Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements the TargetLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Target/TargetLowering.h"
     15 #include "llvm/MC/MCAsmInfo.h"
     16 #include "llvm/MC/MCExpr.h"
     17 #include "llvm/Target/TargetData.h"
     18 #include "llvm/Target/TargetLoweringObjectFile.h"
     19 #include "llvm/Target/TargetMachine.h"
     20 #include "llvm/Target/TargetRegisterInfo.h"
     21 #include "llvm/GlobalVariable.h"
     22 #include "llvm/DerivedTypes.h"
     23 #include "llvm/CodeGen/Analysis.h"
     24 #include "llvm/CodeGen/MachineFrameInfo.h"
     25 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     26 #include "llvm/CodeGen/MachineFunction.h"
     27 #include "llvm/CodeGen/SelectionDAG.h"
     28 #include "llvm/ADT/STLExtras.h"
     29 #include "llvm/Support/CommandLine.h"
     30 #include "llvm/Support/ErrorHandling.h"
     31 #include "llvm/Support/MathExtras.h"
     32 #include <cctype>
     33 using namespace llvm;
     34 
     35 /// We are in the process of implementing a new TypeLegalization action
     36 /// - the promotion of vector elements. This feature is disabled by default
     37 /// and only enabled using this flag.
     38 static cl::opt<bool>
     39 AllowPromoteIntElem("promote-elements", cl::Hidden,
     40   cl::desc("Allow promotion of integer vector element types"));
     41 
     42 namespace llvm {
     43 TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
     44   bool isLocal = GV->hasLocalLinkage();
     45   bool isDeclaration = GV->isDeclaration();
     46   // FIXME: what should we do for protected and internal visibility?
     47   // For variables, is internal different from hidden?
     48   bool isHidden = GV->hasHiddenVisibility();
     49 
     50   if (reloc == Reloc::PIC_) {
     51     if (isLocal || isHidden)
     52       return TLSModel::LocalDynamic;
     53     else
     54       return TLSModel::GeneralDynamic;
     55   } else {
     56     if (!isDeclaration || isHidden)
     57       return TLSModel::LocalExec;
     58     else
     59       return TLSModel::InitialExec;
     60   }
     61 }
     62 }
     63 
     64 /// InitLibcallNames - Set default libcall names.
     65 ///
     66 static void InitLibcallNames(const char **Names) {
     67   Names[RTLIB::SHL_I16] = "__ashlhi3";
     68   Names[RTLIB::SHL_I32] = "__ashlsi3";
     69   Names[RTLIB::SHL_I64] = "__ashldi3";
     70   Names[RTLIB::SHL_I128] = "__ashlti3";
     71   Names[RTLIB::SRL_I16] = "__lshrhi3";
     72   Names[RTLIB::SRL_I32] = "__lshrsi3";
     73   Names[RTLIB::SRL_I64] = "__lshrdi3";
     74   Names[RTLIB::SRL_I128] = "__lshrti3";
     75   Names[RTLIB::SRA_I16] = "__ashrhi3";
     76   Names[RTLIB::SRA_I32] = "__ashrsi3";
     77   Names[RTLIB::SRA_I64] = "__ashrdi3";
     78   Names[RTLIB::SRA_I128] = "__ashrti3";
     79   Names[RTLIB::MUL_I8] = "__mulqi3";
     80   Names[RTLIB::MUL_I16] = "__mulhi3";
     81   Names[RTLIB::MUL_I32] = "__mulsi3";
     82   Names[RTLIB::MUL_I64] = "__muldi3";
     83   Names[RTLIB::MUL_I128] = "__multi3";
     84   Names[RTLIB::MULO_I32] = "__mulosi4";
     85   Names[RTLIB::MULO_I64] = "__mulodi4";
     86   Names[RTLIB::MULO_I128] = "__muloti4";
     87   Names[RTLIB::SDIV_I8] = "__divqi3";
     88   Names[RTLIB::SDIV_I16] = "__divhi3";
     89   Names[RTLIB::SDIV_I32] = "__divsi3";
     90   Names[RTLIB::SDIV_I64] = "__divdi3";
     91   Names[RTLIB::SDIV_I128] = "__divti3";
     92   Names[RTLIB::UDIV_I8] = "__udivqi3";
     93   Names[RTLIB::UDIV_I16] = "__udivhi3";
     94   Names[RTLIB::UDIV_I32] = "__udivsi3";
     95   Names[RTLIB::UDIV_I64] = "__udivdi3";
     96   Names[RTLIB::UDIV_I128] = "__udivti3";
     97   Names[RTLIB::SREM_I8] = "__modqi3";
     98   Names[RTLIB::SREM_I16] = "__modhi3";
     99   Names[RTLIB::SREM_I32] = "__modsi3";
    100   Names[RTLIB::SREM_I64] = "__moddi3";
    101   Names[RTLIB::SREM_I128] = "__modti3";
    102   Names[RTLIB::UREM_I8] = "__umodqi3";
    103   Names[RTLIB::UREM_I16] = "__umodhi3";
    104   Names[RTLIB::UREM_I32] = "__umodsi3";
    105   Names[RTLIB::UREM_I64] = "__umoddi3";
    106   Names[RTLIB::UREM_I128] = "__umodti3";
    107 
    108   // These are generally not available.
    109   Names[RTLIB::SDIVREM_I8] = 0;
    110   Names[RTLIB::SDIVREM_I16] = 0;
    111   Names[RTLIB::SDIVREM_I32] = 0;
    112   Names[RTLIB::SDIVREM_I64] = 0;
    113   Names[RTLIB::SDIVREM_I128] = 0;
    114   Names[RTLIB::UDIVREM_I8] = 0;
    115   Names[RTLIB::UDIVREM_I16] = 0;
    116   Names[RTLIB::UDIVREM_I32] = 0;
    117   Names[RTLIB::UDIVREM_I64] = 0;
    118   Names[RTLIB::UDIVREM_I128] = 0;
    119 
    120   Names[RTLIB::NEG_I32] = "__negsi2";
    121   Names[RTLIB::NEG_I64] = "__negdi2";
    122   Names[RTLIB::ADD_F32] = "__addsf3";
    123   Names[RTLIB::ADD_F64] = "__adddf3";
    124   Names[RTLIB::ADD_F80] = "__addxf3";
    125   Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
    126   Names[RTLIB::SUB_F32] = "__subsf3";
    127   Names[RTLIB::SUB_F64] = "__subdf3";
    128   Names[RTLIB::SUB_F80] = "__subxf3";
    129   Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
    130   Names[RTLIB::MUL_F32] = "__mulsf3";
    131   Names[RTLIB::MUL_F64] = "__muldf3";
    132   Names[RTLIB::MUL_F80] = "__mulxf3";
    133   Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
    134   Names[RTLIB::DIV_F32] = "__divsf3";
    135   Names[RTLIB::DIV_F64] = "__divdf3";
    136   Names[RTLIB::DIV_F80] = "__divxf3";
    137   Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
    138   Names[RTLIB::REM_F32] = "fmodf";
    139   Names[RTLIB::REM_F64] = "fmod";
    140   Names[RTLIB::REM_F80] = "fmodl";
    141   Names[RTLIB::REM_PPCF128] = "fmodl";
    142   Names[RTLIB::FMA_F32] = "fmaf";
    143   Names[RTLIB::FMA_F64] = "fma";
    144   Names[RTLIB::FMA_F80] = "fmal";
    145   Names[RTLIB::FMA_PPCF128] = "fmal";
    146   Names[RTLIB::POWI_F32] = "__powisf2";
    147   Names[RTLIB::POWI_F64] = "__powidf2";
    148   Names[RTLIB::POWI_F80] = "__powixf2";
    149   Names[RTLIB::POWI_PPCF128] = "__powitf2";
    150   Names[RTLIB::SQRT_F32] = "sqrtf";
    151   Names[RTLIB::SQRT_F64] = "sqrt";
    152   Names[RTLIB::SQRT_F80] = "sqrtl";
    153   Names[RTLIB::SQRT_PPCF128] = "sqrtl";
    154   Names[RTLIB::LOG_F32] = "logf";
    155   Names[RTLIB::LOG_F64] = "log";
    156   Names[RTLIB::LOG_F80] = "logl";
    157   Names[RTLIB::LOG_PPCF128] = "logl";
    158   Names[RTLIB::LOG2_F32] = "log2f";
    159   Names[RTLIB::LOG2_F64] = "log2";
    160   Names[RTLIB::LOG2_F80] = "log2l";
    161   Names[RTLIB::LOG2_PPCF128] = "log2l";
    162   Names[RTLIB::LOG10_F32] = "log10f";
    163   Names[RTLIB::LOG10_F64] = "log10";
    164   Names[RTLIB::LOG10_F80] = "log10l";
    165   Names[RTLIB::LOG10_PPCF128] = "log10l";
    166   Names[RTLIB::EXP_F32] = "expf";
    167   Names[RTLIB::EXP_F64] = "exp";
    168   Names[RTLIB::EXP_F80] = "expl";
    169   Names[RTLIB::EXP_PPCF128] = "expl";
    170   Names[RTLIB::EXP2_F32] = "exp2f";
    171   Names[RTLIB::EXP2_F64] = "exp2";
    172   Names[RTLIB::EXP2_F80] = "exp2l";
    173   Names[RTLIB::EXP2_PPCF128] = "exp2l";
    174   Names[RTLIB::SIN_F32] = "sinf";
    175   Names[RTLIB::SIN_F64] = "sin";
    176   Names[RTLIB::SIN_F80] = "sinl";
    177   Names[RTLIB::SIN_PPCF128] = "sinl";
    178   Names[RTLIB::COS_F32] = "cosf";
    179   Names[RTLIB::COS_F64] = "cos";
    180   Names[RTLIB::COS_F80] = "cosl";
    181   Names[RTLIB::COS_PPCF128] = "cosl";
    182   Names[RTLIB::POW_F32] = "powf";
    183   Names[RTLIB::POW_F64] = "pow";
    184   Names[RTLIB::POW_F80] = "powl";
    185   Names[RTLIB::POW_PPCF128] = "powl";
    186   Names[RTLIB::CEIL_F32] = "ceilf";
    187   Names[RTLIB::CEIL_F64] = "ceil";
    188   Names[RTLIB::CEIL_F80] = "ceill";
    189   Names[RTLIB::CEIL_PPCF128] = "ceill";
    190   Names[RTLIB::TRUNC_F32] = "truncf";
    191   Names[RTLIB::TRUNC_F64] = "trunc";
    192   Names[RTLIB::TRUNC_F80] = "truncl";
    193   Names[RTLIB::TRUNC_PPCF128] = "truncl";
    194   Names[RTLIB::RINT_F32] = "rintf";
    195   Names[RTLIB::RINT_F64] = "rint";
    196   Names[RTLIB::RINT_F80] = "rintl";
    197   Names[RTLIB::RINT_PPCF128] = "rintl";
    198   Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
    199   Names[RTLIB::NEARBYINT_F64] = "nearbyint";
    200   Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
    201   Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
    202   Names[RTLIB::FLOOR_F32] = "floorf";
    203   Names[RTLIB::FLOOR_F64] = "floor";
    204   Names[RTLIB::FLOOR_F80] = "floorl";
    205   Names[RTLIB::FLOOR_PPCF128] = "floorl";
    206   Names[RTLIB::COPYSIGN_F32] = "copysignf";
    207   Names[RTLIB::COPYSIGN_F64] = "copysign";
    208   Names[RTLIB::COPYSIGN_F80] = "copysignl";
    209   Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
    210   Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
    211   Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
    212   Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
    213   Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
    214   Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
    215   Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
    216   Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
    217   Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
    218   Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
    219   Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
    220   Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
    221   Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
    222   Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
    223   Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
    224   Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
    225   Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
    226   Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
    227   Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
    228   Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
    229   Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
    230   Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
    231   Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
    232   Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
    233   Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
    234   Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
    235   Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
    236   Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
    237   Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
    238   Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
    239   Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
    240   Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
    241   Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
    242   Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
    243   Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
    244   Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
    245   Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
    246   Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
    247   Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
    248   Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
    249   Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
    250   Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
    251   Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
    252   Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
    253   Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
    254   Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
    255   Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
    256   Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
    257   Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
    258   Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
    259   Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
    260   Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
    261   Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
    262   Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
    263   Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
    264   Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
    265   Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
    266   Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
    267   Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
    268   Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
    269   Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
    270   Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
    271   Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
    272   Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
    273   Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
    274   Names[RTLIB::OEQ_F32] = "__eqsf2";
    275   Names[RTLIB::OEQ_F64] = "__eqdf2";
    276   Names[RTLIB::UNE_F32] = "__nesf2";
    277   Names[RTLIB::UNE_F64] = "__nedf2";
    278   Names[RTLIB::OGE_F32] = "__gesf2";
    279   Names[RTLIB::OGE_F64] = "__gedf2";
    280   Names[RTLIB::OLT_F32] = "__ltsf2";
    281   Names[RTLIB::OLT_F64] = "__ltdf2";
    282   Names[RTLIB::OLE_F32] = "__lesf2";
    283   Names[RTLIB::OLE_F64] = "__ledf2";
    284   Names[RTLIB::OGT_F32] = "__gtsf2";
    285   Names[RTLIB::OGT_F64] = "__gtdf2";
    286   Names[RTLIB::UO_F32] = "__unordsf2";
    287   Names[RTLIB::UO_F64] = "__unorddf2";
    288   Names[RTLIB::O_F32] = "__unordsf2";
    289   Names[RTLIB::O_F64] = "__unorddf2";
    290   Names[RTLIB::MEMCPY] = "memcpy";
    291   Names[RTLIB::MEMMOVE] = "memmove";
    292   Names[RTLIB::MEMSET] = "memset";
    293   Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
    294   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
    295   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
    296   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
    297   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
    298   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
    299   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
    300   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
    301   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
    302   Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
    303   Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
    304   Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
    305   Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
    306   Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
    307   Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
    308   Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
    309   Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
    310   Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
    311   Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
    312   Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
    313   Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
    314   Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
    315   Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
    316   Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
    317   Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
    318   Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
    319   Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
    320   Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
    321   Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
    322   Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
    323   Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
    324   Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
    325   Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
    326 }
    327 
    328 /// InitLibcallCallingConvs - Set default libcall CallingConvs.
    329 ///
    330 static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
    331   for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
    332     CCs[i] = CallingConv::C;
    333   }
    334 }
    335 
    336 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
    337 /// UNKNOWN_LIBCALL if there is none.
    338 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
    339   if (OpVT == MVT::f32) {
    340     if (RetVT == MVT::f64)
    341       return FPEXT_F32_F64;
    342   }
    343 
    344   return UNKNOWN_LIBCALL;
    345 }
    346 
    347 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
    348 /// UNKNOWN_LIBCALL if there is none.
    349 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
    350   if (RetVT == MVT::f32) {
    351     if (OpVT == MVT::f64)
    352       return FPROUND_F64_F32;
    353     if (OpVT == MVT::f80)
    354       return FPROUND_F80_F32;
    355     if (OpVT == MVT::ppcf128)
    356       return FPROUND_PPCF128_F32;
    357   } else if (RetVT == MVT::f64) {
    358     if (OpVT == MVT::f80)
    359       return FPROUND_F80_F64;
    360     if (OpVT == MVT::ppcf128)
    361       return FPROUND_PPCF128_F64;
    362   }
    363 
    364   return UNKNOWN_LIBCALL;
    365 }
    366 
    367 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
    368 /// UNKNOWN_LIBCALL if there is none.
    369 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
    370   if (OpVT == MVT::f32) {
    371     if (RetVT == MVT::i8)
    372       return FPTOSINT_F32_I8;
    373     if (RetVT == MVT::i16)
    374       return FPTOSINT_F32_I16;
    375     if (RetVT == MVT::i32)
    376       return FPTOSINT_F32_I32;
    377     if (RetVT == MVT::i64)
    378       return FPTOSINT_F32_I64;
    379     if (RetVT == MVT::i128)
    380       return FPTOSINT_F32_I128;
    381   } else if (OpVT == MVT::f64) {
    382     if (RetVT == MVT::i8)
    383       return FPTOSINT_F64_I8;
    384     if (RetVT == MVT::i16)
    385       return FPTOSINT_F64_I16;
    386     if (RetVT == MVT::i32)
    387       return FPTOSINT_F64_I32;
    388     if (RetVT == MVT::i64)
    389       return FPTOSINT_F64_I64;
    390     if (RetVT == MVT::i128)
    391       return FPTOSINT_F64_I128;
    392   } else if (OpVT == MVT::f80) {
    393     if (RetVT == MVT::i32)
    394       return FPTOSINT_F80_I32;
    395     if (RetVT == MVT::i64)
    396       return FPTOSINT_F80_I64;
    397     if (RetVT == MVT::i128)
    398       return FPTOSINT_F80_I128;
    399   } else if (OpVT == MVT::ppcf128) {
    400     if (RetVT == MVT::i32)
    401       return FPTOSINT_PPCF128_I32;
    402     if (RetVT == MVT::i64)
    403       return FPTOSINT_PPCF128_I64;
    404     if (RetVT == MVT::i128)
    405       return FPTOSINT_PPCF128_I128;
    406   }
    407   return UNKNOWN_LIBCALL;
    408 }
    409 
    410 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
    411 /// UNKNOWN_LIBCALL if there is none.
    412 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
    413   if (OpVT == MVT::f32) {
    414     if (RetVT == MVT::i8)
    415       return FPTOUINT_F32_I8;
    416     if (RetVT == MVT::i16)
    417       return FPTOUINT_F32_I16;
    418     if (RetVT == MVT::i32)
    419       return FPTOUINT_F32_I32;
    420     if (RetVT == MVT::i64)
    421       return FPTOUINT_F32_I64;
    422     if (RetVT == MVT::i128)
    423       return FPTOUINT_F32_I128;
    424   } else if (OpVT == MVT::f64) {
    425     if (RetVT == MVT::i8)
    426       return FPTOUINT_F64_I8;
    427     if (RetVT == MVT::i16)
    428       return FPTOUINT_F64_I16;
    429     if (RetVT == MVT::i32)
    430       return FPTOUINT_F64_I32;
    431     if (RetVT == MVT::i64)
    432       return FPTOUINT_F64_I64;
    433     if (RetVT == MVT::i128)
    434       return FPTOUINT_F64_I128;
    435   } else if (OpVT == MVT::f80) {
    436     if (RetVT == MVT::i32)
    437       return FPTOUINT_F80_I32;
    438     if (RetVT == MVT::i64)
    439       return FPTOUINT_F80_I64;
    440     if (RetVT == MVT::i128)
    441       return FPTOUINT_F80_I128;
    442   } else if (OpVT == MVT::ppcf128) {
    443     if (RetVT == MVT::i32)
    444       return FPTOUINT_PPCF128_I32;
    445     if (RetVT == MVT::i64)
    446       return FPTOUINT_PPCF128_I64;
    447     if (RetVT == MVT::i128)
    448       return FPTOUINT_PPCF128_I128;
    449   }
    450   return UNKNOWN_LIBCALL;
    451 }
    452 
    453 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
    454 /// UNKNOWN_LIBCALL if there is none.
    455 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
    456   if (OpVT == MVT::i32) {
    457     if (RetVT == MVT::f32)
    458       return SINTTOFP_I32_F32;
    459     else if (RetVT == MVT::f64)
    460       return SINTTOFP_I32_F64;
    461     else if (RetVT == MVT::f80)
    462       return SINTTOFP_I32_F80;
    463     else if (RetVT == MVT::ppcf128)
    464       return SINTTOFP_I32_PPCF128;
    465   } else if (OpVT == MVT::i64) {
    466     if (RetVT == MVT::f32)
    467       return SINTTOFP_I64_F32;
    468     else if (RetVT == MVT::f64)
    469       return SINTTOFP_I64_F64;
    470     else if (RetVT == MVT::f80)
    471       return SINTTOFP_I64_F80;
    472     else if (RetVT == MVT::ppcf128)
    473       return SINTTOFP_I64_PPCF128;
    474   } else if (OpVT == MVT::i128) {
    475     if (RetVT == MVT::f32)
    476       return SINTTOFP_I128_F32;
    477     else if (RetVT == MVT::f64)
    478       return SINTTOFP_I128_F64;
    479     else if (RetVT == MVT::f80)
    480       return SINTTOFP_I128_F80;
    481     else if (RetVT == MVT::ppcf128)
    482       return SINTTOFP_I128_PPCF128;
    483   }
    484   return UNKNOWN_LIBCALL;
    485 }
    486 
    487 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
    488 /// UNKNOWN_LIBCALL if there is none.
    489 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
    490   if (OpVT == MVT::i32) {
    491     if (RetVT == MVT::f32)
    492       return UINTTOFP_I32_F32;
    493     else if (RetVT == MVT::f64)
    494       return UINTTOFP_I32_F64;
    495     else if (RetVT == MVT::f80)
    496       return UINTTOFP_I32_F80;
    497     else if (RetVT == MVT::ppcf128)
    498       return UINTTOFP_I32_PPCF128;
    499   } else if (OpVT == MVT::i64) {
    500     if (RetVT == MVT::f32)
    501       return UINTTOFP_I64_F32;
    502     else if (RetVT == MVT::f64)
    503       return UINTTOFP_I64_F64;
    504     else if (RetVT == MVT::f80)
    505       return UINTTOFP_I64_F80;
    506     else if (RetVT == MVT::ppcf128)
    507       return UINTTOFP_I64_PPCF128;
    508   } else if (OpVT == MVT::i128) {
    509     if (RetVT == MVT::f32)
    510       return UINTTOFP_I128_F32;
    511     else if (RetVT == MVT::f64)
    512       return UINTTOFP_I128_F64;
    513     else if (RetVT == MVT::f80)
    514       return UINTTOFP_I128_F80;
    515     else if (RetVT == MVT::ppcf128)
    516       return UINTTOFP_I128_PPCF128;
    517   }
    518   return UNKNOWN_LIBCALL;
    519 }
    520 
    521 /// InitCmpLibcallCCs - Set default comparison libcall CC.
    522 ///
    523 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
    524   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
    525   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
    526   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
    527   CCs[RTLIB::UNE_F32] = ISD::SETNE;
    528   CCs[RTLIB::UNE_F64] = ISD::SETNE;
    529   CCs[RTLIB::OGE_F32] = ISD::SETGE;
    530   CCs[RTLIB::OGE_F64] = ISD::SETGE;
    531   CCs[RTLIB::OLT_F32] = ISD::SETLT;
    532   CCs[RTLIB::OLT_F64] = ISD::SETLT;
    533   CCs[RTLIB::OLE_F32] = ISD::SETLE;
    534   CCs[RTLIB::OLE_F64] = ISD::SETLE;
    535   CCs[RTLIB::OGT_F32] = ISD::SETGT;
    536   CCs[RTLIB::OGT_F64] = ISD::SETGT;
    537   CCs[RTLIB::UO_F32] = ISD::SETNE;
    538   CCs[RTLIB::UO_F64] = ISD::SETNE;
    539   CCs[RTLIB::O_F32] = ISD::SETEQ;
    540   CCs[RTLIB::O_F64] = ISD::SETEQ;
    541 }
    542 
    543 /// NOTE: The constructor takes ownership of TLOF.
    544 TargetLowering::TargetLowering(const TargetMachine &tm,
    545                                const TargetLoweringObjectFile *tlof)
    546   : TM(tm), TD(TM.getTargetData()), TLOF(*tlof),
    547   mayPromoteElements(AllowPromoteIntElem) {
    548   // All operations default to being supported.
    549   memset(OpActions, 0, sizeof(OpActions));
    550   memset(LoadExtActions, 0, sizeof(LoadExtActions));
    551   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
    552   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
    553   memset(CondCodeActions, 0, sizeof(CondCodeActions));
    554 
    555   // Set default actions for various operations.
    556   for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
    557     // Default all indexed load / store to expand.
    558     for (unsigned IM = (unsigned)ISD::PRE_INC;
    559          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
    560       setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
    561       setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
    562     }
    563 
    564     // These operations default to expand.
    565     setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
    566     setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
    567   }
    568 
    569   // Most targets ignore the @llvm.prefetch intrinsic.
    570   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
    571 
    572   // ConstantFP nodes default to expand.  Targets can either change this to
    573   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
    574   // to optimize expansions for certain constants.
    575   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
    576   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
    577   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
    578 
    579   // These library functions default to expand.
    580   setOperationAction(ISD::FLOG , MVT::f64, Expand);
    581   setOperationAction(ISD::FLOG2, MVT::f64, Expand);
    582   setOperationAction(ISD::FLOG10,MVT::f64, Expand);
    583   setOperationAction(ISD::FEXP , MVT::f64, Expand);
    584   setOperationAction(ISD::FEXP2, MVT::f64, Expand);
    585   setOperationAction(ISD::FLOG , MVT::f32, Expand);
    586   setOperationAction(ISD::FLOG2, MVT::f32, Expand);
    587   setOperationAction(ISD::FLOG10,MVT::f32, Expand);
    588   setOperationAction(ISD::FEXP , MVT::f32, Expand);
    589   setOperationAction(ISD::FEXP2, MVT::f32, Expand);
    590 
    591   // Default ISD::TRAP to expand (which turns it into abort).
    592   setOperationAction(ISD::TRAP, MVT::Other, Expand);
    593 
    594   IsLittleEndian = TD->isLittleEndian();
    595   PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
    596   memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
    597   memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
    598   maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
    599   maxStoresPerMemsetOptSize = maxStoresPerMemcpyOptSize
    600     = maxStoresPerMemmoveOptSize = 4;
    601   benefitFromCodePlacementOpt = false;
    602   UseUnderscoreSetJmp = false;
    603   UseUnderscoreLongJmp = false;
    604   SelectIsExpensive = false;
    605   IntDivIsCheap = false;
    606   Pow2DivIsCheap = false;
    607   JumpIsExpensive = false;
    608   StackPointerRegisterToSaveRestore = 0;
    609   ExceptionPointerRegister = 0;
    610   ExceptionSelectorRegister = 0;
    611   BooleanContents = UndefinedBooleanContent;
    612   BooleanVectorContents = UndefinedBooleanContent;
    613   SchedPreferenceInfo = Sched::Latency;
    614   JumpBufSize = 0;
    615   JumpBufAlignment = 0;
    616   MinFunctionAlignment = 0;
    617   PrefFunctionAlignment = 0;
    618   PrefLoopAlignment = 0;
    619   MinStackArgumentAlignment = 1;
    620   ShouldFoldAtomicFences = false;
    621   InsertFencesForAtomic = false;
    622 
    623   InitLibcallNames(LibcallRoutineNames);
    624   InitCmpLibcallCCs(CmpLibcallCCs);
    625   InitLibcallCallingConvs(LibcallCallingConvs);
    626 }
    627 
    628 TargetLowering::~TargetLowering() {
    629   delete &TLOF;
    630 }
    631 
    632 MVT TargetLowering::getShiftAmountTy(EVT LHSTy) const {
    633   return MVT::getIntegerVT(8*TD->getPointerSize());
    634 }
    635 
    636 /// canOpTrap - Returns true if the operation can trap for the value type.
    637 /// VT must be a legal type.
    638 bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
    639   assert(isTypeLegal(VT));
    640   switch (Op) {
    641   default:
    642     return false;
    643   case ISD::FDIV:
    644   case ISD::FREM:
    645   case ISD::SDIV:
    646   case ISD::UDIV:
    647   case ISD::SREM:
    648   case ISD::UREM:
    649     return true;
    650   }
    651 }
    652 
    653 
    654 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
    655                                           unsigned &NumIntermediates,
    656                                           EVT &RegisterVT,
    657                                           TargetLowering *TLI) {
    658   // Figure out the right, legal destination reg to copy into.
    659   unsigned NumElts = VT.getVectorNumElements();
    660   MVT EltTy = VT.getVectorElementType();
    661 
    662   unsigned NumVectorRegs = 1;
    663 
    664   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
    665   // could break down into LHS/RHS like LegalizeDAG does.
    666   if (!isPowerOf2_32(NumElts)) {
    667     NumVectorRegs = NumElts;
    668     NumElts = 1;
    669   }
    670 
    671   // Divide the input until we get to a supported size.  This will always
    672   // end with a scalar if the target doesn't support vectors.
    673   while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
    674     NumElts >>= 1;
    675     NumVectorRegs <<= 1;
    676   }
    677 
    678   NumIntermediates = NumVectorRegs;
    679 
    680   MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
    681   if (!TLI->isTypeLegal(NewVT))
    682     NewVT = EltTy;
    683   IntermediateVT = NewVT;
    684 
    685   unsigned NewVTSize = NewVT.getSizeInBits();
    686 
    687   // Convert sizes such as i33 to i64.
    688   if (!isPowerOf2_32(NewVTSize))
    689     NewVTSize = NextPowerOf2(NewVTSize);
    690 
    691   EVT DestVT = TLI->getRegisterType(NewVT);
    692   RegisterVT = DestVT;
    693   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
    694     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
    695 
    696   // Otherwise, promotion or legal types use the same number of registers as
    697   // the vector decimated to the appropriate level.
    698   return NumVectorRegs;
    699 }
    700 
    701 /// isLegalRC - Return true if the value types that can be represented by the
    702 /// specified register class are all legal.
    703 bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const {
    704   for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
    705        I != E; ++I) {
    706     if (isTypeLegal(*I))
    707       return true;
    708   }
    709   return false;
    710 }
    711 
    712 /// hasLegalSuperRegRegClasses - Return true if the specified register class
    713 /// has one or more super-reg register classes that are legal.
    714 bool
    715 TargetLowering::hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const{
    716   if (*RC->superregclasses_begin() == 0)
    717     return false;
    718   for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
    719          E = RC->superregclasses_end(); I != E; ++I) {
    720     const TargetRegisterClass *RRC = *I;
    721     if (isLegalRC(RRC))
    722       return true;
    723   }
    724   return false;
    725 }
    726 
    727 /// findRepresentativeClass - Return the largest legal super-reg register class
    728 /// of the register class for the specified type and its associated "cost".
    729 std::pair<const TargetRegisterClass*, uint8_t>
    730 TargetLowering::findRepresentativeClass(EVT VT) const {
    731   const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
    732   if (!RC)
    733     return std::make_pair(RC, 0);
    734   const TargetRegisterClass *BestRC = RC;
    735   for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
    736          E = RC->superregclasses_end(); I != E; ++I) {
    737     const TargetRegisterClass *RRC = *I;
    738     if (RRC->isASubClass() || !isLegalRC(RRC))
    739       continue;
    740     if (!hasLegalSuperRegRegClasses(RRC))
    741       return std::make_pair(RRC, 1);
    742     BestRC = RRC;
    743   }
    744   return std::make_pair(BestRC, 1);
    745 }
    746 
    747 
    748 /// computeRegisterProperties - Once all of the register classes are added,
    749 /// this allows us to compute derived properties we expose.
    750 void TargetLowering::computeRegisterProperties() {
    751   assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
    752          "Too many value types for ValueTypeActions to hold!");
    753 
    754   // Everything defaults to needing one register.
    755   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
    756     NumRegistersForVT[i] = 1;
    757     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
    758   }
    759   // ...except isVoid, which doesn't need any registers.
    760   NumRegistersForVT[MVT::isVoid] = 0;
    761 
    762   // Find the largest integer register class.
    763   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
    764   for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
    765     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
    766 
    767   // Every integer value type larger than this largest register takes twice as
    768   // many registers to represent as the previous ValueType.
    769   for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
    770     EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
    771     if (!ExpandedVT.isInteger())
    772       break;
    773     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
    774     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
    775     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
    776     ValueTypeActions.setTypeAction(ExpandedVT, TypeExpandInteger);
    777   }
    778 
    779   // Inspect all of the ValueType's smaller than the largest integer
    780   // register to see which ones need promotion.
    781   unsigned LegalIntReg = LargestIntReg;
    782   for (unsigned IntReg = LargestIntReg - 1;
    783        IntReg >= (unsigned)MVT::i1; --IntReg) {
    784     EVT IVT = (MVT::SimpleValueType)IntReg;
    785     if (isTypeLegal(IVT)) {
    786       LegalIntReg = IntReg;
    787     } else {
    788       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
    789         (MVT::SimpleValueType)LegalIntReg;
    790       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
    791     }
    792   }
    793 
    794   // ppcf128 type is really two f64's.
    795   if (!isTypeLegal(MVT::ppcf128)) {
    796     NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
    797     RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
    798     TransformToType[MVT::ppcf128] = MVT::f64;
    799     ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
    800   }
    801 
    802   // Decide how to handle f64. If the target does not have native f64 support,
    803   // expand it to i64 and we will be generating soft float library calls.
    804   if (!isTypeLegal(MVT::f64)) {
    805     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
    806     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
    807     TransformToType[MVT::f64] = MVT::i64;
    808     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
    809   }
    810 
    811   // Decide how to handle f32. If the target does not have native support for
    812   // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
    813   if (!isTypeLegal(MVT::f32)) {
    814     if (isTypeLegal(MVT::f64)) {
    815       NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
    816       RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
    817       TransformToType[MVT::f32] = MVT::f64;
    818       ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger);
    819     } else {
    820       NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
    821       RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
    822       TransformToType[MVT::f32] = MVT::i32;
    823       ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
    824     }
    825   }
    826 
    827   // Loop over all of the vector value types to see which need transformations.
    828   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
    829        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
    830     MVT VT = (MVT::SimpleValueType)i;
    831     if (isTypeLegal(VT)) continue;
    832 
    833     // Determine if there is a legal wider type.  If so, we should promote to
    834     // that wider vector type.
    835     EVT EltVT = VT.getVectorElementType();
    836     unsigned NElts = VT.getVectorNumElements();
    837     if (NElts != 1) {
    838       bool IsLegalWiderType = false;
    839       // If we allow the promotion of vector elements using a flag,
    840       // then return TypePromoteInteger on vector elements.
    841       // First try to promote the elements of integer vectors. If no legal
    842       // promotion was found, fallback to the widen-vector method.
    843       if (mayPromoteElements)
    844       for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
    845         EVT SVT = (MVT::SimpleValueType)nVT;
    846         // Promote vectors of integers to vectors with the same number
    847         // of elements, with a wider element type.
    848         if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
    849             && SVT.getVectorNumElements() == NElts &&
    850             isTypeLegal(SVT) && SVT.getScalarType().isInteger()) {
    851           TransformToType[i] = SVT;
    852           RegisterTypeForVT[i] = SVT;
    853           NumRegistersForVT[i] = 1;
    854           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
    855           IsLegalWiderType = true;
    856           break;
    857         }
    858       }
    859 
    860       if (IsLegalWiderType) continue;
    861 
    862       // Try to widen the vector.
    863       for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
    864         EVT SVT = (MVT::SimpleValueType)nVT;
    865         if (SVT.getVectorElementType() == EltVT &&
    866             SVT.getVectorNumElements() > NElts &&
    867             isTypeLegal(SVT)) {
    868           TransformToType[i] = SVT;
    869           RegisterTypeForVT[i] = SVT;
    870           NumRegistersForVT[i] = 1;
    871           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
    872           IsLegalWiderType = true;
    873           break;
    874         }
    875       }
    876       if (IsLegalWiderType) continue;
    877     }
    878 
    879     MVT IntermediateVT;
    880     EVT RegisterVT;
    881     unsigned NumIntermediates;
    882     NumRegistersForVT[i] =
    883       getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
    884                                 RegisterVT, this);
    885     RegisterTypeForVT[i] = RegisterVT;
    886 
    887     EVT NVT = VT.getPow2VectorType();
    888     if (NVT == VT) {
    889       // Type is already a power of 2.  The default action is to split.
    890       TransformToType[i] = MVT::Other;
    891       unsigned NumElts = VT.getVectorNumElements();
    892       ValueTypeActions.setTypeAction(VT,
    893             NumElts > 1 ? TypeSplitVector : TypeScalarizeVector);
    894     } else {
    895       TransformToType[i] = NVT;
    896       ValueTypeActions.setTypeAction(VT, TypeWidenVector);
    897     }
    898   }
    899 
    900   // Determine the 'representative' register class for each value type.
    901   // An representative register class is the largest (meaning one which is
    902   // not a sub-register class / subreg register class) legal register class for
    903   // a group of value types. For example, on i386, i8, i16, and i32
    904   // representative would be GR32; while on x86_64 it's GR64.
    905   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
    906     const TargetRegisterClass* RRC;
    907     uint8_t Cost;
    908     tie(RRC, Cost) =  findRepresentativeClass((MVT::SimpleValueType)i);
    909     RepRegClassForVT[i] = RRC;
    910     RepRegClassCostForVT[i] = Cost;
    911   }
    912 }
    913 
    914 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
    915   return NULL;
    916 }
    917 
    918 
    919 EVT TargetLowering::getSetCCResultType(EVT VT) const {
    920   assert(!VT.isVector() && "No default SetCC type for vectors!");
    921   return PointerTy.SimpleTy;
    922 }
    923 
    924 MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
    925   return MVT::i32; // return the default value
    926 }
    927 
    928 /// getVectorTypeBreakdown - Vector types are broken down into some number of
    929 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
    930 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
    931 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
    932 ///
    933 /// This method returns the number of registers needed, and the VT for each
    934 /// register.  It also returns the VT and quantity of the intermediate values
    935 /// before they are promoted/expanded.
    936 ///
    937 unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
    938                                                 EVT &IntermediateVT,
    939                                                 unsigned &NumIntermediates,
    940                                                 EVT &RegisterVT) const {
    941   unsigned NumElts = VT.getVectorNumElements();
    942 
    943   // If there is a wider vector type with the same element type as this one,
    944   // we should widen to that legal vector type.  This handles things like
    945   // <2 x float> -> <4 x float>.
    946   if (NumElts != 1 && getTypeAction(Context, VT) == TypeWidenVector) {
    947     RegisterVT = getTypeToTransformTo(Context, VT);
    948     if (isTypeLegal(RegisterVT)) {
    949       IntermediateVT = RegisterVT;
    950       NumIntermediates = 1;
    951       return 1;
    952     }
    953   }
    954 
    955   // Figure out the right, legal destination reg to copy into.
    956   EVT EltTy = VT.getVectorElementType();
    957 
    958   unsigned NumVectorRegs = 1;
    959 
    960   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
    961   // could break down into LHS/RHS like LegalizeDAG does.
    962   if (!isPowerOf2_32(NumElts)) {
    963     NumVectorRegs = NumElts;
    964     NumElts = 1;
    965   }
    966 
    967   // Divide the input until we get to a supported size.  This will always
    968   // end with a scalar if the target doesn't support vectors.
    969   while (NumElts > 1 && !isTypeLegal(
    970                                    EVT::getVectorVT(Context, EltTy, NumElts))) {
    971     NumElts >>= 1;
    972     NumVectorRegs <<= 1;
    973   }
    974 
    975   NumIntermediates = NumVectorRegs;
    976 
    977   EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
    978   if (!isTypeLegal(NewVT))
    979     NewVT = EltTy;
    980   IntermediateVT = NewVT;
    981 
    982   EVT DestVT = getRegisterType(Context, NewVT);
    983   RegisterVT = DestVT;
    984   unsigned NewVTSize = NewVT.getSizeInBits();
    985 
    986   // Convert sizes such as i33 to i64.
    987   if (!isPowerOf2_32(NewVTSize))
    988     NewVTSize = NextPowerOf2(NewVTSize);
    989 
    990   if (DestVT.bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
    991     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
    992 
    993   // Otherwise, promotion or legal types use the same number of registers as
    994   // the vector decimated to the appropriate level.
    995   return NumVectorRegs;
    996 }
    997 
    998 /// Get the EVTs and ArgFlags collections that represent the legalized return
    999 /// type of the given function.  This does not require a DAG or a return value,
   1000 /// and is suitable for use before any DAGs for the function are constructed.
   1001 /// TODO: Move this out of TargetLowering.cpp.
   1002 void llvm::GetReturnInfo(Type* ReturnType, Attributes attr,
   1003                          SmallVectorImpl<ISD::OutputArg> &Outs,
   1004                          const TargetLowering &TLI,
   1005                          SmallVectorImpl<uint64_t> *Offsets) {
   1006   SmallVector<EVT, 4> ValueVTs;
   1007   ComputeValueVTs(TLI, ReturnType, ValueVTs);
   1008   unsigned NumValues = ValueVTs.size();
   1009   if (NumValues == 0) return;
   1010   unsigned Offset = 0;
   1011 
   1012   for (unsigned j = 0, f = NumValues; j != f; ++j) {
   1013     EVT VT = ValueVTs[j];
   1014     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
   1015 
   1016     if (attr & Attribute::SExt)
   1017       ExtendKind = ISD::SIGN_EXTEND;
   1018     else if (attr & Attribute::ZExt)
   1019       ExtendKind = ISD::ZERO_EXTEND;
   1020 
   1021     // FIXME: C calling convention requires the return type to be promoted to
   1022     // at least 32-bit. But this is not necessary for non-C calling
   1023     // conventions. The frontend should mark functions whose return values
   1024     // require promoting with signext or zeroext attributes.
   1025     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
   1026       EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
   1027       if (VT.bitsLT(MinVT))
   1028         VT = MinVT;
   1029     }
   1030 
   1031     unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
   1032     EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
   1033     unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
   1034                         PartVT.getTypeForEVT(ReturnType->getContext()));
   1035 
   1036     // 'inreg' on function refers to return value
   1037     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
   1038     if (attr & Attribute::InReg)
   1039       Flags.setInReg();
   1040 
   1041     // Propagate extension type if any
   1042     if (attr & Attribute::SExt)
   1043       Flags.setSExt();
   1044     else if (attr & Attribute::ZExt)
   1045       Flags.setZExt();
   1046 
   1047     for (unsigned i = 0; i < NumParts; ++i) {
   1048       Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true));
   1049       if (Offsets) {
   1050         Offsets->push_back(Offset);
   1051         Offset += PartSize;
   1052       }
   1053     }
   1054   }
   1055 }
   1056 
   1057 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
   1058 /// function arguments in the caller parameter area.  This is the actual
   1059 /// alignment, not its logarithm.
   1060 unsigned TargetLowering::getByValTypeAlignment(Type *Ty) const {
   1061   return TD->getCallFrameTypeAlignment(Ty);
   1062 }
   1063 
   1064 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
   1065 /// current function.  The returned value is a member of the
   1066 /// MachineJumpTableInfo::JTEntryKind enum.
   1067 unsigned TargetLowering::getJumpTableEncoding() const {
   1068   // In non-pic modes, just use the address of a block.
   1069   if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
   1070     return MachineJumpTableInfo::EK_BlockAddress;
   1071 
   1072   // In PIC mode, if the target supports a GPRel32 directive, use it.
   1073   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
   1074     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
   1075 
   1076   // Otherwise, use a label difference.
   1077   return MachineJumpTableInfo::EK_LabelDifference32;
   1078 }
   1079 
   1080 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
   1081                                                  SelectionDAG &DAG) const {
   1082   // If our PIC model is GP relative, use the global offset table as the base.
   1083   if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress)
   1084     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
   1085   return Table;
   1086 }
   1087 
   1088 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
   1089 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
   1090 /// MCExpr.
   1091 const MCExpr *
   1092 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
   1093                                              unsigned JTI,MCContext &Ctx) const{
   1094   // The normal PIC reloc base is the label at the start of the jump table.
   1095   return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
   1096 }
   1097 
   1098 bool
   1099 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
   1100   // Assume that everything is safe in static mode.
   1101   if (getTargetMachine().getRelocationModel() == Reloc::Static)
   1102     return true;
   1103 
   1104   // In dynamic-no-pic mode, assume that known defined values are safe.
   1105   if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
   1106       GA &&
   1107       !GA->getGlobal()->isDeclaration() &&
   1108       !GA->getGlobal()->isWeakForLinker())
   1109     return true;
   1110 
   1111   // Otherwise assume nothing is safe.
   1112   return false;
   1113 }
   1114 
   1115 //===----------------------------------------------------------------------===//
   1116 //  Optimization Methods
   1117 //===----------------------------------------------------------------------===//
   1118 
   1119 /// ShrinkDemandedConstant - Check to see if the specified operand of the
   1120 /// specified instruction is a constant integer.  If so, check to see if there
   1121 /// are any bits set in the constant that are not demanded.  If so, shrink the
   1122 /// constant and return true.
   1123 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
   1124                                                         const APInt &Demanded) {
   1125   DebugLoc dl = Op.getDebugLoc();
   1126 
   1127   // FIXME: ISD::SELECT, ISD::SELECT_CC
   1128   switch (Op.getOpcode()) {
   1129   default: break;
   1130   case ISD::XOR:
   1131   case ISD::AND:
   1132   case ISD::OR: {
   1133     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
   1134     if (!C) return false;
   1135 
   1136     if (Op.getOpcode() == ISD::XOR &&
   1137         (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
   1138       return false;
   1139 
   1140     // if we can expand it to have all bits set, do it
   1141     if (C->getAPIntValue().intersects(~Demanded)) {
   1142       EVT VT = Op.getValueType();
   1143       SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
   1144                                 DAG.getConstant(Demanded &
   1145                                                 C->getAPIntValue(),
   1146                                                 VT));
   1147       return CombineTo(Op, New);
   1148     }
   1149 
   1150     break;
   1151   }
   1152   }
   1153 
   1154   return false;
   1155 }
   1156 
   1157 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
   1158 /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
   1159 /// cast, but it could be generalized for targets with other types of
   1160 /// implicit widening casts.
   1161 bool
   1162 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
   1163                                                     unsigned BitWidth,
   1164                                                     const APInt &Demanded,
   1165                                                     DebugLoc dl) {
   1166   assert(Op.getNumOperands() == 2 &&
   1167          "ShrinkDemandedOp only supports binary operators!");
   1168   assert(Op.getNode()->getNumValues() == 1 &&
   1169          "ShrinkDemandedOp only supports nodes with one result!");
   1170 
   1171   // Don't do this if the node has another user, which may require the
   1172   // full value.
   1173   if (!Op.getNode()->hasOneUse())
   1174     return false;
   1175 
   1176   // Search for the smallest integer type with free casts to and from
   1177   // Op's type. For expedience, just check power-of-2 integer types.
   1178   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   1179   unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
   1180   if (!isPowerOf2_32(SmallVTBits))
   1181     SmallVTBits = NextPowerOf2(SmallVTBits);
   1182   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
   1183     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
   1184     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
   1185         TLI.isZExtFree(SmallVT, Op.getValueType())) {
   1186       // We found a type with free casts.
   1187       SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
   1188                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
   1189                                           Op.getNode()->getOperand(0)),
   1190                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
   1191                                           Op.getNode()->getOperand(1)));
   1192       SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
   1193       return CombineTo(Op, Z);
   1194     }
   1195   }
   1196   return false;
   1197 }
   1198 
   1199 /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
   1200 /// DemandedMask bits of the result of Op are ever used downstream.  If we can
   1201 /// use this information to simplify Op, create a new simplified DAG node and
   1202 /// return true, returning the original and new nodes in Old and New. Otherwise,
   1203 /// analyze the expression and return a mask of KnownOne and KnownZero bits for
   1204 /// the expression (used to simplify the caller).  The KnownZero/One bits may
   1205 /// only be accurate for those bits in the DemandedMask.
   1206 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
   1207                                           const APInt &DemandedMask,
   1208                                           APInt &KnownZero,
   1209                                           APInt &KnownOne,
   1210                                           TargetLoweringOpt &TLO,
   1211                                           unsigned Depth) const {
   1212   unsigned BitWidth = DemandedMask.getBitWidth();
   1213   assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
   1214          "Mask size mismatches value type size!");
   1215   APInt NewMask = DemandedMask;
   1216   DebugLoc dl = Op.getDebugLoc();
   1217 
   1218   // Don't know anything.
   1219   KnownZero = KnownOne = APInt(BitWidth, 0);
   1220 
   1221   // Other users may use these bits.
   1222   if (!Op.getNode()->hasOneUse()) {
   1223     if (Depth != 0) {
   1224       // If not at the root, Just compute the KnownZero/KnownOne bits to
   1225       // simplify things downstream.
   1226       TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
   1227       return false;
   1228     }
   1229     // If this is the root being simplified, allow it to have multiple uses,
   1230     // just set the NewMask to all bits.
   1231     NewMask = APInt::getAllOnesValue(BitWidth);
   1232   } else if (DemandedMask == 0) {
   1233     // Not demanding any bits from Op.
   1234     if (Op.getOpcode() != ISD::UNDEF)
   1235       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
   1236     return false;
   1237   } else if (Depth == 6) {        // Limit search depth.
   1238     return false;
   1239   }
   1240 
   1241   APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
   1242   switch (Op.getOpcode()) {
   1243   case ISD::Constant:
   1244     // We know all of the bits for a constant!
   1245     KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
   1246     KnownZero = ~KnownOne & NewMask;
   1247     return false;   // Don't fall through, will infinitely loop.
   1248   case ISD::AND:
   1249     // If the RHS is a constant, check to see if the LHS would be zero without
   1250     // using the bits from the RHS.  Below, we use knowledge about the RHS to
   1251     // simplify the LHS, here we're using information from the LHS to simplify
   1252     // the RHS.
   1253     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   1254       APInt LHSZero, LHSOne;
   1255       // Do not increment Depth here; that can cause an infinite loop.
   1256       TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
   1257                                 LHSZero, LHSOne, Depth);
   1258       // If the LHS already has zeros where RHSC does, this and is dead.
   1259       if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
   1260         return TLO.CombineTo(Op, Op.getOperand(0));
   1261       // If any of the set bits in the RHS are known zero on the LHS, shrink
   1262       // the constant.
   1263       if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
   1264         return true;
   1265     }
   1266 
   1267     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
   1268                              KnownOne, TLO, Depth+1))
   1269       return true;
   1270     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1271     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
   1272                              KnownZero2, KnownOne2, TLO, Depth+1))
   1273       return true;
   1274     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
   1275 
   1276     // If all of the demanded bits are known one on one side, return the other.
   1277     // These bits cannot contribute to the result of the 'and'.
   1278     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
   1279       return TLO.CombineTo(Op, Op.getOperand(0));
   1280     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
   1281       return TLO.CombineTo(Op, Op.getOperand(1));
   1282     // If all of the demanded bits in the inputs are known zeros, return zero.
   1283     if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
   1284       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
   1285     // If the RHS is a constant, see if we can simplify it.
   1286     if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
   1287       return true;
   1288     // If the operation can be done in a smaller type, do so.
   1289     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
   1290       return true;
   1291 
   1292     // Output known-1 bits are only known if set in both the LHS & RHS.
   1293     KnownOne &= KnownOne2;
   1294     // Output known-0 are known to be clear if zero in either the LHS | RHS.
   1295     KnownZero |= KnownZero2;
   1296     break;
   1297   case ISD::OR:
   1298     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
   1299                              KnownOne, TLO, Depth+1))
   1300       return true;
   1301     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1302     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
   1303                              KnownZero2, KnownOne2, TLO, Depth+1))
   1304       return true;
   1305     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
   1306 
   1307     // If all of the demanded bits are known zero on one side, return the other.
   1308     // These bits cannot contribute to the result of the 'or'.
   1309     if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
   1310       return TLO.CombineTo(Op, Op.getOperand(0));
   1311     if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
   1312       return TLO.CombineTo(Op, Op.getOperand(1));
   1313     // If all of the potentially set bits on one side are known to be set on
   1314     // the other side, just use the 'other' side.
   1315     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
   1316       return TLO.CombineTo(Op, Op.getOperand(0));
   1317     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
   1318       return TLO.CombineTo(Op, Op.getOperand(1));
   1319     // If the RHS is a constant, see if we can simplify it.
   1320     if (TLO.ShrinkDemandedConstant(Op, NewMask))
   1321       return true;
   1322     // If the operation can be done in a smaller type, do so.
   1323     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
   1324       return true;
   1325 
   1326     // Output known-0 bits are only known if clear in both the LHS & RHS.
   1327     KnownZero &= KnownZero2;
   1328     // Output known-1 are known to be set if set in either the LHS | RHS.
   1329     KnownOne |= KnownOne2;
   1330     break;
   1331   case ISD::XOR:
   1332     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
   1333                              KnownOne, TLO, Depth+1))
   1334       return true;
   1335     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1336     if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
   1337                              KnownOne2, TLO, Depth+1))
   1338       return true;
   1339     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
   1340 
   1341     // If all of the demanded bits are known zero on one side, return the other.
   1342     // These bits cannot contribute to the result of the 'xor'.
   1343     if ((KnownZero & NewMask) == NewMask)
   1344       return TLO.CombineTo(Op, Op.getOperand(0));
   1345     if ((KnownZero2 & NewMask) == NewMask)
   1346       return TLO.CombineTo(Op, Op.getOperand(1));
   1347     // If the operation can be done in a smaller type, do so.
   1348     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
   1349       return true;
   1350 
   1351     // If all of the unknown bits are known to be zero on one side or the other
   1352     // (but not both) turn this into an *inclusive* or.
   1353     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
   1354     if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
   1355       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
   1356                                                Op.getOperand(0),
   1357                                                Op.getOperand(1)));
   1358 
   1359     // Output known-0 bits are known if clear or set in both the LHS & RHS.
   1360     KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
   1361     // Output known-1 are known to be set if set in only one of the LHS, RHS.
   1362     KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
   1363 
   1364     // If all of the demanded bits on one side are known, and all of the set
   1365     // bits on that side are also known to be set on the other side, turn this
   1366     // into an AND, as we know the bits will be cleared.
   1367     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
   1368     if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
   1369       if ((KnownOne & KnownOne2) == KnownOne) {
   1370         EVT VT = Op.getValueType();
   1371         SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
   1372         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
   1373                                                  Op.getOperand(0), ANDC));
   1374       }
   1375     }
   1376 
   1377     // If the RHS is a constant, see if we can simplify it.
   1378     // for XOR, we prefer to force bits to 1 if they will make a -1.
   1379     // if we can't force bits, try to shrink constant
   1380     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   1381       APInt Expanded = C->getAPIntValue() | (~NewMask);
   1382       // if we can expand it to have all bits set, do it
   1383       if (Expanded.isAllOnesValue()) {
   1384         if (Expanded != C->getAPIntValue()) {
   1385           EVT VT = Op.getValueType();
   1386           SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
   1387                                           TLO.DAG.getConstant(Expanded, VT));
   1388           return TLO.CombineTo(Op, New);
   1389         }
   1390         // if it already has all the bits set, nothing to change
   1391         // but don't shrink either!
   1392       } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
   1393         return true;
   1394       }
   1395     }
   1396 
   1397     KnownZero = KnownZeroOut;
   1398     KnownOne  = KnownOneOut;
   1399     break;
   1400   case ISD::SELECT:
   1401     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
   1402                              KnownOne, TLO, Depth+1))
   1403       return true;
   1404     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
   1405                              KnownOne2, TLO, Depth+1))
   1406       return true;
   1407     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1408     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
   1409 
   1410     // If the operands are constants, see if we can simplify them.
   1411     if (TLO.ShrinkDemandedConstant(Op, NewMask))
   1412       return true;
   1413 
   1414     // Only known if known in both the LHS and RHS.
   1415     KnownOne &= KnownOne2;
   1416     KnownZero &= KnownZero2;
   1417     break;
   1418   case ISD::SELECT_CC:
   1419     if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
   1420                              KnownOne, TLO, Depth+1))
   1421       return true;
   1422     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
   1423                              KnownOne2, TLO, Depth+1))
   1424       return true;
   1425     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1426     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
   1427 
   1428     // If the operands are constants, see if we can simplify them.
   1429     if (TLO.ShrinkDemandedConstant(Op, NewMask))
   1430       return true;
   1431 
   1432     // Only known if known in both the LHS and RHS.
   1433     KnownOne &= KnownOne2;
   1434     KnownZero &= KnownZero2;
   1435     break;
   1436   case ISD::SHL:
   1437     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   1438       unsigned ShAmt = SA->getZExtValue();
   1439       SDValue InOp = Op.getOperand(0);
   1440 
   1441       // If the shift count is an invalid immediate, don't do anything.
   1442       if (ShAmt >= BitWidth)
   1443         break;
   1444 
   1445       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
   1446       // single shift.  We can do this if the bottom bits (which are shifted
   1447       // out) are never demanded.
   1448       if (InOp.getOpcode() == ISD::SRL &&
   1449           isa<ConstantSDNode>(InOp.getOperand(1))) {
   1450         if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
   1451           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
   1452           unsigned Opc = ISD::SHL;
   1453           int Diff = ShAmt-C1;
   1454           if (Diff < 0) {
   1455             Diff = -Diff;
   1456             Opc = ISD::SRL;
   1457           }
   1458 
   1459           SDValue NewSA =
   1460             TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
   1461           EVT VT = Op.getValueType();
   1462           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
   1463                                                    InOp.getOperand(0), NewSA));
   1464         }
   1465       }
   1466 
   1467       if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
   1468                                KnownZero, KnownOne, TLO, Depth+1))
   1469         return true;
   1470 
   1471       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
   1472       // are not demanded. This will likely allow the anyext to be folded away.
   1473       if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
   1474         SDValue InnerOp = InOp.getNode()->getOperand(0);
   1475         EVT InnerVT = InnerOp.getValueType();
   1476         if ((APInt::getHighBitsSet(BitWidth,
   1477                                    BitWidth - InnerVT.getSizeInBits()) &
   1478                DemandedMask) == 0 &&
   1479             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
   1480           EVT ShTy = getShiftAmountTy(InnerVT);
   1481           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
   1482             ShTy = InnerVT;
   1483           SDValue NarrowShl =
   1484             TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
   1485                             TLO.DAG.getConstant(ShAmt, ShTy));
   1486           return
   1487             TLO.CombineTo(Op,
   1488                           TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
   1489                                           NarrowShl));
   1490         }
   1491       }
   1492 
   1493       KnownZero <<= SA->getZExtValue();
   1494       KnownOne  <<= SA->getZExtValue();
   1495       // low bits known zero.
   1496       KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
   1497     }
   1498     break;
   1499   case ISD::SRL:
   1500     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   1501       EVT VT = Op.getValueType();
   1502       unsigned ShAmt = SA->getZExtValue();
   1503       unsigned VTSize = VT.getSizeInBits();
   1504       SDValue InOp = Op.getOperand(0);
   1505 
   1506       // If the shift count is an invalid immediate, don't do anything.
   1507       if (ShAmt >= BitWidth)
   1508         break;
   1509 
   1510       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
   1511       // single shift.  We can do this if the top bits (which are shifted out)
   1512       // are never demanded.
   1513       if (InOp.getOpcode() == ISD::SHL &&
   1514           isa<ConstantSDNode>(InOp.getOperand(1))) {
   1515         if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
   1516           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
   1517           unsigned Opc = ISD::SRL;
   1518           int Diff = ShAmt-C1;
   1519           if (Diff < 0) {
   1520             Diff = -Diff;
   1521             Opc = ISD::SHL;
   1522           }
   1523 
   1524           SDValue NewSA =
   1525             TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
   1526           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
   1527                                                    InOp.getOperand(0), NewSA));
   1528         }
   1529       }
   1530 
   1531       // Compute the new bits that are at the top now.
   1532       if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
   1533                                KnownZero, KnownOne, TLO, Depth+1))
   1534         return true;
   1535       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1536       KnownZero = KnownZero.lshr(ShAmt);
   1537       KnownOne  = KnownOne.lshr(ShAmt);
   1538 
   1539       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
   1540       KnownZero |= HighBits;  // High bits known zero.
   1541     }
   1542     break;
   1543   case ISD::SRA:
   1544     // If this is an arithmetic shift right and only the low-bit is set, we can
   1545     // always convert this into a logical shr, even if the shift amount is
   1546     // variable.  The low bit of the shift cannot be an input sign bit unless
   1547     // the shift amount is >= the size of the datatype, which is undefined.
   1548     if (DemandedMask == 1)
   1549       return TLO.CombineTo(Op,
   1550                            TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
   1551                                            Op.getOperand(0), Op.getOperand(1)));
   1552 
   1553     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   1554       EVT VT = Op.getValueType();
   1555       unsigned ShAmt = SA->getZExtValue();
   1556 
   1557       // If the shift count is an invalid immediate, don't do anything.
   1558       if (ShAmt >= BitWidth)
   1559         break;
   1560 
   1561       APInt InDemandedMask = (NewMask << ShAmt);
   1562 
   1563       // If any of the demanded bits are produced by the sign extension, we also
   1564       // demand the input sign bit.
   1565       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
   1566       if (HighBits.intersects(NewMask))
   1567         InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
   1568 
   1569       if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
   1570                                KnownZero, KnownOne, TLO, Depth+1))
   1571         return true;
   1572       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1573       KnownZero = KnownZero.lshr(ShAmt);
   1574       KnownOne  = KnownOne.lshr(ShAmt);
   1575 
   1576       // Handle the sign bit, adjusted to where it is now in the mask.
   1577       APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
   1578 
   1579       // If the input sign bit is known to be zero, or if none of the top bits
   1580       // are demanded, turn this into an unsigned shift right.
   1581       if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
   1582         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
   1583                                                  Op.getOperand(0),
   1584                                                  Op.getOperand(1)));
   1585       } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
   1586         KnownOne |= HighBits;
   1587       }
   1588     }
   1589     break;
   1590   case ISD::SIGN_EXTEND_INREG: {
   1591     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
   1592 
   1593     // Sign extension.  Compute the demanded bits in the result that are not
   1594     // present in the input.
   1595     APInt NewBits =
   1596       APInt::getHighBitsSet(BitWidth,
   1597                             BitWidth - EVT.getScalarType().getSizeInBits());
   1598 
   1599     // If none of the extended bits are demanded, eliminate the sextinreg.
   1600     if ((NewBits & NewMask) == 0)
   1601       return TLO.CombineTo(Op, Op.getOperand(0));
   1602 
   1603     APInt InSignBit =
   1604       APInt::getSignBit(EVT.getScalarType().getSizeInBits()).zext(BitWidth);
   1605     APInt InputDemandedBits =
   1606       APInt::getLowBitsSet(BitWidth,
   1607                            EVT.getScalarType().getSizeInBits()) &
   1608       NewMask;
   1609 
   1610     // Since the sign extended bits are demanded, we know that the sign
   1611     // bit is demanded.
   1612     InputDemandedBits |= InSignBit;
   1613 
   1614     if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
   1615                              KnownZero, KnownOne, TLO, Depth+1))
   1616       return true;
   1617     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1618 
   1619     // If the sign bit of the input is known set or clear, then we know the
   1620     // top bits of the result.
   1621 
   1622     // If the input sign bit is known zero, convert this into a zero extension.
   1623     if (KnownZero.intersects(InSignBit))
   1624       return TLO.CombineTo(Op,
   1625                            TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
   1626 
   1627     if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
   1628       KnownOne |= NewBits;
   1629       KnownZero &= ~NewBits;
   1630     } else {                       // Input sign bit unknown
   1631       KnownZero &= ~NewBits;
   1632       KnownOne &= ~NewBits;
   1633     }
   1634     break;
   1635   }
   1636   case ISD::ZERO_EXTEND: {
   1637     unsigned OperandBitWidth =
   1638       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
   1639     APInt InMask = NewMask.trunc(OperandBitWidth);
   1640 
   1641     // If none of the top bits are demanded, convert this into an any_extend.
   1642     APInt NewBits =
   1643       APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
   1644     if (!NewBits.intersects(NewMask))
   1645       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
   1646                                                Op.getValueType(),
   1647                                                Op.getOperand(0)));
   1648 
   1649     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
   1650                              KnownZero, KnownOne, TLO, Depth+1))
   1651       return true;
   1652     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1653     KnownZero = KnownZero.zext(BitWidth);
   1654     KnownOne = KnownOne.zext(BitWidth);
   1655     KnownZero |= NewBits;
   1656     break;
   1657   }
   1658   case ISD::SIGN_EXTEND: {
   1659     EVT InVT = Op.getOperand(0).getValueType();
   1660     unsigned InBits = InVT.getScalarType().getSizeInBits();
   1661     APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
   1662     APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
   1663     APInt NewBits   = ~InMask & NewMask;
   1664 
   1665     // If none of the top bits are demanded, convert this into an any_extend.
   1666     if (NewBits == 0)
   1667       return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
   1668                                               Op.getValueType(),
   1669                                               Op.getOperand(0)));
   1670 
   1671     // Since some of the sign extended bits are demanded, we know that the sign
   1672     // bit is demanded.
   1673     APInt InDemandedBits = InMask & NewMask;
   1674     InDemandedBits |= InSignBit;
   1675     InDemandedBits = InDemandedBits.trunc(InBits);
   1676 
   1677     if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
   1678                              KnownOne, TLO, Depth+1))
   1679       return true;
   1680     KnownZero = KnownZero.zext(BitWidth);
   1681     KnownOne = KnownOne.zext(BitWidth);
   1682 
   1683     // If the sign bit is known zero, convert this to a zero extend.
   1684     if (KnownZero.intersects(InSignBit))
   1685       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
   1686                                                Op.getValueType(),
   1687                                                Op.getOperand(0)));
   1688 
   1689     // If the sign bit is known one, the top bits match.
   1690     if (KnownOne.intersects(InSignBit)) {
   1691       KnownOne  |= NewBits;
   1692       KnownZero &= ~NewBits;
   1693     } else {   // Otherwise, top bits aren't known.
   1694       KnownOne  &= ~NewBits;
   1695       KnownZero &= ~NewBits;
   1696     }
   1697     break;
   1698   }
   1699   case ISD::ANY_EXTEND: {
   1700     unsigned OperandBitWidth =
   1701       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
   1702     APInt InMask = NewMask.trunc(OperandBitWidth);
   1703     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
   1704                              KnownZero, KnownOne, TLO, Depth+1))
   1705       return true;
   1706     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1707     KnownZero = KnownZero.zext(BitWidth);
   1708     KnownOne = KnownOne.zext(BitWidth);
   1709     break;
   1710   }
   1711   case ISD::TRUNCATE: {
   1712     // Simplify the input, using demanded bit information, and compute the known
   1713     // zero/one bits live out.
   1714     unsigned OperandBitWidth =
   1715       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
   1716     APInt TruncMask = NewMask.zext(OperandBitWidth);
   1717     if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
   1718                              KnownZero, KnownOne, TLO, Depth+1))
   1719       return true;
   1720     KnownZero = KnownZero.trunc(BitWidth);
   1721     KnownOne = KnownOne.trunc(BitWidth);
   1722 
   1723     // If the input is only used by this truncate, see if we can shrink it based
   1724     // on the known demanded bits.
   1725     if (Op.getOperand(0).getNode()->hasOneUse()) {
   1726       SDValue In = Op.getOperand(0);
   1727       switch (In.getOpcode()) {
   1728       default: break;
   1729       case ISD::SRL:
   1730         // Shrink SRL by a constant if none of the high bits shifted in are
   1731         // demanded.
   1732         if (TLO.LegalTypes() &&
   1733             !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
   1734           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
   1735           // undesirable.
   1736           break;
   1737         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
   1738         if (!ShAmt)
   1739           break;
   1740         SDValue Shift = In.getOperand(1);
   1741         if (TLO.LegalTypes()) {
   1742           uint64_t ShVal = ShAmt->getZExtValue();
   1743           Shift =
   1744             TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType()));
   1745         }
   1746 
   1747         APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
   1748                                                OperandBitWidth - BitWidth);
   1749         HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
   1750 
   1751         if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
   1752           // None of the shifted in bits are needed.  Add a truncate of the
   1753           // shift input, then shift it.
   1754           SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
   1755                                              Op.getValueType(),
   1756                                              In.getOperand(0));
   1757           return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
   1758                                                    Op.getValueType(),
   1759                                                    NewTrunc,
   1760                                                    Shift));
   1761         }
   1762         break;
   1763       }
   1764     }
   1765 
   1766     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1767     break;
   1768   }
   1769   case ISD::AssertZext: {
   1770     // AssertZext demands all of the high bits, plus any of the low bits
   1771     // demanded by its users.
   1772     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
   1773     APInt InMask = APInt::getLowBitsSet(BitWidth,
   1774                                         VT.getSizeInBits());
   1775     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
   1776                              KnownZero, KnownOne, TLO, Depth+1))
   1777       return true;
   1778     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1779 
   1780     KnownZero |= ~InMask & NewMask;
   1781     break;
   1782   }
   1783   case ISD::BITCAST:
   1784     // If this is an FP->Int bitcast and if the sign bit is the only
   1785     // thing demanded, turn this into a FGETSIGN.
   1786     if (!Op.getOperand(0).getValueType().isVector() &&
   1787         NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
   1788         Op.getOperand(0).getValueType().isFloatingPoint()) {
   1789       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
   1790       bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
   1791       if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) {
   1792         EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
   1793         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
   1794         // place.  We expect the SHL to be eliminated by other optimizations.
   1795         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
   1796         unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
   1797         if (!OpVTLegal && OpVTSizeInBits > 32)
   1798           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
   1799         unsigned ShVal = Op.getValueType().getSizeInBits()-1;
   1800         SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType());
   1801         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
   1802                                                  Op.getValueType(),
   1803                                                  Sign, ShAmt));
   1804       }
   1805     }
   1806     break;
   1807   case ISD::ADD:
   1808   case ISD::MUL:
   1809   case ISD::SUB: {
   1810     // Add, Sub, and Mul don't demand any bits in positions beyond that
   1811     // of the highest bit demanded of them.
   1812     APInt LoMask = APInt::getLowBitsSet(BitWidth,
   1813                                         BitWidth - NewMask.countLeadingZeros());
   1814     if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
   1815                              KnownOne2, TLO, Depth+1))
   1816       return true;
   1817     if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
   1818                              KnownOne2, TLO, Depth+1))
   1819       return true;
   1820     // See if the operation should be performed at a smaller bit width.
   1821     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
   1822       return true;
   1823   }
   1824   // FALL THROUGH
   1825   default:
   1826     // Just use ComputeMaskedBits to compute output bits.
   1827     TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
   1828     break;
   1829   }
   1830 
   1831   // If we know the value of all of the demanded bits, return this as a
   1832   // constant.
   1833   if ((NewMask & (KnownZero|KnownOne)) == NewMask)
   1834     return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
   1835 
   1836   return false;
   1837 }
   1838 
   1839 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
   1840 /// in Mask are known to be either zero or one and return them in the
   1841 /// KnownZero/KnownOne bitsets.
   1842 void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
   1843                                                     const APInt &Mask,
   1844                                                     APInt &KnownZero,
   1845                                                     APInt &KnownOne,
   1846                                                     const SelectionDAG &DAG,
   1847                                                     unsigned Depth) const {
   1848   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
   1849           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
   1850           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
   1851           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
   1852          "Should use MaskedValueIsZero if you don't know whether Op"
   1853          " is a target node!");
   1854   KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
   1855 }
   1856 
   1857 /// ComputeNumSignBitsForTargetNode - This method can be implemented by
   1858 /// targets that want to expose additional information about sign bits to the
   1859 /// DAG Combiner.
   1860 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
   1861                                                          unsigned Depth) const {
   1862   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
   1863           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
   1864           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
   1865           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
   1866          "Should use ComputeNumSignBits if you don't know whether Op"
   1867          " is a target node!");
   1868   return 1;
   1869 }
   1870 
   1871 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
   1872 /// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
   1873 /// determine which bit is set.
   1874 ///
   1875 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
   1876   // A left-shift of a constant one will have exactly one bit set, because
   1877   // shifting the bit off the end is undefined.
   1878   if (Val.getOpcode() == ISD::SHL)
   1879     if (ConstantSDNode *C =
   1880          dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
   1881       if (C->getAPIntValue() == 1)
   1882         return true;
   1883 
   1884   // Similarly, a right-shift of a constant sign-bit will have exactly
   1885   // one bit set.
   1886   if (Val.getOpcode() == ISD::SRL)
   1887     if (ConstantSDNode *C =
   1888          dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
   1889       if (C->getAPIntValue().isSignBit())
   1890         return true;
   1891 
   1892   // More could be done here, though the above checks are enough
   1893   // to handle some common cases.
   1894 
   1895   // Fall back to ComputeMaskedBits to catch other known cases.
   1896   EVT OpVT = Val.getValueType();
   1897   unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
   1898   APInt Mask = APInt::getAllOnesValue(BitWidth);
   1899   APInt KnownZero, KnownOne;
   1900   DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
   1901   return (KnownZero.countPopulation() == BitWidth - 1) &&
   1902          (KnownOne.countPopulation() == 1);
   1903 }
   1904 
   1905 /// SimplifySetCC - Try to simplify a setcc built with the specified operands
   1906 /// and cc. If it is unable to simplify it, return a null SDValue.
   1907 SDValue
   1908 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
   1909                               ISD::CondCode Cond, bool foldBooleans,
   1910                               DAGCombinerInfo &DCI, DebugLoc dl) const {
   1911   SelectionDAG &DAG = DCI.DAG;
   1912 
   1913   // These setcc operations always fold.
   1914   switch (Cond) {
   1915   default: break;
   1916   case ISD::SETFALSE:
   1917   case ISD::SETFALSE2: return DAG.getConstant(0, VT);
   1918   case ISD::SETTRUE:
   1919   case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
   1920   }
   1921 
   1922   // Ensure that the constant occurs on the RHS, and fold constant
   1923   // comparisons.
   1924   if (isa<ConstantSDNode>(N0.getNode()))
   1925     return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
   1926 
   1927   if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
   1928     const APInt &C1 = N1C->getAPIntValue();
   1929 
   1930     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
   1931     // equality comparison, then we're just comparing whether X itself is
   1932     // zero.
   1933     if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
   1934         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
   1935         N0.getOperand(1).getOpcode() == ISD::Constant) {
   1936       const APInt &ShAmt
   1937         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
   1938       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   1939           ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
   1940         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
   1941           // (srl (ctlz x), 5) == 0  -> X != 0
   1942           // (srl (ctlz x), 5) != 1  -> X != 0
   1943           Cond = ISD::SETNE;
   1944         } else {
   1945           // (srl (ctlz x), 5) != 0  -> X == 0
   1946           // (srl (ctlz x), 5) == 1  -> X == 0
   1947           Cond = ISD::SETEQ;
   1948         }
   1949         SDValue Zero = DAG.getConstant(0, N0.getValueType());
   1950         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
   1951                             Zero, Cond);
   1952       }
   1953     }
   1954 
   1955     SDValue CTPOP = N0;
   1956     // Look through truncs that don't change the value of a ctpop.
   1957     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
   1958       CTPOP = N0.getOperand(0);
   1959 
   1960     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
   1961         (N0 == CTPOP || N0.getValueType().getSizeInBits() >
   1962                         Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
   1963       EVT CTVT = CTPOP.getValueType();
   1964       SDValue CTOp = CTPOP.getOperand(0);
   1965 
   1966       // (ctpop x) u< 2 -> (x & x-1) == 0
   1967       // (ctpop x) u> 1 -> (x & x-1) != 0
   1968       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
   1969         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
   1970                                   DAG.getConstant(1, CTVT));
   1971         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
   1972         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
   1973         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
   1974       }
   1975 
   1976       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
   1977     }
   1978 
   1979     // (zext x) == C --> x == (trunc C)
   1980     if (DCI.isBeforeLegalize() && N0->hasOneUse() &&
   1981         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
   1982       unsigned MinBits = N0.getValueSizeInBits();
   1983       SDValue PreZExt;
   1984       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
   1985         // ZExt
   1986         MinBits = N0->getOperand(0).getValueSizeInBits();
   1987         PreZExt = N0->getOperand(0);
   1988       } else if (N0->getOpcode() == ISD::AND) {
   1989         // DAGCombine turns costly ZExts into ANDs
   1990         if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
   1991           if ((C->getAPIntValue()+1).isPowerOf2()) {
   1992             MinBits = C->getAPIntValue().countTrailingOnes();
   1993             PreZExt = N0->getOperand(0);
   1994           }
   1995       } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) {
   1996         // ZEXTLOAD
   1997         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
   1998           MinBits = LN0->getMemoryVT().getSizeInBits();
   1999           PreZExt = N0;
   2000         }
   2001       }
   2002 
   2003       // Make sure we're not loosing bits from the constant.
   2004       if (MinBits < C1.getBitWidth() && MinBits > C1.getActiveBits()) {
   2005         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
   2006         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
   2007           // Will get folded away.
   2008           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt);
   2009           SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT);
   2010           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
   2011         }
   2012       }
   2013     }
   2014 
   2015     // If the LHS is '(and load, const)', the RHS is 0,
   2016     // the test is for equality or unsigned, and all 1 bits of the const are
   2017     // in the same partial word, see if we can shorten the load.
   2018     if (DCI.isBeforeLegalize() &&
   2019         N0.getOpcode() == ISD::AND && C1 == 0 &&
   2020         N0.getNode()->hasOneUse() &&
   2021         isa<LoadSDNode>(N0.getOperand(0)) &&
   2022         N0.getOperand(0).getNode()->hasOneUse() &&
   2023         isa<ConstantSDNode>(N0.getOperand(1))) {
   2024       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
   2025       APInt bestMask;
   2026       unsigned bestWidth = 0, bestOffset = 0;
   2027       if (!Lod->isVolatile() && Lod->isUnindexed()) {
   2028         unsigned origWidth = N0.getValueType().getSizeInBits();
   2029         unsigned maskWidth = origWidth;
   2030         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
   2031         // 8 bits, but have to be careful...
   2032         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
   2033           origWidth = Lod->getMemoryVT().getSizeInBits();
   2034         const APInt &Mask =
   2035           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
   2036         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
   2037           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
   2038           for (unsigned offset=0; offset<origWidth/width; offset++) {
   2039             if ((newMask & Mask) == Mask) {
   2040               if (!TD->isLittleEndian())
   2041                 bestOffset = (origWidth/width - offset - 1) * (width/8);
   2042               else
   2043                 bestOffset = (uint64_t)offset * (width/8);
   2044               bestMask = Mask.lshr(offset * (width/8) * 8);
   2045               bestWidth = width;
   2046               break;
   2047             }
   2048             newMask = newMask << width;
   2049           }
   2050         }
   2051       }
   2052       if (bestWidth) {
   2053         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
   2054         if (newVT.isRound()) {
   2055           EVT PtrType = Lod->getOperand(1).getValueType();
   2056           SDValue Ptr = Lod->getBasePtr();
   2057           if (bestOffset != 0)
   2058             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
   2059                               DAG.getConstant(bestOffset, PtrType));
   2060           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
   2061           SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
   2062                                 Lod->getPointerInfo().getWithOffset(bestOffset),
   2063                                         false, false, NewAlign);
   2064           return DAG.getSetCC(dl, VT,
   2065                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
   2066                                       DAG.getConstant(bestMask.trunc(bestWidth),
   2067                                                       newVT)),
   2068                               DAG.getConstant(0LL, newVT), Cond);
   2069         }
   2070       }
   2071     }
   2072 
   2073     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
   2074     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
   2075       unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
   2076 
   2077       // If the comparison constant has bits in the upper part, the
   2078       // zero-extended value could never match.
   2079       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
   2080                                               C1.getBitWidth() - InSize))) {
   2081         switch (Cond) {
   2082         case ISD::SETUGT:
   2083         case ISD::SETUGE:
   2084         case ISD::SETEQ: return DAG.getConstant(0, VT);
   2085         case ISD::SETULT:
   2086         case ISD::SETULE:
   2087         case ISD::SETNE: return DAG.getConstant(1, VT);
   2088         case ISD::SETGT:
   2089         case ISD::SETGE:
   2090           // True if the sign bit of C1 is set.
   2091           return DAG.getConstant(C1.isNegative(), VT);
   2092         case ISD::SETLT:
   2093         case ISD::SETLE:
   2094           // True if the sign bit of C1 isn't set.
   2095           return DAG.getConstant(C1.isNonNegative(), VT);
   2096         default:
   2097           break;
   2098         }
   2099       }
   2100 
   2101       // Otherwise, we can perform the comparison with the low bits.
   2102       switch (Cond) {
   2103       case ISD::SETEQ:
   2104       case ISD::SETNE:
   2105       case ISD::SETUGT:
   2106       case ISD::SETUGE:
   2107       case ISD::SETULT:
   2108       case ISD::SETULE: {
   2109         EVT newVT = N0.getOperand(0).getValueType();
   2110         if (DCI.isBeforeLegalizeOps() ||
   2111             (isOperationLegal(ISD::SETCC, newVT) &&
   2112               getCondCodeAction(Cond, newVT)==Legal))
   2113           return DAG.getSetCC(dl, VT, N0.getOperand(0),
   2114                               DAG.getConstant(C1.trunc(InSize), newVT),
   2115                               Cond);
   2116         break;
   2117       }
   2118       default:
   2119         break;   // todo, be more careful with signed comparisons
   2120       }
   2121     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
   2122                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
   2123       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
   2124       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
   2125       EVT ExtDstTy = N0.getValueType();
   2126       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
   2127 
   2128       // If the constant doesn't fit into the number of bits for the source of
   2129       // the sign extension, it is impossible for both sides to be equal.
   2130       if (C1.getMinSignedBits() > ExtSrcTyBits)
   2131         return DAG.getConstant(Cond == ISD::SETNE, VT);
   2132 
   2133       SDValue ZextOp;
   2134       EVT Op0Ty = N0.getOperand(0).getValueType();
   2135       if (Op0Ty == ExtSrcTy) {
   2136         ZextOp = N0.getOperand(0);
   2137       } else {
   2138         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
   2139         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
   2140                               DAG.getConstant(Imm, Op0Ty));
   2141       }
   2142       if (!DCI.isCalledByLegalizer())
   2143         DCI.AddToWorklist(ZextOp.getNode());
   2144       // Otherwise, make this a use of a zext.
   2145       return DAG.getSetCC(dl, VT, ZextOp,
   2146                           DAG.getConstant(C1 & APInt::getLowBitsSet(
   2147                                                               ExtDstTyBits,
   2148                                                               ExtSrcTyBits),
   2149                                           ExtDstTy),
   2150                           Cond);
   2151     } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
   2152                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
   2153       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
   2154       if (N0.getOpcode() == ISD::SETCC &&
   2155           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
   2156         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
   2157         if (TrueWhenTrue)
   2158           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
   2159         // Invert the condition.
   2160         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
   2161         CC = ISD::getSetCCInverse(CC,
   2162                                   N0.getOperand(0).getValueType().isInteger());
   2163         return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
   2164       }
   2165 
   2166       if ((N0.getOpcode() == ISD::XOR ||
   2167            (N0.getOpcode() == ISD::AND &&
   2168             N0.getOperand(0).getOpcode() == ISD::XOR &&
   2169             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
   2170           isa<ConstantSDNode>(N0.getOperand(1)) &&
   2171           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
   2172         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
   2173         // can only do this if the top bits are known zero.
   2174         unsigned BitWidth = N0.getValueSizeInBits();
   2175         if (DAG.MaskedValueIsZero(N0,
   2176                                   APInt::getHighBitsSet(BitWidth,
   2177                                                         BitWidth-1))) {
   2178           // Okay, get the un-inverted input value.
   2179           SDValue Val;
   2180           if (N0.getOpcode() == ISD::XOR)
   2181             Val = N0.getOperand(0);
   2182           else {
   2183             assert(N0.getOpcode() == ISD::AND &&
   2184                     N0.getOperand(0).getOpcode() == ISD::XOR);
   2185             // ((X^1)&1)^1 -> X & 1
   2186             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
   2187                               N0.getOperand(0).getOperand(0),
   2188                               N0.getOperand(1));
   2189           }
   2190 
   2191           return DAG.getSetCC(dl, VT, Val, N1,
   2192                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
   2193         }
   2194       } else if (N1C->getAPIntValue() == 1 &&
   2195                  (VT == MVT::i1 ||
   2196                   getBooleanContents(false) == ZeroOrOneBooleanContent)) {
   2197         SDValue Op0 = N0;
   2198         if (Op0.getOpcode() == ISD::TRUNCATE)
   2199           Op0 = Op0.getOperand(0);
   2200 
   2201         if ((Op0.getOpcode() == ISD::XOR) &&
   2202             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
   2203             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
   2204           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
   2205           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
   2206           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
   2207                               Cond);
   2208         } else if (Op0.getOpcode() == ISD::AND &&
   2209                 isa<ConstantSDNode>(Op0.getOperand(1)) &&
   2210                 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
   2211           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
   2212           if (Op0.getValueType().bitsGT(VT))
   2213             Op0 = DAG.getNode(ISD::AND, dl, VT,
   2214                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
   2215                           DAG.getConstant(1, VT));
   2216           else if (Op0.getValueType().bitsLT(VT))
   2217             Op0 = DAG.getNode(ISD::AND, dl, VT,
   2218                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
   2219                         DAG.getConstant(1, VT));
   2220 
   2221           return DAG.getSetCC(dl, VT, Op0,
   2222                               DAG.getConstant(0, Op0.getValueType()),
   2223                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
   2224         }
   2225       }
   2226     }
   2227 
   2228     APInt MinVal, MaxVal;
   2229     unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
   2230     if (ISD::isSignedIntSetCC(Cond)) {
   2231       MinVal = APInt::getSignedMinValue(OperandBitSize);
   2232       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
   2233     } else {
   2234       MinVal = APInt::getMinValue(OperandBitSize);
   2235       MaxVal = APInt::getMaxValue(OperandBitSize);
   2236     }
   2237 
   2238     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
   2239     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
   2240       if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
   2241       // X >= C0 --> X > (C0-1)
   2242       return DAG.getSetCC(dl, VT, N0,
   2243                           DAG.getConstant(C1-1, N1.getValueType()),
   2244                           (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
   2245     }
   2246 
   2247     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
   2248       if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
   2249       // X <= C0 --> X < (C0+1)
   2250       return DAG.getSetCC(dl, VT, N0,
   2251                           DAG.getConstant(C1+1, N1.getValueType()),
   2252                           (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
   2253     }
   2254 
   2255     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
   2256       return DAG.getConstant(0, VT);      // X < MIN --> false
   2257     if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
   2258       return DAG.getConstant(1, VT);      // X >= MIN --> true
   2259     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
   2260       return DAG.getConstant(0, VT);      // X > MAX --> false
   2261     if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
   2262       return DAG.getConstant(1, VT);      // X <= MAX --> true
   2263 
   2264     // Canonicalize setgt X, Min --> setne X, Min
   2265     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
   2266       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
   2267     // Canonicalize setlt X, Max --> setne X, Max
   2268     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
   2269       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
   2270 
   2271     // If we have setult X, 1, turn it into seteq X, 0
   2272     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
   2273       return DAG.getSetCC(dl, VT, N0,
   2274                           DAG.getConstant(MinVal, N0.getValueType()),
   2275                           ISD::SETEQ);
   2276     // If we have setugt X, Max-1, turn it into seteq X, Max
   2277     else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
   2278       return DAG.getSetCC(dl, VT, N0,
   2279                           DAG.getConstant(MaxVal, N0.getValueType()),
   2280                           ISD::SETEQ);
   2281 
   2282     // If we have "setcc X, C0", check to see if we can shrink the immediate
   2283     // by changing cc.
   2284 
   2285     // SETUGT X, SINTMAX  -> SETLT X, 0
   2286     if (Cond == ISD::SETUGT &&
   2287         C1 == APInt::getSignedMaxValue(OperandBitSize))
   2288       return DAG.getSetCC(dl, VT, N0,
   2289                           DAG.getConstant(0, N1.getValueType()),
   2290                           ISD::SETLT);
   2291 
   2292     // SETULT X, SINTMIN  -> SETGT X, -1
   2293     if (Cond == ISD::SETULT &&
   2294         C1 == APInt::getSignedMinValue(OperandBitSize)) {
   2295       SDValue ConstMinusOne =
   2296           DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
   2297                           N1.getValueType());
   2298       return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
   2299     }
   2300 
   2301     // Fold bit comparisons when we can.
   2302     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   2303         (VT == N0.getValueType() ||
   2304          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
   2305         N0.getOpcode() == ISD::AND)
   2306       if (ConstantSDNode *AndRHS =
   2307                   dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
   2308         EVT ShiftTy = DCI.isBeforeLegalize() ?
   2309           getPointerTy() : getShiftAmountTy(N0.getValueType());
   2310         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
   2311           // Perform the xform if the AND RHS is a single bit.
   2312           if (AndRHS->getAPIntValue().isPowerOf2()) {
   2313             return DAG.getNode(ISD::TRUNCATE, dl, VT,
   2314                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
   2315                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
   2316           }
   2317         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
   2318           // (X & 8) == 8  -->  (X & 8) >> 3
   2319           // Perform the xform if C1 is a single bit.
   2320           if (C1.isPowerOf2()) {
   2321             return DAG.getNode(ISD::TRUNCATE, dl, VT,
   2322                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
   2323                                       DAG.getConstant(C1.logBase2(), ShiftTy)));
   2324           }
   2325         }
   2326       }
   2327   }
   2328 
   2329   if (isa<ConstantFPSDNode>(N0.getNode())) {
   2330     // Constant fold or commute setcc.
   2331     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
   2332     if (O.getNode()) return O;
   2333   } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
   2334     // If the RHS of an FP comparison is a constant, simplify it away in
   2335     // some cases.
   2336     if (CFP->getValueAPF().isNaN()) {
   2337       // If an operand is known to be a nan, we can fold it.
   2338       switch (ISD::getUnorderedFlavor(Cond)) {
   2339       default: llvm_unreachable("Unknown flavor!");
   2340       case 0:  // Known false.
   2341         return DAG.getConstant(0, VT);
   2342       case 1:  // Known true.
   2343         return DAG.getConstant(1, VT);
   2344       case 2:  // Undefined.
   2345         return DAG.getUNDEF(VT);
   2346       }
   2347     }
   2348 
   2349     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
   2350     // constant if knowing that the operand is non-nan is enough.  We prefer to
   2351     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
   2352     // materialize 0.0.
   2353     if (Cond == ISD::SETO || Cond == ISD::SETUO)
   2354       return DAG.getSetCC(dl, VT, N0, N0, Cond);
   2355 
   2356     // If the condition is not legal, see if we can find an equivalent one
   2357     // which is legal.
   2358     if (!isCondCodeLegal(Cond, N0.getValueType())) {
   2359       // If the comparison was an awkward floating-point == or != and one of
   2360       // the comparison operands is infinity or negative infinity, convert the
   2361       // condition to a less-awkward <= or >=.
   2362       if (CFP->getValueAPF().isInfinity()) {
   2363         if (CFP->getValueAPF().isNegative()) {
   2364           if (Cond == ISD::SETOEQ &&
   2365               isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
   2366             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
   2367           if (Cond == ISD::SETUEQ &&
   2368               isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
   2369             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
   2370           if (Cond == ISD::SETUNE &&
   2371               isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
   2372             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
   2373           if (Cond == ISD::SETONE &&
   2374               isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
   2375             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
   2376         } else {
   2377           if (Cond == ISD::SETOEQ &&
   2378               isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
   2379             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
   2380           if (Cond == ISD::SETUEQ &&
   2381               isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
   2382             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
   2383           if (Cond == ISD::SETUNE &&
   2384               isCondCodeLegal(ISD::SETULT, N0.getValueType()))
   2385             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
   2386           if (Cond == ISD::SETONE &&
   2387               isCondCodeLegal(ISD::SETULT, N0.getValueType()))
   2388             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
   2389         }
   2390       }
   2391     }
   2392   }
   2393 
   2394   if (N0 == N1) {
   2395     // We can always fold X == X for integer setcc's.
   2396     if (N0.getValueType().isInteger())
   2397       return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
   2398     unsigned UOF = ISD::getUnorderedFlavor(Cond);
   2399     if (UOF == 2)   // FP operators that are undefined on NaNs.
   2400       return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
   2401     if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
   2402       return DAG.getConstant(UOF, VT);
   2403     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
   2404     // if it is not already.
   2405     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
   2406     if (NewCond != Cond)
   2407       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
   2408   }
   2409 
   2410   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   2411       N0.getValueType().isInteger()) {
   2412     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
   2413         N0.getOpcode() == ISD::XOR) {
   2414       // Simplify (X+Y) == (X+Z) -->  Y == Z
   2415       if (N0.getOpcode() == N1.getOpcode()) {
   2416         if (N0.getOperand(0) == N1.getOperand(0))
   2417           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
   2418         if (N0.getOperand(1) == N1.getOperand(1))
   2419           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
   2420         if (DAG.isCommutativeBinOp(N0.getOpcode())) {
   2421           // If X op Y == Y op X, try other combinations.
   2422           if (N0.getOperand(0) == N1.getOperand(1))
   2423             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
   2424                                 Cond);
   2425           if (N0.getOperand(1) == N1.getOperand(0))
   2426             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
   2427                                 Cond);
   2428         }
   2429       }
   2430 
   2431       if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
   2432         if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
   2433           // Turn (X+C1) == C2 --> X == C2-C1
   2434           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
   2435             return DAG.getSetCC(dl, VT, N0.getOperand(0),
   2436                                 DAG.getConstant(RHSC->getAPIntValue()-
   2437                                                 LHSR->getAPIntValue(),
   2438                                 N0.getValueType()), Cond);
   2439           }
   2440 
   2441           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
   2442           if (N0.getOpcode() == ISD::XOR)
   2443             // If we know that all of the inverted bits are zero, don't bother
   2444             // performing the inversion.
   2445             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
   2446               return
   2447                 DAG.getSetCC(dl, VT, N0.getOperand(0),
   2448                              DAG.getConstant(LHSR->getAPIntValue() ^
   2449                                                RHSC->getAPIntValue(),
   2450                                              N0.getValueType()),
   2451                              Cond);
   2452         }
   2453 
   2454         // Turn (C1-X) == C2 --> X == C1-C2
   2455         if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
   2456           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
   2457             return
   2458               DAG.getSetCC(dl, VT, N0.getOperand(1),
   2459                            DAG.getConstant(SUBC->getAPIntValue() -
   2460                                              RHSC->getAPIntValue(),
   2461                                            N0.getValueType()),
   2462                            Cond);
   2463           }
   2464         }
   2465       }
   2466 
   2467       // Simplify (X+Z) == X -->  Z == 0
   2468       if (N0.getOperand(0) == N1)
   2469         return DAG.getSetCC(dl, VT, N0.getOperand(1),
   2470                         DAG.getConstant(0, N0.getValueType()), Cond);
   2471       if (N0.getOperand(1) == N1) {
   2472         if (DAG.isCommutativeBinOp(N0.getOpcode()))
   2473           return DAG.getSetCC(dl, VT, N0.getOperand(0),
   2474                           DAG.getConstant(0, N0.getValueType()), Cond);
   2475         else if (N0.getNode()->hasOneUse()) {
   2476           assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
   2477           // (Z-X) == X  --> Z == X<<1
   2478           SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
   2479                                      N1,
   2480                        DAG.getConstant(1, getShiftAmountTy(N1.getValueType())));
   2481           if (!DCI.isCalledByLegalizer())
   2482             DCI.AddToWorklist(SH.getNode());
   2483           return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
   2484         }
   2485       }
   2486     }
   2487 
   2488     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
   2489         N1.getOpcode() == ISD::XOR) {
   2490       // Simplify  X == (X+Z) -->  Z == 0
   2491       if (N1.getOperand(0) == N0) {
   2492         return DAG.getSetCC(dl, VT, N1.getOperand(1),
   2493                         DAG.getConstant(0, N1.getValueType()), Cond);
   2494       } else if (N1.getOperand(1) == N0) {
   2495         if (DAG.isCommutativeBinOp(N1.getOpcode())) {
   2496           return DAG.getSetCC(dl, VT, N1.getOperand(0),
   2497                           DAG.getConstant(0, N1.getValueType()), Cond);
   2498         } else if (N1.getNode()->hasOneUse()) {
   2499           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
   2500           // X == (Z-X)  --> X<<1 == Z
   2501           SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
   2502                        DAG.getConstant(1, getShiftAmountTy(N0.getValueType())));
   2503           if (!DCI.isCalledByLegalizer())
   2504             DCI.AddToWorklist(SH.getNode());
   2505           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
   2506         }
   2507       }
   2508     }
   2509 
   2510     // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
   2511     // Note that where y is variable and is known to have at most
   2512     // one bit set (for example, if it is z&1) we cannot do this;
   2513     // the expressions are not equivalent when y==0.
   2514     if (N0.getOpcode() == ISD::AND)
   2515       if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
   2516         if (ValueHasExactlyOneBitSet(N1, DAG)) {
   2517           Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
   2518           SDValue Zero = DAG.getConstant(0, N1.getValueType());
   2519           return DAG.getSetCC(dl, VT, N0, Zero, Cond);
   2520         }
   2521       }
   2522     if (N1.getOpcode() == ISD::AND)
   2523       if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
   2524         if (ValueHasExactlyOneBitSet(N0, DAG)) {
   2525           Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
   2526           SDValue Zero = DAG.getConstant(0, N0.getValueType());
   2527           return DAG.getSetCC(dl, VT, N1, Zero, Cond);
   2528         }
   2529       }
   2530   }
   2531 
   2532   // Fold away ALL boolean setcc's.
   2533   SDValue Temp;
   2534   if (N0.getValueType() == MVT::i1 && foldBooleans) {
   2535     switch (Cond) {
   2536     default: llvm_unreachable("Unknown integer setcc!");
   2537     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
   2538       Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
   2539       N0 = DAG.getNOT(dl, Temp, MVT::i1);
   2540       if (!DCI.isCalledByLegalizer())
   2541         DCI.AddToWorklist(Temp.getNode());
   2542       break;
   2543     case ISD::SETNE:  // X != Y   -->  (X^Y)
   2544       N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
   2545       break;
   2546     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
   2547     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
   2548       Temp = DAG.getNOT(dl, N0, MVT::i1);
   2549       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
   2550       if (!DCI.isCalledByLegalizer())
   2551         DCI.AddToWorklist(Temp.getNode());
   2552       break;
   2553     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
   2554     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
   2555       Temp = DAG.getNOT(dl, N1, MVT::i1);
   2556       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
   2557       if (!DCI.isCalledByLegalizer())
   2558         DCI.AddToWorklist(Temp.getNode());
   2559       break;
   2560     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
   2561     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
   2562       Temp = DAG.getNOT(dl, N0, MVT::i1);
   2563       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
   2564       if (!DCI.isCalledByLegalizer())
   2565         DCI.AddToWorklist(Temp.getNode());
   2566       break;
   2567     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
   2568     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
   2569       Temp = DAG.getNOT(dl, N1, MVT::i1);
   2570       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
   2571       break;
   2572     }
   2573     if (VT != MVT::i1) {
   2574       if (!DCI.isCalledByLegalizer())
   2575         DCI.AddToWorklist(N0.getNode());
   2576       // FIXME: If running after legalize, we probably can't do this.
   2577       N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
   2578     }
   2579     return N0;
   2580   }
   2581 
   2582   // Could not fold it.
   2583   return SDValue();
   2584 }
   2585 
   2586 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
   2587 /// node is a GlobalAddress + offset.
   2588 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
   2589                                     int64_t &Offset) const {
   2590   if (isa<GlobalAddressSDNode>(N)) {
   2591     GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
   2592     GA = GASD->getGlobal();
   2593     Offset += GASD->getOffset();
   2594     return true;
   2595   }
   2596 
   2597   if (N->getOpcode() == ISD::ADD) {
   2598     SDValue N1 = N->getOperand(0);
   2599     SDValue N2 = N->getOperand(1);
   2600     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
   2601       ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
   2602       if (V) {
   2603         Offset += V->getSExtValue();
   2604         return true;
   2605       }
   2606     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
   2607       ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
   2608       if (V) {
   2609         Offset += V->getSExtValue();
   2610         return true;
   2611       }
   2612     }
   2613   }
   2614 
   2615   return false;
   2616 }
   2617 
   2618 
   2619 SDValue TargetLowering::
   2620 PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
   2621   // Default implementation: no optimization.
   2622   return SDValue();
   2623 }
   2624 
   2625 //===----------------------------------------------------------------------===//
   2626 //  Inline Assembler Implementation Methods
   2627 //===----------------------------------------------------------------------===//
   2628 
   2629 
   2630 TargetLowering::ConstraintType
   2631 TargetLowering::getConstraintType(const std::string &Constraint) const {
   2632   if (Constraint.size() == 1) {
   2633     switch (Constraint[0]) {
   2634     default: break;
   2635     case 'r': return C_RegisterClass;
   2636     case 'm':    // memory
   2637     case 'o':    // offsetable
   2638     case 'V':    // not offsetable
   2639       return C_Memory;
   2640     case 'i':    // Simple Integer or Relocatable Constant
   2641     case 'n':    // Simple Integer
   2642     case 'E':    // Floating Point Constant
   2643     case 'F':    // Floating Point Constant
   2644     case 's':    // Relocatable Constant
   2645     case 'p':    // Address.
   2646     case 'X':    // Allow ANY value.
   2647     case 'I':    // Target registers.
   2648     case 'J':
   2649     case 'K':
   2650     case 'L':
   2651     case 'M':
   2652     case 'N':
   2653     case 'O':
   2654     case 'P':
   2655     case '<':
   2656     case '>':
   2657       return C_Other;
   2658     }
   2659   }
   2660 
   2661   if (Constraint.size() > 1 && Constraint[0] == '{' &&
   2662       Constraint[Constraint.size()-1] == '}')
   2663     return C_Register;
   2664   return C_Unknown;
   2665 }
   2666 
   2667 /// LowerXConstraint - try to replace an X constraint, which matches anything,
   2668 /// with another that has more specific requirements based on the type of the
   2669 /// corresponding operand.
   2670 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
   2671   if (ConstraintVT.isInteger())
   2672     return "r";
   2673   if (ConstraintVT.isFloatingPoint())
   2674     return "f";      // works for many targets
   2675   return 0;
   2676 }
   2677 
   2678 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   2679 /// vector.  If it is invalid, don't add anything to Ops.
   2680 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   2681                                                   std::string &Constraint,
   2682                                                   std::vector<SDValue> &Ops,
   2683                                                   SelectionDAG &DAG) const {
   2684 
   2685   if (Constraint.length() > 1) return;
   2686 
   2687   char ConstraintLetter = Constraint[0];
   2688   switch (ConstraintLetter) {
   2689   default: break;
   2690   case 'X':     // Allows any operand; labels (basic block) use this.
   2691     if (Op.getOpcode() == ISD::BasicBlock) {
   2692       Ops.push_back(Op);
   2693       return;
   2694     }
   2695     // fall through
   2696   case 'i':    // Simple Integer or Relocatable Constant
   2697   case 'n':    // Simple Integer
   2698   case 's': {  // Relocatable Constant
   2699     // These operands are interested in values of the form (GV+C), where C may
   2700     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
   2701     // is possible and fine if either GV or C are missing.
   2702     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
   2703     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
   2704 
   2705     // If we have "(add GV, C)", pull out GV/C
   2706     if (Op.getOpcode() == ISD::ADD) {
   2707       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
   2708       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
   2709       if (C == 0 || GA == 0) {
   2710         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
   2711         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
   2712       }
   2713       if (C == 0 || GA == 0)
   2714         C = 0, GA = 0;
   2715     }
   2716 
   2717     // If we find a valid operand, map to the TargetXXX version so that the
   2718     // value itself doesn't get selected.
   2719     if (GA) {   // Either &GV   or   &GV+C
   2720       if (ConstraintLetter != 'n') {
   2721         int64_t Offs = GA->getOffset();
   2722         if (C) Offs += C->getZExtValue();
   2723         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
   2724                                                  C ? C->getDebugLoc() : DebugLoc(),
   2725                                                  Op.getValueType(), Offs));
   2726         return;
   2727       }
   2728     }
   2729     if (C) {   // just C, no GV.
   2730       // Simple constants are not allowed for 's'.
   2731       if (ConstraintLetter != 's') {
   2732         // gcc prints these as sign extended.  Sign extend value to 64 bits
   2733         // now; without this it would get ZExt'd later in
   2734         // ScheduleDAGSDNodes::EmitNode, which is very generic.
   2735         Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
   2736                                             MVT::i64));
   2737         return;
   2738       }
   2739     }
   2740     break;
   2741   }
   2742   }
   2743 }
   2744 
   2745 std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
   2746 getRegForInlineAsmConstraint(const std::string &Constraint,
   2747                              EVT VT) const {
   2748   if (Constraint[0] != '{')
   2749     return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
   2750   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
   2751 
   2752   // Remove the braces from around the name.
   2753   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
   2754 
   2755   // Figure out which register class contains this reg.
   2756   const TargetRegisterInfo *RI = TM.getRegisterInfo();
   2757   for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
   2758        E = RI->regclass_end(); RCI != E; ++RCI) {
   2759     const TargetRegisterClass *RC = *RCI;
   2760 
   2761     // If none of the value types for this register class are valid, we
   2762     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
   2763     if (!isLegalRC(RC))
   2764       continue;
   2765 
   2766     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
   2767          I != E; ++I) {
   2768       if (RegName.equals_lower(RI->getName(*I)))
   2769         return std::make_pair(*I, RC);
   2770     }
   2771   }
   2772 
   2773   return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
   2774 }
   2775 
   2776 //===----------------------------------------------------------------------===//
   2777 // Constraint Selection.
   2778 
   2779 /// isMatchingInputConstraint - Return true of this is an input operand that is
   2780 /// a matching constraint like "4".
   2781 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
   2782   assert(!ConstraintCode.empty() && "No known constraint!");
   2783   return isdigit(ConstraintCode[0]);
   2784 }
   2785 
   2786 /// getMatchedOperand - If this is an input matching constraint, this method
   2787 /// returns the output operand it matches.
   2788 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
   2789   assert(!ConstraintCode.empty() && "No known constraint!");
   2790   return atoi(ConstraintCode.c_str());
   2791 }
   2792 
   2793 
   2794 /// ParseConstraints - Split up the constraint string from the inline
   2795 /// assembly value into the specific constraints and their prefixes,
   2796 /// and also tie in the associated operand values.
   2797 /// If this returns an empty vector, and if the constraint string itself
   2798 /// isn't empty, there was an error parsing.
   2799 TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
   2800     ImmutableCallSite CS) const {
   2801   /// ConstraintOperands - Information about all of the constraints.
   2802   AsmOperandInfoVector ConstraintOperands;
   2803   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
   2804   unsigned maCount = 0; // Largest number of multiple alternative constraints.
   2805 
   2806   // Do a prepass over the constraints, canonicalizing them, and building up the
   2807   // ConstraintOperands list.
   2808   InlineAsm::ConstraintInfoVector
   2809     ConstraintInfos = IA->ParseConstraints();
   2810 
   2811   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
   2812   unsigned ResNo = 0;   // ResNo - The result number of the next output.
   2813 
   2814   for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
   2815     ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
   2816     AsmOperandInfo &OpInfo = ConstraintOperands.back();
   2817 
   2818     // Update multiple alternative constraint count.
   2819     if (OpInfo.multipleAlternatives.size() > maCount)
   2820       maCount = OpInfo.multipleAlternatives.size();
   2821 
   2822     OpInfo.ConstraintVT = MVT::Other;
   2823 
   2824     // Compute the value type for each operand.
   2825     switch (OpInfo.Type) {
   2826     case InlineAsm::isOutput:
   2827       // Indirect outputs just consume an argument.
   2828       if (OpInfo.isIndirect) {
   2829         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
   2830         break;
   2831       }
   2832 
   2833       // The return value of the call is this value.  As such, there is no
   2834       // corresponding argument.
   2835       assert(!CS.getType()->isVoidTy() &&
   2836              "Bad inline asm!");
   2837       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
   2838         OpInfo.ConstraintVT = getValueType(STy->getElementType(ResNo));
   2839       } else {
   2840         assert(ResNo == 0 && "Asm only has one result!");
   2841         OpInfo.ConstraintVT = getValueType(CS.getType());
   2842       }
   2843       ++ResNo;
   2844       break;
   2845     case InlineAsm::isInput:
   2846       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
   2847       break;
   2848     case InlineAsm::isClobber:
   2849       // Nothing to do.
   2850       break;
   2851     }
   2852 
   2853     if (OpInfo.CallOperandVal) {
   2854       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
   2855       if (OpInfo.isIndirect) {
   2856         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
   2857         if (!PtrTy)
   2858           report_fatal_error("Indirect operand for inline asm not a pointer!");
   2859         OpTy = PtrTy->getElementType();
   2860       }
   2861 
   2862       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
   2863       if (StructType *STy = dyn_cast<StructType>(OpTy))
   2864         if (STy->getNumElements() == 1)
   2865           OpTy = STy->getElementType(0);
   2866 
   2867       // If OpTy is not a single value, it may be a struct/union that we
   2868       // can tile with integers.
   2869       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
   2870         unsigned BitSize = TD->getTypeSizeInBits(OpTy);
   2871         switch (BitSize) {
   2872         default: break;
   2873         case 1:
   2874         case 8:
   2875         case 16:
   2876         case 32:
   2877         case 64:
   2878         case 128:
   2879           OpInfo.ConstraintVT =
   2880               EVT::getEVT(IntegerType::get(OpTy->getContext(), BitSize), true);
   2881           break;
   2882         }
   2883       } else if (dyn_cast<PointerType>(OpTy)) {
   2884         OpInfo.ConstraintVT = MVT::getIntegerVT(8*TD->getPointerSize());
   2885       } else {
   2886         OpInfo.ConstraintVT = EVT::getEVT(OpTy, true);
   2887       }
   2888     }
   2889   }
   2890 
   2891   // If we have multiple alternative constraints, select the best alternative.
   2892   if (ConstraintInfos.size()) {
   2893     if (maCount) {
   2894       unsigned bestMAIndex = 0;
   2895       int bestWeight = -1;
   2896       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
   2897       int weight = -1;
   2898       unsigned maIndex;
   2899       // Compute the sums of the weights for each alternative, keeping track
   2900       // of the best (highest weight) one so far.
   2901       for (maIndex = 0; maIndex < maCount; ++maIndex) {
   2902         int weightSum = 0;
   2903         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
   2904             cIndex != eIndex; ++cIndex) {
   2905           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
   2906           if (OpInfo.Type == InlineAsm::isClobber)
   2907             continue;
   2908 
   2909           // If this is an output operand with a matching input operand,
   2910           // look up the matching input. If their types mismatch, e.g. one
   2911           // is an integer, the other is floating point, or their sizes are
   2912           // different, flag it as an maCantMatch.
   2913           if (OpInfo.hasMatchingInput()) {
   2914             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
   2915             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
   2916               if ((OpInfo.ConstraintVT.isInteger() !=
   2917                    Input.ConstraintVT.isInteger()) ||
   2918                   (OpInfo.ConstraintVT.getSizeInBits() !=
   2919                    Input.ConstraintVT.getSizeInBits())) {
   2920                 weightSum = -1;  // Can't match.
   2921                 break;
   2922               }
   2923             }
   2924           }
   2925           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
   2926           if (weight == -1) {
   2927             weightSum = -1;
   2928             break;
   2929           }
   2930           weightSum += weight;
   2931         }
   2932         // Update best.
   2933         if (weightSum > bestWeight) {
   2934           bestWeight = weightSum;
   2935           bestMAIndex = maIndex;
   2936         }
   2937       }
   2938 
   2939       // Now select chosen alternative in each constraint.
   2940       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
   2941           cIndex != eIndex; ++cIndex) {
   2942         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
   2943         if (cInfo.Type == InlineAsm::isClobber)
   2944           continue;
   2945         cInfo.selectAlternative(bestMAIndex);
   2946       }
   2947     }
   2948   }
   2949 
   2950   // Check and hook up tied operands, choose constraint code to use.
   2951   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
   2952       cIndex != eIndex; ++cIndex) {
   2953     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
   2954 
   2955     // If this is an output operand with a matching input operand, look up the
   2956     // matching input. If their types mismatch, e.g. one is an integer, the
   2957     // other is floating point, or their sizes are different, flag it as an
   2958     // error.
   2959     if (OpInfo.hasMatchingInput()) {
   2960       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
   2961 
   2962       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
   2963 	std::pair<unsigned, const TargetRegisterClass*> MatchRC =
   2964 	  getRegForInlineAsmConstraint(OpInfo.ConstraintCode, OpInfo.ConstraintVT);
   2965 	std::pair<unsigned, const TargetRegisterClass*> InputRC =
   2966 	  getRegForInlineAsmConstraint(Input.ConstraintCode, Input.ConstraintVT);
   2967         if ((OpInfo.ConstraintVT.isInteger() !=
   2968              Input.ConstraintVT.isInteger()) ||
   2969             (MatchRC.second != InputRC.second)) {
   2970           report_fatal_error("Unsupported asm: input constraint"
   2971                              " with a matching output constraint of"
   2972                              " incompatible type!");
   2973         }
   2974       }
   2975 
   2976     }
   2977   }
   2978 
   2979   return ConstraintOperands;
   2980 }
   2981 
   2982 
   2983 /// getConstraintGenerality - Return an integer indicating how general CT
   2984 /// is.
   2985 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
   2986   switch (CT) {
   2987   default: llvm_unreachable("Unknown constraint type!");
   2988   case TargetLowering::C_Other:
   2989   case TargetLowering::C_Unknown:
   2990     return 0;
   2991   case TargetLowering::C_Register:
   2992     return 1;
   2993   case TargetLowering::C_RegisterClass:
   2994     return 2;
   2995   case TargetLowering::C_Memory:
   2996     return 3;
   2997   }
   2998 }
   2999 
   3000 /// Examine constraint type and operand type and determine a weight value.
   3001 /// This object must already have been set up with the operand type
   3002 /// and the current alternative constraint selected.
   3003 TargetLowering::ConstraintWeight
   3004   TargetLowering::getMultipleConstraintMatchWeight(
   3005     AsmOperandInfo &info, int maIndex) const {
   3006   InlineAsm::ConstraintCodeVector *rCodes;
   3007   if (maIndex >= (int)info.multipleAlternatives.size())
   3008     rCodes = &info.Codes;
   3009   else
   3010     rCodes = &info.multipleAlternatives[maIndex].Codes;
   3011   ConstraintWeight BestWeight = CW_Invalid;
   3012 
   3013   // Loop over the options, keeping track of the most general one.
   3014   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
   3015     ConstraintWeight weight =
   3016       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
   3017     if (weight > BestWeight)
   3018       BestWeight = weight;
   3019   }
   3020 
   3021   return BestWeight;
   3022 }
   3023 
   3024 /// Examine constraint type and operand type and determine a weight value.
   3025 /// This object must already have been set up with the operand type
   3026 /// and the current alternative constraint selected.
   3027 TargetLowering::ConstraintWeight
   3028   TargetLowering::getSingleConstraintMatchWeight(
   3029     AsmOperandInfo &info, const char *constraint) const {
   3030   ConstraintWeight weight = CW_Invalid;
   3031   Value *CallOperandVal = info.CallOperandVal;
   3032     // If we don't have a value, we can't do a match,
   3033     // but allow it at the lowest weight.
   3034   if (CallOperandVal == NULL)
   3035     return CW_Default;
   3036   // Look at the constraint type.
   3037   switch (*constraint) {
   3038     case 'i': // immediate integer.
   3039     case 'n': // immediate integer with a known value.
   3040       if (isa<ConstantInt>(CallOperandVal))
   3041         weight = CW_Constant;
   3042       break;
   3043     case 's': // non-explicit intregal immediate.
   3044       if (isa<GlobalValue>(CallOperandVal))
   3045         weight = CW_Constant;
   3046       break;
   3047     case 'E': // immediate float if host format.
   3048     case 'F': // immediate float.
   3049       if (isa<ConstantFP>(CallOperandVal))
   3050         weight = CW_Constant;
   3051       break;
   3052     case '<': // memory operand with autodecrement.
   3053     case '>': // memory operand with autoincrement.
   3054     case 'm': // memory operand.
   3055     case 'o': // offsettable memory operand
   3056     case 'V': // non-offsettable memory operand
   3057       weight = CW_Memory;
   3058       break;
   3059     case 'r': // general register.
   3060     case 'g': // general register, memory operand or immediate integer.
   3061               // note: Clang converts "g" to "imr".
   3062       if (CallOperandVal->getType()->isIntegerTy())
   3063         weight = CW_Register;
   3064       break;
   3065     case 'X': // any operand.
   3066     default:
   3067       weight = CW_Default;
   3068       break;
   3069   }
   3070   return weight;
   3071 }
   3072 
   3073 /// ChooseConstraint - If there are multiple different constraints that we
   3074 /// could pick for this operand (e.g. "imr") try to pick the 'best' one.
   3075 /// This is somewhat tricky: constraints fall into four classes:
   3076 ///    Other         -> immediates and magic values
   3077 ///    Register      -> one specific register
   3078 ///    RegisterClass -> a group of regs
   3079 ///    Memory        -> memory
   3080 /// Ideally, we would pick the most specific constraint possible: if we have
   3081 /// something that fits into a register, we would pick it.  The problem here
   3082 /// is that if we have something that could either be in a register or in
   3083 /// memory that use of the register could cause selection of *other*
   3084 /// operands to fail: they might only succeed if we pick memory.  Because of
   3085 /// this the heuristic we use is:
   3086 ///
   3087 ///  1) If there is an 'other' constraint, and if the operand is valid for
   3088 ///     that constraint, use it.  This makes us take advantage of 'i'
   3089 ///     constraints when available.
   3090 ///  2) Otherwise, pick the most general constraint present.  This prefers
   3091 ///     'm' over 'r', for example.
   3092 ///
   3093 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
   3094                              const TargetLowering &TLI,
   3095                              SDValue Op, SelectionDAG *DAG) {
   3096   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
   3097   unsigned BestIdx = 0;
   3098   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
   3099   int BestGenerality = -1;
   3100 
   3101   // Loop over the options, keeping track of the most general one.
   3102   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
   3103     TargetLowering::ConstraintType CType =
   3104       TLI.getConstraintType(OpInfo.Codes[i]);
   3105 
   3106     // If this is an 'other' constraint, see if the operand is valid for it.
   3107     // For example, on X86 we might have an 'rI' constraint.  If the operand
   3108     // is an integer in the range [0..31] we want to use I (saving a load
   3109     // of a register), otherwise we must use 'r'.
   3110     if (CType == TargetLowering::C_Other && Op.getNode()) {
   3111       assert(OpInfo.Codes[i].size() == 1 &&
   3112              "Unhandled multi-letter 'other' constraint");
   3113       std::vector<SDValue> ResultOps;
   3114       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
   3115                                        ResultOps, *DAG);
   3116       if (!ResultOps.empty()) {
   3117         BestType = CType;
   3118         BestIdx = i;
   3119         break;
   3120       }
   3121     }
   3122 
   3123     // Things with matching constraints can only be registers, per gcc
   3124     // documentation.  This mainly affects "g" constraints.
   3125     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
   3126       continue;
   3127 
   3128     // This constraint letter is more general than the previous one, use it.
   3129     int Generality = getConstraintGenerality(CType);
   3130     if (Generality > BestGenerality) {
   3131       BestType = CType;
   3132       BestIdx = i;
   3133       BestGenerality = Generality;
   3134     }
   3135   }
   3136 
   3137   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
   3138   OpInfo.ConstraintType = BestType;
   3139 }
   3140 
   3141 /// ComputeConstraintToUse - Determines the constraint code and constraint
   3142 /// type to use for the specific AsmOperandInfo, setting
   3143 /// OpInfo.ConstraintCode and OpInfo.ConstraintType.
   3144 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
   3145                                             SDValue Op,
   3146                                             SelectionDAG *DAG) const {
   3147   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
   3148 
   3149   // Single-letter constraints ('r') are very common.
   3150   if (OpInfo.Codes.size() == 1) {
   3151     OpInfo.ConstraintCode = OpInfo.Codes[0];
   3152     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
   3153   } else {
   3154     ChooseConstraint(OpInfo, *this, Op, DAG);
   3155   }
   3156 
   3157   // 'X' matches anything.
   3158   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
   3159     // Labels and constants are handled elsewhere ('X' is the only thing
   3160     // that matches labels).  For Functions, the type here is the type of
   3161     // the result, which is not what we want to look at; leave them alone.
   3162     Value *v = OpInfo.CallOperandVal;
   3163     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
   3164       OpInfo.CallOperandVal = v;
   3165       return;
   3166     }
   3167 
   3168     // Otherwise, try to resolve it to something we know about by looking at
   3169     // the actual operand type.
   3170     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
   3171       OpInfo.ConstraintCode = Repl;
   3172       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
   3173     }
   3174   }
   3175 }
   3176 
   3177 //===----------------------------------------------------------------------===//
   3178 //  Loop Strength Reduction hooks
   3179 //===----------------------------------------------------------------------===//
   3180 
   3181 /// isLegalAddressingMode - Return true if the addressing mode represented
   3182 /// by AM is legal for this target, for a load/store of the specified type.
   3183 bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
   3184                                            Type *Ty) const {
   3185   // The default implementation of this implements a conservative RISCy, r+r and
   3186   // r+i addr mode.
   3187 
   3188   // Allows a sign-extended 16-bit immediate field.
   3189   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
   3190     return false;
   3191 
   3192   // No global is ever allowed as a base.
   3193   if (AM.BaseGV)
   3194     return false;
   3195 
   3196   // Only support r+r,
   3197   switch (AM.Scale) {
   3198   case 0:  // "r+i" or just "i", depending on HasBaseReg.
   3199     break;
   3200   case 1:
   3201     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
   3202       return false;
   3203     // Otherwise we have r+r or r+i.
   3204     break;
   3205   case 2:
   3206     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
   3207       return false;
   3208     // Allow 2*r as r+r.
   3209     break;
   3210   }
   3211 
   3212   return true;
   3213 }
   3214 
   3215 /// BuildExactDiv - Given an exact SDIV by a constant, create a multiplication
   3216 /// with the multiplicative inverse of the constant.
   3217 SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
   3218                                        SelectionDAG &DAG) const {
   3219   ConstantSDNode *C = cast<ConstantSDNode>(Op2);
   3220   APInt d = C->getAPIntValue();
   3221   assert(d != 0 && "Division by zero!");
   3222 
   3223   // Shift the value upfront if it is even, so the LSB is one.
   3224   unsigned ShAmt = d.countTrailingZeros();
   3225   if (ShAmt) {
   3226     // TODO: For UDIV use SRL instead of SRA.
   3227     SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType()));
   3228     Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt);
   3229     d = d.ashr(ShAmt);
   3230   }
   3231 
   3232   // Calculate the multiplicative inverse, using Newton's method.
   3233   APInt t, xn = d;
   3234   while ((t = d*xn) != 1)
   3235     xn *= APInt(d.getBitWidth(), 2) - t;
   3236 
   3237   Op2 = DAG.getConstant(xn, Op1.getValueType());
   3238   return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
   3239 }
   3240 
   3241 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
   3242 /// return a DAG expression to select that will generate the same value by
   3243 /// multiplying by a magic number.  See:
   3244 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
   3245 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
   3246                                   std::vector<SDNode*>* Created) const {
   3247   EVT VT = N->getValueType(0);
   3248   DebugLoc dl= N->getDebugLoc();
   3249 
   3250   // Check to see if we can do this.
   3251   // FIXME: We should be more aggressive here.
   3252   if (!isTypeLegal(VT))
   3253     return SDValue();
   3254 
   3255   APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
   3256   APInt::ms magics = d.magic();
   3257 
   3258   // Multiply the numerator (operand 0) by the magic value
   3259   // FIXME: We should support doing a MUL in a wider type
   3260   SDValue Q;
   3261   if (isOperationLegalOrCustom(ISD::MULHS, VT))
   3262     Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
   3263                     DAG.getConstant(magics.m, VT));
   3264   else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
   3265     Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
   3266                               N->getOperand(0),
   3267                               DAG.getConstant(magics.m, VT)).getNode(), 1);
   3268   else
   3269     return SDValue();       // No mulhs or equvialent
   3270   // If d > 0 and m < 0, add the numerator
   3271   if (d.isStrictlyPositive() && magics.m.isNegative()) {
   3272     Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
   3273     if (Created)
   3274       Created->push_back(Q.getNode());
   3275   }
   3276   // If d < 0 and m > 0, subtract the numerator.
   3277   if (d.isNegative() && magics.m.isStrictlyPositive()) {
   3278     Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
   3279     if (Created)
   3280       Created->push_back(Q.getNode());
   3281   }
   3282   // Shift right algebraic if shift value is nonzero
   3283   if (magics.s > 0) {
   3284     Q = DAG.getNode(ISD::SRA, dl, VT, Q,
   3285                  DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
   3286     if (Created)
   3287       Created->push_back(Q.getNode());
   3288   }
   3289   // Extract the sign bit and add it to the quotient
   3290   SDValue T =
   3291     DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
   3292                                            getShiftAmountTy(Q.getValueType())));
   3293   if (Created)
   3294     Created->push_back(T.getNode());
   3295   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
   3296 }
   3297 
   3298 /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
   3299 /// return a DAG expression to select that will generate the same value by
   3300 /// multiplying by a magic number.  See:
   3301 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
   3302 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
   3303                                   std::vector<SDNode*>* Created) const {
   3304   EVT VT = N->getValueType(0);
   3305   DebugLoc dl = N->getDebugLoc();
   3306 
   3307   // Check to see if we can do this.
   3308   // FIXME: We should be more aggressive here.
   3309   if (!isTypeLegal(VT))
   3310     return SDValue();
   3311 
   3312   // FIXME: We should use a narrower constant when the upper
   3313   // bits are known to be zero.
   3314   const APInt &N1C = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
   3315   APInt::mu magics = N1C.magicu();
   3316 
   3317   SDValue Q = N->getOperand(0);
   3318 
   3319   // If the divisor is even, we can avoid using the expensive fixup by shifting
   3320   // the divided value upfront.
   3321   if (magics.a != 0 && !N1C[0]) {
   3322     unsigned Shift = N1C.countTrailingZeros();
   3323     Q = DAG.getNode(ISD::SRL, dl, VT, Q,
   3324                     DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType())));
   3325     if (Created)
   3326       Created->push_back(Q.getNode());
   3327 
   3328     // Get magic number for the shifted divisor.
   3329     magics = N1C.lshr(Shift).magicu(Shift);
   3330     assert(magics.a == 0 && "Should use cheap fixup now");
   3331   }
   3332 
   3333   // Multiply the numerator (operand 0) by the magic value
   3334   // FIXME: We should support doing a MUL in a wider type
   3335   if (isOperationLegalOrCustom(ISD::MULHU, VT))
   3336     Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT));
   3337   else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
   3338     Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
   3339                             DAG.getConstant(magics.m, VT)).getNode(), 1);
   3340   else
   3341     return SDValue();       // No mulhu or equvialent
   3342   if (Created)
   3343     Created->push_back(Q.getNode());
   3344 
   3345   if (magics.a == 0) {
   3346     assert(magics.s < N1C.getBitWidth() &&
   3347            "We shouldn't generate an undefined shift!");
   3348     return DAG.getNode(ISD::SRL, dl, VT, Q,
   3349                  DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
   3350   } else {
   3351     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
   3352     if (Created)
   3353       Created->push_back(NPQ.getNode());
   3354     NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
   3355                       DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType())));
   3356     if (Created)
   3357       Created->push_back(NPQ.getNode());
   3358     NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
   3359     if (Created)
   3360       Created->push_back(NPQ.getNode());
   3361     return DAG.getNode(ISD::SRL, dl, VT, NPQ,
   3362              DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType())));
   3363   }
   3364 }
   3365