Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- FastISel.cpp - Implementation of the FastISel class ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the implementation of the FastISel class.
     11 //
     12 // "Fast" instruction selection is designed to emit very poor code quickly.
     13 // Also, it is not designed to be able to do much lowering, so most illegal
     14 // types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
     15 // also not intended to be able to do much optimization, except in a few cases
     16 // where doing optimizations reduces overall compile time.  For example, folding
     17 // constants into immediate fields is often done, because it's cheap and it
     18 // reduces the number of instructions later phases have to examine.
     19 //
     20 // "Fast" instruction selection is able to fail gracefully and transfer
     21 // control to the SelectionDAG selector for operations that it doesn't
     22 // support.  In many cases, this allows us to avoid duplicating a lot of
     23 // the complicated lowering logic that SelectionDAG currently has.
     24 //
     25 // The intended use for "fast" instruction selection is "-O0" mode
     26 // compilation, where the quality of the generated code is irrelevant when
     27 // weighed against the speed at which the code can be generated.  Also,
     28 // at -O0, the LLVM optimizers are not running, and this makes the
     29 // compile time of codegen a much higher portion of the overall compile
     30 // time.  Despite its limitations, "fast" instruction selection is able to
     31 // handle enough code on its own to provide noticeable overall speedups
     32 // in -O0 compiles.
     33 //
     34 // Basic operations are supported in a target-independent way, by reading
     35 // the same instruction descriptions that the SelectionDAG selector reads,
     36 // and identifying simple arithmetic operations that can be directly selected
     37 // from simple operators.  More complicated operations currently require
     38 // target-specific code.
     39 //
     40 //===----------------------------------------------------------------------===//
     41 
     42 #include "llvm/Function.h"
     43 #include "llvm/GlobalVariable.h"
     44 #include "llvm/Instructions.h"
     45 #include "llvm/IntrinsicInst.h"
     46 #include "llvm/Operator.h"
     47 #include "llvm/CodeGen/Analysis.h"
     48 #include "llvm/CodeGen/FastISel.h"
     49 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     50 #include "llvm/CodeGen/MachineInstrBuilder.h"
     51 #include "llvm/CodeGen/MachineModuleInfo.h"
     52 #include "llvm/CodeGen/MachineRegisterInfo.h"
     53 #include "llvm/Analysis/DebugInfo.h"
     54 #include "llvm/Analysis/Loads.h"
     55 #include "llvm/Target/TargetData.h"
     56 #include "llvm/Target/TargetInstrInfo.h"
     57 #include "llvm/Target/TargetLowering.h"
     58 #include "llvm/Target/TargetMachine.h"
     59 #include "llvm/Support/ErrorHandling.h"
     60 #include "llvm/Support/Debug.h"
     61 using namespace llvm;
     62 
     63 /// startNewBlock - Set the current block to which generated machine
     64 /// instructions will be appended, and clear the local CSE map.
     65 ///
     66 void FastISel::startNewBlock() {
     67   LocalValueMap.clear();
     68 
     69   EmitStartPt = 0;
     70 
     71   // Advance the emit start point past any EH_LABEL instructions.
     72   MachineBasicBlock::iterator
     73     I = FuncInfo.MBB->begin(), E = FuncInfo.MBB->end();
     74   while (I != E && I->getOpcode() == TargetOpcode::EH_LABEL) {
     75     EmitStartPt = I;
     76     ++I;
     77   }
     78   LastLocalValue = EmitStartPt;
     79 }
     80 
     81 void FastISel::flushLocalValueMap() {
     82   LocalValueMap.clear();
     83   LastLocalValue = EmitStartPt;
     84   recomputeInsertPt();
     85 }
     86 
     87 bool FastISel::hasTrivialKill(const Value *V) const {
     88   // Don't consider constants or arguments to have trivial kills.
     89   const Instruction *I = dyn_cast<Instruction>(V);
     90   if (!I)
     91     return false;
     92 
     93   // No-op casts are trivially coalesced by fast-isel.
     94   if (const CastInst *Cast = dyn_cast<CastInst>(I))
     95     if (Cast->isNoopCast(TD.getIntPtrType(Cast->getContext())) &&
     96         !hasTrivialKill(Cast->getOperand(0)))
     97       return false;
     98 
     99   // Only instructions with a single use in the same basic block are considered
    100   // to have trivial kills.
    101   return I->hasOneUse() &&
    102          !(I->getOpcode() == Instruction::BitCast ||
    103            I->getOpcode() == Instruction::PtrToInt ||
    104            I->getOpcode() == Instruction::IntToPtr) &&
    105          cast<Instruction>(*I->use_begin())->getParent() == I->getParent();
    106 }
    107 
    108 unsigned FastISel::getRegForValue(const Value *V) {
    109   EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
    110   // Don't handle non-simple values in FastISel.
    111   if (!RealVT.isSimple())
    112     return 0;
    113 
    114   // Ignore illegal types. We must do this before looking up the value
    115   // in ValueMap because Arguments are given virtual registers regardless
    116   // of whether FastISel can handle them.
    117   MVT VT = RealVT.getSimpleVT();
    118   if (!TLI.isTypeLegal(VT)) {
    119     // Handle integer promotions, though, because they're common and easy.
    120     if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
    121       VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
    122     else
    123       return 0;
    124   }
    125 
    126   // Look up the value to see if we already have a register for it. We
    127   // cache values defined by Instructions across blocks, and other values
    128   // only locally. This is because Instructions already have the SSA
    129   // def-dominates-use requirement enforced.
    130   DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
    131   if (I != FuncInfo.ValueMap.end())
    132     return I->second;
    133 
    134   unsigned Reg = LocalValueMap[V];
    135   if (Reg != 0)
    136     return Reg;
    137 
    138   // In bottom-up mode, just create the virtual register which will be used
    139   // to hold the value. It will be materialized later.
    140   if (isa<Instruction>(V) &&
    141       (!isa<AllocaInst>(V) ||
    142        !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
    143     return FuncInfo.InitializeRegForValue(V);
    144 
    145   SavePoint SaveInsertPt = enterLocalValueArea();
    146 
    147   // Materialize the value in a register. Emit any instructions in the
    148   // local value area.
    149   Reg = materializeRegForValue(V, VT);
    150 
    151   leaveLocalValueArea(SaveInsertPt);
    152 
    153   return Reg;
    154 }
    155 
    156 /// materializeRegForValue - Helper for getRegForValue. This function is
    157 /// called when the value isn't already available in a register and must
    158 /// be materialized with new instructions.
    159 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
    160   unsigned Reg = 0;
    161 
    162   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    163     if (CI->getValue().getActiveBits() <= 64)
    164       Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
    165   } else if (isa<AllocaInst>(V)) {
    166     Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
    167   } else if (isa<ConstantPointerNull>(V)) {
    168     // Translate this as an integer zero so that it can be
    169     // local-CSE'd with actual integer zeros.
    170     Reg =
    171       getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext())));
    172   } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
    173     if (CF->isNullValue()) {
    174       Reg = TargetMaterializeFloatZero(CF);
    175     } else {
    176       // Try to emit the constant directly.
    177       Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
    178     }
    179 
    180     if (!Reg) {
    181       // Try to emit the constant by using an integer constant with a cast.
    182       const APFloat &Flt = CF->getValueAPF();
    183       EVT IntVT = TLI.getPointerTy();
    184 
    185       uint64_t x[2];
    186       uint32_t IntBitWidth = IntVT.getSizeInBits();
    187       bool isExact;
    188       (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
    189                                 APFloat::rmTowardZero, &isExact);
    190       if (isExact) {
    191         APInt IntVal(IntBitWidth, x);
    192 
    193         unsigned IntegerReg =
    194           getRegForValue(ConstantInt::get(V->getContext(), IntVal));
    195         if (IntegerReg != 0)
    196           Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
    197                            IntegerReg, /*Kill=*/false);
    198       }
    199     }
    200   } else if (const Operator *Op = dyn_cast<Operator>(V)) {
    201     if (!SelectOperator(Op, Op->getOpcode()))
    202       if (!isa<Instruction>(Op) ||
    203           !TargetSelectInstruction(cast<Instruction>(Op)))
    204         return 0;
    205     Reg = lookUpRegForValue(Op);
    206   } else if (isa<UndefValue>(V)) {
    207     Reg = createResultReg(TLI.getRegClassFor(VT));
    208     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    209             TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
    210   }
    211 
    212   // If target-independent code couldn't handle the value, give target-specific
    213   // code a try.
    214   if (!Reg && isa<Constant>(V))
    215     Reg = TargetMaterializeConstant(cast<Constant>(V));
    216 
    217   // Don't cache constant materializations in the general ValueMap.
    218   // To do so would require tracking what uses they dominate.
    219   if (Reg != 0) {
    220     LocalValueMap[V] = Reg;
    221     LastLocalValue = MRI.getVRegDef(Reg);
    222   }
    223   return Reg;
    224 }
    225 
    226 unsigned FastISel::lookUpRegForValue(const Value *V) {
    227   // Look up the value to see if we already have a register for it. We
    228   // cache values defined by Instructions across blocks, and other values
    229   // only locally. This is because Instructions already have the SSA
    230   // def-dominates-use requirement enforced.
    231   DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
    232   if (I != FuncInfo.ValueMap.end())
    233     return I->second;
    234   return LocalValueMap[V];
    235 }
    236 
    237 /// UpdateValueMap - Update the value map to include the new mapping for this
    238 /// instruction, or insert an extra copy to get the result in a previous
    239 /// determined register.
    240 /// NOTE: This is only necessary because we might select a block that uses
    241 /// a value before we select the block that defines the value.  It might be
    242 /// possible to fix this by selecting blocks in reverse postorder.
    243 void FastISel::UpdateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
    244   if (!isa<Instruction>(I)) {
    245     LocalValueMap[I] = Reg;
    246     return;
    247   }
    248 
    249   unsigned &AssignedReg = FuncInfo.ValueMap[I];
    250   if (AssignedReg == 0)
    251     // Use the new register.
    252     AssignedReg = Reg;
    253   else if (Reg != AssignedReg) {
    254     // Arrange for uses of AssignedReg to be replaced by uses of Reg.
    255     for (unsigned i = 0; i < NumRegs; i++)
    256       FuncInfo.RegFixups[AssignedReg+i] = Reg+i;
    257 
    258     AssignedReg = Reg;
    259   }
    260 }
    261 
    262 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
    263   unsigned IdxN = getRegForValue(Idx);
    264   if (IdxN == 0)
    265     // Unhandled operand. Halt "fast" selection and bail.
    266     return std::pair<unsigned, bool>(0, false);
    267 
    268   bool IdxNIsKill = hasTrivialKill(Idx);
    269 
    270   // If the index is smaller or larger than intptr_t, truncate or extend it.
    271   MVT PtrVT = TLI.getPointerTy();
    272   EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
    273   if (IdxVT.bitsLT(PtrVT)) {
    274     IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND,
    275                       IdxN, IdxNIsKill);
    276     IdxNIsKill = true;
    277   }
    278   else if (IdxVT.bitsGT(PtrVT)) {
    279     IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE,
    280                       IdxN, IdxNIsKill);
    281     IdxNIsKill = true;
    282   }
    283   return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
    284 }
    285 
    286 void FastISel::recomputeInsertPt() {
    287   if (getLastLocalValue()) {
    288     FuncInfo.InsertPt = getLastLocalValue();
    289     FuncInfo.MBB = FuncInfo.InsertPt->getParent();
    290     ++FuncInfo.InsertPt;
    291   } else
    292     FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
    293 
    294   // Now skip past any EH_LABELs, which must remain at the beginning.
    295   while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
    296          FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
    297     ++FuncInfo.InsertPt;
    298 }
    299 
    300 FastISel::SavePoint FastISel::enterLocalValueArea() {
    301   MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
    302   DebugLoc OldDL = DL;
    303   recomputeInsertPt();
    304   DL = DebugLoc();
    305   SavePoint SP = { OldInsertPt, OldDL };
    306   return SP;
    307 }
    308 
    309 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
    310   if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
    311     LastLocalValue = llvm::prior(FuncInfo.InsertPt);
    312 
    313   // Restore the previous insert position.
    314   FuncInfo.InsertPt = OldInsertPt.InsertPt;
    315   DL = OldInsertPt.DL;
    316 }
    317 
    318 /// SelectBinaryOp - Select and emit code for a binary operator instruction,
    319 /// which has an opcode which directly corresponds to the given ISD opcode.
    320 ///
    321 bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) {
    322   EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
    323   if (VT == MVT::Other || !VT.isSimple())
    324     // Unhandled type. Halt "fast" selection and bail.
    325     return false;
    326 
    327   // We only handle legal types. For example, on x86-32 the instruction
    328   // selector contains all of the 64-bit instructions from x86-64,
    329   // under the assumption that i64 won't be used if the target doesn't
    330   // support it.
    331   if (!TLI.isTypeLegal(VT)) {
    332     // MVT::i1 is special. Allow AND, OR, or XOR because they
    333     // don't require additional zeroing, which makes them easy.
    334     if (VT == MVT::i1 &&
    335         (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
    336          ISDOpcode == ISD::XOR))
    337       VT = TLI.getTypeToTransformTo(I->getContext(), VT);
    338     else
    339       return false;
    340   }
    341 
    342   // Check if the first operand is a constant, and handle it as "ri".  At -O0,
    343   // we don't have anything that canonicalizes operand order.
    344   if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
    345     if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
    346       unsigned Op1 = getRegForValue(I->getOperand(1));
    347       if (Op1 == 0) return false;
    348 
    349       bool Op1IsKill = hasTrivialKill(I->getOperand(1));
    350 
    351       unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1,
    352                                         Op1IsKill, CI->getZExtValue(),
    353                                         VT.getSimpleVT());
    354       if (ResultReg == 0) return false;
    355 
    356       // We successfully emitted code for the given LLVM Instruction.
    357       UpdateValueMap(I, ResultReg);
    358       return true;
    359     }
    360 
    361 
    362   unsigned Op0 = getRegForValue(I->getOperand(0));
    363   if (Op0 == 0)   // Unhandled operand. Halt "fast" selection and bail.
    364     return false;
    365 
    366   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
    367 
    368   // Check if the second operand is a constant and handle it appropriately.
    369   if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
    370     uint64_t Imm = CI->getZExtValue();
    371 
    372     // Transform "sdiv exact X, 8" -> "sra X, 3".
    373     if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
    374         cast<BinaryOperator>(I)->isExact() &&
    375         isPowerOf2_64(Imm)) {
    376       Imm = Log2_64(Imm);
    377       ISDOpcode = ISD::SRA;
    378     }
    379 
    380     unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
    381                                       Op0IsKill, Imm, VT.getSimpleVT());
    382     if (ResultReg == 0) return false;
    383 
    384     // We successfully emitted code for the given LLVM Instruction.
    385     UpdateValueMap(I, ResultReg);
    386     return true;
    387   }
    388 
    389   // Check if the second operand is a constant float.
    390   if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
    391     unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
    392                                      ISDOpcode, Op0, Op0IsKill, CF);
    393     if (ResultReg != 0) {
    394       // We successfully emitted code for the given LLVM Instruction.
    395       UpdateValueMap(I, ResultReg);
    396       return true;
    397     }
    398   }
    399 
    400   unsigned Op1 = getRegForValue(I->getOperand(1));
    401   if (Op1 == 0)
    402     // Unhandled operand. Halt "fast" selection and bail.
    403     return false;
    404 
    405   bool Op1IsKill = hasTrivialKill(I->getOperand(1));
    406 
    407   // Now we have both operands in registers. Emit the instruction.
    408   unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
    409                                    ISDOpcode,
    410                                    Op0, Op0IsKill,
    411                                    Op1, Op1IsKill);
    412   if (ResultReg == 0)
    413     // Target-specific code wasn't able to find a machine opcode for
    414     // the given ISD opcode and type. Halt "fast" selection and bail.
    415     return false;
    416 
    417   // We successfully emitted code for the given LLVM Instruction.
    418   UpdateValueMap(I, ResultReg);
    419   return true;
    420 }
    421 
    422 bool FastISel::SelectGetElementPtr(const User *I) {
    423   unsigned N = getRegForValue(I->getOperand(0));
    424   if (N == 0)
    425     // Unhandled operand. Halt "fast" selection and bail.
    426     return false;
    427 
    428   bool NIsKill = hasTrivialKill(I->getOperand(0));
    429 
    430   Type *Ty = I->getOperand(0)->getType();
    431   MVT VT = TLI.getPointerTy();
    432   for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1,
    433        E = I->op_end(); OI != E; ++OI) {
    434     const Value *Idx = *OI;
    435     if (StructType *StTy = dyn_cast<StructType>(Ty)) {
    436       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
    437       if (Field) {
    438         // N = N + Offset
    439         uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
    440         // FIXME: This can be optimized by combining the add with a
    441         // subsequent one.
    442         N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, Offs, VT);
    443         if (N == 0)
    444           // Unhandled operand. Halt "fast" selection and bail.
    445           return false;
    446         NIsKill = true;
    447       }
    448       Ty = StTy->getElementType(Field);
    449     } else {
    450       Ty = cast<SequentialType>(Ty)->getElementType();
    451 
    452       // If this is a constant subscript, handle it quickly.
    453       if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
    454         if (CI->isZero()) continue;
    455         uint64_t Offs =
    456           TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
    457         N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, Offs, VT);
    458         if (N == 0)
    459           // Unhandled operand. Halt "fast" selection and bail.
    460           return false;
    461         NIsKill = true;
    462         continue;
    463       }
    464 
    465       // N = N + Idx * ElementSize;
    466       uint64_t ElementSize = TD.getTypeAllocSize(Ty);
    467       std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
    468       unsigned IdxN = Pair.first;
    469       bool IdxNIsKill = Pair.second;
    470       if (IdxN == 0)
    471         // Unhandled operand. Halt "fast" selection and bail.
    472         return false;
    473 
    474       if (ElementSize != 1) {
    475         IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
    476         if (IdxN == 0)
    477           // Unhandled operand. Halt "fast" selection and bail.
    478           return false;
    479         IdxNIsKill = true;
    480       }
    481       N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
    482       if (N == 0)
    483         // Unhandled operand. Halt "fast" selection and bail.
    484         return false;
    485     }
    486   }
    487 
    488   // We successfully emitted code for the given LLVM Instruction.
    489   UpdateValueMap(I, N);
    490   return true;
    491 }
    492 
    493 bool FastISel::SelectCall(const User *I) {
    494   const CallInst *Call = cast<CallInst>(I);
    495 
    496   // Handle simple inline asms.
    497   if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) {
    498     // Don't attempt to handle constraints.
    499     if (!IA->getConstraintString().empty())
    500       return false;
    501 
    502     unsigned ExtraInfo = 0;
    503     if (IA->hasSideEffects())
    504       ExtraInfo |= InlineAsm::Extra_HasSideEffects;
    505     if (IA->isAlignStack())
    506       ExtraInfo |= InlineAsm::Extra_IsAlignStack;
    507 
    508     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    509             TII.get(TargetOpcode::INLINEASM))
    510       .addExternalSymbol(IA->getAsmString().c_str())
    511       .addImm(ExtraInfo);
    512     return true;
    513   }
    514 
    515   const Function *F = Call->getCalledFunction();
    516   if (!F) return false;
    517 
    518   // Handle selected intrinsic function calls.
    519   switch (F->getIntrinsicID()) {
    520   default: break;
    521   case Intrinsic::dbg_declare: {
    522     const DbgDeclareInst *DI = cast<DbgDeclareInst>(Call);
    523     if (!DIVariable(DI->getVariable()).Verify() ||
    524         !FuncInfo.MF->getMMI().hasDebugInfo())
    525       return true;
    526 
    527     const Value *Address = DI->getAddress();
    528     if (!Address || isa<UndefValue>(Address) || isa<AllocaInst>(Address))
    529       return true;
    530 
    531     unsigned Reg = 0;
    532     unsigned Offset = 0;
    533     if (const Argument *Arg = dyn_cast<Argument>(Address)) {
    534       // Some arguments' frame index is recorded during argument lowering.
    535       Offset = FuncInfo.getArgumentFrameIndex(Arg);
    536       if (Offset)
    537 	Reg = TRI.getFrameRegister(*FuncInfo.MF);
    538     }
    539     if (!Reg)
    540       Reg = getRegForValue(Address);
    541 
    542     if (Reg)
    543       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    544               TII.get(TargetOpcode::DBG_VALUE))
    545         .addReg(Reg, RegState::Debug).addImm(Offset)
    546         .addMetadata(DI->getVariable());
    547     return true;
    548   }
    549   case Intrinsic::dbg_value: {
    550     // This form of DBG_VALUE is target-independent.
    551     const DbgValueInst *DI = cast<DbgValueInst>(Call);
    552     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
    553     const Value *V = DI->getValue();
    554     if (!V) {
    555       // Currently the optimizer can produce this; insert an undef to
    556       // help debugging.  Probably the optimizer should not do this.
    557       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    558         .addReg(0U).addImm(DI->getOffset())
    559         .addMetadata(DI->getVariable());
    560     } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    561       if (CI->getBitWidth() > 64)
    562         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    563           .addCImm(CI).addImm(DI->getOffset())
    564           .addMetadata(DI->getVariable());
    565       else
    566         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    567           .addImm(CI->getZExtValue()).addImm(DI->getOffset())
    568           .addMetadata(DI->getVariable());
    569     } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
    570       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    571         .addFPImm(CF).addImm(DI->getOffset())
    572         .addMetadata(DI->getVariable());
    573     } else if (unsigned Reg = lookUpRegForValue(V)) {
    574       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    575         .addReg(Reg, RegState::Debug).addImm(DI->getOffset())
    576         .addMetadata(DI->getVariable());
    577     } else {
    578       // We can't yet handle anything else here because it would require
    579       // generating code, thus altering codegen because of debug info.
    580       DEBUG(dbgs() << "Dropping debug info for " << DI);
    581     }
    582     return true;
    583   }
    584   case Intrinsic::eh_exception: {
    585     EVT VT = TLI.getValueType(Call->getType());
    586     if (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)!=TargetLowering::Expand)
    587       break;
    588 
    589     assert(FuncInfo.MBB->isLandingPad() &&
    590            "Call to eh.exception not in landing pad!");
    591     unsigned Reg = TLI.getExceptionAddressRegister();
    592     const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
    593     unsigned ResultReg = createResultReg(RC);
    594     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
    595             ResultReg).addReg(Reg);
    596     UpdateValueMap(Call, ResultReg);
    597     return true;
    598   }
    599   case Intrinsic::eh_selector: {
    600     EVT VT = TLI.getValueType(Call->getType());
    601     if (TLI.getOperationAction(ISD::EHSELECTION, VT) != TargetLowering::Expand)
    602       break;
    603     if (FuncInfo.MBB->isLandingPad())
    604       AddCatchInfo(*Call, &FuncInfo.MF->getMMI(), FuncInfo.MBB);
    605     else {
    606 #ifndef NDEBUG
    607       FuncInfo.CatchInfoLost.insert(Call);
    608 #endif
    609       // FIXME: Mark exception selector register as live in.  Hack for PR1508.
    610       unsigned Reg = TLI.getExceptionSelectorRegister();
    611       if (Reg) FuncInfo.MBB->addLiveIn(Reg);
    612     }
    613 
    614     unsigned Reg = TLI.getExceptionSelectorRegister();
    615     EVT SrcVT = TLI.getPointerTy();
    616     const TargetRegisterClass *RC = TLI.getRegClassFor(SrcVT);
    617     unsigned ResultReg = createResultReg(RC);
    618     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
    619             ResultReg).addReg(Reg);
    620 
    621     bool ResultRegIsKill = hasTrivialKill(Call);
    622 
    623     // Cast the register to the type of the selector.
    624     if (SrcVT.bitsGT(MVT::i32))
    625       ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32, ISD::TRUNCATE,
    626                              ResultReg, ResultRegIsKill);
    627     else if (SrcVT.bitsLT(MVT::i32))
    628       ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32,
    629                              ISD::SIGN_EXTEND, ResultReg, ResultRegIsKill);
    630     if (ResultReg == 0)
    631       // Unhandled operand. Halt "fast" selection and bail.
    632       return false;
    633 
    634     UpdateValueMap(Call, ResultReg);
    635 
    636     return true;
    637   }
    638   case Intrinsic::objectsize: {
    639     ConstantInt *CI = cast<ConstantInt>(Call->getArgOperand(1));
    640     unsigned long long Res = CI->isZero() ? -1ULL : 0;
    641     Constant *ResCI = ConstantInt::get(Call->getType(), Res);
    642     unsigned ResultReg = getRegForValue(ResCI);
    643     if (ResultReg == 0)
    644       return false;
    645     UpdateValueMap(Call, ResultReg);
    646     return true;
    647   }
    648   }
    649 
    650   // Usually, it does not make sense to initialize a value,
    651   // make an unrelated function call and use the value, because
    652   // it tends to be spilled on the stack. So, we move the pointer
    653   // to the last local value to the beginning of the block, so that
    654   // all the values which have already been materialized,
    655   // appear after the call. It also makes sense to skip intrinsics
    656   // since they tend to be inlined.
    657   if (!isa<IntrinsicInst>(F))
    658     flushLocalValueMap();
    659 
    660   // An arbitrary call. Bail.
    661   return false;
    662 }
    663 
    664 bool FastISel::SelectCast(const User *I, unsigned Opcode) {
    665   EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
    666   EVT DstVT = TLI.getValueType(I->getType());
    667 
    668   if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
    669       DstVT == MVT::Other || !DstVT.isSimple())
    670     // Unhandled type. Halt "fast" selection and bail.
    671     return false;
    672 
    673   // Check if the destination type is legal.
    674   if (!TLI.isTypeLegal(DstVT))
    675     return false;
    676 
    677   // Check if the source operand is legal.
    678   if (!TLI.isTypeLegal(SrcVT))
    679     return false;
    680 
    681   unsigned InputReg = getRegForValue(I->getOperand(0));
    682   if (!InputReg)
    683     // Unhandled operand.  Halt "fast" selection and bail.
    684     return false;
    685 
    686   bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
    687 
    688   unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
    689                                   DstVT.getSimpleVT(),
    690                                   Opcode,
    691                                   InputReg, InputRegIsKill);
    692   if (!ResultReg)
    693     return false;
    694 
    695   UpdateValueMap(I, ResultReg);
    696   return true;
    697 }
    698 
    699 bool FastISel::SelectBitCast(const User *I) {
    700   // If the bitcast doesn't change the type, just use the operand value.
    701   if (I->getType() == I->getOperand(0)->getType()) {
    702     unsigned Reg = getRegForValue(I->getOperand(0));
    703     if (Reg == 0)
    704       return false;
    705     UpdateValueMap(I, Reg);
    706     return true;
    707   }
    708 
    709   // Bitcasts of other values become reg-reg copies or BITCAST operators.
    710   EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
    711   EVT DstVT = TLI.getValueType(I->getType());
    712 
    713   if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
    714       DstVT == MVT::Other || !DstVT.isSimple() ||
    715       !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
    716     // Unhandled type. Halt "fast" selection and bail.
    717     return false;
    718 
    719   unsigned Op0 = getRegForValue(I->getOperand(0));
    720   if (Op0 == 0)
    721     // Unhandled operand. Halt "fast" selection and bail.
    722     return false;
    723 
    724   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
    725 
    726   // First, try to perform the bitcast by inserting a reg-reg copy.
    727   unsigned ResultReg = 0;
    728   if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
    729     TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
    730     TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
    731     // Don't attempt a cross-class copy. It will likely fail.
    732     if (SrcClass == DstClass) {
    733       ResultReg = createResultReg(DstClass);
    734       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
    735               ResultReg).addReg(Op0);
    736     }
    737   }
    738 
    739   // If the reg-reg copy failed, select a BITCAST opcode.
    740   if (!ResultReg)
    741     ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
    742                            ISD::BITCAST, Op0, Op0IsKill);
    743 
    744   if (!ResultReg)
    745     return false;
    746 
    747   UpdateValueMap(I, ResultReg);
    748   return true;
    749 }
    750 
    751 bool
    752 FastISel::SelectInstruction(const Instruction *I) {
    753   // Just before the terminator instruction, insert instructions to
    754   // feed PHI nodes in successor blocks.
    755   if (isa<TerminatorInst>(I))
    756     if (!HandlePHINodesInSuccessorBlocks(I->getParent()))
    757       return false;
    758 
    759   DL = I->getDebugLoc();
    760 
    761   // First, try doing target-independent selection.
    762   if (SelectOperator(I, I->getOpcode())) {
    763     DL = DebugLoc();
    764     return true;
    765   }
    766 
    767   // Next, try calling the target to attempt to handle the instruction.
    768   if (TargetSelectInstruction(I)) {
    769     DL = DebugLoc();
    770     return true;
    771   }
    772 
    773   DL = DebugLoc();
    774   return false;
    775 }
    776 
    777 /// FastEmitBranch - Emit an unconditional branch to the given block,
    778 /// unless it is the immediate (fall-through) successor, and update
    779 /// the CFG.
    780 void
    781 FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DL) {
    782   if (FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
    783     // The unconditional fall-through case, which needs no instructions.
    784   } else {
    785     // The unconditional branch case.
    786     TII.InsertBranch(*FuncInfo.MBB, MSucc, NULL,
    787                      SmallVector<MachineOperand, 0>(), DL);
    788   }
    789   FuncInfo.MBB->addSuccessor(MSucc);
    790 }
    791 
    792 /// SelectFNeg - Emit an FNeg operation.
    793 ///
    794 bool
    795 FastISel::SelectFNeg(const User *I) {
    796   unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
    797   if (OpReg == 0) return false;
    798 
    799   bool OpRegIsKill = hasTrivialKill(I);
    800 
    801   // If the target has ISD::FNEG, use it.
    802   EVT VT = TLI.getValueType(I->getType());
    803   unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(),
    804                                   ISD::FNEG, OpReg, OpRegIsKill);
    805   if (ResultReg != 0) {
    806     UpdateValueMap(I, ResultReg);
    807     return true;
    808   }
    809 
    810   // Bitcast the value to integer, twiddle the sign bit with xor,
    811   // and then bitcast it back to floating-point.
    812   if (VT.getSizeInBits() > 64) return false;
    813   EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
    814   if (!TLI.isTypeLegal(IntVT))
    815     return false;
    816 
    817   unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
    818                                ISD::BITCAST, OpReg, OpRegIsKill);
    819   if (IntReg == 0)
    820     return false;
    821 
    822   unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR,
    823                                        IntReg, /*Kill=*/true,
    824                                        UINT64_C(1) << (VT.getSizeInBits()-1),
    825                                        IntVT.getSimpleVT());
    826   if (IntResultReg == 0)
    827     return false;
    828 
    829   ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
    830                          ISD::BITCAST, IntResultReg, /*Kill=*/true);
    831   if (ResultReg == 0)
    832     return false;
    833 
    834   UpdateValueMap(I, ResultReg);
    835   return true;
    836 }
    837 
    838 bool
    839 FastISel::SelectExtractValue(const User *U) {
    840   const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
    841   if (!EVI)
    842     return false;
    843 
    844   // Make sure we only try to handle extracts with a legal result.  But also
    845   // allow i1 because it's easy.
    846   EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true);
    847   if (!RealVT.isSimple())
    848     return false;
    849   MVT VT = RealVT.getSimpleVT();
    850   if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
    851     return false;
    852 
    853   const Value *Op0 = EVI->getOperand(0);
    854   Type *AggTy = Op0->getType();
    855 
    856   // Get the base result register.
    857   unsigned ResultReg;
    858   DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
    859   if (I != FuncInfo.ValueMap.end())
    860     ResultReg = I->second;
    861   else if (isa<Instruction>(Op0))
    862     ResultReg = FuncInfo.InitializeRegForValue(Op0);
    863   else
    864     return false; // fast-isel can't handle aggregate constants at the moment
    865 
    866   // Get the actual result register, which is an offset from the base register.
    867   unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
    868 
    869   SmallVector<EVT, 4> AggValueVTs;
    870   ComputeValueVTs(TLI, AggTy, AggValueVTs);
    871 
    872   for (unsigned i = 0; i < VTIndex; i++)
    873     ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
    874 
    875   UpdateValueMap(EVI, ResultReg);
    876   return true;
    877 }
    878 
    879 bool
    880 FastISel::SelectOperator(const User *I, unsigned Opcode) {
    881   switch (Opcode) {
    882   case Instruction::Add:
    883     return SelectBinaryOp(I, ISD::ADD);
    884   case Instruction::FAdd:
    885     return SelectBinaryOp(I, ISD::FADD);
    886   case Instruction::Sub:
    887     return SelectBinaryOp(I, ISD::SUB);
    888   case Instruction::FSub:
    889     // FNeg is currently represented in LLVM IR as a special case of FSub.
    890     if (BinaryOperator::isFNeg(I))
    891       return SelectFNeg(I);
    892     return SelectBinaryOp(I, ISD::FSUB);
    893   case Instruction::Mul:
    894     return SelectBinaryOp(I, ISD::MUL);
    895   case Instruction::FMul:
    896     return SelectBinaryOp(I, ISD::FMUL);
    897   case Instruction::SDiv:
    898     return SelectBinaryOp(I, ISD::SDIV);
    899   case Instruction::UDiv:
    900     return SelectBinaryOp(I, ISD::UDIV);
    901   case Instruction::FDiv:
    902     return SelectBinaryOp(I, ISD::FDIV);
    903   case Instruction::SRem:
    904     return SelectBinaryOp(I, ISD::SREM);
    905   case Instruction::URem:
    906     return SelectBinaryOp(I, ISD::UREM);
    907   case Instruction::FRem:
    908     return SelectBinaryOp(I, ISD::FREM);
    909   case Instruction::Shl:
    910     return SelectBinaryOp(I, ISD::SHL);
    911   case Instruction::LShr:
    912     return SelectBinaryOp(I, ISD::SRL);
    913   case Instruction::AShr:
    914     return SelectBinaryOp(I, ISD::SRA);
    915   case Instruction::And:
    916     return SelectBinaryOp(I, ISD::AND);
    917   case Instruction::Or:
    918     return SelectBinaryOp(I, ISD::OR);
    919   case Instruction::Xor:
    920     return SelectBinaryOp(I, ISD::XOR);
    921 
    922   case Instruction::GetElementPtr:
    923     return SelectGetElementPtr(I);
    924 
    925   case Instruction::Br: {
    926     const BranchInst *BI = cast<BranchInst>(I);
    927 
    928     if (BI->isUnconditional()) {
    929       const BasicBlock *LLVMSucc = BI->getSuccessor(0);
    930       MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
    931       FastEmitBranch(MSucc, BI->getDebugLoc());
    932       return true;
    933     }
    934 
    935     // Conditional branches are not handed yet.
    936     // Halt "fast" selection and bail.
    937     return false;
    938   }
    939 
    940   case Instruction::Unreachable:
    941     // Nothing to emit.
    942     return true;
    943 
    944   case Instruction::Alloca:
    945     // FunctionLowering has the static-sized case covered.
    946     if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
    947       return true;
    948 
    949     // Dynamic-sized alloca is not handled yet.
    950     return false;
    951 
    952   case Instruction::Call:
    953     return SelectCall(I);
    954 
    955   case Instruction::BitCast:
    956     return SelectBitCast(I);
    957 
    958   case Instruction::FPToSI:
    959     return SelectCast(I, ISD::FP_TO_SINT);
    960   case Instruction::ZExt:
    961     return SelectCast(I, ISD::ZERO_EXTEND);
    962   case Instruction::SExt:
    963     return SelectCast(I, ISD::SIGN_EXTEND);
    964   case Instruction::Trunc:
    965     return SelectCast(I, ISD::TRUNCATE);
    966   case Instruction::SIToFP:
    967     return SelectCast(I, ISD::SINT_TO_FP);
    968 
    969   case Instruction::IntToPtr: // Deliberate fall-through.
    970   case Instruction::PtrToInt: {
    971     EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
    972     EVT DstVT = TLI.getValueType(I->getType());
    973     if (DstVT.bitsGT(SrcVT))
    974       return SelectCast(I, ISD::ZERO_EXTEND);
    975     if (DstVT.bitsLT(SrcVT))
    976       return SelectCast(I, ISD::TRUNCATE);
    977     unsigned Reg = getRegForValue(I->getOperand(0));
    978     if (Reg == 0) return false;
    979     UpdateValueMap(I, Reg);
    980     return true;
    981   }
    982 
    983   case Instruction::ExtractValue:
    984     return SelectExtractValue(I);
    985 
    986   case Instruction::PHI:
    987     llvm_unreachable("FastISel shouldn't visit PHI nodes!");
    988 
    989   default:
    990     // Unhandled instruction. Halt "fast" selection and bail.
    991     return false;
    992   }
    993 }
    994 
    995 FastISel::FastISel(FunctionLoweringInfo &funcInfo)
    996   : FuncInfo(funcInfo),
    997     MRI(FuncInfo.MF->getRegInfo()),
    998     MFI(*FuncInfo.MF->getFrameInfo()),
    999     MCP(*FuncInfo.MF->getConstantPool()),
   1000     TM(FuncInfo.MF->getTarget()),
   1001     TD(*TM.getTargetData()),
   1002     TII(*TM.getInstrInfo()),
   1003     TLI(*TM.getTargetLowering()),
   1004     TRI(*TM.getRegisterInfo()) {
   1005 }
   1006 
   1007 FastISel::~FastISel() {}
   1008 
   1009 unsigned FastISel::FastEmit_(MVT, MVT,
   1010                              unsigned) {
   1011   return 0;
   1012 }
   1013 
   1014 unsigned FastISel::FastEmit_r(MVT, MVT,
   1015                               unsigned,
   1016                               unsigned /*Op0*/, bool /*Op0IsKill*/) {
   1017   return 0;
   1018 }
   1019 
   1020 unsigned FastISel::FastEmit_rr(MVT, MVT,
   1021                                unsigned,
   1022                                unsigned /*Op0*/, bool /*Op0IsKill*/,
   1023                                unsigned /*Op1*/, bool /*Op1IsKill*/) {
   1024   return 0;
   1025 }
   1026 
   1027 unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
   1028   return 0;
   1029 }
   1030 
   1031 unsigned FastISel::FastEmit_f(MVT, MVT,
   1032                               unsigned, const ConstantFP * /*FPImm*/) {
   1033   return 0;
   1034 }
   1035 
   1036 unsigned FastISel::FastEmit_ri(MVT, MVT,
   1037                                unsigned,
   1038                                unsigned /*Op0*/, bool /*Op0IsKill*/,
   1039                                uint64_t /*Imm*/) {
   1040   return 0;
   1041 }
   1042 
   1043 unsigned FastISel::FastEmit_rf(MVT, MVT,
   1044                                unsigned,
   1045                                unsigned /*Op0*/, bool /*Op0IsKill*/,
   1046                                const ConstantFP * /*FPImm*/) {
   1047   return 0;
   1048 }
   1049 
   1050 unsigned FastISel::FastEmit_rri(MVT, MVT,
   1051                                 unsigned,
   1052                                 unsigned /*Op0*/, bool /*Op0IsKill*/,
   1053                                 unsigned /*Op1*/, bool /*Op1IsKill*/,
   1054                                 uint64_t /*Imm*/) {
   1055   return 0;
   1056 }
   1057 
   1058 /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
   1059 /// to emit an instruction with an immediate operand using FastEmit_ri.
   1060 /// If that fails, it materializes the immediate into a register and try
   1061 /// FastEmit_rr instead.
   1062 unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode,
   1063                                 unsigned Op0, bool Op0IsKill,
   1064                                 uint64_t Imm, MVT ImmType) {
   1065   // If this is a multiply by a power of two, emit this as a shift left.
   1066   if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
   1067     Opcode = ISD::SHL;
   1068     Imm = Log2_64(Imm);
   1069   } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
   1070     // div x, 8 -> srl x, 3
   1071     Opcode = ISD::SRL;
   1072     Imm = Log2_64(Imm);
   1073   }
   1074 
   1075   // Horrible hack (to be removed), check to make sure shift amounts are
   1076   // in-range.
   1077   if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
   1078       Imm >= VT.getSizeInBits())
   1079     return 0;
   1080 
   1081   // First check if immediate type is legal. If not, we can't use the ri form.
   1082   unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
   1083   if (ResultReg != 0)
   1084     return ResultReg;
   1085   unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
   1086   if (MaterialReg == 0) {
   1087     // This is a bit ugly/slow, but failing here means falling out of
   1088     // fast-isel, which would be very slow.
   1089     IntegerType *ITy = IntegerType::get(FuncInfo.Fn->getContext(),
   1090                                               VT.getSizeInBits());
   1091     MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
   1092   }
   1093   return FastEmit_rr(VT, VT, Opcode,
   1094                      Op0, Op0IsKill,
   1095                      MaterialReg, /*Kill=*/true);
   1096 }
   1097 
   1098 unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
   1099   return MRI.createVirtualRegister(RC);
   1100 }
   1101 
   1102 unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
   1103                                  const TargetRegisterClass* RC) {
   1104   unsigned ResultReg = createResultReg(RC);
   1105   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1106 
   1107   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg);
   1108   return ResultReg;
   1109 }
   1110 
   1111 unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
   1112                                   const TargetRegisterClass *RC,
   1113                                   unsigned Op0, bool Op0IsKill) {
   1114   unsigned ResultReg = createResultReg(RC);
   1115   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1116 
   1117   if (II.getNumDefs() >= 1)
   1118     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
   1119       .addReg(Op0, Op0IsKill * RegState::Kill);
   1120   else {
   1121     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
   1122       .addReg(Op0, Op0IsKill * RegState::Kill);
   1123     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1124             ResultReg).addReg(II.ImplicitDefs[0]);
   1125   }
   1126 
   1127   return ResultReg;
   1128 }
   1129 
   1130 unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
   1131                                    const TargetRegisterClass *RC,
   1132                                    unsigned Op0, bool Op0IsKill,
   1133                                    unsigned Op1, bool Op1IsKill) {
   1134   unsigned ResultReg = createResultReg(RC);
   1135   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1136 
   1137   if (II.getNumDefs() >= 1)
   1138     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
   1139       .addReg(Op0, Op0IsKill * RegState::Kill)
   1140       .addReg(Op1, Op1IsKill * RegState::Kill);
   1141   else {
   1142     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
   1143       .addReg(Op0, Op0IsKill * RegState::Kill)
   1144       .addReg(Op1, Op1IsKill * RegState::Kill);
   1145     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1146             ResultReg).addReg(II.ImplicitDefs[0]);
   1147   }
   1148   return ResultReg;
   1149 }
   1150 
   1151 unsigned FastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
   1152                                    const TargetRegisterClass *RC,
   1153                                    unsigned Op0, bool Op0IsKill,
   1154                                    unsigned Op1, bool Op1IsKill,
   1155                                    unsigned Op2, bool Op2IsKill) {
   1156   unsigned ResultReg = createResultReg(RC);
   1157   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1158 
   1159   if (II.getNumDefs() >= 1)
   1160     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
   1161       .addReg(Op0, Op0IsKill * RegState::Kill)
   1162       .addReg(Op1, Op1IsKill * RegState::Kill)
   1163       .addReg(Op2, Op2IsKill * RegState::Kill);
   1164   else {
   1165     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
   1166       .addReg(Op0, Op0IsKill * RegState::Kill)
   1167       .addReg(Op1, Op1IsKill * RegState::Kill)
   1168       .addReg(Op2, Op2IsKill * RegState::Kill);
   1169     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1170             ResultReg).addReg(II.ImplicitDefs[0]);
   1171   }
   1172   return ResultReg;
   1173 }
   1174 
   1175 unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
   1176                                    const TargetRegisterClass *RC,
   1177                                    unsigned Op0, bool Op0IsKill,
   1178                                    uint64_t Imm) {
   1179   unsigned ResultReg = createResultReg(RC);
   1180   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1181 
   1182   if (II.getNumDefs() >= 1)
   1183     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
   1184       .addReg(Op0, Op0IsKill * RegState::Kill)
   1185       .addImm(Imm);
   1186   else {
   1187     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
   1188       .addReg(Op0, Op0IsKill * RegState::Kill)
   1189       .addImm(Imm);
   1190     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1191             ResultReg).addReg(II.ImplicitDefs[0]);
   1192   }
   1193   return ResultReg;
   1194 }
   1195 
   1196 unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode,
   1197                                    const TargetRegisterClass *RC,
   1198                                    unsigned Op0, bool Op0IsKill,
   1199                                    uint64_t Imm1, uint64_t Imm2) {
   1200   unsigned ResultReg = createResultReg(RC);
   1201   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1202 
   1203   if (II.getNumDefs() >= 1)
   1204     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
   1205       .addReg(Op0, Op0IsKill * RegState::Kill)
   1206       .addImm(Imm1)
   1207       .addImm(Imm2);
   1208   else {
   1209     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
   1210       .addReg(Op0, Op0IsKill * RegState::Kill)
   1211       .addImm(Imm1)
   1212       .addImm(Imm2);
   1213     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1214             ResultReg).addReg(II.ImplicitDefs[0]);
   1215   }
   1216   return ResultReg;
   1217 }
   1218 
   1219 unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
   1220                                    const TargetRegisterClass *RC,
   1221                                    unsigned Op0, bool Op0IsKill,
   1222                                    const ConstantFP *FPImm) {
   1223   unsigned ResultReg = createResultReg(RC);
   1224   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1225 
   1226   if (II.getNumDefs() >= 1)
   1227     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
   1228       .addReg(Op0, Op0IsKill * RegState::Kill)
   1229       .addFPImm(FPImm);
   1230   else {
   1231     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
   1232       .addReg(Op0, Op0IsKill * RegState::Kill)
   1233       .addFPImm(FPImm);
   1234     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1235             ResultReg).addReg(II.ImplicitDefs[0]);
   1236   }
   1237   return ResultReg;
   1238 }
   1239 
   1240 unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
   1241                                     const TargetRegisterClass *RC,
   1242                                     unsigned Op0, bool Op0IsKill,
   1243                                     unsigned Op1, bool Op1IsKill,
   1244                                     uint64_t Imm) {
   1245   unsigned ResultReg = createResultReg(RC);
   1246   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1247 
   1248   if (II.getNumDefs() >= 1)
   1249     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
   1250       .addReg(Op0, Op0IsKill * RegState::Kill)
   1251       .addReg(Op1, Op1IsKill * RegState::Kill)
   1252       .addImm(Imm);
   1253   else {
   1254     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
   1255       .addReg(Op0, Op0IsKill * RegState::Kill)
   1256       .addReg(Op1, Op1IsKill * RegState::Kill)
   1257       .addImm(Imm);
   1258     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1259             ResultReg).addReg(II.ImplicitDefs[0]);
   1260   }
   1261   return ResultReg;
   1262 }
   1263 
   1264 unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
   1265                                   const TargetRegisterClass *RC,
   1266                                   uint64_t Imm) {
   1267   unsigned ResultReg = createResultReg(RC);
   1268   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1269 
   1270   if (II.getNumDefs() >= 1)
   1271     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg).addImm(Imm);
   1272   else {
   1273     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm);
   1274     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1275             ResultReg).addReg(II.ImplicitDefs[0]);
   1276   }
   1277   return ResultReg;
   1278 }
   1279 
   1280 unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
   1281                                   const TargetRegisterClass *RC,
   1282                                   uint64_t Imm1, uint64_t Imm2) {
   1283   unsigned ResultReg = createResultReg(RC);
   1284   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1285 
   1286   if (II.getNumDefs() >= 1)
   1287     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
   1288       .addImm(Imm1).addImm(Imm2);
   1289   else {
   1290     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm1).addImm(Imm2);
   1291     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1292             ResultReg).addReg(II.ImplicitDefs[0]);
   1293   }
   1294   return ResultReg;
   1295 }
   1296 
   1297 unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
   1298                                               unsigned Op0, bool Op0IsKill,
   1299                                               uint32_t Idx) {
   1300   unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
   1301   assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
   1302          "Cannot yet extract from physregs");
   1303   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
   1304           DL, TII.get(TargetOpcode::COPY), ResultReg)
   1305     .addReg(Op0, getKillRegState(Op0IsKill), Idx);
   1306   return ResultReg;
   1307 }
   1308 
   1309 /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
   1310 /// with all but the least significant bit set to zero.
   1311 unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
   1312   return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
   1313 }
   1314 
   1315 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
   1316 /// Emit code to ensure constants are copied into registers when needed.
   1317 /// Remember the virtual registers that need to be added to the Machine PHI
   1318 /// nodes as input.  We cannot just directly add them, because expansion
   1319 /// might result in multiple MBB's for one BB.  As such, the start of the
   1320 /// BB might correspond to a different MBB than the end.
   1321 bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
   1322   const TerminatorInst *TI = LLVMBB->getTerminator();
   1323 
   1324   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
   1325   unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
   1326 
   1327   // Check successor nodes' PHI nodes that expect a constant to be available
   1328   // from this block.
   1329   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
   1330     const BasicBlock *SuccBB = TI->getSuccessor(succ);
   1331     if (!isa<PHINode>(SuccBB->begin())) continue;
   1332     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
   1333 
   1334     // If this terminator has multiple identical successors (common for
   1335     // switches), only handle each succ once.
   1336     if (!SuccsHandled.insert(SuccMBB)) continue;
   1337 
   1338     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
   1339 
   1340     // At this point we know that there is a 1-1 correspondence between LLVM PHI
   1341     // nodes and Machine PHI nodes, but the incoming operands have not been
   1342     // emitted yet.
   1343     for (BasicBlock::const_iterator I = SuccBB->begin();
   1344          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
   1345 
   1346       // Ignore dead phi's.
   1347       if (PN->use_empty()) continue;
   1348 
   1349       // Only handle legal types. Two interesting things to note here. First,
   1350       // by bailing out early, we may leave behind some dead instructions,
   1351       // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
   1352       // own moves. Second, this check is necessary because FastISel doesn't
   1353       // use CreateRegs to create registers, so it always creates
   1354       // exactly one register for each non-void instruction.
   1355       EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
   1356       if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
   1357         // Promote MVT::i1.
   1358         if (VT == MVT::i1)
   1359           VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT);
   1360         else {
   1361           FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
   1362           return false;
   1363         }
   1364       }
   1365 
   1366       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
   1367 
   1368       // Set the DebugLoc for the copy. Prefer the location of the operand
   1369       // if there is one; use the location of the PHI otherwise.
   1370       DL = PN->getDebugLoc();
   1371       if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp))
   1372         DL = Inst->getDebugLoc();
   1373 
   1374       unsigned Reg = getRegForValue(PHIOp);
   1375       if (Reg == 0) {
   1376         FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
   1377         return false;
   1378       }
   1379       FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
   1380       DL = DebugLoc();
   1381     }
   1382   }
   1383 
   1384   return true;
   1385 }
   1386