Home | History | Annotate | Download | only in CodeGen
      1 //===- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file declares the SDNode class and derived classes, which are used to
     11 // represent the nodes and operations present in a SelectionDAG.  These nodes
     12 // and operations are machine code level operations, with some similarities to
     13 // the GCC RTL representation.
     14 //
     15 // Clients should include the SelectionDAG.h file instead of this file directly.
     16 //
     17 //===----------------------------------------------------------------------===//
     18 
     19 #ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
     20 #define LLVM_CODEGEN_SELECTIONDAGNODES_H
     21 
     22 #include "llvm/ADT/APFloat.h"
     23 #include "llvm/ADT/ArrayRef.h"
     24 #include "llvm/ADT/BitVector.h"
     25 #include "llvm/ADT/FoldingSet.h"
     26 #include "llvm/ADT/GraphTraits.h"
     27 #include "llvm/ADT/SmallPtrSet.h"
     28 #include "llvm/ADT/SmallVector.h"
     29 #include "llvm/ADT/ilist_node.h"
     30 #include "llvm/ADT/iterator.h"
     31 #include "llvm/ADT/iterator_range.h"
     32 #include "llvm/CodeGen/ISDOpcodes.h"
     33 #include "llvm/CodeGen/MachineMemOperand.h"
     34 #include "llvm/CodeGen/MachineValueType.h"
     35 #include "llvm/CodeGen/ValueTypes.h"
     36 #include "llvm/IR/Constants.h"
     37 #include "llvm/IR/DebugLoc.h"
     38 #include "llvm/IR/Instruction.h"
     39 #include "llvm/IR/Instructions.h"
     40 #include "llvm/IR/Metadata.h"
     41 #include "llvm/Support/AlignOf.h"
     42 #include "llvm/Support/AtomicOrdering.h"
     43 #include "llvm/Support/Casting.h"
     44 #include "llvm/Support/ErrorHandling.h"
     45 #include <algorithm>
     46 #include <cassert>
     47 #include <climits>
     48 #include <cstddef>
     49 #include <cstdint>
     50 #include <cstring>
     51 #include <iterator>
     52 #include <string>
     53 #include <tuple>
     54 
     55 namespace llvm {
     56 
     57 class APInt;
     58 class Constant;
     59 template <typename T> struct DenseMapInfo;
     60 class GlobalValue;
     61 class MachineBasicBlock;
     62 class MachineConstantPoolValue;
     63 class MCSymbol;
     64 class raw_ostream;
     65 class SDNode;
     66 class SelectionDAG;
     67 class Type;
     68 class Value;
     69 
     70 void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr,
     71                     bool force = false);
     72 
     73 /// This represents a list of ValueType's that has been intern'd by
     74 /// a SelectionDAG.  Instances of this simple value class are returned by
     75 /// SelectionDAG::getVTList(...).
     76 ///
     77 struct SDVTList {
     78   const EVT *VTs;
     79   unsigned int NumVTs;
     80 };
     81 
     82 namespace ISD {
     83 
     84   /// Node predicates
     85 
     86   /// If N is a BUILD_VECTOR node whose elements are all the same constant or
     87   /// undefined, return true and return the constant value in \p SplatValue.
     88   bool isConstantSplatVector(const SDNode *N, APInt &SplatValue);
     89 
     90   /// Return true if the specified node is a BUILD_VECTOR where all of the
     91   /// elements are ~0 or undef.
     92   bool isBuildVectorAllOnes(const SDNode *N);
     93 
     94   /// Return true if the specified node is a BUILD_VECTOR where all of the
     95   /// elements are 0 or undef.
     96   bool isBuildVectorAllZeros(const SDNode *N);
     97 
     98   /// Return true if the specified node is a BUILD_VECTOR node of all
     99   /// ConstantSDNode or undef.
    100   bool isBuildVectorOfConstantSDNodes(const SDNode *N);
    101 
    102   /// Return true if the specified node is a BUILD_VECTOR node of all
    103   /// ConstantFPSDNode or undef.
    104   bool isBuildVectorOfConstantFPSDNodes(const SDNode *N);
    105 
    106   /// Return true if the node has at least one operand and all operands of the
    107   /// specified node are ISD::UNDEF.
    108   bool allOperandsUndef(const SDNode *N);
    109 
    110 } // end namespace ISD
    111 
    112 //===----------------------------------------------------------------------===//
    113 /// Unlike LLVM values, Selection DAG nodes may return multiple
    114 /// values as the result of a computation.  Many nodes return multiple values,
    115 /// from loads (which define a token and a return value) to ADDC (which returns
    116 /// a result and a carry value), to calls (which may return an arbitrary number
    117 /// of values).
    118 ///
    119 /// As such, each use of a SelectionDAG computation must indicate the node that
    120 /// computes it as well as which return value to use from that node.  This pair
    121 /// of information is represented with the SDValue value type.
    122 ///
    123 class SDValue {
    124   friend struct DenseMapInfo<SDValue>;
    125 
    126   SDNode *Node = nullptr; // The node defining the value we are using.
    127   unsigned ResNo = 0;     // Which return value of the node we are using.
    128 
    129 public:
    130   SDValue() = default;
    131   SDValue(SDNode *node, unsigned resno);
    132 
    133   /// get the index which selects a specific result in the SDNode
    134   unsigned getResNo() const { return ResNo; }
    135 
    136   /// get the SDNode which holds the desired result
    137   SDNode *getNode() const { return Node; }
    138 
    139   /// set the SDNode
    140   void setNode(SDNode *N) { Node = N; }
    141 
    142   inline SDNode *operator->() const { return Node; }
    143 
    144   bool operator==(const SDValue &O) const {
    145     return Node == O.Node && ResNo == O.ResNo;
    146   }
    147   bool operator!=(const SDValue &O) const {
    148     return !operator==(O);
    149   }
    150   bool operator<(const SDValue &O) const {
    151     return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo);
    152   }
    153   explicit operator bool() const {
    154     return Node != nullptr;
    155   }
    156 
    157   SDValue getValue(unsigned R) const {
    158     return SDValue(Node, R);
    159   }
    160 
    161   /// Return true if this node is an operand of N.
    162   bool isOperandOf(const SDNode *N) const;
    163 
    164   /// Return the ValueType of the referenced return value.
    165   inline EVT getValueType() const;
    166 
    167   /// Return the simple ValueType of the referenced return value.
    168   MVT getSimpleValueType() const {
    169     return getValueType().getSimpleVT();
    170   }
    171 
    172   /// Returns the size of the value in bits.
    173   unsigned getValueSizeInBits() const {
    174     return getValueType().getSizeInBits();
    175   }
    176 
    177   unsigned getScalarValueSizeInBits() const {
    178     return getValueType().getScalarType().getSizeInBits();
    179   }
    180 
    181   // Forwarding methods - These forward to the corresponding methods in SDNode.
    182   inline unsigned getOpcode() const;
    183   inline unsigned getNumOperands() const;
    184   inline const SDValue &getOperand(unsigned i) const;
    185   inline uint64_t getConstantOperandVal(unsigned i) const;
    186   inline bool isTargetMemoryOpcode() const;
    187   inline bool isTargetOpcode() const;
    188   inline bool isMachineOpcode() const;
    189   inline bool isUndef() const;
    190   inline unsigned getMachineOpcode() const;
    191   inline const DebugLoc &getDebugLoc() const;
    192   inline void dump() const;
    193   inline void dumpr() const;
    194 
    195   /// Return true if this operand (which must be a chain) reaches the
    196   /// specified operand without crossing any side-effecting instructions.
    197   /// In practice, this looks through token factors and non-volatile loads.
    198   /// In order to remain efficient, this only
    199   /// looks a couple of nodes in, it does not do an exhaustive search.
    200   bool reachesChainWithoutSideEffects(SDValue Dest,
    201                                       unsigned Depth = 2) const;
    202 
    203   /// Return true if there are no nodes using value ResNo of Node.
    204   inline bool use_empty() const;
    205 
    206   /// Return true if there is exactly one node using value ResNo of Node.
    207   inline bool hasOneUse() const;
    208 };
    209 
    210 template<> struct DenseMapInfo<SDValue> {
    211   static inline SDValue getEmptyKey() {
    212     SDValue V;
    213     V.ResNo = -1U;
    214     return V;
    215   }
    216 
    217   static inline SDValue getTombstoneKey() {
    218     SDValue V;
    219     V.ResNo = -2U;
    220     return V;
    221   }
    222 
    223   static unsigned getHashValue(const SDValue &Val) {
    224     return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
    225             (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
    226   }
    227 
    228   static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
    229     return LHS == RHS;
    230   }
    231 };
    232 template <> struct isPodLike<SDValue> { static const bool value = true; };
    233 
    234 /// Allow casting operators to work directly on
    235 /// SDValues as if they were SDNode*'s.
    236 template<> struct simplify_type<SDValue> {
    237   using SimpleType = SDNode *;
    238 
    239   static SimpleType getSimplifiedValue(SDValue &Val) {
    240     return Val.getNode();
    241   }
    242 };
    243 template<> struct simplify_type<const SDValue> {
    244   using SimpleType = /*const*/ SDNode *;
    245 
    246   static SimpleType getSimplifiedValue(const SDValue &Val) {
    247     return Val.getNode();
    248   }
    249 };
    250 
    251 /// Represents a use of a SDNode. This class holds an SDValue,
    252 /// which records the SDNode being used and the result number, a
    253 /// pointer to the SDNode using the value, and Next and Prev pointers,
    254 /// which link together all the uses of an SDNode.
    255 ///
    256 class SDUse {
    257   /// Val - The value being used.
    258   SDValue Val;
    259   /// User - The user of this value.
    260   SDNode *User = nullptr;
    261   /// Prev, Next - Pointers to the uses list of the SDNode referred by
    262   /// this operand.
    263   SDUse **Prev = nullptr;
    264   SDUse *Next = nullptr;
    265 
    266 public:
    267   SDUse() = default;
    268   SDUse(const SDUse &U) = delete;
    269   SDUse &operator=(const SDUse &) = delete;
    270 
    271   /// Normally SDUse will just implicitly convert to an SDValue that it holds.
    272   operator const SDValue&() const { return Val; }
    273 
    274   /// If implicit conversion to SDValue doesn't work, the get() method returns
    275   /// the SDValue.
    276   const SDValue &get() const { return Val; }
    277 
    278   /// This returns the SDNode that contains this Use.
    279   SDNode *getUser() { return User; }
    280 
    281   /// Get the next SDUse in the use list.
    282   SDUse *getNext() const { return Next; }
    283 
    284   /// Convenience function for get().getNode().
    285   SDNode *getNode() const { return Val.getNode(); }
    286   /// Convenience function for get().getResNo().
    287   unsigned getResNo() const { return Val.getResNo(); }
    288   /// Convenience function for get().getValueType().
    289   EVT getValueType() const { return Val.getValueType(); }
    290 
    291   /// Convenience function for get().operator==
    292   bool operator==(const SDValue &V) const {
    293     return Val == V;
    294   }
    295 
    296   /// Convenience function for get().operator!=
    297   bool operator!=(const SDValue &V) const {
    298     return Val != V;
    299   }
    300 
    301   /// Convenience function for get().operator<
    302   bool operator<(const SDValue &V) const {
    303     return Val < V;
    304   }
    305 
    306 private:
    307   friend class SelectionDAG;
    308   friend class SDNode;
    309   // TODO: unfriend HandleSDNode once we fix its operand handling.
    310   friend class HandleSDNode;
    311 
    312   void setUser(SDNode *p) { User = p; }
    313 
    314   /// Remove this use from its existing use list, assign it the
    315   /// given value, and add it to the new value's node's use list.
    316   inline void set(const SDValue &V);
    317   /// Like set, but only supports initializing a newly-allocated
    318   /// SDUse with a non-null value.
    319   inline void setInitial(const SDValue &V);
    320   /// Like set, but only sets the Node portion of the value,
    321   /// leaving the ResNo portion unmodified.
    322   inline void setNode(SDNode *N);
    323 
    324   void addToList(SDUse **List) {
    325     Next = *List;
    326     if (Next) Next->Prev = &Next;
    327     Prev = List;
    328     *List = this;
    329   }
    330 
    331   void removeFromList() {
    332     *Prev = Next;
    333     if (Next) Next->Prev = Prev;
    334   }
    335 };
    336 
    337 /// simplify_type specializations - Allow casting operators to work directly on
    338 /// SDValues as if they were SDNode*'s.
    339 template<> struct simplify_type<SDUse> {
    340   using SimpleType = SDNode *;
    341 
    342   static SimpleType getSimplifiedValue(SDUse &Val) {
    343     return Val.getNode();
    344   }
    345 };
    346 
    347 /// These are IR-level optimization flags that may be propagated to SDNodes.
    348 /// TODO: This data structure should be shared by the IR optimizer and the
    349 /// the backend.
    350 struct SDNodeFlags {
    351 private:
    352   // This bit is used to determine if the flags are in a defined state.
    353   // Flag bits can only be masked out during intersection if the masking flags
    354   // are defined.
    355   bool AnyDefined : 1;
    356 
    357   bool NoUnsignedWrap : 1;
    358   bool NoSignedWrap : 1;
    359   bool Exact : 1;
    360   bool UnsafeAlgebra : 1;
    361   bool NoNaNs : 1;
    362   bool NoInfs : 1;
    363   bool NoSignedZeros : 1;
    364   bool AllowReciprocal : 1;
    365   bool VectorReduction : 1;
    366   bool AllowContract : 1;
    367 
    368 public:
    369   /// Default constructor turns off all optimization flags.
    370   SDNodeFlags()
    371       : AnyDefined(false), NoUnsignedWrap(false), NoSignedWrap(false),
    372         Exact(false), UnsafeAlgebra(false), NoNaNs(false), NoInfs(false),
    373         NoSignedZeros(false), AllowReciprocal(false), VectorReduction(false),
    374         AllowContract(false) {}
    375 
    376   /// Sets the state of the flags to the defined state.
    377   void setDefined() { AnyDefined = true; }
    378   /// Returns true if the flags are in a defined state.
    379   bool isDefined() const { return AnyDefined; }
    380 
    381   // These are mutators for each flag.
    382   void setNoUnsignedWrap(bool b) {
    383     setDefined();
    384     NoUnsignedWrap = b;
    385   }
    386   void setNoSignedWrap(bool b) {
    387     setDefined();
    388     NoSignedWrap = b;
    389   }
    390   void setExact(bool b) {
    391     setDefined();
    392     Exact = b;
    393   }
    394   void setUnsafeAlgebra(bool b) {
    395     setDefined();
    396     UnsafeAlgebra = b;
    397   }
    398   void setNoNaNs(bool b) {
    399     setDefined();
    400     NoNaNs = b;
    401   }
    402   void setNoInfs(bool b) {
    403     setDefined();
    404     NoInfs = b;
    405   }
    406   void setNoSignedZeros(bool b) {
    407     setDefined();
    408     NoSignedZeros = b;
    409   }
    410   void setAllowReciprocal(bool b) {
    411     setDefined();
    412     AllowReciprocal = b;
    413   }
    414   void setVectorReduction(bool b) {
    415     setDefined();
    416     VectorReduction = b;
    417   }
    418   void setAllowContract(bool b) {
    419     setDefined();
    420     AllowContract = b;
    421   }
    422 
    423   // These are accessors for each flag.
    424   bool hasNoUnsignedWrap() const { return NoUnsignedWrap; }
    425   bool hasNoSignedWrap() const { return NoSignedWrap; }
    426   bool hasExact() const { return Exact; }
    427   bool hasUnsafeAlgebra() const { return UnsafeAlgebra; }
    428   bool hasNoNaNs() const { return NoNaNs; }
    429   bool hasNoInfs() const { return NoInfs; }
    430   bool hasNoSignedZeros() const { return NoSignedZeros; }
    431   bool hasAllowReciprocal() const { return AllowReciprocal; }
    432   bool hasVectorReduction() const { return VectorReduction; }
    433   bool hasAllowContract() const { return AllowContract; }
    434 
    435   /// Clear any flags in this flag set that aren't also set in Flags.
    436   /// If the given Flags are undefined then don't do anything.
    437   void intersectWith(const SDNodeFlags Flags) {
    438     if (!Flags.isDefined())
    439       return;
    440     NoUnsignedWrap &= Flags.NoUnsignedWrap;
    441     NoSignedWrap &= Flags.NoSignedWrap;
    442     Exact &= Flags.Exact;
    443     UnsafeAlgebra &= Flags.UnsafeAlgebra;
    444     NoNaNs &= Flags.NoNaNs;
    445     NoInfs &= Flags.NoInfs;
    446     NoSignedZeros &= Flags.NoSignedZeros;
    447     AllowReciprocal &= Flags.AllowReciprocal;
    448     VectorReduction &= Flags.VectorReduction;
    449     AllowContract &= Flags.AllowContract;
    450   }
    451 };
    452 
    453 /// Represents one node in the SelectionDAG.
    454 ///
    455 class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
    456 private:
    457   /// The operation that this node performs.
    458   int16_t NodeType;
    459 
    460 protected:
    461   // We define a set of mini-helper classes to help us interpret the bits in our
    462   // SubclassData.  These are designed to fit within a uint16_t so they pack
    463   // with NodeType.
    464 
    465   class SDNodeBitfields {
    466     friend class SDNode;
    467     friend class MemIntrinsicSDNode;
    468     friend class MemSDNode;
    469 
    470     uint16_t HasDebugValue : 1;
    471     uint16_t IsMemIntrinsic : 1;
    472   };
    473   enum { NumSDNodeBits = 2 };
    474 
    475   class ConstantSDNodeBitfields {
    476     friend class ConstantSDNode;
    477 
    478     uint16_t : NumSDNodeBits;
    479 
    480     uint16_t IsOpaque : 1;
    481   };
    482 
    483   class MemSDNodeBitfields {
    484     friend class MemSDNode;
    485     friend class MemIntrinsicSDNode;
    486     friend class AtomicSDNode;
    487 
    488     uint16_t : NumSDNodeBits;
    489 
    490     uint16_t IsVolatile : 1;
    491     uint16_t IsNonTemporal : 1;
    492     uint16_t IsDereferenceable : 1;
    493     uint16_t IsInvariant : 1;
    494   };
    495   enum { NumMemSDNodeBits = NumSDNodeBits + 4 };
    496 
    497   class LSBaseSDNodeBitfields {
    498     friend class LSBaseSDNode;
    499 
    500     uint16_t : NumMemSDNodeBits;
    501 
    502     uint16_t AddressingMode : 3; // enum ISD::MemIndexedMode
    503   };
    504   enum { NumLSBaseSDNodeBits = NumMemSDNodeBits + 3 };
    505 
    506   class LoadSDNodeBitfields {
    507     friend class LoadSDNode;
    508     friend class MaskedLoadSDNode;
    509 
    510     uint16_t : NumLSBaseSDNodeBits;
    511 
    512     uint16_t ExtTy : 2; // enum ISD::LoadExtType
    513     uint16_t IsExpanding : 1;
    514   };
    515 
    516   class StoreSDNodeBitfields {
    517     friend class StoreSDNode;
    518     friend class MaskedStoreSDNode;
    519 
    520     uint16_t : NumLSBaseSDNodeBits;
    521 
    522     uint16_t IsTruncating : 1;
    523     uint16_t IsCompressing : 1;
    524   };
    525 
    526   union {
    527     char RawSDNodeBits[sizeof(uint16_t)];
    528     SDNodeBitfields SDNodeBits;
    529     ConstantSDNodeBitfields ConstantSDNodeBits;
    530     MemSDNodeBitfields MemSDNodeBits;
    531     LSBaseSDNodeBitfields LSBaseSDNodeBits;
    532     LoadSDNodeBitfields LoadSDNodeBits;
    533     StoreSDNodeBitfields StoreSDNodeBits;
    534   };
    535 
    536   // RawSDNodeBits must cover the entirety of the union.  This means that all of
    537   // the union's members must have size <= RawSDNodeBits.  We write the RHS as
    538   // "2" instead of sizeof(RawSDNodeBits) because MSVC can't handle the latter.
    539   static_assert(sizeof(SDNodeBitfields) <= 2, "field too wide");
    540   static_assert(sizeof(ConstantSDNodeBitfields) <= 2, "field too wide");
    541   static_assert(sizeof(MemSDNodeBitfields) <= 2, "field too wide");
    542   static_assert(sizeof(LSBaseSDNodeBitfields) <= 2, "field too wide");
    543   static_assert(sizeof(LoadSDNodeBitfields) <= 4, "field too wide");
    544   static_assert(sizeof(StoreSDNodeBitfields) <= 2, "field too wide");
    545 
    546 private:
    547   friend class SelectionDAG;
    548   // TODO: unfriend HandleSDNode once we fix its operand handling.
    549   friend class HandleSDNode;
    550 
    551   /// Unique id per SDNode in the DAG.
    552   int NodeId = -1;
    553 
    554   /// The values that are used by this operation.
    555   SDUse *OperandList = nullptr;
    556 
    557   /// The types of the values this node defines.  SDNode's may
    558   /// define multiple values simultaneously.
    559   const EVT *ValueList;
    560 
    561   /// List of uses for this SDNode.
    562   SDUse *UseList = nullptr;
    563 
    564   /// The number of entries in the Operand/Value list.
    565   unsigned short NumOperands = 0;
    566   unsigned short NumValues;
    567 
    568   // The ordering of the SDNodes. It roughly corresponds to the ordering of the
    569   // original LLVM instructions.
    570   // This is used for turning off scheduling, because we'll forgo
    571   // the normal scheduling algorithms and output the instructions according to
    572   // this ordering.
    573   unsigned IROrder;
    574 
    575   /// Source line information.
    576   DebugLoc debugLoc;
    577 
    578   /// Return a pointer to the specified value type.
    579   static const EVT *getValueTypeList(EVT VT);
    580 
    581   SDNodeFlags Flags;
    582 
    583 public:
    584   /// Unique and persistent id per SDNode in the DAG.
    585   /// Used for debug printing.
    586   uint16_t PersistentId;
    587 
    588   //===--------------------------------------------------------------------===//
    589   //  Accessors
    590   //
    591 
    592   /// Return the SelectionDAG opcode value for this node. For
    593   /// pre-isel nodes (those for which isMachineOpcode returns false), these
    594   /// are the opcode values in the ISD and <target>ISD namespaces. For
    595   /// post-isel opcodes, see getMachineOpcode.
    596   unsigned getOpcode()  const { return (unsigned short)NodeType; }
    597 
    598   /// Test if this node has a target-specific opcode (in the
    599   /// \<target\>ISD namespace).
    600   bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
    601 
    602   /// Test if this node has a target-specific
    603   /// memory-referencing opcode (in the \<target\>ISD namespace and
    604   /// greater than FIRST_TARGET_MEMORY_OPCODE).
    605   bool isTargetMemoryOpcode() const {
    606     return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
    607   }
    608 
    609   /// Return true if the type of the node type undefined.
    610   bool isUndef() const { return NodeType == ISD::UNDEF; }
    611 
    612   /// Test if this node is a memory intrinsic (with valid pointer information).
    613   /// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for
    614   /// non-memory intrinsics (with chains) that are not really instances of
    615   /// MemSDNode. For such nodes, we need some extra state to determine the
    616   /// proper classof relationship.
    617   bool isMemIntrinsic() const {
    618     return (NodeType == ISD::INTRINSIC_W_CHAIN ||
    619             NodeType == ISD::INTRINSIC_VOID) &&
    620            SDNodeBits.IsMemIntrinsic;
    621   }
    622 
    623   /// Test if this node is a strict floating point pseudo-op.
    624   bool isStrictFPOpcode() {
    625     switch (NodeType) {
    626       default:
    627         return false;
    628       case ISD::STRICT_FADD:
    629       case ISD::STRICT_FSUB:
    630       case ISD::STRICT_FMUL:
    631       case ISD::STRICT_FDIV:
    632       case ISD::STRICT_FREM:
    633       case ISD::STRICT_FMA:
    634       case ISD::STRICT_FSQRT:
    635       case ISD::STRICT_FPOW:
    636       case ISD::STRICT_FPOWI:
    637       case ISD::STRICT_FSIN:
    638       case ISD::STRICT_FCOS:
    639       case ISD::STRICT_FEXP:
    640       case ISD::STRICT_FEXP2:
    641       case ISD::STRICT_FLOG:
    642       case ISD::STRICT_FLOG10:
    643       case ISD::STRICT_FLOG2:
    644       case ISD::STRICT_FRINT:
    645       case ISD::STRICT_FNEARBYINT:
    646         return true;
    647     }
    648   }
    649 
    650   /// Test if this node has a post-isel opcode, directly
    651   /// corresponding to a MachineInstr opcode.
    652   bool isMachineOpcode() const { return NodeType < 0; }
    653 
    654   /// This may only be called if isMachineOpcode returns
    655   /// true. It returns the MachineInstr opcode value that the node's opcode
    656   /// corresponds to.
    657   unsigned getMachineOpcode() const {
    658     assert(isMachineOpcode() && "Not a MachineInstr opcode!");
    659     return ~NodeType;
    660   }
    661 
    662   bool getHasDebugValue() const { return SDNodeBits.HasDebugValue; }
    663   void setHasDebugValue(bool b) { SDNodeBits.HasDebugValue = b; }
    664 
    665   /// Return true if there are no uses of this node.
    666   bool use_empty() const { return UseList == nullptr; }
    667 
    668   /// Return true if there is exactly one use of this node.
    669   bool hasOneUse() const {
    670     return !use_empty() && std::next(use_begin()) == use_end();
    671   }
    672 
    673   /// Return the number of uses of this node. This method takes
    674   /// time proportional to the number of uses.
    675   size_t use_size() const { return std::distance(use_begin(), use_end()); }
    676 
    677   /// Return the unique node id.
    678   int getNodeId() const { return NodeId; }
    679 
    680   /// Set unique node id.
    681   void setNodeId(int Id) { NodeId = Id; }
    682 
    683   /// Return the node ordering.
    684   unsigned getIROrder() const { return IROrder; }
    685 
    686   /// Set the node ordering.
    687   void setIROrder(unsigned Order) { IROrder = Order; }
    688 
    689   /// Return the source location info.
    690   const DebugLoc &getDebugLoc() const { return debugLoc; }
    691 
    692   /// Set source location info.  Try to avoid this, putting
    693   /// it in the constructor is preferable.
    694   void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); }
    695 
    696   /// This class provides iterator support for SDUse
    697   /// operands that use a specific SDNode.
    698   class use_iterator
    699     : public std::iterator<std::forward_iterator_tag, SDUse, ptrdiff_t> {
    700     friend class SDNode;
    701 
    702     SDUse *Op = nullptr;
    703 
    704     explicit use_iterator(SDUse *op) : Op(op) {}
    705 
    706   public:
    707     using reference = std::iterator<std::forward_iterator_tag,
    708                                     SDUse, ptrdiff_t>::reference;
    709     using pointer = std::iterator<std::forward_iterator_tag,
    710                                   SDUse, ptrdiff_t>::pointer;
    711 
    712     use_iterator() = default;
    713     use_iterator(const use_iterator &I) : Op(I.Op) {}
    714 
    715     bool operator==(const use_iterator &x) const {
    716       return Op == x.Op;
    717     }
    718     bool operator!=(const use_iterator &x) const {
    719       return !operator==(x);
    720     }
    721 
    722     /// Return true if this iterator is at the end of uses list.
    723     bool atEnd() const { return Op == nullptr; }
    724 
    725     // Iterator traversal: forward iteration only.
    726     use_iterator &operator++() {          // Preincrement
    727       assert(Op && "Cannot increment end iterator!");
    728       Op = Op->getNext();
    729       return *this;
    730     }
    731 
    732     use_iterator operator++(int) {        // Postincrement
    733       use_iterator tmp = *this; ++*this; return tmp;
    734     }
    735 
    736     /// Retrieve a pointer to the current user node.
    737     SDNode *operator*() const {
    738       assert(Op && "Cannot dereference end iterator!");
    739       return Op->getUser();
    740     }
    741 
    742     SDNode *operator->() const { return operator*(); }
    743 
    744     SDUse &getUse() const { return *Op; }
    745 
    746     /// Retrieve the operand # of this use in its user.
    747     unsigned getOperandNo() const {
    748       assert(Op && "Cannot dereference end iterator!");
    749       return (unsigned)(Op - Op->getUser()->OperandList);
    750     }
    751   };
    752 
    753   /// Provide iteration support to walk over all uses of an SDNode.
    754   use_iterator use_begin() const {
    755     return use_iterator(UseList);
    756   }
    757 
    758   static use_iterator use_end() { return use_iterator(nullptr); }
    759 
    760   inline iterator_range<use_iterator> uses() {
    761     return make_range(use_begin(), use_end());
    762   }
    763   inline iterator_range<use_iterator> uses() const {
    764     return make_range(use_begin(), use_end());
    765   }
    766 
    767   /// Return true if there are exactly NUSES uses of the indicated value.
    768   /// This method ignores uses of other values defined by this operation.
    769   bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
    770 
    771   /// Return true if there are any use of the indicated value.
    772   /// This method ignores uses of other values defined by this operation.
    773   bool hasAnyUseOfValue(unsigned Value) const;
    774 
    775   /// Return true if this node is the only use of N.
    776   bool isOnlyUserOf(const SDNode *N) const;
    777 
    778   /// Return true if this node is an operand of N.
    779   bool isOperandOf(const SDNode *N) const;
    780 
    781   /// Return true if this node is a predecessor of N.
    782   /// NOTE: Implemented on top of hasPredecessor and every bit as
    783   /// expensive. Use carefully.
    784   bool isPredecessorOf(const SDNode *N) const {
    785     return N->hasPredecessor(this);
    786   }
    787 
    788   /// Return true if N is a predecessor of this node.
    789   /// N is either an operand of this node, or can be reached by recursively
    790   /// traversing up the operands.
    791   /// NOTE: This is an expensive method. Use it carefully.
    792   bool hasPredecessor(const SDNode *N) const;
    793 
    794   /// Returns true if N is a predecessor of any node in Worklist. This
    795   /// helper keeps Visited and Worklist sets externally to allow unions
    796   /// searches to be performed in parallel, caching of results across
    797   /// queries and incremental addition to Worklist. Stops early if N is
    798   /// found but will resume. Remember to clear Visited and Worklists
    799   /// if DAG changes.
    800   static bool hasPredecessorHelper(const SDNode *N,
    801                                    SmallPtrSetImpl<const SDNode *> &Visited,
    802                                    SmallVectorImpl<const SDNode *> &Worklist,
    803                                    unsigned int MaxSteps = 0) {
    804     if (Visited.count(N))
    805       return true;
    806     while (!Worklist.empty()) {
    807       const SDNode *M = Worklist.pop_back_val();
    808       bool Found = false;
    809       for (const SDValue &OpV : M->op_values()) {
    810         SDNode *Op = OpV.getNode();
    811         if (Visited.insert(Op).second)
    812           Worklist.push_back(Op);
    813         if (Op == N)
    814           Found = true;
    815       }
    816       if (Found)
    817         return true;
    818       if (MaxSteps != 0 && Visited.size() >= MaxSteps)
    819         return false;
    820     }
    821     return false;
    822   }
    823 
    824   /// Return true if all the users of N are contained in Nodes.
    825   /// NOTE: Requires at least one match, but doesn't require them all.
    826   static bool areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N);
    827 
    828   /// Return the number of values used by this operation.
    829   unsigned getNumOperands() const { return NumOperands; }
    830 
    831   /// Helper method returns the integer value of a ConstantSDNode operand.
    832   inline uint64_t getConstantOperandVal(unsigned Num) const;
    833 
    834   const SDValue &getOperand(unsigned Num) const {
    835     assert(Num < NumOperands && "Invalid child # of SDNode!");
    836     return OperandList[Num];
    837   }
    838 
    839   using op_iterator = SDUse *;
    840 
    841   op_iterator op_begin() const { return OperandList; }
    842   op_iterator op_end() const { return OperandList+NumOperands; }
    843   ArrayRef<SDUse> ops() const { return makeArrayRef(op_begin(), op_end()); }
    844 
    845   /// Iterator for directly iterating over the operand SDValue's.
    846   struct value_op_iterator
    847       : iterator_adaptor_base<value_op_iterator, op_iterator,
    848                               std::random_access_iterator_tag, SDValue,
    849                               ptrdiff_t, value_op_iterator *,
    850                               value_op_iterator *> {
    851     explicit value_op_iterator(SDUse *U = nullptr)
    852       : iterator_adaptor_base(U) {}
    853 
    854     const SDValue &operator*() const { return I->get(); }
    855   };
    856 
    857   iterator_range<value_op_iterator> op_values() const {
    858     return make_range(value_op_iterator(op_begin()),
    859                       value_op_iterator(op_end()));
    860   }
    861 
    862   SDVTList getVTList() const {
    863     SDVTList X = { ValueList, NumValues };
    864     return X;
    865   }
    866 
    867   /// If this node has a glue operand, return the node
    868   /// to which the glue operand points. Otherwise return NULL.
    869   SDNode *getGluedNode() const {
    870     if (getNumOperands() != 0 &&
    871         getOperand(getNumOperands()-1).getValueType() == MVT::Glue)
    872       return getOperand(getNumOperands()-1).getNode();
    873     return nullptr;
    874   }
    875 
    876   /// If this node has a glue value with a user, return
    877   /// the user (there is at most one). Otherwise return NULL.
    878   SDNode *getGluedUser() const {
    879     for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI)
    880       if (UI.getUse().get().getValueType() == MVT::Glue)
    881         return *UI;
    882     return nullptr;
    883   }
    884 
    885   const SDNodeFlags getFlags() const { return Flags; }
    886   void setFlags(SDNodeFlags NewFlags) { Flags = NewFlags; }
    887 
    888   /// Clear any flags in this node that aren't also set in Flags.
    889   /// If Flags is not in a defined state then this has no effect.
    890   void intersectFlagsWith(const SDNodeFlags Flags);
    891 
    892   /// Return the number of values defined/returned by this operator.
    893   unsigned getNumValues() const { return NumValues; }
    894 
    895   /// Return the type of a specified result.
    896   EVT getValueType(unsigned ResNo) const {
    897     assert(ResNo < NumValues && "Illegal result number!");
    898     return ValueList[ResNo];
    899   }
    900 
    901   /// Return the type of a specified result as a simple type.
    902   MVT getSimpleValueType(unsigned ResNo) const {
    903     return getValueType(ResNo).getSimpleVT();
    904   }
    905 
    906   /// Returns MVT::getSizeInBits(getValueType(ResNo)).
    907   unsigned getValueSizeInBits(unsigned ResNo) const {
    908     return getValueType(ResNo).getSizeInBits();
    909   }
    910 
    911   using value_iterator = const EVT *;
    912 
    913   value_iterator value_begin() const { return ValueList; }
    914   value_iterator value_end() const { return ValueList+NumValues; }
    915 
    916   /// Return the opcode of this operation for printing.
    917   std::string getOperationName(const SelectionDAG *G = nullptr) const;
    918   static const char* getIndexedModeName(ISD::MemIndexedMode AM);
    919   void print_types(raw_ostream &OS, const SelectionDAG *G) const;
    920   void print_details(raw_ostream &OS, const SelectionDAG *G) const;
    921   void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
    922   void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
    923 
    924   /// Print a SelectionDAG node and all children down to
    925   /// the leaves.  The given SelectionDAG allows target-specific nodes
    926   /// to be printed in human-readable form.  Unlike printr, this will
    927   /// print the whole DAG, including children that appear multiple
    928   /// times.
    929   ///
    930   void printrFull(raw_ostream &O, const SelectionDAG *G = nullptr) const;
    931 
    932   /// Print a SelectionDAG node and children up to
    933   /// depth "depth."  The given SelectionDAG allows target-specific
    934   /// nodes to be printed in human-readable form.  Unlike printr, this
    935   /// will print children that appear multiple times wherever they are
    936   /// used.
    937   ///
    938   void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr,
    939                        unsigned depth = 100) const;
    940 
    941   /// Dump this node, for debugging.
    942   void dump() const;
    943 
    944   /// Dump (recursively) this node and its use-def subgraph.
    945   void dumpr() const;
    946 
    947   /// Dump this node, for debugging.
    948   /// The given SelectionDAG allows target-specific nodes to be printed
    949   /// in human-readable form.
    950   void dump(const SelectionDAG *G) const;
    951 
    952   /// Dump (recursively) this node and its use-def subgraph.
    953   /// The given SelectionDAG allows target-specific nodes to be printed
    954   /// in human-readable form.
    955   void dumpr(const SelectionDAG *G) const;
    956 
    957   /// printrFull to dbgs().  The given SelectionDAG allows
    958   /// target-specific nodes to be printed in human-readable form.
    959   /// Unlike dumpr, this will print the whole DAG, including children
    960   /// that appear multiple times.
    961   void dumprFull(const SelectionDAG *G = nullptr) const;
    962 
    963   /// printrWithDepth to dbgs().  The given
    964   /// SelectionDAG allows target-specific nodes to be printed in
    965   /// human-readable form.  Unlike dumpr, this will print children
    966   /// that appear multiple times wherever they are used.
    967   ///
    968   void dumprWithDepth(const SelectionDAG *G = nullptr,
    969                       unsigned depth = 100) const;
    970 
    971   /// Gather unique data for the node.
    972   void Profile(FoldingSetNodeID &ID) const;
    973 
    974   /// This method should only be used by the SDUse class.
    975   void addUse(SDUse &U) { U.addToList(&UseList); }
    976 
    977 protected:
    978   static SDVTList getSDVTList(EVT VT) {
    979     SDVTList Ret = { getValueTypeList(VT), 1 };
    980     return Ret;
    981   }
    982 
    983   /// Create an SDNode.
    984   ///
    985   /// SDNodes are created without any operands, and never own the operand
    986   /// storage. To add operands, see SelectionDAG::createOperands.
    987   SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
    988       : NodeType(Opc), ValueList(VTs.VTs), NumValues(VTs.NumVTs),
    989         IROrder(Order), debugLoc(std::move(dl)) {
    990     memset(&RawSDNodeBits, 0, sizeof(RawSDNodeBits));
    991     assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
    992     assert(NumValues == VTs.NumVTs &&
    993            "NumValues wasn't wide enough for its operands!");
    994   }
    995 
    996   /// Release the operands and set this node to have zero operands.
    997   void DropOperands();
    998 };
    999 
   1000 /// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed
   1001 /// into SDNode creation functions.
   1002 /// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted
   1003 /// from the original Instruction, and IROrder is the ordinal position of
   1004 /// the instruction.
   1005 /// When an SDNode is created after the DAG is being built, both DebugLoc and
   1006 /// the IROrder are propagated from the original SDNode.
   1007 /// So SDLoc class provides two constructors besides the default one, one to
   1008 /// be used by the DAGBuilder, the other to be used by others.
   1009 class SDLoc {
   1010 private:
   1011   DebugLoc DL;
   1012   int IROrder = 0;
   1013 
   1014 public:
   1015   SDLoc() = default;
   1016   SDLoc(const SDNode *N) : DL(N->getDebugLoc()), IROrder(N->getIROrder()) {}
   1017   SDLoc(const SDValue V) : SDLoc(V.getNode()) {}
   1018   SDLoc(const Instruction *I, int Order) : IROrder(Order) {
   1019     assert(Order >= 0 && "bad IROrder");
   1020     if (I)
   1021       DL = I->getDebugLoc();
   1022   }
   1023 
   1024   unsigned getIROrder() const { return IROrder; }
   1025   const DebugLoc &getDebugLoc() const { return DL; }
   1026 };
   1027 
   1028 // Define inline functions from the SDValue class.
   1029 
   1030 inline SDValue::SDValue(SDNode *node, unsigned resno)
   1031     : Node(node), ResNo(resno) {
   1032   // Explicitly check for !ResNo to avoid use-after-free, because there are
   1033   // callers that use SDValue(N, 0) with a deleted N to indicate successful
   1034   // combines.
   1035   assert((!Node || !ResNo || ResNo < Node->getNumValues()) &&
   1036          "Invalid result number for the given node!");
   1037   assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps.");
   1038 }
   1039 
   1040 inline unsigned SDValue::getOpcode() const {
   1041   return Node->getOpcode();
   1042 }
   1043 
   1044 inline EVT SDValue::getValueType() const {
   1045   return Node->getValueType(ResNo);
   1046 }
   1047 
   1048 inline unsigned SDValue::getNumOperands() const {
   1049   return Node->getNumOperands();
   1050 }
   1051 
   1052 inline const SDValue &SDValue::getOperand(unsigned i) const {
   1053   return Node->getOperand(i);
   1054 }
   1055 
   1056 inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
   1057   return Node->getConstantOperandVal(i);
   1058 }
   1059 
   1060 inline bool SDValue::isTargetOpcode() const {
   1061   return Node->isTargetOpcode();
   1062 }
   1063 
   1064 inline bool SDValue::isTargetMemoryOpcode() const {
   1065   return Node->isTargetMemoryOpcode();
   1066 }
   1067 
   1068 inline bool SDValue::isMachineOpcode() const {
   1069   return Node->isMachineOpcode();
   1070 }
   1071 
   1072 inline unsigned SDValue::getMachineOpcode() const {
   1073   return Node->getMachineOpcode();
   1074 }
   1075 
   1076 inline bool SDValue::isUndef() const {
   1077   return Node->isUndef();
   1078 }
   1079 
   1080 inline bool SDValue::use_empty() const {
   1081   return !Node->hasAnyUseOfValue(ResNo);
   1082 }
   1083 
   1084 inline bool SDValue::hasOneUse() const {
   1085   return Node->hasNUsesOfValue(1, ResNo);
   1086 }
   1087 
   1088 inline const DebugLoc &SDValue::getDebugLoc() const {
   1089   return Node->getDebugLoc();
   1090 }
   1091 
   1092 inline void SDValue::dump() const {
   1093   return Node->dump();
   1094 }
   1095 
   1096 inline void SDValue::dumpr() const {
   1097   return Node->dumpr();
   1098 }
   1099 
   1100 // Define inline functions from the SDUse class.
   1101 
   1102 inline void SDUse::set(const SDValue &V) {
   1103   if (Val.getNode()) removeFromList();
   1104   Val = V;
   1105   if (V.getNode()) V.getNode()->addUse(*this);
   1106 }
   1107 
   1108 inline void SDUse::setInitial(const SDValue &V) {
   1109   Val = V;
   1110   V.getNode()->addUse(*this);
   1111 }
   1112 
   1113 inline void SDUse::setNode(SDNode *N) {
   1114   if (Val.getNode()) removeFromList();
   1115   Val.setNode(N);
   1116   if (N) N->addUse(*this);
   1117 }
   1118 
   1119 /// This class is used to form a handle around another node that
   1120 /// is persistent and is updated across invocations of replaceAllUsesWith on its
   1121 /// operand.  This node should be directly created by end-users and not added to
   1122 /// the AllNodes list.
   1123 class HandleSDNode : public SDNode {
   1124   SDUse Op;
   1125 
   1126 public:
   1127   explicit HandleSDNode(SDValue X)
   1128     : SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) {
   1129     // HandleSDNodes are never inserted into the DAG, so they won't be
   1130     // auto-numbered. Use ID 65535 as a sentinel.
   1131     PersistentId = 0xffff;
   1132 
   1133     // Manually set up the operand list. This node type is special in that it's
   1134     // always stack allocated and SelectionDAG does not manage its operands.
   1135     // TODO: This should either (a) not be in the SDNode hierarchy, or (b) not
   1136     // be so special.
   1137     Op.setUser(this);
   1138     Op.setInitial(X);
   1139     NumOperands = 1;
   1140     OperandList = &Op;
   1141   }
   1142   ~HandleSDNode();
   1143 
   1144   const SDValue &getValue() const { return Op; }
   1145 };
   1146 
   1147 class AddrSpaceCastSDNode : public SDNode {
   1148 private:
   1149   unsigned SrcAddrSpace;
   1150   unsigned DestAddrSpace;
   1151 
   1152 public:
   1153   AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, EVT VT,
   1154                       unsigned SrcAS, unsigned DestAS);
   1155 
   1156   unsigned getSrcAddressSpace() const { return SrcAddrSpace; }
   1157   unsigned getDestAddressSpace() const { return DestAddrSpace; }
   1158 
   1159   static bool classof(const SDNode *N) {
   1160     return N->getOpcode() == ISD::ADDRSPACECAST;
   1161   }
   1162 };
   1163 
   1164 /// This is an abstract virtual class for memory operations.
   1165 class MemSDNode : public SDNode {
   1166 private:
   1167   // VT of in-memory value.
   1168   EVT MemoryVT;
   1169 
   1170 protected:
   1171   /// Memory reference information.
   1172   MachineMemOperand *MMO;
   1173 
   1174 public:
   1175   MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs,
   1176             EVT MemoryVT, MachineMemOperand *MMO);
   1177 
   1178   bool readMem() const { return MMO->isLoad(); }
   1179   bool writeMem() const { return MMO->isStore(); }
   1180 
   1181   /// Returns alignment and volatility of the memory access
   1182   unsigned getOriginalAlignment() const {
   1183     return MMO->getBaseAlignment();
   1184   }
   1185   unsigned getAlignment() const {
   1186     return MMO->getAlignment();
   1187   }
   1188 
   1189   /// Return the SubclassData value, without HasDebugValue. This contains an
   1190   /// encoding of the volatile flag, as well as bits used by subclasses. This
   1191   /// function should only be used to compute a FoldingSetNodeID value.
   1192   /// The HasDebugValue bit is masked out because CSE map needs to match
   1193   /// nodes with debug info with nodes without debug info.
   1194   unsigned getRawSubclassData() const {
   1195     uint16_t Data;
   1196     union {
   1197       char RawSDNodeBits[sizeof(uint16_t)];
   1198       SDNodeBitfields SDNodeBits;
   1199     };
   1200     memcpy(&RawSDNodeBits, &this->RawSDNodeBits, sizeof(this->RawSDNodeBits));
   1201     SDNodeBits.HasDebugValue = 0;
   1202     memcpy(&Data, &RawSDNodeBits, sizeof(RawSDNodeBits));
   1203     return Data;
   1204   }
   1205 
   1206   bool isVolatile() const { return MemSDNodeBits.IsVolatile; }
   1207   bool isNonTemporal() const { return MemSDNodeBits.IsNonTemporal; }
   1208   bool isDereferenceable() const { return MemSDNodeBits.IsDereferenceable; }
   1209   bool isInvariant() const { return MemSDNodeBits.IsInvariant; }
   1210 
   1211   // Returns the offset from the location of the access.
   1212   int64_t getSrcValueOffset() const { return MMO->getOffset(); }
   1213 
   1214   /// Returns the AA info that describes the dereference.
   1215   AAMDNodes getAAInfo() const { return MMO->getAAInfo(); }
   1216 
   1217   /// Returns the Ranges that describes the dereference.
   1218   const MDNode *getRanges() const { return MMO->getRanges(); }
   1219 
   1220   /// Returns the synchronization scope ID for this memory operation.
   1221   SyncScope::ID getSyncScopeID() const { return MMO->getSyncScopeID(); }
   1222 
   1223   /// Return the atomic ordering requirements for this memory operation. For
   1224   /// cmpxchg atomic operations, return the atomic ordering requirements when
   1225   /// store occurs.
   1226   AtomicOrdering getOrdering() const { return MMO->getOrdering(); }
   1227 
   1228   /// Return the type of the in-memory value.
   1229   EVT getMemoryVT() const { return MemoryVT; }
   1230 
   1231   /// Return a MachineMemOperand object describing the memory
   1232   /// reference performed by operation.
   1233   MachineMemOperand *getMemOperand() const { return MMO; }
   1234 
   1235   const MachinePointerInfo &getPointerInfo() const {
   1236     return MMO->getPointerInfo();
   1237   }
   1238 
   1239   /// Return the address space for the associated pointer
   1240   unsigned getAddressSpace() const {
   1241     return getPointerInfo().getAddrSpace();
   1242   }
   1243 
   1244   /// Update this MemSDNode's MachineMemOperand information
   1245   /// to reflect the alignment of NewMMO, if it has a greater alignment.
   1246   /// This must only be used when the new alignment applies to all users of
   1247   /// this MachineMemOperand.
   1248   void refineAlignment(const MachineMemOperand *NewMMO) {
   1249     MMO->refineAlignment(NewMMO);
   1250   }
   1251 
   1252   const SDValue &getChain() const { return getOperand(0); }
   1253   const SDValue &getBasePtr() const {
   1254     return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
   1255   }
   1256 
   1257   // Methods to support isa and dyn_cast
   1258   static bool classof(const SDNode *N) {
   1259     // For some targets, we lower some target intrinsics to a MemIntrinsicNode
   1260     // with either an intrinsic or a target opcode.
   1261     return N->getOpcode() == ISD::LOAD                ||
   1262            N->getOpcode() == ISD::STORE               ||
   1263            N->getOpcode() == ISD::PREFETCH            ||
   1264            N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
   1265            N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
   1266            N->getOpcode() == ISD::ATOMIC_SWAP         ||
   1267            N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
   1268            N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
   1269            N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
   1270            N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
   1271            N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
   1272            N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
   1273            N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
   1274            N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
   1275            N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
   1276            N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
   1277            N->getOpcode() == ISD::ATOMIC_LOAD         ||
   1278            N->getOpcode() == ISD::ATOMIC_STORE        ||
   1279            N->getOpcode() == ISD::MLOAD               ||
   1280            N->getOpcode() == ISD::MSTORE              ||
   1281            N->getOpcode() == ISD::MGATHER             ||
   1282            N->getOpcode() == ISD::MSCATTER            ||
   1283            N->isMemIntrinsic()                        ||
   1284            N->isTargetMemoryOpcode();
   1285   }
   1286 };
   1287 
   1288 /// This is an SDNode representing atomic operations.
   1289 class AtomicSDNode : public MemSDNode {
   1290 public:
   1291   AtomicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTL,
   1292                EVT MemVT, MachineMemOperand *MMO)
   1293       : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {}
   1294 
   1295   const SDValue &getBasePtr() const { return getOperand(1); }
   1296   const SDValue &getVal() const { return getOperand(2); }
   1297 
   1298   /// Returns true if this SDNode represents cmpxchg atomic operation, false
   1299   /// otherwise.
   1300   bool isCompareAndSwap() const {
   1301     unsigned Op = getOpcode();
   1302     return Op == ISD::ATOMIC_CMP_SWAP ||
   1303            Op == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS;
   1304   }
   1305 
   1306   /// For cmpxchg atomic operations, return the atomic ordering requirements
   1307   /// when store does not occur.
   1308   AtomicOrdering getFailureOrdering() const {
   1309     assert(isCompareAndSwap() && "Must be cmpxchg operation");
   1310     return MMO->getFailureOrdering();
   1311   }
   1312 
   1313   // Methods to support isa and dyn_cast
   1314   static bool classof(const SDNode *N) {
   1315     return N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
   1316            N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
   1317            N->getOpcode() == ISD::ATOMIC_SWAP         ||
   1318            N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
   1319            N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
   1320            N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
   1321            N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
   1322            N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
   1323            N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
   1324            N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
   1325            N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
   1326            N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
   1327            N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
   1328            N->getOpcode() == ISD::ATOMIC_LOAD         ||
   1329            N->getOpcode() == ISD::ATOMIC_STORE;
   1330   }
   1331 };
   1332 
   1333 /// This SDNode is used for target intrinsics that touch
   1334 /// memory and need an associated MachineMemOperand. Its opcode may be
   1335 /// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode
   1336 /// with a value not less than FIRST_TARGET_MEMORY_OPCODE.
   1337 class MemIntrinsicSDNode : public MemSDNode {
   1338 public:
   1339   MemIntrinsicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
   1340                      SDVTList VTs, EVT MemoryVT, MachineMemOperand *MMO)
   1341       : MemSDNode(Opc, Order, dl, VTs, MemoryVT, MMO) {
   1342     SDNodeBits.IsMemIntrinsic = true;
   1343   }
   1344 
   1345   // Methods to support isa and dyn_cast
   1346   static bool classof(const SDNode *N) {
   1347     // We lower some target intrinsics to their target opcode
   1348     // early a node with a target opcode can be of this class
   1349     return N->isMemIntrinsic()             ||
   1350            N->getOpcode() == ISD::PREFETCH ||
   1351            N->isTargetMemoryOpcode();
   1352   }
   1353 };
   1354 
   1355 /// This SDNode is used to implement the code generator
   1356 /// support for the llvm IR shufflevector instruction.  It combines elements
   1357 /// from two input vectors into a new input vector, with the selection and
   1358 /// ordering of elements determined by an array of integers, referred to as
   1359 /// the shuffle mask.  For input vectors of width N, mask indices of 0..N-1
   1360 /// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
   1361 /// An index of -1 is treated as undef, such that the code generator may put
   1362 /// any value in the corresponding element of the result.
   1363 class ShuffleVectorSDNode : public SDNode {
   1364   // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
   1365   // is freed when the SelectionDAG object is destroyed.
   1366   const int *Mask;
   1367 
   1368 protected:
   1369   friend class SelectionDAG;
   1370 
   1371   ShuffleVectorSDNode(EVT VT, unsigned Order, const DebugLoc &dl, const int *M)
   1372       : SDNode(ISD::VECTOR_SHUFFLE, Order, dl, getSDVTList(VT)), Mask(M) {}
   1373 
   1374 public:
   1375   ArrayRef<int> getMask() const {
   1376     EVT VT = getValueType(0);
   1377     return makeArrayRef(Mask, VT.getVectorNumElements());
   1378   }
   1379 
   1380   int getMaskElt(unsigned Idx) const {
   1381     assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
   1382     return Mask[Idx];
   1383   }
   1384 
   1385   bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
   1386 
   1387   int  getSplatIndex() const {
   1388     assert(isSplat() && "Cannot get splat index for non-splat!");
   1389     EVT VT = getValueType(0);
   1390     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
   1391       if (Mask[i] >= 0)
   1392         return Mask[i];
   1393     }
   1394     llvm_unreachable("Splat with all undef indices?");
   1395   }
   1396 
   1397   static bool isSplatMask(const int *Mask, EVT VT);
   1398 
   1399   /// Change values in a shuffle permute mask assuming
   1400   /// the two vector operands have swapped position.
   1401   static void commuteMask(MutableArrayRef<int> Mask) {
   1402     unsigned NumElems = Mask.size();
   1403     for (unsigned i = 0; i != NumElems; ++i) {
   1404       int idx = Mask[i];
   1405       if (idx < 0)
   1406         continue;
   1407       else if (idx < (int)NumElems)
   1408         Mask[i] = idx + NumElems;
   1409       else
   1410         Mask[i] = idx - NumElems;
   1411     }
   1412   }
   1413 
   1414   static bool classof(const SDNode *N) {
   1415     return N->getOpcode() == ISD::VECTOR_SHUFFLE;
   1416   }
   1417 };
   1418 
   1419 class ConstantSDNode : public SDNode {
   1420   friend class SelectionDAG;
   1421 
   1422   const ConstantInt *Value;
   1423 
   1424   ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val,
   1425                  const DebugLoc &DL, EVT VT)
   1426       : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, 0, DL,
   1427                getSDVTList(VT)),
   1428         Value(val) {
   1429     ConstantSDNodeBits.IsOpaque = isOpaque;
   1430   }
   1431 
   1432 public:
   1433   const ConstantInt *getConstantIntValue() const { return Value; }
   1434   const APInt &getAPIntValue() const { return Value->getValue(); }
   1435   uint64_t getZExtValue() const { return Value->getZExtValue(); }
   1436   int64_t getSExtValue() const { return Value->getSExtValue(); }
   1437   uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) {
   1438     return Value->getLimitedValue(Limit);
   1439   }
   1440 
   1441   bool isOne() const { return Value->isOne(); }
   1442   bool isNullValue() const { return Value->isZero(); }
   1443   bool isAllOnesValue() const { return Value->isMinusOne(); }
   1444 
   1445   bool isOpaque() const { return ConstantSDNodeBits.IsOpaque; }
   1446 
   1447   static bool classof(const SDNode *N) {
   1448     return N->getOpcode() == ISD::Constant ||
   1449            N->getOpcode() == ISD::TargetConstant;
   1450   }
   1451 };
   1452 
   1453 uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
   1454   return cast<ConstantSDNode>(getOperand(Num))->getZExtValue();
   1455 }
   1456 
   1457 class ConstantFPSDNode : public SDNode {
   1458   friend class SelectionDAG;
   1459 
   1460   const ConstantFP *Value;
   1461 
   1462   ConstantFPSDNode(bool isTarget, const ConstantFP *val, const DebugLoc &DL,
   1463                    EVT VT)
   1464       : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, 0, DL,
   1465                getSDVTList(VT)),
   1466         Value(val) {}
   1467 
   1468 public:
   1469   const APFloat& getValueAPF() const { return Value->getValueAPF(); }
   1470   const ConstantFP *getConstantFPValue() const { return Value; }
   1471 
   1472   /// Return true if the value is positive or negative zero.
   1473   bool isZero() const { return Value->isZero(); }
   1474 
   1475   /// Return true if the value is a NaN.
   1476   bool isNaN() const { return Value->isNaN(); }
   1477 
   1478   /// Return true if the value is an infinity
   1479   bool isInfinity() const { return Value->isInfinity(); }
   1480 
   1481   /// Return true if the value is negative.
   1482   bool isNegative() const { return Value->isNegative(); }
   1483 
   1484   /// We don't rely on operator== working on double values, as
   1485   /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
   1486   /// As such, this method can be used to do an exact bit-for-bit comparison of
   1487   /// two floating point values.
   1488 
   1489   /// We leave the version with the double argument here because it's just so
   1490   /// convenient to write "2.0" and the like.  Without this function we'd
   1491   /// have to duplicate its logic everywhere it's called.
   1492   bool isExactlyValue(double V) const {
   1493     return Value->getValueAPF().isExactlyValue(V);
   1494   }
   1495   bool isExactlyValue(const APFloat& V) const;
   1496 
   1497   static bool isValueValidForType(EVT VT, const APFloat& Val);
   1498 
   1499   static bool classof(const SDNode *N) {
   1500     return N->getOpcode() == ISD::ConstantFP ||
   1501            N->getOpcode() == ISD::TargetConstantFP;
   1502   }
   1503 };
   1504 
   1505 /// Returns true if \p V is a constant integer zero.
   1506 bool isNullConstant(SDValue V);
   1507 
   1508 /// Returns true if \p V is an FP constant with a value of positive zero.
   1509 bool isNullFPConstant(SDValue V);
   1510 
   1511 /// Returns true if \p V is an integer constant with all bits set.
   1512 bool isAllOnesConstant(SDValue V);
   1513 
   1514 /// Returns true if \p V is a constant integer one.
   1515 bool isOneConstant(SDValue V);
   1516 
   1517 /// Returns true if \p V is a bitwise not operation. Assumes that an all ones
   1518 /// constant is canonicalized to be operand 1.
   1519 bool isBitwiseNot(SDValue V);
   1520 
   1521 /// Returns the SDNode if it is a constant splat BuildVector or constant int.
   1522 ConstantSDNode *isConstOrConstSplat(SDValue V);
   1523 
   1524 /// Returns the SDNode if it is a constant splat BuildVector or constant float.
   1525 ConstantFPSDNode *isConstOrConstSplatFP(SDValue V);
   1526 
   1527 class GlobalAddressSDNode : public SDNode {
   1528   friend class SelectionDAG;
   1529 
   1530   const GlobalValue *TheGlobal;
   1531   int64_t Offset;
   1532   unsigned char TargetFlags;
   1533 
   1534   GlobalAddressSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL,
   1535                       const GlobalValue *GA, EVT VT, int64_t o,
   1536                       unsigned char TargetFlags);
   1537 
   1538 public:
   1539   const GlobalValue *getGlobal() const { return TheGlobal; }
   1540   int64_t getOffset() const { return Offset; }
   1541   unsigned char getTargetFlags() const { return TargetFlags; }
   1542   // Return the address space this GlobalAddress belongs to.
   1543   unsigned getAddressSpace() const;
   1544 
   1545   static bool classof(const SDNode *N) {
   1546     return N->getOpcode() == ISD::GlobalAddress ||
   1547            N->getOpcode() == ISD::TargetGlobalAddress ||
   1548            N->getOpcode() == ISD::GlobalTLSAddress ||
   1549            N->getOpcode() == ISD::TargetGlobalTLSAddress;
   1550   }
   1551 };
   1552 
   1553 class FrameIndexSDNode : public SDNode {
   1554   friend class SelectionDAG;
   1555 
   1556   int FI;
   1557 
   1558   FrameIndexSDNode(int fi, EVT VT, bool isTarg)
   1559     : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
   1560       0, DebugLoc(), getSDVTList(VT)), FI(fi) {
   1561   }
   1562 
   1563 public:
   1564   int getIndex() const { return FI; }
   1565 
   1566   static bool classof(const SDNode *N) {
   1567     return N->getOpcode() == ISD::FrameIndex ||
   1568            N->getOpcode() == ISD::TargetFrameIndex;
   1569   }
   1570 };
   1571 
   1572 class JumpTableSDNode : public SDNode {
   1573   friend class SelectionDAG;
   1574 
   1575   int JTI;
   1576   unsigned char TargetFlags;
   1577 
   1578   JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned char TF)
   1579     : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
   1580       0, DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
   1581   }
   1582 
   1583 public:
   1584   int getIndex() const { return JTI; }
   1585   unsigned char getTargetFlags() const { return TargetFlags; }
   1586 
   1587   static bool classof(const SDNode *N) {
   1588     return N->getOpcode() == ISD::JumpTable ||
   1589            N->getOpcode() == ISD::TargetJumpTable;
   1590   }
   1591 };
   1592 
   1593 class ConstantPoolSDNode : public SDNode {
   1594   friend class SelectionDAG;
   1595 
   1596   union {
   1597     const Constant *ConstVal;
   1598     MachineConstantPoolValue *MachineCPVal;
   1599   } Val;
   1600   int Offset;  // It's a MachineConstantPoolValue if top bit is set.
   1601   unsigned Alignment;  // Minimum alignment requirement of CP (not log2 value).
   1602   unsigned char TargetFlags;
   1603 
   1604   ConstantPoolSDNode(bool isTarget, const Constant *c, EVT VT, int o,
   1605                      unsigned Align, unsigned char TF)
   1606     : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
   1607              DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Align),
   1608              TargetFlags(TF) {
   1609     assert(Offset >= 0 && "Offset is too large");
   1610     Val.ConstVal = c;
   1611   }
   1612 
   1613   ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
   1614                      EVT VT, int o, unsigned Align, unsigned char TF)
   1615     : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
   1616              DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Align),
   1617              TargetFlags(TF) {
   1618     assert(Offset >= 0 && "Offset is too large");
   1619     Val.MachineCPVal = v;
   1620     Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
   1621   }
   1622 
   1623 public:
   1624   bool isMachineConstantPoolEntry() const {
   1625     return Offset < 0;
   1626   }
   1627 
   1628   const Constant *getConstVal() const {
   1629     assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
   1630     return Val.ConstVal;
   1631   }
   1632 
   1633   MachineConstantPoolValue *getMachineCPVal() const {
   1634     assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
   1635     return Val.MachineCPVal;
   1636   }
   1637 
   1638   int getOffset() const {
   1639     return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
   1640   }
   1641 
   1642   // Return the alignment of this constant pool object, which is either 0 (for
   1643   // default alignment) or the desired value.
   1644   unsigned getAlignment() const { return Alignment; }
   1645   unsigned char getTargetFlags() const { return TargetFlags; }
   1646 
   1647   Type *getType() const;
   1648 
   1649   static bool classof(const SDNode *N) {
   1650     return N->getOpcode() == ISD::ConstantPool ||
   1651            N->getOpcode() == ISD::TargetConstantPool;
   1652   }
   1653 };
   1654 
   1655 /// Completely target-dependent object reference.
   1656 class TargetIndexSDNode : public SDNode {
   1657   friend class SelectionDAG;
   1658 
   1659   unsigned char TargetFlags;
   1660   int Index;
   1661   int64_t Offset;
   1662 
   1663 public:
   1664   TargetIndexSDNode(int Idx, EVT VT, int64_t Ofs, unsigned char TF)
   1665     : SDNode(ISD::TargetIndex, 0, DebugLoc(), getSDVTList(VT)),
   1666       TargetFlags(TF), Index(Idx), Offset(Ofs) {}
   1667 
   1668   unsigned char getTargetFlags() const { return TargetFlags; }
   1669   int getIndex() const { return Index; }
   1670   int64_t getOffset() const { return Offset; }
   1671 
   1672   static bool classof(const SDNode *N) {
   1673     return N->getOpcode() == ISD::TargetIndex;
   1674   }
   1675 };
   1676 
   1677 class BasicBlockSDNode : public SDNode {
   1678   friend class SelectionDAG;
   1679 
   1680   MachineBasicBlock *MBB;
   1681 
   1682   /// Debug info is meaningful and potentially useful here, but we create
   1683   /// blocks out of order when they're jumped to, which makes it a bit
   1684   /// harder.  Let's see if we need it first.
   1685   explicit BasicBlockSDNode(MachineBasicBlock *mbb)
   1686     : SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb)
   1687   {}
   1688 
   1689 public:
   1690   MachineBasicBlock *getBasicBlock() const { return MBB; }
   1691 
   1692   static bool classof(const SDNode *N) {
   1693     return N->getOpcode() == ISD::BasicBlock;
   1694   }
   1695 };
   1696 
   1697 /// A "pseudo-class" with methods for operating on BUILD_VECTORs.
   1698 class BuildVectorSDNode : public SDNode {
   1699 public:
   1700   // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
   1701   explicit BuildVectorSDNode() = delete;
   1702 
   1703   /// Check if this is a constant splat, and if so, find the
   1704   /// smallest element size that splats the vector.  If MinSplatBits is
   1705   /// nonzero, the element size must be at least that large.  Note that the
   1706   /// splat element may be the entire vector (i.e., a one element vector).
   1707   /// Returns the splat element value in SplatValue.  Any undefined bits in
   1708   /// that value are zero, and the corresponding bits in the SplatUndef mask
   1709   /// are set.  The SplatBitSize value is set to the splat element size in
   1710   /// bits.  HasAnyUndefs is set to true if any bits in the vector are
   1711   /// undefined.  isBigEndian describes the endianness of the target.
   1712   bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
   1713                        unsigned &SplatBitSize, bool &HasAnyUndefs,
   1714                        unsigned MinSplatBits = 0,
   1715                        bool isBigEndian = false) const;
   1716 
   1717   /// \brief Returns the splatted value or a null value if this is not a splat.
   1718   ///
   1719   /// If passed a non-null UndefElements bitvector, it will resize it to match
   1720   /// the vector width and set the bits where elements are undef.
   1721   SDValue getSplatValue(BitVector *UndefElements = nullptr) const;
   1722 
   1723   /// \brief Returns the splatted constant or null if this is not a constant
   1724   /// splat.
   1725   ///
   1726   /// If passed a non-null UndefElements bitvector, it will resize it to match
   1727   /// the vector width and set the bits where elements are undef.
   1728   ConstantSDNode *
   1729   getConstantSplatNode(BitVector *UndefElements = nullptr) const;
   1730 
   1731   /// \brief Returns the splatted constant FP or null if this is not a constant
   1732   /// FP splat.
   1733   ///
   1734   /// If passed a non-null UndefElements bitvector, it will resize it to match
   1735   /// the vector width and set the bits where elements are undef.
   1736   ConstantFPSDNode *
   1737   getConstantFPSplatNode(BitVector *UndefElements = nullptr) const;
   1738 
   1739   /// \brief If this is a constant FP splat and the splatted constant FP is an
   1740   /// exact power or 2, return the log base 2 integer value.  Otherwise,
   1741   /// return -1.
   1742   ///
   1743   /// The BitWidth specifies the necessary bit precision.
   1744   int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
   1745                                           uint32_t BitWidth) const;
   1746 
   1747   bool isConstant() const;
   1748 
   1749   static bool classof(const SDNode *N) {
   1750     return N->getOpcode() == ISD::BUILD_VECTOR;
   1751   }
   1752 };
   1753 
   1754 /// An SDNode that holds an arbitrary LLVM IR Value. This is
   1755 /// used when the SelectionDAG needs to make a simple reference to something
   1756 /// in the LLVM IR representation.
   1757 ///
   1758 class SrcValueSDNode : public SDNode {
   1759   friend class SelectionDAG;
   1760 
   1761   const Value *V;
   1762 
   1763   /// Create a SrcValue for a general value.
   1764   explicit SrcValueSDNode(const Value *v)
   1765     : SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {}
   1766 
   1767 public:
   1768   /// Return the contained Value.
   1769   const Value *getValue() const { return V; }
   1770 
   1771   static bool classof(const SDNode *N) {
   1772     return N->getOpcode() == ISD::SRCVALUE;
   1773   }
   1774 };
   1775 
   1776 class MDNodeSDNode : public SDNode {
   1777   friend class SelectionDAG;
   1778 
   1779   const MDNode *MD;
   1780 
   1781   explicit MDNodeSDNode(const MDNode *md)
   1782   : SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md)
   1783   {}
   1784 
   1785 public:
   1786   const MDNode *getMD() const { return MD; }
   1787 
   1788   static bool classof(const SDNode *N) {
   1789     return N->getOpcode() == ISD::MDNODE_SDNODE;
   1790   }
   1791 };
   1792 
   1793 class RegisterSDNode : public SDNode {
   1794   friend class SelectionDAG;
   1795 
   1796   unsigned Reg;
   1797 
   1798   RegisterSDNode(unsigned reg, EVT VT)
   1799     : SDNode(ISD::Register, 0, DebugLoc(), getSDVTList(VT)), Reg(reg) {}
   1800 
   1801 public:
   1802   unsigned getReg() const { return Reg; }
   1803 
   1804   static bool classof(const SDNode *N) {
   1805     return N->getOpcode() == ISD::Register;
   1806   }
   1807 };
   1808 
   1809 class RegisterMaskSDNode : public SDNode {
   1810   friend class SelectionDAG;
   1811 
   1812   // The memory for RegMask is not owned by the node.
   1813   const uint32_t *RegMask;
   1814 
   1815   RegisterMaskSDNode(const uint32_t *mask)
   1816     : SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)),
   1817       RegMask(mask) {}
   1818 
   1819 public:
   1820   const uint32_t *getRegMask() const { return RegMask; }
   1821 
   1822   static bool classof(const SDNode *N) {
   1823     return N->getOpcode() == ISD::RegisterMask;
   1824   }
   1825 };
   1826 
   1827 class BlockAddressSDNode : public SDNode {
   1828   friend class SelectionDAG;
   1829 
   1830   const BlockAddress *BA;
   1831   int64_t Offset;
   1832   unsigned char TargetFlags;
   1833 
   1834   BlockAddressSDNode(unsigned NodeTy, EVT VT, const BlockAddress *ba,
   1835                      int64_t o, unsigned char Flags)
   1836     : SDNode(NodeTy, 0, DebugLoc(), getSDVTList(VT)),
   1837              BA(ba), Offset(o), TargetFlags(Flags) {}
   1838 
   1839 public:
   1840   const BlockAddress *getBlockAddress() const { return BA; }
   1841   int64_t getOffset() const { return Offset; }
   1842   unsigned char getTargetFlags() const { return TargetFlags; }
   1843 
   1844   static bool classof(const SDNode *N) {
   1845     return N->getOpcode() == ISD::BlockAddress ||
   1846            N->getOpcode() == ISD::TargetBlockAddress;
   1847   }
   1848 };
   1849 
   1850 class LabelSDNode : public SDNode {
   1851   friend class SelectionDAG;
   1852 
   1853   MCSymbol *Label;
   1854 
   1855   LabelSDNode(unsigned Order, const DebugLoc &dl, MCSymbol *L)
   1856       : SDNode(ISD::EH_LABEL, Order, dl, getSDVTList(MVT::Other)), Label(L) {}
   1857 
   1858 public:
   1859   MCSymbol *getLabel() const { return Label; }
   1860 
   1861   static bool classof(const SDNode *N) {
   1862     return N->getOpcode() == ISD::EH_LABEL ||
   1863            N->getOpcode() == ISD::ANNOTATION_LABEL;
   1864   }
   1865 };
   1866 
   1867 class ExternalSymbolSDNode : public SDNode {
   1868   friend class SelectionDAG;
   1869 
   1870   const char *Symbol;
   1871   unsigned char TargetFlags;
   1872 
   1873   ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned char TF, EVT VT)
   1874     : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
   1875              0, DebugLoc(), getSDVTList(VT)), Symbol(Sym), TargetFlags(TF) {}
   1876 
   1877 public:
   1878   const char *getSymbol() const { return Symbol; }
   1879   unsigned char getTargetFlags() const { return TargetFlags; }
   1880 
   1881   static bool classof(const SDNode *N) {
   1882     return N->getOpcode() == ISD::ExternalSymbol ||
   1883            N->getOpcode() == ISD::TargetExternalSymbol;
   1884   }
   1885 };
   1886 
   1887 class MCSymbolSDNode : public SDNode {
   1888   friend class SelectionDAG;
   1889 
   1890   MCSymbol *Symbol;
   1891 
   1892   MCSymbolSDNode(MCSymbol *Symbol, EVT VT)
   1893       : SDNode(ISD::MCSymbol, 0, DebugLoc(), getSDVTList(VT)), Symbol(Symbol) {}
   1894 
   1895 public:
   1896   MCSymbol *getMCSymbol() const { return Symbol; }
   1897 
   1898   static bool classof(const SDNode *N) {
   1899     return N->getOpcode() == ISD::MCSymbol;
   1900   }
   1901 };
   1902 
   1903 class CondCodeSDNode : public SDNode {
   1904   friend class SelectionDAG;
   1905 
   1906   ISD::CondCode Condition;
   1907 
   1908   explicit CondCodeSDNode(ISD::CondCode Cond)
   1909     : SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)),
   1910       Condition(Cond) {}
   1911 
   1912 public:
   1913   ISD::CondCode get() const { return Condition; }
   1914 
   1915   static bool classof(const SDNode *N) {
   1916     return N->getOpcode() == ISD::CONDCODE;
   1917   }
   1918 };
   1919 
   1920 /// This class is used to represent EVT's, which are used
   1921 /// to parameterize some operations.
   1922 class VTSDNode : public SDNode {
   1923   friend class SelectionDAG;
   1924 
   1925   EVT ValueType;
   1926 
   1927   explicit VTSDNode(EVT VT)
   1928     : SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)),
   1929       ValueType(VT) {}
   1930 
   1931 public:
   1932   EVT getVT() const { return ValueType; }
   1933 
   1934   static bool classof(const SDNode *N) {
   1935     return N->getOpcode() == ISD::VALUETYPE;
   1936   }
   1937 };
   1938 
   1939 /// Base class for LoadSDNode and StoreSDNode
   1940 class LSBaseSDNode : public MemSDNode {
   1941 public:
   1942   LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl,
   1943                SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT,
   1944                MachineMemOperand *MMO)
   1945       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
   1946     LSBaseSDNodeBits.AddressingMode = AM;
   1947     assert(getAddressingMode() == AM && "Value truncated");
   1948   }
   1949 
   1950   const SDValue &getOffset() const {
   1951     return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
   1952   }
   1953 
   1954   /// Return the addressing mode for this load or store:
   1955   /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
   1956   ISD::MemIndexedMode getAddressingMode() const {
   1957     return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
   1958   }
   1959 
   1960   /// Return true if this is a pre/post inc/dec load/store.
   1961   bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
   1962 
   1963   /// Return true if this is NOT a pre/post inc/dec load/store.
   1964   bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
   1965 
   1966   static bool classof(const SDNode *N) {
   1967     return N->getOpcode() == ISD::LOAD ||
   1968            N->getOpcode() == ISD::STORE;
   1969   }
   1970 };
   1971 
   1972 /// This class is used to represent ISD::LOAD nodes.
   1973 class LoadSDNode : public LSBaseSDNode {
   1974   friend class SelectionDAG;
   1975 
   1976   LoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
   1977              ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
   1978              MachineMemOperand *MMO)
   1979       : LSBaseSDNode(ISD::LOAD, Order, dl, VTs, AM, MemVT, MMO) {
   1980     LoadSDNodeBits.ExtTy = ETy;
   1981     assert(readMem() && "Load MachineMemOperand is not a load!");
   1982     assert(!writeMem() && "Load MachineMemOperand is a store!");
   1983   }
   1984 
   1985 public:
   1986   /// Return whether this is a plain node,
   1987   /// or one of the varieties of value-extending loads.
   1988   ISD::LoadExtType getExtensionType() const {
   1989     return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
   1990   }
   1991 
   1992   const SDValue &getBasePtr() const { return getOperand(1); }
   1993   const SDValue &getOffset() const { return getOperand(2); }
   1994 
   1995   static bool classof(const SDNode *N) {
   1996     return N->getOpcode() == ISD::LOAD;
   1997   }
   1998 };
   1999 
   2000 /// This class is used to represent ISD::STORE nodes.
   2001 class StoreSDNode : public LSBaseSDNode {
   2002   friend class SelectionDAG;
   2003 
   2004   StoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
   2005               ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
   2006               MachineMemOperand *MMO)
   2007       : LSBaseSDNode(ISD::STORE, Order, dl, VTs, AM, MemVT, MMO) {
   2008     StoreSDNodeBits.IsTruncating = isTrunc;
   2009     assert(!readMem() && "Store MachineMemOperand is a load!");
   2010     assert(writeMem() && "Store MachineMemOperand is not a store!");
   2011   }
   2012 
   2013 public:
   2014   /// Return true if the op does a truncation before store.
   2015   /// For integers this is the same as doing a TRUNCATE and storing the result.
   2016   /// For floats, it is the same as doing an FP_ROUND and storing the result.
   2017   bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
   2018 
   2019   const SDValue &getValue() const { return getOperand(1); }
   2020   const SDValue &getBasePtr() const { return getOperand(2); }
   2021   const SDValue &getOffset() const { return getOperand(3); }
   2022 
   2023   static bool classof(const SDNode *N) {
   2024     return N->getOpcode() == ISD::STORE;
   2025   }
   2026 };
   2027 
   2028 /// This base class is used to represent MLOAD and MSTORE nodes
   2029 class MaskedLoadStoreSDNode : public MemSDNode {
   2030 public:
   2031   friend class SelectionDAG;
   2032 
   2033   MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order,
   2034                         const DebugLoc &dl, SDVTList VTs, EVT MemVT,
   2035                         MachineMemOperand *MMO)
   2036       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {}
   2037 
   2038   // In the both nodes address is Op1, mask is Op2:
   2039   // MaskedLoadSDNode (Chain, ptr, mask, src0), src0 is a passthru value
   2040   // MaskedStoreSDNode (Chain, ptr, mask, data)
   2041   // Mask is a vector of i1 elements
   2042   const SDValue &getBasePtr() const { return getOperand(1); }
   2043   const SDValue &getMask() const    { return getOperand(2); }
   2044 
   2045   static bool classof(const SDNode *N) {
   2046     return N->getOpcode() == ISD::MLOAD ||
   2047            N->getOpcode() == ISD::MSTORE;
   2048   }
   2049 };
   2050 
   2051 /// This class is used to represent an MLOAD node
   2052 class MaskedLoadSDNode : public MaskedLoadStoreSDNode {
   2053 public:
   2054   friend class SelectionDAG;
   2055 
   2056   MaskedLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
   2057                    ISD::LoadExtType ETy, bool IsExpanding, EVT MemVT,
   2058                    MachineMemOperand *MMO)
   2059       : MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, VTs, MemVT, MMO) {
   2060     LoadSDNodeBits.ExtTy = ETy;
   2061     LoadSDNodeBits.IsExpanding = IsExpanding;
   2062   }
   2063 
   2064   ISD::LoadExtType getExtensionType() const {
   2065     return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
   2066   }
   2067 
   2068   const SDValue &getSrc0() const { return getOperand(3); }
   2069   static bool classof(const SDNode *N) {
   2070     return N->getOpcode() == ISD::MLOAD;
   2071   }
   2072 
   2073   bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
   2074 };
   2075 
   2076 /// This class is used to represent an MSTORE node
   2077 class MaskedStoreSDNode : public MaskedLoadStoreSDNode {
   2078 public:
   2079   friend class SelectionDAG;
   2080 
   2081   MaskedStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
   2082                     bool isTrunc, bool isCompressing, EVT MemVT,
   2083                     MachineMemOperand *MMO)
   2084       : MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, VTs, MemVT, MMO) {
   2085     StoreSDNodeBits.IsTruncating = isTrunc;
   2086     StoreSDNodeBits.IsCompressing = isCompressing;
   2087   }
   2088 
   2089   /// Return true if the op does a truncation before store.
   2090   /// For integers this is the same as doing a TRUNCATE and storing the result.
   2091   /// For floats, it is the same as doing an FP_ROUND and storing the result.
   2092   bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
   2093 
   2094   /// Returns true if the op does a compression to the vector before storing.
   2095   /// The node contiguously stores the active elements (integers or floats)
   2096   /// in src (those with their respective bit set in writemask k) to unaligned
   2097   /// memory at base_addr.
   2098   bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
   2099 
   2100   const SDValue &getValue() const { return getOperand(3); }
   2101 
   2102   static bool classof(const SDNode *N) {
   2103     return N->getOpcode() == ISD::MSTORE;
   2104   }
   2105 };
   2106 
   2107 /// This is a base class used to represent
   2108 /// MGATHER and MSCATTER nodes
   2109 ///
   2110 class MaskedGatherScatterSDNode : public MemSDNode {
   2111 public:
   2112   friend class SelectionDAG;
   2113 
   2114   MaskedGatherScatterSDNode(unsigned NodeTy, unsigned Order,
   2115                             const DebugLoc &dl, SDVTList VTs, EVT MemVT,
   2116                             MachineMemOperand *MMO)
   2117       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {}
   2118 
   2119   // In the both nodes address is Op1, mask is Op2:
   2120   // MaskedGatherSDNode  (Chain, src0, mask, base, index), src0 is a passthru value
   2121   // MaskedScatterSDNode (Chain, value, mask, base, index)
   2122   // Mask is a vector of i1 elements
   2123   const SDValue &getBasePtr() const { return getOperand(3); }
   2124   const SDValue &getIndex()   const { return getOperand(4); }
   2125   const SDValue &getMask()    const { return getOperand(2); }
   2126   const SDValue &getValue()   const { return getOperand(1); }
   2127 
   2128   static bool classof(const SDNode *N) {
   2129     return N->getOpcode() == ISD::MGATHER ||
   2130            N->getOpcode() == ISD::MSCATTER;
   2131   }
   2132 };
   2133 
   2134 /// This class is used to represent an MGATHER node
   2135 ///
   2136 class MaskedGatherSDNode : public MaskedGatherScatterSDNode {
   2137 public:
   2138   friend class SelectionDAG;
   2139 
   2140   MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
   2141                      EVT MemVT, MachineMemOperand *MMO)
   2142       : MaskedGatherScatterSDNode(ISD::MGATHER, Order, dl, VTs, MemVT, MMO) {}
   2143 
   2144   static bool classof(const SDNode *N) {
   2145     return N->getOpcode() == ISD::MGATHER;
   2146   }
   2147 };
   2148 
   2149 /// This class is used to represent an MSCATTER node
   2150 ///
   2151 class MaskedScatterSDNode : public MaskedGatherScatterSDNode {
   2152 public:
   2153   friend class SelectionDAG;
   2154 
   2155   MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
   2156                       EVT MemVT, MachineMemOperand *MMO)
   2157       : MaskedGatherScatterSDNode(ISD::MSCATTER, Order, dl, VTs, MemVT, MMO) {}
   2158 
   2159   static bool classof(const SDNode *N) {
   2160     return N->getOpcode() == ISD::MSCATTER;
   2161   }
   2162 };
   2163 
   2164 /// An SDNode that represents everything that will be needed
   2165 /// to construct a MachineInstr. These nodes are created during the
   2166 /// instruction selection proper phase.
   2167 class MachineSDNode : public SDNode {
   2168 public:
   2169   using mmo_iterator = MachineMemOperand **;
   2170 
   2171 private:
   2172   friend class SelectionDAG;
   2173 
   2174   MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, SDVTList VTs)
   2175       : SDNode(Opc, Order, DL, VTs) {}
   2176 
   2177   /// Memory reference descriptions for this instruction.
   2178   mmo_iterator MemRefs = nullptr;
   2179   mmo_iterator MemRefsEnd = nullptr;
   2180 
   2181 public:
   2182   mmo_iterator memoperands_begin() const { return MemRefs; }
   2183   mmo_iterator memoperands_end() const { return MemRefsEnd; }
   2184   bool memoperands_empty() const { return MemRefsEnd == MemRefs; }
   2185 
   2186   /// Assign this MachineSDNodes's memory reference descriptor
   2187   /// list. This does not transfer ownership.
   2188   void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
   2189     for (mmo_iterator MMI = NewMemRefs, MME = NewMemRefsEnd; MMI != MME; ++MMI)
   2190       assert(*MMI && "Null mem ref detected!");
   2191     MemRefs = NewMemRefs;
   2192     MemRefsEnd = NewMemRefsEnd;
   2193   }
   2194 
   2195   static bool classof(const SDNode *N) {
   2196     return N->isMachineOpcode();
   2197   }
   2198 };
   2199 
   2200 class SDNodeIterator : public std::iterator<std::forward_iterator_tag,
   2201                                             SDNode, ptrdiff_t> {
   2202   const SDNode *Node;
   2203   unsigned Operand;
   2204 
   2205   SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
   2206 
   2207 public:
   2208   bool operator==(const SDNodeIterator& x) const {
   2209     return Operand == x.Operand;
   2210   }
   2211   bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
   2212 
   2213   pointer operator*() const {
   2214     return Node->getOperand(Operand).getNode();
   2215   }
   2216   pointer operator->() const { return operator*(); }
   2217 
   2218   SDNodeIterator& operator++() {                // Preincrement
   2219     ++Operand;
   2220     return *this;
   2221   }
   2222   SDNodeIterator operator++(int) { // Postincrement
   2223     SDNodeIterator tmp = *this; ++*this; return tmp;
   2224   }
   2225   size_t operator-(SDNodeIterator Other) const {
   2226     assert(Node == Other.Node &&
   2227            "Cannot compare iterators of two different nodes!");
   2228     return Operand - Other.Operand;
   2229   }
   2230 
   2231   static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); }
   2232   static SDNodeIterator end  (const SDNode *N) {
   2233     return SDNodeIterator(N, N->getNumOperands());
   2234   }
   2235 
   2236   unsigned getOperand() const { return Operand; }
   2237   const SDNode *getNode() const { return Node; }
   2238 };
   2239 
   2240 template <> struct GraphTraits<SDNode*> {
   2241   using NodeRef = SDNode *;
   2242   using ChildIteratorType = SDNodeIterator;
   2243 
   2244   static NodeRef getEntryNode(SDNode *N) { return N; }
   2245 
   2246   static ChildIteratorType child_begin(NodeRef N) {
   2247     return SDNodeIterator::begin(N);
   2248   }
   2249 
   2250   static ChildIteratorType child_end(NodeRef N) {
   2251     return SDNodeIterator::end(N);
   2252   }
   2253 };
   2254 
   2255 /// A representation of the largest SDNode, for use in sizeof().
   2256 ///
   2257 /// This needs to be a union because the largest node differs on 32 bit systems
   2258 /// with 4 and 8 byte pointer alignment, respectively.
   2259 using LargestSDNode = AlignedCharArrayUnion<AtomicSDNode, TargetIndexSDNode,
   2260                                             BlockAddressSDNode,
   2261                                             GlobalAddressSDNode>;
   2262 
   2263 /// The SDNode class with the greatest alignment requirement.
   2264 using MostAlignedSDNode = GlobalAddressSDNode;
   2265 
   2266 namespace ISD {
   2267 
   2268   /// Returns true if the specified node is a non-extending and unindexed load.
   2269   inline bool isNormalLoad(const SDNode *N) {
   2270     const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
   2271     return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
   2272       Ld->getAddressingMode() == ISD::UNINDEXED;
   2273   }
   2274 
   2275   /// Returns true if the specified node is a non-extending load.
   2276   inline bool isNON_EXTLoad(const SDNode *N) {
   2277     return isa<LoadSDNode>(N) &&
   2278       cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
   2279   }
   2280 
   2281   /// Returns true if the specified node is a EXTLOAD.
   2282   inline bool isEXTLoad(const SDNode *N) {
   2283     return isa<LoadSDNode>(N) &&
   2284       cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
   2285   }
   2286 
   2287   /// Returns true if the specified node is a SEXTLOAD.
   2288   inline bool isSEXTLoad(const SDNode *N) {
   2289     return isa<LoadSDNode>(N) &&
   2290       cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
   2291   }
   2292 
   2293   /// Returns true if the specified node is a ZEXTLOAD.
   2294   inline bool isZEXTLoad(const SDNode *N) {
   2295     return isa<LoadSDNode>(N) &&
   2296       cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
   2297   }
   2298 
   2299   /// Returns true if the specified node is an unindexed load.
   2300   inline bool isUNINDEXEDLoad(const SDNode *N) {
   2301     return isa<LoadSDNode>(N) &&
   2302       cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
   2303   }
   2304 
   2305   /// Returns true if the specified node is a non-truncating
   2306   /// and unindexed store.
   2307   inline bool isNormalStore(const SDNode *N) {
   2308     const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
   2309     return St && !St->isTruncatingStore() &&
   2310       St->getAddressingMode() == ISD::UNINDEXED;
   2311   }
   2312 
   2313   /// Returns true if the specified node is a non-truncating store.
   2314   inline bool isNON_TRUNCStore(const SDNode *N) {
   2315     return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
   2316   }
   2317 
   2318   /// Returns true if the specified node is a truncating store.
   2319   inline bool isTRUNCStore(const SDNode *N) {
   2320     return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
   2321   }
   2322 
   2323   /// Returns true if the specified node is an unindexed store.
   2324   inline bool isUNINDEXEDStore(const SDNode *N) {
   2325     return isa<StoreSDNode>(N) &&
   2326       cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
   2327   }
   2328 
   2329 } // end namespace ISD
   2330 
   2331 } // end namespace llvm
   2332 
   2333 #endif // LLVM_CODEGEN_SELECTIONDAGNODES_H
   2334