Home | History | Annotate | Download | only in CodeGen
      1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the generic RegisterCoalescer interface which
     11 // is used as the common interface used by all clients and
     12 // implementations of register coalescing.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #define DEBUG_TYPE "regalloc"
     17 #include "RegisterCoalescer.h"
     18 #include "LiveDebugVariables.h"
     19 #include "VirtRegMap.h"
     20 
     21 #include "llvm/Pass.h"
     22 #include "llvm/Value.h"
     23 #include "llvm/ADT/OwningPtr.h"
     24 #include "llvm/ADT/STLExtras.h"
     25 #include "llvm/ADT/SmallSet.h"
     26 #include "llvm/ADT/Statistic.h"
     27 #include "llvm/Analysis/AliasAnalysis.h"
     28 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     29 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     30 #include "llvm/CodeGen/LiveRangeEdit.h"
     31 #include "llvm/CodeGen/MachineFrameInfo.h"
     32 #include "llvm/CodeGen/MachineInstr.h"
     33 #include "llvm/CodeGen/MachineInstr.h"
     34 #include "llvm/CodeGen/MachineLoopInfo.h"
     35 #include "llvm/CodeGen/MachineRegisterInfo.h"
     36 #include "llvm/CodeGen/MachineRegisterInfo.h"
     37 #include "llvm/CodeGen/Passes.h"
     38 #include "llvm/CodeGen/RegisterClassInfo.h"
     39 #include "llvm/Support/CommandLine.h"
     40 #include "llvm/Support/Debug.h"
     41 #include "llvm/Support/ErrorHandling.h"
     42 #include "llvm/Support/raw_ostream.h"
     43 #include "llvm/Target/TargetInstrInfo.h"
     44 #include "llvm/Target/TargetInstrInfo.h"
     45 #include "llvm/Target/TargetMachine.h"
     46 #include "llvm/Target/TargetOptions.h"
     47 #include "llvm/Target/TargetRegisterInfo.h"
     48 #include <algorithm>
     49 #include <cmath>
     50 using namespace llvm;
     51 
     52 STATISTIC(numJoins    , "Number of interval joins performed");
     53 STATISTIC(numCrossRCs , "Number of cross class joins performed");
     54 STATISTIC(numCommutes , "Number of instruction commuting performed");
     55 STATISTIC(numExtends  , "Number of copies extended");
     56 STATISTIC(NumReMats   , "Number of instructions re-materialized");
     57 STATISTIC(NumInflated , "Number of register classes inflated");
     58 
     59 static cl::opt<bool>
     60 EnableJoining("join-liveintervals",
     61               cl::desc("Coalesce copies (default=true)"),
     62               cl::init(true));
     63 
     64 static cl::opt<bool>
     65 VerifyCoalescing("verify-coalescing",
     66          cl::desc("Verify machine instrs before and after register coalescing"),
     67          cl::Hidden);
     68 
     69 namespace {
     70   class RegisterCoalescer : public MachineFunctionPass,
     71                             private LiveRangeEdit::Delegate {
     72     MachineFunction* MF;
     73     MachineRegisterInfo* MRI;
     74     const TargetMachine* TM;
     75     const TargetRegisterInfo* TRI;
     76     const TargetInstrInfo* TII;
     77     LiveIntervals *LIS;
     78     LiveDebugVariables *LDV;
     79     const MachineLoopInfo* Loops;
     80     AliasAnalysis *AA;
     81     RegisterClassInfo RegClassInfo;
     82 
     83     /// WorkList - Copy instructions yet to be coalesced.
     84     SmallVector<MachineInstr*, 8> WorkList;
     85 
     86     /// ErasedInstrs - Set of instruction pointers that have been erased, and
     87     /// that may be present in WorkList.
     88     SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
     89 
     90     /// Dead instructions that are about to be deleted.
     91     SmallVector<MachineInstr*, 8> DeadDefs;
     92 
     93     /// Virtual registers to be considered for register class inflation.
     94     SmallVector<unsigned, 8> InflateRegs;
     95 
     96     /// Recursively eliminate dead defs in DeadDefs.
     97     void eliminateDeadDefs();
     98 
     99     /// LiveRangeEdit callback.
    100     void LRE_WillEraseInstruction(MachineInstr *MI);
    101 
    102     /// joinAllIntervals - join compatible live intervals
    103     void joinAllIntervals();
    104 
    105     /// copyCoalesceInMBB - Coalesce copies in the specified MBB, putting
    106     /// copies that cannot yet be coalesced into WorkList.
    107     void copyCoalesceInMBB(MachineBasicBlock *MBB);
    108 
    109     /// copyCoalesceWorkList - Try to coalesce all copies in WorkList after
    110     /// position From. Return true if any progress was made.
    111     bool copyCoalesceWorkList(unsigned From = 0);
    112 
    113     /// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
    114     /// which are the src/dst of the copy instruction CopyMI.  This returns
    115     /// true if the copy was successfully coalesced away. If it is not
    116     /// currently possible to coalesce this interval, but it may be possible if
    117     /// other things get coalesced, then it returns true by reference in
    118     /// 'Again'.
    119     bool joinCopy(MachineInstr *TheCopy, bool &Again);
    120 
    121     /// joinIntervals - Attempt to join these two intervals.  On failure, this
    122     /// returns false.  The output "SrcInt" will not have been modified, so we
    123     /// can use this information below to update aliases.
    124     bool joinIntervals(CoalescerPair &CP);
    125 
    126     /// Attempt joining with a reserved physreg.
    127     bool joinReservedPhysReg(CoalescerPair &CP);
    128 
    129     /// adjustCopiesBackFrom - We found a non-trivially-coalescable copy. If
    130     /// the source value number is defined by a copy from the destination reg
    131     /// see if we can merge these two destination reg valno# into a single
    132     /// value number, eliminating a copy.
    133     bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
    134 
    135     /// hasOtherReachingDefs - Return true if there are definitions of IntB
    136     /// other than BValNo val# that can reach uses of AValno val# of IntA.
    137     bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
    138                               VNInfo *AValNo, VNInfo *BValNo);
    139 
    140     /// removeCopyByCommutingDef - We found a non-trivially-coalescable copy.
    141     /// If the source value number is defined by a commutable instruction and
    142     /// its other operand is coalesced to the copy dest register, see if we
    143     /// can transform the copy into a noop by commuting the definition.
    144     bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI);
    145 
    146     /// reMaterializeTrivialDef - If the source of a copy is defined by a
    147     /// trivial computation, replace the copy by rematerialize the definition.
    148     bool reMaterializeTrivialDef(LiveInterval &SrcInt, unsigned DstReg,
    149                                  MachineInstr *CopyMI);
    150 
    151     /// canJoinPhys - Return true if a physreg copy should be joined.
    152     bool canJoinPhys(CoalescerPair &CP);
    153 
    154     /// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
    155     /// update the subregister number if it is not zero. If DstReg is a
    156     /// physical register and the existing subregister number of the def / use
    157     /// being updated is not zero, make sure to set it to the correct physical
    158     /// subregister.
    159     void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
    160 
    161     /// eliminateUndefCopy - Handle copies of undef values.
    162     bool eliminateUndefCopy(MachineInstr *CopyMI, const CoalescerPair &CP);
    163 
    164   public:
    165     static char ID; // Class identification, replacement for typeinfo
    166     RegisterCoalescer() : MachineFunctionPass(ID) {
    167       initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
    168     }
    169 
    170     virtual void getAnalysisUsage(AnalysisUsage &AU) const;
    171 
    172     virtual void releaseMemory();
    173 
    174     /// runOnMachineFunction - pass entry point
    175     virtual bool runOnMachineFunction(MachineFunction&);
    176 
    177     /// print - Implement the dump method.
    178     virtual void print(raw_ostream &O, const Module* = 0) const;
    179   };
    180 } /// end anonymous namespace
    181 
    182 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
    183 
    184 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
    185                       "Simple Register Coalescing", false, false)
    186 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
    187 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
    188 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
    189 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
    190 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    191 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
    192                     "Simple Register Coalescing", false, false)
    193 
    194 char RegisterCoalescer::ID = 0;
    195 
    196 static unsigned compose(const TargetRegisterInfo &tri, unsigned a, unsigned b) {
    197   if (!a) return b;
    198   if (!b) return a;
    199   return tri.composeSubRegIndices(a, b);
    200 }
    201 
    202 static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
    203                         unsigned &Src, unsigned &Dst,
    204                         unsigned &SrcSub, unsigned &DstSub) {
    205   if (MI->isCopy()) {
    206     Dst = MI->getOperand(0).getReg();
    207     DstSub = MI->getOperand(0).getSubReg();
    208     Src = MI->getOperand(1).getReg();
    209     SrcSub = MI->getOperand(1).getSubReg();
    210   } else if (MI->isSubregToReg()) {
    211     Dst = MI->getOperand(0).getReg();
    212     DstSub = compose(tri, MI->getOperand(0).getSubReg(),
    213                      MI->getOperand(3).getImm());
    214     Src = MI->getOperand(2).getReg();
    215     SrcSub = MI->getOperand(2).getSubReg();
    216   } else
    217     return false;
    218   return true;
    219 }
    220 
    221 bool CoalescerPair::setRegisters(const MachineInstr *MI) {
    222   SrcReg = DstReg = 0;
    223   SrcIdx = DstIdx = 0;
    224   NewRC = 0;
    225   Flipped = CrossClass = false;
    226 
    227   unsigned Src, Dst, SrcSub, DstSub;
    228   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
    229     return false;
    230   Partial = SrcSub || DstSub;
    231 
    232   // If one register is a physreg, it must be Dst.
    233   if (TargetRegisterInfo::isPhysicalRegister(Src)) {
    234     if (TargetRegisterInfo::isPhysicalRegister(Dst))
    235       return false;
    236     std::swap(Src, Dst);
    237     std::swap(SrcSub, DstSub);
    238     Flipped = true;
    239   }
    240 
    241   const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
    242 
    243   if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
    244     // Eliminate DstSub on a physreg.
    245     if (DstSub) {
    246       Dst = TRI.getSubReg(Dst, DstSub);
    247       if (!Dst) return false;
    248       DstSub = 0;
    249     }
    250 
    251     // Eliminate SrcSub by picking a corresponding Dst superregister.
    252     if (SrcSub) {
    253       Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
    254       if (!Dst) return false;
    255       SrcSub = 0;
    256     } else if (!MRI.getRegClass(Src)->contains(Dst)) {
    257       return false;
    258     }
    259   } else {
    260     // Both registers are virtual.
    261     const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
    262     const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
    263 
    264     // Both registers have subreg indices.
    265     if (SrcSub && DstSub) {
    266       // Copies between different sub-registers are never coalescable.
    267       if (Src == Dst && SrcSub != DstSub)
    268         return false;
    269 
    270       NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
    271                                          SrcIdx, DstIdx);
    272       if (!NewRC)
    273         return false;
    274     } else if (DstSub) {
    275       // SrcReg will be merged with a sub-register of DstReg.
    276       SrcIdx = DstSub;
    277       NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
    278     } else if (SrcSub) {
    279       // DstReg will be merged with a sub-register of SrcReg.
    280       DstIdx = SrcSub;
    281       NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
    282     } else {
    283       // This is a straight copy without sub-registers.
    284       NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
    285     }
    286 
    287     // The combined constraint may be impossible to satisfy.
    288     if (!NewRC)
    289       return false;
    290 
    291     // Prefer SrcReg to be a sub-register of DstReg.
    292     // FIXME: Coalescer should support subregs symmetrically.
    293     if (DstIdx && !SrcIdx) {
    294       std::swap(Src, Dst);
    295       std::swap(SrcIdx, DstIdx);
    296       Flipped = !Flipped;
    297     }
    298 
    299     CrossClass = NewRC != DstRC || NewRC != SrcRC;
    300   }
    301   // Check our invariants
    302   assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
    303   assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
    304          "Cannot have a physical SubIdx");
    305   SrcReg = Src;
    306   DstReg = Dst;
    307   return true;
    308 }
    309 
    310 bool CoalescerPair::flip() {
    311   if (TargetRegisterInfo::isPhysicalRegister(DstReg))
    312     return false;
    313   std::swap(SrcReg, DstReg);
    314   std::swap(SrcIdx, DstIdx);
    315   Flipped = !Flipped;
    316   return true;
    317 }
    318 
    319 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
    320   if (!MI)
    321     return false;
    322   unsigned Src, Dst, SrcSub, DstSub;
    323   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
    324     return false;
    325 
    326   // Find the virtual register that is SrcReg.
    327   if (Dst == SrcReg) {
    328     std::swap(Src, Dst);
    329     std::swap(SrcSub, DstSub);
    330   } else if (Src != SrcReg) {
    331     return false;
    332   }
    333 
    334   // Now check that Dst matches DstReg.
    335   if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
    336     if (!TargetRegisterInfo::isPhysicalRegister(Dst))
    337       return false;
    338     assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
    339     // DstSub could be set for a physreg from INSERT_SUBREG.
    340     if (DstSub)
    341       Dst = TRI.getSubReg(Dst, DstSub);
    342     // Full copy of Src.
    343     if (!SrcSub)
    344       return DstReg == Dst;
    345     // This is a partial register copy. Check that the parts match.
    346     return TRI.getSubReg(DstReg, SrcSub) == Dst;
    347   } else {
    348     // DstReg is virtual.
    349     if (DstReg != Dst)
    350       return false;
    351     // Registers match, do the subregisters line up?
    352     return compose(TRI, SrcIdx, SrcSub) == compose(TRI, DstIdx, DstSub);
    353   }
    354 }
    355 
    356 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
    357   AU.setPreservesCFG();
    358   AU.addRequired<AliasAnalysis>();
    359   AU.addRequired<LiveIntervals>();
    360   AU.addPreserved<LiveIntervals>();
    361   AU.addRequired<LiveDebugVariables>();
    362   AU.addPreserved<LiveDebugVariables>();
    363   AU.addPreserved<SlotIndexes>();
    364   AU.addRequired<MachineLoopInfo>();
    365   AU.addPreserved<MachineLoopInfo>();
    366   AU.addPreservedID(MachineDominatorsID);
    367   MachineFunctionPass::getAnalysisUsage(AU);
    368 }
    369 
    370 void RegisterCoalescer::eliminateDeadDefs() {
    371   SmallVector<LiveInterval*, 8> NewRegs;
    372   LiveRangeEdit(0, NewRegs, *MF, *LIS, 0, this).eliminateDeadDefs(DeadDefs);
    373 }
    374 
    375 // Callback from eliminateDeadDefs().
    376 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
    377   // MI may be in WorkList. Make sure we don't visit it.
    378   ErasedInstrs.insert(MI);
    379 }
    380 
    381 /// adjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
    382 /// being the source and IntB being the dest, thus this defines a value number
    383 /// in IntB.  If the source value number (in IntA) is defined by a copy from B,
    384 /// see if we can merge these two pieces of B into a single value number,
    385 /// eliminating a copy.  For example:
    386 ///
    387 ///  A3 = B0
    388 ///    ...
    389 ///  B1 = A3      <- this copy
    390 ///
    391 /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
    392 /// value number to be replaced with B0 (which simplifies the B liveinterval).
    393 ///
    394 /// This returns true if an interval was modified.
    395 ///
    396 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
    397                                              MachineInstr *CopyMI) {
    398   assert(!CP.isPartial() && "This doesn't work for partial copies.");
    399   assert(!CP.isPhys() && "This doesn't work for physreg copies.");
    400 
    401   LiveInterval &IntA =
    402     LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
    403   LiveInterval &IntB =
    404     LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
    405   SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
    406 
    407   // BValNo is a value number in B that is defined by a copy from A.  'B3' in
    408   // the example above.
    409   LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
    410   if (BLR == IntB.end()) return false;
    411   VNInfo *BValNo = BLR->valno;
    412 
    413   // Get the location that B is defined at.  Two options: either this value has
    414   // an unknown definition point or it is defined at CopyIdx.  If unknown, we
    415   // can't process it.
    416   if (BValNo->def != CopyIdx) return false;
    417 
    418   // AValNo is the value number in A that defines the copy, A3 in the example.
    419   SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
    420   LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
    421   // The live range might not exist after fun with physreg coalescing.
    422   if (ALR == IntA.end()) return false;
    423   VNInfo *AValNo = ALR->valno;
    424 
    425   // If AValNo is defined as a copy from IntB, we can potentially process this.
    426   // Get the instruction that defines this value number.
    427   MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
    428   if (!CP.isCoalescable(ACopyMI))
    429     return false;
    430 
    431   // Get the LiveRange in IntB that this value number starts with.
    432   LiveInterval::iterator ValLR =
    433     IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot());
    434   if (ValLR == IntB.end())
    435     return false;
    436 
    437   // Make sure that the end of the live range is inside the same block as
    438   // CopyMI.
    439   MachineInstr *ValLREndInst =
    440     LIS->getInstructionFromIndex(ValLR->end.getPrevSlot());
    441   if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent())
    442     return false;
    443 
    444   // Okay, we now know that ValLR ends in the same block that the CopyMI
    445   // live-range starts.  If there are no intervening live ranges between them in
    446   // IntB, we can merge them.
    447   if (ValLR+1 != BLR) return false;
    448 
    449   DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI));
    450 
    451   SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
    452   // We are about to delete CopyMI, so need to remove it as the 'instruction
    453   // that defines this value #'. Update the valnum with the new defining
    454   // instruction #.
    455   BValNo->def = FillerStart;
    456 
    457   // Okay, we can merge them.  We need to insert a new liverange:
    458   // [ValLR.end, BLR.begin) of either value number, then we merge the
    459   // two value numbers.
    460   IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
    461 
    462   // Okay, merge "B1" into the same value number as "B0".
    463   if (BValNo != ValLR->valno)
    464     IntB.MergeValueNumberInto(BValNo, ValLR->valno);
    465   DEBUG(dbgs() << "   result = " << IntB << '\n');
    466 
    467   // If the source instruction was killing the source register before the
    468   // merge, unset the isKill marker given the live range has been extended.
    469   int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
    470   if (UIdx != -1) {
    471     ValLREndInst->getOperand(UIdx).setIsKill(false);
    472   }
    473 
    474   // Rewrite the copy. If the copy instruction was killing the destination
    475   // register before the merge, find the last use and trim the live range. That
    476   // will also add the isKill marker.
    477   CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
    478   if (ALR->end == CopyIdx)
    479     LIS->shrinkToUses(&IntA);
    480 
    481   ++numExtends;
    482   return true;
    483 }
    484 
    485 /// hasOtherReachingDefs - Return true if there are definitions of IntB
    486 /// other than BValNo val# that can reach uses of AValno val# of IntA.
    487 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
    488                                              LiveInterval &IntB,
    489                                              VNInfo *AValNo,
    490                                              VNInfo *BValNo) {
    491   // If AValNo has PHI kills, conservatively assume that IntB defs can reach
    492   // the PHI values.
    493   if (LIS->hasPHIKill(IntA, AValNo))
    494     return true;
    495 
    496   for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
    497        AI != AE; ++AI) {
    498     if (AI->valno != AValNo) continue;
    499     LiveInterval::Ranges::iterator BI =
    500       std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
    501     if (BI != IntB.ranges.begin())
    502       --BI;
    503     for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
    504       if (BI->valno == BValNo)
    505         continue;
    506       if (BI->start <= AI->start && BI->end > AI->start)
    507         return true;
    508       if (BI->start > AI->start && BI->start < AI->end)
    509         return true;
    510     }
    511   }
    512   return false;
    513 }
    514 
    515 /// removeCopyByCommutingDef - We found a non-trivially-coalescable copy with
    516 /// IntA being the source and IntB being the dest, thus this defines a value
    517 /// number in IntB.  If the source value number (in IntA) is defined by a
    518 /// commutable instruction and its other operand is coalesced to the copy dest
    519 /// register, see if we can transform the copy into a noop by commuting the
    520 /// definition. For example,
    521 ///
    522 ///  A3 = op A2 B0<kill>
    523 ///    ...
    524 ///  B1 = A3      <- this copy
    525 ///    ...
    526 ///     = op A3   <- more uses
    527 ///
    528 /// ==>
    529 ///
    530 ///  B2 = op B0 A2<kill>
    531 ///    ...
    532 ///  B1 = B2      <- now an identify copy
    533 ///    ...
    534 ///     = op B2   <- more uses
    535 ///
    536 /// This returns true if an interval was modified.
    537 ///
    538 bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
    539                                                  MachineInstr *CopyMI) {
    540   assert (!CP.isPhys());
    541 
    542   SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
    543 
    544   LiveInterval &IntA =
    545     LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
    546   LiveInterval &IntB =
    547     LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
    548 
    549   // BValNo is a value number in B that is defined by a copy from A. 'B3' in
    550   // the example above.
    551   VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
    552   if (!BValNo || BValNo->def != CopyIdx)
    553     return false;
    554 
    555   assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
    556 
    557   // AValNo is the value number in A that defines the copy, A3 in the example.
    558   VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
    559   assert(AValNo && "COPY source not live");
    560   if (AValNo->isPHIDef() || AValNo->isUnused())
    561     return false;
    562   MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
    563   if (!DefMI)
    564     return false;
    565   if (!DefMI->isCommutable())
    566     return false;
    567   // If DefMI is a two-address instruction then commuting it will change the
    568   // destination register.
    569   int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
    570   assert(DefIdx != -1);
    571   unsigned UseOpIdx;
    572   if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
    573     return false;
    574   unsigned Op1, Op2, NewDstIdx;
    575   if (!TII->findCommutedOpIndices(DefMI, Op1, Op2))
    576     return false;
    577   if (Op1 == UseOpIdx)
    578     NewDstIdx = Op2;
    579   else if (Op2 == UseOpIdx)
    580     NewDstIdx = Op1;
    581   else
    582     return false;
    583 
    584   MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
    585   unsigned NewReg = NewDstMO.getReg();
    586   if (NewReg != IntB.reg || !NewDstMO.isKill())
    587     return false;
    588 
    589   // Make sure there are no other definitions of IntB that would reach the
    590   // uses which the new definition can reach.
    591   if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
    592     return false;
    593 
    594   // If some of the uses of IntA.reg is already coalesced away, return false.
    595   // It's not possible to determine whether it's safe to perform the coalescing.
    596   for (MachineRegisterInfo::use_nodbg_iterator UI =
    597          MRI->use_nodbg_begin(IntA.reg),
    598        UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
    599     MachineInstr *UseMI = &*UI;
    600     SlotIndex UseIdx = LIS->getInstructionIndex(UseMI);
    601     LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
    602     if (ULR == IntA.end() || ULR->valno != AValNo)
    603       continue;
    604     // If this use is tied to a def, we can't rewrite the register.
    605     if (UseMI->isRegTiedToDefOperand(UI.getOperandNo()))
    606       return false;
    607   }
    608 
    609   DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
    610                << *DefMI);
    611 
    612   // At this point we have decided that it is legal to do this
    613   // transformation.  Start by commuting the instruction.
    614   MachineBasicBlock *MBB = DefMI->getParent();
    615   MachineInstr *NewMI = TII->commuteInstruction(DefMI);
    616   if (!NewMI)
    617     return false;
    618   if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
    619       TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
    620       !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
    621     return false;
    622   if (NewMI != DefMI) {
    623     LIS->ReplaceMachineInstrInMaps(DefMI, NewMI);
    624     MachineBasicBlock::iterator Pos = DefMI;
    625     MBB->insert(Pos, NewMI);
    626     MBB->erase(DefMI);
    627   }
    628   unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
    629   NewMI->getOperand(OpIdx).setIsKill();
    630 
    631   // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
    632   // A = or A, B
    633   // ...
    634   // B = A
    635   // ...
    636   // C = A<kill>
    637   // ...
    638   //   = B
    639 
    640   // Update uses of IntA of the specific Val# with IntB.
    641   for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
    642          UE = MRI->use_end(); UI != UE;) {
    643     MachineOperand &UseMO = UI.getOperand();
    644     MachineInstr *UseMI = &*UI;
    645     ++UI;
    646     if (UseMI->isDebugValue()) {
    647       // FIXME These don't have an instruction index.  Not clear we have enough
    648       // info to decide whether to do this replacement or not.  For now do it.
    649       UseMO.setReg(NewReg);
    650       continue;
    651     }
    652     SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true);
    653     LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
    654     if (ULR == IntA.end() || ULR->valno != AValNo)
    655       continue;
    656     // Kill flags are no longer accurate. They are recomputed after RA.
    657     UseMO.setIsKill(false);
    658     if (TargetRegisterInfo::isPhysicalRegister(NewReg))
    659       UseMO.substPhysReg(NewReg, *TRI);
    660     else
    661       UseMO.setReg(NewReg);
    662     if (UseMI == CopyMI)
    663       continue;
    664     if (!UseMI->isCopy())
    665       continue;
    666     if (UseMI->getOperand(0).getReg() != IntB.reg ||
    667         UseMI->getOperand(0).getSubReg())
    668       continue;
    669 
    670     // This copy will become a noop. If it's defining a new val#, merge it into
    671     // BValNo.
    672     SlotIndex DefIdx = UseIdx.getRegSlot();
    673     VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
    674     if (!DVNI)
    675       continue;
    676     DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
    677     assert(DVNI->def == DefIdx);
    678     BValNo = IntB.MergeValueNumberInto(BValNo, DVNI);
    679     ErasedInstrs.insert(UseMI);
    680     LIS->RemoveMachineInstrFromMaps(UseMI);
    681     UseMI->eraseFromParent();
    682   }
    683 
    684   // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
    685   // is updated.
    686   VNInfo *ValNo = BValNo;
    687   ValNo->def = AValNo->def;
    688   for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
    689        AI != AE; ++AI) {
    690     if (AI->valno != AValNo) continue;
    691     IntB.addRange(LiveRange(AI->start, AI->end, ValNo));
    692   }
    693   DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
    694 
    695   IntA.removeValNo(AValNo);
    696   DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
    697   ++numCommutes;
    698   return true;
    699 }
    700 
    701 /// reMaterializeTrivialDef - If the source of a copy is defined by a trivial
    702 /// computation, replace the copy by rematerialize the definition.
    703 bool RegisterCoalescer::reMaterializeTrivialDef(LiveInterval &SrcInt,
    704                                                 unsigned DstReg,
    705                                                 MachineInstr *CopyMI) {
    706   SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
    707   LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
    708   assert(SrcLR != SrcInt.end() && "Live range not found!");
    709   VNInfo *ValNo = SrcLR->valno;
    710   if (ValNo->isPHIDef() || ValNo->isUnused())
    711     return false;
    712   MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
    713   if (!DefMI)
    714     return false;
    715   assert(DefMI && "Defining instruction disappeared");
    716   if (!DefMI->isAsCheapAsAMove())
    717     return false;
    718   if (!TII->isTriviallyReMaterializable(DefMI, AA))
    719     return false;
    720   bool SawStore = false;
    721   if (!DefMI->isSafeToMove(TII, AA, SawStore))
    722     return false;
    723   const MCInstrDesc &MCID = DefMI->getDesc();
    724   if (MCID.getNumDefs() != 1)
    725     return false;
    726   if (!DefMI->isImplicitDef()) {
    727     // Make sure the copy destination register class fits the instruction
    728     // definition register class. The mismatch can happen as a result of earlier
    729     // extract_subreg, insert_subreg, subreg_to_reg coalescing.
    730     const TargetRegisterClass *RC = TII->getRegClass(MCID, 0, TRI, *MF);
    731     if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
    732       if (MRI->getRegClass(DstReg) != RC)
    733         return false;
    734     } else if (!RC->contains(DstReg))
    735       return false;
    736   }
    737 
    738   MachineBasicBlock *MBB = CopyMI->getParent();
    739   MachineBasicBlock::iterator MII =
    740     llvm::next(MachineBasicBlock::iterator(CopyMI));
    741   TII->reMaterialize(*MBB, MII, DstReg, 0, DefMI, *TRI);
    742   MachineInstr *NewMI = prior(MII);
    743 
    744   // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
    745   // We need to remember these so we can add intervals once we insert
    746   // NewMI into SlotIndexes.
    747   SmallVector<unsigned, 4> NewMIImplDefs;
    748   for (unsigned i = NewMI->getDesc().getNumOperands(),
    749          e = NewMI->getNumOperands(); i != e; ++i) {
    750     MachineOperand &MO = NewMI->getOperand(i);
    751     if (MO.isReg()) {
    752       assert(MO.isDef() && MO.isImplicit() && MO.isDead() &&
    753              TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
    754       NewMIImplDefs.push_back(MO.getReg());
    755     }
    756   }
    757 
    758   // CopyMI may have implicit operands, transfer them over to the newly
    759   // rematerialized instruction. And update implicit def interval valnos.
    760   for (unsigned i = CopyMI->getDesc().getNumOperands(),
    761          e = CopyMI->getNumOperands(); i != e; ++i) {
    762     MachineOperand &MO = CopyMI->getOperand(i);
    763     if (MO.isReg()) {
    764       assert(MO.isImplicit() && "No explicit operands after implict operands.");
    765       // Discard VReg implicit defs.
    766       if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
    767         NewMI->addOperand(MO);
    768       }
    769     }
    770   }
    771 
    772   LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI);
    773 
    774   SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
    775   for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
    776     unsigned Reg = NewMIImplDefs[i];
    777     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
    778       if (LiveInterval *LI = LIS->getCachedRegUnit(*Units))
    779         LI->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
    780   }
    781 
    782   CopyMI->eraseFromParent();
    783   ErasedInstrs.insert(CopyMI);
    784   DEBUG(dbgs() << "Remat: " << *NewMI);
    785   ++NumReMats;
    786 
    787   // The source interval can become smaller because we removed a use.
    788   LIS->shrinkToUses(&SrcInt, &DeadDefs);
    789   if (!DeadDefs.empty())
    790     eliminateDeadDefs();
    791 
    792   return true;
    793 }
    794 
    795 /// eliminateUndefCopy - ProcessImpicitDefs may leave some copies of <undef>
    796 /// values, it only removes local variables. When we have a copy like:
    797 ///
    798 ///   %vreg1 = COPY %vreg2<undef>
    799 ///
    800 /// We delete the copy and remove the corresponding value number from %vreg1.
    801 /// Any uses of that value number are marked as <undef>.
    802 bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI,
    803                                            const CoalescerPair &CP) {
    804   SlotIndex Idx = LIS->getInstructionIndex(CopyMI);
    805   LiveInterval *SrcInt = &LIS->getInterval(CP.getSrcReg());
    806   if (SrcInt->liveAt(Idx))
    807     return false;
    808   LiveInterval *DstInt = &LIS->getInterval(CP.getDstReg());
    809   if (DstInt->liveAt(Idx))
    810     return false;
    811 
    812   // No intervals are live-in to CopyMI - it is undef.
    813   if (CP.isFlipped())
    814     DstInt = SrcInt;
    815   SrcInt = 0;
    816 
    817   VNInfo *DeadVNI = DstInt->getVNInfoAt(Idx.getRegSlot());
    818   assert(DeadVNI && "No value defined in DstInt");
    819   DstInt->removeValNo(DeadVNI);
    820 
    821   // Find new undef uses.
    822   for (MachineRegisterInfo::reg_nodbg_iterator
    823          I = MRI->reg_nodbg_begin(DstInt->reg), E = MRI->reg_nodbg_end();
    824        I != E; ++I) {
    825     MachineOperand &MO = I.getOperand();
    826     if (MO.isDef() || MO.isUndef())
    827       continue;
    828     MachineInstr *MI = MO.getParent();
    829     SlotIndex Idx = LIS->getInstructionIndex(MI);
    830     if (DstInt->liveAt(Idx))
    831       continue;
    832     MO.setIsUndef(true);
    833     DEBUG(dbgs() << "\tnew undef: " << Idx << '\t' << *MI);
    834   }
    835   return true;
    836 }
    837 
    838 /// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
    839 /// update the subregister number if it is not zero. If DstReg is a
    840 /// physical register and the existing subregister number of the def / use
    841 /// being updated is not zero, make sure to set it to the correct physical
    842 /// subregister.
    843 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
    844                                           unsigned DstReg,
    845                                           unsigned SubIdx) {
    846   bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
    847   LiveInterval *DstInt = DstIsPhys ? 0 : &LIS->getInterval(DstReg);
    848 
    849   // Update LiveDebugVariables.
    850   LDV->renameRegister(SrcReg, DstReg, SubIdx);
    851 
    852   for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(SrcReg);
    853        MachineInstr *UseMI = I.skipInstruction();) {
    854     SmallVector<unsigned,8> Ops;
    855     bool Reads, Writes;
    856     tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
    857 
    858     // If SrcReg wasn't read, it may still be the case that DstReg is live-in
    859     // because SrcReg is a sub-register.
    860     if (DstInt && !Reads && SubIdx)
    861       Reads = DstInt->liveAt(LIS->getInstructionIndex(UseMI));
    862 
    863     // Replace SrcReg with DstReg in all UseMI operands.
    864     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
    865       MachineOperand &MO = UseMI->getOperand(Ops[i]);
    866 
    867       // Adjust <undef> flags in case of sub-register joins. We don't want to
    868       // turn a full def into a read-modify-write sub-register def and vice
    869       // versa.
    870       if (SubIdx && MO.isDef())
    871         MO.setIsUndef(!Reads);
    872 
    873       if (DstIsPhys)
    874         MO.substPhysReg(DstReg, *TRI);
    875       else
    876         MO.substVirtReg(DstReg, SubIdx, *TRI);
    877     }
    878 
    879     DEBUG({
    880         dbgs() << "\t\tupdated: ";
    881         if (!UseMI->isDebugValue())
    882           dbgs() << LIS->getInstructionIndex(UseMI) << "\t";
    883         dbgs() << *UseMI;
    884       });
    885   }
    886 }
    887 
    888 /// canJoinPhys - Return true if a copy involving a physreg should be joined.
    889 bool RegisterCoalescer::canJoinPhys(CoalescerPair &CP) {
    890   /// Always join simple intervals that are defined by a single copy from a
    891   /// reserved register. This doesn't increase register pressure, so it is
    892   /// always beneficial.
    893   if (!RegClassInfo.isReserved(CP.getDstReg())) {
    894     DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
    895     return false;
    896   }
    897 
    898   LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
    899   if (CP.isFlipped() && JoinVInt.containsOneValue())
    900     return true;
    901 
    902   DEBUG(dbgs() << "\tCannot join defs into reserved register.\n");
    903   return false;
    904 }
    905 
    906 /// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
    907 /// which are the src/dst of the copy instruction CopyMI.  This returns true
    908 /// if the copy was successfully coalesced away. If it is not currently
    909 /// possible to coalesce this interval, but it may be possible if other
    910 /// things get coalesced, then it returns true by reference in 'Again'.
    911 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
    912 
    913   Again = false;
    914   DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
    915 
    916   CoalescerPair CP(*TRI);
    917   if (!CP.setRegisters(CopyMI)) {
    918     DEBUG(dbgs() << "\tNot coalescable.\n");
    919     return false;
    920   }
    921 
    922   // Dead code elimination. This really should be handled by MachineDCE, but
    923   // sometimes dead copies slip through, and we can't generate invalid live
    924   // ranges.
    925   if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
    926     DEBUG(dbgs() << "\tCopy is dead.\n");
    927     DeadDefs.push_back(CopyMI);
    928     eliminateDeadDefs();
    929     return true;
    930   }
    931 
    932   // Eliminate undefs.
    933   if (!CP.isPhys() && eliminateUndefCopy(CopyMI, CP)) {
    934     DEBUG(dbgs() << "\tEliminated copy of <undef> value.\n");
    935     LIS->RemoveMachineInstrFromMaps(CopyMI);
    936     CopyMI->eraseFromParent();
    937     return false;  // Not coalescable.
    938   }
    939 
    940   // Coalesced copies are normally removed immediately, but transformations
    941   // like removeCopyByCommutingDef() can inadvertently create identity copies.
    942   // When that happens, just join the values and remove the copy.
    943   if (CP.getSrcReg() == CP.getDstReg()) {
    944     LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
    945     DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
    946     LiveRangeQuery LRQ(LI, LIS->getInstructionIndex(CopyMI));
    947     if (VNInfo *DefVNI = LRQ.valueDefined()) {
    948       VNInfo *ReadVNI = LRQ.valueIn();
    949       assert(ReadVNI && "No value before copy and no <undef> flag.");
    950       assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
    951       LI.MergeValueNumberInto(DefVNI, ReadVNI);
    952       DEBUG(dbgs() << "\tMerged values:          " << LI << '\n');
    953     }
    954     LIS->RemoveMachineInstrFromMaps(CopyMI);
    955     CopyMI->eraseFromParent();
    956     return true;
    957   }
    958 
    959   // Enforce policies.
    960   if (CP.isPhys()) {
    961     DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI)
    962                  << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx())
    963                  << '\n');
    964     if (!canJoinPhys(CP)) {
    965       // Before giving up coalescing, if definition of source is defined by
    966       // trivial computation, try rematerializing it.
    967       if (!CP.isFlipped() &&
    968           reMaterializeTrivialDef(LIS->getInterval(CP.getSrcReg()),
    969                                   CP.getDstReg(), CopyMI))
    970         return true;
    971       return false;
    972     }
    973   } else {
    974     DEBUG({
    975       dbgs() << "\tConsidering merging to " << CP.getNewRC()->getName()
    976              << " with ";
    977       if (CP.getDstIdx() && CP.getSrcIdx())
    978         dbgs() << PrintReg(CP.getDstReg()) << " in "
    979                << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
    980                << PrintReg(CP.getSrcReg()) << " in "
    981                << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
    982       else
    983         dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in "
    984                << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
    985     });
    986 
    987     // When possible, let DstReg be the larger interval.
    988     if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).ranges.size() >
    989                            LIS->getInterval(CP.getDstReg()).ranges.size())
    990       CP.flip();
    991   }
    992 
    993   // Okay, attempt to join these two intervals.  On failure, this returns false.
    994   // Otherwise, if one of the intervals being joined is a physreg, this method
    995   // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
    996   // been modified, so we can use this information below to update aliases.
    997   if (!joinIntervals(CP)) {
    998     // Coalescing failed.
    999 
   1000     // If definition of source is defined by trivial computation, try
   1001     // rematerializing it.
   1002     if (!CP.isFlipped() &&
   1003         reMaterializeTrivialDef(LIS->getInterval(CP.getSrcReg()),
   1004                                 CP.getDstReg(), CopyMI))
   1005       return true;
   1006 
   1007     // If we can eliminate the copy without merging the live ranges, do so now.
   1008     if (!CP.isPartial() && !CP.isPhys()) {
   1009       if (adjustCopiesBackFrom(CP, CopyMI) ||
   1010           removeCopyByCommutingDef(CP, CopyMI)) {
   1011         LIS->RemoveMachineInstrFromMaps(CopyMI);
   1012         CopyMI->eraseFromParent();
   1013         DEBUG(dbgs() << "\tTrivial!\n");
   1014         return true;
   1015       }
   1016     }
   1017 
   1018     // Otherwise, we are unable to join the intervals.
   1019     DEBUG(dbgs() << "\tInterference!\n");
   1020     Again = true;  // May be possible to coalesce later.
   1021     return false;
   1022   }
   1023 
   1024   // Coalescing to a virtual register that is of a sub-register class of the
   1025   // other. Make sure the resulting register is set to the right register class.
   1026   if (CP.isCrossClass()) {
   1027     ++numCrossRCs;
   1028     MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
   1029   }
   1030 
   1031   // Removing sub-register copies can ease the register class constraints.
   1032   // Make sure we attempt to inflate the register class of DstReg.
   1033   if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
   1034     InflateRegs.push_back(CP.getDstReg());
   1035 
   1036   // CopyMI has been erased by joinIntervals at this point. Remove it from
   1037   // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
   1038   // to the work list. This keeps ErasedInstrs from growing needlessly.
   1039   ErasedInstrs.erase(CopyMI);
   1040 
   1041   // Rewrite all SrcReg operands to DstReg.
   1042   // Also update DstReg operands to include DstIdx if it is set.
   1043   if (CP.getDstIdx())
   1044     updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
   1045   updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
   1046 
   1047   // SrcReg is guaranteed to be the register whose live interval that is
   1048   // being merged.
   1049   LIS->removeInterval(CP.getSrcReg());
   1050 
   1051   // Update regalloc hint.
   1052   TRI->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
   1053 
   1054   DEBUG({
   1055     dbgs() << "\tJoined. Result = " << PrintReg(CP.getDstReg(), TRI);
   1056     if (!CP.isPhys())
   1057       dbgs() << LIS->getInterval(CP.getDstReg());
   1058      dbgs() << '\n';
   1059   });
   1060 
   1061   ++numJoins;
   1062   return true;
   1063 }
   1064 
   1065 /// Attempt joining with a reserved physreg.
   1066 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
   1067   assert(CP.isPhys() && "Must be a physreg copy");
   1068   assert(RegClassInfo.isReserved(CP.getDstReg()) && "Not a reserved register");
   1069   LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
   1070   DEBUG(dbgs() << "\t\tRHS = " << PrintReg(CP.getSrcReg()) << ' ' << RHS
   1071                << '\n');
   1072 
   1073   assert(CP.isFlipped() && RHS.containsOneValue() &&
   1074          "Invalid join with reserved register");
   1075 
   1076   // Optimization for reserved registers like ESP. We can only merge with a
   1077   // reserved physreg if RHS has a single value that is a copy of CP.DstReg().
   1078   // The live range of the reserved register will look like a set of dead defs
   1079   // - we don't properly track the live range of reserved registers.
   1080 
   1081   // Deny any overlapping intervals.  This depends on all the reserved
   1082   // register live ranges to look like dead defs.
   1083   for (MCRegUnitIterator UI(CP.getDstReg(), TRI); UI.isValid(); ++UI)
   1084     if (RHS.overlaps(LIS->getRegUnit(*UI))) {
   1085       DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n');
   1086       return false;
   1087     }
   1088 
   1089   // Skip any value computations, we are not adding new values to the
   1090   // reserved register.  Also skip merging the live ranges, the reserved
   1091   // register live range doesn't need to be accurate as long as all the
   1092   // defs are there.
   1093 
   1094   // Delete the identity copy.
   1095   MachineInstr *CopyMI = MRI->getVRegDef(RHS.reg);
   1096   LIS->RemoveMachineInstrFromMaps(CopyMI);
   1097   CopyMI->eraseFromParent();
   1098 
   1099   // We don't track kills for reserved registers.
   1100   MRI->clearKillFlags(CP.getSrcReg());
   1101 
   1102   return true;
   1103 }
   1104 
   1105 /// ComputeUltimateVN - Assuming we are going to join two live intervals,
   1106 /// compute what the resultant value numbers for each value in the input two
   1107 /// ranges will be.  This is complicated by copies between the two which can
   1108 /// and will commonly cause multiple value numbers to be merged into one.
   1109 ///
   1110 /// VN is the value number that we're trying to resolve.  InstDefiningValue
   1111 /// keeps track of the new InstDefiningValue assignment for the result
   1112 /// LiveInterval.  ThisFromOther/OtherFromThis are sets that keep track of
   1113 /// whether a value in this or other is a copy from the opposite set.
   1114 /// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
   1115 /// already been assigned.
   1116 ///
   1117 /// ThisFromOther[x] - If x is defined as a copy from the other interval, this
   1118 /// contains the value number the copy is from.
   1119 ///
   1120 static unsigned ComputeUltimateVN(VNInfo *VNI,
   1121                                   SmallVector<VNInfo*, 16> &NewVNInfo,
   1122                                   DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
   1123                                   DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
   1124                                   SmallVector<int, 16> &ThisValNoAssignments,
   1125                                   SmallVector<int, 16> &OtherValNoAssignments) {
   1126   unsigned VN = VNI->id;
   1127 
   1128   // If the VN has already been computed, just return it.
   1129   if (ThisValNoAssignments[VN] >= 0)
   1130     return ThisValNoAssignments[VN];
   1131   assert(ThisValNoAssignments[VN] != -2 && "Cyclic value numbers");
   1132 
   1133   // If this val is not a copy from the other val, then it must be a new value
   1134   // number in the destination.
   1135   DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
   1136   if (I == ThisFromOther.end()) {
   1137     NewVNInfo.push_back(VNI);
   1138     return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
   1139   }
   1140   VNInfo *OtherValNo = I->second;
   1141 
   1142   // Otherwise, this *is* a copy from the RHS.  If the other side has already
   1143   // been computed, return it.
   1144   if (OtherValNoAssignments[OtherValNo->id] >= 0)
   1145     return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
   1146 
   1147   // Mark this value number as currently being computed, then ask what the
   1148   // ultimate value # of the other value is.
   1149   ThisValNoAssignments[VN] = -2;
   1150   unsigned UltimateVN =
   1151     ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
   1152                       OtherValNoAssignments, ThisValNoAssignments);
   1153   return ThisValNoAssignments[VN] = UltimateVN;
   1154 }
   1155 
   1156 
   1157 // Find out if we have something like
   1158 // A = X
   1159 // B = X
   1160 // if so, we can pretend this is actually
   1161 // A = X
   1162 // B = A
   1163 // which allows us to coalesce A and B.
   1164 // VNI is the definition of B. LR is the life range of A that includes
   1165 // the slot just before B. If we return true, we add "B = X" to DupCopies.
   1166 // This implies that A dominates B.
   1167 static bool RegistersDefinedFromSameValue(LiveIntervals &li,
   1168                                           const TargetRegisterInfo &tri,
   1169                                           CoalescerPair &CP,
   1170                                           VNInfo *VNI,
   1171                                           VNInfo *OtherVNI,
   1172                                      SmallVector<MachineInstr*, 8> &DupCopies) {
   1173   // FIXME: This is very conservative. For example, we don't handle
   1174   // physical registers.
   1175 
   1176   MachineInstr *MI = li.getInstructionFromIndex(VNI->def);
   1177 
   1178   if (!MI || CP.isPartial() || CP.isPhys())
   1179     return false;
   1180 
   1181   unsigned A = CP.getDstReg();
   1182   if (!TargetRegisterInfo::isVirtualRegister(A))
   1183     return false;
   1184 
   1185   unsigned B = CP.getSrcReg();
   1186   if (!TargetRegisterInfo::isVirtualRegister(B))
   1187     return false;
   1188 
   1189   MachineInstr *OtherMI = li.getInstructionFromIndex(OtherVNI->def);
   1190   if (!OtherMI)
   1191     return false;
   1192 
   1193   if (MI->isImplicitDef()) {
   1194     DupCopies.push_back(MI);
   1195     return true;
   1196   } else {
   1197     if (!MI->isFullCopy())
   1198       return false;
   1199     unsigned Src = MI->getOperand(1).getReg();
   1200     if (!TargetRegisterInfo::isVirtualRegister(Src))
   1201       return false;
   1202     if (!OtherMI->isFullCopy())
   1203       return false;
   1204     unsigned OtherSrc = OtherMI->getOperand(1).getReg();
   1205     if (!TargetRegisterInfo::isVirtualRegister(OtherSrc))
   1206       return false;
   1207 
   1208     if (Src != OtherSrc)
   1209       return false;
   1210 
   1211     // If the copies use two different value numbers of X, we cannot merge
   1212     // A and B.
   1213     LiveInterval &SrcInt = li.getInterval(Src);
   1214     // getVNInfoBefore returns NULL for undef copies. In this case, the
   1215     // optimization is still safe.
   1216     if (SrcInt.getVNInfoBefore(OtherVNI->def) !=
   1217         SrcInt.getVNInfoBefore(VNI->def))
   1218       return false;
   1219 
   1220     DupCopies.push_back(MI);
   1221     return true;
   1222   }
   1223 }
   1224 
   1225 /// joinIntervals - Attempt to join these two intervals.  On failure, this
   1226 /// returns false.
   1227 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
   1228   // Handle physreg joins separately.
   1229   if (CP.isPhys())
   1230     return joinReservedPhysReg(CP);
   1231 
   1232   LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
   1233   DEBUG(dbgs() << "\t\tRHS = " << PrintReg(CP.getSrcReg()) << ' ' << RHS
   1234                << '\n');
   1235 
   1236   // Compute the final value assignment, assuming that the live ranges can be
   1237   // coalesced.
   1238   SmallVector<int, 16> LHSValNoAssignments;
   1239   SmallVector<int, 16> RHSValNoAssignments;
   1240   DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
   1241   DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
   1242   SmallVector<VNInfo*, 16> NewVNInfo;
   1243 
   1244   SmallVector<MachineInstr*, 8> DupCopies;
   1245   SmallVector<MachineInstr*, 8> DeadCopies;
   1246 
   1247   LiveInterval &LHS = LIS->getOrCreateInterval(CP.getDstReg());
   1248   DEBUG(dbgs() << "\t\tLHS = " << PrintReg(CP.getDstReg(), TRI) << ' ' << LHS
   1249                << '\n');
   1250 
   1251   // Loop over the value numbers of the LHS, seeing if any are defined from
   1252   // the RHS.
   1253   for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
   1254        i != e; ++i) {
   1255     VNInfo *VNI = *i;
   1256     if (VNI->isUnused() || VNI->isPHIDef())
   1257       continue;
   1258     MachineInstr *MI = LIS->getInstructionFromIndex(VNI->def);
   1259     assert(MI && "Missing def");
   1260     if (!MI->isCopyLike() && !MI->isImplicitDef()) // Src not defined by a copy?
   1261       continue;
   1262 
   1263     // Figure out the value # from the RHS.
   1264     VNInfo *OtherVNI = RHS.getVNInfoBefore(VNI->def);
   1265     // The copy could be to an aliased physreg.
   1266     if (!OtherVNI)
   1267       continue;
   1268 
   1269     // DstReg is known to be a register in the LHS interval.  If the src is
   1270     // from the RHS interval, we can use its value #.
   1271     if (CP.isCoalescable(MI))
   1272       DeadCopies.push_back(MI);
   1273     else if (!RegistersDefinedFromSameValue(*LIS, *TRI, CP, VNI, OtherVNI,
   1274                                             DupCopies))
   1275       continue;
   1276 
   1277     LHSValsDefinedFromRHS[VNI] = OtherVNI;
   1278   }
   1279 
   1280   // Loop over the value numbers of the RHS, seeing if any are defined from
   1281   // the LHS.
   1282   for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
   1283        i != e; ++i) {
   1284     VNInfo *VNI = *i;
   1285     if (VNI->isUnused() || VNI->isPHIDef())
   1286       continue;
   1287     MachineInstr *MI = LIS->getInstructionFromIndex(VNI->def);
   1288     assert(MI && "Missing def");
   1289     if (!MI->isCopyLike() && !MI->isImplicitDef()) // Src not defined by a copy?
   1290       continue;
   1291 
   1292     // Figure out the value # from the LHS.
   1293     VNInfo *OtherVNI = LHS.getVNInfoBefore(VNI->def);
   1294     // The copy could be to an aliased physreg.
   1295     if (!OtherVNI)
   1296       continue;
   1297 
   1298     // DstReg is known to be a register in the RHS interval.  If the src is
   1299     // from the LHS interval, we can use its value #.
   1300     if (CP.isCoalescable(MI))
   1301       DeadCopies.push_back(MI);
   1302     else if (!RegistersDefinedFromSameValue(*LIS, *TRI, CP, VNI, OtherVNI,
   1303                                             DupCopies))
   1304         continue;
   1305 
   1306     RHSValsDefinedFromLHS[VNI] = OtherVNI;
   1307   }
   1308 
   1309   LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
   1310   RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
   1311   NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
   1312 
   1313   for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
   1314        i != e; ++i) {
   1315     VNInfo *VNI = *i;
   1316     unsigned VN = VNI->id;
   1317     if (LHSValNoAssignments[VN] >= 0 || VNI->isUnused())
   1318       continue;
   1319     ComputeUltimateVN(VNI, NewVNInfo,
   1320                       LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
   1321                       LHSValNoAssignments, RHSValNoAssignments);
   1322   }
   1323   for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
   1324        i != e; ++i) {
   1325     VNInfo *VNI = *i;
   1326     unsigned VN = VNI->id;
   1327     if (RHSValNoAssignments[VN] >= 0 || VNI->isUnused())
   1328       continue;
   1329     // If this value number isn't a copy from the LHS, it's a new number.
   1330     if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
   1331       NewVNInfo.push_back(VNI);
   1332       RHSValNoAssignments[VN] = NewVNInfo.size()-1;
   1333       continue;
   1334     }
   1335 
   1336     ComputeUltimateVN(VNI, NewVNInfo,
   1337                       RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
   1338                       RHSValNoAssignments, LHSValNoAssignments);
   1339   }
   1340 
   1341   // Armed with the mappings of LHS/RHS values to ultimate values, walk the
   1342   // interval lists to see if these intervals are coalescable.
   1343   LiveInterval::const_iterator I = LHS.begin();
   1344   LiveInterval::const_iterator IE = LHS.end();
   1345   LiveInterval::const_iterator J = RHS.begin();
   1346   LiveInterval::const_iterator JE = RHS.end();
   1347 
   1348   // Collect interval end points that will no longer be kills.
   1349   SmallVector<MachineInstr*, 8> LHSOldKills;
   1350   SmallVector<MachineInstr*, 8> RHSOldKills;
   1351 
   1352   // Skip ahead until the first place of potential sharing.
   1353   if (I != IE && J != JE) {
   1354     if (I->start < J->start) {
   1355       I = std::upper_bound(I, IE, J->start);
   1356       if (I != LHS.begin()) --I;
   1357     } else if (J->start < I->start) {
   1358       J = std::upper_bound(J, JE, I->start);
   1359       if (J != RHS.begin()) --J;
   1360     }
   1361   }
   1362 
   1363   while (I != IE && J != JE) {
   1364     // Determine if these two live ranges overlap.
   1365     // If so, check value # info to determine if they are really different.
   1366     if (I->end > J->start && J->end > I->start) {
   1367       // If the live range overlap will map to the same value number in the
   1368       // result liverange, we can still coalesce them.  If not, we can't.
   1369       if (LHSValNoAssignments[I->valno->id] !=
   1370           RHSValNoAssignments[J->valno->id])
   1371         return false;
   1372 
   1373       // Extended live ranges should no longer be killed.
   1374       if (!I->end.isBlock() && I->end < J->end)
   1375         if (MachineInstr *MI = LIS->getInstructionFromIndex(I->end))
   1376           LHSOldKills.push_back(MI);
   1377       if (!J->end.isBlock() && J->end < I->end)
   1378         if (MachineInstr *MI = LIS->getInstructionFromIndex(J->end))
   1379           RHSOldKills.push_back(MI);
   1380     }
   1381 
   1382     if (I->end < J->end)
   1383       ++I;
   1384     else
   1385       ++J;
   1386   }
   1387 
   1388   // Clear kill flags where live ranges are extended.
   1389   while (!LHSOldKills.empty())
   1390     LHSOldKills.pop_back_val()->clearRegisterKills(LHS.reg, TRI);
   1391   while (!RHSOldKills.empty())
   1392     RHSOldKills.pop_back_val()->clearRegisterKills(RHS.reg, TRI);
   1393 
   1394   if (LHSValNoAssignments.empty())
   1395     LHSValNoAssignments.push_back(-1);
   1396   if (RHSValNoAssignments.empty())
   1397     RHSValNoAssignments.push_back(-1);
   1398 
   1399   // Now erase all the redundant copies.
   1400   for (unsigned i = 0, e = DeadCopies.size(); i != e; ++i) {
   1401     MachineInstr *MI = DeadCopies[i];
   1402     if (!ErasedInstrs.insert(MI))
   1403       continue;
   1404     DEBUG(dbgs() << "\t\terased:\t" << LIS->getInstructionIndex(MI)
   1405                  << '\t' << *MI);
   1406     LIS->RemoveMachineInstrFromMaps(MI);
   1407     MI->eraseFromParent();
   1408   }
   1409 
   1410   SmallVector<unsigned, 8> SourceRegisters;
   1411   for (SmallVector<MachineInstr*, 8>::iterator I = DupCopies.begin(),
   1412          E = DupCopies.end(); I != E; ++I) {
   1413     MachineInstr *MI = *I;
   1414     if (!ErasedInstrs.insert(MI))
   1415       continue;
   1416 
   1417     // If MI is a copy, then we have pretended that the assignment to B in
   1418     // A = X
   1419     // B = X
   1420     // was actually a copy from A. Now that we decided to coalesce A and B,
   1421     // transform the code into
   1422     // A = X
   1423     // In the case of the implicit_def, we just have to remove it.
   1424     if (!MI->isImplicitDef()) {
   1425       unsigned Src = MI->getOperand(1).getReg();
   1426       SourceRegisters.push_back(Src);
   1427     }
   1428     LIS->RemoveMachineInstrFromMaps(MI);
   1429     MI->eraseFromParent();
   1430   }
   1431 
   1432   // If B = X was the last use of X in a liverange, we have to shrink it now
   1433   // that B = X is gone.
   1434   for (SmallVector<unsigned, 8>::iterator I = SourceRegisters.begin(),
   1435          E = SourceRegisters.end(); I != E; ++I) {
   1436     LIS->shrinkToUses(&LIS->getInterval(*I));
   1437   }
   1438 
   1439   // If we get here, we know that we can coalesce the live ranges.  Ask the
   1440   // intervals to coalesce themselves now.
   1441   LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo,
   1442            MRI);
   1443   return true;
   1444 }
   1445 
   1446 namespace {
   1447   // DepthMBBCompare - Comparison predicate that sort first based on the loop
   1448   // depth of the basic block (the unsigned), and then on the MBB number.
   1449   struct DepthMBBCompare {
   1450     typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
   1451     bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
   1452       // Deeper loops first
   1453       if (LHS.first != RHS.first)
   1454         return LHS.first > RHS.first;
   1455 
   1456       // Prefer blocks that are more connected in the CFG. This takes care of
   1457       // the most difficult copies first while intervals are short.
   1458       unsigned cl = LHS.second->pred_size() + LHS.second->succ_size();
   1459       unsigned cr = RHS.second->pred_size() + RHS.second->succ_size();
   1460       if (cl != cr)
   1461         return cl > cr;
   1462 
   1463       // As a last resort, sort by block number.
   1464       return LHS.second->getNumber() < RHS.second->getNumber();
   1465     }
   1466   };
   1467 }
   1468 
   1469 // Try joining WorkList copies starting from index From.
   1470 // Null out any successful joins.
   1471 bool RegisterCoalescer::copyCoalesceWorkList(unsigned From) {
   1472   assert(From <= WorkList.size() && "Out of range");
   1473   bool Progress = false;
   1474   for (unsigned i = From, e = WorkList.size(); i != e; ++i) {
   1475     if (!WorkList[i])
   1476       continue;
   1477     // Skip instruction pointers that have already been erased, for example by
   1478     // dead code elimination.
   1479     if (ErasedInstrs.erase(WorkList[i])) {
   1480       WorkList[i] = 0;
   1481       continue;
   1482     }
   1483     bool Again = false;
   1484     bool Success = joinCopy(WorkList[i], Again);
   1485     Progress |= Success;
   1486     if (Success || !Again)
   1487       WorkList[i] = 0;
   1488   }
   1489   return Progress;
   1490 }
   1491 
   1492 void
   1493 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
   1494   DEBUG(dbgs() << MBB->getName() << ":\n");
   1495 
   1496   // Collect all copy-like instructions in MBB. Don't start coalescing anything
   1497   // yet, it might invalidate the iterator.
   1498   const unsigned PrevSize = WorkList.size();
   1499   for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
   1500        MII != E; ++MII)
   1501     if (MII->isCopyLike())
   1502       WorkList.push_back(MII);
   1503 
   1504   // Try coalescing the collected copies immediately, and remove the nulls.
   1505   // This prevents the WorkList from getting too large since most copies are
   1506   // joinable on the first attempt.
   1507   if (copyCoalesceWorkList(PrevSize))
   1508     WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
   1509                                (MachineInstr*)0), WorkList.end());
   1510 }
   1511 
   1512 void RegisterCoalescer::joinAllIntervals() {
   1513   DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
   1514   assert(WorkList.empty() && "Old data still around.");
   1515 
   1516   if (Loops->empty()) {
   1517     // If there are no loops in the function, join intervals in function order.
   1518     for (MachineFunction::iterator I = MF->begin(), E = MF->end();
   1519          I != E; ++I)
   1520       copyCoalesceInMBB(I);
   1521   } else {
   1522     // Otherwise, join intervals in inner loops before other intervals.
   1523     // Unfortunately we can't just iterate over loop hierarchy here because
   1524     // there may be more MBB's than BB's.  Collect MBB's for sorting.
   1525 
   1526     // Join intervals in the function prolog first. We want to join physical
   1527     // registers with virtual registers before the intervals got too long.
   1528     std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
   1529     for (MachineFunction::iterator I = MF->begin(), E = MF->end();I != E;++I){
   1530       MachineBasicBlock *MBB = I;
   1531       MBBs.push_back(std::make_pair(Loops->getLoopDepth(MBB), I));
   1532     }
   1533 
   1534     // Sort by loop depth.
   1535     std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
   1536 
   1537     // Finally, join intervals in loop nest order.
   1538     for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
   1539       copyCoalesceInMBB(MBBs[i].second);
   1540   }
   1541 
   1542   // Joining intervals can allow other intervals to be joined.  Iteratively join
   1543   // until we make no progress.
   1544   while (copyCoalesceWorkList())
   1545     /* empty */ ;
   1546 }
   1547 
   1548 void RegisterCoalescer::releaseMemory() {
   1549   ErasedInstrs.clear();
   1550   WorkList.clear();
   1551   DeadDefs.clear();
   1552   InflateRegs.clear();
   1553 }
   1554 
   1555 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
   1556   MF = &fn;
   1557   MRI = &fn.getRegInfo();
   1558   TM = &fn.getTarget();
   1559   TRI = TM->getRegisterInfo();
   1560   TII = TM->getInstrInfo();
   1561   LIS = &getAnalysis<LiveIntervals>();
   1562   LDV = &getAnalysis<LiveDebugVariables>();
   1563   AA = &getAnalysis<AliasAnalysis>();
   1564   Loops = &getAnalysis<MachineLoopInfo>();
   1565 
   1566   DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
   1567                << "********** Function: " << MF->getName() << '\n');
   1568 
   1569   if (VerifyCoalescing)
   1570     MF->verify(this, "Before register coalescing");
   1571 
   1572   RegClassInfo.runOnMachineFunction(fn);
   1573 
   1574   // Join (coalesce) intervals if requested.
   1575   if (EnableJoining)
   1576     joinAllIntervals();
   1577 
   1578   // After deleting a lot of copies, register classes may be less constrained.
   1579   // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
   1580   // DPR inflation.
   1581   array_pod_sort(InflateRegs.begin(), InflateRegs.end());
   1582   InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
   1583                     InflateRegs.end());
   1584   DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n");
   1585   for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
   1586     unsigned Reg = InflateRegs[i];
   1587     if (MRI->reg_nodbg_empty(Reg))
   1588       continue;
   1589     if (MRI->recomputeRegClass(Reg, *TM)) {
   1590       DEBUG(dbgs() << PrintReg(Reg) << " inflated to "
   1591                    << MRI->getRegClass(Reg)->getName() << '\n');
   1592       ++NumInflated;
   1593     }
   1594   }
   1595 
   1596   DEBUG(dump());
   1597   DEBUG(LDV->dump());
   1598   if (VerifyCoalescing)
   1599     MF->verify(this, "After register coalescing");
   1600   return true;
   1601 }
   1602 
   1603 /// print - Implement the dump method.
   1604 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
   1605    LIS->print(O, m);
   1606 }
   1607