Home | History | Annotate | Download | only in Scalar
      1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This transformation analyzes and transforms the induction variables (and
     11 // computations derived from them) into forms suitable for efficient execution
     12 // on the target.
     13 //
     14 // This pass performs a strength reduction on array references inside loops that
     15 // have as one or more of their components the loop induction variable, it
     16 // rewrites expressions to take advantage of scaled-index addressing modes
     17 // available on the target, and it performs a variety of other optimizations
     18 // related to loop induction variables.
     19 //
     20 // Terminology note: this code has a lot of handling for "post-increment" or
     21 // "post-inc" users. This is not talking about post-increment addressing modes;
     22 // it is instead talking about code like this:
     23 //
     24 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
     25 //   ...
     26 //   %i.next = add %i, 1
     27 //   %c = icmp eq %i.next, %n
     28 //
     29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
     30 // it's useful to think about these as the same register, with some uses using
     31 // the value of the register before the add and some using // it after. In this
     32 // example, the icmp is a post-increment user, since it uses %i.next, which is
     33 // the value of the induction variable after the increment. The other common
     34 // case of post-increment users is users outside the loop.
     35 //
     36 // TODO: More sophistication in the way Formulae are generated and filtered.
     37 //
     38 // TODO: Handle multiple loops at a time.
     39 //
     40 // TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
     41 //       instead of a GlobalValue?
     42 //
     43 // TODO: When truncation is free, truncate ICmp users' operands to make it a
     44 //       smaller encoding (on x86 at least).
     45 //
     46 // TODO: When a negated register is used by an add (such as in a list of
     47 //       multiple base registers, or as the increment expression in an addrec),
     48 //       we may not actually need both reg and (-1 * reg) in registers; the
     49 //       negation can be implemented by using a sub instead of an add. The
     50 //       lack of support for taking this into consideration when making
     51 //       register pressure decisions is partly worked around by the "Special"
     52 //       use kind.
     53 //
     54 //===----------------------------------------------------------------------===//
     55 
     56 #define DEBUG_TYPE "loop-reduce"
     57 #include "llvm/Transforms/Scalar.h"
     58 #include "llvm/Constants.h"
     59 #include "llvm/Instructions.h"
     60 #include "llvm/IntrinsicInst.h"
     61 #include "llvm/DerivedTypes.h"
     62 #include "llvm/Analysis/IVUsers.h"
     63 #include "llvm/Analysis/Dominators.h"
     64 #include "llvm/Analysis/LoopPass.h"
     65 #include "llvm/Analysis/ScalarEvolutionExpander.h"
     66 #include "llvm/Assembly/Writer.h"
     67 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     68 #include "llvm/Transforms/Utils/Local.h"
     69 #include "llvm/ADT/SmallBitVector.h"
     70 #include "llvm/ADT/SetVector.h"
     71 #include "llvm/ADT/DenseSet.h"
     72 #include "llvm/Support/Debug.h"
     73 #include "llvm/Support/CommandLine.h"
     74 #include "llvm/Support/ValueHandle.h"
     75 #include "llvm/Support/raw_ostream.h"
     76 #include "llvm/Target/TargetLowering.h"
     77 #include <algorithm>
     78 using namespace llvm;
     79 
     80 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for
     81 /// bail out. This threshold is far beyond the number of users that LSR can
     82 /// conceivably solve, so it should not affect generated code, but catches the
     83 /// worst cases before LSR burns too much compile time and stack space.
     84 static const unsigned MaxIVUsers = 200;
     85 
     86 // Temporary flag to cleanup congruent phis after LSR phi expansion.
     87 // It's currently disabled until we can determine whether it's truly useful or
     88 // not. The flag should be removed after the v3.0 release.
     89 // This is now needed for ivchains.
     90 static cl::opt<bool> EnablePhiElim(
     91   "enable-lsr-phielim", cl::Hidden, cl::init(true),
     92   cl::desc("Enable LSR phi elimination"));
     93 
     94 #ifndef NDEBUG
     95 // Stress test IV chain generation.
     96 static cl::opt<bool> StressIVChain(
     97   "stress-ivchain", cl::Hidden, cl::init(false),
     98   cl::desc("Stress test LSR IV chains"));
     99 #else
    100 static bool StressIVChain = false;
    101 #endif
    102 
    103 namespace {
    104 
    105 /// RegSortData - This class holds data which is used to order reuse candidates.
    106 class RegSortData {
    107 public:
    108   /// UsedByIndices - This represents the set of LSRUse indices which reference
    109   /// a particular register.
    110   SmallBitVector UsedByIndices;
    111 
    112   RegSortData() {}
    113 
    114   void print(raw_ostream &OS) const;
    115   void dump() const;
    116 };
    117 
    118 }
    119 
    120 void RegSortData::print(raw_ostream &OS) const {
    121   OS << "[NumUses=" << UsedByIndices.count() << ']';
    122 }
    123 
    124 #ifndef NDEBUG
    125 void RegSortData::dump() const {
    126   print(errs()); errs() << '\n';
    127 }
    128 #endif
    129 
    130 namespace {
    131 
    132 /// RegUseTracker - Map register candidates to information about how they are
    133 /// used.
    134 class RegUseTracker {
    135   typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
    136 
    137   RegUsesTy RegUsesMap;
    138   SmallVector<const SCEV *, 16> RegSequence;
    139 
    140 public:
    141   void CountRegister(const SCEV *Reg, size_t LUIdx);
    142   void DropRegister(const SCEV *Reg, size_t LUIdx);
    143   void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx);
    144 
    145   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
    146 
    147   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
    148 
    149   void clear();
    150 
    151   typedef SmallVectorImpl<const SCEV *>::iterator iterator;
    152   typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
    153   iterator begin() { return RegSequence.begin(); }
    154   iterator end()   { return RegSequence.end(); }
    155   const_iterator begin() const { return RegSequence.begin(); }
    156   const_iterator end() const   { return RegSequence.end(); }
    157 };
    158 
    159 }
    160 
    161 void
    162 RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
    163   std::pair<RegUsesTy::iterator, bool> Pair =
    164     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
    165   RegSortData &RSD = Pair.first->second;
    166   if (Pair.second)
    167     RegSequence.push_back(Reg);
    168   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
    169   RSD.UsedByIndices.set(LUIdx);
    170 }
    171 
    172 void
    173 RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
    174   RegUsesTy::iterator It = RegUsesMap.find(Reg);
    175   assert(It != RegUsesMap.end());
    176   RegSortData &RSD = It->second;
    177   assert(RSD.UsedByIndices.size() > LUIdx);
    178   RSD.UsedByIndices.reset(LUIdx);
    179 }
    180 
    181 void
    182 RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
    183   assert(LUIdx <= LastLUIdx);
    184 
    185   // Update RegUses. The data structure is not optimized for this purpose;
    186   // we must iterate through it and update each of the bit vectors.
    187   for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
    188        I != E; ++I) {
    189     SmallBitVector &UsedByIndices = I->second.UsedByIndices;
    190     if (LUIdx < UsedByIndices.size())
    191       UsedByIndices[LUIdx] =
    192         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0;
    193     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
    194   }
    195 }
    196 
    197 bool
    198 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
    199   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
    200   if (I == RegUsesMap.end())
    201     return false;
    202   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
    203   int i = UsedByIndices.find_first();
    204   if (i == -1) return false;
    205   if ((size_t)i != LUIdx) return true;
    206   return UsedByIndices.find_next(i) != -1;
    207 }
    208 
    209 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
    210   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
    211   assert(I != RegUsesMap.end() && "Unknown register!");
    212   return I->second.UsedByIndices;
    213 }
    214 
    215 void RegUseTracker::clear() {
    216   RegUsesMap.clear();
    217   RegSequence.clear();
    218 }
    219 
    220 namespace {
    221 
    222 /// Formula - This class holds information that describes a formula for
    223 /// computing satisfying a use. It may include broken-out immediates and scaled
    224 /// registers.
    225 struct Formula {
    226   /// AM - This is used to represent complex addressing, as well as other kinds
    227   /// of interesting uses.
    228   TargetLowering::AddrMode AM;
    229 
    230   /// BaseRegs - The list of "base" registers for this use. When this is
    231   /// non-empty, AM.HasBaseReg should be set to true.
    232   SmallVector<const SCEV *, 2> BaseRegs;
    233 
    234   /// ScaledReg - The 'scaled' register for this use. This should be non-null
    235   /// when AM.Scale is not zero.
    236   const SCEV *ScaledReg;
    237 
    238   /// UnfoldedOffset - An additional constant offset which added near the
    239   /// use. This requires a temporary register, but the offset itself can
    240   /// live in an add immediate field rather than a register.
    241   int64_t UnfoldedOffset;
    242 
    243   Formula() : ScaledReg(0), UnfoldedOffset(0) {}
    244 
    245   void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
    246 
    247   unsigned getNumRegs() const;
    248   Type *getType() const;
    249 
    250   void DeleteBaseReg(const SCEV *&S);
    251 
    252   bool referencesReg(const SCEV *S) const;
    253   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
    254                                   const RegUseTracker &RegUses) const;
    255 
    256   void print(raw_ostream &OS) const;
    257   void dump() const;
    258 };
    259 
    260 }
    261 
    262 /// DoInitialMatch - Recursion helper for InitialMatch.
    263 static void DoInitialMatch(const SCEV *S, Loop *L,
    264                            SmallVectorImpl<const SCEV *> &Good,
    265                            SmallVectorImpl<const SCEV *> &Bad,
    266                            ScalarEvolution &SE) {
    267   // Collect expressions which properly dominate the loop header.
    268   if (SE.properlyDominates(S, L->getHeader())) {
    269     Good.push_back(S);
    270     return;
    271   }
    272 
    273   // Look at add operands.
    274   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    275     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
    276          I != E; ++I)
    277       DoInitialMatch(*I, L, Good, Bad, SE);
    278     return;
    279   }
    280 
    281   // Look at addrec operands.
    282   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
    283     if (!AR->getStart()->isZero()) {
    284       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
    285       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
    286                                       AR->getStepRecurrence(SE),
    287                                       // FIXME: AR->getNoWrapFlags()
    288                                       AR->getLoop(), SCEV::FlagAnyWrap),
    289                      L, Good, Bad, SE);
    290       return;
    291     }
    292 
    293   // Handle a multiplication by -1 (negation) if it didn't fold.
    294   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
    295     if (Mul->getOperand(0)->isAllOnesValue()) {
    296       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
    297       const SCEV *NewMul = SE.getMulExpr(Ops);
    298 
    299       SmallVector<const SCEV *, 4> MyGood;
    300       SmallVector<const SCEV *, 4> MyBad;
    301       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
    302       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
    303         SE.getEffectiveSCEVType(NewMul->getType())));
    304       for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
    305            E = MyGood.end(); I != E; ++I)
    306         Good.push_back(SE.getMulExpr(NegOne, *I));
    307       for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
    308            E = MyBad.end(); I != E; ++I)
    309         Bad.push_back(SE.getMulExpr(NegOne, *I));
    310       return;
    311     }
    312 
    313   // Ok, we can't do anything interesting. Just stuff the whole thing into a
    314   // register and hope for the best.
    315   Bad.push_back(S);
    316 }
    317 
    318 /// InitialMatch - Incorporate loop-variant parts of S into this Formula,
    319 /// attempting to keep all loop-invariant and loop-computable values in a
    320 /// single base register.
    321 void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
    322   SmallVector<const SCEV *, 4> Good;
    323   SmallVector<const SCEV *, 4> Bad;
    324   DoInitialMatch(S, L, Good, Bad, SE);
    325   if (!Good.empty()) {
    326     const SCEV *Sum = SE.getAddExpr(Good);
    327     if (!Sum->isZero())
    328       BaseRegs.push_back(Sum);
    329     AM.HasBaseReg = true;
    330   }
    331   if (!Bad.empty()) {
    332     const SCEV *Sum = SE.getAddExpr(Bad);
    333     if (!Sum->isZero())
    334       BaseRegs.push_back(Sum);
    335     AM.HasBaseReg = true;
    336   }
    337 }
    338 
    339 /// getNumRegs - Return the total number of register operands used by this
    340 /// formula. This does not include register uses implied by non-constant
    341 /// addrec strides.
    342 unsigned Formula::getNumRegs() const {
    343   return !!ScaledReg + BaseRegs.size();
    344 }
    345 
    346 /// getType - Return the type of this formula, if it has one, or null
    347 /// otherwise. This type is meaningless except for the bit size.
    348 Type *Formula::getType() const {
    349   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
    350          ScaledReg ? ScaledReg->getType() :
    351          AM.BaseGV ? AM.BaseGV->getType() :
    352          0;
    353 }
    354 
    355 /// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
    356 void Formula::DeleteBaseReg(const SCEV *&S) {
    357   if (&S != &BaseRegs.back())
    358     std::swap(S, BaseRegs.back());
    359   BaseRegs.pop_back();
    360 }
    361 
    362 /// referencesReg - Test if this formula references the given register.
    363 bool Formula::referencesReg(const SCEV *S) const {
    364   return S == ScaledReg ||
    365          std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
    366 }
    367 
    368 /// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
    369 /// which are used by uses other than the use with the given index.
    370 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
    371                                          const RegUseTracker &RegUses) const {
    372   if (ScaledReg)
    373     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
    374       return true;
    375   for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
    376        E = BaseRegs.end(); I != E; ++I)
    377     if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
    378       return true;
    379   return false;
    380 }
    381 
    382 void Formula::print(raw_ostream &OS) const {
    383   bool First = true;
    384   if (AM.BaseGV) {
    385     if (!First) OS << " + "; else First = false;
    386     WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
    387   }
    388   if (AM.BaseOffs != 0) {
    389     if (!First) OS << " + "; else First = false;
    390     OS << AM.BaseOffs;
    391   }
    392   for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
    393        E = BaseRegs.end(); I != E; ++I) {
    394     if (!First) OS << " + "; else First = false;
    395     OS << "reg(" << **I << ')';
    396   }
    397   if (AM.HasBaseReg && BaseRegs.empty()) {
    398     if (!First) OS << " + "; else First = false;
    399     OS << "**error: HasBaseReg**";
    400   } else if (!AM.HasBaseReg && !BaseRegs.empty()) {
    401     if (!First) OS << " + "; else First = false;
    402     OS << "**error: !HasBaseReg**";
    403   }
    404   if (AM.Scale != 0) {
    405     if (!First) OS << " + "; else First = false;
    406     OS << AM.Scale << "*reg(";
    407     if (ScaledReg)
    408       OS << *ScaledReg;
    409     else
    410       OS << "<unknown>";
    411     OS << ')';
    412   }
    413   if (UnfoldedOffset != 0) {
    414     if (!First) OS << " + "; else First = false;
    415     OS << "imm(" << UnfoldedOffset << ')';
    416   }
    417 }
    418 
    419 #ifndef NDEBUG
    420 void Formula::dump() const {
    421   print(errs()); errs() << '\n';
    422 }
    423 #endif
    424 
    425 /// isAddRecSExtable - Return true if the given addrec can be sign-extended
    426 /// without changing its value.
    427 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
    428   Type *WideTy =
    429     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
    430   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
    431 }
    432 
    433 /// isAddSExtable - Return true if the given add can be sign-extended
    434 /// without changing its value.
    435 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
    436   Type *WideTy =
    437     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
    438   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
    439 }
    440 
    441 /// isMulSExtable - Return true if the given mul can be sign-extended
    442 /// without changing its value.
    443 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
    444   Type *WideTy =
    445     IntegerType::get(SE.getContext(),
    446                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
    447   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
    448 }
    449 
    450 /// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
    451 /// and if the remainder is known to be zero,  or null otherwise. If
    452 /// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
    453 /// to Y, ignoring that the multiplication may overflow, which is useful when
    454 /// the result will be used in a context where the most significant bits are
    455 /// ignored.
    456 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
    457                                 ScalarEvolution &SE,
    458                                 bool IgnoreSignificantBits = false) {
    459   // Handle the trivial case, which works for any SCEV type.
    460   if (LHS == RHS)
    461     return SE.getConstant(LHS->getType(), 1);
    462 
    463   // Handle a few RHS special cases.
    464   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
    465   if (RC) {
    466     const APInt &RA = RC->getValue()->getValue();
    467     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
    468     // some folding.
    469     if (RA.isAllOnesValue())
    470       return SE.getMulExpr(LHS, RC);
    471     // Handle x /s 1 as x.
    472     if (RA == 1)
    473       return LHS;
    474   }
    475 
    476   // Check for a division of a constant by a constant.
    477   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
    478     if (!RC)
    479       return 0;
    480     const APInt &LA = C->getValue()->getValue();
    481     const APInt &RA = RC->getValue()->getValue();
    482     if (LA.srem(RA) != 0)
    483       return 0;
    484     return SE.getConstant(LA.sdiv(RA));
    485   }
    486 
    487   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
    488   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
    489     if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
    490       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
    491                                       IgnoreSignificantBits);
    492       if (!Step) return 0;
    493       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
    494                                        IgnoreSignificantBits);
    495       if (!Start) return 0;
    496       // FlagNW is independent of the start value, step direction, and is
    497       // preserved with smaller magnitude steps.
    498       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
    499       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
    500     }
    501     return 0;
    502   }
    503 
    504   // Distribute the sdiv over add operands, if the add doesn't overflow.
    505   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
    506     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
    507       SmallVector<const SCEV *, 8> Ops;
    508       for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
    509            I != E; ++I) {
    510         const SCEV *Op = getExactSDiv(*I, RHS, SE,
    511                                       IgnoreSignificantBits);
    512         if (!Op) return 0;
    513         Ops.push_back(Op);
    514       }
    515       return SE.getAddExpr(Ops);
    516     }
    517     return 0;
    518   }
    519 
    520   // Check for a multiply operand that we can pull RHS out of.
    521   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
    522     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
    523       SmallVector<const SCEV *, 4> Ops;
    524       bool Found = false;
    525       for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
    526            I != E; ++I) {
    527         const SCEV *S = *I;
    528         if (!Found)
    529           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
    530                                            IgnoreSignificantBits)) {
    531             S = Q;
    532             Found = true;
    533           }
    534         Ops.push_back(S);
    535       }
    536       return Found ? SE.getMulExpr(Ops) : 0;
    537     }
    538     return 0;
    539   }
    540 
    541   // Otherwise we don't know.
    542   return 0;
    543 }
    544 
    545 /// ExtractImmediate - If S involves the addition of a constant integer value,
    546 /// return that integer value, and mutate S to point to a new SCEV with that
    547 /// value excluded.
    548 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
    549   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
    550     if (C->getValue()->getValue().getMinSignedBits() <= 64) {
    551       S = SE.getConstant(C->getType(), 0);
    552       return C->getValue()->getSExtValue();
    553     }
    554   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    555     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
    556     int64_t Result = ExtractImmediate(NewOps.front(), SE);
    557     if (Result != 0)
    558       S = SE.getAddExpr(NewOps);
    559     return Result;
    560   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
    561     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
    562     int64_t Result = ExtractImmediate(NewOps.front(), SE);
    563     if (Result != 0)
    564       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
    565                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
    566                            SCEV::FlagAnyWrap);
    567     return Result;
    568   }
    569   return 0;
    570 }
    571 
    572 /// ExtractSymbol - If S involves the addition of a GlobalValue address,
    573 /// return that symbol, and mutate S to point to a new SCEV with that
    574 /// value excluded.
    575 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
    576   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
    577     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
    578       S = SE.getConstant(GV->getType(), 0);
    579       return GV;
    580     }
    581   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    582     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
    583     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
    584     if (Result)
    585       S = SE.getAddExpr(NewOps);
    586     return Result;
    587   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
    588     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
    589     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
    590     if (Result)
    591       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
    592                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
    593                            SCEV::FlagAnyWrap);
    594     return Result;
    595   }
    596   return 0;
    597 }
    598 
    599 /// isAddressUse - Returns true if the specified instruction is using the
    600 /// specified value as an address.
    601 static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
    602   bool isAddress = isa<LoadInst>(Inst);
    603   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    604     if (SI->getOperand(1) == OperandVal)
    605       isAddress = true;
    606   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    607     // Addressing modes can also be folded into prefetches and a variety
    608     // of intrinsics.
    609     switch (II->getIntrinsicID()) {
    610       default: break;
    611       case Intrinsic::prefetch:
    612       case Intrinsic::x86_sse_storeu_ps:
    613       case Intrinsic::x86_sse2_storeu_pd:
    614       case Intrinsic::x86_sse2_storeu_dq:
    615       case Intrinsic::x86_sse2_storel_dq:
    616         if (II->getArgOperand(0) == OperandVal)
    617           isAddress = true;
    618         break;
    619     }
    620   }
    621   return isAddress;
    622 }
    623 
    624 /// getAccessType - Return the type of the memory being accessed.
    625 static Type *getAccessType(const Instruction *Inst) {
    626   Type *AccessTy = Inst->getType();
    627   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
    628     AccessTy = SI->getOperand(0)->getType();
    629   else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    630     // Addressing modes can also be folded into prefetches and a variety
    631     // of intrinsics.
    632     switch (II->getIntrinsicID()) {
    633     default: break;
    634     case Intrinsic::x86_sse_storeu_ps:
    635     case Intrinsic::x86_sse2_storeu_pd:
    636     case Intrinsic::x86_sse2_storeu_dq:
    637     case Intrinsic::x86_sse2_storel_dq:
    638       AccessTy = II->getArgOperand(0)->getType();
    639       break;
    640     }
    641   }
    642 
    643   // All pointers have the same requirements, so canonicalize them to an
    644   // arbitrary pointer type to minimize variation.
    645   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy))
    646     AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
    647                                 PTy->getAddressSpace());
    648 
    649   return AccessTy;
    650 }
    651 
    652 /// isExistingPhi - Return true if this AddRec is already a phi in its loop.
    653 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
    654   for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
    655        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
    656     if (SE.isSCEVable(PN->getType()) &&
    657         (SE.getEffectiveSCEVType(PN->getType()) ==
    658          SE.getEffectiveSCEVType(AR->getType())) &&
    659         SE.getSCEV(PN) == AR)
    660       return true;
    661   }
    662   return false;
    663 }
    664 
    665 /// Check if expanding this expression is likely to incur significant cost. This
    666 /// is tricky because SCEV doesn't track which expressions are actually computed
    667 /// by the current IR.
    668 ///
    669 /// We currently allow expansion of IV increments that involve adds,
    670 /// multiplication by constants, and AddRecs from existing phis.
    671 ///
    672 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
    673 /// obvious multiple of the UDivExpr.
    674 static bool isHighCostExpansion(const SCEV *S,
    675                                 SmallPtrSet<const SCEV*, 8> &Processed,
    676                                 ScalarEvolution &SE) {
    677   // Zero/One operand expressions
    678   switch (S->getSCEVType()) {
    679   case scUnknown:
    680   case scConstant:
    681     return false;
    682   case scTruncate:
    683     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
    684                                Processed, SE);
    685   case scZeroExtend:
    686     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
    687                                Processed, SE);
    688   case scSignExtend:
    689     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
    690                                Processed, SE);
    691   }
    692 
    693   if (!Processed.insert(S))
    694     return false;
    695 
    696   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    697     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
    698          I != E; ++I) {
    699       if (isHighCostExpansion(*I, Processed, SE))
    700         return true;
    701     }
    702     return false;
    703   }
    704 
    705   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
    706     if (Mul->getNumOperands() == 2) {
    707       // Multiplication by a constant is ok
    708       if (isa<SCEVConstant>(Mul->getOperand(0)))
    709         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
    710 
    711       // If we have the value of one operand, check if an existing
    712       // multiplication already generates this expression.
    713       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
    714         Value *UVal = U->getValue();
    715         for (Value::use_iterator UI = UVal->use_begin(), UE = UVal->use_end();
    716              UI != UE; ++UI) {
    717           // If U is a constant, it may be used by a ConstantExpr.
    718           Instruction *User = dyn_cast<Instruction>(*UI);
    719           if (User && User->getOpcode() == Instruction::Mul
    720               && SE.isSCEVable(User->getType())) {
    721             return SE.getSCEV(User) == Mul;
    722           }
    723         }
    724       }
    725     }
    726   }
    727 
    728   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
    729     if (isExistingPhi(AR, SE))
    730       return false;
    731   }
    732 
    733   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
    734   return true;
    735 }
    736 
    737 /// DeleteTriviallyDeadInstructions - If any of the instructions is the
    738 /// specified set are trivially dead, delete them and see if this makes any of
    739 /// their operands subsequently dead.
    740 static bool
    741 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
    742   bool Changed = false;
    743 
    744   while (!DeadInsts.empty()) {
    745     Value *V = DeadInsts.pop_back_val();
    746     Instruction *I = dyn_cast_or_null<Instruction>(V);
    747 
    748     if (I == 0 || !isInstructionTriviallyDead(I))
    749       continue;
    750 
    751     for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
    752       if (Instruction *U = dyn_cast<Instruction>(*OI)) {
    753         *OI = 0;
    754         if (U->use_empty())
    755           DeadInsts.push_back(U);
    756       }
    757 
    758     I->eraseFromParent();
    759     Changed = true;
    760   }
    761 
    762   return Changed;
    763 }
    764 
    765 namespace {
    766 
    767 /// Cost - This class is used to measure and compare candidate formulae.
    768 class Cost {
    769   /// TODO: Some of these could be merged. Also, a lexical ordering
    770   /// isn't always optimal.
    771   unsigned NumRegs;
    772   unsigned AddRecCost;
    773   unsigned NumIVMuls;
    774   unsigned NumBaseAdds;
    775   unsigned ImmCost;
    776   unsigned SetupCost;
    777 
    778 public:
    779   Cost()
    780     : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
    781       SetupCost(0) {}
    782 
    783   bool operator<(const Cost &Other) const;
    784 
    785   void Loose();
    786 
    787 #ifndef NDEBUG
    788   // Once any of the metrics loses, they must all remain losers.
    789   bool isValid() {
    790     return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds
    791              | ImmCost | SetupCost) != ~0u)
    792       || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds
    793            & ImmCost & SetupCost) == ~0u);
    794   }
    795 #endif
    796 
    797   bool isLoser() {
    798     assert(isValid() && "invalid cost");
    799     return NumRegs == ~0u;
    800   }
    801 
    802   void RateFormula(const Formula &F,
    803                    SmallPtrSet<const SCEV *, 16> &Regs,
    804                    const DenseSet<const SCEV *> &VisitedRegs,
    805                    const Loop *L,
    806                    const SmallVectorImpl<int64_t> &Offsets,
    807                    ScalarEvolution &SE, DominatorTree &DT,
    808                    SmallPtrSet<const SCEV *, 16> *LoserRegs = 0);
    809 
    810   void print(raw_ostream &OS) const;
    811   void dump() const;
    812 
    813 private:
    814   void RateRegister(const SCEV *Reg,
    815                     SmallPtrSet<const SCEV *, 16> &Regs,
    816                     const Loop *L,
    817                     ScalarEvolution &SE, DominatorTree &DT);
    818   void RatePrimaryRegister(const SCEV *Reg,
    819                            SmallPtrSet<const SCEV *, 16> &Regs,
    820                            const Loop *L,
    821                            ScalarEvolution &SE, DominatorTree &DT,
    822                            SmallPtrSet<const SCEV *, 16> *LoserRegs);
    823 };
    824 
    825 }
    826 
    827 /// RateRegister - Tally up interesting quantities from the given register.
    828 void Cost::RateRegister(const SCEV *Reg,
    829                         SmallPtrSet<const SCEV *, 16> &Regs,
    830                         const Loop *L,
    831                         ScalarEvolution &SE, DominatorTree &DT) {
    832   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
    833     // If this is an addrec for another loop, don't second-guess its addrec phi
    834     // nodes. LSR isn't currently smart enough to reason about more than one
    835     // loop at a time. LSR has already run on inner loops, will not run on outer
    836     // loops, and cannot be expected to change sibling loops.
    837     if (AR->getLoop() != L) {
    838       // If the AddRec exists, consider it's register free and leave it alone.
    839       if (isExistingPhi(AR, SE))
    840         return;
    841 
    842       // Otherwise, do not consider this formula at all.
    843       Loose();
    844       return;
    845     }
    846     AddRecCost += 1; /// TODO: This should be a function of the stride.
    847 
    848     // Add the step value register, if it needs one.
    849     // TODO: The non-affine case isn't precisely modeled here.
    850     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
    851       if (!Regs.count(AR->getOperand(1))) {
    852         RateRegister(AR->getOperand(1), Regs, L, SE, DT);
    853         if (isLoser())
    854           return;
    855       }
    856     }
    857   }
    858   ++NumRegs;
    859 
    860   // Rough heuristic; favor registers which don't require extra setup
    861   // instructions in the preheader.
    862   if (!isa<SCEVUnknown>(Reg) &&
    863       !isa<SCEVConstant>(Reg) &&
    864       !(isa<SCEVAddRecExpr>(Reg) &&
    865         (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
    866          isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
    867     ++SetupCost;
    868 
    869     NumIVMuls += isa<SCEVMulExpr>(Reg) &&
    870                  SE.hasComputableLoopEvolution(Reg, L);
    871 }
    872 
    873 /// RatePrimaryRegister - Record this register in the set. If we haven't seen it
    874 /// before, rate it. Optional LoserRegs provides a way to declare any formula
    875 /// that refers to one of those regs an instant loser.
    876 void Cost::RatePrimaryRegister(const SCEV *Reg,
    877                                SmallPtrSet<const SCEV *, 16> &Regs,
    878                                const Loop *L,
    879                                ScalarEvolution &SE, DominatorTree &DT,
    880                                SmallPtrSet<const SCEV *, 16> *LoserRegs) {
    881   if (LoserRegs && LoserRegs->count(Reg)) {
    882     Loose();
    883     return;
    884   }
    885   if (Regs.insert(Reg)) {
    886     RateRegister(Reg, Regs, L, SE, DT);
    887     if (isLoser())
    888       LoserRegs->insert(Reg);
    889   }
    890 }
    891 
    892 void Cost::RateFormula(const Formula &F,
    893                        SmallPtrSet<const SCEV *, 16> &Regs,
    894                        const DenseSet<const SCEV *> &VisitedRegs,
    895                        const Loop *L,
    896                        const SmallVectorImpl<int64_t> &Offsets,
    897                        ScalarEvolution &SE, DominatorTree &DT,
    898                        SmallPtrSet<const SCEV *, 16> *LoserRegs) {
    899   // Tally up the registers.
    900   if (const SCEV *ScaledReg = F.ScaledReg) {
    901     if (VisitedRegs.count(ScaledReg)) {
    902       Loose();
    903       return;
    904     }
    905     RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
    906     if (isLoser())
    907       return;
    908   }
    909   for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
    910        E = F.BaseRegs.end(); I != E; ++I) {
    911     const SCEV *BaseReg = *I;
    912     if (VisitedRegs.count(BaseReg)) {
    913       Loose();
    914       return;
    915     }
    916     RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
    917     if (isLoser())
    918       return;
    919   }
    920 
    921   // Determine how many (unfolded) adds we'll need inside the loop.
    922   size_t NumBaseParts = F.BaseRegs.size() + (F.UnfoldedOffset != 0);
    923   if (NumBaseParts > 1)
    924     NumBaseAdds += NumBaseParts - 1;
    925 
    926   // Tally up the non-zero immediates.
    927   for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
    928        E = Offsets.end(); I != E; ++I) {
    929     int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
    930     if (F.AM.BaseGV)
    931       ImmCost += 64; // Handle symbolic values conservatively.
    932                      // TODO: This should probably be the pointer size.
    933     else if (Offset != 0)
    934       ImmCost += APInt(64, Offset, true).getMinSignedBits();
    935   }
    936   assert(isValid() && "invalid cost");
    937 }
    938 
    939 /// Loose - Set this cost to a losing value.
    940 void Cost::Loose() {
    941   NumRegs = ~0u;
    942   AddRecCost = ~0u;
    943   NumIVMuls = ~0u;
    944   NumBaseAdds = ~0u;
    945   ImmCost = ~0u;
    946   SetupCost = ~0u;
    947 }
    948 
    949 /// operator< - Choose the lower cost.
    950 bool Cost::operator<(const Cost &Other) const {
    951   if (NumRegs != Other.NumRegs)
    952     return NumRegs < Other.NumRegs;
    953   if (AddRecCost != Other.AddRecCost)
    954     return AddRecCost < Other.AddRecCost;
    955   if (NumIVMuls != Other.NumIVMuls)
    956     return NumIVMuls < Other.NumIVMuls;
    957   if (NumBaseAdds != Other.NumBaseAdds)
    958     return NumBaseAdds < Other.NumBaseAdds;
    959   if (ImmCost != Other.ImmCost)
    960     return ImmCost < Other.ImmCost;
    961   if (SetupCost != Other.SetupCost)
    962     return SetupCost < Other.SetupCost;
    963   return false;
    964 }
    965 
    966 void Cost::print(raw_ostream &OS) const {
    967   OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
    968   if (AddRecCost != 0)
    969     OS << ", with addrec cost " << AddRecCost;
    970   if (NumIVMuls != 0)
    971     OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
    972   if (NumBaseAdds != 0)
    973     OS << ", plus " << NumBaseAdds << " base add"
    974        << (NumBaseAdds == 1 ? "" : "s");
    975   if (ImmCost != 0)
    976     OS << ", plus " << ImmCost << " imm cost";
    977   if (SetupCost != 0)
    978     OS << ", plus " << SetupCost << " setup cost";
    979 }
    980 
    981 #ifndef NDEBUG
    982 void Cost::dump() const {
    983   print(errs()); errs() << '\n';
    984 }
    985 #endif
    986 
    987 namespace {
    988 
    989 /// LSRFixup - An operand value in an instruction which is to be replaced
    990 /// with some equivalent, possibly strength-reduced, replacement.
    991 struct LSRFixup {
    992   /// UserInst - The instruction which will be updated.
    993   Instruction *UserInst;
    994 
    995   /// OperandValToReplace - The operand of the instruction which will
    996   /// be replaced. The operand may be used more than once; every instance
    997   /// will be replaced.
    998   Value *OperandValToReplace;
    999 
   1000   /// PostIncLoops - If this user is to use the post-incremented value of an
   1001   /// induction variable, this variable is non-null and holds the loop
   1002   /// associated with the induction variable.
   1003   PostIncLoopSet PostIncLoops;
   1004 
   1005   /// LUIdx - The index of the LSRUse describing the expression which
   1006   /// this fixup needs, minus an offset (below).
   1007   size_t LUIdx;
   1008 
   1009   /// Offset - A constant offset to be added to the LSRUse expression.
   1010   /// This allows multiple fixups to share the same LSRUse with different
   1011   /// offsets, for example in an unrolled loop.
   1012   int64_t Offset;
   1013 
   1014   bool isUseFullyOutsideLoop(const Loop *L) const;
   1015 
   1016   LSRFixup();
   1017 
   1018   void print(raw_ostream &OS) const;
   1019   void dump() const;
   1020 };
   1021 
   1022 }
   1023 
   1024 LSRFixup::LSRFixup()
   1025   : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {}
   1026 
   1027 /// isUseFullyOutsideLoop - Test whether this fixup always uses its
   1028 /// value outside of the given loop.
   1029 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
   1030   // PHI nodes use their value in their incoming blocks.
   1031   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
   1032     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
   1033       if (PN->getIncomingValue(i) == OperandValToReplace &&
   1034           L->contains(PN->getIncomingBlock(i)))
   1035         return false;
   1036     return true;
   1037   }
   1038 
   1039   return !L->contains(UserInst);
   1040 }
   1041 
   1042 void LSRFixup::print(raw_ostream &OS) const {
   1043   OS << "UserInst=";
   1044   // Store is common and interesting enough to be worth special-casing.
   1045   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
   1046     OS << "store ";
   1047     WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
   1048   } else if (UserInst->getType()->isVoidTy())
   1049     OS << UserInst->getOpcodeName();
   1050   else
   1051     WriteAsOperand(OS, UserInst, /*PrintType=*/false);
   1052 
   1053   OS << ", OperandValToReplace=";
   1054   WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);
   1055 
   1056   for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
   1057        E = PostIncLoops.end(); I != E; ++I) {
   1058     OS << ", PostIncLoop=";
   1059     WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false);
   1060   }
   1061 
   1062   if (LUIdx != ~size_t(0))
   1063     OS << ", LUIdx=" << LUIdx;
   1064 
   1065   if (Offset != 0)
   1066     OS << ", Offset=" << Offset;
   1067 }
   1068 
   1069 #ifndef NDEBUG
   1070 void LSRFixup::dump() const {
   1071   print(errs()); errs() << '\n';
   1072 }
   1073 #endif
   1074 
   1075 namespace {
   1076 
   1077 /// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
   1078 /// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
   1079 struct UniquifierDenseMapInfo {
   1080   static SmallVector<const SCEV *, 2> getEmptyKey() {
   1081     SmallVector<const SCEV *, 2> V;
   1082     V.push_back(reinterpret_cast<const SCEV *>(-1));
   1083     return V;
   1084   }
   1085 
   1086   static SmallVector<const SCEV *, 2> getTombstoneKey() {
   1087     SmallVector<const SCEV *, 2> V;
   1088     V.push_back(reinterpret_cast<const SCEV *>(-2));
   1089     return V;
   1090   }
   1091 
   1092   static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) {
   1093     unsigned Result = 0;
   1094     for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
   1095          E = V.end(); I != E; ++I)
   1096       Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I);
   1097     return Result;
   1098   }
   1099 
   1100   static bool isEqual(const SmallVector<const SCEV *, 2> &LHS,
   1101                       const SmallVector<const SCEV *, 2> &RHS) {
   1102     return LHS == RHS;
   1103   }
   1104 };
   1105 
   1106 /// LSRUse - This class holds the state that LSR keeps for each use in
   1107 /// IVUsers, as well as uses invented by LSR itself. It includes information
   1108 /// about what kinds of things can be folded into the user, information about
   1109 /// the user itself, and information about how the use may be satisfied.
   1110 /// TODO: Represent multiple users of the same expression in common?
   1111 class LSRUse {
   1112   DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier;
   1113 
   1114 public:
   1115   /// KindType - An enum for a kind of use, indicating what types of
   1116   /// scaled and immediate operands it might support.
   1117   enum KindType {
   1118     Basic,   ///< A normal use, with no folding.
   1119     Special, ///< A special case of basic, allowing -1 scales.
   1120     Address, ///< An address use; folding according to TargetLowering
   1121     ICmpZero ///< An equality icmp with both operands folded into one.
   1122     // TODO: Add a generic icmp too?
   1123   };
   1124 
   1125   KindType Kind;
   1126   Type *AccessTy;
   1127 
   1128   SmallVector<int64_t, 8> Offsets;
   1129   int64_t MinOffset;
   1130   int64_t MaxOffset;
   1131 
   1132   /// AllFixupsOutsideLoop - This records whether all of the fixups using this
   1133   /// LSRUse are outside of the loop, in which case some special-case heuristics
   1134   /// may be used.
   1135   bool AllFixupsOutsideLoop;
   1136 
   1137   /// WidestFixupType - This records the widest use type for any fixup using
   1138   /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different
   1139   /// max fixup widths to be equivalent, because the narrower one may be relying
   1140   /// on the implicit truncation to truncate away bogus bits.
   1141   Type *WidestFixupType;
   1142 
   1143   /// Formulae - A list of ways to build a value that can satisfy this user.
   1144   /// After the list is populated, one of these is selected heuristically and
   1145   /// used to formulate a replacement for OperandValToReplace in UserInst.
   1146   SmallVector<Formula, 12> Formulae;
   1147 
   1148   /// Regs - The set of register candidates used by all formulae in this LSRUse.
   1149   SmallPtrSet<const SCEV *, 4> Regs;
   1150 
   1151   LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T),
   1152                                       MinOffset(INT64_MAX),
   1153                                       MaxOffset(INT64_MIN),
   1154                                       AllFixupsOutsideLoop(true),
   1155                                       WidestFixupType(0) {}
   1156 
   1157   bool HasFormulaWithSameRegs(const Formula &F) const;
   1158   bool InsertFormula(const Formula &F);
   1159   void DeleteFormula(Formula &F);
   1160   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
   1161 
   1162   void print(raw_ostream &OS) const;
   1163   void dump() const;
   1164 };
   1165 
   1166 }
   1167 
   1168 /// HasFormula - Test whether this use as a formula which has the same
   1169 /// registers as the given formula.
   1170 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
   1171   SmallVector<const SCEV *, 2> Key = F.BaseRegs;
   1172   if (F.ScaledReg) Key.push_back(F.ScaledReg);
   1173   // Unstable sort by host order ok, because this is only used for uniquifying.
   1174   std::sort(Key.begin(), Key.end());
   1175   return Uniquifier.count(Key);
   1176 }
   1177 
   1178 /// InsertFormula - If the given formula has not yet been inserted, add it to
   1179 /// the list, and return true. Return false otherwise.
   1180 bool LSRUse::InsertFormula(const Formula &F) {
   1181   SmallVector<const SCEV *, 2> Key = F.BaseRegs;
   1182   if (F.ScaledReg) Key.push_back(F.ScaledReg);
   1183   // Unstable sort by host order ok, because this is only used for uniquifying.
   1184   std::sort(Key.begin(), Key.end());
   1185 
   1186   if (!Uniquifier.insert(Key).second)
   1187     return false;
   1188 
   1189   // Using a register to hold the value of 0 is not profitable.
   1190   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
   1191          "Zero allocated in a scaled register!");
   1192 #ifndef NDEBUG
   1193   for (SmallVectorImpl<const SCEV *>::const_iterator I =
   1194        F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
   1195     assert(!(*I)->isZero() && "Zero allocated in a base register!");
   1196 #endif
   1197 
   1198   // Add the formula to the list.
   1199   Formulae.push_back(F);
   1200 
   1201   // Record registers now being used by this use.
   1202   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
   1203 
   1204   return true;
   1205 }
   1206 
   1207 /// DeleteFormula - Remove the given formula from this use's list.
   1208 void LSRUse::DeleteFormula(Formula &F) {
   1209   if (&F != &Formulae.back())
   1210     std::swap(F, Formulae.back());
   1211   Formulae.pop_back();
   1212 }
   1213 
   1214 /// RecomputeRegs - Recompute the Regs field, and update RegUses.
   1215 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
   1216   // Now that we've filtered out some formulae, recompute the Regs set.
   1217   SmallPtrSet<const SCEV *, 4> OldRegs = Regs;
   1218   Regs.clear();
   1219   for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(),
   1220        E = Formulae.end(); I != E; ++I) {
   1221     const Formula &F = *I;
   1222     if (F.ScaledReg) Regs.insert(F.ScaledReg);
   1223     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
   1224   }
   1225 
   1226   // Update the RegTracker.
   1227   for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(),
   1228        E = OldRegs.end(); I != E; ++I)
   1229     if (!Regs.count(*I))
   1230       RegUses.DropRegister(*I, LUIdx);
   1231 }
   1232 
   1233 void LSRUse::print(raw_ostream &OS) const {
   1234   OS << "LSR Use: Kind=";
   1235   switch (Kind) {
   1236   case Basic:    OS << "Basic"; break;
   1237   case Special:  OS << "Special"; break;
   1238   case ICmpZero: OS << "ICmpZero"; break;
   1239   case Address:
   1240     OS << "Address of ";
   1241     if (AccessTy->isPointerTy())
   1242       OS << "pointer"; // the full pointer type could be really verbose
   1243     else
   1244       OS << *AccessTy;
   1245   }
   1246 
   1247   OS << ", Offsets={";
   1248   for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
   1249        E = Offsets.end(); I != E; ++I) {
   1250     OS << *I;
   1251     if (llvm::next(I) != E)
   1252       OS << ',';
   1253   }
   1254   OS << '}';
   1255 
   1256   if (AllFixupsOutsideLoop)
   1257     OS << ", all-fixups-outside-loop";
   1258 
   1259   if (WidestFixupType)
   1260     OS << ", widest fixup type: " << *WidestFixupType;
   1261 }
   1262 
   1263 #ifndef NDEBUG
   1264 void LSRUse::dump() const {
   1265   print(errs()); errs() << '\n';
   1266 }
   1267 #endif
   1268 
   1269 /// isLegalUse - Test whether the use described by AM is "legal", meaning it can
   1270 /// be completely folded into the user instruction at isel time. This includes
   1271 /// address-mode folding and special icmp tricks.
   1272 static bool isLegalUse(const TargetLowering::AddrMode &AM,
   1273                        LSRUse::KindType Kind, Type *AccessTy,
   1274                        const TargetLowering *TLI) {
   1275   switch (Kind) {
   1276   case LSRUse::Address:
   1277     // If we have low-level target information, ask the target if it can
   1278     // completely fold this address.
   1279     if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
   1280 
   1281     // Otherwise, just guess that reg+reg addressing is legal.
   1282     return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
   1283 
   1284   case LSRUse::ICmpZero:
   1285     // There's not even a target hook for querying whether it would be legal to
   1286     // fold a GV into an ICmp.
   1287     if (AM.BaseGV)
   1288       return false;
   1289 
   1290     // ICmp only has two operands; don't allow more than two non-trivial parts.
   1291     if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
   1292       return false;
   1293 
   1294     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
   1295     // putting the scaled register in the other operand of the icmp.
   1296     if (AM.Scale != 0 && AM.Scale != -1)
   1297       return false;
   1298 
   1299     // If we have low-level target information, ask the target if it can fold an
   1300     // integer immediate on an icmp.
   1301     if (AM.BaseOffs != 0) {
   1302       if (!TLI)
   1303         return false;
   1304       // We have one of:
   1305       // ICmpZero     BaseReg + Offset => ICmp BaseReg, -Offset
   1306       // ICmpZero -1*ScaleReg + Offset => ICmp ScaleReg, Offset
   1307       // Offs is the ICmp immediate.
   1308       int64_t Offs = AM.BaseOffs;
   1309       if (AM.Scale == 0)
   1310         Offs = -(uint64_t)Offs; // The cast does the right thing with INT64_MIN.
   1311       return TLI->isLegalICmpImmediate(Offs);
   1312     }
   1313 
   1314     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
   1315     return true;
   1316 
   1317   case LSRUse::Basic:
   1318     // Only handle single-register values.
   1319     return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
   1320 
   1321   case LSRUse::Special:
   1322     // Special case Basic to handle -1 scales.
   1323     return !AM.BaseGV && (AM.Scale == 0 || AM.Scale == -1) && AM.BaseOffs == 0;
   1324   }
   1325 
   1326   llvm_unreachable("Invalid LSRUse Kind!");
   1327 }
   1328 
   1329 static bool isLegalUse(TargetLowering::AddrMode AM,
   1330                        int64_t MinOffset, int64_t MaxOffset,
   1331                        LSRUse::KindType Kind, Type *AccessTy,
   1332                        const TargetLowering *TLI) {
   1333   // Check for overflow.
   1334   if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
   1335       (MinOffset > 0))
   1336     return false;
   1337   AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
   1338   if (isLegalUse(AM, Kind, AccessTy, TLI)) {
   1339     AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
   1340     // Check for overflow.
   1341     if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
   1342         (MaxOffset > 0))
   1343       return false;
   1344     AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
   1345     return isLegalUse(AM, Kind, AccessTy, TLI);
   1346   }
   1347   return false;
   1348 }
   1349 
   1350 static bool isAlwaysFoldable(int64_t BaseOffs,
   1351                              GlobalValue *BaseGV,
   1352                              bool HasBaseReg,
   1353                              LSRUse::KindType Kind, Type *AccessTy,
   1354                              const TargetLowering *TLI) {
   1355   // Fast-path: zero is always foldable.
   1356   if (BaseOffs == 0 && !BaseGV) return true;
   1357 
   1358   // Conservatively, create an address with an immediate and a
   1359   // base and a scale.
   1360   TargetLowering::AddrMode AM;
   1361   AM.BaseOffs = BaseOffs;
   1362   AM.BaseGV = BaseGV;
   1363   AM.HasBaseReg = HasBaseReg;
   1364   AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
   1365 
   1366   // Canonicalize a scale of 1 to a base register if the formula doesn't
   1367   // already have a base register.
   1368   if (!AM.HasBaseReg && AM.Scale == 1) {
   1369     AM.Scale = 0;
   1370     AM.HasBaseReg = true;
   1371   }
   1372 
   1373   return isLegalUse(AM, Kind, AccessTy, TLI);
   1374 }
   1375 
   1376 static bool isAlwaysFoldable(const SCEV *S,
   1377                              int64_t MinOffset, int64_t MaxOffset,
   1378                              bool HasBaseReg,
   1379                              LSRUse::KindType Kind, Type *AccessTy,
   1380                              const TargetLowering *TLI,
   1381                              ScalarEvolution &SE) {
   1382   // Fast-path: zero is always foldable.
   1383   if (S->isZero()) return true;
   1384 
   1385   // Conservatively, create an address with an immediate and a
   1386   // base and a scale.
   1387   int64_t BaseOffs = ExtractImmediate(S, SE);
   1388   GlobalValue *BaseGV = ExtractSymbol(S, SE);
   1389 
   1390   // If there's anything else involved, it's not foldable.
   1391   if (!S->isZero()) return false;
   1392 
   1393   // Fast-path: zero is always foldable.
   1394   if (BaseOffs == 0 && !BaseGV) return true;
   1395 
   1396   // Conservatively, create an address with an immediate and a
   1397   // base and a scale.
   1398   TargetLowering::AddrMode AM;
   1399   AM.BaseOffs = BaseOffs;
   1400   AM.BaseGV = BaseGV;
   1401   AM.HasBaseReg = HasBaseReg;
   1402   AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
   1403 
   1404   return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
   1405 }
   1406 
   1407 namespace {
   1408 
   1409 /// UseMapDenseMapInfo - A DenseMapInfo implementation for holding
   1410 /// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind.
   1411 struct UseMapDenseMapInfo {
   1412   static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() {
   1413     return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic);
   1414   }
   1415 
   1416   static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() {
   1417     return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic);
   1418   }
   1419 
   1420   static unsigned
   1421   getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) {
   1422     unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first);
   1423     Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second));
   1424     return Result;
   1425   }
   1426 
   1427   static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS,
   1428                       const std::pair<const SCEV *, LSRUse::KindType> &RHS) {
   1429     return LHS == RHS;
   1430   }
   1431 };
   1432 
   1433 /// IVInc - An individual increment in a Chain of IV increments.
   1434 /// Relate an IV user to an expression that computes the IV it uses from the IV
   1435 /// used by the previous link in the Chain.
   1436 ///
   1437 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
   1438 /// original IVOperand. The head of the chain's IVOperand is only valid during
   1439 /// chain collection, before LSR replaces IV users. During chain generation,
   1440 /// IncExpr can be used to find the new IVOperand that computes the same
   1441 /// expression.
   1442 struct IVInc {
   1443   Instruction *UserInst;
   1444   Value* IVOperand;
   1445   const SCEV *IncExpr;
   1446 
   1447   IVInc(Instruction *U, Value *O, const SCEV *E):
   1448     UserInst(U), IVOperand(O), IncExpr(E) {}
   1449 };
   1450 
   1451 // IVChain - The list of IV increments in program order.
   1452 // We typically add the head of a chain without finding subsequent links.
   1453 struct IVChain {
   1454   SmallVector<IVInc,1> Incs;
   1455   const SCEV *ExprBase;
   1456 
   1457   IVChain() : ExprBase(0) {}
   1458 
   1459   IVChain(const IVInc &Head, const SCEV *Base)
   1460     : Incs(1, Head), ExprBase(Base) {}
   1461 
   1462   typedef SmallVectorImpl<IVInc>::const_iterator const_iterator;
   1463 
   1464   // begin - return the first increment in the chain.
   1465   const_iterator begin() const {
   1466     assert(!Incs.empty());
   1467     return llvm::next(Incs.begin());
   1468   }
   1469   const_iterator end() const {
   1470     return Incs.end();
   1471   }
   1472 
   1473   // hasIncs - Returns true if this chain contains any increments.
   1474   bool hasIncs() const { return Incs.size() >= 2; }
   1475 
   1476   // add - Add an IVInc to the end of this chain.
   1477   void add(const IVInc &X) { Incs.push_back(X); }
   1478 
   1479   // tailUserInst - Returns the last UserInst in the chain.
   1480   Instruction *tailUserInst() const { return Incs.back().UserInst; }
   1481 
   1482   // isProfitableIncrement - Returns true if IncExpr can be profitably added to
   1483   // this chain.
   1484   bool isProfitableIncrement(const SCEV *OperExpr,
   1485                              const SCEV *IncExpr,
   1486                              ScalarEvolution&);
   1487 };
   1488 
   1489 /// ChainUsers - Helper for CollectChains to track multiple IV increment uses.
   1490 /// Distinguish between FarUsers that definitely cross IV increments and
   1491 /// NearUsers that may be used between IV increments.
   1492 struct ChainUsers {
   1493   SmallPtrSet<Instruction*, 4> FarUsers;
   1494   SmallPtrSet<Instruction*, 4> NearUsers;
   1495 };
   1496 
   1497 /// LSRInstance - This class holds state for the main loop strength reduction
   1498 /// logic.
   1499 class LSRInstance {
   1500   IVUsers &IU;
   1501   ScalarEvolution &SE;
   1502   DominatorTree &DT;
   1503   LoopInfo &LI;
   1504   const TargetLowering *const TLI;
   1505   Loop *const L;
   1506   bool Changed;
   1507 
   1508   /// IVIncInsertPos - This is the insert position that the current loop's
   1509   /// induction variable increment should be placed. In simple loops, this is
   1510   /// the latch block's terminator. But in more complicated cases, this is a
   1511   /// position which will dominate all the in-loop post-increment users.
   1512   Instruction *IVIncInsertPos;
   1513 
   1514   /// Factors - Interesting factors between use strides.
   1515   SmallSetVector<int64_t, 8> Factors;
   1516 
   1517   /// Types - Interesting use types, to facilitate truncation reuse.
   1518   SmallSetVector<Type *, 4> Types;
   1519 
   1520   /// Fixups - The list of operands which are to be replaced.
   1521   SmallVector<LSRFixup, 16> Fixups;
   1522 
   1523   /// Uses - The list of interesting uses.
   1524   SmallVector<LSRUse, 16> Uses;
   1525 
   1526   /// RegUses - Track which uses use which register candidates.
   1527   RegUseTracker RegUses;
   1528 
   1529   // Limit the number of chains to avoid quadratic behavior. We don't expect to
   1530   // have more than a few IV increment chains in a loop. Missing a Chain falls
   1531   // back to normal LSR behavior for those uses.
   1532   static const unsigned MaxChains = 8;
   1533 
   1534   /// IVChainVec - IV users can form a chain of IV increments.
   1535   SmallVector<IVChain, MaxChains> IVChainVec;
   1536 
   1537   /// IVIncSet - IV users that belong to profitable IVChains.
   1538   SmallPtrSet<Use*, MaxChains> IVIncSet;
   1539 
   1540   void OptimizeShadowIV();
   1541   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
   1542   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
   1543   void OptimizeLoopTermCond();
   1544 
   1545   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
   1546                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
   1547   void FinalizeChain(IVChain &Chain);
   1548   void CollectChains();
   1549   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
   1550                        SmallVectorImpl<WeakVH> &DeadInsts);
   1551 
   1552   void CollectInterestingTypesAndFactors();
   1553   void CollectFixupsAndInitialFormulae();
   1554 
   1555   LSRFixup &getNewFixup() {
   1556     Fixups.push_back(LSRFixup());
   1557     return Fixups.back();
   1558   }
   1559 
   1560   // Support for sharing of LSRUses between LSRFixups.
   1561   typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>,
   1562                    size_t,
   1563                    UseMapDenseMapInfo> UseMapTy;
   1564   UseMapTy UseMap;
   1565 
   1566   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
   1567                           LSRUse::KindType Kind, Type *AccessTy);
   1568 
   1569   std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
   1570                                     LSRUse::KindType Kind,
   1571                                     Type *AccessTy);
   1572 
   1573   void DeleteUse(LSRUse &LU, size_t LUIdx);
   1574 
   1575   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
   1576 
   1577   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
   1578   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
   1579   void CountRegisters(const Formula &F, size_t LUIdx);
   1580   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
   1581 
   1582   void CollectLoopInvariantFixupsAndFormulae();
   1583 
   1584   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
   1585                               unsigned Depth = 0);
   1586   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
   1587   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
   1588   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
   1589   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
   1590   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
   1591   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
   1592   void GenerateCrossUseConstantOffsets();
   1593   void GenerateAllReuseFormulae();
   1594 
   1595   void FilterOutUndesirableDedicatedRegisters();
   1596 
   1597   size_t EstimateSearchSpaceComplexity() const;
   1598   void NarrowSearchSpaceByDetectingSupersets();
   1599   void NarrowSearchSpaceByCollapsingUnrolledCode();
   1600   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
   1601   void NarrowSearchSpaceByPickingWinnerRegs();
   1602   void NarrowSearchSpaceUsingHeuristics();
   1603 
   1604   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
   1605                     Cost &SolutionCost,
   1606                     SmallVectorImpl<const Formula *> &Workspace,
   1607                     const Cost &CurCost,
   1608                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
   1609                     DenseSet<const SCEV *> &VisitedRegs) const;
   1610   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
   1611 
   1612   BasicBlock::iterator
   1613     HoistInsertPosition(BasicBlock::iterator IP,
   1614                         const SmallVectorImpl<Instruction *> &Inputs) const;
   1615   BasicBlock::iterator
   1616     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
   1617                                   const LSRFixup &LF,
   1618                                   const LSRUse &LU,
   1619                                   SCEVExpander &Rewriter) const;
   1620 
   1621   Value *Expand(const LSRFixup &LF,
   1622                 const Formula &F,
   1623                 BasicBlock::iterator IP,
   1624                 SCEVExpander &Rewriter,
   1625                 SmallVectorImpl<WeakVH> &DeadInsts) const;
   1626   void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
   1627                      const Formula &F,
   1628                      SCEVExpander &Rewriter,
   1629                      SmallVectorImpl<WeakVH> &DeadInsts,
   1630                      Pass *P) const;
   1631   void Rewrite(const LSRFixup &LF,
   1632                const Formula &F,
   1633                SCEVExpander &Rewriter,
   1634                SmallVectorImpl<WeakVH> &DeadInsts,
   1635                Pass *P) const;
   1636   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
   1637                          Pass *P);
   1638 
   1639 public:
   1640   LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
   1641 
   1642   bool getChanged() const { return Changed; }
   1643 
   1644   void print_factors_and_types(raw_ostream &OS) const;
   1645   void print_fixups(raw_ostream &OS) const;
   1646   void print_uses(raw_ostream &OS) const;
   1647   void print(raw_ostream &OS) const;
   1648   void dump() const;
   1649 };
   1650 
   1651 }
   1652 
   1653 /// OptimizeShadowIV - If IV is used in a int-to-float cast
   1654 /// inside the loop then try to eliminate the cast operation.
   1655 void LSRInstance::OptimizeShadowIV() {
   1656   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
   1657   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
   1658     return;
   1659 
   1660   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
   1661        UI != E; /* empty */) {
   1662     IVUsers::const_iterator CandidateUI = UI;
   1663     ++UI;
   1664     Instruction *ShadowUse = CandidateUI->getUser();
   1665     Type *DestTy = NULL;
   1666     bool IsSigned = false;
   1667 
   1668     /* If shadow use is a int->float cast then insert a second IV
   1669        to eliminate this cast.
   1670 
   1671          for (unsigned i = 0; i < n; ++i)
   1672            foo((double)i);
   1673 
   1674        is transformed into
   1675 
   1676          double d = 0.0;
   1677          for (unsigned i = 0; i < n; ++i, ++d)
   1678            foo(d);
   1679     */
   1680     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
   1681       IsSigned = false;
   1682       DestTy = UCast->getDestTy();
   1683     }
   1684     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
   1685       IsSigned = true;
   1686       DestTy = SCast->getDestTy();
   1687     }
   1688     if (!DestTy) continue;
   1689 
   1690     if (TLI) {
   1691       // If target does not support DestTy natively then do not apply
   1692       // this transformation.
   1693       EVT DVT = TLI->getValueType(DestTy);
   1694       if (!TLI->isTypeLegal(DVT)) continue;
   1695     }
   1696 
   1697     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
   1698     if (!PH) continue;
   1699     if (PH->getNumIncomingValues() != 2) continue;
   1700 
   1701     Type *SrcTy = PH->getType();
   1702     int Mantissa = DestTy->getFPMantissaWidth();
   1703     if (Mantissa == -1) continue;
   1704     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
   1705       continue;
   1706 
   1707     unsigned Entry, Latch;
   1708     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
   1709       Entry = 0;
   1710       Latch = 1;
   1711     } else {
   1712       Entry = 1;
   1713       Latch = 0;
   1714     }
   1715 
   1716     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
   1717     if (!Init) continue;
   1718     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
   1719                                         (double)Init->getSExtValue() :
   1720                                         (double)Init->getZExtValue());
   1721 
   1722     BinaryOperator *Incr =
   1723       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
   1724     if (!Incr) continue;
   1725     if (Incr->getOpcode() != Instruction::Add
   1726         && Incr->getOpcode() != Instruction::Sub)
   1727       continue;
   1728 
   1729     /* Initialize new IV, double d = 0.0 in above example. */
   1730     ConstantInt *C = NULL;
   1731     if (Incr->getOperand(0) == PH)
   1732       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
   1733     else if (Incr->getOperand(1) == PH)
   1734       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
   1735     else
   1736       continue;
   1737 
   1738     if (!C) continue;
   1739 
   1740     // Ignore negative constants, as the code below doesn't handle them
   1741     // correctly. TODO: Remove this restriction.
   1742     if (!C->getValue().isStrictlyPositive()) continue;
   1743 
   1744     /* Add new PHINode. */
   1745     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
   1746 
   1747     /* create new increment. '++d' in above example. */
   1748     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
   1749     BinaryOperator *NewIncr =
   1750       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
   1751                                Instruction::FAdd : Instruction::FSub,
   1752                              NewPH, CFP, "IV.S.next.", Incr);
   1753 
   1754     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
   1755     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
   1756 
   1757     /* Remove cast operation */
   1758     ShadowUse->replaceAllUsesWith(NewPH);
   1759     ShadowUse->eraseFromParent();
   1760     Changed = true;
   1761     break;
   1762   }
   1763 }
   1764 
   1765 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
   1766 /// set the IV user and stride information and return true, otherwise return
   1767 /// false.
   1768 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
   1769   for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
   1770     if (UI->getUser() == Cond) {
   1771       // NOTE: we could handle setcc instructions with multiple uses here, but
   1772       // InstCombine does it as well for simple uses, it's not clear that it
   1773       // occurs enough in real life to handle.
   1774       CondUse = UI;
   1775       return true;
   1776     }
   1777   return false;
   1778 }
   1779 
   1780 /// OptimizeMax - Rewrite the loop's terminating condition if it uses
   1781 /// a max computation.
   1782 ///
   1783 /// This is a narrow solution to a specific, but acute, problem. For loops
   1784 /// like this:
   1785 ///
   1786 ///   i = 0;
   1787 ///   do {
   1788 ///     p[i] = 0.0;
   1789 ///   } while (++i < n);
   1790 ///
   1791 /// the trip count isn't just 'n', because 'n' might not be positive. And
   1792 /// unfortunately this can come up even for loops where the user didn't use
   1793 /// a C do-while loop. For example, seemingly well-behaved top-test loops
   1794 /// will commonly be lowered like this:
   1795 //
   1796 ///   if (n > 0) {
   1797 ///     i = 0;
   1798 ///     do {
   1799 ///       p[i] = 0.0;
   1800 ///     } while (++i < n);
   1801 ///   }
   1802 ///
   1803 /// and then it's possible for subsequent optimization to obscure the if
   1804 /// test in such a way that indvars can't find it.
   1805 ///
   1806 /// When indvars can't find the if test in loops like this, it creates a
   1807 /// max expression, which allows it to give the loop a canonical
   1808 /// induction variable:
   1809 ///
   1810 ///   i = 0;
   1811 ///   max = n < 1 ? 1 : n;
   1812 ///   do {
   1813 ///     p[i] = 0.0;
   1814 ///   } while (++i != max);
   1815 ///
   1816 /// Canonical induction variables are necessary because the loop passes
   1817 /// are designed around them. The most obvious example of this is the
   1818 /// LoopInfo analysis, which doesn't remember trip count values. It
   1819 /// expects to be able to rediscover the trip count each time it is
   1820 /// needed, and it does this using a simple analysis that only succeeds if
   1821 /// the loop has a canonical induction variable.
   1822 ///
   1823 /// However, when it comes time to generate code, the maximum operation
   1824 /// can be quite costly, especially if it's inside of an outer loop.
   1825 ///
   1826 /// This function solves this problem by detecting this type of loop and
   1827 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
   1828 /// the instructions for the maximum computation.
   1829 ///
   1830 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
   1831   // Check that the loop matches the pattern we're looking for.
   1832   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
   1833       Cond->getPredicate() != CmpInst::ICMP_NE)
   1834     return Cond;
   1835 
   1836   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
   1837   if (!Sel || !Sel->hasOneUse()) return Cond;
   1838 
   1839   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
   1840   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
   1841     return Cond;
   1842   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
   1843 
   1844   // Add one to the backedge-taken count to get the trip count.
   1845   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
   1846   if (IterationCount != SE.getSCEV(Sel)) return Cond;
   1847 
   1848   // Check for a max calculation that matches the pattern. There's no check
   1849   // for ICMP_ULE here because the comparison would be with zero, which
   1850   // isn't interesting.
   1851   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
   1852   const SCEVNAryExpr *Max = 0;
   1853   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
   1854     Pred = ICmpInst::ICMP_SLE;
   1855     Max = S;
   1856   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
   1857     Pred = ICmpInst::ICMP_SLT;
   1858     Max = S;
   1859   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
   1860     Pred = ICmpInst::ICMP_ULT;
   1861     Max = U;
   1862   } else {
   1863     // No match; bail.
   1864     return Cond;
   1865   }
   1866 
   1867   // To handle a max with more than two operands, this optimization would
   1868   // require additional checking and setup.
   1869   if (Max->getNumOperands() != 2)
   1870     return Cond;
   1871 
   1872   const SCEV *MaxLHS = Max->getOperand(0);
   1873   const SCEV *MaxRHS = Max->getOperand(1);
   1874 
   1875   // ScalarEvolution canonicalizes constants to the left. For < and >, look
   1876   // for a comparison with 1. For <= and >=, a comparison with zero.
   1877   if (!MaxLHS ||
   1878       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
   1879     return Cond;
   1880 
   1881   // Check the relevant induction variable for conformance to
   1882   // the pattern.
   1883   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
   1884   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
   1885   if (!AR || !AR->isAffine() ||
   1886       AR->getStart() != One ||
   1887       AR->getStepRecurrence(SE) != One)
   1888     return Cond;
   1889 
   1890   assert(AR->getLoop() == L &&
   1891          "Loop condition operand is an addrec in a different loop!");
   1892 
   1893   // Check the right operand of the select, and remember it, as it will
   1894   // be used in the new comparison instruction.
   1895   Value *NewRHS = 0;
   1896   if (ICmpInst::isTrueWhenEqual(Pred)) {
   1897     // Look for n+1, and grab n.
   1898     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
   1899       if (isa<ConstantInt>(BO->getOperand(1)) &&
   1900           cast<ConstantInt>(BO->getOperand(1))->isOne() &&
   1901           SE.getSCEV(BO->getOperand(0)) == MaxRHS)
   1902         NewRHS = BO->getOperand(0);
   1903     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
   1904       if (isa<ConstantInt>(BO->getOperand(1)) &&
   1905           cast<ConstantInt>(BO->getOperand(1))->isOne() &&
   1906           SE.getSCEV(BO->getOperand(0)) == MaxRHS)
   1907         NewRHS = BO->getOperand(0);
   1908     if (!NewRHS)
   1909       return Cond;
   1910   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
   1911     NewRHS = Sel->getOperand(1);
   1912   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
   1913     NewRHS = Sel->getOperand(2);
   1914   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
   1915     NewRHS = SU->getValue();
   1916   else
   1917     // Max doesn't match expected pattern.
   1918     return Cond;
   1919 
   1920   // Determine the new comparison opcode. It may be signed or unsigned,
   1921   // and the original comparison may be either equality or inequality.
   1922   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
   1923     Pred = CmpInst::getInversePredicate(Pred);
   1924 
   1925   // Ok, everything looks ok to change the condition into an SLT or SGE and
   1926   // delete the max calculation.
   1927   ICmpInst *NewCond =
   1928     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
   1929 
   1930   // Delete the max calculation instructions.
   1931   Cond->replaceAllUsesWith(NewCond);
   1932   CondUse->setUser(NewCond);
   1933   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
   1934   Cond->eraseFromParent();
   1935   Sel->eraseFromParent();
   1936   if (Cmp->use_empty())
   1937     Cmp->eraseFromParent();
   1938   return NewCond;
   1939 }
   1940 
   1941 /// OptimizeLoopTermCond - Change loop terminating condition to use the
   1942 /// postinc iv when possible.
   1943 void
   1944 LSRInstance::OptimizeLoopTermCond() {
   1945   SmallPtrSet<Instruction *, 4> PostIncs;
   1946 
   1947   BasicBlock *LatchBlock = L->getLoopLatch();
   1948   SmallVector<BasicBlock*, 8> ExitingBlocks;
   1949   L->getExitingBlocks(ExitingBlocks);
   1950 
   1951   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
   1952     BasicBlock *ExitingBlock = ExitingBlocks[i];
   1953 
   1954     // Get the terminating condition for the loop if possible.  If we
   1955     // can, we want to change it to use a post-incremented version of its
   1956     // induction variable, to allow coalescing the live ranges for the IV into
   1957     // one register value.
   1958 
   1959     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
   1960     if (!TermBr)
   1961       continue;
   1962     // FIXME: Overly conservative, termination condition could be an 'or' etc..
   1963     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
   1964       continue;
   1965 
   1966     // Search IVUsesByStride to find Cond's IVUse if there is one.
   1967     IVStrideUse *CondUse = 0;
   1968     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
   1969     if (!FindIVUserForCond(Cond, CondUse))
   1970       continue;
   1971 
   1972     // If the trip count is computed in terms of a max (due to ScalarEvolution
   1973     // being unable to find a sufficient guard, for example), change the loop
   1974     // comparison to use SLT or ULT instead of NE.
   1975     // One consequence of doing this now is that it disrupts the count-down
   1976     // optimization. That's not always a bad thing though, because in such
   1977     // cases it may still be worthwhile to avoid a max.
   1978     Cond = OptimizeMax(Cond, CondUse);
   1979 
   1980     // If this exiting block dominates the latch block, it may also use
   1981     // the post-inc value if it won't be shared with other uses.
   1982     // Check for dominance.
   1983     if (!DT.dominates(ExitingBlock, LatchBlock))
   1984       continue;
   1985 
   1986     // Conservatively avoid trying to use the post-inc value in non-latch
   1987     // exits if there may be pre-inc users in intervening blocks.
   1988     if (LatchBlock != ExitingBlock)
   1989       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
   1990         // Test if the use is reachable from the exiting block. This dominator
   1991         // query is a conservative approximation of reachability.
   1992         if (&*UI != CondUse &&
   1993             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
   1994           // Conservatively assume there may be reuse if the quotient of their
   1995           // strides could be a legal scale.
   1996           const SCEV *A = IU.getStride(*CondUse, L);
   1997           const SCEV *B = IU.getStride(*UI, L);
   1998           if (!A || !B) continue;
   1999           if (SE.getTypeSizeInBits(A->getType()) !=
   2000               SE.getTypeSizeInBits(B->getType())) {
   2001             if (SE.getTypeSizeInBits(A->getType()) >
   2002                 SE.getTypeSizeInBits(B->getType()))
   2003               B = SE.getSignExtendExpr(B, A->getType());
   2004             else
   2005               A = SE.getSignExtendExpr(A, B->getType());
   2006           }
   2007           if (const SCEVConstant *D =
   2008                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
   2009             const ConstantInt *C = D->getValue();
   2010             // Stride of one or negative one can have reuse with non-addresses.
   2011             if (C->isOne() || C->isAllOnesValue())
   2012               goto decline_post_inc;
   2013             // Avoid weird situations.
   2014             if (C->getValue().getMinSignedBits() >= 64 ||
   2015                 C->getValue().isMinSignedValue())
   2016               goto decline_post_inc;
   2017             // Without TLI, assume that any stride might be valid, and so any
   2018             // use might be shared.
   2019             if (!TLI)
   2020               goto decline_post_inc;
   2021             // Check for possible scaled-address reuse.
   2022             Type *AccessTy = getAccessType(UI->getUser());
   2023             TargetLowering::AddrMode AM;
   2024             AM.Scale = C->getSExtValue();
   2025             if (TLI->isLegalAddressingMode(AM, AccessTy))
   2026               goto decline_post_inc;
   2027             AM.Scale = -AM.Scale;
   2028             if (TLI->isLegalAddressingMode(AM, AccessTy))
   2029               goto decline_post_inc;
   2030           }
   2031         }
   2032 
   2033     DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
   2034                  << *Cond << '\n');
   2035 
   2036     // It's possible for the setcc instruction to be anywhere in the loop, and
   2037     // possible for it to have multiple users.  If it is not immediately before
   2038     // the exiting block branch, move it.
   2039     if (&*++BasicBlock::iterator(Cond) != TermBr) {
   2040       if (Cond->hasOneUse()) {
   2041         Cond->moveBefore(TermBr);
   2042       } else {
   2043         // Clone the terminating condition and insert into the loopend.
   2044         ICmpInst *OldCond = Cond;
   2045         Cond = cast<ICmpInst>(Cond->clone());
   2046         Cond->setName(L->getHeader()->getName() + ".termcond");
   2047         ExitingBlock->getInstList().insert(TermBr, Cond);
   2048 
   2049         // Clone the IVUse, as the old use still exists!
   2050         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
   2051         TermBr->replaceUsesOfWith(OldCond, Cond);
   2052       }
   2053     }
   2054 
   2055     // If we get to here, we know that we can transform the setcc instruction to
   2056     // use the post-incremented version of the IV, allowing us to coalesce the
   2057     // live ranges for the IV correctly.
   2058     CondUse->transformToPostInc(L);
   2059     Changed = true;
   2060 
   2061     PostIncs.insert(Cond);
   2062   decline_post_inc:;
   2063   }
   2064 
   2065   // Determine an insertion point for the loop induction variable increment. It
   2066   // must dominate all the post-inc comparisons we just set up, and it must
   2067   // dominate the loop latch edge.
   2068   IVIncInsertPos = L->getLoopLatch()->getTerminator();
   2069   for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
   2070        E = PostIncs.end(); I != E; ++I) {
   2071     BasicBlock *BB =
   2072       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
   2073                                     (*I)->getParent());
   2074     if (BB == (*I)->getParent())
   2075       IVIncInsertPos = *I;
   2076     else if (BB != IVIncInsertPos->getParent())
   2077       IVIncInsertPos = BB->getTerminator();
   2078   }
   2079 }
   2080 
   2081 /// reconcileNewOffset - Determine if the given use can accommodate a fixup
   2082 /// at the given offset and other details. If so, update the use and
   2083 /// return true.
   2084 bool
   2085 LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
   2086                                 LSRUse::KindType Kind, Type *AccessTy) {
   2087   int64_t NewMinOffset = LU.MinOffset;
   2088   int64_t NewMaxOffset = LU.MaxOffset;
   2089   Type *NewAccessTy = AccessTy;
   2090 
   2091   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
   2092   // something conservative, however this can pessimize in the case that one of
   2093   // the uses will have all its uses outside the loop, for example.
   2094   if (LU.Kind != Kind)
   2095     return false;
   2096   // Conservatively assume HasBaseReg is true for now.
   2097   if (NewOffset < LU.MinOffset) {
   2098     if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg,
   2099                           Kind, AccessTy, TLI))
   2100       return false;
   2101     NewMinOffset = NewOffset;
   2102   } else if (NewOffset > LU.MaxOffset) {
   2103     if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg,
   2104                           Kind, AccessTy, TLI))
   2105       return false;
   2106     NewMaxOffset = NewOffset;
   2107   }
   2108   // Check for a mismatched access type, and fall back conservatively as needed.
   2109   // TODO: Be less conservative when the type is similar and can use the same
   2110   // addressing modes.
   2111   if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
   2112     NewAccessTy = Type::getVoidTy(AccessTy->getContext());
   2113 
   2114   // Update the use.
   2115   LU.MinOffset = NewMinOffset;
   2116   LU.MaxOffset = NewMaxOffset;
   2117   LU.AccessTy = NewAccessTy;
   2118   if (NewOffset != LU.Offsets.back())
   2119     LU.Offsets.push_back(NewOffset);
   2120   return true;
   2121 }
   2122 
   2123 /// getUse - Return an LSRUse index and an offset value for a fixup which
   2124 /// needs the given expression, with the given kind and optional access type.
   2125 /// Either reuse an existing use or create a new one, as needed.
   2126 std::pair<size_t, int64_t>
   2127 LSRInstance::getUse(const SCEV *&Expr,
   2128                     LSRUse::KindType Kind, Type *AccessTy) {
   2129   const SCEV *Copy = Expr;
   2130   int64_t Offset = ExtractImmediate(Expr, SE);
   2131 
   2132   // Basic uses can't accept any offset, for example.
   2133   if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) {
   2134     Expr = Copy;
   2135     Offset = 0;
   2136   }
   2137 
   2138   std::pair<UseMapTy::iterator, bool> P =
   2139     UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0));
   2140   if (!P.second) {
   2141     // A use already existed with this base.
   2142     size_t LUIdx = P.first->second;
   2143     LSRUse &LU = Uses[LUIdx];
   2144     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
   2145       // Reuse this use.
   2146       return std::make_pair(LUIdx, Offset);
   2147   }
   2148 
   2149   // Create a new use.
   2150   size_t LUIdx = Uses.size();
   2151   P.first->second = LUIdx;
   2152   Uses.push_back(LSRUse(Kind, AccessTy));
   2153   LSRUse &LU = Uses[LUIdx];
   2154 
   2155   // We don't need to track redundant offsets, but we don't need to go out
   2156   // of our way here to avoid them.
   2157   if (LU.Offsets.empty() || Offset != LU.Offsets.back())
   2158     LU.Offsets.push_back(Offset);
   2159 
   2160   LU.MinOffset = Offset;
   2161   LU.MaxOffset = Offset;
   2162   return std::make_pair(LUIdx, Offset);
   2163 }
   2164 
   2165 /// DeleteUse - Delete the given use from the Uses list.
   2166 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
   2167   if (&LU != &Uses.back())
   2168     std::swap(LU, Uses.back());
   2169   Uses.pop_back();
   2170 
   2171   // Update RegUses.
   2172   RegUses.SwapAndDropUse(LUIdx, Uses.size());
   2173 }
   2174 
   2175 /// FindUseWithFormula - Look for a use distinct from OrigLU which is has
   2176 /// a formula that has the same registers as the given formula.
   2177 LSRUse *
   2178 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
   2179                                        const LSRUse &OrigLU) {
   2180   // Search all uses for the formula. This could be more clever.
   2181   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   2182     LSRUse &LU = Uses[LUIdx];
   2183     // Check whether this use is close enough to OrigLU, to see whether it's
   2184     // worthwhile looking through its formulae.
   2185     // Ignore ICmpZero uses because they may contain formulae generated by
   2186     // GenerateICmpZeroScales, in which case adding fixup offsets may
   2187     // be invalid.
   2188     if (&LU != &OrigLU &&
   2189         LU.Kind != LSRUse::ICmpZero &&
   2190         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
   2191         LU.WidestFixupType == OrigLU.WidestFixupType &&
   2192         LU.HasFormulaWithSameRegs(OrigF)) {
   2193       // Scan through this use's formulae.
   2194       for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
   2195            E = LU.Formulae.end(); I != E; ++I) {
   2196         const Formula &F = *I;
   2197         // Check to see if this formula has the same registers and symbols
   2198         // as OrigF.
   2199         if (F.BaseRegs == OrigF.BaseRegs &&
   2200             F.ScaledReg == OrigF.ScaledReg &&
   2201             F.AM.BaseGV == OrigF.AM.BaseGV &&
   2202             F.AM.Scale == OrigF.AM.Scale &&
   2203             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
   2204           if (F.AM.BaseOffs == 0)
   2205             return &LU;
   2206           // This is the formula where all the registers and symbols matched;
   2207           // there aren't going to be any others. Since we declined it, we
   2208           // can skip the rest of the formulae and proceed to the next LSRUse.
   2209           break;
   2210         }
   2211       }
   2212     }
   2213   }
   2214 
   2215   // Nothing looked good.
   2216   return 0;
   2217 }
   2218 
   2219 void LSRInstance::CollectInterestingTypesAndFactors() {
   2220   SmallSetVector<const SCEV *, 4> Strides;
   2221 
   2222   // Collect interesting types and strides.
   2223   SmallVector<const SCEV *, 4> Worklist;
   2224   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
   2225     const SCEV *Expr = IU.getExpr(*UI);
   2226 
   2227     // Collect interesting types.
   2228     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
   2229 
   2230     // Add strides for mentioned loops.
   2231     Worklist.push_back(Expr);
   2232     do {
   2233       const SCEV *S = Worklist.pop_back_val();
   2234       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
   2235         if (AR->getLoop() == L)
   2236           Strides.insert(AR->getStepRecurrence(SE));
   2237         Worklist.push_back(AR->getStart());
   2238       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
   2239         Worklist.append(Add->op_begin(), Add->op_end());
   2240       }
   2241     } while (!Worklist.empty());
   2242   }
   2243 
   2244   // Compute interesting factors from the set of interesting strides.
   2245   for (SmallSetVector<const SCEV *, 4>::const_iterator
   2246        I = Strides.begin(), E = Strides.end(); I != E; ++I)
   2247     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
   2248          llvm::next(I); NewStrideIter != E; ++NewStrideIter) {
   2249       const SCEV *OldStride = *I;
   2250       const SCEV *NewStride = *NewStrideIter;
   2251 
   2252       if (SE.getTypeSizeInBits(OldStride->getType()) !=
   2253           SE.getTypeSizeInBits(NewStride->getType())) {
   2254         if (SE.getTypeSizeInBits(OldStride->getType()) >
   2255             SE.getTypeSizeInBits(NewStride->getType()))
   2256           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
   2257         else
   2258           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
   2259       }
   2260       if (const SCEVConstant *Factor =
   2261             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
   2262                                                         SE, true))) {
   2263         if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
   2264           Factors.insert(Factor->getValue()->getValue().getSExtValue());
   2265       } else if (const SCEVConstant *Factor =
   2266                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
   2267                                                                NewStride,
   2268                                                                SE, true))) {
   2269         if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
   2270           Factors.insert(Factor->getValue()->getValue().getSExtValue());
   2271       }
   2272     }
   2273 
   2274   // If all uses use the same type, don't bother looking for truncation-based
   2275   // reuse.
   2276   if (Types.size() == 1)
   2277     Types.clear();
   2278 
   2279   DEBUG(print_factors_and_types(dbgs()));
   2280 }
   2281 
   2282 /// findIVOperand - Helper for CollectChains that finds an IV operand (computed
   2283 /// by an AddRec in this loop) within [OI,OE) or returns OE. If IVUsers mapped
   2284 /// Instructions to IVStrideUses, we could partially skip this.
   2285 static User::op_iterator
   2286 findIVOperand(User::op_iterator OI, User::op_iterator OE,
   2287               Loop *L, ScalarEvolution &SE) {
   2288   for(; OI != OE; ++OI) {
   2289     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
   2290       if (!SE.isSCEVable(Oper->getType()))
   2291         continue;
   2292 
   2293       if (const SCEVAddRecExpr *AR =
   2294           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
   2295         if (AR->getLoop() == L)
   2296           break;
   2297       }
   2298     }
   2299   }
   2300   return OI;
   2301 }
   2302 
   2303 /// getWideOperand - IVChain logic must consistenctly peek base TruncInst
   2304 /// operands, so wrap it in a convenient helper.
   2305 static Value *getWideOperand(Value *Oper) {
   2306   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
   2307     return Trunc->getOperand(0);
   2308   return Oper;
   2309 }
   2310 
   2311 /// isCompatibleIVType - Return true if we allow an IV chain to include both
   2312 /// types.
   2313 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
   2314   Type *LType = LVal->getType();
   2315   Type *RType = RVal->getType();
   2316   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy());
   2317 }
   2318 
   2319 /// getExprBase - Return an approximation of this SCEV expression's "base", or
   2320 /// NULL for any constant. Returning the expression itself is
   2321 /// conservative. Returning a deeper subexpression is more precise and valid as
   2322 /// long as it isn't less complex than another subexpression. For expressions
   2323 /// involving multiple unscaled values, we need to return the pointer-type
   2324 /// SCEVUnknown. This avoids forming chains across objects, such as:
   2325 /// PrevOper==a[i], IVOper==b[i], IVInc==b-a.
   2326 ///
   2327 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
   2328 /// SCEVUnknown, we simply return the rightmost SCEV operand.
   2329 static const SCEV *getExprBase(const SCEV *S) {
   2330   switch (S->getSCEVType()) {
   2331   default: // uncluding scUnknown.
   2332     return S;
   2333   case scConstant:
   2334     return 0;
   2335   case scTruncate:
   2336     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
   2337   case scZeroExtend:
   2338     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
   2339   case scSignExtend:
   2340     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
   2341   case scAddExpr: {
   2342     // Skip over scaled operands (scMulExpr) to follow add operands as long as
   2343     // there's nothing more complex.
   2344     // FIXME: not sure if we want to recognize negation.
   2345     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
   2346     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
   2347            E(Add->op_begin()); I != E; ++I) {
   2348       const SCEV *SubExpr = *I;
   2349       if (SubExpr->getSCEVType() == scAddExpr)
   2350         return getExprBase(SubExpr);
   2351 
   2352       if (SubExpr->getSCEVType() != scMulExpr)
   2353         return SubExpr;
   2354     }
   2355     return S; // all operands are scaled, be conservative.
   2356   }
   2357   case scAddRecExpr:
   2358     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
   2359   }
   2360 }
   2361 
   2362 /// Return true if the chain increment is profitable to expand into a loop
   2363 /// invariant value, which may require its own register. A profitable chain
   2364 /// increment will be an offset relative to the same base. We allow such offsets
   2365 /// to potentially be used as chain increment as long as it's not obviously
   2366 /// expensive to expand using real instructions.
   2367 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
   2368                                     const SCEV *IncExpr,
   2369                                     ScalarEvolution &SE) {
   2370   // Aggressively form chains when -stress-ivchain.
   2371   if (StressIVChain)
   2372     return true;
   2373 
   2374   // Do not replace a constant offset from IV head with a nonconstant IV
   2375   // increment.
   2376   if (!isa<SCEVConstant>(IncExpr)) {
   2377     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
   2378     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
   2379       return 0;
   2380   }
   2381 
   2382   SmallPtrSet<const SCEV*, 8> Processed;
   2383   return !isHighCostExpansion(IncExpr, Processed, SE);
   2384 }
   2385 
   2386 /// Return true if the number of registers needed for the chain is estimated to
   2387 /// be less than the number required for the individual IV users. First prohibit
   2388 /// any IV users that keep the IV live across increments (the Users set should
   2389 /// be empty). Next count the number and type of increments in the chain.
   2390 ///
   2391 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
   2392 /// effectively use postinc addressing modes. Only consider it profitable it the
   2393 /// increments can be computed in fewer registers when chained.
   2394 ///
   2395 /// TODO: Consider IVInc free if it's already used in another chains.
   2396 static bool
   2397 isProfitableChain(IVChain &Chain, SmallPtrSet<Instruction*, 4> &Users,
   2398                   ScalarEvolution &SE, const TargetLowering *TLI) {
   2399   if (StressIVChain)
   2400     return true;
   2401 
   2402   if (!Chain.hasIncs())
   2403     return false;
   2404 
   2405   if (!Users.empty()) {
   2406     DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
   2407           for (SmallPtrSet<Instruction*, 4>::const_iterator I = Users.begin(),
   2408                  E = Users.end(); I != E; ++I) {
   2409             dbgs() << "  " << **I << "\n";
   2410           });
   2411     return false;
   2412   }
   2413   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
   2414 
   2415   // The chain itself may require a register, so intialize cost to 1.
   2416   int cost = 1;
   2417 
   2418   // A complete chain likely eliminates the need for keeping the original IV in
   2419   // a register. LSR does not currently know how to form a complete chain unless
   2420   // the header phi already exists.
   2421   if (isa<PHINode>(Chain.tailUserInst())
   2422       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
   2423     --cost;
   2424   }
   2425   const SCEV *LastIncExpr = 0;
   2426   unsigned NumConstIncrements = 0;
   2427   unsigned NumVarIncrements = 0;
   2428   unsigned NumReusedIncrements = 0;
   2429   for (IVChain::const_iterator I = Chain.begin(), E = Chain.end();
   2430        I != E; ++I) {
   2431 
   2432     if (I->IncExpr->isZero())
   2433       continue;
   2434 
   2435     // Incrementing by zero or some constant is neutral. We assume constants can
   2436     // be folded into an addressing mode or an add's immediate operand.
   2437     if (isa<SCEVConstant>(I->IncExpr)) {
   2438       ++NumConstIncrements;
   2439       continue;
   2440     }
   2441 
   2442     if (I->IncExpr == LastIncExpr)
   2443       ++NumReusedIncrements;
   2444     else
   2445       ++NumVarIncrements;
   2446 
   2447     LastIncExpr = I->IncExpr;
   2448   }
   2449   // An IV chain with a single increment is handled by LSR's postinc
   2450   // uses. However, a chain with multiple increments requires keeping the IV's
   2451   // value live longer than it needs to be if chained.
   2452   if (NumConstIncrements > 1)
   2453     --cost;
   2454 
   2455   // Materializing increment expressions in the preheader that didn't exist in
   2456   // the original code may cost a register. For example, sign-extended array
   2457   // indices can produce ridiculous increments like this:
   2458   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
   2459   cost += NumVarIncrements;
   2460 
   2461   // Reusing variable increments likely saves a register to hold the multiple of
   2462   // the stride.
   2463   cost -= NumReusedIncrements;
   2464 
   2465   DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
   2466                << "\n");
   2467 
   2468   return cost < 0;
   2469 }
   2470 
   2471 /// ChainInstruction - Add this IV user to an existing chain or make it the head
   2472 /// of a new chain.
   2473 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
   2474                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
   2475   // When IVs are used as types of varying widths, they are generally converted
   2476   // to a wider type with some uses remaining narrow under a (free) trunc.
   2477   Value *const NextIV = getWideOperand(IVOper);
   2478   const SCEV *const OperExpr = SE.getSCEV(NextIV);
   2479   const SCEV *const OperExprBase = getExprBase(OperExpr);
   2480 
   2481   // Visit all existing chains. Check if its IVOper can be computed as a
   2482   // profitable loop invariant increment from the last link in the Chain.
   2483   unsigned ChainIdx = 0, NChains = IVChainVec.size();
   2484   const SCEV *LastIncExpr = 0;
   2485   for (; ChainIdx < NChains; ++ChainIdx) {
   2486     IVChain &Chain = IVChainVec[ChainIdx];
   2487 
   2488     // Prune the solution space aggressively by checking that both IV operands
   2489     // are expressions that operate on the same unscaled SCEVUnknown. This
   2490     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
   2491     // first avoids creating extra SCEV expressions.
   2492     if (!StressIVChain && Chain.ExprBase != OperExprBase)
   2493       continue;
   2494 
   2495     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
   2496     if (!isCompatibleIVType(PrevIV, NextIV))
   2497       continue;
   2498 
   2499     // A phi node terminates a chain.
   2500     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
   2501       continue;
   2502 
   2503     // The increment must be loop-invariant so it can be kept in a register.
   2504     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
   2505     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
   2506     if (!SE.isLoopInvariant(IncExpr, L))
   2507       continue;
   2508 
   2509     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
   2510       LastIncExpr = IncExpr;
   2511       break;
   2512     }
   2513   }
   2514   // If we haven't found a chain, create a new one, unless we hit the max. Don't
   2515   // bother for phi nodes, because they must be last in the chain.
   2516   if (ChainIdx == NChains) {
   2517     if (isa<PHINode>(UserInst))
   2518       return;
   2519     if (NChains >= MaxChains && !StressIVChain) {
   2520       DEBUG(dbgs() << "IV Chain Limit\n");
   2521       return;
   2522     }
   2523     LastIncExpr = OperExpr;
   2524     // IVUsers may have skipped over sign/zero extensions. We don't currently
   2525     // attempt to form chains involving extensions unless they can be hoisted
   2526     // into this loop's AddRec.
   2527     if (!isa<SCEVAddRecExpr>(LastIncExpr))
   2528       return;
   2529     ++NChains;
   2530     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
   2531                                  OperExprBase));
   2532     ChainUsersVec.resize(NChains);
   2533     DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
   2534                  << ") IV=" << *LastIncExpr << "\n");
   2535   } else {
   2536     DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
   2537                  << ") IV+" << *LastIncExpr << "\n");
   2538     // Add this IV user to the end of the chain.
   2539     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
   2540   }
   2541 
   2542   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
   2543   // This chain's NearUsers become FarUsers.
   2544   if (!LastIncExpr->isZero()) {
   2545     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
   2546                                             NearUsers.end());
   2547     NearUsers.clear();
   2548   }
   2549 
   2550   // All other uses of IVOperand become near uses of the chain.
   2551   // We currently ignore intermediate values within SCEV expressions, assuming
   2552   // they will eventually be used be the current chain, or can be computed
   2553   // from one of the chain increments. To be more precise we could
   2554   // transitively follow its user and only add leaf IV users to the set.
   2555   for (Value::use_iterator UseIter = IVOper->use_begin(),
   2556          UseEnd = IVOper->use_end(); UseIter != UseEnd; ++UseIter) {
   2557     Instruction *OtherUse = dyn_cast<Instruction>(*UseIter);
   2558     if (!OtherUse || OtherUse == UserInst)
   2559       continue;
   2560     if (SE.isSCEVable(OtherUse->getType())
   2561         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
   2562         && IU.isIVUserOrOperand(OtherUse)) {
   2563       continue;
   2564     }
   2565     NearUsers.insert(OtherUse);
   2566   }
   2567 
   2568   // Since this user is part of the chain, it's no longer considered a use
   2569   // of the chain.
   2570   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
   2571 }
   2572 
   2573 /// CollectChains - Populate the vector of Chains.
   2574 ///
   2575 /// This decreases ILP at the architecture level. Targets with ample registers,
   2576 /// multiple memory ports, and no register renaming probably don't want
   2577 /// this. However, such targets should probably disable LSR altogether.
   2578 ///
   2579 /// The job of LSR is to make a reasonable choice of induction variables across
   2580 /// the loop. Subsequent passes can easily "unchain" computation exposing more
   2581 /// ILP *within the loop* if the target wants it.
   2582 ///
   2583 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
   2584 /// will not reorder memory operations, it will recognize this as a chain, but
   2585 /// will generate redundant IV increments. Ideally this would be corrected later
   2586 /// by a smart scheduler:
   2587 ///        = A[i]
   2588 ///        = A[i+x]
   2589 /// A[i]   =
   2590 /// A[i+x] =
   2591 ///
   2592 /// TODO: Walk the entire domtree within this loop, not just the path to the
   2593 /// loop latch. This will discover chains on side paths, but requires
   2594 /// maintaining multiple copies of the Chains state.
   2595 void LSRInstance::CollectChains() {
   2596   DEBUG(dbgs() << "Collecting IV Chains.\n");
   2597   SmallVector<ChainUsers, 8> ChainUsersVec;
   2598 
   2599   SmallVector<BasicBlock *,8> LatchPath;
   2600   BasicBlock *LoopHeader = L->getHeader();
   2601   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
   2602        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
   2603     LatchPath.push_back(Rung->getBlock());
   2604   }
   2605   LatchPath.push_back(LoopHeader);
   2606 
   2607   // Walk the instruction stream from the loop header to the loop latch.
   2608   for (SmallVectorImpl<BasicBlock *>::reverse_iterator
   2609          BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend();
   2610        BBIter != BBEnd; ++BBIter) {
   2611     for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end();
   2612          I != E; ++I) {
   2613       // Skip instructions that weren't seen by IVUsers analysis.
   2614       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(I))
   2615         continue;
   2616 
   2617       // Ignore users that are part of a SCEV expression. This way we only
   2618       // consider leaf IV Users. This effectively rediscovers a portion of
   2619       // IVUsers analysis but in program order this time.
   2620       if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(I)))
   2621         continue;
   2622 
   2623       // Remove this instruction from any NearUsers set it may be in.
   2624       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
   2625            ChainIdx < NChains; ++ChainIdx) {
   2626         ChainUsersVec[ChainIdx].NearUsers.erase(I);
   2627       }
   2628       // Search for operands that can be chained.
   2629       SmallPtrSet<Instruction*, 4> UniqueOperands;
   2630       User::op_iterator IVOpEnd = I->op_end();
   2631       User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE);
   2632       while (IVOpIter != IVOpEnd) {
   2633         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
   2634         if (UniqueOperands.insert(IVOpInst))
   2635           ChainInstruction(I, IVOpInst, ChainUsersVec);
   2636         IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE);
   2637       }
   2638     } // Continue walking down the instructions.
   2639   } // Continue walking down the domtree.
   2640   // Visit phi backedges to determine if the chain can generate the IV postinc.
   2641   for (BasicBlock::iterator I = L->getHeader()->begin();
   2642        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
   2643     if (!SE.isSCEVable(PN->getType()))
   2644       continue;
   2645 
   2646     Instruction *IncV =
   2647       dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
   2648     if (IncV)
   2649       ChainInstruction(PN, IncV, ChainUsersVec);
   2650   }
   2651   // Remove any unprofitable chains.
   2652   unsigned ChainIdx = 0;
   2653   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
   2654        UsersIdx < NChains; ++UsersIdx) {
   2655     if (!isProfitableChain(IVChainVec[UsersIdx],
   2656                            ChainUsersVec[UsersIdx].FarUsers, SE, TLI))
   2657       continue;
   2658     // Preserve the chain at UsesIdx.
   2659     if (ChainIdx != UsersIdx)
   2660       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
   2661     FinalizeChain(IVChainVec[ChainIdx]);
   2662     ++ChainIdx;
   2663   }
   2664   IVChainVec.resize(ChainIdx);
   2665 }
   2666 
   2667 void LSRInstance::FinalizeChain(IVChain &Chain) {
   2668   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
   2669   DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
   2670 
   2671   for (IVChain::const_iterator I = Chain.begin(), E = Chain.end();
   2672        I != E; ++I) {
   2673     DEBUG(dbgs() << "        Inc: " << *I->UserInst << "\n");
   2674     User::op_iterator UseI =
   2675       std::find(I->UserInst->op_begin(), I->UserInst->op_end(), I->IVOperand);
   2676     assert(UseI != I->UserInst->op_end() && "cannot find IV operand");
   2677     IVIncSet.insert(UseI);
   2678   }
   2679 }
   2680 
   2681 /// Return true if the IVInc can be folded into an addressing mode.
   2682 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
   2683                              Value *Operand, const TargetLowering *TLI) {
   2684   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
   2685   if (!IncConst || !isAddressUse(UserInst, Operand))
   2686     return false;
   2687 
   2688   if (IncConst->getValue()->getValue().getMinSignedBits() > 64)
   2689     return false;
   2690 
   2691   int64_t IncOffset = IncConst->getValue()->getSExtValue();
   2692   if (!isAlwaysFoldable(IncOffset, /*BaseGV=*/0, /*HaseBaseReg=*/false,
   2693                        LSRUse::Address, getAccessType(UserInst), TLI))
   2694     return false;
   2695 
   2696   return true;
   2697 }
   2698 
   2699 /// GenerateIVChains - Generate an add or subtract for each IVInc in a chain to
   2700 /// materialize the IV user's operand from the previous IV user's operand.
   2701 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
   2702                                   SmallVectorImpl<WeakVH> &DeadInsts) {
   2703   // Find the new IVOperand for the head of the chain. It may have been replaced
   2704   // by LSR.
   2705   const IVInc &Head = Chain.Incs[0];
   2706   User::op_iterator IVOpEnd = Head.UserInst->op_end();
   2707   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
   2708                                              IVOpEnd, L, SE);
   2709   Value *IVSrc = 0;
   2710   while (IVOpIter != IVOpEnd) {
   2711     IVSrc = getWideOperand(*IVOpIter);
   2712 
   2713     // If this operand computes the expression that the chain needs, we may use
   2714     // it. (Check this after setting IVSrc which is used below.)
   2715     //
   2716     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
   2717     // narrow for the chain, so we can no longer use it. We do allow using a
   2718     // wider phi, assuming the LSR checked for free truncation. In that case we
   2719     // should already have a truncate on this operand such that
   2720     // getSCEV(IVSrc) == IncExpr.
   2721     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
   2722         || SE.getSCEV(IVSrc) == Head.IncExpr) {
   2723       break;
   2724     }
   2725     IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE);
   2726   }
   2727   if (IVOpIter == IVOpEnd) {
   2728     // Gracefully give up on this chain.
   2729     DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
   2730     return;
   2731   }
   2732 
   2733   DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
   2734   Type *IVTy = IVSrc->getType();
   2735   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
   2736   const SCEV *LeftOverExpr = 0;
   2737   for (IVChain::const_iterator IncI = Chain.begin(),
   2738          IncE = Chain.end(); IncI != IncE; ++IncI) {
   2739 
   2740     Instruction *InsertPt = IncI->UserInst;
   2741     if (isa<PHINode>(InsertPt))
   2742       InsertPt = L->getLoopLatch()->getTerminator();
   2743 
   2744     // IVOper will replace the current IV User's operand. IVSrc is the IV
   2745     // value currently held in a register.
   2746     Value *IVOper = IVSrc;
   2747     if (!IncI->IncExpr->isZero()) {
   2748       // IncExpr was the result of subtraction of two narrow values, so must
   2749       // be signed.
   2750       const SCEV *IncExpr = SE.getNoopOrSignExtend(IncI->IncExpr, IntTy);
   2751       LeftOverExpr = LeftOverExpr ?
   2752         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
   2753     }
   2754     if (LeftOverExpr && !LeftOverExpr->isZero()) {
   2755       // Expand the IV increment.
   2756       Rewriter.clearPostInc();
   2757       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
   2758       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
   2759                                              SE.getUnknown(IncV));
   2760       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
   2761 
   2762       // If an IV increment can't be folded, use it as the next IV value.
   2763       if (!canFoldIVIncExpr(LeftOverExpr, IncI->UserInst, IncI->IVOperand,
   2764                             TLI)) {
   2765         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
   2766         IVSrc = IVOper;
   2767         LeftOverExpr = 0;
   2768       }
   2769     }
   2770     Type *OperTy = IncI->IVOperand->getType();
   2771     if (IVTy != OperTy) {
   2772       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
   2773              "cannot extend a chained IV");
   2774       IRBuilder<> Builder(InsertPt);
   2775       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
   2776     }
   2777     IncI->UserInst->replaceUsesOfWith(IncI->IVOperand, IVOper);
   2778     DeadInsts.push_back(IncI->IVOperand);
   2779   }
   2780   // If LSR created a new, wider phi, we may also replace its postinc. We only
   2781   // do this if we also found a wide value for the head of the chain.
   2782   if (isa<PHINode>(Chain.tailUserInst())) {
   2783     for (BasicBlock::iterator I = L->getHeader()->begin();
   2784          PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
   2785       if (!isCompatibleIVType(Phi, IVSrc))
   2786         continue;
   2787       Instruction *PostIncV = dyn_cast<Instruction>(
   2788         Phi->getIncomingValueForBlock(L->getLoopLatch()));
   2789       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
   2790         continue;
   2791       Value *IVOper = IVSrc;
   2792       Type *PostIncTy = PostIncV->getType();
   2793       if (IVTy != PostIncTy) {
   2794         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
   2795         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
   2796         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
   2797         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
   2798       }
   2799       Phi->replaceUsesOfWith(PostIncV, IVOper);
   2800       DeadInsts.push_back(PostIncV);
   2801     }
   2802   }
   2803 }
   2804 
   2805 void LSRInstance::CollectFixupsAndInitialFormulae() {
   2806   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
   2807     Instruction *UserInst = UI->getUser();
   2808     // Skip IV users that are part of profitable IV Chains.
   2809     User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(),
   2810                                        UI->getOperandValToReplace());
   2811     assert(UseI != UserInst->op_end() && "cannot find IV operand");
   2812     if (IVIncSet.count(UseI))
   2813       continue;
   2814 
   2815     // Record the uses.
   2816     LSRFixup &LF = getNewFixup();
   2817     LF.UserInst = UserInst;
   2818     LF.OperandValToReplace = UI->getOperandValToReplace();
   2819     LF.PostIncLoops = UI->getPostIncLoops();
   2820 
   2821     LSRUse::KindType Kind = LSRUse::Basic;
   2822     Type *AccessTy = 0;
   2823     if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
   2824       Kind = LSRUse::Address;
   2825       AccessTy = getAccessType(LF.UserInst);
   2826     }
   2827 
   2828     const SCEV *S = IU.getExpr(*UI);
   2829 
   2830     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
   2831     // (N - i == 0), and this allows (N - i) to be the expression that we work
   2832     // with rather than just N or i, so we can consider the register
   2833     // requirements for both N and i at the same time. Limiting this code to
   2834     // equality icmps is not a problem because all interesting loops use
   2835     // equality icmps, thanks to IndVarSimplify.
   2836     if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
   2837       if (CI->isEquality()) {
   2838         // Swap the operands if needed to put the OperandValToReplace on the
   2839         // left, for consistency.
   2840         Value *NV = CI->getOperand(1);
   2841         if (NV == LF.OperandValToReplace) {
   2842           CI->setOperand(1, CI->getOperand(0));
   2843           CI->setOperand(0, NV);
   2844           NV = CI->getOperand(1);
   2845           Changed = true;
   2846         }
   2847 
   2848         // x == y  -->  x - y == 0
   2849         const SCEV *N = SE.getSCEV(NV);
   2850         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N)) {
   2851           // S is normalized, so normalize N before folding it into S
   2852           // to keep the result normalized.
   2853           N = TransformForPostIncUse(Normalize, N, CI, 0,
   2854                                      LF.PostIncLoops, SE, DT);
   2855           Kind = LSRUse::ICmpZero;
   2856           S = SE.getMinusSCEV(N, S);
   2857         }
   2858 
   2859         // -1 and the negations of all interesting strides (except the negation
   2860         // of -1) are now also interesting.
   2861         for (size_t i = 0, e = Factors.size(); i != e; ++i)
   2862           if (Factors[i] != -1)
   2863             Factors.insert(-(uint64_t)Factors[i]);
   2864         Factors.insert(-1);
   2865       }
   2866 
   2867     // Set up the initial formula for this use.
   2868     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
   2869     LF.LUIdx = P.first;
   2870     LF.Offset = P.second;
   2871     LSRUse &LU = Uses[LF.LUIdx];
   2872     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
   2873     if (!LU.WidestFixupType ||
   2874         SE.getTypeSizeInBits(LU.WidestFixupType) <
   2875         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
   2876       LU.WidestFixupType = LF.OperandValToReplace->getType();
   2877 
   2878     // If this is the first use of this LSRUse, give it a formula.
   2879     if (LU.Formulae.empty()) {
   2880       InsertInitialFormula(S, LU, LF.LUIdx);
   2881       CountRegisters(LU.Formulae.back(), LF.LUIdx);
   2882     }
   2883   }
   2884 
   2885   DEBUG(print_fixups(dbgs()));
   2886 }
   2887 
   2888 /// InsertInitialFormula - Insert a formula for the given expression into
   2889 /// the given use, separating out loop-variant portions from loop-invariant
   2890 /// and loop-computable portions.
   2891 void
   2892 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
   2893   Formula F;
   2894   F.InitialMatch(S, L, SE);
   2895   bool Inserted = InsertFormula(LU, LUIdx, F);
   2896   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
   2897 }
   2898 
   2899 /// InsertSupplementalFormula - Insert a simple single-register formula for
   2900 /// the given expression into the given use.
   2901 void
   2902 LSRInstance::InsertSupplementalFormula(const SCEV *S,
   2903                                        LSRUse &LU, size_t LUIdx) {
   2904   Formula F;
   2905   F.BaseRegs.push_back(S);
   2906   F.AM.HasBaseReg = true;
   2907   bool Inserted = InsertFormula(LU, LUIdx, F);
   2908   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
   2909 }
   2910 
   2911 /// CountRegisters - Note which registers are used by the given formula,
   2912 /// updating RegUses.
   2913 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
   2914   if (F.ScaledReg)
   2915     RegUses.CountRegister(F.ScaledReg, LUIdx);
   2916   for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
   2917        E = F.BaseRegs.end(); I != E; ++I)
   2918     RegUses.CountRegister(*I, LUIdx);
   2919 }
   2920 
   2921 /// InsertFormula - If the given formula has not yet been inserted, add it to
   2922 /// the list, and return true. Return false otherwise.
   2923 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
   2924   if (!LU.InsertFormula(F))
   2925     return false;
   2926 
   2927   CountRegisters(F, LUIdx);
   2928   return true;
   2929 }
   2930 
   2931 /// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
   2932 /// loop-invariant values which we're tracking. These other uses will pin these
   2933 /// values in registers, making them less profitable for elimination.
   2934 /// TODO: This currently misses non-constant addrec step registers.
   2935 /// TODO: Should this give more weight to users inside the loop?
   2936 void
   2937 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
   2938   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
   2939   SmallPtrSet<const SCEV *, 8> Inserted;
   2940 
   2941   while (!Worklist.empty()) {
   2942     const SCEV *S = Worklist.pop_back_val();
   2943 
   2944     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
   2945       Worklist.append(N->op_begin(), N->op_end());
   2946     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
   2947       Worklist.push_back(C->getOperand());
   2948     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
   2949       Worklist.push_back(D->getLHS());
   2950       Worklist.push_back(D->getRHS());
   2951     } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
   2952       if (!Inserted.insert(U)) continue;
   2953       const Value *V = U->getValue();
   2954       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
   2955         // Look for instructions defined outside the loop.
   2956         if (L->contains(Inst)) continue;
   2957       } else if (isa<UndefValue>(V))
   2958         // Undef doesn't have a live range, so it doesn't matter.
   2959         continue;
   2960       for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
   2961            UI != UE; ++UI) {
   2962         const Instruction *UserInst = dyn_cast<Instruction>(*UI);
   2963         // Ignore non-instructions.
   2964         if (!UserInst)
   2965           continue;
   2966         // Ignore instructions in other functions (as can happen with
   2967         // Constants).
   2968         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
   2969           continue;
   2970         // Ignore instructions not dominated by the loop.
   2971         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
   2972           UserInst->getParent() :
   2973           cast<PHINode>(UserInst)->getIncomingBlock(
   2974             PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
   2975         if (!DT.dominates(L->getHeader(), UseBB))
   2976           continue;
   2977         // Ignore uses which are part of other SCEV expressions, to avoid
   2978         // analyzing them multiple times.
   2979         if (SE.isSCEVable(UserInst->getType())) {
   2980           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
   2981           // If the user is a no-op, look through to its uses.
   2982           if (!isa<SCEVUnknown>(UserS))
   2983             continue;
   2984           if (UserS == U) {
   2985             Worklist.push_back(
   2986               SE.getUnknown(const_cast<Instruction *>(UserInst)));
   2987             continue;
   2988           }
   2989         }
   2990         // Ignore icmp instructions which are already being analyzed.
   2991         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
   2992           unsigned OtherIdx = !UI.getOperandNo();
   2993           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
   2994           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
   2995             continue;
   2996         }
   2997 
   2998         LSRFixup &LF = getNewFixup();
   2999         LF.UserInst = const_cast<Instruction *>(UserInst);
   3000         LF.OperandValToReplace = UI.getUse();
   3001         std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
   3002         LF.LUIdx = P.first;
   3003         LF.Offset = P.second;
   3004         LSRUse &LU = Uses[LF.LUIdx];
   3005         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
   3006         if (!LU.WidestFixupType ||
   3007             SE.getTypeSizeInBits(LU.WidestFixupType) <
   3008             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
   3009           LU.WidestFixupType = LF.OperandValToReplace->getType();
   3010         InsertSupplementalFormula(U, LU, LF.LUIdx);
   3011         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
   3012         break;
   3013       }
   3014     }
   3015   }
   3016 }
   3017 
   3018 /// CollectSubexprs - Split S into subexpressions which can be pulled out into
   3019 /// separate registers. If C is non-null, multiply each subexpression by C.
   3020 ///
   3021 /// Return remainder expression after factoring the subexpressions captured by
   3022 /// Ops. If Ops is complete, return NULL.
   3023 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
   3024                                    SmallVectorImpl<const SCEV *> &Ops,
   3025                                    const Loop *L,
   3026                                    ScalarEvolution &SE,
   3027                                    unsigned Depth = 0) {
   3028   // Arbitrarily cap recursion to protect compile time.
   3029   if (Depth >= 3)
   3030     return S;
   3031 
   3032   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
   3033     // Break out add operands.
   3034     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
   3035          I != E; ++I) {
   3036       const SCEV *Remainder = CollectSubexprs(*I, C, Ops, L, SE, Depth+1);
   3037       if (Remainder)
   3038         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
   3039     }
   3040     return NULL;
   3041   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
   3042     // Split a non-zero base out of an addrec.
   3043     if (AR->getStart()->isZero())
   3044       return S;
   3045 
   3046     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
   3047                                             C, Ops, L, SE, Depth+1);
   3048     // Split the non-zero AddRec unless it is part of a nested recurrence that
   3049     // does not pertain to this loop.
   3050     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
   3051       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
   3052       Remainder = NULL;
   3053     }
   3054     if (Remainder != AR->getStart()) {
   3055       if (!Remainder)
   3056         Remainder = SE.getConstant(AR->getType(), 0);
   3057       return SE.getAddRecExpr(Remainder,
   3058                               AR->getStepRecurrence(SE),
   3059                               AR->getLoop(),
   3060                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
   3061                               SCEV::FlagAnyWrap);
   3062     }
   3063   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
   3064     // Break (C * (a + b + c)) into C*a + C*b + C*c.
   3065     if (Mul->getNumOperands() != 2)
   3066       return S;
   3067     if (const SCEVConstant *Op0 =
   3068         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
   3069       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
   3070       const SCEV *Remainder =
   3071         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
   3072       if (Remainder)
   3073         Ops.push_back(SE.getMulExpr(C, Remainder));
   3074       return NULL;
   3075     }
   3076   }
   3077   return S;
   3078 }
   3079 
   3080 /// GenerateReassociations - Split out subexpressions from adds and the bases of
   3081 /// addrecs.
   3082 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
   3083                                          Formula Base,
   3084                                          unsigned Depth) {
   3085   // Arbitrarily cap recursion to protect compile time.
   3086   if (Depth >= 3) return;
   3087 
   3088   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
   3089     const SCEV *BaseReg = Base.BaseRegs[i];
   3090 
   3091     SmallVector<const SCEV *, 8> AddOps;
   3092     const SCEV *Remainder = CollectSubexprs(BaseReg, 0, AddOps, L, SE);
   3093     if (Remainder)
   3094       AddOps.push_back(Remainder);
   3095 
   3096     if (AddOps.size() == 1) continue;
   3097 
   3098     for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
   3099          JE = AddOps.end(); J != JE; ++J) {
   3100 
   3101       // Loop-variant "unknown" values are uninteresting; we won't be able to
   3102       // do anything meaningful with them.
   3103       if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
   3104         continue;
   3105 
   3106       // Don't pull a constant into a register if the constant could be folded
   3107       // into an immediate field.
   3108       if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
   3109                            Base.getNumRegs() > 1,
   3110                            LU.Kind, LU.AccessTy, TLI, SE))
   3111         continue;
   3112 
   3113       // Collect all operands except *J.
   3114       SmallVector<const SCEV *, 8> InnerAddOps
   3115         (((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
   3116       InnerAddOps.append
   3117         (llvm::next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end());
   3118 
   3119       // Don't leave just a constant behind in a register if the constant could
   3120       // be folded into an immediate field.
   3121       if (InnerAddOps.size() == 1 &&
   3122           isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
   3123                            Base.getNumRegs() > 1,
   3124                            LU.Kind, LU.AccessTy, TLI, SE))
   3125         continue;
   3126 
   3127       const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
   3128       if (InnerSum->isZero())
   3129         continue;
   3130       Formula F = Base;
   3131 
   3132       // Add the remaining pieces of the add back into the new formula.
   3133       const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
   3134       if (TLI && InnerSumSC &&
   3135           SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
   3136           TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
   3137                                    InnerSumSC->getValue()->getZExtValue())) {
   3138         F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
   3139                            InnerSumSC->getValue()->getZExtValue();
   3140         F.BaseRegs.erase(F.BaseRegs.begin() + i);
   3141       } else
   3142         F.BaseRegs[i] = InnerSum;
   3143 
   3144       // Add J as its own register, or an unfolded immediate.
   3145       const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
   3146       if (TLI && SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
   3147           TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
   3148                                    SC->getValue()->getZExtValue()))
   3149         F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
   3150                            SC->getValue()->getZExtValue();
   3151       else
   3152         F.BaseRegs.push_back(*J);
   3153 
   3154       if (InsertFormula(LU, LUIdx, F))
   3155         // If that formula hadn't been seen before, recurse to find more like
   3156         // it.
   3157         GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
   3158     }
   3159   }
   3160 }
   3161 
   3162 /// GenerateCombinations - Generate a formula consisting of all of the
   3163 /// loop-dominating registers added into a single register.
   3164 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
   3165                                        Formula Base) {
   3166   // This method is only interesting on a plurality of registers.
   3167   if (Base.BaseRegs.size() <= 1) return;
   3168 
   3169   Formula F = Base;
   3170   F.BaseRegs.clear();
   3171   SmallVector<const SCEV *, 4> Ops;
   3172   for (SmallVectorImpl<const SCEV *>::const_iterator
   3173        I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
   3174     const SCEV *BaseReg = *I;
   3175     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
   3176         !SE.hasComputableLoopEvolution(BaseReg, L))
   3177       Ops.push_back(BaseReg);
   3178     else
   3179       F.BaseRegs.push_back(BaseReg);
   3180   }
   3181   if (Ops.size() > 1) {
   3182     const SCEV *Sum = SE.getAddExpr(Ops);
   3183     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
   3184     // opportunity to fold something. For now, just ignore such cases
   3185     // rather than proceed with zero in a register.
   3186     if (!Sum->isZero()) {
   3187       F.BaseRegs.push_back(Sum);
   3188       (void)InsertFormula(LU, LUIdx, F);
   3189     }
   3190   }
   3191 }
   3192 
   3193 /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
   3194 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
   3195                                           Formula Base) {
   3196   // We can't add a symbolic offset if the address already contains one.
   3197   if (Base.AM.BaseGV) return;
   3198 
   3199   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
   3200     const SCEV *G = Base.BaseRegs[i];
   3201     GlobalValue *GV = ExtractSymbol(G, SE);
   3202     if (G->isZero() || !GV)
   3203       continue;
   3204     Formula F = Base;
   3205     F.AM.BaseGV = GV;
   3206     if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
   3207                     LU.Kind, LU.AccessTy, TLI))
   3208       continue;
   3209     F.BaseRegs[i] = G;
   3210     (void)InsertFormula(LU, LUIdx, F);
   3211   }
   3212 }
   3213 
   3214 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
   3215 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
   3216                                           Formula Base) {
   3217   // TODO: For now, just add the min and max offset, because it usually isn't
   3218   // worthwhile looking at everything inbetween.
   3219   SmallVector<int64_t, 2> Worklist;
   3220   Worklist.push_back(LU.MinOffset);
   3221   if (LU.MaxOffset != LU.MinOffset)
   3222     Worklist.push_back(LU.MaxOffset);
   3223 
   3224   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
   3225     const SCEV *G = Base.BaseRegs[i];
   3226 
   3227     for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
   3228          E = Worklist.end(); I != E; ++I) {
   3229       Formula F = Base;
   3230       F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
   3231       if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
   3232                      LU.Kind, LU.AccessTy, TLI)) {
   3233         // Add the offset to the base register.
   3234         const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G);
   3235         // If it cancelled out, drop the base register, otherwise update it.
   3236         if (NewG->isZero()) {
   3237           std::swap(F.BaseRegs[i], F.BaseRegs.back());
   3238           F.BaseRegs.pop_back();
   3239         } else
   3240           F.BaseRegs[i] = NewG;
   3241 
   3242         (void)InsertFormula(LU, LUIdx, F);
   3243       }
   3244     }
   3245 
   3246     int64_t Imm = ExtractImmediate(G, SE);
   3247     if (G->isZero() || Imm == 0)
   3248       continue;
   3249     Formula F = Base;
   3250     F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
   3251     if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
   3252                     LU.Kind, LU.AccessTy, TLI))
   3253       continue;
   3254     F.BaseRegs[i] = G;
   3255     (void)InsertFormula(LU, LUIdx, F);
   3256   }
   3257 }
   3258 
   3259 /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
   3260 /// the comparison. For example, x == y -> x*c == y*c.
   3261 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
   3262                                          Formula Base) {
   3263   if (LU.Kind != LSRUse::ICmpZero) return;
   3264 
   3265   // Determine the integer type for the base formula.
   3266   Type *IntTy = Base.getType();
   3267   if (!IntTy) return;
   3268   if (SE.getTypeSizeInBits(IntTy) > 64) return;
   3269 
   3270   // Don't do this if there is more than one offset.
   3271   if (LU.MinOffset != LU.MaxOffset) return;
   3272 
   3273   assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
   3274 
   3275   // Check each interesting stride.
   3276   for (SmallSetVector<int64_t, 8>::const_iterator
   3277        I = Factors.begin(), E = Factors.end(); I != E; ++I) {
   3278     int64_t Factor = *I;
   3279 
   3280     // Check that the multiplication doesn't overflow.
   3281     if (Base.AM.BaseOffs == INT64_MIN && Factor == -1)
   3282       continue;
   3283     int64_t NewBaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
   3284     if (NewBaseOffs / Factor != Base.AM.BaseOffs)
   3285       continue;
   3286 
   3287     // Check that multiplying with the use offset doesn't overflow.
   3288     int64_t Offset = LU.MinOffset;
   3289     if (Offset == INT64_MIN && Factor == -1)
   3290       continue;
   3291     Offset = (uint64_t)Offset * Factor;
   3292     if (Offset / Factor != LU.MinOffset)
   3293       continue;
   3294 
   3295     Formula F = Base;
   3296     F.AM.BaseOffs = NewBaseOffs;
   3297 
   3298     // Check that this scale is legal.
   3299     if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
   3300       continue;
   3301 
   3302     // Compensate for the use having MinOffset built into it.
   3303     F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;
   3304 
   3305     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
   3306 
   3307     // Check that multiplying with each base register doesn't overflow.
   3308     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
   3309       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
   3310       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
   3311         goto next;
   3312     }
   3313 
   3314     // Check that multiplying with the scaled register doesn't overflow.
   3315     if (F.ScaledReg) {
   3316       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
   3317       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
   3318         continue;
   3319     }
   3320 
   3321     // Check that multiplying with the unfolded offset doesn't overflow.
   3322     if (F.UnfoldedOffset != 0) {
   3323       if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
   3324         continue;
   3325       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
   3326       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
   3327         continue;
   3328     }
   3329 
   3330     // If we make it here and it's legal, add it.
   3331     (void)InsertFormula(LU, LUIdx, F);
   3332   next:;
   3333   }
   3334 }
   3335 
   3336 /// GenerateScales - Generate stride factor reuse formulae by making use of
   3337 /// scaled-offset address modes, for example.
   3338 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
   3339   // Determine the integer type for the base formula.
   3340   Type *IntTy = Base.getType();
   3341   if (!IntTy) return;
   3342 
   3343   // If this Formula already has a scaled register, we can't add another one.
   3344   if (Base.AM.Scale != 0) return;
   3345 
   3346   // Check each interesting stride.
   3347   for (SmallSetVector<int64_t, 8>::const_iterator
   3348        I = Factors.begin(), E = Factors.end(); I != E; ++I) {
   3349     int64_t Factor = *I;
   3350 
   3351     Base.AM.Scale = Factor;
   3352     Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
   3353     // Check whether this scale is going to be legal.
   3354     if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
   3355                     LU.Kind, LU.AccessTy, TLI)) {
   3356       // As a special-case, handle special out-of-loop Basic users specially.
   3357       // TODO: Reconsider this special case.
   3358       if (LU.Kind == LSRUse::Basic &&
   3359           isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
   3360                      LSRUse::Special, LU.AccessTy, TLI) &&
   3361           LU.AllFixupsOutsideLoop)
   3362         LU.Kind = LSRUse::Special;
   3363       else
   3364         continue;
   3365     }
   3366     // For an ICmpZero, negating a solitary base register won't lead to
   3367     // new solutions.
   3368     if (LU.Kind == LSRUse::ICmpZero &&
   3369         !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
   3370       continue;
   3371     // For each addrec base reg, apply the scale, if possible.
   3372     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
   3373       if (const SCEVAddRecExpr *AR =
   3374             dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
   3375         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
   3376         if (FactorS->isZero())
   3377           continue;
   3378         // Divide out the factor, ignoring high bits, since we'll be
   3379         // scaling the value back up in the end.
   3380         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
   3381           // TODO: This could be optimized to avoid all the copying.
   3382           Formula F = Base;
   3383           F.ScaledReg = Quotient;
   3384           F.DeleteBaseReg(F.BaseRegs[i]);
   3385           (void)InsertFormula(LU, LUIdx, F);
   3386         }
   3387       }
   3388   }
   3389 }
   3390 
   3391 /// GenerateTruncates - Generate reuse formulae from different IV types.
   3392 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
   3393   // This requires TargetLowering to tell us which truncates are free.
   3394   if (!TLI) return;
   3395 
   3396   // Don't bother truncating symbolic values.
   3397   if (Base.AM.BaseGV) return;
   3398 
   3399   // Determine the integer type for the base formula.
   3400   Type *DstTy = Base.getType();
   3401   if (!DstTy) return;
   3402   DstTy = SE.getEffectiveSCEVType(DstTy);
   3403 
   3404   for (SmallSetVector<Type *, 4>::const_iterator
   3405        I = Types.begin(), E = Types.end(); I != E; ++I) {
   3406     Type *SrcTy = *I;
   3407     if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
   3408       Formula F = Base;
   3409 
   3410       if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
   3411       for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
   3412            JE = F.BaseRegs.end(); J != JE; ++J)
   3413         *J = SE.getAnyExtendExpr(*J, SrcTy);
   3414 
   3415       // TODO: This assumes we've done basic processing on all uses and
   3416       // have an idea what the register usage is.
   3417       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
   3418         continue;
   3419 
   3420       (void)InsertFormula(LU, LUIdx, F);
   3421     }
   3422   }
   3423 }
   3424 
   3425 namespace {
   3426 
   3427 /// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
   3428 /// defer modifications so that the search phase doesn't have to worry about
   3429 /// the data structures moving underneath it.
   3430 struct WorkItem {
   3431   size_t LUIdx;
   3432   int64_t Imm;
   3433   const SCEV *OrigReg;
   3434 
   3435   WorkItem(size_t LI, int64_t I, const SCEV *R)
   3436     : LUIdx(LI), Imm(I), OrigReg(R) {}
   3437 
   3438   void print(raw_ostream &OS) const;
   3439   void dump() const;
   3440 };
   3441 
   3442 }
   3443 
   3444 void WorkItem::print(raw_ostream &OS) const {
   3445   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
   3446      << " , add offset " << Imm;
   3447 }
   3448 
   3449 #ifndef NDEBUG
   3450 void WorkItem::dump() const {
   3451   print(errs()); errs() << '\n';
   3452 }
   3453 #endif
   3454 
   3455 /// GenerateCrossUseConstantOffsets - Look for registers which are a constant
   3456 /// distance apart and try to form reuse opportunities between them.
   3457 void LSRInstance::GenerateCrossUseConstantOffsets() {
   3458   // Group the registers by their value without any added constant offset.
   3459   typedef std::map<int64_t, const SCEV *> ImmMapTy;
   3460   typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
   3461   RegMapTy Map;
   3462   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
   3463   SmallVector<const SCEV *, 8> Sequence;
   3464   for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
   3465        I != E; ++I) {
   3466     const SCEV *Reg = *I;
   3467     int64_t Imm = ExtractImmediate(Reg, SE);
   3468     std::pair<RegMapTy::iterator, bool> Pair =
   3469       Map.insert(std::make_pair(Reg, ImmMapTy()));
   3470     if (Pair.second)
   3471       Sequence.push_back(Reg);
   3472     Pair.first->second.insert(std::make_pair(Imm, *I));
   3473     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
   3474   }
   3475 
   3476   // Now examine each set of registers with the same base value. Build up
   3477   // a list of work to do and do the work in a separate step so that we're
   3478   // not adding formulae and register counts while we're searching.
   3479   SmallVector<WorkItem, 32> WorkItems;
   3480   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
   3481   for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
   3482        E = Sequence.end(); I != E; ++I) {
   3483     const SCEV *Reg = *I;
   3484     const ImmMapTy &Imms = Map.find(Reg)->second;
   3485 
   3486     // It's not worthwhile looking for reuse if there's only one offset.
   3487     if (Imms.size() == 1)
   3488       continue;
   3489 
   3490     DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
   3491           for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
   3492                J != JE; ++J)
   3493             dbgs() << ' ' << J->first;
   3494           dbgs() << '\n');
   3495 
   3496     // Examine each offset.
   3497     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
   3498          J != JE; ++J) {
   3499       const SCEV *OrigReg = J->second;
   3500 
   3501       int64_t JImm = J->first;
   3502       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
   3503 
   3504       if (!isa<SCEVConstant>(OrigReg) &&
   3505           UsedByIndicesMap[Reg].count() == 1) {
   3506         DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
   3507         continue;
   3508       }
   3509 
   3510       // Conservatively examine offsets between this orig reg a few selected
   3511       // other orig regs.
   3512       ImmMapTy::const_iterator OtherImms[] = {
   3513         Imms.begin(), prior(Imms.end()),
   3514         Imms.lower_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
   3515       };
   3516       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
   3517         ImmMapTy::const_iterator M = OtherImms[i];
   3518         if (M == J || M == JE) continue;
   3519 
   3520         // Compute the difference between the two.
   3521         int64_t Imm = (uint64_t)JImm - M->first;
   3522         for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
   3523              LUIdx = UsedByIndices.find_next(LUIdx))
   3524           // Make a memo of this use, offset, and register tuple.
   3525           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
   3526             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
   3527       }
   3528     }
   3529   }
   3530 
   3531   Map.clear();
   3532   Sequence.clear();
   3533   UsedByIndicesMap.clear();
   3534   UniqueItems.clear();
   3535 
   3536   // Now iterate through the worklist and add new formulae.
   3537   for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
   3538        E = WorkItems.end(); I != E; ++I) {
   3539     const WorkItem &WI = *I;
   3540     size_t LUIdx = WI.LUIdx;
   3541     LSRUse &LU = Uses[LUIdx];
   3542     int64_t Imm = WI.Imm;
   3543     const SCEV *OrigReg = WI.OrigReg;
   3544 
   3545     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
   3546     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
   3547     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
   3548 
   3549     // TODO: Use a more targeted data structure.
   3550     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
   3551       const Formula &F = LU.Formulae[L];
   3552       // Use the immediate in the scaled register.
   3553       if (F.ScaledReg == OrigReg) {
   3554         int64_t Offs = (uint64_t)F.AM.BaseOffs +
   3555                        Imm * (uint64_t)F.AM.Scale;
   3556         // Don't create 50 + reg(-50).
   3557         if (F.referencesReg(SE.getSCEV(
   3558                    ConstantInt::get(IntTy, -(uint64_t)Offs))))
   3559           continue;
   3560         Formula NewF = F;
   3561         NewF.AM.BaseOffs = Offs;
   3562         if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
   3563                         LU.Kind, LU.AccessTy, TLI))
   3564           continue;
   3565         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
   3566 
   3567         // If the new scale is a constant in a register, and adding the constant
   3568         // value to the immediate would produce a value closer to zero than the
   3569         // immediate itself, then the formula isn't worthwhile.
   3570         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
   3571           if (C->getValue()->isNegative() !=
   3572                 (NewF.AM.BaseOffs < 0) &&
   3573               (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
   3574                 .ule(abs64(NewF.AM.BaseOffs)))
   3575             continue;
   3576 
   3577         // OK, looks good.
   3578         (void)InsertFormula(LU, LUIdx, NewF);
   3579       } else {
   3580         // Use the immediate in a base register.
   3581         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
   3582           const SCEV *BaseReg = F.BaseRegs[N];
   3583           if (BaseReg != OrigReg)
   3584             continue;
   3585           Formula NewF = F;
   3586           NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
   3587           if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
   3588                           LU.Kind, LU.AccessTy, TLI)) {
   3589             if (!TLI ||
   3590                 !TLI->isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
   3591               continue;
   3592             NewF = F;
   3593             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
   3594           }
   3595           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
   3596 
   3597           // If the new formula has a constant in a register, and adding the
   3598           // constant value to the immediate would produce a value closer to
   3599           // zero than the immediate itself, then the formula isn't worthwhile.
   3600           for (SmallVectorImpl<const SCEV *>::const_iterator
   3601                J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
   3602                J != JE; ++J)
   3603             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
   3604               if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt(
   3605                    abs64(NewF.AM.BaseOffs)) &&
   3606                   (C->getValue()->getValue() +
   3607                    NewF.AM.BaseOffs).countTrailingZeros() >=
   3608                    CountTrailingZeros_64(NewF.AM.BaseOffs))
   3609                 goto skip_formula;
   3610 
   3611           // Ok, looks good.
   3612           (void)InsertFormula(LU, LUIdx, NewF);
   3613           break;
   3614         skip_formula:;
   3615         }
   3616       }
   3617     }
   3618   }
   3619 }
   3620 
   3621 /// GenerateAllReuseFormulae - Generate formulae for each use.
   3622 void
   3623 LSRInstance::GenerateAllReuseFormulae() {
   3624   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
   3625   // queries are more precise.
   3626   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3627     LSRUse &LU = Uses[LUIdx];
   3628     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3629       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
   3630     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3631       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
   3632   }
   3633   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3634     LSRUse &LU = Uses[LUIdx];
   3635     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3636       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
   3637     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3638       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
   3639     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3640       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
   3641     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3642       GenerateScales(LU, LUIdx, LU.Formulae[i]);
   3643   }
   3644   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3645     LSRUse &LU = Uses[LUIdx];
   3646     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3647       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
   3648   }
   3649 
   3650   GenerateCrossUseConstantOffsets();
   3651 
   3652   DEBUG(dbgs() << "\n"
   3653                   "After generating reuse formulae:\n";
   3654         print_uses(dbgs()));
   3655 }
   3656 
   3657 /// If there are multiple formulae with the same set of registers used
   3658 /// by other uses, pick the best one and delete the others.
   3659 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
   3660   DenseSet<const SCEV *> VisitedRegs;
   3661   SmallPtrSet<const SCEV *, 16> Regs;
   3662   SmallPtrSet<const SCEV *, 16> LoserRegs;
   3663 #ifndef NDEBUG
   3664   bool ChangedFormulae = false;
   3665 #endif
   3666 
   3667   // Collect the best formula for each unique set of shared registers. This
   3668   // is reset for each use.
   3669   typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo>
   3670     BestFormulaeTy;
   3671   BestFormulaeTy BestFormulae;
   3672 
   3673   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3674     LSRUse &LU = Uses[LUIdx];
   3675     DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
   3676 
   3677     bool Any = false;
   3678     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
   3679          FIdx != NumForms; ++FIdx) {
   3680       Formula &F = LU.Formulae[FIdx];
   3681 
   3682       // Some formulas are instant losers. For example, they may depend on
   3683       // nonexistent AddRecs from other loops. These need to be filtered
   3684       // immediately, otherwise heuristics could choose them over others leading
   3685       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
   3686       // avoids the need to recompute this information across formulae using the
   3687       // same bad AddRec. Passing LoserRegs is also essential unless we remove
   3688       // the corresponding bad register from the Regs set.
   3689       Cost CostF;
   3690       Regs.clear();
   3691       CostF.RateFormula(F, Regs, VisitedRegs, L, LU.Offsets, SE, DT,
   3692                         &LoserRegs);
   3693       if (CostF.isLoser()) {
   3694         // During initial formula generation, undesirable formulae are generated
   3695         // by uses within other loops that have some non-trivial address mode or
   3696         // use the postinc form of the IV. LSR needs to provide these formulae
   3697         // as the basis of rediscovering the desired formula that uses an AddRec
   3698         // corresponding to the existing phi. Once all formulae have been
   3699         // generated, these initial losers may be pruned.
   3700         DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
   3701               dbgs() << "\n");
   3702       }
   3703       else {
   3704         SmallVector<const SCEV *, 2> Key;
   3705         for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
   3706                JE = F.BaseRegs.end(); J != JE; ++J) {
   3707           const SCEV *Reg = *J;
   3708           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
   3709             Key.push_back(Reg);
   3710         }
   3711         if (F.ScaledReg &&
   3712             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
   3713           Key.push_back(F.ScaledReg);
   3714         // Unstable sort by host order ok, because this is only used for
   3715         // uniquifying.
   3716         std::sort(Key.begin(), Key.end());
   3717 
   3718         std::pair<BestFormulaeTy::const_iterator, bool> P =
   3719           BestFormulae.insert(std::make_pair(Key, FIdx));
   3720         if (P.second)
   3721           continue;
   3722 
   3723         Formula &Best = LU.Formulae[P.first->second];
   3724 
   3725         Cost CostBest;
   3726         Regs.clear();
   3727         CostBest.RateFormula(Best, Regs, VisitedRegs, L, LU.Offsets, SE, DT);
   3728         if (CostF < CostBest)
   3729           std::swap(F, Best);
   3730         DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
   3731               dbgs() << "\n"
   3732                         "    in favor of formula "; Best.print(dbgs());
   3733               dbgs() << '\n');
   3734       }
   3735 #ifndef NDEBUG
   3736       ChangedFormulae = true;
   3737 #endif
   3738       LU.DeleteFormula(F);
   3739       --FIdx;
   3740       --NumForms;
   3741       Any = true;
   3742     }
   3743 
   3744     // Now that we've filtered out some formulae, recompute the Regs set.
   3745     if (Any)
   3746       LU.RecomputeRegs(LUIdx, RegUses);
   3747 
   3748     // Reset this to prepare for the next use.
   3749     BestFormulae.clear();
   3750   }
   3751 
   3752   DEBUG(if (ChangedFormulae) {
   3753           dbgs() << "\n"
   3754                     "After filtering out undesirable candidates:\n";
   3755           print_uses(dbgs());
   3756         });
   3757 }
   3758 
   3759 // This is a rough guess that seems to work fairly well.
   3760 static const size_t ComplexityLimit = UINT16_MAX;
   3761 
   3762 /// EstimateSearchSpaceComplexity - Estimate the worst-case number of
   3763 /// solutions the solver might have to consider. It almost never considers
   3764 /// this many solutions because it prune the search space, but the pruning
   3765 /// isn't always sufficient.
   3766 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
   3767   size_t Power = 1;
   3768   for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
   3769        E = Uses.end(); I != E; ++I) {
   3770     size_t FSize = I->Formulae.size();
   3771     if (FSize >= ComplexityLimit) {
   3772       Power = ComplexityLimit;
   3773       break;
   3774     }
   3775     Power *= FSize;
   3776     if (Power >= ComplexityLimit)
   3777       break;
   3778   }
   3779   return Power;
   3780 }
   3781 
   3782 /// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset
   3783 /// of the registers of another formula, it won't help reduce register
   3784 /// pressure (though it may not necessarily hurt register pressure); remove
   3785 /// it to simplify the system.
   3786 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
   3787   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
   3788     DEBUG(dbgs() << "The search space is too complex.\n");
   3789 
   3790     DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
   3791                     "which use a superset of registers used by other "
   3792                     "formulae.\n");
   3793 
   3794     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3795       LSRUse &LU = Uses[LUIdx];
   3796       bool Any = false;
   3797       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
   3798         Formula &F = LU.Formulae[i];
   3799         // Look for a formula with a constant or GV in a register. If the use
   3800         // also has a formula with that same value in an immediate field,
   3801         // delete the one that uses a register.
   3802         for (SmallVectorImpl<const SCEV *>::const_iterator
   3803              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
   3804           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
   3805             Formula NewF = F;
   3806             NewF.AM.BaseOffs += C->getValue()->getSExtValue();
   3807             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
   3808                                 (I - F.BaseRegs.begin()));
   3809             if (LU.HasFormulaWithSameRegs(NewF)) {
   3810               DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
   3811               LU.DeleteFormula(F);
   3812               --i;
   3813               --e;
   3814               Any = true;
   3815               break;
   3816             }
   3817           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
   3818             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
   3819               if (!F.AM.BaseGV) {
   3820                 Formula NewF = F;
   3821                 NewF.AM.BaseGV = GV;
   3822                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
   3823                                     (I - F.BaseRegs.begin()));
   3824                 if (LU.HasFormulaWithSameRegs(NewF)) {
   3825                   DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
   3826                         dbgs() << '\n');
   3827                   LU.DeleteFormula(F);
   3828                   --i;
   3829                   --e;
   3830                   Any = true;
   3831                   break;
   3832                 }
   3833               }
   3834           }
   3835         }
   3836       }
   3837       if (Any)
   3838         LU.RecomputeRegs(LUIdx, RegUses);
   3839     }
   3840 
   3841     DEBUG(dbgs() << "After pre-selection:\n";
   3842           print_uses(dbgs()));
   3843   }
   3844 }
   3845 
   3846 /// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers
   3847 /// for expressions like A, A+1, A+2, etc., allocate a single register for
   3848 /// them.
   3849 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
   3850   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
   3851     DEBUG(dbgs() << "The search space is too complex.\n");
   3852 
   3853     DEBUG(dbgs() << "Narrowing the search space by assuming that uses "
   3854                     "separated by a constant offset will use the same "
   3855                     "registers.\n");
   3856 
   3857     // This is especially useful for unrolled loops.
   3858 
   3859     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3860       LSRUse &LU = Uses[LUIdx];
   3861       for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
   3862            E = LU.Formulae.end(); I != E; ++I) {
   3863         const Formula &F = *I;
   3864         if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) {
   3865           if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) {
   3866             if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs,
   3867                                    /*HasBaseReg=*/false,
   3868                                    LU.Kind, LU.AccessTy)) {
   3869               DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs());
   3870                     dbgs() << '\n');
   3871 
   3872               LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
   3873 
   3874               // Update the relocs to reference the new use.
   3875               for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
   3876                    E = Fixups.end(); I != E; ++I) {
   3877                 LSRFixup &Fixup = *I;
   3878                 if (Fixup.LUIdx == LUIdx) {
   3879                   Fixup.LUIdx = LUThatHas - &Uses.front();
   3880                   Fixup.Offset += F.AM.BaseOffs;
   3881                   // Add the new offset to LUThatHas' offset list.
   3882                   if (LUThatHas->Offsets.back() != Fixup.Offset) {
   3883                     LUThatHas->Offsets.push_back(Fixup.Offset);
   3884                     if (Fixup.Offset > LUThatHas->MaxOffset)
   3885                       LUThatHas->MaxOffset = Fixup.Offset;
   3886                     if (Fixup.Offset < LUThatHas->MinOffset)
   3887                       LUThatHas->MinOffset = Fixup.Offset;
   3888                   }
   3889                   DEBUG(dbgs() << "New fixup has offset "
   3890                                << Fixup.Offset << '\n');
   3891                 }
   3892                 if (Fixup.LUIdx == NumUses-1)
   3893                   Fixup.LUIdx = LUIdx;
   3894               }
   3895 
   3896               // Delete formulae from the new use which are no longer legal.
   3897               bool Any = false;
   3898               for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
   3899                 Formula &F = LUThatHas->Formulae[i];
   3900                 if (!isLegalUse(F.AM,
   3901                                 LUThatHas->MinOffset, LUThatHas->MaxOffset,
   3902                                 LUThatHas->Kind, LUThatHas->AccessTy, TLI)) {
   3903                   DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
   3904                         dbgs() << '\n');
   3905                   LUThatHas->DeleteFormula(F);
   3906                   --i;
   3907                   --e;
   3908                   Any = true;
   3909                 }
   3910               }
   3911               if (Any)
   3912                 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
   3913 
   3914               // Delete the old use.
   3915               DeleteUse(LU, LUIdx);
   3916               --LUIdx;
   3917               --NumUses;
   3918               break;
   3919             }
   3920           }
   3921         }
   3922       }
   3923     }
   3924 
   3925     DEBUG(dbgs() << "After pre-selection:\n";
   3926           print_uses(dbgs()));
   3927   }
   3928 }
   3929 
   3930 /// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call
   3931 /// FilterOutUndesirableDedicatedRegisters again, if necessary, now that
   3932 /// we've done more filtering, as it may be able to find more formulae to
   3933 /// eliminate.
   3934 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
   3935   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
   3936     DEBUG(dbgs() << "The search space is too complex.\n");
   3937 
   3938     DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
   3939                     "undesirable dedicated registers.\n");
   3940 
   3941     FilterOutUndesirableDedicatedRegisters();
   3942 
   3943     DEBUG(dbgs() << "After pre-selection:\n";
   3944           print_uses(dbgs()));
   3945   }
   3946 }
   3947 
   3948 /// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely
   3949 /// to be profitable, and then in any use which has any reference to that
   3950 /// register, delete all formulae which do not reference that register.
   3951 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
   3952   // With all other options exhausted, loop until the system is simple
   3953   // enough to handle.
   3954   SmallPtrSet<const SCEV *, 4> Taken;
   3955   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
   3956     // Ok, we have too many of formulae on our hands to conveniently handle.
   3957     // Use a rough heuristic to thin out the list.
   3958     DEBUG(dbgs() << "The search space is too complex.\n");
   3959 
   3960     // Pick the register which is used by the most LSRUses, which is likely
   3961     // to be a good reuse register candidate.
   3962     const SCEV *Best = 0;
   3963     unsigned BestNum = 0;
   3964     for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
   3965          I != E; ++I) {
   3966       const SCEV *Reg = *I;
   3967       if (Taken.count(Reg))
   3968         continue;
   3969       if (!Best)
   3970         Best = Reg;
   3971       else {
   3972         unsigned Count = RegUses.getUsedByIndices(Reg).count();
   3973         if (Count > BestNum) {
   3974           Best = Reg;
   3975           BestNum = Count;
   3976         }
   3977       }
   3978     }
   3979 
   3980     DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
   3981                  << " will yield profitable reuse.\n");
   3982     Taken.insert(Best);
   3983 
   3984     // In any use with formulae which references this register, delete formulae
   3985     // which don't reference it.
   3986     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3987       LSRUse &LU = Uses[LUIdx];
   3988       if (!LU.Regs.count(Best)) continue;
   3989 
   3990       bool Any = false;
   3991       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
   3992         Formula &F = LU.Formulae[i];
   3993         if (!F.referencesReg(Best)) {
   3994           DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
   3995           LU.DeleteFormula(F);
   3996           --e;
   3997           --i;
   3998           Any = true;
   3999           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
   4000           continue;
   4001         }
   4002       }
   4003 
   4004       if (Any)
   4005         LU.RecomputeRegs(LUIdx, RegUses);
   4006     }
   4007 
   4008     DEBUG(dbgs() << "After pre-selection:\n";
   4009           print_uses(dbgs()));
   4010   }
   4011 }
   4012 
   4013 /// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
   4014 /// formulae to choose from, use some rough heuristics to prune down the number
   4015 /// of formulae. This keeps the main solver from taking an extraordinary amount
   4016 /// of time in some worst-case scenarios.
   4017 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
   4018   NarrowSearchSpaceByDetectingSupersets();
   4019   NarrowSearchSpaceByCollapsingUnrolledCode();
   4020   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
   4021   NarrowSearchSpaceByPickingWinnerRegs();
   4022 }
   4023 
   4024 /// SolveRecurse - This is the recursive solver.
   4025 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
   4026                                Cost &SolutionCost,
   4027                                SmallVectorImpl<const Formula *> &Workspace,
   4028                                const Cost &CurCost,
   4029                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
   4030                                DenseSet<const SCEV *> &VisitedRegs) const {
   4031   // Some ideas:
   4032   //  - prune more:
   4033   //    - use more aggressive filtering
   4034   //    - sort the formula so that the most profitable solutions are found first
   4035   //    - sort the uses too
   4036   //  - search faster:
   4037   //    - don't compute a cost, and then compare. compare while computing a cost
   4038   //      and bail early.
   4039   //    - track register sets with SmallBitVector
   4040 
   4041   const LSRUse &LU = Uses[Workspace.size()];
   4042 
   4043   // If this use references any register that's already a part of the
   4044   // in-progress solution, consider it a requirement that a formula must
   4045   // reference that register in order to be considered. This prunes out
   4046   // unprofitable searching.
   4047   SmallSetVector<const SCEV *, 4> ReqRegs;
   4048   for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
   4049        E = CurRegs.end(); I != E; ++I)
   4050     if (LU.Regs.count(*I))
   4051       ReqRegs.insert(*I);
   4052 
   4053   SmallPtrSet<const SCEV *, 16> NewRegs;
   4054   Cost NewCost;
   4055   for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
   4056        E = LU.Formulae.end(); I != E; ++I) {
   4057     const Formula &F = *I;
   4058 
   4059     // Ignore formulae which do not use any of the required registers.
   4060     bool SatisfiedReqReg = true;
   4061     for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
   4062          JE = ReqRegs.end(); J != JE; ++J) {
   4063       const SCEV *Reg = *J;
   4064       if ((!F.ScaledReg || F.ScaledReg != Reg) &&
   4065           std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
   4066           F.BaseRegs.end()) {
   4067         SatisfiedReqReg = false;
   4068         break;
   4069       }
   4070     }
   4071     if (!SatisfiedReqReg) {
   4072       // If none of the formulae satisfied the required registers, then we could
   4073       // clear ReqRegs and try again. Currently, we simply give up in this case.
   4074       continue;
   4075     }
   4076 
   4077     // Evaluate the cost of the current formula. If it's already worse than
   4078     // the current best, prune the search at that point.
   4079     NewCost = CurCost;
   4080     NewRegs = CurRegs;
   4081     NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT);
   4082     if (NewCost < SolutionCost) {
   4083       Workspace.push_back(&F);
   4084       if (Workspace.size() != Uses.size()) {
   4085         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
   4086                      NewRegs, VisitedRegs);
   4087         if (F.getNumRegs() == 1 && Workspace.size() == 1)
   4088           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
   4089       } else {
   4090         DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
   4091               dbgs() << ".\n Regs:";
   4092               for (SmallPtrSet<const SCEV *, 16>::const_iterator
   4093                    I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
   4094                 dbgs() << ' ' << **I;
   4095               dbgs() << '\n');
   4096 
   4097         SolutionCost = NewCost;
   4098         Solution = Workspace;
   4099       }
   4100       Workspace.pop_back();
   4101     }
   4102   }
   4103 }
   4104 
   4105 /// Solve - Choose one formula from each use. Return the results in the given
   4106 /// Solution vector.
   4107 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
   4108   SmallVector<const Formula *, 8> Workspace;
   4109   Cost SolutionCost;
   4110   SolutionCost.Loose();
   4111   Cost CurCost;
   4112   SmallPtrSet<const SCEV *, 16> CurRegs;
   4113   DenseSet<const SCEV *> VisitedRegs;
   4114   Workspace.reserve(Uses.size());
   4115 
   4116   // SolveRecurse does all the work.
   4117   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
   4118                CurRegs, VisitedRegs);
   4119   if (Solution.empty()) {
   4120     DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
   4121     return;
   4122   }
   4123 
   4124   // Ok, we've now made all our decisions.
   4125   DEBUG(dbgs() << "\n"
   4126                   "The chosen solution requires "; SolutionCost.print(dbgs());
   4127         dbgs() << ":\n";
   4128         for (size_t i = 0, e = Uses.size(); i != e; ++i) {
   4129           dbgs() << "  ";
   4130           Uses[i].print(dbgs());
   4131           dbgs() << "\n"
   4132                     "    ";
   4133           Solution[i]->print(dbgs());
   4134           dbgs() << '\n';
   4135         });
   4136 
   4137   assert(Solution.size() == Uses.size() && "Malformed solution!");
   4138 }
   4139 
   4140 /// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
   4141 /// the dominator tree far as we can go while still being dominated by the
   4142 /// input positions. This helps canonicalize the insert position, which
   4143 /// encourages sharing.
   4144 BasicBlock::iterator
   4145 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
   4146                                  const SmallVectorImpl<Instruction *> &Inputs)
   4147                                                                          const {
   4148   for (;;) {
   4149     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
   4150     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
   4151 
   4152     BasicBlock *IDom;
   4153     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
   4154       if (!Rung) return IP;
   4155       Rung = Rung->getIDom();
   4156       if (!Rung) return IP;
   4157       IDom = Rung->getBlock();
   4158 
   4159       // Don't climb into a loop though.
   4160       const Loop *IDomLoop = LI.getLoopFor(IDom);
   4161       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
   4162       if (IDomDepth <= IPLoopDepth &&
   4163           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
   4164         break;
   4165     }
   4166 
   4167     bool AllDominate = true;
   4168     Instruction *BetterPos = 0;
   4169     Instruction *Tentative = IDom->getTerminator();
   4170     for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
   4171          E = Inputs.end(); I != E; ++I) {
   4172       Instruction *Inst = *I;
   4173       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
   4174         AllDominate = false;
   4175         break;
   4176       }
   4177       // Attempt to find an insert position in the middle of the block,
   4178       // instead of at the end, so that it can be used for other expansions.
   4179       if (IDom == Inst->getParent() &&
   4180           (!BetterPos || !DT.dominates(Inst, BetterPos)))
   4181         BetterPos = llvm::next(BasicBlock::iterator(Inst));
   4182     }
   4183     if (!AllDominate)
   4184       break;
   4185     if (BetterPos)
   4186       IP = BetterPos;
   4187     else
   4188       IP = Tentative;
   4189   }
   4190 
   4191   return IP;
   4192 }
   4193 
   4194 /// AdjustInsertPositionForExpand - Determine an input position which will be
   4195 /// dominated by the operands and which will dominate the result.
   4196 BasicBlock::iterator
   4197 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
   4198                                            const LSRFixup &LF,
   4199                                            const LSRUse &LU,
   4200                                            SCEVExpander &Rewriter) const {
   4201   // Collect some instructions which must be dominated by the
   4202   // expanding replacement. These must be dominated by any operands that
   4203   // will be required in the expansion.
   4204   SmallVector<Instruction *, 4> Inputs;
   4205   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
   4206     Inputs.push_back(I);
   4207   if (LU.Kind == LSRUse::ICmpZero)
   4208     if (Instruction *I =
   4209           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
   4210       Inputs.push_back(I);
   4211   if (LF.PostIncLoops.count(L)) {
   4212     if (LF.isUseFullyOutsideLoop(L))
   4213       Inputs.push_back(L->getLoopLatch()->getTerminator());
   4214     else
   4215       Inputs.push_back(IVIncInsertPos);
   4216   }
   4217   // The expansion must also be dominated by the increment positions of any
   4218   // loops it for which it is using post-inc mode.
   4219   for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
   4220        E = LF.PostIncLoops.end(); I != E; ++I) {
   4221     const Loop *PIL = *I;
   4222     if (PIL == L) continue;
   4223 
   4224     // Be dominated by the loop exit.
   4225     SmallVector<BasicBlock *, 4> ExitingBlocks;
   4226     PIL->getExitingBlocks(ExitingBlocks);
   4227     if (!ExitingBlocks.empty()) {
   4228       BasicBlock *BB = ExitingBlocks[0];
   4229       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
   4230         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
   4231       Inputs.push_back(BB->getTerminator());
   4232     }
   4233   }
   4234 
   4235   assert(!isa<PHINode>(LowestIP) && !isa<LandingPadInst>(LowestIP)
   4236          && !isa<DbgInfoIntrinsic>(LowestIP) &&
   4237          "Insertion point must be a normal instruction");
   4238 
   4239   // Then, climb up the immediate dominator tree as far as we can go while
   4240   // still being dominated by the input positions.
   4241   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
   4242 
   4243   // Don't insert instructions before PHI nodes.
   4244   while (isa<PHINode>(IP)) ++IP;
   4245 
   4246   // Ignore landingpad instructions.
   4247   while (isa<LandingPadInst>(IP)) ++IP;
   4248 
   4249   // Ignore debug intrinsics.
   4250   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
   4251 
   4252   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
   4253   // IP consistent across expansions and allows the previously inserted
   4254   // instructions to be reused by subsequent expansion.
   4255   while (Rewriter.isInsertedInstruction(IP) && IP != LowestIP) ++IP;
   4256 
   4257   return IP;
   4258 }
   4259 
   4260 /// Expand - Emit instructions for the leading candidate expression for this
   4261 /// LSRUse (this is called "expanding").
   4262 Value *LSRInstance::Expand(const LSRFixup &LF,
   4263                            const Formula &F,
   4264                            BasicBlock::iterator IP,
   4265                            SCEVExpander &Rewriter,
   4266                            SmallVectorImpl<WeakVH> &DeadInsts) const {
   4267   const LSRUse &LU = Uses[LF.LUIdx];
   4268 
   4269   // Determine an input position which will be dominated by the operands and
   4270   // which will dominate the result.
   4271   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
   4272 
   4273   // Inform the Rewriter if we have a post-increment use, so that it can
   4274   // perform an advantageous expansion.
   4275   Rewriter.setPostInc(LF.PostIncLoops);
   4276 
   4277   // This is the type that the user actually needs.
   4278   Type *OpTy = LF.OperandValToReplace->getType();
   4279   // This will be the type that we'll initially expand to.
   4280   Type *Ty = F.getType();
   4281   if (!Ty)
   4282     // No type known; just expand directly to the ultimate type.
   4283     Ty = OpTy;
   4284   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
   4285     // Expand directly to the ultimate type if it's the right size.
   4286     Ty = OpTy;
   4287   // This is the type to do integer arithmetic in.
   4288   Type *IntTy = SE.getEffectiveSCEVType(Ty);
   4289 
   4290   // Build up a list of operands to add together to form the full base.
   4291   SmallVector<const SCEV *, 8> Ops;
   4292 
   4293   // Expand the BaseRegs portion.
   4294   for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
   4295        E = F.BaseRegs.end(); I != E; ++I) {
   4296     const SCEV *Reg = *I;
   4297     assert(!Reg->isZero() && "Zero allocated in a base register!");
   4298 
   4299     // If we're expanding for a post-inc user, make the post-inc adjustment.
   4300     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
   4301     Reg = TransformForPostIncUse(Denormalize, Reg,
   4302                                  LF.UserInst, LF.OperandValToReplace,
   4303                                  Loops, SE, DT);
   4304 
   4305     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
   4306   }
   4307 
   4308   // Expand the ScaledReg portion.
   4309   Value *ICmpScaledV = 0;
   4310   if (F.AM.Scale != 0) {
   4311     const SCEV *ScaledS = F.ScaledReg;
   4312 
   4313     // If we're expanding for a post-inc user, make the post-inc adjustment.
   4314     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
   4315     ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
   4316                                      LF.UserInst, LF.OperandValToReplace,
   4317                                      Loops, SE, DT);
   4318 
   4319     if (LU.Kind == LSRUse::ICmpZero) {
   4320       // An interesting way of "folding" with an icmp is to use a negated
   4321       // scale, which we'll implement by inserting it into the other operand
   4322       // of the icmp.
   4323       assert(F.AM.Scale == -1 &&
   4324              "The only scale supported by ICmpZero uses is -1!");
   4325       ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
   4326     } else {
   4327       // Otherwise just expand the scaled register and an explicit scale,
   4328       // which is expected to be matched as part of the address.
   4329 
   4330       // Flush the operand list to suppress SCEVExpander hoisting address modes.
   4331       if (!Ops.empty() && LU.Kind == LSRUse::Address) {
   4332         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
   4333         Ops.clear();
   4334         Ops.push_back(SE.getUnknown(FullV));
   4335       }
   4336       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
   4337       ScaledS = SE.getMulExpr(ScaledS,
   4338                               SE.getConstant(ScaledS->getType(), F.AM.Scale));
   4339       Ops.push_back(ScaledS);
   4340     }
   4341   }
   4342 
   4343   // Expand the GV portion.
   4344   if (F.AM.BaseGV) {
   4345     // Flush the operand list to suppress SCEVExpander hoisting.
   4346     if (!Ops.empty()) {
   4347       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
   4348       Ops.clear();
   4349       Ops.push_back(SE.getUnknown(FullV));
   4350     }
   4351     Ops.push_back(SE.getUnknown(F.AM.BaseGV));
   4352   }
   4353 
   4354   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
   4355   // unfolded offsets. LSR assumes they both live next to their uses.
   4356   if (!Ops.empty()) {
   4357     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
   4358     Ops.clear();
   4359     Ops.push_back(SE.getUnknown(FullV));
   4360   }
   4361 
   4362   // Expand the immediate portion.
   4363   int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
   4364   if (Offset != 0) {
   4365     if (LU.Kind == LSRUse::ICmpZero) {
   4366       // The other interesting way of "folding" with an ICmpZero is to use a
   4367       // negated immediate.
   4368       if (!ICmpScaledV)
   4369         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
   4370       else {
   4371         Ops.push_back(SE.getUnknown(ICmpScaledV));
   4372         ICmpScaledV = ConstantInt::get(IntTy, Offset);
   4373       }
   4374     } else {
   4375       // Just add the immediate values. These again are expected to be matched
   4376       // as part of the address.
   4377       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
   4378     }
   4379   }
   4380 
   4381   // Expand the unfolded offset portion.
   4382   int64_t UnfoldedOffset = F.UnfoldedOffset;
   4383   if (UnfoldedOffset != 0) {
   4384     // Just add the immediate values.
   4385     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
   4386                                                        UnfoldedOffset)));
   4387   }
   4388 
   4389   // Emit instructions summing all the operands.
   4390   const SCEV *FullS = Ops.empty() ?
   4391                       SE.getConstant(IntTy, 0) :
   4392                       SE.getAddExpr(Ops);
   4393   Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
   4394 
   4395   // We're done expanding now, so reset the rewriter.
   4396   Rewriter.clearPostInc();
   4397 
   4398   // An ICmpZero Formula represents an ICmp which we're handling as a
   4399   // comparison against zero. Now that we've expanded an expression for that
   4400   // form, update the ICmp's other operand.
   4401   if (LU.Kind == LSRUse::ICmpZero) {
   4402     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
   4403     DeadInsts.push_back(CI->getOperand(1));
   4404     assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
   4405                            "a scale at the same time!");
   4406     if (F.AM.Scale == -1) {
   4407       if (ICmpScaledV->getType() != OpTy) {
   4408         Instruction *Cast =
   4409           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
   4410                                                    OpTy, false),
   4411                            ICmpScaledV, OpTy, "tmp", CI);
   4412         ICmpScaledV = Cast;
   4413       }
   4414       CI->setOperand(1, ICmpScaledV);
   4415     } else {
   4416       assert(F.AM.Scale == 0 &&
   4417              "ICmp does not support folding a global value and "
   4418              "a scale at the same time!");
   4419       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
   4420                                            -(uint64_t)Offset);
   4421       if (C->getType() != OpTy)
   4422         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
   4423                                                           OpTy, false),
   4424                                   C, OpTy);
   4425 
   4426       CI->setOperand(1, C);
   4427     }
   4428   }
   4429 
   4430   return FullV;
   4431 }
   4432 
   4433 /// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
   4434 /// of their operands effectively happens in their predecessor blocks, so the
   4435 /// expression may need to be expanded in multiple places.
   4436 void LSRInstance::RewriteForPHI(PHINode *PN,
   4437                                 const LSRFixup &LF,
   4438                                 const Formula &F,
   4439                                 SCEVExpander &Rewriter,
   4440                                 SmallVectorImpl<WeakVH> &DeadInsts,
   4441                                 Pass *P) const {
   4442   DenseMap<BasicBlock *, Value *> Inserted;
   4443   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
   4444     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
   4445       BasicBlock *BB = PN->getIncomingBlock(i);
   4446 
   4447       // If this is a critical edge, split the edge so that we do not insert
   4448       // the code on all predecessor/successor paths.  We do this unless this
   4449       // is the canonical backedge for this loop, which complicates post-inc
   4450       // users.
   4451       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
   4452           !isa<IndirectBrInst>(BB->getTerminator())) {
   4453         BasicBlock *Parent = PN->getParent();
   4454         Loop *PNLoop = LI.getLoopFor(Parent);
   4455         if (!PNLoop || Parent != PNLoop->getHeader()) {
   4456           // Split the critical edge.
   4457           BasicBlock *NewBB = 0;
   4458           if (!Parent->isLandingPad()) {
   4459             NewBB = SplitCriticalEdge(BB, Parent, P,
   4460                                       /*MergeIdenticalEdges=*/true,
   4461                                       /*DontDeleteUselessPhis=*/true);
   4462           } else {
   4463             SmallVector<BasicBlock*, 2> NewBBs;
   4464             SplitLandingPadPredecessors(Parent, BB, "", "", P, NewBBs);
   4465             NewBB = NewBBs[0];
   4466           }
   4467 
   4468           // If PN is outside of the loop and BB is in the loop, we want to
   4469           // move the block to be immediately before the PHI block, not
   4470           // immediately after BB.
   4471           if (L->contains(BB) && !L->contains(PN))
   4472             NewBB->moveBefore(PN->getParent());
   4473 
   4474           // Splitting the edge can reduce the number of PHI entries we have.
   4475           e = PN->getNumIncomingValues();
   4476           BB = NewBB;
   4477           i = PN->getBasicBlockIndex(BB);
   4478         }
   4479       }
   4480 
   4481       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
   4482         Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
   4483       if (!Pair.second)
   4484         PN->setIncomingValue(i, Pair.first->second);
   4485       else {
   4486         Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
   4487 
   4488         // If this is reuse-by-noop-cast, insert the noop cast.
   4489         Type *OpTy = LF.OperandValToReplace->getType();
   4490         if (FullV->getType() != OpTy)
   4491           FullV =
   4492             CastInst::Create(CastInst::getCastOpcode(FullV, false,
   4493                                                      OpTy, false),
   4494                              FullV, LF.OperandValToReplace->getType(),
   4495                              "tmp", BB->getTerminator());
   4496 
   4497         PN->setIncomingValue(i, FullV);
   4498         Pair.first->second = FullV;
   4499       }
   4500     }
   4501 }
   4502 
   4503 /// Rewrite - Emit instructions for the leading candidate expression for this
   4504 /// LSRUse (this is called "expanding"), and update the UserInst to reference
   4505 /// the newly expanded value.
   4506 void LSRInstance::Rewrite(const LSRFixup &LF,
   4507                           const Formula &F,
   4508                           SCEVExpander &Rewriter,
   4509                           SmallVectorImpl<WeakVH> &DeadInsts,
   4510                           Pass *P) const {
   4511   // First, find an insertion point that dominates UserInst. For PHI nodes,
   4512   // find the nearest block which dominates all the relevant uses.
   4513   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
   4514     RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
   4515   } else {
   4516     Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
   4517 
   4518     // If this is reuse-by-noop-cast, insert the noop cast.
   4519     Type *OpTy = LF.OperandValToReplace->getType();
   4520     if (FullV->getType() != OpTy) {
   4521       Instruction *Cast =
   4522         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
   4523                          FullV, OpTy, "tmp", LF.UserInst);
   4524       FullV = Cast;
   4525     }
   4526 
   4527     // Update the user. ICmpZero is handled specially here (for now) because
   4528     // Expand may have updated one of the operands of the icmp already, and
   4529     // its new value may happen to be equal to LF.OperandValToReplace, in
   4530     // which case doing replaceUsesOfWith leads to replacing both operands
   4531     // with the same value. TODO: Reorganize this.
   4532     if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
   4533       LF.UserInst->setOperand(0, FullV);
   4534     else
   4535       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
   4536   }
   4537 
   4538   DeadInsts.push_back(LF.OperandValToReplace);
   4539 }
   4540 
   4541 /// ImplementSolution - Rewrite all the fixup locations with new values,
   4542 /// following the chosen solution.
   4543 void
   4544 LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
   4545                                Pass *P) {
   4546   // Keep track of instructions we may have made dead, so that
   4547   // we can remove them after we are done working.
   4548   SmallVector<WeakVH, 16> DeadInsts;
   4549 
   4550   SCEVExpander Rewriter(SE, "lsr");
   4551 #ifndef NDEBUG
   4552   Rewriter.setDebugType(DEBUG_TYPE);
   4553 #endif
   4554   Rewriter.disableCanonicalMode();
   4555   Rewriter.enableLSRMode();
   4556   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
   4557 
   4558   // Mark phi nodes that terminate chains so the expander tries to reuse them.
   4559   for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
   4560          ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
   4561     if (PHINode *PN = dyn_cast<PHINode>(ChainI->tailUserInst()))
   4562       Rewriter.setChainedPhi(PN);
   4563   }
   4564 
   4565   // Expand the new value definitions and update the users.
   4566   for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
   4567        E = Fixups.end(); I != E; ++I) {
   4568     const LSRFixup &Fixup = *I;
   4569 
   4570     Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
   4571 
   4572     Changed = true;
   4573   }
   4574 
   4575   for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
   4576          ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
   4577     GenerateIVChain(*ChainI, Rewriter, DeadInsts);
   4578     Changed = true;
   4579   }
   4580   // Clean up after ourselves. This must be done before deleting any
   4581   // instructions.
   4582   Rewriter.clear();
   4583 
   4584   Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
   4585 }
   4586 
   4587 LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
   4588   : IU(P->getAnalysis<IVUsers>()),
   4589     SE(P->getAnalysis<ScalarEvolution>()),
   4590     DT(P->getAnalysis<DominatorTree>()),
   4591     LI(P->getAnalysis<LoopInfo>()),
   4592     TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
   4593 
   4594   // If LoopSimplify form is not available, stay out of trouble.
   4595   if (!L->isLoopSimplifyForm())
   4596     return;
   4597 
   4598   // If there's no interesting work to be done, bail early.
   4599   if (IU.empty()) return;
   4600 
   4601   // If there's too much analysis to be done, bail early. We won't be able to
   4602   // model the problem anyway.
   4603   unsigned NumUsers = 0;
   4604   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
   4605     if (++NumUsers > MaxIVUsers) {
   4606       DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << *L
   4607             << "\n");
   4608       return;
   4609     }
   4610   }
   4611 
   4612 #ifndef NDEBUG
   4613   // All dominating loops must have preheaders, or SCEVExpander may not be able
   4614   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
   4615   //
   4616   // IVUsers analysis should only create users that are dominated by simple loop
   4617   // headers. Since this loop should dominate all of its users, its user list
   4618   // should be empty if this loop itself is not within a simple loop nest.
   4619   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
   4620        Rung; Rung = Rung->getIDom()) {
   4621     BasicBlock *BB = Rung->getBlock();
   4622     const Loop *DomLoop = LI.getLoopFor(BB);
   4623     if (DomLoop && DomLoop->getHeader() == BB) {
   4624       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
   4625     }
   4626   }
   4627 #endif // DEBUG
   4628 
   4629   DEBUG(dbgs() << "\nLSR on loop ";
   4630         WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
   4631         dbgs() << ":\n");
   4632 
   4633   // First, perform some low-level loop optimizations.
   4634   OptimizeShadowIV();
   4635   OptimizeLoopTermCond();
   4636 
   4637   // If loop preparation eliminates all interesting IV users, bail.
   4638   if (IU.empty()) return;
   4639 
   4640   // Skip nested loops until we can model them better with formulae.
   4641   if (!L->empty()) {
   4642     DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
   4643     return;
   4644   }
   4645 
   4646   // Start collecting data and preparing for the solver.
   4647   CollectChains();
   4648   CollectInterestingTypesAndFactors();
   4649   CollectFixupsAndInitialFormulae();
   4650   CollectLoopInvariantFixupsAndFormulae();
   4651 
   4652   assert(!Uses.empty() && "IVUsers reported at least one use");
   4653   DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
   4654         print_uses(dbgs()));
   4655 
   4656   // Now use the reuse data to generate a bunch of interesting ways
   4657   // to formulate the values needed for the uses.
   4658   GenerateAllReuseFormulae();
   4659 
   4660   FilterOutUndesirableDedicatedRegisters();
   4661   NarrowSearchSpaceUsingHeuristics();
   4662 
   4663   SmallVector<const Formula *, 8> Solution;
   4664   Solve(Solution);
   4665 
   4666   // Release memory that is no longer needed.
   4667   Factors.clear();
   4668   Types.clear();
   4669   RegUses.clear();
   4670 
   4671   if (Solution.empty())
   4672     return;
   4673 
   4674 #ifndef NDEBUG
   4675   // Formulae should be legal.
   4676   for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
   4677        E = Uses.end(); I != E; ++I) {
   4678      const LSRUse &LU = *I;
   4679      for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
   4680           JE = LU.Formulae.end(); J != JE; ++J)
   4681         assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
   4682                           LU.Kind, LU.AccessTy, TLI) &&
   4683                "Illegal formula generated!");
   4684   };
   4685 #endif
   4686 
   4687   // Now that we've decided what we want, make it so.
   4688   ImplementSolution(Solution, P);
   4689 }
   4690 
   4691 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
   4692   if (Factors.empty() && Types.empty()) return;
   4693 
   4694   OS << "LSR has identified the following interesting factors and types: ";
   4695   bool First = true;
   4696 
   4697   for (SmallSetVector<int64_t, 8>::const_iterator
   4698        I = Factors.begin(), E = Factors.end(); I != E; ++I) {
   4699     if (!First) OS << ", ";
   4700     First = false;
   4701     OS << '*' << *I;
   4702   }
   4703 
   4704   for (SmallSetVector<Type *, 4>::const_iterator
   4705        I = Types.begin(), E = Types.end(); I != E; ++I) {
   4706     if (!First) OS << ", ";
   4707     First = false;
   4708     OS << '(' << **I << ')';
   4709   }
   4710   OS << '\n';
   4711 }
   4712 
   4713 void LSRInstance::print_fixups(raw_ostream &OS) const {
   4714   OS << "LSR is examining the following fixup sites:\n";
   4715   for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
   4716        E = Fixups.end(); I != E; ++I) {
   4717     dbgs() << "  ";
   4718     I->print(OS);
   4719     OS << '\n';
   4720   }
   4721 }
   4722 
   4723 void LSRInstance::print_uses(raw_ostream &OS) const {
   4724   OS << "LSR is examining the following uses:\n";
   4725   for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
   4726        E = Uses.end(); I != E; ++I) {
   4727     const LSRUse &LU = *I;
   4728     dbgs() << "  ";
   4729     LU.print(OS);
   4730     OS << '\n';
   4731     for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
   4732          JE = LU.Formulae.end(); J != JE; ++J) {
   4733       OS << "    ";
   4734       J->print(OS);
   4735       OS << '\n';
   4736     }
   4737   }
   4738 }
   4739 
   4740 void LSRInstance::print(raw_ostream &OS) const {
   4741   print_factors_and_types(OS);
   4742   print_fixups(OS);
   4743   print_uses(OS);
   4744 }
   4745 
   4746 #ifndef NDEBUG
   4747 void LSRInstance::dump() const {
   4748   print(errs()); errs() << '\n';
   4749 }
   4750 #endif
   4751 
   4752 namespace {
   4753 
   4754 class LoopStrengthReduce : public LoopPass {
   4755   /// TLI - Keep a pointer of a TargetLowering to consult for determining
   4756   /// transformation profitability.
   4757   const TargetLowering *const TLI;
   4758 
   4759 public:
   4760   static char ID; // Pass ID, replacement for typeid
   4761   explicit LoopStrengthReduce(const TargetLowering *tli = 0);
   4762 
   4763 private:
   4764   bool runOnLoop(Loop *L, LPPassManager &LPM);
   4765   void getAnalysisUsage(AnalysisUsage &AU) const;
   4766 };
   4767 
   4768 }
   4769 
   4770 char LoopStrengthReduce::ID = 0;
   4771 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
   4772                 "Loop Strength Reduction", false, false)
   4773 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
   4774 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
   4775 INITIALIZE_PASS_DEPENDENCY(IVUsers)
   4776 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
   4777 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
   4778 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
   4779                 "Loop Strength Reduction", false, false)
   4780 
   4781 
   4782 Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
   4783   return new LoopStrengthReduce(TLI);
   4784 }
   4785 
   4786 LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
   4787   : LoopPass(ID), TLI(tli) {
   4788     initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
   4789   }
   4790 
   4791 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
   4792   // We split critical edges, so we change the CFG.  However, we do update
   4793   // many analyses if they are around.
   4794   AU.addPreservedID(LoopSimplifyID);
   4795 
   4796   AU.addRequired<LoopInfo>();
   4797   AU.addPreserved<LoopInfo>();
   4798   AU.addRequiredID(LoopSimplifyID);
   4799   AU.addRequired<DominatorTree>();
   4800   AU.addPreserved<DominatorTree>();
   4801   AU.addRequired<ScalarEvolution>();
   4802   AU.addPreserved<ScalarEvolution>();
   4803   // Requiring LoopSimplify a second time here prevents IVUsers from running
   4804   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
   4805   AU.addRequiredID(LoopSimplifyID);
   4806   AU.addRequired<IVUsers>();
   4807   AU.addPreserved<IVUsers>();
   4808 }
   4809 
   4810 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
   4811   bool Changed = false;
   4812 
   4813   // Run the main LSR transformation.
   4814   Changed |= LSRInstance(TLI, L, this).getChanged();
   4815 
   4816   // Remove any extra phis created by processing inner loops.
   4817   Changed |= DeleteDeadPHIs(L->getHeader());
   4818   if (EnablePhiElim) {
   4819     SmallVector<WeakVH, 16> DeadInsts;
   4820     SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), "lsr");
   4821 #ifndef NDEBUG
   4822     Rewriter.setDebugType(DEBUG_TYPE);
   4823 #endif
   4824     unsigned numFolded = Rewriter.
   4825       replaceCongruentIVs(L, &getAnalysis<DominatorTree>(), DeadInsts, TLI);
   4826     if (numFolded) {
   4827       Changed = true;
   4828       DeleteTriviallyDeadInstructions(DeadInsts);
   4829       DeleteDeadPHIs(L->getHeader());
   4830     }
   4831   }
   4832   return Changed;
   4833 }
   4834