1 //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the SelectionDAGISel class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "ScheduleDAGSDNodes.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/CodeGen/FunctionLoweringInfo.h" 18 #include "llvm/CodeGen/SelectionDAGISel.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/DebugInfo.h" 22 #include "llvm/Constants.h" 23 #include "llvm/Function.h" 24 #include "llvm/InlineAsm.h" 25 #include "llvm/Instructions.h" 26 #include "llvm/Intrinsics.h" 27 #include "llvm/IntrinsicInst.h" 28 #include "llvm/LLVMContext.h" 29 #include "llvm/Module.h" 30 #include "llvm/CodeGen/FastISel.h" 31 #include "llvm/CodeGen/GCStrategy.h" 32 #include "llvm/CodeGen/GCMetadata.h" 33 #include "llvm/CodeGen/MachineFrameInfo.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineInstrBuilder.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 39 #include "llvm/CodeGen/SchedulerRegistry.h" 40 #include "llvm/CodeGen/SelectionDAG.h" 41 #include "llvm/Target/TargetRegisterInfo.h" 42 #include "llvm/Target/TargetIntrinsicInfo.h" 43 #include "llvm/Target/TargetInstrInfo.h" 44 #include "llvm/Target/TargetLowering.h" 45 #include "llvm/Target/TargetMachine.h" 46 #include "llvm/Target/TargetOptions.h" 47 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 48 #include "llvm/Support/Compiler.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/Timer.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/ADT/PostOrderIterator.h" 54 #include "llvm/ADT/Statistic.h" 55 #include <algorithm> 56 using namespace llvm; 57 58 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on"); 59 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected"); 60 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel"); 61 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG"); 62 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path"); 63 64 static cl::opt<bool> 65 EnableFastISelVerbose("fast-isel-verbose", cl::Hidden, 66 cl::desc("Enable verbose messages in the \"fast\" " 67 "instruction selector")); 68 static cl::opt<bool> 69 EnableFastISelAbort("fast-isel-abort", cl::Hidden, 70 cl::desc("Enable abort calls when \"fast\" instruction fails")); 71 72 static cl::opt<bool> 73 UseMBPI("use-mbpi", 74 cl::desc("use Machine Branch Probability Info"), 75 cl::init(true), cl::Hidden); 76 77 #ifndef NDEBUG 78 static cl::opt<bool> 79 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden, 80 cl::desc("Pop up a window to show dags before the first " 81 "dag combine pass")); 82 static cl::opt<bool> 83 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden, 84 cl::desc("Pop up a window to show dags before legalize types")); 85 static cl::opt<bool> 86 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, 87 cl::desc("Pop up a window to show dags before legalize")); 88 static cl::opt<bool> 89 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden, 90 cl::desc("Pop up a window to show dags before the second " 91 "dag combine pass")); 92 static cl::opt<bool> 93 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden, 94 cl::desc("Pop up a window to show dags before the post legalize types" 95 " dag combine pass")); 96 static cl::opt<bool> 97 ViewISelDAGs("view-isel-dags", cl::Hidden, 98 cl::desc("Pop up a window to show isel dags as they are selected")); 99 static cl::opt<bool> 100 ViewSchedDAGs("view-sched-dags", cl::Hidden, 101 cl::desc("Pop up a window to show sched dags as they are processed")); 102 static cl::opt<bool> 103 ViewSUnitDAGs("view-sunit-dags", cl::Hidden, 104 cl::desc("Pop up a window to show SUnit dags after they are processed")); 105 #else 106 static const bool ViewDAGCombine1 = false, 107 ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false, 108 ViewDAGCombine2 = false, 109 ViewDAGCombineLT = false, 110 ViewISelDAGs = false, ViewSchedDAGs = false, 111 ViewSUnitDAGs = false; 112 #endif 113 114 //===---------------------------------------------------------------------===// 115 /// 116 /// RegisterScheduler class - Track the registration of instruction schedulers. 117 /// 118 //===---------------------------------------------------------------------===// 119 MachinePassRegistry RegisterScheduler::Registry; 120 121 //===---------------------------------------------------------------------===// 122 /// 123 /// ISHeuristic command line option for instruction schedulers. 124 /// 125 //===---------------------------------------------------------------------===// 126 static cl::opt<RegisterScheduler::FunctionPassCtor, false, 127 RegisterPassParser<RegisterScheduler> > 128 ISHeuristic("pre-RA-sched", 129 cl::init(&createDefaultScheduler), 130 cl::desc("Instruction schedulers available (before register" 131 " allocation):")); 132 133 static RegisterScheduler 134 defaultListDAGScheduler("default", "Best scheduler for the target", 135 createDefaultScheduler); 136 137 namespace llvm { 138 //===--------------------------------------------------------------------===// 139 /// createDefaultScheduler - This creates an instruction scheduler appropriate 140 /// for the target. 141 ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS, 142 CodeGenOpt::Level OptLevel) { 143 const TargetLowering &TLI = IS->getTargetLowering(); 144 145 if (OptLevel == CodeGenOpt::None) 146 return createSourceListDAGScheduler(IS, OptLevel); 147 if (TLI.getSchedulingPreference() == Sched::Latency) 148 return createTDListDAGScheduler(IS, OptLevel); 149 if (TLI.getSchedulingPreference() == Sched::RegPressure) 150 return createBURRListDAGScheduler(IS, OptLevel); 151 if (TLI.getSchedulingPreference() == Sched::Hybrid) 152 return createHybridListDAGScheduler(IS, OptLevel); 153 assert(TLI.getSchedulingPreference() == Sched::ILP && 154 "Unknown sched type!"); 155 return createILPListDAGScheduler(IS, OptLevel); 156 } 157 } 158 159 // EmitInstrWithCustomInserter - This method should be implemented by targets 160 // that mark instructions with the 'usesCustomInserter' flag. These 161 // instructions are special in various ways, which require special support to 162 // insert. The specified MachineInstr is created but not inserted into any 163 // basic blocks, and this method is called to expand it into a sequence of 164 // instructions, potentially also creating new basic blocks and control flow. 165 // When new basic blocks are inserted and the edges from MBB to its successors 166 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the 167 // DenseMap. 168 MachineBasicBlock * 169 TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 170 MachineBasicBlock *MBB) const { 171 #ifndef NDEBUG 172 dbgs() << "If a target marks an instruction with " 173 "'usesCustomInserter', it must implement " 174 "TargetLowering::EmitInstrWithCustomInserter!"; 175 #endif 176 llvm_unreachable(0); 177 return 0; 178 } 179 180 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI, 181 SDNode *Node) const { 182 assert(!MI->getDesc().hasPostISelHook() && 183 "If a target marks an instruction with 'hasPostISelHook', " 184 "it must implement TargetLowering::AdjustInstrPostInstrSelection!"); 185 } 186 187 //===----------------------------------------------------------------------===// 188 // SelectionDAGISel code 189 //===----------------------------------------------------------------------===// 190 191 SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm, 192 CodeGenOpt::Level OL) : 193 MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()), 194 FuncInfo(new FunctionLoweringInfo(TLI)), 195 CurDAG(new SelectionDAG(tm)), 196 SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)), 197 GFI(), 198 OptLevel(OL), 199 DAGSize(0) { 200 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry()); 201 initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry()); 202 initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry()); 203 } 204 205 SelectionDAGISel::~SelectionDAGISel() { 206 delete SDB; 207 delete CurDAG; 208 delete FuncInfo; 209 } 210 211 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { 212 AU.addRequired<AliasAnalysis>(); 213 AU.addPreserved<AliasAnalysis>(); 214 AU.addRequired<GCModuleInfo>(); 215 AU.addPreserved<GCModuleInfo>(); 216 if (UseMBPI && OptLevel != CodeGenOpt::None) 217 AU.addRequired<BranchProbabilityInfo>(); 218 MachineFunctionPass::getAnalysisUsage(AU); 219 } 220 221 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that 222 /// may trap on it. In this case we have to split the edge so that the path 223 /// through the predecessor block that doesn't go to the phi block doesn't 224 /// execute the possibly trapping instruction. 225 /// 226 /// This is required for correctness, so it must be done at -O0. 227 /// 228 static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) { 229 // Loop for blocks with phi nodes. 230 for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { 231 PHINode *PN = dyn_cast<PHINode>(BB->begin()); 232 if (PN == 0) continue; 233 234 ReprocessBlock: 235 // For each block with a PHI node, check to see if any of the input values 236 // are potentially trapping constant expressions. Constant expressions are 237 // the only potentially trapping value that can occur as the argument to a 238 // PHI. 239 for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I) 240 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 241 ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i)); 242 if (CE == 0 || !CE->canTrap()) continue; 243 244 // The only case we have to worry about is when the edge is critical. 245 // Since this block has a PHI Node, we assume it has multiple input 246 // edges: check to see if the pred has multiple successors. 247 BasicBlock *Pred = PN->getIncomingBlock(i); 248 if (Pred->getTerminator()->getNumSuccessors() == 1) 249 continue; 250 251 // Okay, we have to split this edge. 252 SplitCriticalEdge(Pred->getTerminator(), 253 GetSuccessorNumber(Pred, BB), SDISel, true); 254 goto ReprocessBlock; 255 } 256 } 257 } 258 259 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) { 260 // Do some sanity-checking on the command-line options. 261 assert((!EnableFastISelVerbose || EnableFastISel) && 262 "-fast-isel-verbose requires -fast-isel"); 263 assert((!EnableFastISelAbort || EnableFastISel) && 264 "-fast-isel-abort requires -fast-isel"); 265 266 const Function &Fn = *mf.getFunction(); 267 const TargetInstrInfo &TII = *TM.getInstrInfo(); 268 const TargetRegisterInfo &TRI = *TM.getRegisterInfo(); 269 270 MF = &mf; 271 RegInfo = &MF->getRegInfo(); 272 AA = &getAnalysis<AliasAnalysis>(); 273 GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0; 274 275 DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n"); 276 277 SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this); 278 279 CurDAG->init(*MF); 280 FuncInfo->set(Fn, *MF); 281 282 if (UseMBPI && OptLevel != CodeGenOpt::None) 283 FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>(); 284 else 285 FuncInfo->BPI = 0; 286 287 SDB->init(GFI, *AA); 288 289 SelectAllBasicBlocks(Fn); 290 291 // If the first basic block in the function has live ins that need to be 292 // copied into vregs, emit the copies into the top of the block before 293 // emitting the code for the block. 294 MachineBasicBlock *EntryMBB = MF->begin(); 295 RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII); 296 297 DenseMap<unsigned, unsigned> LiveInMap; 298 if (!FuncInfo->ArgDbgValues.empty()) 299 for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(), 300 E = RegInfo->livein_end(); LI != E; ++LI) 301 if (LI->second) 302 LiveInMap.insert(std::make_pair(LI->first, LI->second)); 303 304 // Insert DBG_VALUE instructions for function arguments to the entry block. 305 for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) { 306 MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1]; 307 unsigned Reg = MI->getOperand(0).getReg(); 308 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 309 EntryMBB->insert(EntryMBB->begin(), MI); 310 else { 311 MachineInstr *Def = RegInfo->getVRegDef(Reg); 312 MachineBasicBlock::iterator InsertPos = Def; 313 // FIXME: VR def may not be in entry block. 314 Def->getParent()->insert(llvm::next(InsertPos), MI); 315 } 316 317 // If Reg is live-in then update debug info to track its copy in a vreg. 318 DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg); 319 if (LDI != LiveInMap.end()) { 320 MachineInstr *Def = RegInfo->getVRegDef(LDI->second); 321 MachineBasicBlock::iterator InsertPos = Def; 322 const MDNode *Variable = 323 MI->getOperand(MI->getNumOperands()-1).getMetadata(); 324 unsigned Offset = MI->getOperand(1).getImm(); 325 // Def is never a terminator here, so it is ok to increment InsertPos. 326 BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(), 327 TII.get(TargetOpcode::DBG_VALUE)) 328 .addReg(LDI->second, RegState::Debug) 329 .addImm(Offset).addMetadata(Variable); 330 331 // If this vreg is directly copied into an exported register then 332 // that COPY instructions also need DBG_VALUE, if it is the only 333 // user of LDI->second. 334 MachineInstr *CopyUseMI = NULL; 335 for (MachineRegisterInfo::use_iterator 336 UI = RegInfo->use_begin(LDI->second); 337 MachineInstr *UseMI = UI.skipInstruction();) { 338 if (UseMI->isDebugValue()) continue; 339 if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) { 340 CopyUseMI = UseMI; continue; 341 } 342 // Otherwise this is another use or second copy use. 343 CopyUseMI = NULL; break; 344 } 345 if (CopyUseMI) { 346 MachineInstr *NewMI = 347 BuildMI(*MF, CopyUseMI->getDebugLoc(), 348 TII.get(TargetOpcode::DBG_VALUE)) 349 .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug) 350 .addImm(Offset).addMetadata(Variable); 351 EntryMBB->insertAfter(CopyUseMI, NewMI); 352 } 353 } 354 } 355 356 // Determine if there are any calls in this machine function. 357 MachineFrameInfo *MFI = MF->getFrameInfo(); 358 if (!MFI->hasCalls()) { 359 for (MachineFunction::const_iterator 360 I = MF->begin(), E = MF->end(); I != E; ++I) { 361 const MachineBasicBlock *MBB = I; 362 for (MachineBasicBlock::const_iterator 363 II = MBB->begin(), IE = MBB->end(); II != IE; ++II) { 364 const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode()); 365 366 if ((MCID.isCall() && !MCID.isReturn()) || 367 II->isStackAligningInlineAsm()) { 368 MFI->setHasCalls(true); 369 goto done; 370 } 371 } 372 } 373 done:; 374 } 375 376 // Determine if there is a call to setjmp in the machine function. 377 MF->setCallsSetJmp(Fn.callsFunctionThatReturnsTwice()); 378 379 // Replace forward-declared registers with the registers containing 380 // the desired value. 381 MachineRegisterInfo &MRI = MF->getRegInfo(); 382 for (DenseMap<unsigned, unsigned>::iterator 383 I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end(); 384 I != E; ++I) { 385 unsigned From = I->first; 386 unsigned To = I->second; 387 // If To is also scheduled to be replaced, find what its ultimate 388 // replacement is. 389 for (;;) { 390 DenseMap<unsigned, unsigned>::iterator J = 391 FuncInfo->RegFixups.find(To); 392 if (J == E) break; 393 To = J->second; 394 } 395 // Replace it. 396 MRI.replaceRegWith(From, To); 397 } 398 399 // Release function-specific state. SDB and CurDAG are already cleared 400 // at this point. 401 FuncInfo->clear(); 402 403 return true; 404 } 405 406 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin, 407 BasicBlock::const_iterator End, 408 bool &HadTailCall) { 409 // Lower all of the non-terminator instructions. If a call is emitted 410 // as a tail call, cease emitting nodes for this block. Terminators 411 // are handled below. 412 for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) 413 SDB->visit(*I); 414 415 // Make sure the root of the DAG is up-to-date. 416 CurDAG->setRoot(SDB->getControlRoot()); 417 HadTailCall = SDB->HasTailCall; 418 SDB->clear(); 419 420 // Final step, emit the lowered DAG as machine code. 421 CodeGenAndEmitDAG(); 422 } 423 424 void SelectionDAGISel::ComputeLiveOutVRegInfo() { 425 SmallPtrSet<SDNode*, 128> VisitedNodes; 426 SmallVector<SDNode*, 128> Worklist; 427 428 Worklist.push_back(CurDAG->getRoot().getNode()); 429 430 APInt Mask; 431 APInt KnownZero; 432 APInt KnownOne; 433 434 do { 435 SDNode *N = Worklist.pop_back_val(); 436 437 // If we've already seen this node, ignore it. 438 if (!VisitedNodes.insert(N)) 439 continue; 440 441 // Otherwise, add all chain operands to the worklist. 442 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 443 if (N->getOperand(i).getValueType() == MVT::Other) 444 Worklist.push_back(N->getOperand(i).getNode()); 445 446 // If this is a CopyToReg with a vreg dest, process it. 447 if (N->getOpcode() != ISD::CopyToReg) 448 continue; 449 450 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); 451 if (!TargetRegisterInfo::isVirtualRegister(DestReg)) 452 continue; 453 454 // Ignore non-scalar or non-integer values. 455 SDValue Src = N->getOperand(2); 456 EVT SrcVT = Src.getValueType(); 457 if (!SrcVT.isInteger() || SrcVT.isVector()) 458 continue; 459 460 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src); 461 Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits()); 462 CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne); 463 FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne); 464 } while (!Worklist.empty()); 465 } 466 467 void SelectionDAGISel::CodeGenAndEmitDAG() { 468 std::string GroupName; 469 if (TimePassesIsEnabled) 470 GroupName = "Instruction Selection and Scheduling"; 471 std::string BlockName; 472 int BlockNumber = -1; 473 (void)BlockNumber; 474 #ifdef NDEBUG 475 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs || 476 ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs || 477 ViewSUnitDAGs) 478 #endif 479 { 480 BlockNumber = FuncInfo->MBB->getNumber(); 481 BlockName = MF->getFunction()->getNameStr() + ":" + 482 FuncInfo->MBB->getBasicBlock()->getNameStr(); 483 } 484 DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber 485 << " '" << BlockName << "'\n"; CurDAG->dump()); 486 487 if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName); 488 489 // Run the DAG combiner in pre-legalize mode. 490 { 491 NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled); 492 CurDAG->Combine(Unrestricted, *AA, OptLevel); 493 } 494 495 DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber 496 << " '" << BlockName << "'\n"; CurDAG->dump()); 497 498 // Second step, hack on the DAG until it only uses operations and types that 499 // the target supports. 500 if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " + 501 BlockName); 502 503 bool Changed; 504 { 505 NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled); 506 Changed = CurDAG->LegalizeTypes(); 507 } 508 509 DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber 510 << " '" << BlockName << "'\n"; CurDAG->dump()); 511 512 if (Changed) { 513 if (ViewDAGCombineLT) 514 CurDAG->viewGraph("dag-combine-lt input for " + BlockName); 515 516 // Run the DAG combiner in post-type-legalize mode. 517 { 518 NamedRegionTimer T("DAG Combining after legalize types", GroupName, 519 TimePassesIsEnabled); 520 CurDAG->Combine(NoIllegalTypes, *AA, OptLevel); 521 } 522 523 DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber 524 << " '" << BlockName << "'\n"; CurDAG->dump()); 525 } 526 527 { 528 NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled); 529 Changed = CurDAG->LegalizeVectors(); 530 } 531 532 if (Changed) { 533 { 534 NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled); 535 CurDAG->LegalizeTypes(); 536 } 537 538 if (ViewDAGCombineLT) 539 CurDAG->viewGraph("dag-combine-lv input for " + BlockName); 540 541 // Run the DAG combiner in post-type-legalize mode. 542 { 543 NamedRegionTimer T("DAG Combining after legalize vectors", GroupName, 544 TimePassesIsEnabled); 545 CurDAG->Combine(NoIllegalOperations, *AA, OptLevel); 546 } 547 548 DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#" 549 << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump()); 550 } 551 552 if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName); 553 554 { 555 NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled); 556 CurDAG->Legalize(); 557 } 558 559 DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber 560 << " '" << BlockName << "'\n"; CurDAG->dump()); 561 562 if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName); 563 564 // Run the DAG combiner in post-legalize mode. 565 { 566 NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled); 567 CurDAG->Combine(NoIllegalOperations, *AA, OptLevel); 568 } 569 570 DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber 571 << " '" << BlockName << "'\n"; CurDAG->dump()); 572 573 if (OptLevel != CodeGenOpt::None) 574 ComputeLiveOutVRegInfo(); 575 576 if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName); 577 578 // Third, instruction select all of the operations to machine code, adding the 579 // code to the MachineBasicBlock. 580 { 581 NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled); 582 DoInstructionSelection(); 583 } 584 585 DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber 586 << " '" << BlockName << "'\n"; CurDAG->dump()); 587 588 if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName); 589 590 // Schedule machine code. 591 ScheduleDAGSDNodes *Scheduler = CreateScheduler(); 592 { 593 NamedRegionTimer T("Instruction Scheduling", GroupName, 594 TimePassesIsEnabled); 595 Scheduler->Run(CurDAG, FuncInfo->MBB, FuncInfo->InsertPt); 596 } 597 598 if (ViewSUnitDAGs) Scheduler->viewGraph(); 599 600 // Emit machine code to BB. This can change 'BB' to the last block being 601 // inserted into. 602 MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB; 603 { 604 NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled); 605 606 LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(); 607 FuncInfo->InsertPt = Scheduler->InsertPos; 608 } 609 610 // If the block was split, make sure we update any references that are used to 611 // update PHI nodes later on. 612 if (FirstMBB != LastMBB) 613 SDB->UpdateSplitBlock(FirstMBB, LastMBB); 614 615 // Free the scheduler state. 616 { 617 NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName, 618 TimePassesIsEnabled); 619 delete Scheduler; 620 } 621 622 // Free the SelectionDAG state, now that we're finished with it. 623 CurDAG->clear(); 624 } 625 626 void SelectionDAGISel::DoInstructionSelection() { 627 DEBUG(errs() << "===== Instruction selection begins: BB#" 628 << FuncInfo->MBB->getNumber() 629 << " '" << FuncInfo->MBB->getName() << "'\n"); 630 631 PreprocessISelDAG(); 632 633 // Select target instructions for the DAG. 634 { 635 // Number all nodes with a topological order and set DAGSize. 636 DAGSize = CurDAG->AssignTopologicalOrder(); 637 638 // Create a dummy node (which is not added to allnodes), that adds 639 // a reference to the root node, preventing it from being deleted, 640 // and tracking any changes of the root. 641 HandleSDNode Dummy(CurDAG->getRoot()); 642 ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode()); 643 ++ISelPosition; 644 645 // The AllNodes list is now topological-sorted. Visit the 646 // nodes by starting at the end of the list (the root of the 647 // graph) and preceding back toward the beginning (the entry 648 // node). 649 while (ISelPosition != CurDAG->allnodes_begin()) { 650 SDNode *Node = --ISelPosition; 651 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes, 652 // but there are currently some corner cases that it misses. Also, this 653 // makes it theoretically possible to disable the DAGCombiner. 654 if (Node->use_empty()) 655 continue; 656 657 SDNode *ResNode = Select(Node); 658 659 // FIXME: This is pretty gross. 'Select' should be changed to not return 660 // anything at all and this code should be nuked with a tactical strike. 661 662 // If node should not be replaced, continue with the next one. 663 if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE) 664 continue; 665 // Replace node. 666 if (ResNode) 667 ReplaceUses(Node, ResNode); 668 669 // If after the replacement this node is not used any more, 670 // remove this dead node. 671 if (Node->use_empty()) { // Don't delete EntryToken, etc. 672 ISelUpdater ISU(ISelPosition); 673 CurDAG->RemoveDeadNode(Node, &ISU); 674 } 675 } 676 677 CurDAG->setRoot(Dummy.getValue()); 678 } 679 680 DEBUG(errs() << "===== Instruction selection ends:\n"); 681 682 PostprocessISelDAG(); 683 } 684 685 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and 686 /// do other setup for EH landing-pad blocks. 687 void SelectionDAGISel::PrepareEHLandingPad() { 688 MachineBasicBlock *MBB = FuncInfo->MBB; 689 690 // Add a label to mark the beginning of the landing pad. Deletion of the 691 // landing pad can thus be detected via the MachineModuleInfo. 692 MCSymbol *Label = MF->getMMI().addLandingPad(MBB); 693 694 // Assign the call site to the landing pad's begin label. 695 MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]); 696 697 const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL); 698 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II) 699 .addSym(Label); 700 701 // Mark exception register as live in. 702 unsigned Reg = TLI.getExceptionAddressRegister(); 703 if (Reg) MBB->addLiveIn(Reg); 704 705 // Mark exception selector register as live in. 706 Reg = TLI.getExceptionSelectorRegister(); 707 if (Reg) MBB->addLiveIn(Reg); 708 709 // FIXME: Hack around an exception handling flaw (PR1508): the personality 710 // function and list of typeids logically belong to the invoke (or, if you 711 // like, the basic block containing the invoke), and need to be associated 712 // with it in the dwarf exception handling tables. Currently however the 713 // information is provided by an intrinsic (eh.selector) that can be moved 714 // to unexpected places by the optimizers: if the unwind edge is critical, 715 // then breaking it can result in the intrinsics being in the successor of 716 // the landing pad, not the landing pad itself. This results 717 // in exceptions not being caught because no typeids are associated with 718 // the invoke. This may not be the only way things can go wrong, but it 719 // is the only way we try to work around for the moment. 720 const BasicBlock *LLVMBB = MBB->getBasicBlock(); 721 const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator()); 722 723 if (Br && Br->isUnconditional()) { // Critical edge? 724 BasicBlock::const_iterator I, E; 725 for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I) 726 if (isa<EHSelectorInst>(I)) 727 break; 728 729 if (I == E) 730 // No catch info found - try to extract some from the successor. 731 CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo); 732 } 733 } 734 735 /// TryToFoldFastISelLoad - We're checking to see if we can fold the specified 736 /// load into the specified FoldInst. Note that we could have a sequence where 737 /// multiple LLVM IR instructions are folded into the same machineinstr. For 738 /// example we could have: 739 /// A: x = load i32 *P 740 /// B: y = icmp A, 42 741 /// C: br y, ... 742 /// 743 /// In this scenario, LI is "A", and FoldInst is "C". We know about "B" (and 744 /// any other folded instructions) because it is between A and C. 745 /// 746 /// If we succeed in folding the load into the operation, return true. 747 /// 748 bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI, 749 const Instruction *FoldInst, 750 FastISel *FastIS) { 751 // We know that the load has a single use, but don't know what it is. If it 752 // isn't one of the folded instructions, then we can't succeed here. Handle 753 // this by scanning the single-use users of the load until we get to FoldInst. 754 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. 755 756 const Instruction *TheUser = LI->use_back(); 757 while (TheUser != FoldInst && // Scan up until we find FoldInst. 758 // Stay in the right block. 759 TheUser->getParent() == FoldInst->getParent() && 760 --MaxUsers) { // Don't scan too far. 761 // If there are multiple or no uses of this instruction, then bail out. 762 if (!TheUser->hasOneUse()) 763 return false; 764 765 TheUser = TheUser->use_back(); 766 } 767 768 // If we didn't find the fold instruction, then we failed to collapse the 769 // sequence. 770 if (TheUser != FoldInst) 771 return false; 772 773 // Don't try to fold volatile loads. Target has to deal with alignment 774 // constraints. 775 if (LI->isVolatile()) return false; 776 777 // Figure out which vreg this is going into. If there is no assigned vreg yet 778 // then there actually was no reference to it. Perhaps the load is referenced 779 // by a dead instruction. 780 unsigned LoadReg = FastIS->getRegForValue(LI); 781 if (LoadReg == 0) 782 return false; 783 784 // Check to see what the uses of this vreg are. If it has no uses, or more 785 // than one use (at the machine instr level) then we can't fold it. 786 MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg); 787 if (RI == RegInfo->reg_end()) 788 return false; 789 790 // See if there is exactly one use of the vreg. If there are multiple uses, 791 // then the instruction got lowered to multiple machine instructions or the 792 // use of the loaded value ended up being multiple operands of the result, in 793 // either case, we can't fold this. 794 MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI; 795 if (PostRI != RegInfo->reg_end()) 796 return false; 797 798 assert(RI.getOperand().isUse() && 799 "The only use of the vreg must be a use, we haven't emitted the def!"); 800 801 MachineInstr *User = &*RI; 802 803 // Set the insertion point properly. Folding the load can cause generation of 804 // other random instructions (like sign extends) for addressing modes, make 805 // sure they get inserted in a logical place before the new instruction. 806 FuncInfo->InsertPt = User; 807 FuncInfo->MBB = User->getParent(); 808 809 // Ask the target to try folding the load. 810 return FastIS->TryToFoldLoad(User, RI.getOperandNo(), LI); 811 } 812 813 /// isFoldedOrDeadInstruction - Return true if the specified instruction is 814 /// side-effect free and is either dead or folded into a generated instruction. 815 /// Return false if it needs to be emitted. 816 static bool isFoldedOrDeadInstruction(const Instruction *I, 817 FunctionLoweringInfo *FuncInfo) { 818 return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded. 819 !isa<TerminatorInst>(I) && // Terminators aren't folded. 820 !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded. 821 !isa<LandingPadInst>(I) && // Landingpad instructions aren't folded. 822 !FuncInfo->isExportedInst(I); // Exported instrs must be computed. 823 } 824 825 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) { 826 // Initialize the Fast-ISel state, if needed. 827 FastISel *FastIS = 0; 828 if (EnableFastISel) 829 FastIS = TLI.createFastISel(*FuncInfo); 830 831 // Iterate over all basic blocks in the function. 832 ReversePostOrderTraversal<const Function*> RPOT(&Fn); 833 for (ReversePostOrderTraversal<const Function*>::rpo_iterator 834 I = RPOT.begin(), E = RPOT.end(); I != E; ++I) { 835 const BasicBlock *LLVMBB = *I; 836 837 if (OptLevel != CodeGenOpt::None) { 838 bool AllPredsVisited = true; 839 for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB); 840 PI != PE; ++PI) { 841 if (!FuncInfo->VisitedBBs.count(*PI)) { 842 AllPredsVisited = false; 843 break; 844 } 845 } 846 847 if (AllPredsVisited) { 848 for (BasicBlock::const_iterator I = LLVMBB->begin(); 849 isa<PHINode>(I); ++I) 850 FuncInfo->ComputePHILiveOutRegInfo(cast<PHINode>(I)); 851 } else { 852 for (BasicBlock::const_iterator I = LLVMBB->begin(); 853 isa<PHINode>(I); ++I) 854 FuncInfo->InvalidatePHILiveOutRegInfo(cast<PHINode>(I)); 855 } 856 857 FuncInfo->VisitedBBs.insert(LLVMBB); 858 } 859 860 FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB]; 861 FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI(); 862 863 BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI(); 864 BasicBlock::const_iterator const End = LLVMBB->end(); 865 BasicBlock::const_iterator BI = End; 866 867 FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI(); 868 869 // Setup an EH landing-pad block. 870 if (FuncInfo->MBB->isLandingPad()) 871 PrepareEHLandingPad(); 872 873 // Lower any arguments needed in this block if this is the entry block. 874 if (LLVMBB == &Fn.getEntryBlock()) 875 LowerArguments(LLVMBB); 876 877 // Before doing SelectionDAG ISel, see if FastISel has been requested. 878 if (FastIS) { 879 FastIS->startNewBlock(); 880 881 // Emit code for any incoming arguments. This must happen before 882 // beginning FastISel on the entry block. 883 if (LLVMBB == &Fn.getEntryBlock()) { 884 CurDAG->setRoot(SDB->getControlRoot()); 885 SDB->clear(); 886 CodeGenAndEmitDAG(); 887 888 // If we inserted any instructions at the beginning, make a note of 889 // where they are, so we can be sure to emit subsequent instructions 890 // after them. 891 if (FuncInfo->InsertPt != FuncInfo->MBB->begin()) 892 FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt)); 893 else 894 FastIS->setLastLocalValue(0); 895 } 896 897 // Do FastISel on as many instructions as possible. 898 for (; BI != Begin; --BI) { 899 const Instruction *Inst = llvm::prior(BI); 900 901 // If we no longer require this instruction, skip it. 902 if (isFoldedOrDeadInstruction(Inst, FuncInfo)) 903 continue; 904 905 // Bottom-up: reset the insert pos at the top, after any local-value 906 // instructions. 907 FastIS->recomputeInsertPt(); 908 909 // Try to select the instruction with FastISel. 910 if (FastIS->SelectInstruction(Inst)) { 911 ++NumFastIselSuccess; 912 // If fast isel succeeded, skip over all the folded instructions, and 913 // then see if there is a load right before the selected instructions. 914 // Try to fold the load if so. 915 const Instruction *BeforeInst = Inst; 916 while (BeforeInst != Begin) { 917 BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst)); 918 if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo)) 919 break; 920 } 921 if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) && 922 BeforeInst->hasOneUse() && 923 TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), Inst, FastIS)) 924 // If we succeeded, don't re-select the load. 925 BI = llvm::next(BasicBlock::const_iterator(BeforeInst)); 926 continue; 927 } 928 929 // Then handle certain instructions as single-LLVM-Instruction blocks. 930 if (isa<CallInst>(Inst)) { 931 ++NumFastIselFailures; 932 if (EnableFastISelVerbose || EnableFastISelAbort) { 933 dbgs() << "FastISel missed call: "; 934 Inst->dump(); 935 } 936 937 if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) { 938 unsigned &R = FuncInfo->ValueMap[Inst]; 939 if (!R) 940 R = FuncInfo->CreateRegs(Inst->getType()); 941 } 942 943 bool HadTailCall = false; 944 SelectBasicBlock(Inst, BI, HadTailCall); 945 946 // If the call was emitted as a tail call, we're done with the block. 947 if (HadTailCall) { 948 --BI; 949 break; 950 } 951 952 continue; 953 } 954 955 if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) { 956 // Don't abort, and use a different message for terminator misses. 957 ++NumFastIselFailures; 958 if (EnableFastISelVerbose || EnableFastISelAbort) { 959 dbgs() << "FastISel missed terminator: "; 960 Inst->dump(); 961 } 962 } else { 963 ++NumFastIselFailures; 964 if (EnableFastISelVerbose || EnableFastISelAbort) { 965 dbgs() << "FastISel miss: "; 966 Inst->dump(); 967 } 968 if (EnableFastISelAbort) 969 // The "fast" selector couldn't handle something and bailed. 970 // For the purpose of debugging, just abort. 971 llvm_unreachable("FastISel didn't select the entire block"); 972 } 973 break; 974 } 975 976 FastIS->recomputeInsertPt(); 977 } 978 979 if (Begin != BI) 980 ++NumDAGBlocks; 981 else 982 ++NumFastIselBlocks; 983 984 if (Begin != BI) { 985 // Run SelectionDAG instruction selection on the remainder of the block 986 // not handled by FastISel. If FastISel is not run, this is the entire 987 // block. 988 bool HadTailCall; 989 SelectBasicBlock(Begin, BI, HadTailCall); 990 } 991 992 FinishBasicBlock(); 993 FuncInfo->PHINodesToUpdate.clear(); 994 } 995 996 delete FastIS; 997 SDB->clearDanglingDebugInfo(); 998 } 999 1000 void 1001 SelectionDAGISel::FinishBasicBlock() { 1002 1003 DEBUG(dbgs() << "Total amount of phi nodes to update: " 1004 << FuncInfo->PHINodesToUpdate.size() << "\n"; 1005 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) 1006 dbgs() << "Node " << i << " : (" 1007 << FuncInfo->PHINodesToUpdate[i].first 1008 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n"); 1009 1010 // Next, now that we know what the last MBB the LLVM BB expanded is, update 1011 // PHI nodes in successors. 1012 if (SDB->SwitchCases.empty() && 1013 SDB->JTCases.empty() && 1014 SDB->BitTestCases.empty()) { 1015 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) { 1016 MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first; 1017 assert(PHI->isPHI() && 1018 "This is not a machine PHI node that we are updating!"); 1019 if (!FuncInfo->MBB->isSuccessor(PHI->getParent())) 1020 continue; 1021 PHI->addOperand( 1022 MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false)); 1023 PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB)); 1024 } 1025 return; 1026 } 1027 1028 for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) { 1029 // Lower header first, if it wasn't already lowered 1030 if (!SDB->BitTestCases[i].Emitted) { 1031 // Set the current basic block to the mbb we wish to insert the code into 1032 FuncInfo->MBB = SDB->BitTestCases[i].Parent; 1033 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1034 // Emit the code 1035 SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB); 1036 CurDAG->setRoot(SDB->getRoot()); 1037 SDB->clear(); 1038 CodeGenAndEmitDAG(); 1039 } 1040 1041 for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) { 1042 // Set the current basic block to the mbb we wish to insert the code into 1043 FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB; 1044 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1045 // Emit the code 1046 if (j+1 != ej) 1047 SDB->visitBitTestCase(SDB->BitTestCases[i], 1048 SDB->BitTestCases[i].Cases[j+1].ThisBB, 1049 SDB->BitTestCases[i].Reg, 1050 SDB->BitTestCases[i].Cases[j], 1051 FuncInfo->MBB); 1052 else 1053 SDB->visitBitTestCase(SDB->BitTestCases[i], 1054 SDB->BitTestCases[i].Default, 1055 SDB->BitTestCases[i].Reg, 1056 SDB->BitTestCases[i].Cases[j], 1057 FuncInfo->MBB); 1058 1059 1060 CurDAG->setRoot(SDB->getRoot()); 1061 SDB->clear(); 1062 CodeGenAndEmitDAG(); 1063 } 1064 1065 // Update PHI Nodes 1066 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); 1067 pi != pe; ++pi) { 1068 MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first; 1069 MachineBasicBlock *PHIBB = PHI->getParent(); 1070 assert(PHI->isPHI() && 1071 "This is not a machine PHI node that we are updating!"); 1072 // This is "default" BB. We have two jumps to it. From "header" BB and 1073 // from last "case" BB. 1074 if (PHIBB == SDB->BitTestCases[i].Default) { 1075 PHI->addOperand(MachineOperand:: 1076 CreateReg(FuncInfo->PHINodesToUpdate[pi].second, 1077 false)); 1078 PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent)); 1079 PHI->addOperand(MachineOperand:: 1080 CreateReg(FuncInfo->PHINodesToUpdate[pi].second, 1081 false)); 1082 PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases. 1083 back().ThisBB)); 1084 } 1085 // One of "cases" BB. 1086 for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); 1087 j != ej; ++j) { 1088 MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB; 1089 if (cBB->isSuccessor(PHIBB)) { 1090 PHI->addOperand(MachineOperand:: 1091 CreateReg(FuncInfo->PHINodesToUpdate[pi].second, 1092 false)); 1093 PHI->addOperand(MachineOperand::CreateMBB(cBB)); 1094 } 1095 } 1096 } 1097 } 1098 SDB->BitTestCases.clear(); 1099 1100 // If the JumpTable record is filled in, then we need to emit a jump table. 1101 // Updating the PHI nodes is tricky in this case, since we need to determine 1102 // whether the PHI is a successor of the range check MBB or the jump table MBB 1103 for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) { 1104 // Lower header first, if it wasn't already lowered 1105 if (!SDB->JTCases[i].first.Emitted) { 1106 // Set the current basic block to the mbb we wish to insert the code into 1107 FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB; 1108 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1109 // Emit the code 1110 SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first, 1111 FuncInfo->MBB); 1112 CurDAG->setRoot(SDB->getRoot()); 1113 SDB->clear(); 1114 CodeGenAndEmitDAG(); 1115 } 1116 1117 // Set the current basic block to the mbb we wish to insert the code into 1118 FuncInfo->MBB = SDB->JTCases[i].second.MBB; 1119 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1120 // Emit the code 1121 SDB->visitJumpTable(SDB->JTCases[i].second); 1122 CurDAG->setRoot(SDB->getRoot()); 1123 SDB->clear(); 1124 CodeGenAndEmitDAG(); 1125 1126 // Update PHI Nodes 1127 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); 1128 pi != pe; ++pi) { 1129 MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first; 1130 MachineBasicBlock *PHIBB = PHI->getParent(); 1131 assert(PHI->isPHI() && 1132 "This is not a machine PHI node that we are updating!"); 1133 // "default" BB. We can go there only from header BB. 1134 if (PHIBB == SDB->JTCases[i].second.Default) { 1135 PHI->addOperand 1136 (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second, 1137 false)); 1138 PHI->addOperand 1139 (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB)); 1140 } 1141 // JT BB. Just iterate over successors here 1142 if (FuncInfo->MBB->isSuccessor(PHIBB)) { 1143 PHI->addOperand 1144 (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second, 1145 false)); 1146 PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB)); 1147 } 1148 } 1149 } 1150 SDB->JTCases.clear(); 1151 1152 // If the switch block involved a branch to one of the actual successors, we 1153 // need to update PHI nodes in that block. 1154 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) { 1155 MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first; 1156 assert(PHI->isPHI() && 1157 "This is not a machine PHI node that we are updating!"); 1158 if (FuncInfo->MBB->isSuccessor(PHI->getParent())) { 1159 PHI->addOperand( 1160 MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false)); 1161 PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB)); 1162 } 1163 } 1164 1165 // If we generated any switch lowering information, build and codegen any 1166 // additional DAGs necessary. 1167 for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) { 1168 // Set the current basic block to the mbb we wish to insert the code into 1169 FuncInfo->MBB = SDB->SwitchCases[i].ThisBB; 1170 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1171 1172 // Determine the unique successors. 1173 SmallVector<MachineBasicBlock *, 2> Succs; 1174 Succs.push_back(SDB->SwitchCases[i].TrueBB); 1175 if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB) 1176 Succs.push_back(SDB->SwitchCases[i].FalseBB); 1177 1178 // Emit the code. Note that this could result in FuncInfo->MBB being split. 1179 SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB); 1180 CurDAG->setRoot(SDB->getRoot()); 1181 SDB->clear(); 1182 CodeGenAndEmitDAG(); 1183 1184 // Remember the last block, now that any splitting is done, for use in 1185 // populating PHI nodes in successors. 1186 MachineBasicBlock *ThisBB = FuncInfo->MBB; 1187 1188 // Handle any PHI nodes in successors of this chunk, as if we were coming 1189 // from the original BB before switch expansion. Note that PHI nodes can 1190 // occur multiple times in PHINodesToUpdate. We have to be very careful to 1191 // handle them the right number of times. 1192 for (unsigned i = 0, e = Succs.size(); i != e; ++i) { 1193 FuncInfo->MBB = Succs[i]; 1194 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1195 // FuncInfo->MBB may have been removed from the CFG if a branch was 1196 // constant folded. 1197 if (ThisBB->isSuccessor(FuncInfo->MBB)) { 1198 for (MachineBasicBlock::iterator Phi = FuncInfo->MBB->begin(); 1199 Phi != FuncInfo->MBB->end() && Phi->isPHI(); 1200 ++Phi) { 1201 // This value for this PHI node is recorded in PHINodesToUpdate. 1202 for (unsigned pn = 0; ; ++pn) { 1203 assert(pn != FuncInfo->PHINodesToUpdate.size() && 1204 "Didn't find PHI entry!"); 1205 if (FuncInfo->PHINodesToUpdate[pn].first == Phi) { 1206 Phi->addOperand(MachineOperand:: 1207 CreateReg(FuncInfo->PHINodesToUpdate[pn].second, 1208 false)); 1209 Phi->addOperand(MachineOperand::CreateMBB(ThisBB)); 1210 break; 1211 } 1212 } 1213 } 1214 } 1215 } 1216 } 1217 SDB->SwitchCases.clear(); 1218 } 1219 1220 1221 /// Create the scheduler. If a specific scheduler was specified 1222 /// via the SchedulerRegistry, use it, otherwise select the 1223 /// one preferred by the target. 1224 /// 1225 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() { 1226 RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault(); 1227 1228 if (!Ctor) { 1229 Ctor = ISHeuristic; 1230 RegisterScheduler::setDefault(Ctor); 1231 } 1232 1233 return Ctor(this, OptLevel); 1234 } 1235 1236 //===----------------------------------------------------------------------===// 1237 // Helper functions used by the generated instruction selector. 1238 //===----------------------------------------------------------------------===// 1239 // Calls to these methods are generated by tblgen. 1240 1241 /// CheckAndMask - The isel is trying to match something like (and X, 255). If 1242 /// the dag combiner simplified the 255, we still want to match. RHS is the 1243 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value 1244 /// specified in the .td file (e.g. 255). 1245 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS, 1246 int64_t DesiredMaskS) const { 1247 const APInt &ActualMask = RHS->getAPIntValue(); 1248 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 1249 1250 // If the actual mask exactly matches, success! 1251 if (ActualMask == DesiredMask) 1252 return true; 1253 1254 // If the actual AND mask is allowing unallowed bits, this doesn't match. 1255 if (ActualMask.intersects(~DesiredMask)) 1256 return false; 1257 1258 // Otherwise, the DAG Combiner may have proven that the value coming in is 1259 // either already zero or is not demanded. Check for known zero input bits. 1260 APInt NeededMask = DesiredMask & ~ActualMask; 1261 if (CurDAG->MaskedValueIsZero(LHS, NeededMask)) 1262 return true; 1263 1264 // TODO: check to see if missing bits are just not demanded. 1265 1266 // Otherwise, this pattern doesn't match. 1267 return false; 1268 } 1269 1270 /// CheckOrMask - The isel is trying to match something like (or X, 255). If 1271 /// the dag combiner simplified the 255, we still want to match. RHS is the 1272 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value 1273 /// specified in the .td file (e.g. 255). 1274 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS, 1275 int64_t DesiredMaskS) const { 1276 const APInt &ActualMask = RHS->getAPIntValue(); 1277 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 1278 1279 // If the actual mask exactly matches, success! 1280 if (ActualMask == DesiredMask) 1281 return true; 1282 1283 // If the actual AND mask is allowing unallowed bits, this doesn't match. 1284 if (ActualMask.intersects(~DesiredMask)) 1285 return false; 1286 1287 // Otherwise, the DAG Combiner may have proven that the value coming in is 1288 // either already zero or is not demanded. Check for known zero input bits. 1289 APInt NeededMask = DesiredMask & ~ActualMask; 1290 1291 APInt KnownZero, KnownOne; 1292 CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne); 1293 1294 // If all the missing bits in the or are already known to be set, match! 1295 if ((NeededMask & KnownOne) == NeededMask) 1296 return true; 1297 1298 // TODO: check to see if missing bits are just not demanded. 1299 1300 // Otherwise, this pattern doesn't match. 1301 return false; 1302 } 1303 1304 1305 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated 1306 /// by tblgen. Others should not call it. 1307 void SelectionDAGISel:: 1308 SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) { 1309 std::vector<SDValue> InOps; 1310 std::swap(InOps, Ops); 1311 1312 Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0 1313 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1 1314 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc 1315 Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack) 1316 1317 unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size(); 1318 if (InOps[e-1].getValueType() == MVT::Glue) 1319 --e; // Don't process a glue operand if it is here. 1320 1321 while (i != e) { 1322 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue(); 1323 if (!InlineAsm::isMemKind(Flags)) { 1324 // Just skip over this operand, copying the operands verbatim. 1325 Ops.insert(Ops.end(), InOps.begin()+i, 1326 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1); 1327 i += InlineAsm::getNumOperandRegisters(Flags) + 1; 1328 } else { 1329 assert(InlineAsm::getNumOperandRegisters(Flags) == 1 && 1330 "Memory operand with multiple values?"); 1331 // Otherwise, this is a memory operand. Ask the target to select it. 1332 std::vector<SDValue> SelOps; 1333 if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) 1334 report_fatal_error("Could not match memory address. Inline asm" 1335 " failure!"); 1336 1337 // Add this to the output node. 1338 unsigned NewFlags = 1339 InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size()); 1340 Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32)); 1341 Ops.insert(Ops.end(), SelOps.begin(), SelOps.end()); 1342 i += 2; 1343 } 1344 } 1345 1346 // Add the glue input back if present. 1347 if (e != InOps.size()) 1348 Ops.push_back(InOps.back()); 1349 } 1350 1351 /// findGlueUse - Return use of MVT::Glue value produced by the specified 1352 /// SDNode. 1353 /// 1354 static SDNode *findGlueUse(SDNode *N) { 1355 unsigned FlagResNo = N->getNumValues()-1; 1356 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 1357 SDUse &Use = I.getUse(); 1358 if (Use.getResNo() == FlagResNo) 1359 return Use.getUser(); 1360 } 1361 return NULL; 1362 } 1363 1364 /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def". 1365 /// This function recursively traverses up the operand chain, ignoring 1366 /// certain nodes. 1367 static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse, 1368 SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited, 1369 bool IgnoreChains) { 1370 // The NodeID's are given uniques ID's where a node ID is guaranteed to be 1371 // greater than all of its (recursive) operands. If we scan to a point where 1372 // 'use' is smaller than the node we're scanning for, then we know we will 1373 // never find it. 1374 // 1375 // The Use may be -1 (unassigned) if it is a newly allocated node. This can 1376 // happen because we scan down to newly selected nodes in the case of glue 1377 // uses. 1378 if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1)) 1379 return false; 1380 1381 // Don't revisit nodes if we already scanned it and didn't fail, we know we 1382 // won't fail if we scan it again. 1383 if (!Visited.insert(Use)) 1384 return false; 1385 1386 for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) { 1387 // Ignore chain uses, they are validated by HandleMergeInputChains. 1388 if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains) 1389 continue; 1390 1391 SDNode *N = Use->getOperand(i).getNode(); 1392 if (N == Def) { 1393 if (Use == ImmedUse || Use == Root) 1394 continue; // We are not looking for immediate use. 1395 assert(N != Root); 1396 return true; 1397 } 1398 1399 // Traverse up the operand chain. 1400 if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains)) 1401 return true; 1402 } 1403 return false; 1404 } 1405 1406 /// IsProfitableToFold - Returns true if it's profitable to fold the specific 1407 /// operand node N of U during instruction selection that starts at Root. 1408 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U, 1409 SDNode *Root) const { 1410 if (OptLevel == CodeGenOpt::None) return false; 1411 return N.hasOneUse(); 1412 } 1413 1414 /// IsLegalToFold - Returns true if the specific operand node N of 1415 /// U can be folded during instruction selection that starts at Root. 1416 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root, 1417 CodeGenOpt::Level OptLevel, 1418 bool IgnoreChains) { 1419 if (OptLevel == CodeGenOpt::None) return false; 1420 1421 // If Root use can somehow reach N through a path that that doesn't contain 1422 // U then folding N would create a cycle. e.g. In the following 1423 // diagram, Root can reach N through X. If N is folded into into Root, then 1424 // X is both a predecessor and a successor of U. 1425 // 1426 // [N*] // 1427 // ^ ^ // 1428 // / \ // 1429 // [U*] [X]? // 1430 // ^ ^ // 1431 // \ / // 1432 // \ / // 1433 // [Root*] // 1434 // 1435 // * indicates nodes to be folded together. 1436 // 1437 // If Root produces glue, then it gets (even more) interesting. Since it 1438 // will be "glued" together with its glue use in the scheduler, we need to 1439 // check if it might reach N. 1440 // 1441 // [N*] // 1442 // ^ ^ // 1443 // / \ // 1444 // [U*] [X]? // 1445 // ^ ^ // 1446 // \ \ // 1447 // \ | // 1448 // [Root*] | // 1449 // ^ | // 1450 // f | // 1451 // | / // 1452 // [Y] / // 1453 // ^ / // 1454 // f / // 1455 // | / // 1456 // [GU] // 1457 // 1458 // If GU (glue use) indirectly reaches N (the load), and Root folds N 1459 // (call it Fold), then X is a predecessor of GU and a successor of 1460 // Fold. But since Fold and GU are glued together, this will create 1461 // a cycle in the scheduling graph. 1462 1463 // If the node has glue, walk down the graph to the "lowest" node in the 1464 // glueged set. 1465 EVT VT = Root->getValueType(Root->getNumValues()-1); 1466 while (VT == MVT::Glue) { 1467 SDNode *GU = findGlueUse(Root); 1468 if (GU == NULL) 1469 break; 1470 Root = GU; 1471 VT = Root->getValueType(Root->getNumValues()-1); 1472 1473 // If our query node has a glue result with a use, we've walked up it. If 1474 // the user (which has already been selected) has a chain or indirectly uses 1475 // the chain, our WalkChainUsers predicate will not consider it. Because of 1476 // this, we cannot ignore chains in this predicate. 1477 IgnoreChains = false; 1478 } 1479 1480 1481 SmallPtrSet<SDNode*, 16> Visited; 1482 return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains); 1483 } 1484 1485 SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) { 1486 std::vector<SDValue> Ops(N->op_begin(), N->op_end()); 1487 SelectInlineAsmMemoryOperands(Ops); 1488 1489 std::vector<EVT> VTs; 1490 VTs.push_back(MVT::Other); 1491 VTs.push_back(MVT::Glue); 1492 SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(), 1493 VTs, &Ops[0], Ops.size()); 1494 New->setNodeId(-1); 1495 return New.getNode(); 1496 } 1497 1498 SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) { 1499 return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0)); 1500 } 1501 1502 /// GetVBR - decode a vbr encoding whose top bit is set. 1503 LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t 1504 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) { 1505 assert(Val >= 128 && "Not a VBR"); 1506 Val &= 127; // Remove first vbr bit. 1507 1508 unsigned Shift = 7; 1509 uint64_t NextBits; 1510 do { 1511 NextBits = MatcherTable[Idx++]; 1512 Val |= (NextBits&127) << Shift; 1513 Shift += 7; 1514 } while (NextBits & 128); 1515 1516 return Val; 1517 } 1518 1519 1520 /// UpdateChainsAndGlue - When a match is complete, this method updates uses of 1521 /// interior glue and chain results to use the new glue and chain results. 1522 void SelectionDAGISel:: 1523 UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain, 1524 const SmallVectorImpl<SDNode*> &ChainNodesMatched, 1525 SDValue InputGlue, 1526 const SmallVectorImpl<SDNode*> &GlueResultNodesMatched, 1527 bool isMorphNodeTo) { 1528 SmallVector<SDNode*, 4> NowDeadNodes; 1529 1530 ISelUpdater ISU(ISelPosition); 1531 1532 // Now that all the normal results are replaced, we replace the chain and 1533 // glue results if present. 1534 if (!ChainNodesMatched.empty()) { 1535 assert(InputChain.getNode() != 0 && 1536 "Matched input chains but didn't produce a chain"); 1537 // Loop over all of the nodes we matched that produced a chain result. 1538 // Replace all the chain results with the final chain we ended up with. 1539 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { 1540 SDNode *ChainNode = ChainNodesMatched[i]; 1541 1542 // If this node was already deleted, don't look at it. 1543 if (ChainNode->getOpcode() == ISD::DELETED_NODE) 1544 continue; 1545 1546 // Don't replace the results of the root node if we're doing a 1547 // MorphNodeTo. 1548 if (ChainNode == NodeToMatch && isMorphNodeTo) 1549 continue; 1550 1551 SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1); 1552 if (ChainVal.getValueType() == MVT::Glue) 1553 ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2); 1554 assert(ChainVal.getValueType() == MVT::Other && "Not a chain?"); 1555 CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU); 1556 1557 // If the node became dead and we haven't already seen it, delete it. 1558 if (ChainNode->use_empty() && 1559 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode)) 1560 NowDeadNodes.push_back(ChainNode); 1561 } 1562 } 1563 1564 // If the result produces glue, update any glue results in the matched 1565 // pattern with the glue result. 1566 if (InputGlue.getNode() != 0) { 1567 // Handle any interior nodes explicitly marked. 1568 for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) { 1569 SDNode *FRN = GlueResultNodesMatched[i]; 1570 1571 // If this node was already deleted, don't look at it. 1572 if (FRN->getOpcode() == ISD::DELETED_NODE) 1573 continue; 1574 1575 assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue && 1576 "Doesn't have a glue result"); 1577 CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1), 1578 InputGlue, &ISU); 1579 1580 // If the node became dead and we haven't already seen it, delete it. 1581 if (FRN->use_empty() && 1582 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN)) 1583 NowDeadNodes.push_back(FRN); 1584 } 1585 } 1586 1587 if (!NowDeadNodes.empty()) 1588 CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU); 1589 1590 DEBUG(errs() << "ISEL: Match complete!\n"); 1591 } 1592 1593 enum ChainResult { 1594 CR_Simple, 1595 CR_InducesCycle, 1596 CR_LeadsToInteriorNode 1597 }; 1598 1599 /// WalkChainUsers - Walk down the users of the specified chained node that is 1600 /// part of the pattern we're matching, looking at all of the users we find. 1601 /// This determines whether something is an interior node, whether we have a 1602 /// non-pattern node in between two pattern nodes (which prevent folding because 1603 /// it would induce a cycle) and whether we have a TokenFactor node sandwiched 1604 /// between pattern nodes (in which case the TF becomes part of the pattern). 1605 /// 1606 /// The walk we do here is guaranteed to be small because we quickly get down to 1607 /// already selected nodes "below" us. 1608 static ChainResult 1609 WalkChainUsers(SDNode *ChainedNode, 1610 SmallVectorImpl<SDNode*> &ChainedNodesInPattern, 1611 SmallVectorImpl<SDNode*> &InteriorChainedNodes) { 1612 ChainResult Result = CR_Simple; 1613 1614 for (SDNode::use_iterator UI = ChainedNode->use_begin(), 1615 E = ChainedNode->use_end(); UI != E; ++UI) { 1616 // Make sure the use is of the chain, not some other value we produce. 1617 if (UI.getUse().getValueType() != MVT::Other) continue; 1618 1619 SDNode *User = *UI; 1620 1621 // If we see an already-selected machine node, then we've gone beyond the 1622 // pattern that we're selecting down into the already selected chunk of the 1623 // DAG. 1624 if (User->isMachineOpcode() || 1625 User->getOpcode() == ISD::HANDLENODE) // Root of the graph. 1626 continue; 1627 1628 if (User->getOpcode() == ISD::CopyToReg || 1629 User->getOpcode() == ISD::CopyFromReg || 1630 User->getOpcode() == ISD::INLINEASM || 1631 User->getOpcode() == ISD::EH_LABEL) { 1632 // If their node ID got reset to -1 then they've already been selected. 1633 // Treat them like a MachineOpcode. 1634 if (User->getNodeId() == -1) 1635 continue; 1636 } 1637 1638 // If we have a TokenFactor, we handle it specially. 1639 if (User->getOpcode() != ISD::TokenFactor) { 1640 // If the node isn't a token factor and isn't part of our pattern, then it 1641 // must be a random chained node in between two nodes we're selecting. 1642 // This happens when we have something like: 1643 // x = load ptr 1644 // call 1645 // y = x+4 1646 // store y -> ptr 1647 // Because we structurally match the load/store as a read/modify/write, 1648 // but the call is chained between them. We cannot fold in this case 1649 // because it would induce a cycle in the graph. 1650 if (!std::count(ChainedNodesInPattern.begin(), 1651 ChainedNodesInPattern.end(), User)) 1652 return CR_InducesCycle; 1653 1654 // Otherwise we found a node that is part of our pattern. For example in: 1655 // x = load ptr 1656 // y = x+4 1657 // store y -> ptr 1658 // This would happen when we're scanning down from the load and see the 1659 // store as a user. Record that there is a use of ChainedNode that is 1660 // part of the pattern and keep scanning uses. 1661 Result = CR_LeadsToInteriorNode; 1662 InteriorChainedNodes.push_back(User); 1663 continue; 1664 } 1665 1666 // If we found a TokenFactor, there are two cases to consider: first if the 1667 // TokenFactor is just hanging "below" the pattern we're matching (i.e. no 1668 // uses of the TF are in our pattern) we just want to ignore it. Second, 1669 // the TokenFactor can be sandwiched in between two chained nodes, like so: 1670 // [Load chain] 1671 // ^ 1672 // | 1673 // [Load] 1674 // ^ ^ 1675 // | \ DAG's like cheese 1676 // / \ do you? 1677 // / | 1678 // [TokenFactor] [Op] 1679 // ^ ^ 1680 // | | 1681 // \ / 1682 // \ / 1683 // [Store] 1684 // 1685 // In this case, the TokenFactor becomes part of our match and we rewrite it 1686 // as a new TokenFactor. 1687 // 1688 // To distinguish these two cases, do a recursive walk down the uses. 1689 switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) { 1690 case CR_Simple: 1691 // If the uses of the TokenFactor are just already-selected nodes, ignore 1692 // it, it is "below" our pattern. 1693 continue; 1694 case CR_InducesCycle: 1695 // If the uses of the TokenFactor lead to nodes that are not part of our 1696 // pattern that are not selected, folding would turn this into a cycle, 1697 // bail out now. 1698 return CR_InducesCycle; 1699 case CR_LeadsToInteriorNode: 1700 break; // Otherwise, keep processing. 1701 } 1702 1703 // Okay, we know we're in the interesting interior case. The TokenFactor 1704 // is now going to be considered part of the pattern so that we rewrite its 1705 // uses (it may have uses that are not part of the pattern) with the 1706 // ultimate chain result of the generated code. We will also add its chain 1707 // inputs as inputs to the ultimate TokenFactor we create. 1708 Result = CR_LeadsToInteriorNode; 1709 ChainedNodesInPattern.push_back(User); 1710 InteriorChainedNodes.push_back(User); 1711 continue; 1712 } 1713 1714 return Result; 1715 } 1716 1717 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains 1718 /// operation for when the pattern matched at least one node with a chains. The 1719 /// input vector contains a list of all of the chained nodes that we match. We 1720 /// must determine if this is a valid thing to cover (i.e. matching it won't 1721 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will 1722 /// be used as the input node chain for the generated nodes. 1723 static SDValue 1724 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched, 1725 SelectionDAG *CurDAG) { 1726 // Walk all of the chained nodes we've matched, recursively scanning down the 1727 // users of the chain result. This adds any TokenFactor nodes that are caught 1728 // in between chained nodes to the chained and interior nodes list. 1729 SmallVector<SDNode*, 3> InteriorChainedNodes; 1730 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { 1731 if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched, 1732 InteriorChainedNodes) == CR_InducesCycle) 1733 return SDValue(); // Would induce a cycle. 1734 } 1735 1736 // Okay, we have walked all the matched nodes and collected TokenFactor nodes 1737 // that we are interested in. Form our input TokenFactor node. 1738 SmallVector<SDValue, 3> InputChains; 1739 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { 1740 // Add the input chain of this node to the InputChains list (which will be 1741 // the operands of the generated TokenFactor) if it's not an interior node. 1742 SDNode *N = ChainNodesMatched[i]; 1743 if (N->getOpcode() != ISD::TokenFactor) { 1744 if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N)) 1745 continue; 1746 1747 // Otherwise, add the input chain. 1748 SDValue InChain = ChainNodesMatched[i]->getOperand(0); 1749 assert(InChain.getValueType() == MVT::Other && "Not a chain"); 1750 InputChains.push_back(InChain); 1751 continue; 1752 } 1753 1754 // If we have a token factor, we want to add all inputs of the token factor 1755 // that are not part of the pattern we're matching. 1756 for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) { 1757 if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(), 1758 N->getOperand(op).getNode())) 1759 InputChains.push_back(N->getOperand(op)); 1760 } 1761 } 1762 1763 SDValue Res; 1764 if (InputChains.size() == 1) 1765 return InputChains[0]; 1766 return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(), 1767 MVT::Other, &InputChains[0], InputChains.size()); 1768 } 1769 1770 /// MorphNode - Handle morphing a node in place for the selector. 1771 SDNode *SelectionDAGISel:: 1772 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList, 1773 const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) { 1774 // It is possible we're using MorphNodeTo to replace a node with no 1775 // normal results with one that has a normal result (or we could be 1776 // adding a chain) and the input could have glue and chains as well. 1777 // In this case we need to shift the operands down. 1778 // FIXME: This is a horrible hack and broken in obscure cases, no worse 1779 // than the old isel though. 1780 int OldGlueResultNo = -1, OldChainResultNo = -1; 1781 1782 unsigned NTMNumResults = Node->getNumValues(); 1783 if (Node->getValueType(NTMNumResults-1) == MVT::Glue) { 1784 OldGlueResultNo = NTMNumResults-1; 1785 if (NTMNumResults != 1 && 1786 Node->getValueType(NTMNumResults-2) == MVT::Other) 1787 OldChainResultNo = NTMNumResults-2; 1788 } else if (Node->getValueType(NTMNumResults-1) == MVT::Other) 1789 OldChainResultNo = NTMNumResults-1; 1790 1791 // Call the underlying SelectionDAG routine to do the transmogrification. Note 1792 // that this deletes operands of the old node that become dead. 1793 SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps); 1794 1795 // MorphNodeTo can operate in two ways: if an existing node with the 1796 // specified operands exists, it can just return it. Otherwise, it 1797 // updates the node in place to have the requested operands. 1798 if (Res == Node) { 1799 // If we updated the node in place, reset the node ID. To the isel, 1800 // this should be just like a newly allocated machine node. 1801 Res->setNodeId(-1); 1802 } 1803 1804 unsigned ResNumResults = Res->getNumValues(); 1805 // Move the glue if needed. 1806 if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 && 1807 (unsigned)OldGlueResultNo != ResNumResults-1) 1808 CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo), 1809 SDValue(Res, ResNumResults-1)); 1810 1811 if ((EmitNodeInfo & OPFL_GlueOutput) != 0) 1812 --ResNumResults; 1813 1814 // Move the chain reference if needed. 1815 if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 && 1816 (unsigned)OldChainResultNo != ResNumResults-1) 1817 CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo), 1818 SDValue(Res, ResNumResults-1)); 1819 1820 // Otherwise, no replacement happened because the node already exists. Replace 1821 // Uses of the old node with the new one. 1822 if (Res != Node) 1823 CurDAG->ReplaceAllUsesWith(Node, Res); 1824 1825 return Res; 1826 } 1827 1828 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate. 1829 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 1830 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, 1831 SDValue N, 1832 const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) { 1833 // Accept if it is exactly the same as a previously recorded node. 1834 unsigned RecNo = MatcherTable[MatcherIndex++]; 1835 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); 1836 return N == RecordedNodes[RecNo].first; 1837 } 1838 1839 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate. 1840 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 1841 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, 1842 SelectionDAGISel &SDISel) { 1843 return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]); 1844 } 1845 1846 /// CheckNodePredicate - Implements OP_CheckNodePredicate. 1847 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 1848 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, 1849 SelectionDAGISel &SDISel, SDNode *N) { 1850 return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]); 1851 } 1852 1853 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 1854 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 1855 SDNode *N) { 1856 uint16_t Opc = MatcherTable[MatcherIndex++]; 1857 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 1858 return N->getOpcode() == Opc; 1859 } 1860 1861 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 1862 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 1863 SDValue N, const TargetLowering &TLI) { 1864 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 1865 if (N.getValueType() == VT) return true; 1866 1867 // Handle the case when VT is iPTR. 1868 return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy(); 1869 } 1870 1871 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 1872 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 1873 SDValue N, const TargetLowering &TLI, 1874 unsigned ChildNo) { 1875 if (ChildNo >= N.getNumOperands()) 1876 return false; // Match fails if out of range child #. 1877 return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI); 1878 } 1879 1880 1881 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 1882 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 1883 SDValue N) { 1884 return cast<CondCodeSDNode>(N)->get() == 1885 (ISD::CondCode)MatcherTable[MatcherIndex++]; 1886 } 1887 1888 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 1889 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 1890 SDValue N, const TargetLowering &TLI) { 1891 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 1892 if (cast<VTSDNode>(N)->getVT() == VT) 1893 return true; 1894 1895 // Handle the case when VT is iPTR. 1896 return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy(); 1897 } 1898 1899 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 1900 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, 1901 SDValue N) { 1902 int64_t Val = MatcherTable[MatcherIndex++]; 1903 if (Val & 128) 1904 Val = GetVBR(Val, MatcherTable, MatcherIndex); 1905 1906 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N); 1907 return C != 0 && C->getSExtValue() == Val; 1908 } 1909 1910 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 1911 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, 1912 SDValue N, SelectionDAGISel &SDISel) { 1913 int64_t Val = MatcherTable[MatcherIndex++]; 1914 if (Val & 128) 1915 Val = GetVBR(Val, MatcherTable, MatcherIndex); 1916 1917 if (N->getOpcode() != ISD::AND) return false; 1918 1919 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 1920 return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val); 1921 } 1922 1923 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 1924 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, 1925 SDValue N, SelectionDAGISel &SDISel) { 1926 int64_t Val = MatcherTable[MatcherIndex++]; 1927 if (Val & 128) 1928 Val = GetVBR(Val, MatcherTable, MatcherIndex); 1929 1930 if (N->getOpcode() != ISD::OR) return false; 1931 1932 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 1933 return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val); 1934 } 1935 1936 /// IsPredicateKnownToFail - If we know how and can do so without pushing a 1937 /// scope, evaluate the current node. If the current predicate is known to 1938 /// fail, set Result=true and return anything. If the current predicate is 1939 /// known to pass, set Result=false and return the MatcherIndex to continue 1940 /// with. If the current predicate is unknown, set Result=false and return the 1941 /// MatcherIndex to continue with. 1942 static unsigned IsPredicateKnownToFail(const unsigned char *Table, 1943 unsigned Index, SDValue N, 1944 bool &Result, SelectionDAGISel &SDISel, 1945 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) { 1946 switch (Table[Index++]) { 1947 default: 1948 Result = false; 1949 return Index-1; // Could not evaluate this predicate. 1950 case SelectionDAGISel::OPC_CheckSame: 1951 Result = !::CheckSame(Table, Index, N, RecordedNodes); 1952 return Index; 1953 case SelectionDAGISel::OPC_CheckPatternPredicate: 1954 Result = !::CheckPatternPredicate(Table, Index, SDISel); 1955 return Index; 1956 case SelectionDAGISel::OPC_CheckPredicate: 1957 Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode()); 1958 return Index; 1959 case SelectionDAGISel::OPC_CheckOpcode: 1960 Result = !::CheckOpcode(Table, Index, N.getNode()); 1961 return Index; 1962 case SelectionDAGISel::OPC_CheckType: 1963 Result = !::CheckType(Table, Index, N, SDISel.TLI); 1964 return Index; 1965 case SelectionDAGISel::OPC_CheckChild0Type: 1966 case SelectionDAGISel::OPC_CheckChild1Type: 1967 case SelectionDAGISel::OPC_CheckChild2Type: 1968 case SelectionDAGISel::OPC_CheckChild3Type: 1969 case SelectionDAGISel::OPC_CheckChild4Type: 1970 case SelectionDAGISel::OPC_CheckChild5Type: 1971 case SelectionDAGISel::OPC_CheckChild6Type: 1972 case SelectionDAGISel::OPC_CheckChild7Type: 1973 Result = !::CheckChildType(Table, Index, N, SDISel.TLI, 1974 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type); 1975 return Index; 1976 case SelectionDAGISel::OPC_CheckCondCode: 1977 Result = !::CheckCondCode(Table, Index, N); 1978 return Index; 1979 case SelectionDAGISel::OPC_CheckValueType: 1980 Result = !::CheckValueType(Table, Index, N, SDISel.TLI); 1981 return Index; 1982 case SelectionDAGISel::OPC_CheckInteger: 1983 Result = !::CheckInteger(Table, Index, N); 1984 return Index; 1985 case SelectionDAGISel::OPC_CheckAndImm: 1986 Result = !::CheckAndImm(Table, Index, N, SDISel); 1987 return Index; 1988 case SelectionDAGISel::OPC_CheckOrImm: 1989 Result = !::CheckOrImm(Table, Index, N, SDISel); 1990 return Index; 1991 } 1992 } 1993 1994 namespace { 1995 1996 struct MatchScope { 1997 /// FailIndex - If this match fails, this is the index to continue with. 1998 unsigned FailIndex; 1999 2000 /// NodeStack - The node stack when the scope was formed. 2001 SmallVector<SDValue, 4> NodeStack; 2002 2003 /// NumRecordedNodes - The number of recorded nodes when the scope was formed. 2004 unsigned NumRecordedNodes; 2005 2006 /// NumMatchedMemRefs - The number of matched memref entries. 2007 unsigned NumMatchedMemRefs; 2008 2009 /// InputChain/InputGlue - The current chain/glue 2010 SDValue InputChain, InputGlue; 2011 2012 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty. 2013 bool HasChainNodesMatched, HasGlueResultNodesMatched; 2014 }; 2015 2016 } 2017 2018 SDNode *SelectionDAGISel:: 2019 SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable, 2020 unsigned TableSize) { 2021 // FIXME: Should these even be selected? Handle these cases in the caller? 2022 switch (NodeToMatch->getOpcode()) { 2023 default: 2024 break; 2025 case ISD::EntryToken: // These nodes remain the same. 2026 case ISD::BasicBlock: 2027 case ISD::Register: 2028 //case ISD::VALUETYPE: 2029 //case ISD::CONDCODE: 2030 case ISD::HANDLENODE: 2031 case ISD::MDNODE_SDNODE: 2032 case ISD::TargetConstant: 2033 case ISD::TargetConstantFP: 2034 case ISD::TargetConstantPool: 2035 case ISD::TargetFrameIndex: 2036 case ISD::TargetExternalSymbol: 2037 case ISD::TargetBlockAddress: 2038 case ISD::TargetJumpTable: 2039 case ISD::TargetGlobalTLSAddress: 2040 case ISD::TargetGlobalAddress: 2041 case ISD::TokenFactor: 2042 case ISD::CopyFromReg: 2043 case ISD::CopyToReg: 2044 case ISD::EH_LABEL: 2045 NodeToMatch->setNodeId(-1); // Mark selected. 2046 return 0; 2047 case ISD::AssertSext: 2048 case ISD::AssertZext: 2049 CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0), 2050 NodeToMatch->getOperand(0)); 2051 return 0; 2052 case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch); 2053 case ISD::UNDEF: return Select_UNDEF(NodeToMatch); 2054 } 2055 2056 assert(!NodeToMatch->isMachineOpcode() && "Node already selected!"); 2057 2058 // Set up the node stack with NodeToMatch as the only node on the stack. 2059 SmallVector<SDValue, 8> NodeStack; 2060 SDValue N = SDValue(NodeToMatch, 0); 2061 NodeStack.push_back(N); 2062 2063 // MatchScopes - Scopes used when matching, if a match failure happens, this 2064 // indicates where to continue checking. 2065 SmallVector<MatchScope, 8> MatchScopes; 2066 2067 // RecordedNodes - This is the set of nodes that have been recorded by the 2068 // state machine. The second value is the parent of the node, or null if the 2069 // root is recorded. 2070 SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes; 2071 2072 // MatchedMemRefs - This is the set of MemRef's we've seen in the input 2073 // pattern. 2074 SmallVector<MachineMemOperand*, 2> MatchedMemRefs; 2075 2076 // These are the current input chain and glue for use when generating nodes. 2077 // Various Emit operations change these. For example, emitting a copytoreg 2078 // uses and updates these. 2079 SDValue InputChain, InputGlue; 2080 2081 // ChainNodesMatched - If a pattern matches nodes that have input/output 2082 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates 2083 // which ones they are. The result is captured into this list so that we can 2084 // update the chain results when the pattern is complete. 2085 SmallVector<SDNode*, 3> ChainNodesMatched; 2086 SmallVector<SDNode*, 3> GlueResultNodesMatched; 2087 2088 DEBUG(errs() << "ISEL: Starting pattern match on root node: "; 2089 NodeToMatch->dump(CurDAG); 2090 errs() << '\n'); 2091 2092 // Determine where to start the interpreter. Normally we start at opcode #0, 2093 // but if the state machine starts with an OPC_SwitchOpcode, then we 2094 // accelerate the first lookup (which is guaranteed to be hot) with the 2095 // OpcodeOffset table. 2096 unsigned MatcherIndex = 0; 2097 2098 if (!OpcodeOffset.empty()) { 2099 // Already computed the OpcodeOffset table, just index into it. 2100 if (N.getOpcode() < OpcodeOffset.size()) 2101 MatcherIndex = OpcodeOffset[N.getOpcode()]; 2102 DEBUG(errs() << " Initial Opcode index to " << MatcherIndex << "\n"); 2103 2104 } else if (MatcherTable[0] == OPC_SwitchOpcode) { 2105 // Otherwise, the table isn't computed, but the state machine does start 2106 // with an OPC_SwitchOpcode instruction. Populate the table now, since this 2107 // is the first time we're selecting an instruction. 2108 unsigned Idx = 1; 2109 while (1) { 2110 // Get the size of this case. 2111 unsigned CaseSize = MatcherTable[Idx++]; 2112 if (CaseSize & 128) 2113 CaseSize = GetVBR(CaseSize, MatcherTable, Idx); 2114 if (CaseSize == 0) break; 2115 2116 // Get the opcode, add the index to the table. 2117 uint16_t Opc = MatcherTable[Idx++]; 2118 Opc |= (unsigned short)MatcherTable[Idx++] << 8; 2119 if (Opc >= OpcodeOffset.size()) 2120 OpcodeOffset.resize((Opc+1)*2); 2121 OpcodeOffset[Opc] = Idx; 2122 Idx += CaseSize; 2123 } 2124 2125 // Okay, do the lookup for the first opcode. 2126 if (N.getOpcode() < OpcodeOffset.size()) 2127 MatcherIndex = OpcodeOffset[N.getOpcode()]; 2128 } 2129 2130 while (1) { 2131 assert(MatcherIndex < TableSize && "Invalid index"); 2132 #ifndef NDEBUG 2133 unsigned CurrentOpcodeIndex = MatcherIndex; 2134 #endif 2135 BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++]; 2136 switch (Opcode) { 2137 case OPC_Scope: { 2138 // Okay, the semantics of this operation are that we should push a scope 2139 // then evaluate the first child. However, pushing a scope only to have 2140 // the first check fail (which then pops it) is inefficient. If we can 2141 // determine immediately that the first check (or first several) will 2142 // immediately fail, don't even bother pushing a scope for them. 2143 unsigned FailIndex; 2144 2145 while (1) { 2146 unsigned NumToSkip = MatcherTable[MatcherIndex++]; 2147 if (NumToSkip & 128) 2148 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); 2149 // Found the end of the scope with no match. 2150 if (NumToSkip == 0) { 2151 FailIndex = 0; 2152 break; 2153 } 2154 2155 FailIndex = MatcherIndex+NumToSkip; 2156 2157 unsigned MatcherIndexOfPredicate = MatcherIndex; 2158 (void)MatcherIndexOfPredicate; // silence warning. 2159 2160 // If we can't evaluate this predicate without pushing a scope (e.g. if 2161 // it is a 'MoveParent') or if the predicate succeeds on this node, we 2162 // push the scope and evaluate the full predicate chain. 2163 bool Result; 2164 MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N, 2165 Result, *this, RecordedNodes); 2166 if (!Result) 2167 break; 2168 2169 DEBUG(errs() << " Skipped scope entry (due to false predicate) at " 2170 << "index " << MatcherIndexOfPredicate 2171 << ", continuing at " << FailIndex << "\n"); 2172 ++NumDAGIselRetries; 2173 2174 // Otherwise, we know that this case of the Scope is guaranteed to fail, 2175 // move to the next case. 2176 MatcherIndex = FailIndex; 2177 } 2178 2179 // If the whole scope failed to match, bail. 2180 if (FailIndex == 0) break; 2181 2182 // Push a MatchScope which indicates where to go if the first child fails 2183 // to match. 2184 MatchScope NewEntry; 2185 NewEntry.FailIndex = FailIndex; 2186 NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end()); 2187 NewEntry.NumRecordedNodes = RecordedNodes.size(); 2188 NewEntry.NumMatchedMemRefs = MatchedMemRefs.size(); 2189 NewEntry.InputChain = InputChain; 2190 NewEntry.InputGlue = InputGlue; 2191 NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty(); 2192 NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty(); 2193 MatchScopes.push_back(NewEntry); 2194 continue; 2195 } 2196 case OPC_RecordNode: { 2197 // Remember this node, it may end up being an operand in the pattern. 2198 SDNode *Parent = 0; 2199 if (NodeStack.size() > 1) 2200 Parent = NodeStack[NodeStack.size()-2].getNode(); 2201 RecordedNodes.push_back(std::make_pair(N, Parent)); 2202 continue; 2203 } 2204 2205 case OPC_RecordChild0: case OPC_RecordChild1: 2206 case OPC_RecordChild2: case OPC_RecordChild3: 2207 case OPC_RecordChild4: case OPC_RecordChild5: 2208 case OPC_RecordChild6: case OPC_RecordChild7: { 2209 unsigned ChildNo = Opcode-OPC_RecordChild0; 2210 if (ChildNo >= N.getNumOperands()) 2211 break; // Match fails if out of range child #. 2212 2213 RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo), 2214 N.getNode())); 2215 continue; 2216 } 2217 case OPC_RecordMemRef: 2218 MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand()); 2219 continue; 2220 2221 case OPC_CaptureGlueInput: 2222 // If the current node has an input glue, capture it in InputGlue. 2223 if (N->getNumOperands() != 0 && 2224 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) 2225 InputGlue = N->getOperand(N->getNumOperands()-1); 2226 continue; 2227 2228 case OPC_MoveChild: { 2229 unsigned ChildNo = MatcherTable[MatcherIndex++]; 2230 if (ChildNo >= N.getNumOperands()) 2231 break; // Match fails if out of range child #. 2232 N = N.getOperand(ChildNo); 2233 NodeStack.push_back(N); 2234 continue; 2235 } 2236 2237 case OPC_MoveParent: 2238 // Pop the current node off the NodeStack. 2239 NodeStack.pop_back(); 2240 assert(!NodeStack.empty() && "Node stack imbalance!"); 2241 N = NodeStack.back(); 2242 continue; 2243 2244 case OPC_CheckSame: 2245 if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break; 2246 continue; 2247 case OPC_CheckPatternPredicate: 2248 if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break; 2249 continue; 2250 case OPC_CheckPredicate: 2251 if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this, 2252 N.getNode())) 2253 break; 2254 continue; 2255 case OPC_CheckComplexPat: { 2256 unsigned CPNum = MatcherTable[MatcherIndex++]; 2257 unsigned RecNo = MatcherTable[MatcherIndex++]; 2258 assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat"); 2259 if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second, 2260 RecordedNodes[RecNo].first, CPNum, 2261 RecordedNodes)) 2262 break; 2263 continue; 2264 } 2265 case OPC_CheckOpcode: 2266 if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break; 2267 continue; 2268 2269 case OPC_CheckType: 2270 if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break; 2271 continue; 2272 2273 case OPC_SwitchOpcode: { 2274 unsigned CurNodeOpcode = N.getOpcode(); 2275 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; 2276 unsigned CaseSize; 2277 while (1) { 2278 // Get the size of this case. 2279 CaseSize = MatcherTable[MatcherIndex++]; 2280 if (CaseSize & 128) 2281 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); 2282 if (CaseSize == 0) break; 2283 2284 uint16_t Opc = MatcherTable[MatcherIndex++]; 2285 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 2286 2287 // If the opcode matches, then we will execute this case. 2288 if (CurNodeOpcode == Opc) 2289 break; 2290 2291 // Otherwise, skip over this case. 2292 MatcherIndex += CaseSize; 2293 } 2294 2295 // If no cases matched, bail out. 2296 if (CaseSize == 0) break; 2297 2298 // Otherwise, execute the case we found. 2299 DEBUG(errs() << " OpcodeSwitch from " << SwitchStart 2300 << " to " << MatcherIndex << "\n"); 2301 continue; 2302 } 2303 2304 case OPC_SwitchType: { 2305 MVT CurNodeVT = N.getValueType().getSimpleVT(); 2306 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; 2307 unsigned CaseSize; 2308 while (1) { 2309 // Get the size of this case. 2310 CaseSize = MatcherTable[MatcherIndex++]; 2311 if (CaseSize & 128) 2312 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); 2313 if (CaseSize == 0) break; 2314 2315 MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2316 if (CaseVT == MVT::iPTR) 2317 CaseVT = TLI.getPointerTy(); 2318 2319 // If the VT matches, then we will execute this case. 2320 if (CurNodeVT == CaseVT) 2321 break; 2322 2323 // Otherwise, skip over this case. 2324 MatcherIndex += CaseSize; 2325 } 2326 2327 // If no cases matched, bail out. 2328 if (CaseSize == 0) break; 2329 2330 // Otherwise, execute the case we found. 2331 DEBUG(errs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString() 2332 << "] from " << SwitchStart << " to " << MatcherIndex<<'\n'); 2333 continue; 2334 } 2335 case OPC_CheckChild0Type: case OPC_CheckChild1Type: 2336 case OPC_CheckChild2Type: case OPC_CheckChild3Type: 2337 case OPC_CheckChild4Type: case OPC_CheckChild5Type: 2338 case OPC_CheckChild6Type: case OPC_CheckChild7Type: 2339 if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI, 2340 Opcode-OPC_CheckChild0Type)) 2341 break; 2342 continue; 2343 case OPC_CheckCondCode: 2344 if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break; 2345 continue; 2346 case OPC_CheckValueType: 2347 if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break; 2348 continue; 2349 case OPC_CheckInteger: 2350 if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break; 2351 continue; 2352 case OPC_CheckAndImm: 2353 if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break; 2354 continue; 2355 case OPC_CheckOrImm: 2356 if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break; 2357 continue; 2358 2359 case OPC_CheckFoldableChainNode: { 2360 assert(NodeStack.size() != 1 && "No parent node"); 2361 // Verify that all intermediate nodes between the root and this one have 2362 // a single use. 2363 bool HasMultipleUses = false; 2364 for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) 2365 if (!NodeStack[i].hasOneUse()) { 2366 HasMultipleUses = true; 2367 break; 2368 } 2369 if (HasMultipleUses) break; 2370 2371 // Check to see that the target thinks this is profitable to fold and that 2372 // we can fold it without inducing cycles in the graph. 2373 if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(), 2374 NodeToMatch) || 2375 !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(), 2376 NodeToMatch, OptLevel, 2377 true/*We validate our own chains*/)) 2378 break; 2379 2380 continue; 2381 } 2382 case OPC_EmitInteger: { 2383 MVT::SimpleValueType VT = 2384 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2385 int64_t Val = MatcherTable[MatcherIndex++]; 2386 if (Val & 128) 2387 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2388 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 2389 CurDAG->getTargetConstant(Val, VT), (SDNode*)0)); 2390 continue; 2391 } 2392 case OPC_EmitRegister: { 2393 MVT::SimpleValueType VT = 2394 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2395 unsigned RegNo = MatcherTable[MatcherIndex++]; 2396 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 2397 CurDAG->getRegister(RegNo, VT), (SDNode*)0)); 2398 continue; 2399 } 2400 case OPC_EmitRegister2: { 2401 // For targets w/ more than 256 register names, the register enum 2402 // values are stored in two bytes in the matcher table (just like 2403 // opcodes). 2404 MVT::SimpleValueType VT = 2405 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2406 unsigned RegNo = MatcherTable[MatcherIndex++]; 2407 RegNo |= MatcherTable[MatcherIndex++] << 8; 2408 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 2409 CurDAG->getRegister(RegNo, VT), (SDNode*)0)); 2410 continue; 2411 } 2412 2413 case OPC_EmitConvertToTarget: { 2414 // Convert from IMM/FPIMM to target version. 2415 unsigned RecNo = MatcherTable[MatcherIndex++]; 2416 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); 2417 SDValue Imm = RecordedNodes[RecNo].first; 2418 2419 if (Imm->getOpcode() == ISD::Constant) { 2420 int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue(); 2421 Imm = CurDAG->getTargetConstant(Val, Imm.getValueType()); 2422 } else if (Imm->getOpcode() == ISD::ConstantFP) { 2423 const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue(); 2424 Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType()); 2425 } 2426 2427 RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second)); 2428 continue; 2429 } 2430 2431 case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0 2432 case OPC_EmitMergeInputChains1_1: { // OPC_EmitMergeInputChains, 1, 1 2433 // These are space-optimized forms of OPC_EmitMergeInputChains. 2434 assert(InputChain.getNode() == 0 && 2435 "EmitMergeInputChains should be the first chain producing node"); 2436 assert(ChainNodesMatched.empty() && 2437 "Should only have one EmitMergeInputChains per match"); 2438 2439 // Read all of the chained nodes. 2440 unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1; 2441 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); 2442 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 2443 2444 // FIXME: What if other value results of the node have uses not matched 2445 // by this pattern? 2446 if (ChainNodesMatched.back() != NodeToMatch && 2447 !RecordedNodes[RecNo].first.hasOneUse()) { 2448 ChainNodesMatched.clear(); 2449 break; 2450 } 2451 2452 // Merge the input chains if they are not intra-pattern references. 2453 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); 2454 2455 if (InputChain.getNode() == 0) 2456 break; // Failed to merge. 2457 continue; 2458 } 2459 2460 case OPC_EmitMergeInputChains: { 2461 assert(InputChain.getNode() == 0 && 2462 "EmitMergeInputChains should be the first chain producing node"); 2463 // This node gets a list of nodes we matched in the input that have 2464 // chains. We want to token factor all of the input chains to these nodes 2465 // together. However, if any of the input chains is actually one of the 2466 // nodes matched in this pattern, then we have an intra-match reference. 2467 // Ignore these because the newly token factored chain should not refer to 2468 // the old nodes. 2469 unsigned NumChains = MatcherTable[MatcherIndex++]; 2470 assert(NumChains != 0 && "Can't TF zero chains"); 2471 2472 assert(ChainNodesMatched.empty() && 2473 "Should only have one EmitMergeInputChains per match"); 2474 2475 // Read all of the chained nodes. 2476 for (unsigned i = 0; i != NumChains; ++i) { 2477 unsigned RecNo = MatcherTable[MatcherIndex++]; 2478 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); 2479 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 2480 2481 // FIXME: What if other value results of the node have uses not matched 2482 // by this pattern? 2483 if (ChainNodesMatched.back() != NodeToMatch && 2484 !RecordedNodes[RecNo].first.hasOneUse()) { 2485 ChainNodesMatched.clear(); 2486 break; 2487 } 2488 } 2489 2490 // If the inner loop broke out, the match fails. 2491 if (ChainNodesMatched.empty()) 2492 break; 2493 2494 // Merge the input chains if they are not intra-pattern references. 2495 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); 2496 2497 if (InputChain.getNode() == 0) 2498 break; // Failed to merge. 2499 2500 continue; 2501 } 2502 2503 case OPC_EmitCopyToReg: { 2504 unsigned RecNo = MatcherTable[MatcherIndex++]; 2505 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); 2506 unsigned DestPhysReg = MatcherTable[MatcherIndex++]; 2507 2508 if (InputChain.getNode() == 0) 2509 InputChain = CurDAG->getEntryNode(); 2510 2511 InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(), 2512 DestPhysReg, RecordedNodes[RecNo].first, 2513 InputGlue); 2514 2515 InputGlue = InputChain.getValue(1); 2516 continue; 2517 } 2518 2519 case OPC_EmitNodeXForm: { 2520 unsigned XFormNo = MatcherTable[MatcherIndex++]; 2521 unsigned RecNo = MatcherTable[MatcherIndex++]; 2522 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); 2523 SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo); 2524 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0)); 2525 continue; 2526 } 2527 2528 case OPC_EmitNode: 2529 case OPC_MorphNodeTo: { 2530 uint16_t TargetOpc = MatcherTable[MatcherIndex++]; 2531 TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 2532 unsigned EmitNodeInfo = MatcherTable[MatcherIndex++]; 2533 // Get the result VT list. 2534 unsigned NumVTs = MatcherTable[MatcherIndex++]; 2535 SmallVector<EVT, 4> VTs; 2536 for (unsigned i = 0; i != NumVTs; ++i) { 2537 MVT::SimpleValueType VT = 2538 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2539 if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy; 2540 VTs.push_back(VT); 2541 } 2542 2543 if (EmitNodeInfo & OPFL_Chain) 2544 VTs.push_back(MVT::Other); 2545 if (EmitNodeInfo & OPFL_GlueOutput) 2546 VTs.push_back(MVT::Glue); 2547 2548 // This is hot code, so optimize the two most common cases of 1 and 2 2549 // results. 2550 SDVTList VTList; 2551 if (VTs.size() == 1) 2552 VTList = CurDAG->getVTList(VTs[0]); 2553 else if (VTs.size() == 2) 2554 VTList = CurDAG->getVTList(VTs[0], VTs[1]); 2555 else 2556 VTList = CurDAG->getVTList(VTs.data(), VTs.size()); 2557 2558 // Get the operand list. 2559 unsigned NumOps = MatcherTable[MatcherIndex++]; 2560 SmallVector<SDValue, 8> Ops; 2561 for (unsigned i = 0; i != NumOps; ++i) { 2562 unsigned RecNo = MatcherTable[MatcherIndex++]; 2563 if (RecNo & 128) 2564 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); 2565 2566 assert(RecNo < RecordedNodes.size() && "Invalid EmitNode"); 2567 Ops.push_back(RecordedNodes[RecNo].first); 2568 } 2569 2570 // If there are variadic operands to add, handle them now. 2571 if (EmitNodeInfo & OPFL_VariadicInfo) { 2572 // Determine the start index to copy from. 2573 unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo); 2574 FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0; 2575 assert(NodeToMatch->getNumOperands() >= FirstOpToCopy && 2576 "Invalid variadic node"); 2577 // Copy all of the variadic operands, not including a potential glue 2578 // input. 2579 for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands(); 2580 i != e; ++i) { 2581 SDValue V = NodeToMatch->getOperand(i); 2582 if (V.getValueType() == MVT::Glue) break; 2583 Ops.push_back(V); 2584 } 2585 } 2586 2587 // If this has chain/glue inputs, add them. 2588 if (EmitNodeInfo & OPFL_Chain) 2589 Ops.push_back(InputChain); 2590 if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0) 2591 Ops.push_back(InputGlue); 2592 2593 // Create the node. 2594 SDNode *Res = 0; 2595 if (Opcode != OPC_MorphNodeTo) { 2596 // If this is a normal EmitNode command, just create the new node and 2597 // add the results to the RecordedNodes list. 2598 Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(), 2599 VTList, Ops.data(), Ops.size()); 2600 2601 // Add all the non-glue/non-chain results to the RecordedNodes list. 2602 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 2603 if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break; 2604 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i), 2605 (SDNode*) 0)); 2606 } 2607 2608 } else { 2609 Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(), 2610 EmitNodeInfo); 2611 } 2612 2613 // If the node had chain/glue results, update our notion of the current 2614 // chain and glue. 2615 if (EmitNodeInfo & OPFL_GlueOutput) { 2616 InputGlue = SDValue(Res, VTs.size()-1); 2617 if (EmitNodeInfo & OPFL_Chain) 2618 InputChain = SDValue(Res, VTs.size()-2); 2619 } else if (EmitNodeInfo & OPFL_Chain) 2620 InputChain = SDValue(Res, VTs.size()-1); 2621 2622 // If the OPFL_MemRefs glue is set on this node, slap all of the 2623 // accumulated memrefs onto it. 2624 // 2625 // FIXME: This is vastly incorrect for patterns with multiple outputs 2626 // instructions that access memory and for ComplexPatterns that match 2627 // loads. 2628 if (EmitNodeInfo & OPFL_MemRefs) { 2629 // Only attach load or store memory operands if the generated 2630 // instruction may load or store. 2631 const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc); 2632 bool mayLoad = MCID.mayLoad(); 2633 bool mayStore = MCID.mayStore(); 2634 2635 unsigned NumMemRefs = 0; 2636 for (SmallVector<MachineMemOperand*, 2>::const_iterator I = 2637 MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) { 2638 if ((*I)->isLoad()) { 2639 if (mayLoad) 2640 ++NumMemRefs; 2641 } else if ((*I)->isStore()) { 2642 if (mayStore) 2643 ++NumMemRefs; 2644 } else { 2645 ++NumMemRefs; 2646 } 2647 } 2648 2649 MachineSDNode::mmo_iterator MemRefs = 2650 MF->allocateMemRefsArray(NumMemRefs); 2651 2652 MachineSDNode::mmo_iterator MemRefsPos = MemRefs; 2653 for (SmallVector<MachineMemOperand*, 2>::const_iterator I = 2654 MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) { 2655 if ((*I)->isLoad()) { 2656 if (mayLoad) 2657 *MemRefsPos++ = *I; 2658 } else if ((*I)->isStore()) { 2659 if (mayStore) 2660 *MemRefsPos++ = *I; 2661 } else { 2662 *MemRefsPos++ = *I; 2663 } 2664 } 2665 2666 cast<MachineSDNode>(Res) 2667 ->setMemRefs(MemRefs, MemRefs + NumMemRefs); 2668 } 2669 2670 DEBUG(errs() << " " 2671 << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created") 2672 << " node: "; Res->dump(CurDAG); errs() << "\n"); 2673 2674 // If this was a MorphNodeTo then we're completely done! 2675 if (Opcode == OPC_MorphNodeTo) { 2676 // Update chain and glue uses. 2677 UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched, 2678 InputGlue, GlueResultNodesMatched, true); 2679 return Res; 2680 } 2681 2682 continue; 2683 } 2684 2685 case OPC_MarkGlueResults: { 2686 unsigned NumNodes = MatcherTable[MatcherIndex++]; 2687 2688 // Read and remember all the glue-result nodes. 2689 for (unsigned i = 0; i != NumNodes; ++i) { 2690 unsigned RecNo = MatcherTable[MatcherIndex++]; 2691 if (RecNo & 128) 2692 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); 2693 2694 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); 2695 GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 2696 } 2697 continue; 2698 } 2699 2700 case OPC_CompleteMatch: { 2701 // The match has been completed, and any new nodes (if any) have been 2702 // created. Patch up references to the matched dag to use the newly 2703 // created nodes. 2704 unsigned NumResults = MatcherTable[MatcherIndex++]; 2705 2706 for (unsigned i = 0; i != NumResults; ++i) { 2707 unsigned ResSlot = MatcherTable[MatcherIndex++]; 2708 if (ResSlot & 128) 2709 ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex); 2710 2711 assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame"); 2712 SDValue Res = RecordedNodes[ResSlot].first; 2713 2714 assert(i < NodeToMatch->getNumValues() && 2715 NodeToMatch->getValueType(i) != MVT::Other && 2716 NodeToMatch->getValueType(i) != MVT::Glue && 2717 "Invalid number of results to complete!"); 2718 assert((NodeToMatch->getValueType(i) == Res.getValueType() || 2719 NodeToMatch->getValueType(i) == MVT::iPTR || 2720 Res.getValueType() == MVT::iPTR || 2721 NodeToMatch->getValueType(i).getSizeInBits() == 2722 Res.getValueType().getSizeInBits()) && 2723 "invalid replacement"); 2724 CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res); 2725 } 2726 2727 // If the root node defines glue, add it to the glue nodes to update list. 2728 if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue) 2729 GlueResultNodesMatched.push_back(NodeToMatch); 2730 2731 // Update chain and glue uses. 2732 UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched, 2733 InputGlue, GlueResultNodesMatched, false); 2734 2735 assert(NodeToMatch->use_empty() && 2736 "Didn't replace all uses of the node?"); 2737 2738 // FIXME: We just return here, which interacts correctly with SelectRoot 2739 // above. We should fix this to not return an SDNode* anymore. 2740 return 0; 2741 } 2742 } 2743 2744 // If the code reached this point, then the match failed. See if there is 2745 // another child to try in the current 'Scope', otherwise pop it until we 2746 // find a case to check. 2747 DEBUG(errs() << " Match failed at index " << CurrentOpcodeIndex << "\n"); 2748 ++NumDAGIselRetries; 2749 while (1) { 2750 if (MatchScopes.empty()) { 2751 CannotYetSelect(NodeToMatch); 2752 return 0; 2753 } 2754 2755 // Restore the interpreter state back to the point where the scope was 2756 // formed. 2757 MatchScope &LastScope = MatchScopes.back(); 2758 RecordedNodes.resize(LastScope.NumRecordedNodes); 2759 NodeStack.clear(); 2760 NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end()); 2761 N = NodeStack.back(); 2762 2763 if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size()) 2764 MatchedMemRefs.resize(LastScope.NumMatchedMemRefs); 2765 MatcherIndex = LastScope.FailIndex; 2766 2767 DEBUG(errs() << " Continuing at " << MatcherIndex << "\n"); 2768 2769 InputChain = LastScope.InputChain; 2770 InputGlue = LastScope.InputGlue; 2771 if (!LastScope.HasChainNodesMatched) 2772 ChainNodesMatched.clear(); 2773 if (!LastScope.HasGlueResultNodesMatched) 2774 GlueResultNodesMatched.clear(); 2775 2776 // Check to see what the offset is at the new MatcherIndex. If it is zero 2777 // we have reached the end of this scope, otherwise we have another child 2778 // in the current scope to try. 2779 unsigned NumToSkip = MatcherTable[MatcherIndex++]; 2780 if (NumToSkip & 128) 2781 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); 2782 2783 // If we have another child in this scope to match, update FailIndex and 2784 // try it. 2785 if (NumToSkip != 0) { 2786 LastScope.FailIndex = MatcherIndex+NumToSkip; 2787 break; 2788 } 2789 2790 // End of this scope, pop it and try the next child in the containing 2791 // scope. 2792 MatchScopes.pop_back(); 2793 } 2794 } 2795 } 2796 2797 2798 2799 void SelectionDAGISel::CannotYetSelect(SDNode *N) { 2800 std::string msg; 2801 raw_string_ostream Msg(msg); 2802 Msg << "Cannot select: "; 2803 2804 if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN && 2805 N->getOpcode() != ISD::INTRINSIC_WO_CHAIN && 2806 N->getOpcode() != ISD::INTRINSIC_VOID) { 2807 N->printrFull(Msg, CurDAG); 2808 } else { 2809 bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other; 2810 unsigned iid = 2811 cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue(); 2812 if (iid < Intrinsic::num_intrinsics) 2813 Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid); 2814 else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo()) 2815 Msg << "target intrinsic %" << TII->getName(iid); 2816 else 2817 Msg << "unknown intrinsic #" << iid; 2818 } 2819 report_fatal_error(Msg.str()); 2820 } 2821 2822 char SelectionDAGISel::ID = 0; 2823