2092 ntq_emit_function(struct vc4_compile *c, nir_function_impl *func) 2093 { 2094 fprintf(stderr, "FUNCTIONS not handled.\n"); 2095 abort(); 2096 } 2097 2098 static void 2099 ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list) 2100 { 2101 foreach_list_typed(nir_cf_node, node, node, list) { 2102 switch (node->type) { 2103 case nir_cf_node_block: 2104 ntq_emit_block(c, nir_cf_node_as_block(node)); 2105 break; 2106 2107 case nir_cf_node_if: 2108 ntq_emit_if(c, nir_cf_node_as_if(node)); 2109 break; 2110 2111 case nir_cf_node_loop: 2112 ntq_emit_loop(c, nir_cf_node_as_loop(node)); 2113 break; 2114 2115 case nir_cf_node_function: 2116 ntq_emit_function(c, nir_cf_node_as_function(node)); 2117 break; 2118 2119 default: 2120 fprintf(stderr, "Unknown NIR node type\n"); 2121 abort(); 2122 } 2123 } 2124 } 2125 2126 static void 2127 ntq_emit_impl(struct vc4_compile *c, nir_function_impl *impl) 2128 { 2129 ntq_setup_registers(c, &impl->registers); 2130 ntq_emit_cf_list(c, &impl->body); 2131 } 2132 2133 static void 2134 nir_to_qir(struct vc4_compile *c) 2135 { 2136 if (c->stage == QSTAGE_FRAG && c->s->info->fs.uses_discard) 2137 c->discard = qir_MOV(c, qir_uniform_ui(c, 0)); 2138 2139 ntq_setup_inputs(c); 2140 ntq_setup_outputs(c); 2141 ntq_setup_uniforms(c); 2142 ntq_setup_registers(c, &c->s->registers); 2143 2144 /* Find the main function and emit the body. */ 2145 nir_foreach_function(function, c->s) { 2146 assert(strcmp(function->name, "main") == 0); 2147 assert(function->impl); 2148 ntq_emit_impl(c, function->impl); 2149 } 2150 } 2151 2152 static const nir_shader_compiler_options nir_options = { 2153 .lower_extract_byte = true, 2154 .lower_extract_word = true, 2155 .lower_ffma = true, 2156 .lower_flrp32 = true, 2157 .lower_fpow = true, 2158 .lower_fsat = true, 2159 .lower_fsqrt = true, 2160 .lower_negate = true, 2161 .native_integers = true, 2162 .max_unroll_iterations = 32, 2163 }; 2164 2165 const void * 2166 vc4_screen_get_compiler_options(struct pipe_screen *pscreen, 2167 enum pipe_shader_ir ir, unsigned shader) 2168 { 2169 return &nir_options; 2170 } 2171 2172 static int 2173 count_nir_instrs(nir_shader *nir) 2174 { 2175 int count = 0; 2176 nir_foreach_function(function, nir) { 2177 if (!function->impl) 2178 continue; 2179 nir_foreach_block(block, function->impl) { 2180 nir_foreach_instr(instr, block) 2181 count++; 2182 } 2183 } 2184 return count; 2185 } 2186 2187 static struct vc4_compile * 2188 vc4_shader_ntq(struct vc4_context *vc4, enum qstage stage, 2189 struct vc4_key *key, bool fs_threaded) 2190 { 2191 struct vc4_compile *c = qir_compile_init(); 2192 2193 c->vc4 = vc4; 2194 c->stage = stage; 2195 c->shader_state = &key->shader_state->base; 2196 c->program_id = key->shader_state->program_id; 2197 c->variant_id = 2198 p_atomic_inc_return(&key->shader_state->compiled_variant_count); 2199 c->fs_threaded = fs_threaded; 2200 2201 c->key = key; 2202 switch (stage) { 2203 case QSTAGE_FRAG: 2204 c->fs_key = (struct vc4_fs_key *)key; 2205 if (c->fs_key->is_points) { 2206 c->point_x = emit_fragment_varying(c, ~0, 0); 2207 c->point_y = emit_fragment_varying(c, ~0, 0); 2208 } else if (c->fs_key->is_lines) { 2209 c->line_x = emit_fragment_varying(c, ~0, 0); 2210 } 2211 break; 2212 case QSTAGE_VERT: 2213 c->vs_key = (struct vc4_vs_key *)key; 2214 break; 2215 case QSTAGE_COORD: 2216 c->vs_key = (struct vc4_vs_key *)key; 2217 break; 2218 } 2219 2220 c->s = nir_shader_clone(c, key->shader_state->base.ir.nir); 2221 2222 if (stage == QSTAGE_FRAG) 2223 NIR_PASS_V(c->s, vc4_nir_lower_blend, c); 2224 2225 struct nir_lower_tex_options tex_options = { 2226 /* We would need to implement txs, but we don't want the 2227 * int/float conversions 2228 */ 2229 .lower_rect = false, 2230 2231 .lower_txp = ~0, 2232 2233 /* Apply swizzles to all samplers. */ 2234 .swizzle_result = ~0, 2235 }; 2236 2237 /* Lower the format swizzle and ARB_texture_swizzle-style swizzle. 2238 * The format swizzling applies before sRGB decode, and 2239 * ARB_texture_swizzle is the last thing before returning the sample. 2240 */ 2241 for (int i = 0; i < ARRAY_SIZE(key->tex); i++) { 2242 enum pipe_format format = c->key->tex[i].format; 2243 2244 if (!format) 2245 continue; 2246 2247 const uint8_t *format_swizzle = vc4_get_format_swizzle(format); 2248 2249 for (int j = 0; j < 4; j++) { 2250 uint8_t arb_swiz = c->key->tex[i].swizzle[j]; 2251 2252 if (arb_swiz <= 3) { 2253 tex_options.swizzles[i][j] = 2254 format_swizzle[arb_swiz]; 2255 } else { 2256 tex_options.swizzles[i][j] = arb_swiz; 2257 } 2258 } 2259 2260 if (util_format_is_srgb(format)) 2261 tex_options.lower_srgb |= (1 << i); 2262 } 2263 2264 NIR_PASS_V(c->s, nir_lower_tex, &tex_options); 2265 2266 if (c->fs_key && c->fs_key->light_twoside) 2267 NIR_PASS_V(c->s, nir_lower_two_sided_color); 2268 2269 if (c->vs_key && c->vs_key->clamp_color) 2270 NIR_PASS_V(c->s, nir_lower_clamp_color_outputs); 2271 2272 if (c->key->ucp_enables) { 2273 if (stage == QSTAGE_FRAG) { 2274 NIR_PASS_V(c->s, nir_lower_clip_fs, c->key->ucp_enables); 2275 } else { 2276 NIR_PASS_V(c->s, nir_lower_clip_vs, c->key->ucp_enables); 2277 NIR_PASS_V(c->s, nir_lower_io_to_scalar, 2278 nir_var_shader_out); 2279 } 2280 } 2281 2282 /* FS input scalarizing must happen after nir_lower_two_sided_color, 2283 * which only handles a vec4 at a time. Similarly, VS output 2284 * scalarizing must happen after nir_lower_clip_vs. 2285 */ 2286 if (c->stage == QSTAGE_FRAG) 2287 NIR_PASS_V(c->s, nir_lower_io_to_scalar, nir_var_shader_in); 2288 else 2289 NIR_PASS_V(c->s, nir_lower_io_to_scalar, nir_var_shader_out); 2290 2291 NIR_PASS_V(c->s, vc4_nir_lower_io, c); 2292 NIR_PASS_V(c->s, vc4_nir_lower_txf_ms, c); 2293 NIR_PASS_V(c->s, nir_lower_idiv); 2294 2295 vc4_optimize_nir(c->s); 2296 2297 NIR_PASS_V(c->s, nir_convert_from_ssa, true); 2298 2299 if (vc4_debug & VC4_DEBUG_SHADERDB) { 2300 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d NIR instructions\n", 2301 qir_get_stage_name(c->stage), 2302 c->program_id, c->variant_id, 2303 count_nir_instrs(c->s)); 2304 } 2305 2306 if (vc4_debug & VC4_DEBUG_NIR) { 2307 fprintf(stderr, "%s prog %d/%d NIR:\n", 2308 qir_get_stage_name(c->stage), 2309 c->program_id, c->variant_id); 2310 nir_print_shader(c->s, stderr); 2311 } 2312 2313 nir_to_qir(c); 2314 2315 switch (stage) { 2316 case QSTAGE_FRAG: 2317 /* FS threading requires that the thread execute 2318 * QPU_SIG_LAST_THREAD_SWITCH exactly once before terminating 2319 * (with no other THRSW afterwards, obviously). If we didn't 2320 * fetch a texture at a top level block, this wouldn't be 2321 * true. 2322 */ 2323 if (c->fs_threaded && !c->last_thrsw_at_top_level) { 2324 c->failed = true; 2325 return c; 2326 } 2327 2328 emit_frag_end(c); 2329 break; 2330 case QSTAGE_VERT: 2331 emit_vert_end(c, 2332 c->vs_key->fs_inputs->input_slots, 2333 c->vs_key->fs_inputs->num_inputs); 2334 break; 2335 case QSTAGE_COORD: 2336 emit_coord_end(c); 2337 break; 2338 } 2339 2340 if (vc4_debug & VC4_DEBUG_QIR) { 2341 fprintf(stderr, "%s prog %d/%d pre-opt QIR:\n", 2342 qir_get_stage_name(c->stage), 2343 c->program_id, c->variant_id); 2344 qir_dump(c); 2345 fprintf(stderr, "\n"); 2346 } 2347 2348 qir_optimize(c); 2349 qir_lower_uniforms(c); 2350 2351 qir_schedule_instructions(c); 2352 qir_emit_uniform_stream_resets(c); 2353 2354 if (vc4_debug & VC4_DEBUG_QIR) { 2355 fprintf(stderr, "%s prog %d/%d QIR:\n", 2356 qir_get_stage_name(c->stage), 2357 c->program_id, c->variant_id); 2358 qir_dump(c); 2359 fprintf(stderr, "\n"); 2360 } 2361 2362 qir_reorder_uniforms(c); 2363 vc4_generate_code(vc4, c); 2364 2365 if (vc4_debug & VC4_DEBUG_SHADERDB) { 2366 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d instructions\n", 2367 qir_get_stage_name(c->stage), 2368 c->program_id, c->variant_id, 2369 c->qpu_inst_count); 2370 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d uniforms\n", 2371 qir_get_stage_name(c->stage), 2372 c->program_id, c->variant_id, 2373 c->num_uniforms); 2374 } 2375 2376 ralloc_free(c->s); 2377 2378 return c; 2379 } 2380 2381 static void * 2382 vc4_shader_state_create(struct pipe_context *pctx, 2383 const struct pipe_shader_state *cso) 2384 { 2385 struct vc4_context *vc4 = vc4_context(pctx); 2386 struct vc4_uncompiled_shader *so = CALLOC_STRUCT(vc4_uncompiled_shader); 2387 if (!so) 2388 return NULL; 2389 2390 so->program_id = vc4->next_uncompiled_program_id++; 2391 2392 nir_shader *s; 2393 2394 if (cso->type == PIPE_SHADER_IR_NIR) { 2395 /* The backend takes ownership of the NIR shader on state 2396 * creation. 2397 */ 2398 s = cso->ir.nir; 2399 } else { 2400 assert(cso->type == PIPE_SHADER_IR_TGSI); 2401 2402 if (vc4_debug & VC4_DEBUG_TGSI) { 2403 fprintf(stderr, "prog %d TGSI:\n", 2404 so->program_id); 2405 tgsi_dump(cso->tokens, 0); 2406 fprintf(stderr, "\n"); 2407 } 2408 s = tgsi_to_nir(cso->tokens, &nir_options); 2409 } 2410 2411 NIR_PASS_V(s, nir_opt_global_to_local); 2412 NIR_PASS_V(s, nir_lower_regs_to_ssa); 2413 NIR_PASS_V(s, nir_normalize_cubemap_coords); 2414 2415 NIR_PASS_V(s, nir_lower_load_const_to_scalar); 2416 2417 vc4_optimize_nir(s); 2418 2419 NIR_PASS_V(s, nir_remove_dead_variables, nir_var_local); 2420 2421 /* Garbage collect dead instructions */ 2422 nir_sweep(s); 2423 2424 so->base.type = PIPE_SHADER_IR_NIR; 2425 so->base.ir.nir = s; 2426 2427 if (vc4_debug & VC4_DEBUG_NIR) { 2428 fprintf(stderr, "%s prog %d NIR:\n", 2429 gl_shader_stage_name(s->stage), 2430 so->program_id); 2431 nir_print_shader(s, stderr); 2432 fprintf(stderr, "\n"); 2433 } 2434 2435 return so; 2436 } 2437 2438 static void 2439 copy_uniform_state_to_shader(struct vc4_compiled_shader *shader, 2440 struct vc4_compile *c) 2441 { 2442 int count = c->num_uniforms; 2443 struct vc4_shader_uniform_info *uinfo = &shader->uniforms; 2444 2445 uinfo->count = count; 2446 uinfo->data = ralloc_array(shader, uint32_t, count); 2447 memcpy(uinfo->data, c->uniform_data, 2448 count * sizeof(*uinfo->data)); 2449 uinfo->contents = ralloc_array(shader, enum quniform_contents, count); 2450 memcpy(uinfo->contents, c->uniform_contents, 2451 count * sizeof(*uinfo->contents)); 2452 uinfo->num_texture_samples = c->num_texture_samples; 2453 2454 vc4_set_shader_uniform_dirty_flags(shader); 2455 } 2456 2457 static void 2458 vc4_setup_compiled_fs_inputs(struct vc4_context *vc4, struct vc4_compile *c, 2459 struct vc4_compiled_shader *shader) 2460 { 2461 struct vc4_fs_inputs inputs; 2462 2463 memset(&inputs, 0, sizeof(inputs)); 2464 inputs.input_slots = ralloc_array(shader, 2465 struct vc4_varying_slot, 2466 c->num_input_slots); 2467 2468 bool input_live[c->num_input_slots]; 2469 2470 memset(input_live, 0, sizeof(input_live)); 2471 qir_for_each_inst_inorder(inst, c) { 2472 for (int i = 0; i < qir_get_nsrc(inst); i++) { 2473 if (inst->src[i].file == QFILE_VARY) 2474 input_live[inst->src[i].index] = true; 2475 } 2476 } 2477 2478 for (int i = 0; i < c->num_input_slots; i++) { 2479 struct vc4_varying_slot *slot = &c->input_slots[i]; 2480 2481 if (!input_live[i]) 2482 continue; 2483 2484 /* Skip non-VS-output inputs. */ 2485 if (slot->slot == (uint8_t)~0) 2486 continue; 2487 2488 if (slot->slot == VARYING_SLOT_COL0 || 2489 slot->slot == VARYING_SLOT_COL1 || 2490 slot->slot == VARYING_SLOT_BFC0 || 2491 slot->slot == VARYING_SLOT_BFC1) { 2492 shader->color_inputs |= (1 << inputs.num_inputs); 2493 } 2494 2495 inputs.input_slots[inputs.num_inputs] = *slot; 2496 inputs.num_inputs++; 2497 } 2498 shader->num_inputs = inputs.num_inputs; 2499 2500 /* Add our set of inputs to the set of all inputs seen. This way, we 2501 * can have a single pointer that identifies an FS inputs set, 2502 * allowing VS to avoid recompiling when the FS is recompiled (or a 2503 * new one is bound using separate shader objects) but the inputs 2504 * don't change. 2505 */ 2506 struct set_entry *entry = _mesa_set_search(vc4->fs_inputs_set, &inputs); 2507 if (entry) { 2508 shader->fs_inputs = entry->key; 2509 ralloc_free(inputs.input_slots); 2510 } else { 2511 struct vc4_fs_inputs *alloc_inputs; 2512 2513 alloc_inputs = rzalloc(vc4->fs_inputs_set, struct vc4_fs_inputs); 2514 memcpy(alloc_inputs, &inputs, sizeof(inputs)); 2515 ralloc_steal(alloc_inputs, inputs.input_slots); 2516 _mesa_set_add(vc4->fs_inputs_set, alloc_inputs); 2517 2518 shader->fs_inputs = alloc_inputs; 2519 } 2520 } 2521 2522 static struct vc4_compiled_shader * 2523 vc4_get_compiled_shader(struct vc4_context *vc4, enum qstage stage, 2524 struct vc4_key *key) 2525 { 2526 struct hash_table *ht; 2527 uint32_t key_size; 2528 bool try_threading; 2529 2530 if (stage == QSTAGE_FRAG) { 2531 ht = vc4->fs_cache; 2532 key_size = sizeof(struct vc4_fs_key); 2533 try_threading = vc4->screen->has_threaded_fs; 2534 } else { 2535 ht = vc4->vs_cache; 2536 key_size = sizeof(struct vc4_vs_key); 2537 try_threading = false; 2538 } 2539 2540 struct vc4_compiled_shader *shader; 2541 struct hash_entry *entry = _mesa_hash_table_search(ht, key); 2542 if (entry) 2543 return entry->data; 2544 2545 struct vc4_compile *c = vc4_shader_ntq(vc4, stage, key, try_threading); 2546 /* If the FS failed to compile threaded, fall back to single threaded. */ 2547 if (try_threading && c->failed) { 2548 qir_compile_destroy(c); 2549 c = vc4_shader_ntq(vc4, stage, key, false); 2550 } 2551 2552 shader = rzalloc(NULL, struct vc4_compiled_shader); 2553 2554 shader->program_id = vc4->next_compiled_program_id++; 2555 if (stage == QSTAGE_FRAG) { 2556 vc4_setup_compiled_fs_inputs(vc4, c, shader); 2557 2558 /* Note: the temporary clone in c->s has been freed. */ 2559 nir_shader *orig_shader = key->shader_state->base.ir.nir; 2560 if (orig_shader->info->outputs_written & (1 << FRAG_RESULT_DEPTH)) 2561 shader->disable_early_z = true; 2562 } else { 2563 shader->num_inputs = c->num_inputs; 2564 2565 shader->vattr_offsets[0] = 0; 2566 for (int i = 0; i < 8; i++) { 2567 shader->vattr_offsets[i + 1] = 2568 shader->vattr_offsets[i] + c->vattr_sizes[i]; 2569 2570 if (c->vattr_sizes[i]) 2571 shader->vattrs_live |= (1 << i); 2572 } 2573 } 2574 2575 shader->failed = c->failed; 2576 if (c->failed) { 2577 shader->failed = true; 2578 } else { 2579 copy_uniform_state_to_shader(shader, c); 2580 shader->bo = vc4_bo_alloc_shader(vc4->screen, c->qpu_insts, 2581 c->qpu_inst_count * 2582 sizeof(uint64_t)); 2583 } 2584 2585 shader->fs_threaded = c->fs_threaded; 2586 2587 /* Copy the compiler UBO range state to the compiled shader, dropping 2588 * out arrays that were never referenced by an indirect load. 2589 * 2590 * (Note that QIR dead code elimination of an array access still 2591 * leaves that array alive, though) 2592 */ 2593 if (c->num_ubo_ranges) { 2594 shader->num_ubo_ranges = c->num_ubo_ranges; 2595 shader->ubo_ranges = ralloc_array(shader, struct vc4_ubo_range, 2596 c->num_ubo_ranges); 2597 uint32_t j = 0; 2598 for (int i = 0; i < c->num_uniform_ranges; i++) { 2599 struct vc4_compiler_ubo_range *range = 2600 &c->ubo_ranges[i]; 2601 if (!range->used) 2602 continue; 2603 2604 shader->ubo_ranges[j].dst_offset = range->dst_offset; 2605 shader->ubo_ranges[j].src_offset = range->src_offset; 2606 shader->ubo_ranges[j].size = range->size; 2607 shader->ubo_size += c->ubo_ranges[i].size; 2608 j++; 2609 } 2610 } 2611 if (shader->ubo_size) { 2612 if (vc4_debug & VC4_DEBUG_SHADERDB) { 2613 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d UBO uniforms\n", 2614 qir_get_stage_name(c->stage), 2615 c->program_id, c->variant_id, 2616 shader->ubo_size / 4); 2617 } 2618 } 2619 2620 qir_compile_destroy(c); 2621 2622 struct vc4_key *dup_key; 2623 dup_key = rzalloc_size(shader, key_size); /* TODO: don't use rzalloc */ 2624 memcpy(dup_key, key, key_size); 2625 _mesa_hash_table_insert(ht, dup_key, shader); 2626 2627 return shader; 2628 } 2629 2630 static void 2631 vc4_setup_shared_key(struct vc4_context *vc4, struct vc4_key *key, 2632 struct vc4_texture_stateobj *texstate) 2633 { 2634 for (int i = 0; i < texstate->num_textures; i++) { 2635 struct pipe_sampler_view *sampler = texstate->textures[i]; 2636 struct vc4_sampler_view *vc4_sampler = vc4_sampler_view(sampler); 2637 struct pipe_sampler_state *sampler_state = 2638 texstate->samplers[i]; 2639 2640 if (!sampler) 2641 continue; 2642 2643 key->tex[i].format = sampler->format; 2644 key->tex[i].swizzle[0] = sampler->swizzle_r; 2645 key->tex[i].swizzle[1] = sampler->swizzle_g; 2646 key->tex[i].swizzle[2] = sampler->swizzle_b; 2647 key->tex[i].swizzle[3] = sampler->swizzle_a; 2648 2649 if (sampler->texture->nr_samples > 1) { 2650 key->tex[i].msaa_width = sampler->texture->width0; 2651 key->tex[i].msaa_height = sampler->texture->height0; 2652 } else if (sampler){ 2653 key->tex[i].compare_mode = sampler_state->compare_mode; 2654 key->tex[i].compare_func = sampler_state->compare_func; 2655 key->tex[i].wrap_s = sampler_state->wrap_s; 2656 key->tex[i].wrap_t = sampler_state->wrap_t; 2657 key->tex[i].force_first_level = 2658 vc4_sampler->force_first_level; 2659 } 2660 } 2661 2662 key->ucp_enables = vc4->rasterizer->base.clip_plane_enable; 2663 } 2664 2665 static void 2666 vc4_update_compiled_fs(struct vc4_context *vc4, uint8_t prim_mode) 2667 { 2668 struct vc4_job *job = vc4->job; 2669 struct vc4_fs_key local_key; 2670 struct vc4_fs_key *key = &local_key; 2671 2672 if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE | 2673 VC4_DIRTY_BLEND | 2674 VC4_DIRTY_FRAMEBUFFER | 2675 VC4_DIRTY_ZSA | 2676 VC4_DIRTY_RASTERIZER | 2677 VC4_DIRTY_SAMPLE_MASK | 2678 VC4_DIRTY_FRAGTEX | 2679 VC4_DIRTY_UNCOMPILED_FS))) { 2680 return; 2681 } 2682 2683 memset(key, 0, sizeof(*key)); 2684 vc4_setup_shared_key(vc4, &key->base, &vc4->fragtex); 2685 key->base.shader_state = vc4->prog.bind_fs; 2686 key->is_points = (prim_mode == PIPE_PRIM_POINTS); 2687 key->is_lines = (prim_mode >= PIPE_PRIM_LINES && 2688 prim_mode <= PIPE_PRIM_LINE_STRIP); 2689 key->blend = vc4->blend->rt[0]; 2690 if (vc4->blend->logicop_enable) { 2691 key->logicop_func = vc4->blend->logicop_func; 2692 } else { 2693 key->logicop_func = PIPE_LOGICOP_COPY; 2694 } 2695 if (job->msaa) { 2696 key->msaa = vc4->rasterizer->base.multisample; 2697 key->sample_coverage = (vc4->rasterizer->base.multisample && 2698 vc4->sample_mask != (1 << VC4_MAX_SAMPLES) - 1); 2699 key->sample_alpha_to_coverage = vc4->blend->alpha_to_coverage; 2700 key->sample_alpha_to_one = vc4->blend->alpha_to_one; 2701 } 2702 2703 if (vc4->framebuffer.cbufs[0]) 2704 key->color_format = vc4->framebuffer.cbufs[0]->format; 2705 2706 key->stencil_enabled = vc4->zsa->stencil_uniforms[0] != 0; 2707 key->stencil_twoside = vc4->zsa->stencil_uniforms[1] != 0; 2708 key->stencil_full_writemasks = vc4->zsa->stencil_uniforms[2] != 0; 2709 key->depth_enabled = (vc4->zsa->base.depth.enabled || 2710 key->stencil_enabled); 2711 if (vc4->zsa->base.alpha.enabled) { 2712 key->alpha_test = true; 2713 key->alpha_test_func = vc4->zsa->base.alpha.func; 2714 } 2715 2716 if (key->is_points) { 2717 key->point_sprite_mask = 2718 vc4->rasterizer->base.sprite_coord_enable; 2719 key->point_coord_upper_left = 2720 (vc4->rasterizer->base.sprite_coord_mode == 2721 PIPE_SPRITE_COORD_UPPER_LEFT); 2722 } 2723 2724 key->light_twoside = vc4->rasterizer->base.light_twoside; 2725 2726 struct vc4_compiled_shader *old_fs = vc4->prog.fs; 2727 vc4->prog.fs = vc4_get_compiled_shader(vc4, QSTAGE_FRAG, &key->base); 2728 if (vc4->prog.fs == old_fs) 2729 return; 2730 2731 vc4->dirty |= VC4_DIRTY_COMPILED_FS; 2732 2733 if (vc4->rasterizer->base.flatshade && 2734 old_fs && vc4->prog.fs->color_inputs != old_fs->color_inputs) { 2735 vc4->dirty |= VC4_DIRTY_FLAT_SHADE_FLAGS; 2736 } 2737 2738 if (old_fs && vc4->prog.fs->fs_inputs != old_fs->fs_inputs) 2739 vc4->dirty |= VC4_DIRTY_FS_INPUTS; 2740 } 2741 2742 static void 2743 vc4_update_compiled_vs(struct vc4_context *vc4, uint8_t prim_mode) 2744 { 2745 struct vc4_vs_key local_key; 2746 struct vc4_vs_key *key = &local_key; 2747 2748 if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE | 2749 VC4_DIRTY_RASTERIZER | 2750 VC4_DIRTY_VERTTEX | 2751 VC4_DIRTY_VTXSTATE | 2752 VC4_DIRTY_UNCOMPILED_VS | 2753 VC4_DIRTY_FS_INPUTS))) { 2754 return; 2755 } 2756 2757 memset(key, 0, sizeof(*key)); 2758 vc4_setup_shared_key(vc4, &key->base, &vc4->verttex); 2759 key->base.shader_state = vc4->prog.bind_vs; 2760 key->fs_inputs = vc4->prog.fs->fs_inputs; 2761 key->clamp_color = vc4->rasterizer->base.clamp_vertex_color; 2762 2763 for (int i = 0; i < ARRAY_SIZE(key->attr_formats); i++) 2764 key->attr_formats[i] = vc4->vtx->pipe[i].src_format; 2765 2766 key->per_vertex_point_size = 2767 (prim_mode == PIPE_PRIM_POINTS && 2768 vc4->rasterizer->base.point_size_per_vertex); 2769 2770 struct vc4_compiled_shader *vs = 2771 vc4_get_compiled_shader(vc4, QSTAGE_VERT, &key->base); 2772 if (vs != vc4->prog.vs) { 2773 vc4->prog.vs = vs; 2774 vc4->dirty |= VC4_DIRTY_COMPILED_VS; 2775 } 2776 2777 key->is_coord = true; 2778 /* Coord shaders don't care what the FS inputs are. */ 2779 key->fs_inputs = NULL; 2780 struct vc4_compiled_shader *cs = 2781 vc4_get_compiled_shader(vc4, QSTAGE_COORD, &key->base); 2782 if (cs != vc4->prog.cs) { 2783 vc4->prog.cs = cs; 2784 vc4->dirty |= VC4_DIRTY_COMPILED_CS; 2785 } 2786 } 2787 2788 bool 2789 vc4_update_compiled_shaders(struct vc4_context *vc4, uint8_t prim_mode) 2790 { 2791 vc4_update_compiled_fs(vc4, prim_mode); 2792 vc4_update_compiled_vs(vc4, prim_mode); 2793 2794 return !(vc4->prog.cs->failed || 2795 vc4->prog.vs->failed || 2796 vc4->prog.fs->failed); 2797 } 2798 2799 static uint32_t 2800 fs_cache_hash(const void *key) 2801 { 2802 return _mesa_hash_data(key, sizeof(struct vc4_fs_key)); 2803 } 2804 2805 static uint32_t 2806 vs_cache_hash(const void *key) 2807 { 2808 return _mesa_hash_data(key, sizeof(struct vc4_vs_key)); 2809 } 2810 2811 static bool 2812 fs_cache_compare(const void *key1, const void *key2) 2813 { 2814 return memcmp(key1, key2, sizeof(struct vc4_fs_key)) == 0; 2815 } 2816 2817 static bool 2818 vs_cache_compare(const void *key1, const void *key2) 2819 { 2820 return memcmp(key1, key2, sizeof(struct vc4_vs_key)) == 0; 2821 } 2822 2823 static uint32_t 2824 fs_inputs_hash(const void *key) 2825 { 2826 const struct vc4_fs_inputs *inputs = key; 2827 2828 return _mesa_hash_data(inputs->input_slots, 2829 sizeof(*inputs->input_slots) * 2830 inputs->num_inputs); 2831 } 2832 2833 static bool 2834 fs_inputs_compare(const void *key1, const void *key2) 2835 { 2836 const struct vc4_fs_inputs *inputs1 = key1; 2837 const struct vc4_fs_inputs *inputs2 = key2; 2838 2839 return (inputs1->num_inputs == inputs2->num_inputs && 2840 memcmp(inputs1->input_slots, 2841 inputs2->input_slots, 2842 sizeof(*inputs1->input_slots) * 2843 inputs1->num_inputs) == 0); 2844 } 2845 2846 static void 2847 delete_from_cache_if_matches(struct hash_table *ht, 2848 struct hash_entry *entry, 2849 struct vc4_uncompiled_shader *so) 2850 { 2851 const struct vc4_key *key = entry->key; 2852 2853 if (key->shader_state == so) { 2854 struct vc4_compiled_shader *shader = entry->data; 2855 _mesa_hash_table_remove(ht, entry); 2856 vc4_bo_unreference(&shader->bo); 2857 ralloc_free(shader); 2858 } 2859 } 2860 2861 static void 2862 vc4_shader_state_delete(struct pipe_context *pctx, void *hwcso) 2863 { 2864 struct vc4_context *vc4 = vc4_context(pctx); 2865 struct vc4_uncompiled_shader *so = hwcso; 2866 2867 struct hash_entry *entry; 2868 hash_table_foreach(vc4->fs_cache, entry) 2869 delete_from_cache_if_matches(vc4->fs_cache, entry, so); 2870 hash_table_foreach(vc4->vs_cache, entry) 2871 delete_from_cache_if_matches(vc4->vs_cache, entry, so); 2872 2873 ralloc_free(so->base.ir.nir); 2874 free(so); 2875 } 2876 2877 static void 2878 vc4_fp_state_bind(struct pipe_context *pctx, void *hwcso) 2879 { 2880 struct vc4_context *vc4 = vc4_context(pctx); 2881 vc4->prog.bind_fs = hwcso; 2882 vc4->dirty |= VC4_DIRTY_UNCOMPILED_FS; 2883 } 2884 2885 static void 2886 vc4_vp_state_bind(struct pipe_context *pctx, void *hwcso) 2887 { 2888 struct vc4_context *vc4 = vc4_context(pctx); 2889 vc4->prog.bind_vs = hwcso; 2890 vc4->dirty |= VC4_DIRTY_UNCOMPILED_VS; 2891 } 2892 2893 void 2894 vc4_program_init(struct pipe_context *pctx) 2895 { 2896 struct vc4_context *vc4 = vc4_context(pctx); 2897 2898 pctx->create_vs_state = vc4_shader_state_create; 2899 pctx->delete_vs_state = vc4_shader_state_delete; 2900 2901 pctx->create_fs_state = vc4_shader_state_create; 2902 pctx->delete_fs_state = vc4_shader_state_delete; 2903 2904 pctx->bind_fs_state = vc4_fp_state_bind; 2905 pctx->bind_vs_state = vc4_vp_state_bind; 2906 2907 vc4->fs_cache = _mesa_hash_table_create(pctx, fs_cache_hash, 2908 fs_cache_compare); 2909 vc4->vs_cache = _mesa_hash_table_create(pctx, vs_cache_hash, 2910 vs_cache_compare); 2911 vc4->fs_inputs_set = _mesa_set_create(pctx, fs_inputs_hash, 2912 fs_inputs_compare); 2913 } 2914 2915 void 2916 vc4_program_fini(struct pipe_context *pctx) 2917 { 2918 struct vc4_context *vc4 = vc4_context(pctx); 2919 2920 struct hash_entry *entry; 2921 hash_table_foreach(vc4->fs_cache, entry) { 2922 struct vc4_compiled_shader *shader = entry->data; 2923 vc4_bo_unreference(&shader->bo); 2924 ralloc_free(shader); 2925 _mesa_hash_table_remove(vc4->fs_cache, entry); 2926 } 2927 2928 hash_table_foreach(vc4->vs_cache, entry) { 2929 struct vc4_compiled_shader *shader = entry->data; 2930 vc4_bo_unreference(&shader->bo); 2931 ralloc_free(shader); 2932 _mesa_hash_table_remove(vc4->vs_cache, entry); 2933 } 2934 } 2935