Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements the SelectionDAGISel class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "isel"
     15 #include "ScheduleDAGSDNodes.h"
     16 #include "SelectionDAGBuilder.h"
     17 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     18 #include "llvm/CodeGen/SelectionDAGISel.h"
     19 #include "llvm/Analysis/AliasAnalysis.h"
     20 #include "llvm/Analysis/BranchProbabilityInfo.h"
     21 #include "llvm/Analysis/DebugInfo.h"
     22 #include "llvm/Constants.h"
     23 #include "llvm/Function.h"
     24 #include "llvm/InlineAsm.h"
     25 #include "llvm/Instructions.h"
     26 #include "llvm/Intrinsics.h"
     27 #include "llvm/IntrinsicInst.h"
     28 #include "llvm/LLVMContext.h"
     29 #include "llvm/Module.h"
     30 #include "llvm/CodeGen/FastISel.h"
     31 #include "llvm/CodeGen/GCStrategy.h"
     32 #include "llvm/CodeGen/GCMetadata.h"
     33 #include "llvm/CodeGen/MachineFrameInfo.h"
     34 #include "llvm/CodeGen/MachineFunction.h"
     35 #include "llvm/CodeGen/MachineInstrBuilder.h"
     36 #include "llvm/CodeGen/MachineModuleInfo.h"
     37 #include "llvm/CodeGen/MachineRegisterInfo.h"
     38 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
     39 #include "llvm/CodeGen/SchedulerRegistry.h"
     40 #include "llvm/CodeGen/SelectionDAG.h"
     41 #include "llvm/Target/TargetRegisterInfo.h"
     42 #include "llvm/Target/TargetIntrinsicInfo.h"
     43 #include "llvm/Target/TargetInstrInfo.h"
     44 #include "llvm/Target/TargetLowering.h"
     45 #include "llvm/Target/TargetMachine.h"
     46 #include "llvm/Target/TargetOptions.h"
     47 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     48 #include "llvm/Support/Compiler.h"
     49 #include "llvm/Support/Debug.h"
     50 #include "llvm/Support/ErrorHandling.h"
     51 #include "llvm/Support/Timer.h"
     52 #include "llvm/Support/raw_ostream.h"
     53 #include "llvm/ADT/PostOrderIterator.h"
     54 #include "llvm/ADT/Statistic.h"
     55 #include <algorithm>
     56 using namespace llvm;
     57 
     58 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
     59 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
     60 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
     61 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
     62 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
     63 
     64 static cl::opt<bool>
     65 EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
     66           cl::desc("Enable verbose messages in the \"fast\" "
     67                    "instruction selector"));
     68 static cl::opt<bool>
     69 EnableFastISelAbort("fast-isel-abort", cl::Hidden,
     70           cl::desc("Enable abort calls when \"fast\" instruction fails"));
     71 
     72 static cl::opt<bool>
     73 UseMBPI("use-mbpi",
     74         cl::desc("use Machine Branch Probability Info"),
     75         cl::init(true), cl::Hidden);
     76 
     77 #ifndef NDEBUG
     78 static cl::opt<bool>
     79 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
     80           cl::desc("Pop up a window to show dags before the first "
     81                    "dag combine pass"));
     82 static cl::opt<bool>
     83 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
     84           cl::desc("Pop up a window to show dags before legalize types"));
     85 static cl::opt<bool>
     86 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
     87           cl::desc("Pop up a window to show dags before legalize"));
     88 static cl::opt<bool>
     89 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
     90           cl::desc("Pop up a window to show dags before the second "
     91                    "dag combine pass"));
     92 static cl::opt<bool>
     93 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
     94           cl::desc("Pop up a window to show dags before the post legalize types"
     95                    " dag combine pass"));
     96 static cl::opt<bool>
     97 ViewISelDAGs("view-isel-dags", cl::Hidden,
     98           cl::desc("Pop up a window to show isel dags as they are selected"));
     99 static cl::opt<bool>
    100 ViewSchedDAGs("view-sched-dags", cl::Hidden,
    101           cl::desc("Pop up a window to show sched dags as they are processed"));
    102 static cl::opt<bool>
    103 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
    104       cl::desc("Pop up a window to show SUnit dags after they are processed"));
    105 #else
    106 static const bool ViewDAGCombine1 = false,
    107                   ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
    108                   ViewDAGCombine2 = false,
    109                   ViewDAGCombineLT = false,
    110                   ViewISelDAGs = false, ViewSchedDAGs = false,
    111                   ViewSUnitDAGs = false;
    112 #endif
    113 
    114 //===---------------------------------------------------------------------===//
    115 ///
    116 /// RegisterScheduler class - Track the registration of instruction schedulers.
    117 ///
    118 //===---------------------------------------------------------------------===//
    119 MachinePassRegistry RegisterScheduler::Registry;
    120 
    121 //===---------------------------------------------------------------------===//
    122 ///
    123 /// ISHeuristic command line option for instruction schedulers.
    124 ///
    125 //===---------------------------------------------------------------------===//
    126 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
    127                RegisterPassParser<RegisterScheduler> >
    128 ISHeuristic("pre-RA-sched",
    129             cl::init(&createDefaultScheduler),
    130             cl::desc("Instruction schedulers available (before register"
    131                      " allocation):"));
    132 
    133 static RegisterScheduler
    134 defaultListDAGScheduler("default", "Best scheduler for the target",
    135                         createDefaultScheduler);
    136 
    137 namespace llvm {
    138   //===--------------------------------------------------------------------===//
    139   /// createDefaultScheduler - This creates an instruction scheduler appropriate
    140   /// for the target.
    141   ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
    142                                              CodeGenOpt::Level OptLevel) {
    143     const TargetLowering &TLI = IS->getTargetLowering();
    144 
    145     if (OptLevel == CodeGenOpt::None)
    146       return createSourceListDAGScheduler(IS, OptLevel);
    147     if (TLI.getSchedulingPreference() == Sched::Latency)
    148       return createTDListDAGScheduler(IS, OptLevel);
    149     if (TLI.getSchedulingPreference() == Sched::RegPressure)
    150       return createBURRListDAGScheduler(IS, OptLevel);
    151     if (TLI.getSchedulingPreference() == Sched::Hybrid)
    152       return createHybridListDAGScheduler(IS, OptLevel);
    153     assert(TLI.getSchedulingPreference() == Sched::ILP &&
    154            "Unknown sched type!");
    155     return createILPListDAGScheduler(IS, OptLevel);
    156   }
    157 }
    158 
    159 // EmitInstrWithCustomInserter - This method should be implemented by targets
    160 // that mark instructions with the 'usesCustomInserter' flag.  These
    161 // instructions are special in various ways, which require special support to
    162 // insert.  The specified MachineInstr is created but not inserted into any
    163 // basic blocks, and this method is called to expand it into a sequence of
    164 // instructions, potentially also creating new basic blocks and control flow.
    165 // When new basic blocks are inserted and the edges from MBB to its successors
    166 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
    167 // DenseMap.
    168 MachineBasicBlock *
    169 TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
    170                                             MachineBasicBlock *MBB) const {
    171 #ifndef NDEBUG
    172   dbgs() << "If a target marks an instruction with "
    173           "'usesCustomInserter', it must implement "
    174           "TargetLowering::EmitInstrWithCustomInserter!";
    175 #endif
    176   llvm_unreachable(0);
    177   return 0;
    178 }
    179 
    180 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
    181                                                    SDNode *Node) const {
    182   assert(!MI->getDesc().hasPostISelHook() &&
    183          "If a target marks an instruction with 'hasPostISelHook', "
    184          "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
    185 }
    186 
    187 //===----------------------------------------------------------------------===//
    188 // SelectionDAGISel code
    189 //===----------------------------------------------------------------------===//
    190 
    191 SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm,
    192                                    CodeGenOpt::Level OL) :
    193   MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()),
    194   FuncInfo(new FunctionLoweringInfo(TLI)),
    195   CurDAG(new SelectionDAG(tm)),
    196   SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
    197   GFI(),
    198   OptLevel(OL),
    199   DAGSize(0) {
    200     initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
    201     initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
    202     initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
    203   }
    204 
    205 SelectionDAGISel::~SelectionDAGISel() {
    206   delete SDB;
    207   delete CurDAG;
    208   delete FuncInfo;
    209 }
    210 
    211 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
    212   AU.addRequired<AliasAnalysis>();
    213   AU.addPreserved<AliasAnalysis>();
    214   AU.addRequired<GCModuleInfo>();
    215   AU.addPreserved<GCModuleInfo>();
    216   if (UseMBPI && OptLevel != CodeGenOpt::None)
    217     AU.addRequired<BranchProbabilityInfo>();
    218   MachineFunctionPass::getAnalysisUsage(AU);
    219 }
    220 
    221 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
    222 /// may trap on it.  In this case we have to split the edge so that the path
    223 /// through the predecessor block that doesn't go to the phi block doesn't
    224 /// execute the possibly trapping instruction.
    225 ///
    226 /// This is required for correctness, so it must be done at -O0.
    227 ///
    228 static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
    229   // Loop for blocks with phi nodes.
    230   for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
    231     PHINode *PN = dyn_cast<PHINode>(BB->begin());
    232     if (PN == 0) continue;
    233 
    234   ReprocessBlock:
    235     // For each block with a PHI node, check to see if any of the input values
    236     // are potentially trapping constant expressions.  Constant expressions are
    237     // the only potentially trapping value that can occur as the argument to a
    238     // PHI.
    239     for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
    240       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    241         ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
    242         if (CE == 0 || !CE->canTrap()) continue;
    243 
    244         // The only case we have to worry about is when the edge is critical.
    245         // Since this block has a PHI Node, we assume it has multiple input
    246         // edges: check to see if the pred has multiple successors.
    247         BasicBlock *Pred = PN->getIncomingBlock(i);
    248         if (Pred->getTerminator()->getNumSuccessors() == 1)
    249           continue;
    250 
    251         // Okay, we have to split this edge.
    252         SplitCriticalEdge(Pred->getTerminator(),
    253                           GetSuccessorNumber(Pred, BB), SDISel, true);
    254         goto ReprocessBlock;
    255       }
    256   }
    257 }
    258 
    259 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
    260   // Do some sanity-checking on the command-line options.
    261   assert((!EnableFastISelVerbose || EnableFastISel) &&
    262          "-fast-isel-verbose requires -fast-isel");
    263   assert((!EnableFastISelAbort || EnableFastISel) &&
    264          "-fast-isel-abort requires -fast-isel");
    265 
    266   const Function &Fn = *mf.getFunction();
    267   const TargetInstrInfo &TII = *TM.getInstrInfo();
    268   const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
    269 
    270   MF = &mf;
    271   RegInfo = &MF->getRegInfo();
    272   AA = &getAnalysis<AliasAnalysis>();
    273   GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
    274 
    275   DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
    276 
    277   SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
    278 
    279   CurDAG->init(*MF);
    280   FuncInfo->set(Fn, *MF);
    281 
    282   if (UseMBPI && OptLevel != CodeGenOpt::None)
    283     FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>();
    284   else
    285     FuncInfo->BPI = 0;
    286 
    287   SDB->init(GFI, *AA);
    288 
    289   SelectAllBasicBlocks(Fn);
    290 
    291   // If the first basic block in the function has live ins that need to be
    292   // copied into vregs, emit the copies into the top of the block before
    293   // emitting the code for the block.
    294   MachineBasicBlock *EntryMBB = MF->begin();
    295   RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
    296 
    297   DenseMap<unsigned, unsigned> LiveInMap;
    298   if (!FuncInfo->ArgDbgValues.empty())
    299     for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
    300            E = RegInfo->livein_end(); LI != E; ++LI)
    301       if (LI->second)
    302         LiveInMap.insert(std::make_pair(LI->first, LI->second));
    303 
    304   // Insert DBG_VALUE instructions for function arguments to the entry block.
    305   for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
    306     MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
    307     unsigned Reg = MI->getOperand(0).getReg();
    308     if (TargetRegisterInfo::isPhysicalRegister(Reg))
    309       EntryMBB->insert(EntryMBB->begin(), MI);
    310     else {
    311       MachineInstr *Def = RegInfo->getVRegDef(Reg);
    312       MachineBasicBlock::iterator InsertPos = Def;
    313       // FIXME: VR def may not be in entry block.
    314       Def->getParent()->insert(llvm::next(InsertPos), MI);
    315     }
    316 
    317     // If Reg is live-in then update debug info to track its copy in a vreg.
    318     DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
    319     if (LDI != LiveInMap.end()) {
    320       MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
    321       MachineBasicBlock::iterator InsertPos = Def;
    322       const MDNode *Variable =
    323         MI->getOperand(MI->getNumOperands()-1).getMetadata();
    324       unsigned Offset = MI->getOperand(1).getImm();
    325       // Def is never a terminator here, so it is ok to increment InsertPos.
    326       BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
    327               TII.get(TargetOpcode::DBG_VALUE))
    328         .addReg(LDI->second, RegState::Debug)
    329         .addImm(Offset).addMetadata(Variable);
    330 
    331       // If this vreg is directly copied into an exported register then
    332       // that COPY instructions also need DBG_VALUE, if it is the only
    333       // user of LDI->second.
    334       MachineInstr *CopyUseMI = NULL;
    335       for (MachineRegisterInfo::use_iterator
    336              UI = RegInfo->use_begin(LDI->second);
    337            MachineInstr *UseMI = UI.skipInstruction();) {
    338         if (UseMI->isDebugValue()) continue;
    339         if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
    340           CopyUseMI = UseMI; continue;
    341         }
    342         // Otherwise this is another use or second copy use.
    343         CopyUseMI = NULL; break;
    344       }
    345       if (CopyUseMI) {
    346         MachineInstr *NewMI =
    347           BuildMI(*MF, CopyUseMI->getDebugLoc(),
    348                   TII.get(TargetOpcode::DBG_VALUE))
    349           .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug)
    350           .addImm(Offset).addMetadata(Variable);
    351         EntryMBB->insertAfter(CopyUseMI, NewMI);
    352       }
    353     }
    354   }
    355 
    356   // Determine if there are any calls in this machine function.
    357   MachineFrameInfo *MFI = MF->getFrameInfo();
    358   if (!MFI->hasCalls()) {
    359     for (MachineFunction::const_iterator
    360            I = MF->begin(), E = MF->end(); I != E; ++I) {
    361       const MachineBasicBlock *MBB = I;
    362       for (MachineBasicBlock::const_iterator
    363              II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
    364         const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode());
    365 
    366         if ((MCID.isCall() && !MCID.isReturn()) ||
    367             II->isStackAligningInlineAsm()) {
    368           MFI->setHasCalls(true);
    369           goto done;
    370         }
    371       }
    372     }
    373   done:;
    374   }
    375 
    376   // Determine if there is a call to setjmp in the machine function.
    377   MF->setCallsSetJmp(Fn.callsFunctionThatReturnsTwice());
    378 
    379   // Replace forward-declared registers with the registers containing
    380   // the desired value.
    381   MachineRegisterInfo &MRI = MF->getRegInfo();
    382   for (DenseMap<unsigned, unsigned>::iterator
    383        I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
    384        I != E; ++I) {
    385     unsigned From = I->first;
    386     unsigned To = I->second;
    387     // If To is also scheduled to be replaced, find what its ultimate
    388     // replacement is.
    389     for (;;) {
    390       DenseMap<unsigned, unsigned>::iterator J =
    391         FuncInfo->RegFixups.find(To);
    392       if (J == E) break;
    393       To = J->second;
    394     }
    395     // Replace it.
    396     MRI.replaceRegWith(From, To);
    397   }
    398 
    399   // Release function-specific state. SDB and CurDAG are already cleared
    400   // at this point.
    401   FuncInfo->clear();
    402 
    403   return true;
    404 }
    405 
    406 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
    407                                         BasicBlock::const_iterator End,
    408                                         bool &HadTailCall) {
    409   // Lower all of the non-terminator instructions. If a call is emitted
    410   // as a tail call, cease emitting nodes for this block. Terminators
    411   // are handled below.
    412   for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
    413     SDB->visit(*I);
    414 
    415   // Make sure the root of the DAG is up-to-date.
    416   CurDAG->setRoot(SDB->getControlRoot());
    417   HadTailCall = SDB->HasTailCall;
    418   SDB->clear();
    419 
    420   // Final step, emit the lowered DAG as machine code.
    421   CodeGenAndEmitDAG();
    422 }
    423 
    424 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
    425   SmallPtrSet<SDNode*, 128> VisitedNodes;
    426   SmallVector<SDNode*, 128> Worklist;
    427 
    428   Worklist.push_back(CurDAG->getRoot().getNode());
    429 
    430   APInt Mask;
    431   APInt KnownZero;
    432   APInt KnownOne;
    433 
    434   do {
    435     SDNode *N = Worklist.pop_back_val();
    436 
    437     // If we've already seen this node, ignore it.
    438     if (!VisitedNodes.insert(N))
    439       continue;
    440 
    441     // Otherwise, add all chain operands to the worklist.
    442     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
    443       if (N->getOperand(i).getValueType() == MVT::Other)
    444         Worklist.push_back(N->getOperand(i).getNode());
    445 
    446     // If this is a CopyToReg with a vreg dest, process it.
    447     if (N->getOpcode() != ISD::CopyToReg)
    448       continue;
    449 
    450     unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
    451     if (!TargetRegisterInfo::isVirtualRegister(DestReg))
    452       continue;
    453 
    454     // Ignore non-scalar or non-integer values.
    455     SDValue Src = N->getOperand(2);
    456     EVT SrcVT = Src.getValueType();
    457     if (!SrcVT.isInteger() || SrcVT.isVector())
    458       continue;
    459 
    460     unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
    461     Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
    462     CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
    463     FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
    464   } while (!Worklist.empty());
    465 }
    466 
    467 void SelectionDAGISel::CodeGenAndEmitDAG() {
    468   std::string GroupName;
    469   if (TimePassesIsEnabled)
    470     GroupName = "Instruction Selection and Scheduling";
    471   std::string BlockName;
    472   int BlockNumber = -1;
    473   (void)BlockNumber;
    474 #ifdef NDEBUG
    475   if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
    476       ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
    477       ViewSUnitDAGs)
    478 #endif
    479   {
    480     BlockNumber = FuncInfo->MBB->getNumber();
    481     BlockName = MF->getFunction()->getNameStr() + ":" +
    482                 FuncInfo->MBB->getBasicBlock()->getNameStr();
    483   }
    484   DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
    485         << " '" << BlockName << "'\n"; CurDAG->dump());
    486 
    487   if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
    488 
    489   // Run the DAG combiner in pre-legalize mode.
    490   {
    491     NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
    492     CurDAG->Combine(Unrestricted, *AA, OptLevel);
    493   }
    494 
    495   DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
    496         << " '" << BlockName << "'\n"; CurDAG->dump());
    497 
    498   // Second step, hack on the DAG until it only uses operations and types that
    499   // the target supports.
    500   if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
    501                                                BlockName);
    502 
    503   bool Changed;
    504   {
    505     NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
    506     Changed = CurDAG->LegalizeTypes();
    507   }
    508 
    509   DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
    510         << " '" << BlockName << "'\n"; CurDAG->dump());
    511 
    512   if (Changed) {
    513     if (ViewDAGCombineLT)
    514       CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
    515 
    516     // Run the DAG combiner in post-type-legalize mode.
    517     {
    518       NamedRegionTimer T("DAG Combining after legalize types", GroupName,
    519                          TimePassesIsEnabled);
    520       CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
    521     }
    522 
    523     DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
    524           << " '" << BlockName << "'\n"; CurDAG->dump());
    525   }
    526 
    527   {
    528     NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
    529     Changed = CurDAG->LegalizeVectors();
    530   }
    531 
    532   if (Changed) {
    533     {
    534       NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
    535       CurDAG->LegalizeTypes();
    536     }
    537 
    538     if (ViewDAGCombineLT)
    539       CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
    540 
    541     // Run the DAG combiner in post-type-legalize mode.
    542     {
    543       NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
    544                          TimePassesIsEnabled);
    545       CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
    546     }
    547 
    548     DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
    549           << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
    550   }
    551 
    552   if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
    553 
    554   {
    555     NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
    556     CurDAG->Legalize();
    557   }
    558 
    559   DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
    560         << " '" << BlockName << "'\n"; CurDAG->dump());
    561 
    562   if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
    563 
    564   // Run the DAG combiner in post-legalize mode.
    565   {
    566     NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
    567     CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
    568   }
    569 
    570   DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
    571         << " '" << BlockName << "'\n"; CurDAG->dump());
    572 
    573   if (OptLevel != CodeGenOpt::None)
    574     ComputeLiveOutVRegInfo();
    575 
    576   if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
    577 
    578   // Third, instruction select all of the operations to machine code, adding the
    579   // code to the MachineBasicBlock.
    580   {
    581     NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
    582     DoInstructionSelection();
    583   }
    584 
    585   DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
    586         << " '" << BlockName << "'\n"; CurDAG->dump());
    587 
    588   if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
    589 
    590   // Schedule machine code.
    591   ScheduleDAGSDNodes *Scheduler = CreateScheduler();
    592   {
    593     NamedRegionTimer T("Instruction Scheduling", GroupName,
    594                        TimePassesIsEnabled);
    595     Scheduler->Run(CurDAG, FuncInfo->MBB, FuncInfo->InsertPt);
    596   }
    597 
    598   if (ViewSUnitDAGs) Scheduler->viewGraph();
    599 
    600   // Emit machine code to BB.  This can change 'BB' to the last block being
    601   // inserted into.
    602   MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
    603   {
    604     NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
    605 
    606     LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule();
    607     FuncInfo->InsertPt = Scheduler->InsertPos;
    608   }
    609 
    610   // If the block was split, make sure we update any references that are used to
    611   // update PHI nodes later on.
    612   if (FirstMBB != LastMBB)
    613     SDB->UpdateSplitBlock(FirstMBB, LastMBB);
    614 
    615   // Free the scheduler state.
    616   {
    617     NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
    618                        TimePassesIsEnabled);
    619     delete Scheduler;
    620   }
    621 
    622   // Free the SelectionDAG state, now that we're finished with it.
    623   CurDAG->clear();
    624 }
    625 
    626 void SelectionDAGISel::DoInstructionSelection() {
    627   DEBUG(errs() << "===== Instruction selection begins: BB#"
    628         << FuncInfo->MBB->getNumber()
    629         << " '" << FuncInfo->MBB->getName() << "'\n");
    630 
    631   PreprocessISelDAG();
    632 
    633   // Select target instructions for the DAG.
    634   {
    635     // Number all nodes with a topological order and set DAGSize.
    636     DAGSize = CurDAG->AssignTopologicalOrder();
    637 
    638     // Create a dummy node (which is not added to allnodes), that adds
    639     // a reference to the root node, preventing it from being deleted,
    640     // and tracking any changes of the root.
    641     HandleSDNode Dummy(CurDAG->getRoot());
    642     ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
    643     ++ISelPosition;
    644 
    645     // The AllNodes list is now topological-sorted. Visit the
    646     // nodes by starting at the end of the list (the root of the
    647     // graph) and preceding back toward the beginning (the entry
    648     // node).
    649     while (ISelPosition != CurDAG->allnodes_begin()) {
    650       SDNode *Node = --ISelPosition;
    651       // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
    652       // but there are currently some corner cases that it misses. Also, this
    653       // makes it theoretically possible to disable the DAGCombiner.
    654       if (Node->use_empty())
    655         continue;
    656 
    657       SDNode *ResNode = Select(Node);
    658 
    659       // FIXME: This is pretty gross.  'Select' should be changed to not return
    660       // anything at all and this code should be nuked with a tactical strike.
    661 
    662       // If node should not be replaced, continue with the next one.
    663       if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
    664         continue;
    665       // Replace node.
    666       if (ResNode)
    667         ReplaceUses(Node, ResNode);
    668 
    669       // If after the replacement this node is not used any more,
    670       // remove this dead node.
    671       if (Node->use_empty()) { // Don't delete EntryToken, etc.
    672         ISelUpdater ISU(ISelPosition);
    673         CurDAG->RemoveDeadNode(Node, &ISU);
    674       }
    675     }
    676 
    677     CurDAG->setRoot(Dummy.getValue());
    678   }
    679 
    680   DEBUG(errs() << "===== Instruction selection ends:\n");
    681 
    682   PostprocessISelDAG();
    683 }
    684 
    685 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
    686 /// do other setup for EH landing-pad blocks.
    687 void SelectionDAGISel::PrepareEHLandingPad() {
    688   MachineBasicBlock *MBB = FuncInfo->MBB;
    689 
    690   // Add a label to mark the beginning of the landing pad.  Deletion of the
    691   // landing pad can thus be detected via the MachineModuleInfo.
    692   MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
    693 
    694   // Assign the call site to the landing pad's begin label.
    695   MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
    696 
    697   const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
    698   BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
    699     .addSym(Label);
    700 
    701   // Mark exception register as live in.
    702   unsigned Reg = TLI.getExceptionAddressRegister();
    703   if (Reg) MBB->addLiveIn(Reg);
    704 
    705   // Mark exception selector register as live in.
    706   Reg = TLI.getExceptionSelectorRegister();
    707   if (Reg) MBB->addLiveIn(Reg);
    708 
    709   // FIXME: Hack around an exception handling flaw (PR1508): the personality
    710   // function and list of typeids logically belong to the invoke (or, if you
    711   // like, the basic block containing the invoke), and need to be associated
    712   // with it in the dwarf exception handling tables.  Currently however the
    713   // information is provided by an intrinsic (eh.selector) that can be moved
    714   // to unexpected places by the optimizers: if the unwind edge is critical,
    715   // then breaking it can result in the intrinsics being in the successor of
    716   // the landing pad, not the landing pad itself.  This results
    717   // in exceptions not being caught because no typeids are associated with
    718   // the invoke.  This may not be the only way things can go wrong, but it
    719   // is the only way we try to work around for the moment.
    720   const BasicBlock *LLVMBB = MBB->getBasicBlock();
    721   const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
    722 
    723   if (Br && Br->isUnconditional()) { // Critical edge?
    724     BasicBlock::const_iterator I, E;
    725     for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
    726       if (isa<EHSelectorInst>(I))
    727         break;
    728 
    729     if (I == E)
    730       // No catch info found - try to extract some from the successor.
    731       CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo);
    732   }
    733 }
    734 
    735 /// TryToFoldFastISelLoad - We're checking to see if we can fold the specified
    736 /// load into the specified FoldInst.  Note that we could have a sequence where
    737 /// multiple LLVM IR instructions are folded into the same machineinstr.  For
    738 /// example we could have:
    739 ///   A: x = load i32 *P
    740 ///   B: y = icmp A, 42
    741 ///   C: br y, ...
    742 ///
    743 /// In this scenario, LI is "A", and FoldInst is "C".  We know about "B" (and
    744 /// any other folded instructions) because it is between A and C.
    745 ///
    746 /// If we succeed in folding the load into the operation, return true.
    747 ///
    748 bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI,
    749                                              const Instruction *FoldInst,
    750                                              FastISel *FastIS) {
    751   // We know that the load has a single use, but don't know what it is.  If it
    752   // isn't one of the folded instructions, then we can't succeed here.  Handle
    753   // this by scanning the single-use users of the load until we get to FoldInst.
    754   unsigned MaxUsers = 6;  // Don't scan down huge single-use chains of instrs.
    755 
    756   const Instruction *TheUser = LI->use_back();
    757   while (TheUser != FoldInst &&   // Scan up until we find FoldInst.
    758          // Stay in the right block.
    759          TheUser->getParent() == FoldInst->getParent() &&
    760          --MaxUsers) {  // Don't scan too far.
    761     // If there are multiple or no uses of this instruction, then bail out.
    762     if (!TheUser->hasOneUse())
    763       return false;
    764 
    765     TheUser = TheUser->use_back();
    766   }
    767 
    768   // If we didn't find the fold instruction, then we failed to collapse the
    769   // sequence.
    770   if (TheUser != FoldInst)
    771     return false;
    772 
    773   // Don't try to fold volatile loads.  Target has to deal with alignment
    774   // constraints.
    775   if (LI->isVolatile()) return false;
    776 
    777   // Figure out which vreg this is going into.  If there is no assigned vreg yet
    778   // then there actually was no reference to it.  Perhaps the load is referenced
    779   // by a dead instruction.
    780   unsigned LoadReg = FastIS->getRegForValue(LI);
    781   if (LoadReg == 0)
    782     return false;
    783 
    784   // Check to see what the uses of this vreg are.  If it has no uses, or more
    785   // than one use (at the machine instr level) then we can't fold it.
    786   MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg);
    787   if (RI == RegInfo->reg_end())
    788     return false;
    789 
    790   // See if there is exactly one use of the vreg.  If there are multiple uses,
    791   // then the instruction got lowered to multiple machine instructions or the
    792   // use of the loaded value ended up being multiple operands of the result, in
    793   // either case, we can't fold this.
    794   MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI;
    795   if (PostRI != RegInfo->reg_end())
    796     return false;
    797 
    798   assert(RI.getOperand().isUse() &&
    799          "The only use of the vreg must be a use, we haven't emitted the def!");
    800 
    801   MachineInstr *User = &*RI;
    802 
    803   // Set the insertion point properly.  Folding the load can cause generation of
    804   // other random instructions (like sign extends) for addressing modes, make
    805   // sure they get inserted in a logical place before the new instruction.
    806   FuncInfo->InsertPt = User;
    807   FuncInfo->MBB = User->getParent();
    808 
    809   // Ask the target to try folding the load.
    810   return FastIS->TryToFoldLoad(User, RI.getOperandNo(), LI);
    811 }
    812 
    813 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
    814 /// side-effect free and is either dead or folded into a generated instruction.
    815 /// Return false if it needs to be emitted.
    816 static bool isFoldedOrDeadInstruction(const Instruction *I,
    817                                       FunctionLoweringInfo *FuncInfo) {
    818   return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
    819          !isa<TerminatorInst>(I) && // Terminators aren't folded.
    820          !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
    821          !isa<LandingPadInst>(I) &&    // Landingpad instructions aren't folded.
    822          !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
    823 }
    824 
    825 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
    826   // Initialize the Fast-ISel state, if needed.
    827   FastISel *FastIS = 0;
    828   if (EnableFastISel)
    829     FastIS = TLI.createFastISel(*FuncInfo);
    830 
    831   // Iterate over all basic blocks in the function.
    832   ReversePostOrderTraversal<const Function*> RPOT(&Fn);
    833   for (ReversePostOrderTraversal<const Function*>::rpo_iterator
    834        I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
    835     const BasicBlock *LLVMBB = *I;
    836 
    837     if (OptLevel != CodeGenOpt::None) {
    838       bool AllPredsVisited = true;
    839       for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
    840            PI != PE; ++PI) {
    841         if (!FuncInfo->VisitedBBs.count(*PI)) {
    842           AllPredsVisited = false;
    843           break;
    844         }
    845       }
    846 
    847       if (AllPredsVisited) {
    848         for (BasicBlock::const_iterator I = LLVMBB->begin();
    849              isa<PHINode>(I); ++I)
    850           FuncInfo->ComputePHILiveOutRegInfo(cast<PHINode>(I));
    851       } else {
    852         for (BasicBlock::const_iterator I = LLVMBB->begin();
    853              isa<PHINode>(I); ++I)
    854           FuncInfo->InvalidatePHILiveOutRegInfo(cast<PHINode>(I));
    855       }
    856 
    857       FuncInfo->VisitedBBs.insert(LLVMBB);
    858     }
    859 
    860     FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
    861     FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
    862 
    863     BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
    864     BasicBlock::const_iterator const End = LLVMBB->end();
    865     BasicBlock::const_iterator BI = End;
    866 
    867     FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
    868 
    869     // Setup an EH landing-pad block.
    870     if (FuncInfo->MBB->isLandingPad())
    871       PrepareEHLandingPad();
    872 
    873     // Lower any arguments needed in this block if this is the entry block.
    874     if (LLVMBB == &Fn.getEntryBlock())
    875       LowerArguments(LLVMBB);
    876 
    877     // Before doing SelectionDAG ISel, see if FastISel has been requested.
    878     if (FastIS) {
    879       FastIS->startNewBlock();
    880 
    881       // Emit code for any incoming arguments. This must happen before
    882       // beginning FastISel on the entry block.
    883       if (LLVMBB == &Fn.getEntryBlock()) {
    884         CurDAG->setRoot(SDB->getControlRoot());
    885         SDB->clear();
    886         CodeGenAndEmitDAG();
    887 
    888         // If we inserted any instructions at the beginning, make a note of
    889         // where they are, so we can be sure to emit subsequent instructions
    890         // after them.
    891         if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
    892           FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
    893         else
    894           FastIS->setLastLocalValue(0);
    895       }
    896 
    897       // Do FastISel on as many instructions as possible.
    898       for (; BI != Begin; --BI) {
    899         const Instruction *Inst = llvm::prior(BI);
    900 
    901         // If we no longer require this instruction, skip it.
    902         if (isFoldedOrDeadInstruction(Inst, FuncInfo))
    903           continue;
    904 
    905         // Bottom-up: reset the insert pos at the top, after any local-value
    906         // instructions.
    907         FastIS->recomputeInsertPt();
    908 
    909         // Try to select the instruction with FastISel.
    910         if (FastIS->SelectInstruction(Inst)) {
    911           ++NumFastIselSuccess;
    912           // If fast isel succeeded, skip over all the folded instructions, and
    913           // then see if there is a load right before the selected instructions.
    914           // Try to fold the load if so.
    915           const Instruction *BeforeInst = Inst;
    916           while (BeforeInst != Begin) {
    917             BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
    918             if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
    919               break;
    920           }
    921           if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
    922               BeforeInst->hasOneUse() &&
    923               TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), Inst, FastIS))
    924             // If we succeeded, don't re-select the load.
    925             BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
    926           continue;
    927         }
    928 
    929         // Then handle certain instructions as single-LLVM-Instruction blocks.
    930         if (isa<CallInst>(Inst)) {
    931           ++NumFastIselFailures;
    932           if (EnableFastISelVerbose || EnableFastISelAbort) {
    933             dbgs() << "FastISel missed call: ";
    934             Inst->dump();
    935           }
    936 
    937           if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
    938             unsigned &R = FuncInfo->ValueMap[Inst];
    939             if (!R)
    940               R = FuncInfo->CreateRegs(Inst->getType());
    941           }
    942 
    943           bool HadTailCall = false;
    944           SelectBasicBlock(Inst, BI, HadTailCall);
    945 
    946           // If the call was emitted as a tail call, we're done with the block.
    947           if (HadTailCall) {
    948             --BI;
    949             break;
    950           }
    951 
    952           continue;
    953         }
    954 
    955         if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
    956           // Don't abort, and use a different message for terminator misses.
    957           ++NumFastIselFailures;
    958           if (EnableFastISelVerbose || EnableFastISelAbort) {
    959             dbgs() << "FastISel missed terminator: ";
    960             Inst->dump();
    961           }
    962         } else {
    963           ++NumFastIselFailures;
    964           if (EnableFastISelVerbose || EnableFastISelAbort) {
    965             dbgs() << "FastISel miss: ";
    966             Inst->dump();
    967           }
    968           if (EnableFastISelAbort)
    969             // The "fast" selector couldn't handle something and bailed.
    970             // For the purpose of debugging, just abort.
    971             llvm_unreachable("FastISel didn't select the entire block");
    972         }
    973         break;
    974       }
    975 
    976       FastIS->recomputeInsertPt();
    977     }
    978 
    979     if (Begin != BI)
    980       ++NumDAGBlocks;
    981     else
    982       ++NumFastIselBlocks;
    983 
    984     if (Begin != BI) {
    985       // Run SelectionDAG instruction selection on the remainder of the block
    986       // not handled by FastISel. If FastISel is not run, this is the entire
    987       // block.
    988       bool HadTailCall;
    989       SelectBasicBlock(Begin, BI, HadTailCall);
    990     }
    991 
    992     FinishBasicBlock();
    993     FuncInfo->PHINodesToUpdate.clear();
    994   }
    995 
    996   delete FastIS;
    997   SDB->clearDanglingDebugInfo();
    998 }
    999 
   1000 void
   1001 SelectionDAGISel::FinishBasicBlock() {
   1002 
   1003   DEBUG(dbgs() << "Total amount of phi nodes to update: "
   1004                << FuncInfo->PHINodesToUpdate.size() << "\n";
   1005         for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
   1006           dbgs() << "Node " << i << " : ("
   1007                  << FuncInfo->PHINodesToUpdate[i].first
   1008                  << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
   1009 
   1010   // Next, now that we know what the last MBB the LLVM BB expanded is, update
   1011   // PHI nodes in successors.
   1012   if (SDB->SwitchCases.empty() &&
   1013       SDB->JTCases.empty() &&
   1014       SDB->BitTestCases.empty()) {
   1015     for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
   1016       MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
   1017       assert(PHI->isPHI() &&
   1018              "This is not a machine PHI node that we are updating!");
   1019       if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
   1020         continue;
   1021       PHI->addOperand(
   1022         MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
   1023       PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
   1024     }
   1025     return;
   1026   }
   1027 
   1028   for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
   1029     // Lower header first, if it wasn't already lowered
   1030     if (!SDB->BitTestCases[i].Emitted) {
   1031       // Set the current basic block to the mbb we wish to insert the code into
   1032       FuncInfo->MBB = SDB->BitTestCases[i].Parent;
   1033       FuncInfo->InsertPt = FuncInfo->MBB->end();
   1034       // Emit the code
   1035       SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
   1036       CurDAG->setRoot(SDB->getRoot());
   1037       SDB->clear();
   1038       CodeGenAndEmitDAG();
   1039     }
   1040 
   1041     for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
   1042       // Set the current basic block to the mbb we wish to insert the code into
   1043       FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
   1044       FuncInfo->InsertPt = FuncInfo->MBB->end();
   1045       // Emit the code
   1046       if (j+1 != ej)
   1047         SDB->visitBitTestCase(SDB->BitTestCases[i],
   1048                               SDB->BitTestCases[i].Cases[j+1].ThisBB,
   1049                               SDB->BitTestCases[i].Reg,
   1050                               SDB->BitTestCases[i].Cases[j],
   1051                               FuncInfo->MBB);
   1052       else
   1053         SDB->visitBitTestCase(SDB->BitTestCases[i],
   1054                               SDB->BitTestCases[i].Default,
   1055                               SDB->BitTestCases[i].Reg,
   1056                               SDB->BitTestCases[i].Cases[j],
   1057                               FuncInfo->MBB);
   1058 
   1059 
   1060       CurDAG->setRoot(SDB->getRoot());
   1061       SDB->clear();
   1062       CodeGenAndEmitDAG();
   1063     }
   1064 
   1065     // Update PHI Nodes
   1066     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
   1067          pi != pe; ++pi) {
   1068       MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
   1069       MachineBasicBlock *PHIBB = PHI->getParent();
   1070       assert(PHI->isPHI() &&
   1071              "This is not a machine PHI node that we are updating!");
   1072       // This is "default" BB. We have two jumps to it. From "header" BB and
   1073       // from last "case" BB.
   1074       if (PHIBB == SDB->BitTestCases[i].Default) {
   1075         PHI->addOperand(MachineOperand::
   1076                         CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
   1077                                   false));
   1078         PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
   1079         PHI->addOperand(MachineOperand::
   1080                         CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
   1081                                   false));
   1082         PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
   1083                                                   back().ThisBB));
   1084       }
   1085       // One of "cases" BB.
   1086       for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
   1087            j != ej; ++j) {
   1088         MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
   1089         if (cBB->isSuccessor(PHIBB)) {
   1090           PHI->addOperand(MachineOperand::
   1091                           CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
   1092                                     false));
   1093           PHI->addOperand(MachineOperand::CreateMBB(cBB));
   1094         }
   1095       }
   1096     }
   1097   }
   1098   SDB->BitTestCases.clear();
   1099 
   1100   // If the JumpTable record is filled in, then we need to emit a jump table.
   1101   // Updating the PHI nodes is tricky in this case, since we need to determine
   1102   // whether the PHI is a successor of the range check MBB or the jump table MBB
   1103   for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
   1104     // Lower header first, if it wasn't already lowered
   1105     if (!SDB->JTCases[i].first.Emitted) {
   1106       // Set the current basic block to the mbb we wish to insert the code into
   1107       FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
   1108       FuncInfo->InsertPt = FuncInfo->MBB->end();
   1109       // Emit the code
   1110       SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
   1111                                 FuncInfo->MBB);
   1112       CurDAG->setRoot(SDB->getRoot());
   1113       SDB->clear();
   1114       CodeGenAndEmitDAG();
   1115     }
   1116 
   1117     // Set the current basic block to the mbb we wish to insert the code into
   1118     FuncInfo->MBB = SDB->JTCases[i].second.MBB;
   1119     FuncInfo->InsertPt = FuncInfo->MBB->end();
   1120     // Emit the code
   1121     SDB->visitJumpTable(SDB->JTCases[i].second);
   1122     CurDAG->setRoot(SDB->getRoot());
   1123     SDB->clear();
   1124     CodeGenAndEmitDAG();
   1125 
   1126     // Update PHI Nodes
   1127     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
   1128          pi != pe; ++pi) {
   1129       MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
   1130       MachineBasicBlock *PHIBB = PHI->getParent();
   1131       assert(PHI->isPHI() &&
   1132              "This is not a machine PHI node that we are updating!");
   1133       // "default" BB. We can go there only from header BB.
   1134       if (PHIBB == SDB->JTCases[i].second.Default) {
   1135         PHI->addOperand
   1136           (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
   1137                                      false));
   1138         PHI->addOperand
   1139           (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
   1140       }
   1141       // JT BB. Just iterate over successors here
   1142       if (FuncInfo->MBB->isSuccessor(PHIBB)) {
   1143         PHI->addOperand
   1144           (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
   1145                                      false));
   1146         PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
   1147       }
   1148     }
   1149   }
   1150   SDB->JTCases.clear();
   1151 
   1152   // If the switch block involved a branch to one of the actual successors, we
   1153   // need to update PHI nodes in that block.
   1154   for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
   1155     MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
   1156     assert(PHI->isPHI() &&
   1157            "This is not a machine PHI node that we are updating!");
   1158     if (FuncInfo->MBB->isSuccessor(PHI->getParent())) {
   1159       PHI->addOperand(
   1160         MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
   1161       PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
   1162     }
   1163   }
   1164 
   1165   // If we generated any switch lowering information, build and codegen any
   1166   // additional DAGs necessary.
   1167   for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
   1168     // Set the current basic block to the mbb we wish to insert the code into
   1169     FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
   1170     FuncInfo->InsertPt = FuncInfo->MBB->end();
   1171 
   1172     // Determine the unique successors.
   1173     SmallVector<MachineBasicBlock *, 2> Succs;
   1174     Succs.push_back(SDB->SwitchCases[i].TrueBB);
   1175     if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
   1176       Succs.push_back(SDB->SwitchCases[i].FalseBB);
   1177 
   1178     // Emit the code. Note that this could result in FuncInfo->MBB being split.
   1179     SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
   1180     CurDAG->setRoot(SDB->getRoot());
   1181     SDB->clear();
   1182     CodeGenAndEmitDAG();
   1183 
   1184     // Remember the last block, now that any splitting is done, for use in
   1185     // populating PHI nodes in successors.
   1186     MachineBasicBlock *ThisBB = FuncInfo->MBB;
   1187 
   1188     // Handle any PHI nodes in successors of this chunk, as if we were coming
   1189     // from the original BB before switch expansion.  Note that PHI nodes can
   1190     // occur multiple times in PHINodesToUpdate.  We have to be very careful to
   1191     // handle them the right number of times.
   1192     for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
   1193       FuncInfo->MBB = Succs[i];
   1194       FuncInfo->InsertPt = FuncInfo->MBB->end();
   1195       // FuncInfo->MBB may have been removed from the CFG if a branch was
   1196       // constant folded.
   1197       if (ThisBB->isSuccessor(FuncInfo->MBB)) {
   1198         for (MachineBasicBlock::iterator Phi = FuncInfo->MBB->begin();
   1199              Phi != FuncInfo->MBB->end() && Phi->isPHI();
   1200              ++Phi) {
   1201           // This value for this PHI node is recorded in PHINodesToUpdate.
   1202           for (unsigned pn = 0; ; ++pn) {
   1203             assert(pn != FuncInfo->PHINodesToUpdate.size() &&
   1204                    "Didn't find PHI entry!");
   1205             if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
   1206               Phi->addOperand(MachineOperand::
   1207                               CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
   1208                                         false));
   1209               Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
   1210               break;
   1211             }
   1212           }
   1213         }
   1214       }
   1215     }
   1216   }
   1217   SDB->SwitchCases.clear();
   1218 }
   1219 
   1220 
   1221 /// Create the scheduler. If a specific scheduler was specified
   1222 /// via the SchedulerRegistry, use it, otherwise select the
   1223 /// one preferred by the target.
   1224 ///
   1225 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
   1226   RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
   1227 
   1228   if (!Ctor) {
   1229     Ctor = ISHeuristic;
   1230     RegisterScheduler::setDefault(Ctor);
   1231   }
   1232 
   1233   return Ctor(this, OptLevel);
   1234 }
   1235 
   1236 //===----------------------------------------------------------------------===//
   1237 // Helper functions used by the generated instruction selector.
   1238 //===----------------------------------------------------------------------===//
   1239 // Calls to these methods are generated by tblgen.
   1240 
   1241 /// CheckAndMask - The isel is trying to match something like (and X, 255).  If
   1242 /// the dag combiner simplified the 255, we still want to match.  RHS is the
   1243 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
   1244 /// specified in the .td file (e.g. 255).
   1245 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
   1246                                     int64_t DesiredMaskS) const {
   1247   const APInt &ActualMask = RHS->getAPIntValue();
   1248   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
   1249 
   1250   // If the actual mask exactly matches, success!
   1251   if (ActualMask == DesiredMask)
   1252     return true;
   1253 
   1254   // If the actual AND mask is allowing unallowed bits, this doesn't match.
   1255   if (ActualMask.intersects(~DesiredMask))
   1256     return false;
   1257 
   1258   // Otherwise, the DAG Combiner may have proven that the value coming in is
   1259   // either already zero or is not demanded.  Check for known zero input bits.
   1260   APInt NeededMask = DesiredMask & ~ActualMask;
   1261   if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
   1262     return true;
   1263 
   1264   // TODO: check to see if missing bits are just not demanded.
   1265 
   1266   // Otherwise, this pattern doesn't match.
   1267   return false;
   1268 }
   1269 
   1270 /// CheckOrMask - The isel is trying to match something like (or X, 255).  If
   1271 /// the dag combiner simplified the 255, we still want to match.  RHS is the
   1272 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
   1273 /// specified in the .td file (e.g. 255).
   1274 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
   1275                                    int64_t DesiredMaskS) const {
   1276   const APInt &ActualMask = RHS->getAPIntValue();
   1277   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
   1278 
   1279   // If the actual mask exactly matches, success!
   1280   if (ActualMask == DesiredMask)
   1281     return true;
   1282 
   1283   // If the actual AND mask is allowing unallowed bits, this doesn't match.
   1284   if (ActualMask.intersects(~DesiredMask))
   1285     return false;
   1286 
   1287   // Otherwise, the DAG Combiner may have proven that the value coming in is
   1288   // either already zero or is not demanded.  Check for known zero input bits.
   1289   APInt NeededMask = DesiredMask & ~ActualMask;
   1290 
   1291   APInt KnownZero, KnownOne;
   1292   CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
   1293 
   1294   // If all the missing bits in the or are already known to be set, match!
   1295   if ((NeededMask & KnownOne) == NeededMask)
   1296     return true;
   1297 
   1298   // TODO: check to see if missing bits are just not demanded.
   1299 
   1300   // Otherwise, this pattern doesn't match.
   1301   return false;
   1302 }
   1303 
   1304 
   1305 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
   1306 /// by tblgen.  Others should not call it.
   1307 void SelectionDAGISel::
   1308 SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
   1309   std::vector<SDValue> InOps;
   1310   std::swap(InOps, Ops);
   1311 
   1312   Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
   1313   Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
   1314   Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
   1315   Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
   1316 
   1317   unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
   1318   if (InOps[e-1].getValueType() == MVT::Glue)
   1319     --e;  // Don't process a glue operand if it is here.
   1320 
   1321   while (i != e) {
   1322     unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
   1323     if (!InlineAsm::isMemKind(Flags)) {
   1324       // Just skip over this operand, copying the operands verbatim.
   1325       Ops.insert(Ops.end(), InOps.begin()+i,
   1326                  InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
   1327       i += InlineAsm::getNumOperandRegisters(Flags) + 1;
   1328     } else {
   1329       assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
   1330              "Memory operand with multiple values?");
   1331       // Otherwise, this is a memory operand.  Ask the target to select it.
   1332       std::vector<SDValue> SelOps;
   1333       if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
   1334         report_fatal_error("Could not match memory address.  Inline asm"
   1335                            " failure!");
   1336 
   1337       // Add this to the output node.
   1338       unsigned NewFlags =
   1339         InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
   1340       Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
   1341       Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
   1342       i += 2;
   1343     }
   1344   }
   1345 
   1346   // Add the glue input back if present.
   1347   if (e != InOps.size())
   1348     Ops.push_back(InOps.back());
   1349 }
   1350 
   1351 /// findGlueUse - Return use of MVT::Glue value produced by the specified
   1352 /// SDNode.
   1353 ///
   1354 static SDNode *findGlueUse(SDNode *N) {
   1355   unsigned FlagResNo = N->getNumValues()-1;
   1356   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
   1357     SDUse &Use = I.getUse();
   1358     if (Use.getResNo() == FlagResNo)
   1359       return Use.getUser();
   1360   }
   1361   return NULL;
   1362 }
   1363 
   1364 /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
   1365 /// This function recursively traverses up the operand chain, ignoring
   1366 /// certain nodes.
   1367 static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
   1368                           SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
   1369                           bool IgnoreChains) {
   1370   // The NodeID's are given uniques ID's where a node ID is guaranteed to be
   1371   // greater than all of its (recursive) operands.  If we scan to a point where
   1372   // 'use' is smaller than the node we're scanning for, then we know we will
   1373   // never find it.
   1374   //
   1375   // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
   1376   // happen because we scan down to newly selected nodes in the case of glue
   1377   // uses.
   1378   if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
   1379     return false;
   1380 
   1381   // Don't revisit nodes if we already scanned it and didn't fail, we know we
   1382   // won't fail if we scan it again.
   1383   if (!Visited.insert(Use))
   1384     return false;
   1385 
   1386   for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
   1387     // Ignore chain uses, they are validated by HandleMergeInputChains.
   1388     if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
   1389       continue;
   1390 
   1391     SDNode *N = Use->getOperand(i).getNode();
   1392     if (N == Def) {
   1393       if (Use == ImmedUse || Use == Root)
   1394         continue;  // We are not looking for immediate use.
   1395       assert(N != Root);
   1396       return true;
   1397     }
   1398 
   1399     // Traverse up the operand chain.
   1400     if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
   1401       return true;
   1402   }
   1403   return false;
   1404 }
   1405 
   1406 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
   1407 /// operand node N of U during instruction selection that starts at Root.
   1408 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
   1409                                           SDNode *Root) const {
   1410   if (OptLevel == CodeGenOpt::None) return false;
   1411   return N.hasOneUse();
   1412 }
   1413 
   1414 /// IsLegalToFold - Returns true if the specific operand node N of
   1415 /// U can be folded during instruction selection that starts at Root.
   1416 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
   1417                                      CodeGenOpt::Level OptLevel,
   1418                                      bool IgnoreChains) {
   1419   if (OptLevel == CodeGenOpt::None) return false;
   1420 
   1421   // If Root use can somehow reach N through a path that that doesn't contain
   1422   // U then folding N would create a cycle. e.g. In the following
   1423   // diagram, Root can reach N through X. If N is folded into into Root, then
   1424   // X is both a predecessor and a successor of U.
   1425   //
   1426   //          [N*]           //
   1427   //         ^   ^           //
   1428   //        /     \          //
   1429   //      [U*]    [X]?       //
   1430   //        ^     ^          //
   1431   //         \   /           //
   1432   //          \ /            //
   1433   //         [Root*]         //
   1434   //
   1435   // * indicates nodes to be folded together.
   1436   //
   1437   // If Root produces glue, then it gets (even more) interesting. Since it
   1438   // will be "glued" together with its glue use in the scheduler, we need to
   1439   // check if it might reach N.
   1440   //
   1441   //          [N*]           //
   1442   //         ^   ^           //
   1443   //        /     \          //
   1444   //      [U*]    [X]?       //
   1445   //        ^       ^        //
   1446   //         \       \       //
   1447   //          \      |       //
   1448   //         [Root*] |       //
   1449   //          ^      |       //
   1450   //          f      |       //
   1451   //          |      /       //
   1452   //         [Y]    /        //
   1453   //           ^   /         //
   1454   //           f  /          //
   1455   //           | /           //
   1456   //          [GU]           //
   1457   //
   1458   // If GU (glue use) indirectly reaches N (the load), and Root folds N
   1459   // (call it Fold), then X is a predecessor of GU and a successor of
   1460   // Fold. But since Fold and GU are glued together, this will create
   1461   // a cycle in the scheduling graph.
   1462 
   1463   // If the node has glue, walk down the graph to the "lowest" node in the
   1464   // glueged set.
   1465   EVT VT = Root->getValueType(Root->getNumValues()-1);
   1466   while (VT == MVT::Glue) {
   1467     SDNode *GU = findGlueUse(Root);
   1468     if (GU == NULL)
   1469       break;
   1470     Root = GU;
   1471     VT = Root->getValueType(Root->getNumValues()-1);
   1472 
   1473     // If our query node has a glue result with a use, we've walked up it.  If
   1474     // the user (which has already been selected) has a chain or indirectly uses
   1475     // the chain, our WalkChainUsers predicate will not consider it.  Because of
   1476     // this, we cannot ignore chains in this predicate.
   1477     IgnoreChains = false;
   1478   }
   1479 
   1480 
   1481   SmallPtrSet<SDNode*, 16> Visited;
   1482   return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
   1483 }
   1484 
   1485 SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
   1486   std::vector<SDValue> Ops(N->op_begin(), N->op_end());
   1487   SelectInlineAsmMemoryOperands(Ops);
   1488 
   1489   std::vector<EVT> VTs;
   1490   VTs.push_back(MVT::Other);
   1491   VTs.push_back(MVT::Glue);
   1492   SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
   1493                                 VTs, &Ops[0], Ops.size());
   1494   New->setNodeId(-1);
   1495   return New.getNode();
   1496 }
   1497 
   1498 SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
   1499   return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
   1500 }
   1501 
   1502 /// GetVBR - decode a vbr encoding whose top bit is set.
   1503 LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
   1504 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
   1505   assert(Val >= 128 && "Not a VBR");
   1506   Val &= 127;  // Remove first vbr bit.
   1507 
   1508   unsigned Shift = 7;
   1509   uint64_t NextBits;
   1510   do {
   1511     NextBits = MatcherTable[Idx++];
   1512     Val |= (NextBits&127) << Shift;
   1513     Shift += 7;
   1514   } while (NextBits & 128);
   1515 
   1516   return Val;
   1517 }
   1518 
   1519 
   1520 /// UpdateChainsAndGlue - When a match is complete, this method updates uses of
   1521 /// interior glue and chain results to use the new glue and chain results.
   1522 void SelectionDAGISel::
   1523 UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
   1524                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
   1525                     SDValue InputGlue,
   1526                     const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
   1527                     bool isMorphNodeTo) {
   1528   SmallVector<SDNode*, 4> NowDeadNodes;
   1529 
   1530   ISelUpdater ISU(ISelPosition);
   1531 
   1532   // Now that all the normal results are replaced, we replace the chain and
   1533   // glue results if present.
   1534   if (!ChainNodesMatched.empty()) {
   1535     assert(InputChain.getNode() != 0 &&
   1536            "Matched input chains but didn't produce a chain");
   1537     // Loop over all of the nodes we matched that produced a chain result.
   1538     // Replace all the chain results with the final chain we ended up with.
   1539     for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
   1540       SDNode *ChainNode = ChainNodesMatched[i];
   1541 
   1542       // If this node was already deleted, don't look at it.
   1543       if (ChainNode->getOpcode() == ISD::DELETED_NODE)
   1544         continue;
   1545 
   1546       // Don't replace the results of the root node if we're doing a
   1547       // MorphNodeTo.
   1548       if (ChainNode == NodeToMatch && isMorphNodeTo)
   1549         continue;
   1550 
   1551       SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
   1552       if (ChainVal.getValueType() == MVT::Glue)
   1553         ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
   1554       assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
   1555       CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
   1556 
   1557       // If the node became dead and we haven't already seen it, delete it.
   1558       if (ChainNode->use_empty() &&
   1559           !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
   1560         NowDeadNodes.push_back(ChainNode);
   1561     }
   1562   }
   1563 
   1564   // If the result produces glue, update any glue results in the matched
   1565   // pattern with the glue result.
   1566   if (InputGlue.getNode() != 0) {
   1567     // Handle any interior nodes explicitly marked.
   1568     for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
   1569       SDNode *FRN = GlueResultNodesMatched[i];
   1570 
   1571       // If this node was already deleted, don't look at it.
   1572       if (FRN->getOpcode() == ISD::DELETED_NODE)
   1573         continue;
   1574 
   1575       assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
   1576              "Doesn't have a glue result");
   1577       CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
   1578                                         InputGlue, &ISU);
   1579 
   1580       // If the node became dead and we haven't already seen it, delete it.
   1581       if (FRN->use_empty() &&
   1582           !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
   1583         NowDeadNodes.push_back(FRN);
   1584     }
   1585   }
   1586 
   1587   if (!NowDeadNodes.empty())
   1588     CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
   1589 
   1590   DEBUG(errs() << "ISEL: Match complete!\n");
   1591 }
   1592 
   1593 enum ChainResult {
   1594   CR_Simple,
   1595   CR_InducesCycle,
   1596   CR_LeadsToInteriorNode
   1597 };
   1598 
   1599 /// WalkChainUsers - Walk down the users of the specified chained node that is
   1600 /// part of the pattern we're matching, looking at all of the users we find.
   1601 /// This determines whether something is an interior node, whether we have a
   1602 /// non-pattern node in between two pattern nodes (which prevent folding because
   1603 /// it would induce a cycle) and whether we have a TokenFactor node sandwiched
   1604 /// between pattern nodes (in which case the TF becomes part of the pattern).
   1605 ///
   1606 /// The walk we do here is guaranteed to be small because we quickly get down to
   1607 /// already selected nodes "below" us.
   1608 static ChainResult
   1609 WalkChainUsers(SDNode *ChainedNode,
   1610                SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
   1611                SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
   1612   ChainResult Result = CR_Simple;
   1613 
   1614   for (SDNode::use_iterator UI = ChainedNode->use_begin(),
   1615          E = ChainedNode->use_end(); UI != E; ++UI) {
   1616     // Make sure the use is of the chain, not some other value we produce.
   1617     if (UI.getUse().getValueType() != MVT::Other) continue;
   1618 
   1619     SDNode *User = *UI;
   1620 
   1621     // If we see an already-selected machine node, then we've gone beyond the
   1622     // pattern that we're selecting down into the already selected chunk of the
   1623     // DAG.
   1624     if (User->isMachineOpcode() ||
   1625         User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
   1626       continue;
   1627 
   1628     if (User->getOpcode() == ISD::CopyToReg ||
   1629         User->getOpcode() == ISD::CopyFromReg ||
   1630         User->getOpcode() == ISD::INLINEASM ||
   1631         User->getOpcode() == ISD::EH_LABEL) {
   1632       // If their node ID got reset to -1 then they've already been selected.
   1633       // Treat them like a MachineOpcode.
   1634       if (User->getNodeId() == -1)
   1635         continue;
   1636     }
   1637 
   1638     // If we have a TokenFactor, we handle it specially.
   1639     if (User->getOpcode() != ISD::TokenFactor) {
   1640       // If the node isn't a token factor and isn't part of our pattern, then it
   1641       // must be a random chained node in between two nodes we're selecting.
   1642       // This happens when we have something like:
   1643       //   x = load ptr
   1644       //   call
   1645       //   y = x+4
   1646       //   store y -> ptr
   1647       // Because we structurally match the load/store as a read/modify/write,
   1648       // but the call is chained between them.  We cannot fold in this case
   1649       // because it would induce a cycle in the graph.
   1650       if (!std::count(ChainedNodesInPattern.begin(),
   1651                       ChainedNodesInPattern.end(), User))
   1652         return CR_InducesCycle;
   1653 
   1654       // Otherwise we found a node that is part of our pattern.  For example in:
   1655       //   x = load ptr
   1656       //   y = x+4
   1657       //   store y -> ptr
   1658       // This would happen when we're scanning down from the load and see the
   1659       // store as a user.  Record that there is a use of ChainedNode that is
   1660       // part of the pattern and keep scanning uses.
   1661       Result = CR_LeadsToInteriorNode;
   1662       InteriorChainedNodes.push_back(User);
   1663       continue;
   1664     }
   1665 
   1666     // If we found a TokenFactor, there are two cases to consider: first if the
   1667     // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
   1668     // uses of the TF are in our pattern) we just want to ignore it.  Second,
   1669     // the TokenFactor can be sandwiched in between two chained nodes, like so:
   1670     //     [Load chain]
   1671     //         ^
   1672     //         |
   1673     //       [Load]
   1674     //       ^    ^
   1675     //       |    \                    DAG's like cheese
   1676     //      /       \                       do you?
   1677     //     /         |
   1678     // [TokenFactor] [Op]
   1679     //     ^          ^
   1680     //     |          |
   1681     //      \        /
   1682     //       \      /
   1683     //       [Store]
   1684     //
   1685     // In this case, the TokenFactor becomes part of our match and we rewrite it
   1686     // as a new TokenFactor.
   1687     //
   1688     // To distinguish these two cases, do a recursive walk down the uses.
   1689     switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
   1690     case CR_Simple:
   1691       // If the uses of the TokenFactor are just already-selected nodes, ignore
   1692       // it, it is "below" our pattern.
   1693       continue;
   1694     case CR_InducesCycle:
   1695       // If the uses of the TokenFactor lead to nodes that are not part of our
   1696       // pattern that are not selected, folding would turn this into a cycle,
   1697       // bail out now.
   1698       return CR_InducesCycle;
   1699     case CR_LeadsToInteriorNode:
   1700       break;  // Otherwise, keep processing.
   1701     }
   1702 
   1703     // Okay, we know we're in the interesting interior case.  The TokenFactor
   1704     // is now going to be considered part of the pattern so that we rewrite its
   1705     // uses (it may have uses that are not part of the pattern) with the
   1706     // ultimate chain result of the generated code.  We will also add its chain
   1707     // inputs as inputs to the ultimate TokenFactor we create.
   1708     Result = CR_LeadsToInteriorNode;
   1709     ChainedNodesInPattern.push_back(User);
   1710     InteriorChainedNodes.push_back(User);
   1711     continue;
   1712   }
   1713 
   1714   return Result;
   1715 }
   1716 
   1717 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
   1718 /// operation for when the pattern matched at least one node with a chains.  The
   1719 /// input vector contains a list of all of the chained nodes that we match.  We
   1720 /// must determine if this is a valid thing to cover (i.e. matching it won't
   1721 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
   1722 /// be used as the input node chain for the generated nodes.
   1723 static SDValue
   1724 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
   1725                        SelectionDAG *CurDAG) {
   1726   // Walk all of the chained nodes we've matched, recursively scanning down the
   1727   // users of the chain result. This adds any TokenFactor nodes that are caught
   1728   // in between chained nodes to the chained and interior nodes list.
   1729   SmallVector<SDNode*, 3> InteriorChainedNodes;
   1730   for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
   1731     if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
   1732                        InteriorChainedNodes) == CR_InducesCycle)
   1733       return SDValue(); // Would induce a cycle.
   1734   }
   1735 
   1736   // Okay, we have walked all the matched nodes and collected TokenFactor nodes
   1737   // that we are interested in.  Form our input TokenFactor node.
   1738   SmallVector<SDValue, 3> InputChains;
   1739   for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
   1740     // Add the input chain of this node to the InputChains list (which will be
   1741     // the operands of the generated TokenFactor) if it's not an interior node.
   1742     SDNode *N = ChainNodesMatched[i];
   1743     if (N->getOpcode() != ISD::TokenFactor) {
   1744       if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
   1745         continue;
   1746 
   1747       // Otherwise, add the input chain.
   1748       SDValue InChain = ChainNodesMatched[i]->getOperand(0);
   1749       assert(InChain.getValueType() == MVT::Other && "Not a chain");
   1750       InputChains.push_back(InChain);
   1751       continue;
   1752     }
   1753 
   1754     // If we have a token factor, we want to add all inputs of the token factor
   1755     // that are not part of the pattern we're matching.
   1756     for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
   1757       if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
   1758                       N->getOperand(op).getNode()))
   1759         InputChains.push_back(N->getOperand(op));
   1760     }
   1761   }
   1762 
   1763   SDValue Res;
   1764   if (InputChains.size() == 1)
   1765     return InputChains[0];
   1766   return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
   1767                          MVT::Other, &InputChains[0], InputChains.size());
   1768 }
   1769 
   1770 /// MorphNode - Handle morphing a node in place for the selector.
   1771 SDNode *SelectionDAGISel::
   1772 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
   1773           const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
   1774   // It is possible we're using MorphNodeTo to replace a node with no
   1775   // normal results with one that has a normal result (or we could be
   1776   // adding a chain) and the input could have glue and chains as well.
   1777   // In this case we need to shift the operands down.
   1778   // FIXME: This is a horrible hack and broken in obscure cases, no worse
   1779   // than the old isel though.
   1780   int OldGlueResultNo = -1, OldChainResultNo = -1;
   1781 
   1782   unsigned NTMNumResults = Node->getNumValues();
   1783   if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
   1784     OldGlueResultNo = NTMNumResults-1;
   1785     if (NTMNumResults != 1 &&
   1786         Node->getValueType(NTMNumResults-2) == MVT::Other)
   1787       OldChainResultNo = NTMNumResults-2;
   1788   } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
   1789     OldChainResultNo = NTMNumResults-1;
   1790 
   1791   // Call the underlying SelectionDAG routine to do the transmogrification. Note
   1792   // that this deletes operands of the old node that become dead.
   1793   SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
   1794 
   1795   // MorphNodeTo can operate in two ways: if an existing node with the
   1796   // specified operands exists, it can just return it.  Otherwise, it
   1797   // updates the node in place to have the requested operands.
   1798   if (Res == Node) {
   1799     // If we updated the node in place, reset the node ID.  To the isel,
   1800     // this should be just like a newly allocated machine node.
   1801     Res->setNodeId(-1);
   1802   }
   1803 
   1804   unsigned ResNumResults = Res->getNumValues();
   1805   // Move the glue if needed.
   1806   if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
   1807       (unsigned)OldGlueResultNo != ResNumResults-1)
   1808     CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
   1809                                       SDValue(Res, ResNumResults-1));
   1810 
   1811   if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
   1812     --ResNumResults;
   1813 
   1814   // Move the chain reference if needed.
   1815   if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
   1816       (unsigned)OldChainResultNo != ResNumResults-1)
   1817     CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
   1818                                       SDValue(Res, ResNumResults-1));
   1819 
   1820   // Otherwise, no replacement happened because the node already exists. Replace
   1821   // Uses of the old node with the new one.
   1822   if (Res != Node)
   1823     CurDAG->ReplaceAllUsesWith(Node, Res);
   1824 
   1825   return Res;
   1826 }
   1827 
   1828 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
   1829 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   1830 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   1831           SDValue N,
   1832           const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
   1833   // Accept if it is exactly the same as a previously recorded node.
   1834   unsigned RecNo = MatcherTable[MatcherIndex++];
   1835   assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
   1836   return N == RecordedNodes[RecNo].first;
   1837 }
   1838 
   1839 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
   1840 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   1841 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   1842                       SelectionDAGISel &SDISel) {
   1843   return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
   1844 }
   1845 
   1846 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
   1847 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   1848 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   1849                    SelectionDAGISel &SDISel, SDNode *N) {
   1850   return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
   1851 }
   1852 
   1853 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   1854 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   1855             SDNode *N) {
   1856   uint16_t Opc = MatcherTable[MatcherIndex++];
   1857   Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
   1858   return N->getOpcode() == Opc;
   1859 }
   1860 
   1861 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   1862 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   1863           SDValue N, const TargetLowering &TLI) {
   1864   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   1865   if (N.getValueType() == VT) return true;
   1866 
   1867   // Handle the case when VT is iPTR.
   1868   return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
   1869 }
   1870 
   1871 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   1872 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   1873                SDValue N, const TargetLowering &TLI,
   1874                unsigned ChildNo) {
   1875   if (ChildNo >= N.getNumOperands())
   1876     return false;  // Match fails if out of range child #.
   1877   return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
   1878 }
   1879 
   1880 
   1881 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   1882 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   1883               SDValue N) {
   1884   return cast<CondCodeSDNode>(N)->get() ==
   1885       (ISD::CondCode)MatcherTable[MatcherIndex++];
   1886 }
   1887 
   1888 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   1889 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   1890                SDValue N, const TargetLowering &TLI) {
   1891   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   1892   if (cast<VTSDNode>(N)->getVT() == VT)
   1893     return true;
   1894 
   1895   // Handle the case when VT is iPTR.
   1896   return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
   1897 }
   1898 
   1899 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   1900 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   1901              SDValue N) {
   1902   int64_t Val = MatcherTable[MatcherIndex++];
   1903   if (Val & 128)
   1904     Val = GetVBR(Val, MatcherTable, MatcherIndex);
   1905 
   1906   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
   1907   return C != 0 && C->getSExtValue() == Val;
   1908 }
   1909 
   1910 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   1911 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   1912             SDValue N, SelectionDAGISel &SDISel) {
   1913   int64_t Val = MatcherTable[MatcherIndex++];
   1914   if (Val & 128)
   1915     Val = GetVBR(Val, MatcherTable, MatcherIndex);
   1916 
   1917   if (N->getOpcode() != ISD::AND) return false;
   1918 
   1919   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
   1920   return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
   1921 }
   1922 
   1923 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   1924 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   1925            SDValue N, SelectionDAGISel &SDISel) {
   1926   int64_t Val = MatcherTable[MatcherIndex++];
   1927   if (Val & 128)
   1928     Val = GetVBR(Val, MatcherTable, MatcherIndex);
   1929 
   1930   if (N->getOpcode() != ISD::OR) return false;
   1931 
   1932   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
   1933   return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
   1934 }
   1935 
   1936 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
   1937 /// scope, evaluate the current node.  If the current predicate is known to
   1938 /// fail, set Result=true and return anything.  If the current predicate is
   1939 /// known to pass, set Result=false and return the MatcherIndex to continue
   1940 /// with.  If the current predicate is unknown, set Result=false and return the
   1941 /// MatcherIndex to continue with.
   1942 static unsigned IsPredicateKnownToFail(const unsigned char *Table,
   1943                                        unsigned Index, SDValue N,
   1944                                        bool &Result, SelectionDAGISel &SDISel,
   1945                  SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
   1946   switch (Table[Index++]) {
   1947   default:
   1948     Result = false;
   1949     return Index-1;  // Could not evaluate this predicate.
   1950   case SelectionDAGISel::OPC_CheckSame:
   1951     Result = !::CheckSame(Table, Index, N, RecordedNodes);
   1952     return Index;
   1953   case SelectionDAGISel::OPC_CheckPatternPredicate:
   1954     Result = !::CheckPatternPredicate(Table, Index, SDISel);
   1955     return Index;
   1956   case SelectionDAGISel::OPC_CheckPredicate:
   1957     Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
   1958     return Index;
   1959   case SelectionDAGISel::OPC_CheckOpcode:
   1960     Result = !::CheckOpcode(Table, Index, N.getNode());
   1961     return Index;
   1962   case SelectionDAGISel::OPC_CheckType:
   1963     Result = !::CheckType(Table, Index, N, SDISel.TLI);
   1964     return Index;
   1965   case SelectionDAGISel::OPC_CheckChild0Type:
   1966   case SelectionDAGISel::OPC_CheckChild1Type:
   1967   case SelectionDAGISel::OPC_CheckChild2Type:
   1968   case SelectionDAGISel::OPC_CheckChild3Type:
   1969   case SelectionDAGISel::OPC_CheckChild4Type:
   1970   case SelectionDAGISel::OPC_CheckChild5Type:
   1971   case SelectionDAGISel::OPC_CheckChild6Type:
   1972   case SelectionDAGISel::OPC_CheckChild7Type:
   1973     Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
   1974                         Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
   1975     return Index;
   1976   case SelectionDAGISel::OPC_CheckCondCode:
   1977     Result = !::CheckCondCode(Table, Index, N);
   1978     return Index;
   1979   case SelectionDAGISel::OPC_CheckValueType:
   1980     Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
   1981     return Index;
   1982   case SelectionDAGISel::OPC_CheckInteger:
   1983     Result = !::CheckInteger(Table, Index, N);
   1984     return Index;
   1985   case SelectionDAGISel::OPC_CheckAndImm:
   1986     Result = !::CheckAndImm(Table, Index, N, SDISel);
   1987     return Index;
   1988   case SelectionDAGISel::OPC_CheckOrImm:
   1989     Result = !::CheckOrImm(Table, Index, N, SDISel);
   1990     return Index;
   1991   }
   1992 }
   1993 
   1994 namespace {
   1995 
   1996 struct MatchScope {
   1997   /// FailIndex - If this match fails, this is the index to continue with.
   1998   unsigned FailIndex;
   1999 
   2000   /// NodeStack - The node stack when the scope was formed.
   2001   SmallVector<SDValue, 4> NodeStack;
   2002 
   2003   /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
   2004   unsigned NumRecordedNodes;
   2005 
   2006   /// NumMatchedMemRefs - The number of matched memref entries.
   2007   unsigned NumMatchedMemRefs;
   2008 
   2009   /// InputChain/InputGlue - The current chain/glue
   2010   SDValue InputChain, InputGlue;
   2011 
   2012   /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
   2013   bool HasChainNodesMatched, HasGlueResultNodesMatched;
   2014 };
   2015 
   2016 }
   2017 
   2018 SDNode *SelectionDAGISel::
   2019 SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
   2020                  unsigned TableSize) {
   2021   // FIXME: Should these even be selected?  Handle these cases in the caller?
   2022   switch (NodeToMatch->getOpcode()) {
   2023   default:
   2024     break;
   2025   case ISD::EntryToken:       // These nodes remain the same.
   2026   case ISD::BasicBlock:
   2027   case ISD::Register:
   2028   //case ISD::VALUETYPE:
   2029   //case ISD::CONDCODE:
   2030   case ISD::HANDLENODE:
   2031   case ISD::MDNODE_SDNODE:
   2032   case ISD::TargetConstant:
   2033   case ISD::TargetConstantFP:
   2034   case ISD::TargetConstantPool:
   2035   case ISD::TargetFrameIndex:
   2036   case ISD::TargetExternalSymbol:
   2037   case ISD::TargetBlockAddress:
   2038   case ISD::TargetJumpTable:
   2039   case ISD::TargetGlobalTLSAddress:
   2040   case ISD::TargetGlobalAddress:
   2041   case ISD::TokenFactor:
   2042   case ISD::CopyFromReg:
   2043   case ISD::CopyToReg:
   2044   case ISD::EH_LABEL:
   2045     NodeToMatch->setNodeId(-1); // Mark selected.
   2046     return 0;
   2047   case ISD::AssertSext:
   2048   case ISD::AssertZext:
   2049     CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
   2050                                       NodeToMatch->getOperand(0));
   2051     return 0;
   2052   case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
   2053   case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
   2054   }
   2055 
   2056   assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
   2057 
   2058   // Set up the node stack with NodeToMatch as the only node on the stack.
   2059   SmallVector<SDValue, 8> NodeStack;
   2060   SDValue N = SDValue(NodeToMatch, 0);
   2061   NodeStack.push_back(N);
   2062 
   2063   // MatchScopes - Scopes used when matching, if a match failure happens, this
   2064   // indicates where to continue checking.
   2065   SmallVector<MatchScope, 8> MatchScopes;
   2066 
   2067   // RecordedNodes - This is the set of nodes that have been recorded by the
   2068   // state machine.  The second value is the parent of the node, or null if the
   2069   // root is recorded.
   2070   SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
   2071 
   2072   // MatchedMemRefs - This is the set of MemRef's we've seen in the input
   2073   // pattern.
   2074   SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
   2075 
   2076   // These are the current input chain and glue for use when generating nodes.
   2077   // Various Emit operations change these.  For example, emitting a copytoreg
   2078   // uses and updates these.
   2079   SDValue InputChain, InputGlue;
   2080 
   2081   // ChainNodesMatched - If a pattern matches nodes that have input/output
   2082   // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
   2083   // which ones they are.  The result is captured into this list so that we can
   2084   // update the chain results when the pattern is complete.
   2085   SmallVector<SDNode*, 3> ChainNodesMatched;
   2086   SmallVector<SDNode*, 3> GlueResultNodesMatched;
   2087 
   2088   DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
   2089         NodeToMatch->dump(CurDAG);
   2090         errs() << '\n');
   2091 
   2092   // Determine where to start the interpreter.  Normally we start at opcode #0,
   2093   // but if the state machine starts with an OPC_SwitchOpcode, then we
   2094   // accelerate the first lookup (which is guaranteed to be hot) with the
   2095   // OpcodeOffset table.
   2096   unsigned MatcherIndex = 0;
   2097 
   2098   if (!OpcodeOffset.empty()) {
   2099     // Already computed the OpcodeOffset table, just index into it.
   2100     if (N.getOpcode() < OpcodeOffset.size())
   2101       MatcherIndex = OpcodeOffset[N.getOpcode()];
   2102     DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
   2103 
   2104   } else if (MatcherTable[0] == OPC_SwitchOpcode) {
   2105     // Otherwise, the table isn't computed, but the state machine does start
   2106     // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
   2107     // is the first time we're selecting an instruction.
   2108     unsigned Idx = 1;
   2109     while (1) {
   2110       // Get the size of this case.
   2111       unsigned CaseSize = MatcherTable[Idx++];
   2112       if (CaseSize & 128)
   2113         CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
   2114       if (CaseSize == 0) break;
   2115 
   2116       // Get the opcode, add the index to the table.
   2117       uint16_t Opc = MatcherTable[Idx++];
   2118       Opc |= (unsigned short)MatcherTable[Idx++] << 8;
   2119       if (Opc >= OpcodeOffset.size())
   2120         OpcodeOffset.resize((Opc+1)*2);
   2121       OpcodeOffset[Opc] = Idx;
   2122       Idx += CaseSize;
   2123     }
   2124 
   2125     // Okay, do the lookup for the first opcode.
   2126     if (N.getOpcode() < OpcodeOffset.size())
   2127       MatcherIndex = OpcodeOffset[N.getOpcode()];
   2128   }
   2129 
   2130   while (1) {
   2131     assert(MatcherIndex < TableSize && "Invalid index");
   2132 #ifndef NDEBUG
   2133     unsigned CurrentOpcodeIndex = MatcherIndex;
   2134 #endif
   2135     BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
   2136     switch (Opcode) {
   2137     case OPC_Scope: {
   2138       // Okay, the semantics of this operation are that we should push a scope
   2139       // then evaluate the first child.  However, pushing a scope only to have
   2140       // the first check fail (which then pops it) is inefficient.  If we can
   2141       // determine immediately that the first check (or first several) will
   2142       // immediately fail, don't even bother pushing a scope for them.
   2143       unsigned FailIndex;
   2144 
   2145       while (1) {
   2146         unsigned NumToSkip = MatcherTable[MatcherIndex++];
   2147         if (NumToSkip & 128)
   2148           NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
   2149         // Found the end of the scope with no match.
   2150         if (NumToSkip == 0) {
   2151           FailIndex = 0;
   2152           break;
   2153         }
   2154 
   2155         FailIndex = MatcherIndex+NumToSkip;
   2156 
   2157         unsigned MatcherIndexOfPredicate = MatcherIndex;
   2158         (void)MatcherIndexOfPredicate; // silence warning.
   2159 
   2160         // If we can't evaluate this predicate without pushing a scope (e.g. if
   2161         // it is a 'MoveParent') or if the predicate succeeds on this node, we
   2162         // push the scope and evaluate the full predicate chain.
   2163         bool Result;
   2164         MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
   2165                                               Result, *this, RecordedNodes);
   2166         if (!Result)
   2167           break;
   2168 
   2169         DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
   2170                      << "index " << MatcherIndexOfPredicate
   2171                      << ", continuing at " << FailIndex << "\n");
   2172         ++NumDAGIselRetries;
   2173 
   2174         // Otherwise, we know that this case of the Scope is guaranteed to fail,
   2175         // move to the next case.
   2176         MatcherIndex = FailIndex;
   2177       }
   2178 
   2179       // If the whole scope failed to match, bail.
   2180       if (FailIndex == 0) break;
   2181 
   2182       // Push a MatchScope which indicates where to go if the first child fails
   2183       // to match.
   2184       MatchScope NewEntry;
   2185       NewEntry.FailIndex = FailIndex;
   2186       NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
   2187       NewEntry.NumRecordedNodes = RecordedNodes.size();
   2188       NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
   2189       NewEntry.InputChain = InputChain;
   2190       NewEntry.InputGlue = InputGlue;
   2191       NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
   2192       NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
   2193       MatchScopes.push_back(NewEntry);
   2194       continue;
   2195     }
   2196     case OPC_RecordNode: {
   2197       // Remember this node, it may end up being an operand in the pattern.
   2198       SDNode *Parent = 0;
   2199       if (NodeStack.size() > 1)
   2200         Parent = NodeStack[NodeStack.size()-2].getNode();
   2201       RecordedNodes.push_back(std::make_pair(N, Parent));
   2202       continue;
   2203     }
   2204 
   2205     case OPC_RecordChild0: case OPC_RecordChild1:
   2206     case OPC_RecordChild2: case OPC_RecordChild3:
   2207     case OPC_RecordChild4: case OPC_RecordChild5:
   2208     case OPC_RecordChild6: case OPC_RecordChild7: {
   2209       unsigned ChildNo = Opcode-OPC_RecordChild0;
   2210       if (ChildNo >= N.getNumOperands())
   2211         break;  // Match fails if out of range child #.
   2212 
   2213       RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
   2214                                              N.getNode()));
   2215       continue;
   2216     }
   2217     case OPC_RecordMemRef:
   2218       MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
   2219       continue;
   2220 
   2221     case OPC_CaptureGlueInput:
   2222       // If the current node has an input glue, capture it in InputGlue.
   2223       if (N->getNumOperands() != 0 &&
   2224           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
   2225         InputGlue = N->getOperand(N->getNumOperands()-1);
   2226       continue;
   2227 
   2228     case OPC_MoveChild: {
   2229       unsigned ChildNo = MatcherTable[MatcherIndex++];
   2230       if (ChildNo >= N.getNumOperands())
   2231         break;  // Match fails if out of range child #.
   2232       N = N.getOperand(ChildNo);
   2233       NodeStack.push_back(N);
   2234       continue;
   2235     }
   2236 
   2237     case OPC_MoveParent:
   2238       // Pop the current node off the NodeStack.
   2239       NodeStack.pop_back();
   2240       assert(!NodeStack.empty() && "Node stack imbalance!");
   2241       N = NodeStack.back();
   2242       continue;
   2243 
   2244     case OPC_CheckSame:
   2245       if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
   2246       continue;
   2247     case OPC_CheckPatternPredicate:
   2248       if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
   2249       continue;
   2250     case OPC_CheckPredicate:
   2251       if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
   2252                                 N.getNode()))
   2253         break;
   2254       continue;
   2255     case OPC_CheckComplexPat: {
   2256       unsigned CPNum = MatcherTable[MatcherIndex++];
   2257       unsigned RecNo = MatcherTable[MatcherIndex++];
   2258       assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
   2259       if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
   2260                                RecordedNodes[RecNo].first, CPNum,
   2261                                RecordedNodes))
   2262         break;
   2263       continue;
   2264     }
   2265     case OPC_CheckOpcode:
   2266       if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
   2267       continue;
   2268 
   2269     case OPC_CheckType:
   2270       if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
   2271       continue;
   2272 
   2273     case OPC_SwitchOpcode: {
   2274       unsigned CurNodeOpcode = N.getOpcode();
   2275       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
   2276       unsigned CaseSize;
   2277       while (1) {
   2278         // Get the size of this case.
   2279         CaseSize = MatcherTable[MatcherIndex++];
   2280         if (CaseSize & 128)
   2281           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
   2282         if (CaseSize == 0) break;
   2283 
   2284         uint16_t Opc = MatcherTable[MatcherIndex++];
   2285         Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
   2286 
   2287         // If the opcode matches, then we will execute this case.
   2288         if (CurNodeOpcode == Opc)
   2289           break;
   2290 
   2291         // Otherwise, skip over this case.
   2292         MatcherIndex += CaseSize;
   2293       }
   2294 
   2295       // If no cases matched, bail out.
   2296       if (CaseSize == 0) break;
   2297 
   2298       // Otherwise, execute the case we found.
   2299       DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
   2300                    << " to " << MatcherIndex << "\n");
   2301       continue;
   2302     }
   2303 
   2304     case OPC_SwitchType: {
   2305       MVT CurNodeVT = N.getValueType().getSimpleVT();
   2306       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
   2307       unsigned CaseSize;
   2308       while (1) {
   2309         // Get the size of this case.
   2310         CaseSize = MatcherTable[MatcherIndex++];
   2311         if (CaseSize & 128)
   2312           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
   2313         if (CaseSize == 0) break;
   2314 
   2315         MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   2316         if (CaseVT == MVT::iPTR)
   2317           CaseVT = TLI.getPointerTy();
   2318 
   2319         // If the VT matches, then we will execute this case.
   2320         if (CurNodeVT == CaseVT)
   2321           break;
   2322 
   2323         // Otherwise, skip over this case.
   2324         MatcherIndex += CaseSize;
   2325       }
   2326 
   2327       // If no cases matched, bail out.
   2328       if (CaseSize == 0) break;
   2329 
   2330       // Otherwise, execute the case we found.
   2331       DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
   2332                    << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
   2333       continue;
   2334     }
   2335     case OPC_CheckChild0Type: case OPC_CheckChild1Type:
   2336     case OPC_CheckChild2Type: case OPC_CheckChild3Type:
   2337     case OPC_CheckChild4Type: case OPC_CheckChild5Type:
   2338     case OPC_CheckChild6Type: case OPC_CheckChild7Type:
   2339       if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
   2340                             Opcode-OPC_CheckChild0Type))
   2341         break;
   2342       continue;
   2343     case OPC_CheckCondCode:
   2344       if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
   2345       continue;
   2346     case OPC_CheckValueType:
   2347       if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
   2348       continue;
   2349     case OPC_CheckInteger:
   2350       if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
   2351       continue;
   2352     case OPC_CheckAndImm:
   2353       if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
   2354       continue;
   2355     case OPC_CheckOrImm:
   2356       if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
   2357       continue;
   2358 
   2359     case OPC_CheckFoldableChainNode: {
   2360       assert(NodeStack.size() != 1 && "No parent node");
   2361       // Verify that all intermediate nodes between the root and this one have
   2362       // a single use.
   2363       bool HasMultipleUses = false;
   2364       for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
   2365         if (!NodeStack[i].hasOneUse()) {
   2366           HasMultipleUses = true;
   2367           break;
   2368         }
   2369       if (HasMultipleUses) break;
   2370 
   2371       // Check to see that the target thinks this is profitable to fold and that
   2372       // we can fold it without inducing cycles in the graph.
   2373       if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
   2374                               NodeToMatch) ||
   2375           !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
   2376                          NodeToMatch, OptLevel,
   2377                          true/*We validate our own chains*/))
   2378         break;
   2379 
   2380       continue;
   2381     }
   2382     case OPC_EmitInteger: {
   2383       MVT::SimpleValueType VT =
   2384         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   2385       int64_t Val = MatcherTable[MatcherIndex++];
   2386       if (Val & 128)
   2387         Val = GetVBR(Val, MatcherTable, MatcherIndex);
   2388       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
   2389                               CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
   2390       continue;
   2391     }
   2392     case OPC_EmitRegister: {
   2393       MVT::SimpleValueType VT =
   2394         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   2395       unsigned RegNo = MatcherTable[MatcherIndex++];
   2396       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
   2397                               CurDAG->getRegister(RegNo, VT), (SDNode*)0));
   2398       continue;
   2399     }
   2400     case OPC_EmitRegister2: {
   2401       // For targets w/ more than 256 register names, the register enum
   2402       // values are stored in two bytes in the matcher table (just like
   2403       // opcodes).
   2404       MVT::SimpleValueType VT =
   2405         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   2406       unsigned RegNo = MatcherTable[MatcherIndex++];
   2407       RegNo |= MatcherTable[MatcherIndex++] << 8;
   2408       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
   2409                               CurDAG->getRegister(RegNo, VT), (SDNode*)0));
   2410       continue;
   2411     }
   2412 
   2413     case OPC_EmitConvertToTarget:  {
   2414       // Convert from IMM/FPIMM to target version.
   2415       unsigned RecNo = MatcherTable[MatcherIndex++];
   2416       assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
   2417       SDValue Imm = RecordedNodes[RecNo].first;
   2418 
   2419       if (Imm->getOpcode() == ISD::Constant) {
   2420         int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
   2421         Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
   2422       } else if (Imm->getOpcode() == ISD::ConstantFP) {
   2423         const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
   2424         Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
   2425       }
   2426 
   2427       RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
   2428       continue;
   2429     }
   2430 
   2431     case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
   2432     case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
   2433       // These are space-optimized forms of OPC_EmitMergeInputChains.
   2434       assert(InputChain.getNode() == 0 &&
   2435              "EmitMergeInputChains should be the first chain producing node");
   2436       assert(ChainNodesMatched.empty() &&
   2437              "Should only have one EmitMergeInputChains per match");
   2438 
   2439       // Read all of the chained nodes.
   2440       unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
   2441       assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
   2442       ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
   2443 
   2444       // FIXME: What if other value results of the node have uses not matched
   2445       // by this pattern?
   2446       if (ChainNodesMatched.back() != NodeToMatch &&
   2447           !RecordedNodes[RecNo].first.hasOneUse()) {
   2448         ChainNodesMatched.clear();
   2449         break;
   2450       }
   2451 
   2452       // Merge the input chains if they are not intra-pattern references.
   2453       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
   2454 
   2455       if (InputChain.getNode() == 0)
   2456         break;  // Failed to merge.
   2457       continue;
   2458     }
   2459 
   2460     case OPC_EmitMergeInputChains: {
   2461       assert(InputChain.getNode() == 0 &&
   2462              "EmitMergeInputChains should be the first chain producing node");
   2463       // This node gets a list of nodes we matched in the input that have
   2464       // chains.  We want to token factor all of the input chains to these nodes
   2465       // together.  However, if any of the input chains is actually one of the
   2466       // nodes matched in this pattern, then we have an intra-match reference.
   2467       // Ignore these because the newly token factored chain should not refer to
   2468       // the old nodes.
   2469       unsigned NumChains = MatcherTable[MatcherIndex++];
   2470       assert(NumChains != 0 && "Can't TF zero chains");
   2471 
   2472       assert(ChainNodesMatched.empty() &&
   2473              "Should only have one EmitMergeInputChains per match");
   2474 
   2475       // Read all of the chained nodes.
   2476       for (unsigned i = 0; i != NumChains; ++i) {
   2477         unsigned RecNo = MatcherTable[MatcherIndex++];
   2478         assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
   2479         ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
   2480 
   2481         // FIXME: What if other value results of the node have uses not matched
   2482         // by this pattern?
   2483         if (ChainNodesMatched.back() != NodeToMatch &&
   2484             !RecordedNodes[RecNo].first.hasOneUse()) {
   2485           ChainNodesMatched.clear();
   2486           break;
   2487         }
   2488       }
   2489 
   2490       // If the inner loop broke out, the match fails.
   2491       if (ChainNodesMatched.empty())
   2492         break;
   2493 
   2494       // Merge the input chains if they are not intra-pattern references.
   2495       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
   2496 
   2497       if (InputChain.getNode() == 0)
   2498         break;  // Failed to merge.
   2499 
   2500       continue;
   2501     }
   2502 
   2503     case OPC_EmitCopyToReg: {
   2504       unsigned RecNo = MatcherTable[MatcherIndex++];
   2505       assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
   2506       unsigned DestPhysReg = MatcherTable[MatcherIndex++];
   2507 
   2508       if (InputChain.getNode() == 0)
   2509         InputChain = CurDAG->getEntryNode();
   2510 
   2511       InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
   2512                                         DestPhysReg, RecordedNodes[RecNo].first,
   2513                                         InputGlue);
   2514 
   2515       InputGlue = InputChain.getValue(1);
   2516       continue;
   2517     }
   2518 
   2519     case OPC_EmitNodeXForm: {
   2520       unsigned XFormNo = MatcherTable[MatcherIndex++];
   2521       unsigned RecNo = MatcherTable[MatcherIndex++];
   2522       assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
   2523       SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
   2524       RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
   2525       continue;
   2526     }
   2527 
   2528     case OPC_EmitNode:
   2529     case OPC_MorphNodeTo: {
   2530       uint16_t TargetOpc = MatcherTable[MatcherIndex++];
   2531       TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
   2532       unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
   2533       // Get the result VT list.
   2534       unsigned NumVTs = MatcherTable[MatcherIndex++];
   2535       SmallVector<EVT, 4> VTs;
   2536       for (unsigned i = 0; i != NumVTs; ++i) {
   2537         MVT::SimpleValueType VT =
   2538           (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   2539         if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
   2540         VTs.push_back(VT);
   2541       }
   2542 
   2543       if (EmitNodeInfo & OPFL_Chain)
   2544         VTs.push_back(MVT::Other);
   2545       if (EmitNodeInfo & OPFL_GlueOutput)
   2546         VTs.push_back(MVT::Glue);
   2547 
   2548       // This is hot code, so optimize the two most common cases of 1 and 2
   2549       // results.
   2550       SDVTList VTList;
   2551       if (VTs.size() == 1)
   2552         VTList = CurDAG->getVTList(VTs[0]);
   2553       else if (VTs.size() == 2)
   2554         VTList = CurDAG->getVTList(VTs[0], VTs[1]);
   2555       else
   2556         VTList = CurDAG->getVTList(VTs.data(), VTs.size());
   2557 
   2558       // Get the operand list.
   2559       unsigned NumOps = MatcherTable[MatcherIndex++];
   2560       SmallVector<SDValue, 8> Ops;
   2561       for (unsigned i = 0; i != NumOps; ++i) {
   2562         unsigned RecNo = MatcherTable[MatcherIndex++];
   2563         if (RecNo & 128)
   2564           RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
   2565 
   2566         assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
   2567         Ops.push_back(RecordedNodes[RecNo].first);
   2568       }
   2569 
   2570       // If there are variadic operands to add, handle them now.
   2571       if (EmitNodeInfo & OPFL_VariadicInfo) {
   2572         // Determine the start index to copy from.
   2573         unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
   2574         FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
   2575         assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
   2576                "Invalid variadic node");
   2577         // Copy all of the variadic operands, not including a potential glue
   2578         // input.
   2579         for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
   2580              i != e; ++i) {
   2581           SDValue V = NodeToMatch->getOperand(i);
   2582           if (V.getValueType() == MVT::Glue) break;
   2583           Ops.push_back(V);
   2584         }
   2585       }
   2586 
   2587       // If this has chain/glue inputs, add them.
   2588       if (EmitNodeInfo & OPFL_Chain)
   2589         Ops.push_back(InputChain);
   2590       if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
   2591         Ops.push_back(InputGlue);
   2592 
   2593       // Create the node.
   2594       SDNode *Res = 0;
   2595       if (Opcode != OPC_MorphNodeTo) {
   2596         // If this is a normal EmitNode command, just create the new node and
   2597         // add the results to the RecordedNodes list.
   2598         Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
   2599                                      VTList, Ops.data(), Ops.size());
   2600 
   2601         // Add all the non-glue/non-chain results to the RecordedNodes list.
   2602         for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
   2603           if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
   2604           RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
   2605                                                              (SDNode*) 0));
   2606         }
   2607 
   2608       } else {
   2609         Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
   2610                         EmitNodeInfo);
   2611       }
   2612 
   2613       // If the node had chain/glue results, update our notion of the current
   2614       // chain and glue.
   2615       if (EmitNodeInfo & OPFL_GlueOutput) {
   2616         InputGlue = SDValue(Res, VTs.size()-1);
   2617         if (EmitNodeInfo & OPFL_Chain)
   2618           InputChain = SDValue(Res, VTs.size()-2);
   2619       } else if (EmitNodeInfo & OPFL_Chain)
   2620         InputChain = SDValue(Res, VTs.size()-1);
   2621 
   2622       // If the OPFL_MemRefs glue is set on this node, slap all of the
   2623       // accumulated memrefs onto it.
   2624       //
   2625       // FIXME: This is vastly incorrect for patterns with multiple outputs
   2626       // instructions that access memory and for ComplexPatterns that match
   2627       // loads.
   2628       if (EmitNodeInfo & OPFL_MemRefs) {
   2629         // Only attach load or store memory operands if the generated
   2630         // instruction may load or store.
   2631         const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
   2632         bool mayLoad = MCID.mayLoad();
   2633         bool mayStore = MCID.mayStore();
   2634 
   2635         unsigned NumMemRefs = 0;
   2636         for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
   2637              MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
   2638           if ((*I)->isLoad()) {
   2639             if (mayLoad)
   2640               ++NumMemRefs;
   2641           } else if ((*I)->isStore()) {
   2642             if (mayStore)
   2643               ++NumMemRefs;
   2644           } else {
   2645             ++NumMemRefs;
   2646           }
   2647         }
   2648 
   2649         MachineSDNode::mmo_iterator MemRefs =
   2650           MF->allocateMemRefsArray(NumMemRefs);
   2651 
   2652         MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
   2653         for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
   2654              MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
   2655           if ((*I)->isLoad()) {
   2656             if (mayLoad)
   2657               *MemRefsPos++ = *I;
   2658           } else if ((*I)->isStore()) {
   2659             if (mayStore)
   2660               *MemRefsPos++ = *I;
   2661           } else {
   2662             *MemRefsPos++ = *I;
   2663           }
   2664         }
   2665 
   2666         cast<MachineSDNode>(Res)
   2667           ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
   2668       }
   2669 
   2670       DEBUG(errs() << "  "
   2671                    << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
   2672                    << " node: "; Res->dump(CurDAG); errs() << "\n");
   2673 
   2674       // If this was a MorphNodeTo then we're completely done!
   2675       if (Opcode == OPC_MorphNodeTo) {
   2676         // Update chain and glue uses.
   2677         UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
   2678                             InputGlue, GlueResultNodesMatched, true);
   2679         return Res;
   2680       }
   2681 
   2682       continue;
   2683     }
   2684 
   2685     case OPC_MarkGlueResults: {
   2686       unsigned NumNodes = MatcherTable[MatcherIndex++];
   2687 
   2688       // Read and remember all the glue-result nodes.
   2689       for (unsigned i = 0; i != NumNodes; ++i) {
   2690         unsigned RecNo = MatcherTable[MatcherIndex++];
   2691         if (RecNo & 128)
   2692           RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
   2693 
   2694         assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
   2695         GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
   2696       }
   2697       continue;
   2698     }
   2699 
   2700     case OPC_CompleteMatch: {
   2701       // The match has been completed, and any new nodes (if any) have been
   2702       // created.  Patch up references to the matched dag to use the newly
   2703       // created nodes.
   2704       unsigned NumResults = MatcherTable[MatcherIndex++];
   2705 
   2706       for (unsigned i = 0; i != NumResults; ++i) {
   2707         unsigned ResSlot = MatcherTable[MatcherIndex++];
   2708         if (ResSlot & 128)
   2709           ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
   2710 
   2711         assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
   2712         SDValue Res = RecordedNodes[ResSlot].first;
   2713 
   2714         assert(i < NodeToMatch->getNumValues() &&
   2715                NodeToMatch->getValueType(i) != MVT::Other &&
   2716                NodeToMatch->getValueType(i) != MVT::Glue &&
   2717                "Invalid number of results to complete!");
   2718         assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
   2719                 NodeToMatch->getValueType(i) == MVT::iPTR ||
   2720                 Res.getValueType() == MVT::iPTR ||
   2721                 NodeToMatch->getValueType(i).getSizeInBits() ==
   2722                     Res.getValueType().getSizeInBits()) &&
   2723                "invalid replacement");
   2724         CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
   2725       }
   2726 
   2727       // If the root node defines glue, add it to the glue nodes to update list.
   2728       if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
   2729         GlueResultNodesMatched.push_back(NodeToMatch);
   2730 
   2731       // Update chain and glue uses.
   2732       UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
   2733                           InputGlue, GlueResultNodesMatched, false);
   2734 
   2735       assert(NodeToMatch->use_empty() &&
   2736              "Didn't replace all uses of the node?");
   2737 
   2738       // FIXME: We just return here, which interacts correctly with SelectRoot
   2739       // above.  We should fix this to not return an SDNode* anymore.
   2740       return 0;
   2741     }
   2742     }
   2743 
   2744     // If the code reached this point, then the match failed.  See if there is
   2745     // another child to try in the current 'Scope', otherwise pop it until we
   2746     // find a case to check.
   2747     DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
   2748     ++NumDAGIselRetries;
   2749     while (1) {
   2750       if (MatchScopes.empty()) {
   2751         CannotYetSelect(NodeToMatch);
   2752         return 0;
   2753       }
   2754 
   2755       // Restore the interpreter state back to the point where the scope was
   2756       // formed.
   2757       MatchScope &LastScope = MatchScopes.back();
   2758       RecordedNodes.resize(LastScope.NumRecordedNodes);
   2759       NodeStack.clear();
   2760       NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
   2761       N = NodeStack.back();
   2762 
   2763       if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
   2764         MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
   2765       MatcherIndex = LastScope.FailIndex;
   2766 
   2767       DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
   2768 
   2769       InputChain = LastScope.InputChain;
   2770       InputGlue = LastScope.InputGlue;
   2771       if (!LastScope.HasChainNodesMatched)
   2772         ChainNodesMatched.clear();
   2773       if (!LastScope.HasGlueResultNodesMatched)
   2774         GlueResultNodesMatched.clear();
   2775 
   2776       // Check to see what the offset is at the new MatcherIndex.  If it is zero
   2777       // we have reached the end of this scope, otherwise we have another child
   2778       // in the current scope to try.
   2779       unsigned NumToSkip = MatcherTable[MatcherIndex++];
   2780       if (NumToSkip & 128)
   2781         NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
   2782 
   2783       // If we have another child in this scope to match, update FailIndex and
   2784       // try it.
   2785       if (NumToSkip != 0) {
   2786         LastScope.FailIndex = MatcherIndex+NumToSkip;
   2787         break;
   2788       }
   2789 
   2790       // End of this scope, pop it and try the next child in the containing
   2791       // scope.
   2792       MatchScopes.pop_back();
   2793     }
   2794   }
   2795 }
   2796 
   2797 
   2798 
   2799 void SelectionDAGISel::CannotYetSelect(SDNode *N) {
   2800   std::string msg;
   2801   raw_string_ostream Msg(msg);
   2802   Msg << "Cannot select: ";
   2803 
   2804   if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
   2805       N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
   2806       N->getOpcode() != ISD::INTRINSIC_VOID) {
   2807     N->printrFull(Msg, CurDAG);
   2808   } else {
   2809     bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
   2810     unsigned iid =
   2811       cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
   2812     if (iid < Intrinsic::num_intrinsics)
   2813       Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
   2814     else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
   2815       Msg << "target intrinsic %" << TII->getName(iid);
   2816     else
   2817       Msg << "unknown intrinsic #" << iid;
   2818   }
   2819   report_fatal_error(Msg.str());
   2820 }
   2821 
   2822 char SelectionDAGISel::ID = 0;
   2823