Home | History | Annotate | Download | only in X86
      1 //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines a DAG pattern matching instruction selector for X86,
     11 // converting from a legalized dag to a X86 dag.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "x86-isel"
     16 #include "X86.h"
     17 #include "X86InstrBuilder.h"
     18 #include "X86MachineFunctionInfo.h"
     19 #include "X86RegisterInfo.h"
     20 #include "X86Subtarget.h"
     21 #include "X86TargetMachine.h"
     22 #include "llvm/ADT/Statistic.h"
     23 #include "llvm/CodeGen/MachineFrameInfo.h"
     24 #include "llvm/CodeGen/MachineFunction.h"
     25 #include "llvm/CodeGen/MachineInstrBuilder.h"
     26 #include "llvm/CodeGen/MachineRegisterInfo.h"
     27 #include "llvm/CodeGen/SelectionDAGISel.h"
     28 #include "llvm/IR/Instructions.h"
     29 #include "llvm/IR/Intrinsics.h"
     30 #include "llvm/IR/Type.h"
     31 #include "llvm/Support/Debug.h"
     32 #include "llvm/Support/ErrorHandling.h"
     33 #include "llvm/Support/MathExtras.h"
     34 #include "llvm/Support/raw_ostream.h"
     35 #include "llvm/Target/TargetMachine.h"
     36 #include "llvm/Target/TargetOptions.h"
     37 using namespace llvm;
     38 
     39 STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
     40 
     41 //===----------------------------------------------------------------------===//
     42 //                      Pattern Matcher Implementation
     43 //===----------------------------------------------------------------------===//
     44 
     45 namespace {
     46   /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
     47   /// SDValue's instead of register numbers for the leaves of the matched
     48   /// tree.
     49   struct X86ISelAddressMode {
     50     enum {
     51       RegBase,
     52       FrameIndexBase
     53     } BaseType;
     54 
     55     // This is really a union, discriminated by BaseType!
     56     SDValue Base_Reg;
     57     int Base_FrameIndex;
     58 
     59     unsigned Scale;
     60     SDValue IndexReg;
     61     int32_t Disp;
     62     SDValue Segment;
     63     const GlobalValue *GV;
     64     const Constant *CP;
     65     const BlockAddress *BlockAddr;
     66     const char *ES;
     67     int JT;
     68     unsigned Align;    // CP alignment.
     69     unsigned char SymbolFlags;  // X86II::MO_*
     70 
     71     X86ISelAddressMode()
     72       : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
     73         Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0),
     74         SymbolFlags(X86II::MO_NO_FLAG) {
     75     }
     76 
     77     bool hasSymbolicDisplacement() const {
     78       return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0;
     79     }
     80 
     81     bool hasBaseOrIndexReg() const {
     82       return IndexReg.getNode() != 0 || Base_Reg.getNode() != 0;
     83     }
     84 
     85     /// isRIPRelative - Return true if this addressing mode is already RIP
     86     /// relative.
     87     bool isRIPRelative() const {
     88       if (BaseType != RegBase) return false;
     89       if (RegisterSDNode *RegNode =
     90             dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
     91         return RegNode->getReg() == X86::RIP;
     92       return false;
     93     }
     94 
     95     void setBaseReg(SDValue Reg) {
     96       BaseType = RegBase;
     97       Base_Reg = Reg;
     98     }
     99 
    100 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    101     void dump() {
    102       dbgs() << "X86ISelAddressMode " << this << '\n';
    103       dbgs() << "Base_Reg ";
    104       if (Base_Reg.getNode() != 0)
    105         Base_Reg.getNode()->dump();
    106       else
    107         dbgs() << "nul";
    108       dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'
    109              << " Scale" << Scale << '\n'
    110              << "IndexReg ";
    111       if (IndexReg.getNode() != 0)
    112         IndexReg.getNode()->dump();
    113       else
    114         dbgs() << "nul";
    115       dbgs() << " Disp " << Disp << '\n'
    116              << "GV ";
    117       if (GV)
    118         GV->dump();
    119       else
    120         dbgs() << "nul";
    121       dbgs() << " CP ";
    122       if (CP)
    123         CP->dump();
    124       else
    125         dbgs() << "nul";
    126       dbgs() << '\n'
    127              << "ES ";
    128       if (ES)
    129         dbgs() << ES;
    130       else
    131         dbgs() << "nul";
    132       dbgs() << " JT" << JT << " Align" << Align << '\n';
    133     }
    134 #endif
    135   };
    136 }
    137 
    138 namespace {
    139   //===--------------------------------------------------------------------===//
    140   /// ISel - X86 specific code to select X86 machine instructions for
    141   /// SelectionDAG operations.
    142   ///
    143   class X86DAGToDAGISel : public SelectionDAGISel {
    144     /// X86Lowering - This object fully describes how to lower LLVM code to an
    145     /// X86-specific SelectionDAG.
    146     const X86TargetLowering &X86Lowering;
    147 
    148     /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
    149     /// make the right decision when generating code for different targets.
    150     const X86Subtarget *Subtarget;
    151 
    152     /// OptForSize - If true, selector should try to optimize for code size
    153     /// instead of performance.
    154     bool OptForSize;
    155 
    156   public:
    157     explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
    158       : SelectionDAGISel(tm, OptLevel),
    159         X86Lowering(*tm.getTargetLowering()),
    160         Subtarget(&tm.getSubtarget<X86Subtarget>()),
    161         OptForSize(false) {}
    162 
    163     virtual const char *getPassName() const {
    164       return "X86 DAG->DAG Instruction Selection";
    165     }
    166 
    167     virtual void EmitFunctionEntryCode();
    168 
    169     virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const;
    170 
    171     virtual void PreprocessISelDAG();
    172 
    173     inline bool immSext8(SDNode *N) const {
    174       return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue());
    175     }
    176 
    177     // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
    178     // sign extended field.
    179     inline bool i64immSExt32(SDNode *N) const {
    180       uint64_t v = cast<ConstantSDNode>(N)->getZExtValue();
    181       return (int64_t)v == (int32_t)v;
    182     }
    183 
    184 // Include the pieces autogenerated from the target description.
    185 #include "X86GenDAGISel.inc"
    186 
    187   private:
    188     SDNode *Select(SDNode *N);
    189     SDNode *SelectGather(SDNode *N, unsigned Opc);
    190     SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
    191     SDNode *SelectAtomicLoadArith(SDNode *Node, EVT NVT);
    192 
    193     bool FoldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
    194     bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
    195     bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
    196     bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
    197     bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
    198                                  unsigned Depth);
    199     bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
    200     bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
    201                     SDValue &Scale, SDValue &Index, SDValue &Disp,
    202                     SDValue &Segment);
    203     bool SelectLEAAddr(SDValue N, SDValue &Base,
    204                        SDValue &Scale, SDValue &Index, SDValue &Disp,
    205                        SDValue &Segment);
    206     bool SelectTLSADDRAddr(SDValue N, SDValue &Base,
    207                            SDValue &Scale, SDValue &Index, SDValue &Disp,
    208                            SDValue &Segment);
    209     bool SelectScalarSSELoad(SDNode *Root, SDValue N,
    210                              SDValue &Base, SDValue &Scale,
    211                              SDValue &Index, SDValue &Disp,
    212                              SDValue &Segment,
    213                              SDValue &NodeWithChain);
    214 
    215     bool TryFoldLoad(SDNode *P, SDValue N,
    216                      SDValue &Base, SDValue &Scale,
    217                      SDValue &Index, SDValue &Disp,
    218                      SDValue &Segment);
    219 
    220     /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
    221     /// inline asm expressions.
    222     virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
    223                                               char ConstraintCode,
    224                                               std::vector<SDValue> &OutOps);
    225 
    226     void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
    227 
    228     inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
    229                                    SDValue &Scale, SDValue &Index,
    230                                    SDValue &Disp, SDValue &Segment) {
    231       Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
    232         CurDAG->getTargetFrameIndex(AM.Base_FrameIndex, TLI.getPointerTy()) :
    233         AM.Base_Reg;
    234       Scale = getI8Imm(AM.Scale);
    235       Index = AM.IndexReg;
    236       // These are 32-bit even in 64-bit mode since RIP relative offset
    237       // is 32-bit.
    238       if (AM.GV)
    239         Disp = CurDAG->getTargetGlobalAddress(AM.GV, DebugLoc(),
    240                                               MVT::i32, AM.Disp,
    241                                               AM.SymbolFlags);
    242       else if (AM.CP)
    243         Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
    244                                              AM.Align, AM.Disp, AM.SymbolFlags);
    245       else if (AM.ES) {
    246         assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
    247         Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
    248       } else if (AM.JT != -1) {
    249         assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
    250         Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
    251       } else if (AM.BlockAddr)
    252         Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
    253                                              AM.SymbolFlags);
    254       else
    255         Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
    256 
    257       if (AM.Segment.getNode())
    258         Segment = AM.Segment;
    259       else
    260         Segment = CurDAG->getRegister(0, MVT::i32);
    261     }
    262 
    263     /// getI8Imm - Return a target constant with the specified value, of type
    264     /// i8.
    265     inline SDValue getI8Imm(unsigned Imm) {
    266       return CurDAG->getTargetConstant(Imm, MVT::i8);
    267     }
    268 
    269     /// getI32Imm - Return a target constant with the specified value, of type
    270     /// i32.
    271     inline SDValue getI32Imm(unsigned Imm) {
    272       return CurDAG->getTargetConstant(Imm, MVT::i32);
    273     }
    274 
    275     /// getGlobalBaseReg - Return an SDNode that returns the value of
    276     /// the global base register. Output instructions required to
    277     /// initialize the global base register, if necessary.
    278     ///
    279     SDNode *getGlobalBaseReg();
    280 
    281     /// getTargetMachine - Return a reference to the TargetMachine, casted
    282     /// to the target-specific type.
    283     const X86TargetMachine &getTargetMachine() const {
    284       return static_cast<const X86TargetMachine &>(TM);
    285     }
    286 
    287     /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
    288     /// to the target-specific type.
    289     const X86InstrInfo *getInstrInfo() const {
    290       return getTargetMachine().getInstrInfo();
    291     }
    292   };
    293 }
    294 
    295 
    296 bool
    297 X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
    298   if (OptLevel == CodeGenOpt::None) return false;
    299 
    300   if (!N.hasOneUse())
    301     return false;
    302 
    303   if (N.getOpcode() != ISD::LOAD)
    304     return true;
    305 
    306   // If N is a load, do additional profitability checks.
    307   if (U == Root) {
    308     switch (U->getOpcode()) {
    309     default: break;
    310     case X86ISD::ADD:
    311     case X86ISD::SUB:
    312     case X86ISD::AND:
    313     case X86ISD::XOR:
    314     case X86ISD::OR:
    315     case ISD::ADD:
    316     case ISD::ADDC:
    317     case ISD::ADDE:
    318     case ISD::AND:
    319     case ISD::OR:
    320     case ISD::XOR: {
    321       SDValue Op1 = U->getOperand(1);
    322 
    323       // If the other operand is a 8-bit immediate we should fold the immediate
    324       // instead. This reduces code size.
    325       // e.g.
    326       // movl 4(%esp), %eax
    327       // addl $4, %eax
    328       // vs.
    329       // movl $4, %eax
    330       // addl 4(%esp), %eax
    331       // The former is 2 bytes shorter. In case where the increment is 1, then
    332       // the saving can be 4 bytes (by using incl %eax).
    333       if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
    334         if (Imm->getAPIntValue().isSignedIntN(8))
    335           return false;
    336 
    337       // If the other operand is a TLS address, we should fold it instead.
    338       // This produces
    339       // movl    %gs:0, %eax
    340       // leal    i@NTPOFF(%eax), %eax
    341       // instead of
    342       // movl    $i@NTPOFF, %eax
    343       // addl    %gs:0, %eax
    344       // if the block also has an access to a second TLS address this will save
    345       // a load.
    346       // FIXME: This is probably also true for non TLS addresses.
    347       if (Op1.getOpcode() == X86ISD::Wrapper) {
    348         SDValue Val = Op1.getOperand(0);
    349         if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
    350           return false;
    351       }
    352     }
    353     }
    354   }
    355 
    356   return true;
    357 }
    358 
    359 /// MoveBelowCallOrigChain - Replace the original chain operand of the call with
    360 /// load's chain operand and move load below the call's chain operand.
    361 static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
    362                                SDValue Call, SDValue OrigChain) {
    363   SmallVector<SDValue, 8> Ops;
    364   SDValue Chain = OrigChain.getOperand(0);
    365   if (Chain.getNode() == Load.getNode())
    366     Ops.push_back(Load.getOperand(0));
    367   else {
    368     assert(Chain.getOpcode() == ISD::TokenFactor &&
    369            "Unexpected chain operand");
    370     for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
    371       if (Chain.getOperand(i).getNode() == Load.getNode())
    372         Ops.push_back(Load.getOperand(0));
    373       else
    374         Ops.push_back(Chain.getOperand(i));
    375     SDValue NewChain =
    376       CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
    377                       MVT::Other, &Ops[0], Ops.size());
    378     Ops.clear();
    379     Ops.push_back(NewChain);
    380   }
    381   for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i)
    382     Ops.push_back(OrigChain.getOperand(i));
    383   CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size());
    384   CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
    385                              Load.getOperand(1), Load.getOperand(2));
    386 
    387   unsigned NumOps = Call.getNode()->getNumOperands();
    388   Ops.clear();
    389   Ops.push_back(SDValue(Load.getNode(), 1));
    390   for (unsigned i = 1, e = NumOps; i != e; ++i)
    391     Ops.push_back(Call.getOperand(i));
    392   CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], NumOps);
    393 }
    394 
    395 /// isCalleeLoad - Return true if call address is a load and it can be
    396 /// moved below CALLSEQ_START and the chains leading up to the call.
    397 /// Return the CALLSEQ_START by reference as a second output.
    398 /// In the case of a tail call, there isn't a callseq node between the call
    399 /// chain and the load.
    400 static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
    401   // The transformation is somewhat dangerous if the call's chain was glued to
    402   // the call. After MoveBelowOrigChain the load is moved between the call and
    403   // the chain, this can create a cycle if the load is not folded. So it is
    404   // *really* important that we are sure the load will be folded.
    405   if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
    406     return false;
    407   LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
    408   if (!LD ||
    409       LD->isVolatile() ||
    410       LD->getAddressingMode() != ISD::UNINDEXED ||
    411       LD->getExtensionType() != ISD::NON_EXTLOAD)
    412     return false;
    413 
    414   // Now let's find the callseq_start.
    415   while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
    416     if (!Chain.hasOneUse())
    417       return false;
    418     Chain = Chain.getOperand(0);
    419   }
    420 
    421   if (!Chain.getNumOperands())
    422     return false;
    423   // Since we are not checking for AA here, conservatively abort if the chain
    424   // writes to memory. It's not safe to move the callee (a load) across a store.
    425   if (isa<MemSDNode>(Chain.getNode()) &&
    426       cast<MemSDNode>(Chain.getNode())->writeMem())
    427     return false;
    428   if (Chain.getOperand(0).getNode() == Callee.getNode())
    429     return true;
    430   if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
    431       Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
    432       Callee.getValue(1).hasOneUse())
    433     return true;
    434   return false;
    435 }
    436 
    437 void X86DAGToDAGISel::PreprocessISelDAG() {
    438   // OptForSize is used in pattern predicates that isel is matching.
    439   OptForSize = MF->getFunction()->getAttributes().
    440     hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
    441 
    442   for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
    443        E = CurDAG->allnodes_end(); I != E; ) {
    444     SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
    445 
    446     if (OptLevel != CodeGenOpt::None &&
    447         (N->getOpcode() == X86ISD::CALL ||
    448          (N->getOpcode() == X86ISD::TC_RETURN &&
    449           // Only does this if load can be folded into TC_RETURN.
    450           (Subtarget->is64Bit() ||
    451            getTargetMachine().getRelocationModel() != Reloc::PIC_)))) {
    452       /// Also try moving call address load from outside callseq_start to just
    453       /// before the call to allow it to be folded.
    454       ///
    455       ///     [Load chain]
    456       ///         ^
    457       ///         |
    458       ///       [Load]
    459       ///       ^    ^
    460       ///       |    |
    461       ///      /      \--
    462       ///     /          |
    463       ///[CALLSEQ_START] |
    464       ///     ^          |
    465       ///     |          |
    466       /// [LOAD/C2Reg]   |
    467       ///     |          |
    468       ///      \        /
    469       ///       \      /
    470       ///       [CALL]
    471       bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
    472       SDValue Chain = N->getOperand(0);
    473       SDValue Load  = N->getOperand(1);
    474       if (!isCalleeLoad(Load, Chain, HasCallSeq))
    475         continue;
    476       MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
    477       ++NumLoadMoved;
    478       continue;
    479     }
    480 
    481     // Lower fpround and fpextend nodes that target the FP stack to be store and
    482     // load to the stack.  This is a gross hack.  We would like to simply mark
    483     // these as being illegal, but when we do that, legalize produces these when
    484     // it expands calls, then expands these in the same legalize pass.  We would
    485     // like dag combine to be able to hack on these between the call expansion
    486     // and the node legalization.  As such this pass basically does "really
    487     // late" legalization of these inline with the X86 isel pass.
    488     // FIXME: This should only happen when not compiled with -O0.
    489     if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
    490       continue;
    491 
    492     EVT SrcVT = N->getOperand(0).getValueType();
    493     EVT DstVT = N->getValueType(0);
    494 
    495     // If any of the sources are vectors, no fp stack involved.
    496     if (SrcVT.isVector() || DstVT.isVector())
    497       continue;
    498 
    499     // If the source and destination are SSE registers, then this is a legal
    500     // conversion that should not be lowered.
    501     bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
    502     bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
    503     if (SrcIsSSE && DstIsSSE)
    504       continue;
    505 
    506     if (!SrcIsSSE && !DstIsSSE) {
    507       // If this is an FPStack extension, it is a noop.
    508       if (N->getOpcode() == ISD::FP_EXTEND)
    509         continue;
    510       // If this is a value-preserving FPStack truncation, it is a noop.
    511       if (N->getConstantOperandVal(1))
    512         continue;
    513     }
    514 
    515     // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
    516     // FPStack has extload and truncstore.  SSE can fold direct loads into other
    517     // operations.  Based on this, decide what we want to do.
    518     EVT MemVT;
    519     if (N->getOpcode() == ISD::FP_ROUND)
    520       MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
    521     else
    522       MemVT = SrcIsSSE ? SrcVT : DstVT;
    523 
    524     SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
    525     DebugLoc dl = N->getDebugLoc();
    526 
    527     // FIXME: optimize the case where the src/dest is a load or store?
    528     SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
    529                                           N->getOperand(0),
    530                                           MemTmp, MachinePointerInfo(), MemVT,
    531                                           false, false, 0);
    532     SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
    533                                         MachinePointerInfo(),
    534                                         MemVT, false, false, 0);
    535 
    536     // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
    537     // extload we created.  This will cause general havok on the dag because
    538     // anything below the conversion could be folded into other existing nodes.
    539     // To avoid invalidating 'I', back it up to the convert node.
    540     --I;
    541     CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
    542 
    543     // Now that we did that, the node is dead.  Increment the iterator to the
    544     // next node to process, then delete N.
    545     ++I;
    546     CurDAG->DeleteNode(N);
    547   }
    548 }
    549 
    550 
    551 /// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
    552 /// the main function.
    553 void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
    554                                              MachineFrameInfo *MFI) {
    555   const TargetInstrInfo *TII = TM.getInstrInfo();
    556   if (Subtarget->isTargetCygMing()) {
    557     unsigned CallOp =
    558       Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32;
    559     BuildMI(BB, DebugLoc(),
    560             TII->get(CallOp)).addExternalSymbol("__main");
    561   }
    562 }
    563 
    564 void X86DAGToDAGISel::EmitFunctionEntryCode() {
    565   // If this is main, emit special code for main.
    566   if (const Function *Fn = MF->getFunction())
    567     if (Fn->hasExternalLinkage() && Fn->getName() == "main")
    568       EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo());
    569 }
    570 
    571 static bool isDispSafeForFrameIndex(int64_t Val) {
    572   // On 64-bit platforms, we can run into an issue where a frame index
    573   // includes a displacement that, when added to the explicit displacement,
    574   // will overflow the displacement field. Assuming that the frame index
    575   // displacement fits into a 31-bit integer  (which is only slightly more
    576   // aggressive than the current fundamental assumption that it fits into
    577   // a 32-bit integer), a 31-bit disp should always be safe.
    578   return isInt<31>(Val);
    579 }
    580 
    581 bool X86DAGToDAGISel::FoldOffsetIntoAddress(uint64_t Offset,
    582                                             X86ISelAddressMode &AM) {
    583   int64_t Val = AM.Disp + Offset;
    584   CodeModel::Model M = TM.getCodeModel();
    585   if (Subtarget->is64Bit()) {
    586     if (!X86::isOffsetSuitableForCodeModel(Val, M,
    587                                            AM.hasSymbolicDisplacement()))
    588       return true;
    589     // In addition to the checks required for a register base, check that
    590     // we do not try to use an unsafe Disp with a frame index.
    591     if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
    592         !isDispSafeForFrameIndex(Val))
    593       return true;
    594   }
    595   AM.Disp = Val;
    596   return false;
    597 
    598 }
    599 
    600 bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
    601   SDValue Address = N->getOperand(1);
    602 
    603   // load gs:0 -> GS segment register.
    604   // load fs:0 -> FS segment register.
    605   //
    606   // This optimization is valid because the GNU TLS model defines that
    607   // gs:0 (or fs:0 on X86-64) contains its own address.
    608   // For more information see http://people.redhat.com/drepper/tls.pdf
    609   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
    610     if (C->getSExtValue() == 0 && AM.Segment.getNode() == 0 &&
    611         Subtarget->isTargetLinux())
    612       switch (N->getPointerInfo().getAddrSpace()) {
    613       case 256:
    614         AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
    615         return false;
    616       case 257:
    617         AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
    618         return false;
    619       }
    620 
    621   return true;
    622 }
    623 
    624 /// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
    625 /// into an addressing mode.  These wrap things that will resolve down into a
    626 /// symbol reference.  If no match is possible, this returns true, otherwise it
    627 /// returns false.
    628 bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
    629   // If the addressing mode already has a symbol as the displacement, we can
    630   // never match another symbol.
    631   if (AM.hasSymbolicDisplacement())
    632     return true;
    633 
    634   SDValue N0 = N.getOperand(0);
    635   CodeModel::Model M = TM.getCodeModel();
    636 
    637   // Handle X86-64 rip-relative addresses.  We check this before checking direct
    638   // folding because RIP is preferable to non-RIP accesses.
    639   if (Subtarget->is64Bit() && N.getOpcode() == X86ISD::WrapperRIP &&
    640       // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
    641       // they cannot be folded into immediate fields.
    642       // FIXME: This can be improved for kernel and other models?
    643       (M == CodeModel::Small || M == CodeModel::Kernel)) {
    644     // Base and index reg must be 0 in order to use %rip as base.
    645     if (AM.hasBaseOrIndexReg())
    646       return true;
    647     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
    648       X86ISelAddressMode Backup = AM;
    649       AM.GV = G->getGlobal();
    650       AM.SymbolFlags = G->getTargetFlags();
    651       if (FoldOffsetIntoAddress(G->getOffset(), AM)) {
    652         AM = Backup;
    653         return true;
    654       }
    655     } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
    656       X86ISelAddressMode Backup = AM;
    657       AM.CP = CP->getConstVal();
    658       AM.Align = CP->getAlignment();
    659       AM.SymbolFlags = CP->getTargetFlags();
    660       if (FoldOffsetIntoAddress(CP->getOffset(), AM)) {
    661         AM = Backup;
    662         return true;
    663       }
    664     } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
    665       AM.ES = S->getSymbol();
    666       AM.SymbolFlags = S->getTargetFlags();
    667     } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
    668       AM.JT = J->getIndex();
    669       AM.SymbolFlags = J->getTargetFlags();
    670     } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
    671       X86ISelAddressMode Backup = AM;
    672       AM.BlockAddr = BA->getBlockAddress();
    673       AM.SymbolFlags = BA->getTargetFlags();
    674       if (FoldOffsetIntoAddress(BA->getOffset(), AM)) {
    675         AM = Backup;
    676         return true;
    677       }
    678     } else
    679       llvm_unreachable("Unhandled symbol reference node.");
    680 
    681     if (N.getOpcode() == X86ISD::WrapperRIP)
    682       AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
    683     return false;
    684   }
    685 
    686   // Handle the case when globals fit in our immediate field: This is true for
    687   // X86-32 always and X86-64 when in -mcmodel=small mode.  In 64-bit
    688   // mode, this only applies to a non-RIP-relative computation.
    689   if (!Subtarget->is64Bit() ||
    690       M == CodeModel::Small || M == CodeModel::Kernel) {
    691     assert(N.getOpcode() != X86ISD::WrapperRIP &&
    692            "RIP-relative addressing already handled");
    693     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
    694       AM.GV = G->getGlobal();
    695       AM.Disp += G->getOffset();
    696       AM.SymbolFlags = G->getTargetFlags();
    697     } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
    698       AM.CP = CP->getConstVal();
    699       AM.Align = CP->getAlignment();
    700       AM.Disp += CP->getOffset();
    701       AM.SymbolFlags = CP->getTargetFlags();
    702     } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
    703       AM.ES = S->getSymbol();
    704       AM.SymbolFlags = S->getTargetFlags();
    705     } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
    706       AM.JT = J->getIndex();
    707       AM.SymbolFlags = J->getTargetFlags();
    708     } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
    709       AM.BlockAddr = BA->getBlockAddress();
    710       AM.Disp += BA->getOffset();
    711       AM.SymbolFlags = BA->getTargetFlags();
    712     } else
    713       llvm_unreachable("Unhandled symbol reference node.");
    714     return false;
    715   }
    716 
    717   return true;
    718 }
    719 
    720 /// MatchAddress - Add the specified node to the specified addressing mode,
    721 /// returning true if it cannot be done.  This just pattern matches for the
    722 /// addressing mode.
    723 bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
    724   if (MatchAddressRecursively(N, AM, 0))
    725     return true;
    726 
    727   // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
    728   // a smaller encoding and avoids a scaled-index.
    729   if (AM.Scale == 2 &&
    730       AM.BaseType == X86ISelAddressMode::RegBase &&
    731       AM.Base_Reg.getNode() == 0) {
    732     AM.Base_Reg = AM.IndexReg;
    733     AM.Scale = 1;
    734   }
    735 
    736   // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
    737   // because it has a smaller encoding.
    738   // TODO: Which other code models can use this?
    739   if (TM.getCodeModel() == CodeModel::Small &&
    740       Subtarget->is64Bit() &&
    741       AM.Scale == 1 &&
    742       AM.BaseType == X86ISelAddressMode::RegBase &&
    743       AM.Base_Reg.getNode() == 0 &&
    744       AM.IndexReg.getNode() == 0 &&
    745       AM.SymbolFlags == X86II::MO_NO_FLAG &&
    746       AM.hasSymbolicDisplacement())
    747     AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
    748 
    749   return false;
    750 }
    751 
    752 // Insert a node into the DAG at least before the Pos node's position. This
    753 // will reposition the node as needed, and will assign it a node ID that is <=
    754 // the Pos node's ID. Note that this does *not* preserve the uniqueness of node
    755 // IDs! The selection DAG must no longer depend on their uniqueness when this
    756 // is used.
    757 static void InsertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
    758   if (N.getNode()->getNodeId() == -1 ||
    759       N.getNode()->getNodeId() > Pos.getNode()->getNodeId()) {
    760     DAG.RepositionNode(Pos.getNode(), N.getNode());
    761     N.getNode()->setNodeId(Pos.getNode()->getNodeId());
    762   }
    763 }
    764 
    765 // Transform "(X >> (8-C1)) & C2" to "(X >> 8) & 0xff)" if safe. This
    766 // allows us to convert the shift and and into an h-register extract and
    767 // a scaled index. Returns false if the simplification is performed.
    768 static bool FoldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
    769                                       uint64_t Mask,
    770                                       SDValue Shift, SDValue X,
    771                                       X86ISelAddressMode &AM) {
    772   if (Shift.getOpcode() != ISD::SRL ||
    773       !isa<ConstantSDNode>(Shift.getOperand(1)) ||
    774       !Shift.hasOneUse())
    775     return true;
    776 
    777   int ScaleLog = 8 - Shift.getConstantOperandVal(1);
    778   if (ScaleLog <= 0 || ScaleLog >= 4 ||
    779       Mask != (0xffu << ScaleLog))
    780     return true;
    781 
    782   EVT VT = N.getValueType();
    783   DebugLoc DL = N.getDebugLoc();
    784   SDValue Eight = DAG.getConstant(8, MVT::i8);
    785   SDValue NewMask = DAG.getConstant(0xff, VT);
    786   SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight);
    787   SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask);
    788   SDValue ShlCount = DAG.getConstant(ScaleLog, MVT::i8);
    789   SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount);
    790 
    791   // Insert the new nodes into the topological ordering. We must do this in
    792   // a valid topological ordering as nothing is going to go back and re-sort
    793   // these nodes. We continually insert before 'N' in sequence as this is
    794   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
    795   // hierarchy left to express.
    796   InsertDAGNode(DAG, N, Eight);
    797   InsertDAGNode(DAG, N, Srl);
    798   InsertDAGNode(DAG, N, NewMask);
    799   InsertDAGNode(DAG, N, And);
    800   InsertDAGNode(DAG, N, ShlCount);
    801   InsertDAGNode(DAG, N, Shl);
    802   DAG.ReplaceAllUsesWith(N, Shl);
    803   AM.IndexReg = And;
    804   AM.Scale = (1 << ScaleLog);
    805   return false;
    806 }
    807 
    808 // Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
    809 // allows us to fold the shift into this addressing mode. Returns false if the
    810 // transform succeeded.
    811 static bool FoldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
    812                                         uint64_t Mask,
    813                                         SDValue Shift, SDValue X,
    814                                         X86ISelAddressMode &AM) {
    815   if (Shift.getOpcode() != ISD::SHL ||
    816       !isa<ConstantSDNode>(Shift.getOperand(1)))
    817     return true;
    818 
    819   // Not likely to be profitable if either the AND or SHIFT node has more
    820   // than one use (unless all uses are for address computation). Besides,
    821   // isel mechanism requires their node ids to be reused.
    822   if (!N.hasOneUse() || !Shift.hasOneUse())
    823     return true;
    824 
    825   // Verify that the shift amount is something we can fold.
    826   unsigned ShiftAmt = Shift.getConstantOperandVal(1);
    827   if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
    828     return true;
    829 
    830   EVT VT = N.getValueType();
    831   DebugLoc DL = N.getDebugLoc();
    832   SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, VT);
    833   SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
    834   SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
    835 
    836   // Insert the new nodes into the topological ordering. We must do this in
    837   // a valid topological ordering as nothing is going to go back and re-sort
    838   // these nodes. We continually insert before 'N' in sequence as this is
    839   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
    840   // hierarchy left to express.
    841   InsertDAGNode(DAG, N, NewMask);
    842   InsertDAGNode(DAG, N, NewAnd);
    843   InsertDAGNode(DAG, N, NewShift);
    844   DAG.ReplaceAllUsesWith(N, NewShift);
    845 
    846   AM.Scale = 1 << ShiftAmt;
    847   AM.IndexReg = NewAnd;
    848   return false;
    849 }
    850 
    851 // Implement some heroics to detect shifts of masked values where the mask can
    852 // be replaced by extending the shift and undoing that in the addressing mode
    853 // scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
    854 // (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
    855 // the addressing mode. This results in code such as:
    856 //
    857 //   int f(short *y, int *lookup_table) {
    858 //     ...
    859 //     return *y + lookup_table[*y >> 11];
    860 //   }
    861 //
    862 // Turning into:
    863 //   movzwl (%rdi), %eax
    864 //   movl %eax, %ecx
    865 //   shrl $11, %ecx
    866 //   addl (%rsi,%rcx,4), %eax
    867 //
    868 // Instead of:
    869 //   movzwl (%rdi), %eax
    870 //   movl %eax, %ecx
    871 //   shrl $9, %ecx
    872 //   andl $124, %rcx
    873 //   addl (%rsi,%rcx), %eax
    874 //
    875 // Note that this function assumes the mask is provided as a mask *after* the
    876 // value is shifted. The input chain may or may not match that, but computing
    877 // such a mask is trivial.
    878 static bool FoldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
    879                                     uint64_t Mask,
    880                                     SDValue Shift, SDValue X,
    881                                     X86ISelAddressMode &AM) {
    882   if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
    883       !isa<ConstantSDNode>(Shift.getOperand(1)))
    884     return true;
    885 
    886   unsigned ShiftAmt = Shift.getConstantOperandVal(1);
    887   unsigned MaskLZ = CountLeadingZeros_64(Mask);
    888   unsigned MaskTZ = CountTrailingZeros_64(Mask);
    889 
    890   // The amount of shift we're trying to fit into the addressing mode is taken
    891   // from the trailing zeros of the mask.
    892   unsigned AMShiftAmt = MaskTZ;
    893 
    894   // There is nothing we can do here unless the mask is removing some bits.
    895   // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
    896   if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true;
    897 
    898   // We also need to ensure that mask is a continuous run of bits.
    899   if (CountTrailingOnes_64(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;
    900 
    901   // Scale the leading zero count down based on the actual size of the value.
    902   // Also scale it down based on the size of the shift.
    903   MaskLZ -= (64 - X.getValueSizeInBits()) + ShiftAmt;
    904 
    905   // The final check is to ensure that any masked out high bits of X are
    906   // already known to be zero. Otherwise, the mask has a semantic impact
    907   // other than masking out a couple of low bits. Unfortunately, because of
    908   // the mask, zero extensions will be removed from operands in some cases.
    909   // This code works extra hard to look through extensions because we can
    910   // replace them with zero extensions cheaply if necessary.
    911   bool ReplacingAnyExtend = false;
    912   if (X.getOpcode() == ISD::ANY_EXTEND) {
    913     unsigned ExtendBits =
    914       X.getValueSizeInBits() - X.getOperand(0).getValueSizeInBits();
    915     // Assume that we'll replace the any-extend with a zero-extend, and
    916     // narrow the search to the extended value.
    917     X = X.getOperand(0);
    918     MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
    919     ReplacingAnyExtend = true;
    920   }
    921   APInt MaskedHighBits = APInt::getHighBitsSet(X.getValueSizeInBits(),
    922                                                MaskLZ);
    923   APInt KnownZero, KnownOne;
    924   DAG.ComputeMaskedBits(X, KnownZero, KnownOne);
    925   if (MaskedHighBits != KnownZero) return true;
    926 
    927   // We've identified a pattern that can be transformed into a single shift
    928   // and an addressing mode. Make it so.
    929   EVT VT = N.getValueType();
    930   if (ReplacingAnyExtend) {
    931     assert(X.getValueType() != VT);
    932     // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
    933     SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, X.getDebugLoc(), VT, X);
    934     InsertDAGNode(DAG, N, NewX);
    935     X = NewX;
    936   }
    937   DebugLoc DL = N.getDebugLoc();
    938   SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, MVT::i8);
    939   SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
    940   SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, MVT::i8);
    941   SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);
    942 
    943   // Insert the new nodes into the topological ordering. We must do this in
    944   // a valid topological ordering as nothing is going to go back and re-sort
    945   // these nodes. We continually insert before 'N' in sequence as this is
    946   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
    947   // hierarchy left to express.
    948   InsertDAGNode(DAG, N, NewSRLAmt);
    949   InsertDAGNode(DAG, N, NewSRL);
    950   InsertDAGNode(DAG, N, NewSHLAmt);
    951   InsertDAGNode(DAG, N, NewSHL);
    952   DAG.ReplaceAllUsesWith(N, NewSHL);
    953 
    954   AM.Scale = 1 << AMShiftAmt;
    955   AM.IndexReg = NewSRL;
    956   return false;
    957 }
    958 
    959 bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
    960                                               unsigned Depth) {
    961   DebugLoc dl = N.getDebugLoc();
    962   DEBUG({
    963       dbgs() << "MatchAddress: ";
    964       AM.dump();
    965     });
    966   // Limit recursion.
    967   if (Depth > 5)
    968     return MatchAddressBase(N, AM);
    969 
    970   // If this is already a %rip relative address, we can only merge immediates
    971   // into it.  Instead of handling this in every case, we handle it here.
    972   // RIP relative addressing: %rip + 32-bit displacement!
    973   if (AM.isRIPRelative()) {
    974     // FIXME: JumpTable and ExternalSymbol address currently don't like
    975     // displacements.  It isn't very important, but this should be fixed for
    976     // consistency.
    977     if (!AM.ES && AM.JT != -1) return true;
    978 
    979     if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
    980       if (!FoldOffsetIntoAddress(Cst->getSExtValue(), AM))
    981         return false;
    982     return true;
    983   }
    984 
    985   switch (N.getOpcode()) {
    986   default: break;
    987   case ISD::Constant: {
    988     uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
    989     if (!FoldOffsetIntoAddress(Val, AM))
    990       return false;
    991     break;
    992   }
    993 
    994   case X86ISD::Wrapper:
    995   case X86ISD::WrapperRIP:
    996     if (!MatchWrapper(N, AM))
    997       return false;
    998     break;
    999 
   1000   case ISD::LOAD:
   1001     if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM))
   1002       return false;
   1003     break;
   1004 
   1005   case ISD::FrameIndex:
   1006     if (AM.BaseType == X86ISelAddressMode::RegBase &&
   1007         AM.Base_Reg.getNode() == 0 &&
   1008         (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
   1009       AM.BaseType = X86ISelAddressMode::FrameIndexBase;
   1010       AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
   1011       return false;
   1012     }
   1013     break;
   1014 
   1015   case ISD::SHL:
   1016     if (AM.IndexReg.getNode() != 0 || AM.Scale != 1)
   1017       break;
   1018 
   1019     if (ConstantSDNode
   1020           *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
   1021       unsigned Val = CN->getZExtValue();
   1022       // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
   1023       // that the base operand remains free for further matching. If
   1024       // the base doesn't end up getting used, a post-processing step
   1025       // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
   1026       if (Val == 1 || Val == 2 || Val == 3) {
   1027         AM.Scale = 1 << Val;
   1028         SDValue ShVal = N.getNode()->getOperand(0);
   1029 
   1030         // Okay, we know that we have a scale by now.  However, if the scaled
   1031         // value is an add of something and a constant, we can fold the
   1032         // constant into the disp field here.
   1033         if (CurDAG->isBaseWithConstantOffset(ShVal)) {
   1034           AM.IndexReg = ShVal.getNode()->getOperand(0);
   1035           ConstantSDNode *AddVal =
   1036             cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
   1037           uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val;
   1038           if (!FoldOffsetIntoAddress(Disp, AM))
   1039             return false;
   1040         }
   1041 
   1042         AM.IndexReg = ShVal;
   1043         return false;
   1044       }
   1045     }
   1046     break;
   1047 
   1048   case ISD::SRL: {
   1049     // Scale must not be used already.
   1050     if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
   1051 
   1052     SDValue And = N.getOperand(0);
   1053     if (And.getOpcode() != ISD::AND) break;
   1054     SDValue X = And.getOperand(0);
   1055 
   1056     // We only handle up to 64-bit values here as those are what matter for
   1057     // addressing mode optimizations.
   1058     if (X.getValueSizeInBits() > 64) break;
   1059 
   1060     // The mask used for the transform is expected to be post-shift, but we
   1061     // found the shift first so just apply the shift to the mask before passing
   1062     // it down.
   1063     if (!isa<ConstantSDNode>(N.getOperand(1)) ||
   1064         !isa<ConstantSDNode>(And.getOperand(1)))
   1065       break;
   1066     uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
   1067 
   1068     // Try to fold the mask and shift into the scale, and return false if we
   1069     // succeed.
   1070     if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
   1071       return false;
   1072     break;
   1073   }
   1074 
   1075   case ISD::SMUL_LOHI:
   1076   case ISD::UMUL_LOHI:
   1077     // A mul_lohi where we need the low part can be folded as a plain multiply.
   1078     if (N.getResNo() != 0) break;
   1079     // FALL THROUGH
   1080   case ISD::MUL:
   1081   case X86ISD::MUL_IMM:
   1082     // X*[3,5,9] -> X+X*[2,4,8]
   1083     if (AM.BaseType == X86ISelAddressMode::RegBase &&
   1084         AM.Base_Reg.getNode() == 0 &&
   1085         AM.IndexReg.getNode() == 0) {
   1086       if (ConstantSDNode
   1087             *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
   1088         if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
   1089             CN->getZExtValue() == 9) {
   1090           AM.Scale = unsigned(CN->getZExtValue())-1;
   1091 
   1092           SDValue MulVal = N.getNode()->getOperand(0);
   1093           SDValue Reg;
   1094 
   1095           // Okay, we know that we have a scale by now.  However, if the scaled
   1096           // value is an add of something and a constant, we can fold the
   1097           // constant into the disp field here.
   1098           if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
   1099               isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
   1100             Reg = MulVal.getNode()->getOperand(0);
   1101             ConstantSDNode *AddVal =
   1102               cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
   1103             uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
   1104             if (FoldOffsetIntoAddress(Disp, AM))
   1105               Reg = N.getNode()->getOperand(0);
   1106           } else {
   1107             Reg = N.getNode()->getOperand(0);
   1108           }
   1109 
   1110           AM.IndexReg = AM.Base_Reg = Reg;
   1111           return false;
   1112         }
   1113     }
   1114     break;
   1115 
   1116   case ISD::SUB: {
   1117     // Given A-B, if A can be completely folded into the address and
   1118     // the index field with the index field unused, use -B as the index.
   1119     // This is a win if a has multiple parts that can be folded into
   1120     // the address. Also, this saves a mov if the base register has
   1121     // other uses, since it avoids a two-address sub instruction, however
   1122     // it costs an additional mov if the index register has other uses.
   1123 
   1124     // Add an artificial use to this node so that we can keep track of
   1125     // it if it gets CSE'd with a different node.
   1126     HandleSDNode Handle(N);
   1127 
   1128     // Test if the LHS of the sub can be folded.
   1129     X86ISelAddressMode Backup = AM;
   1130     if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
   1131       AM = Backup;
   1132       break;
   1133     }
   1134     // Test if the index field is free for use.
   1135     if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
   1136       AM = Backup;
   1137       break;
   1138     }
   1139 
   1140     int Cost = 0;
   1141     SDValue RHS = Handle.getValue().getNode()->getOperand(1);
   1142     // If the RHS involves a register with multiple uses, this
   1143     // transformation incurs an extra mov, due to the neg instruction
   1144     // clobbering its operand.
   1145     if (!RHS.getNode()->hasOneUse() ||
   1146         RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
   1147         RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
   1148         RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
   1149         (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
   1150          RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
   1151       ++Cost;
   1152     // If the base is a register with multiple uses, this
   1153     // transformation may save a mov.
   1154     if ((AM.BaseType == X86ISelAddressMode::RegBase &&
   1155          AM.Base_Reg.getNode() &&
   1156          !AM.Base_Reg.getNode()->hasOneUse()) ||
   1157         AM.BaseType == X86ISelAddressMode::FrameIndexBase)
   1158       --Cost;
   1159     // If the folded LHS was interesting, this transformation saves
   1160     // address arithmetic.
   1161     if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
   1162         ((AM.Disp != 0) && (Backup.Disp == 0)) +
   1163         (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
   1164       --Cost;
   1165     // If it doesn't look like it may be an overall win, don't do it.
   1166     if (Cost >= 0) {
   1167       AM = Backup;
   1168       break;
   1169     }
   1170 
   1171     // Ok, the transformation is legal and appears profitable. Go for it.
   1172     SDValue Zero = CurDAG->getConstant(0, N.getValueType());
   1173     SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
   1174     AM.IndexReg = Neg;
   1175     AM.Scale = 1;
   1176 
   1177     // Insert the new nodes into the topological ordering.
   1178     InsertDAGNode(*CurDAG, N, Zero);
   1179     InsertDAGNode(*CurDAG, N, Neg);
   1180     return false;
   1181   }
   1182 
   1183   case ISD::ADD: {
   1184     // Add an artificial use to this node so that we can keep track of
   1185     // it if it gets CSE'd with a different node.
   1186     HandleSDNode Handle(N);
   1187 
   1188     X86ISelAddressMode Backup = AM;
   1189     if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
   1190         !MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
   1191       return false;
   1192     AM = Backup;
   1193 
   1194     // Try again after commuting the operands.
   1195     if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&&
   1196         !MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
   1197       return false;
   1198     AM = Backup;
   1199 
   1200     // If we couldn't fold both operands into the address at the same time,
   1201     // see if we can just put each operand into a register and fold at least
   1202     // the add.
   1203     if (AM.BaseType == X86ISelAddressMode::RegBase &&
   1204         !AM.Base_Reg.getNode() &&
   1205         !AM.IndexReg.getNode()) {
   1206       N = Handle.getValue();
   1207       AM.Base_Reg = N.getOperand(0);
   1208       AM.IndexReg = N.getOperand(1);
   1209       AM.Scale = 1;
   1210       return false;
   1211     }
   1212     N = Handle.getValue();
   1213     break;
   1214   }
   1215 
   1216   case ISD::OR:
   1217     // Handle "X | C" as "X + C" iff X is known to have C bits clear.
   1218     if (CurDAG->isBaseWithConstantOffset(N)) {
   1219       X86ISelAddressMode Backup = AM;
   1220       ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1));
   1221 
   1222       // Start with the LHS as an addr mode.
   1223       if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
   1224           !FoldOffsetIntoAddress(CN->getSExtValue(), AM))
   1225         return false;
   1226       AM = Backup;
   1227     }
   1228     break;
   1229 
   1230   case ISD::AND: {
   1231     // Perform some heroic transforms on an and of a constant-count shift
   1232     // with a constant to enable use of the scaled offset field.
   1233 
   1234     // Scale must not be used already.
   1235     if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
   1236 
   1237     SDValue Shift = N.getOperand(0);
   1238     if (Shift.getOpcode() != ISD::SRL && Shift.getOpcode() != ISD::SHL) break;
   1239     SDValue X = Shift.getOperand(0);
   1240 
   1241     // We only handle up to 64-bit values here as those are what matter for
   1242     // addressing mode optimizations.
   1243     if (X.getValueSizeInBits() > 64) break;
   1244 
   1245     if (!isa<ConstantSDNode>(N.getOperand(1)))
   1246       break;
   1247     uint64_t Mask = N.getConstantOperandVal(1);
   1248 
   1249     // Try to fold the mask and shift into an extract and scale.
   1250     if (!FoldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
   1251       return false;
   1252 
   1253     // Try to fold the mask and shift directly into the scale.
   1254     if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
   1255       return false;
   1256 
   1257     // Try to swap the mask and shift to place shifts which can be done as
   1258     // a scale on the outside of the mask.
   1259     if (!FoldMaskedShiftToScaledMask(*CurDAG, N, Mask, Shift, X, AM))
   1260       return false;
   1261     break;
   1262   }
   1263   }
   1264 
   1265   return MatchAddressBase(N, AM);
   1266 }
   1267 
   1268 /// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
   1269 /// specified addressing mode without any further recursion.
   1270 bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
   1271   // Is the base register already occupied?
   1272   if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
   1273     // If so, check to see if the scale index register is set.
   1274     if (AM.IndexReg.getNode() == 0) {
   1275       AM.IndexReg = N;
   1276       AM.Scale = 1;
   1277       return false;
   1278     }
   1279 
   1280     // Otherwise, we cannot select it.
   1281     return true;
   1282   }
   1283 
   1284   // Default, generate it as a register.
   1285   AM.BaseType = X86ISelAddressMode::RegBase;
   1286   AM.Base_Reg = N;
   1287   return false;
   1288 }
   1289 
   1290 /// SelectAddr - returns true if it is able pattern match an addressing mode.
   1291 /// It returns the operands which make up the maximal addressing mode it can
   1292 /// match by reference.
   1293 ///
   1294 /// Parent is the parent node of the addr operand that is being matched.  It
   1295 /// is always a load, store, atomic node, or null.  It is only null when
   1296 /// checking memory operands for inline asm nodes.
   1297 bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
   1298                                  SDValue &Scale, SDValue &Index,
   1299                                  SDValue &Disp, SDValue &Segment) {
   1300   X86ISelAddressMode AM;
   1301 
   1302   if (Parent &&
   1303       // This list of opcodes are all the nodes that have an "addr:$ptr" operand
   1304       // that are not a MemSDNode, and thus don't have proper addrspace info.
   1305       Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
   1306       Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
   1307       Parent->getOpcode() != X86ISD::TLSCALL && // Fixme
   1308       Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp
   1309       Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp
   1310     unsigned AddrSpace =
   1311       cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
   1312     // AddrSpace 256 -> GS, 257 -> FS.
   1313     if (AddrSpace == 256)
   1314       AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
   1315     if (AddrSpace == 257)
   1316       AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
   1317   }
   1318 
   1319   if (MatchAddress(N, AM))
   1320     return false;
   1321 
   1322   EVT VT = N.getValueType();
   1323   if (AM.BaseType == X86ISelAddressMode::RegBase) {
   1324     if (!AM.Base_Reg.getNode())
   1325       AM.Base_Reg = CurDAG->getRegister(0, VT);
   1326   }
   1327 
   1328   if (!AM.IndexReg.getNode())
   1329     AM.IndexReg = CurDAG->getRegister(0, VT);
   1330 
   1331   getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
   1332   return true;
   1333 }
   1334 
   1335 /// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
   1336 /// match a load whose top elements are either undef or zeros.  The load flavor
   1337 /// is derived from the type of N, which is either v4f32 or v2f64.
   1338 ///
   1339 /// We also return:
   1340 ///   PatternChainNode: this is the matched node that has a chain input and
   1341 ///   output.
   1342 bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root,
   1343                                           SDValue N, SDValue &Base,
   1344                                           SDValue &Scale, SDValue &Index,
   1345                                           SDValue &Disp, SDValue &Segment,
   1346                                           SDValue &PatternNodeWithChain) {
   1347   if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
   1348     PatternNodeWithChain = N.getOperand(0);
   1349     if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
   1350         PatternNodeWithChain.hasOneUse() &&
   1351         IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
   1352         IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
   1353       LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
   1354       if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
   1355         return false;
   1356       return true;
   1357     }
   1358   }
   1359 
   1360   // Also handle the case where we explicitly require zeros in the top
   1361   // elements.  This is a vector shuffle from the zero vector.
   1362   if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
   1363       // Check to see if the top elements are all zeros (or bitcast of zeros).
   1364       N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
   1365       N.getOperand(0).getNode()->hasOneUse() &&
   1366       ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
   1367       N.getOperand(0).getOperand(0).hasOneUse() &&
   1368       IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
   1369       IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
   1370     // Okay, this is a zero extending load.  Fold it.
   1371     LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
   1372     if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
   1373       return false;
   1374     PatternNodeWithChain = SDValue(LD, 0);
   1375     return true;
   1376   }
   1377   return false;
   1378 }
   1379 
   1380 
   1381 /// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
   1382 /// mode it matches can be cost effectively emitted as an LEA instruction.
   1383 bool X86DAGToDAGISel::SelectLEAAddr(SDValue N,
   1384                                     SDValue &Base, SDValue &Scale,
   1385                                     SDValue &Index, SDValue &Disp,
   1386                                     SDValue &Segment) {
   1387   X86ISelAddressMode AM;
   1388 
   1389   // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
   1390   // segments.
   1391   SDValue Copy = AM.Segment;
   1392   SDValue T = CurDAG->getRegister(0, MVT::i32);
   1393   AM.Segment = T;
   1394   if (MatchAddress(N, AM))
   1395     return false;
   1396   assert (T == AM.Segment);
   1397   AM.Segment = Copy;
   1398 
   1399   EVT VT = N.getValueType();
   1400   unsigned Complexity = 0;
   1401   if (AM.BaseType == X86ISelAddressMode::RegBase)
   1402     if (AM.Base_Reg.getNode())
   1403       Complexity = 1;
   1404     else
   1405       AM.Base_Reg = CurDAG->getRegister(0, VT);
   1406   else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
   1407     Complexity = 4;
   1408 
   1409   if (AM.IndexReg.getNode())
   1410     Complexity++;
   1411   else
   1412     AM.IndexReg = CurDAG->getRegister(0, VT);
   1413 
   1414   // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
   1415   // a simple shift.
   1416   if (AM.Scale > 1)
   1417     Complexity++;
   1418 
   1419   // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
   1420   // to a LEA. This is determined with some expermentation but is by no means
   1421   // optimal (especially for code size consideration). LEA is nice because of
   1422   // its three-address nature. Tweak the cost function again when we can run
   1423   // convertToThreeAddress() at register allocation time.
   1424   if (AM.hasSymbolicDisplacement()) {
   1425     // For X86-64, we should always use lea to materialize RIP relative
   1426     // addresses.
   1427     if (Subtarget->is64Bit())
   1428       Complexity = 4;
   1429     else
   1430       Complexity += 2;
   1431   }
   1432 
   1433   if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode()))
   1434     Complexity++;
   1435 
   1436   // If it isn't worth using an LEA, reject it.
   1437   if (Complexity <= 2)
   1438     return false;
   1439 
   1440   getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
   1441   return true;
   1442 }
   1443 
   1444 /// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
   1445 bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base,
   1446                                         SDValue &Scale, SDValue &Index,
   1447                                         SDValue &Disp, SDValue &Segment) {
   1448   assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
   1449   const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
   1450 
   1451   X86ISelAddressMode AM;
   1452   AM.GV = GA->getGlobal();
   1453   AM.Disp += GA->getOffset();
   1454   AM.Base_Reg = CurDAG->getRegister(0, N.getValueType());
   1455   AM.SymbolFlags = GA->getTargetFlags();
   1456 
   1457   if (N.getValueType() == MVT::i32) {
   1458     AM.Scale = 1;
   1459     AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
   1460   } else {
   1461     AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
   1462   }
   1463 
   1464   getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
   1465   return true;
   1466 }
   1467 
   1468 
   1469 bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
   1470                                   SDValue &Base, SDValue &Scale,
   1471                                   SDValue &Index, SDValue &Disp,
   1472                                   SDValue &Segment) {
   1473   if (!ISD::isNON_EXTLoad(N.getNode()) ||
   1474       !IsProfitableToFold(N, P, P) ||
   1475       !IsLegalToFold(N, P, P, OptLevel))
   1476     return false;
   1477 
   1478   return SelectAddr(N.getNode(),
   1479                     N.getOperand(1), Base, Scale, Index, Disp, Segment);
   1480 }
   1481 
   1482 /// getGlobalBaseReg - Return an SDNode that returns the value of
   1483 /// the global base register. Output instructions required to
   1484 /// initialize the global base register, if necessary.
   1485 ///
   1486 SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
   1487   unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
   1488   return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
   1489 }
   1490 
   1491 SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
   1492   SDValue Chain = Node->getOperand(0);
   1493   SDValue In1 = Node->getOperand(1);
   1494   SDValue In2L = Node->getOperand(2);
   1495   SDValue In2H = Node->getOperand(3);
   1496 
   1497   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
   1498   if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
   1499     return NULL;
   1500   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   1501   MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
   1502   const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
   1503   SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
   1504                                            MVT::i32, MVT::i32, MVT::Other, Ops,
   1505                                            array_lengthof(Ops));
   1506   cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
   1507   return ResNode;
   1508 }
   1509 
   1510 /// Atomic opcode table
   1511 ///
   1512 enum AtomicOpc {
   1513   ADD,
   1514   SUB,
   1515   INC,
   1516   DEC,
   1517   OR,
   1518   AND,
   1519   XOR,
   1520   AtomicOpcEnd
   1521 };
   1522 
   1523 enum AtomicSz {
   1524   ConstantI8,
   1525   I8,
   1526   SextConstantI16,
   1527   ConstantI16,
   1528   I16,
   1529   SextConstantI32,
   1530   ConstantI32,
   1531   I32,
   1532   SextConstantI64,
   1533   ConstantI64,
   1534   I64,
   1535   AtomicSzEnd
   1536 };
   1537 
   1538 static const uint16_t AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = {
   1539   {
   1540     X86::LOCK_ADD8mi,
   1541     X86::LOCK_ADD8mr,
   1542     X86::LOCK_ADD16mi8,
   1543     X86::LOCK_ADD16mi,
   1544     X86::LOCK_ADD16mr,
   1545     X86::LOCK_ADD32mi8,
   1546     X86::LOCK_ADD32mi,
   1547     X86::LOCK_ADD32mr,
   1548     X86::LOCK_ADD64mi8,
   1549     X86::LOCK_ADD64mi32,
   1550     X86::LOCK_ADD64mr,
   1551   },
   1552   {
   1553     X86::LOCK_SUB8mi,
   1554     X86::LOCK_SUB8mr,
   1555     X86::LOCK_SUB16mi8,
   1556     X86::LOCK_SUB16mi,
   1557     X86::LOCK_SUB16mr,
   1558     X86::LOCK_SUB32mi8,
   1559     X86::LOCK_SUB32mi,
   1560     X86::LOCK_SUB32mr,
   1561     X86::LOCK_SUB64mi8,
   1562     X86::LOCK_SUB64mi32,
   1563     X86::LOCK_SUB64mr,
   1564   },
   1565   {
   1566     0,
   1567     X86::LOCK_INC8m,
   1568     0,
   1569     0,
   1570     X86::LOCK_INC16m,
   1571     0,
   1572     0,
   1573     X86::LOCK_INC32m,
   1574     0,
   1575     0,
   1576     X86::LOCK_INC64m,
   1577   },
   1578   {
   1579     0,
   1580     X86::LOCK_DEC8m,
   1581     0,
   1582     0,
   1583     X86::LOCK_DEC16m,
   1584     0,
   1585     0,
   1586     X86::LOCK_DEC32m,
   1587     0,
   1588     0,
   1589     X86::LOCK_DEC64m,
   1590   },
   1591   {
   1592     X86::LOCK_OR8mi,
   1593     X86::LOCK_OR8mr,
   1594     X86::LOCK_OR16mi8,
   1595     X86::LOCK_OR16mi,
   1596     X86::LOCK_OR16mr,
   1597     X86::LOCK_OR32mi8,
   1598     X86::LOCK_OR32mi,
   1599     X86::LOCK_OR32mr,
   1600     X86::LOCK_OR64mi8,
   1601     X86::LOCK_OR64mi32,
   1602     X86::LOCK_OR64mr,
   1603   },
   1604   {
   1605     X86::LOCK_AND8mi,
   1606     X86::LOCK_AND8mr,
   1607     X86::LOCK_AND16mi8,
   1608     X86::LOCK_AND16mi,
   1609     X86::LOCK_AND16mr,
   1610     X86::LOCK_AND32mi8,
   1611     X86::LOCK_AND32mi,
   1612     X86::LOCK_AND32mr,
   1613     X86::LOCK_AND64mi8,
   1614     X86::LOCK_AND64mi32,
   1615     X86::LOCK_AND64mr,
   1616   },
   1617   {
   1618     X86::LOCK_XOR8mi,
   1619     X86::LOCK_XOR8mr,
   1620     X86::LOCK_XOR16mi8,
   1621     X86::LOCK_XOR16mi,
   1622     X86::LOCK_XOR16mr,
   1623     X86::LOCK_XOR32mi8,
   1624     X86::LOCK_XOR32mi,
   1625     X86::LOCK_XOR32mr,
   1626     X86::LOCK_XOR64mi8,
   1627     X86::LOCK_XOR64mi32,
   1628     X86::LOCK_XOR64mr,
   1629   }
   1630 };
   1631 
   1632 // Return the target constant operand for atomic-load-op and do simple
   1633 // translations, such as from atomic-load-add to lock-sub. The return value is
   1634 // one of the following 3 cases:
   1635 // + target-constant, the operand could be supported as a target constant.
   1636 // + empty, the operand is not needed any more with the new op selected.
   1637 // + non-empty, otherwise.
   1638 static SDValue getAtomicLoadArithTargetConstant(SelectionDAG *CurDAG,
   1639                                                 DebugLoc dl,
   1640                                                 enum AtomicOpc &Op, EVT NVT,
   1641                                                 SDValue Val) {
   1642   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val)) {
   1643     int64_t CNVal = CN->getSExtValue();
   1644     // Quit if not 32-bit imm.
   1645     if ((int32_t)CNVal != CNVal)
   1646       return Val;
   1647     // For atomic-load-add, we could do some optimizations.
   1648     if (Op == ADD) {
   1649       // Translate to INC/DEC if ADD by 1 or -1.
   1650       if ((CNVal == 1) || (CNVal == -1)) {
   1651         Op = (CNVal == 1) ? INC : DEC;
   1652         // No more constant operand after being translated into INC/DEC.
   1653         return SDValue();
   1654       }
   1655       // Translate to SUB if ADD by negative value.
   1656       if (CNVal < 0) {
   1657         Op = SUB;
   1658         CNVal = -CNVal;
   1659       }
   1660     }
   1661     return CurDAG->getTargetConstant(CNVal, NVT);
   1662   }
   1663 
   1664   // If the value operand is single-used, try to optimize it.
   1665   if (Op == ADD && Val.hasOneUse()) {
   1666     // Translate (atomic-load-add ptr (sub 0 x)) back to (lock-sub x).
   1667     if (Val.getOpcode() == ISD::SUB && X86::isZeroNode(Val.getOperand(0))) {
   1668       Op = SUB;
   1669       return Val.getOperand(1);
   1670     }
   1671     // A special case for i16, which needs truncating as, in most cases, it's
   1672     // promoted to i32. We will translate
   1673     // (atomic-load-add (truncate (sub 0 x))) to (lock-sub (EXTRACT_SUBREG x))
   1674     if (Val.getOpcode() == ISD::TRUNCATE && NVT == MVT::i16 &&
   1675         Val.getOperand(0).getOpcode() == ISD::SUB &&
   1676         X86::isZeroNode(Val.getOperand(0).getOperand(0))) {
   1677       Op = SUB;
   1678       Val = Val.getOperand(0);
   1679       return CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl, NVT,
   1680                                             Val.getOperand(1));
   1681     }
   1682   }
   1683 
   1684   return Val;
   1685 }
   1686 
   1687 SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, EVT NVT) {
   1688   if (Node->hasAnyUseOfValue(0))
   1689     return 0;
   1690 
   1691   DebugLoc dl = Node->getDebugLoc();
   1692 
   1693   // Optimize common patterns for __sync_or_and_fetch and similar arith
   1694   // operations where the result is not used. This allows us to use the "lock"
   1695   // version of the arithmetic instruction.
   1696   SDValue Chain = Node->getOperand(0);
   1697   SDValue Ptr = Node->getOperand(1);
   1698   SDValue Val = Node->getOperand(2);
   1699   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
   1700   if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
   1701     return 0;
   1702 
   1703   // Which index into the table.
   1704   enum AtomicOpc Op;
   1705   switch (Node->getOpcode()) {
   1706     default:
   1707       return 0;
   1708     case ISD::ATOMIC_LOAD_OR:
   1709       Op = OR;
   1710       break;
   1711     case ISD::ATOMIC_LOAD_AND:
   1712       Op = AND;
   1713       break;
   1714     case ISD::ATOMIC_LOAD_XOR:
   1715       Op = XOR;
   1716       break;
   1717     case ISD::ATOMIC_LOAD_ADD:
   1718       Op = ADD;
   1719       break;
   1720   }
   1721 
   1722   Val = getAtomicLoadArithTargetConstant(CurDAG, dl, Op, NVT, Val);
   1723   bool isUnOp = !Val.getNode();
   1724   bool isCN = Val.getNode() && (Val.getOpcode() == ISD::TargetConstant);
   1725 
   1726   unsigned Opc = 0;
   1727   switch (NVT.getSimpleVT().SimpleTy) {
   1728     default: return 0;
   1729     case MVT::i8:
   1730       if (isCN)
   1731         Opc = AtomicOpcTbl[Op][ConstantI8];
   1732       else
   1733         Opc = AtomicOpcTbl[Op][I8];
   1734       break;
   1735     case MVT::i16:
   1736       if (isCN) {
   1737         if (immSext8(Val.getNode()))
   1738           Opc = AtomicOpcTbl[Op][SextConstantI16];
   1739         else
   1740           Opc = AtomicOpcTbl[Op][ConstantI16];
   1741       } else
   1742         Opc = AtomicOpcTbl[Op][I16];
   1743       break;
   1744     case MVT::i32:
   1745       if (isCN) {
   1746         if (immSext8(Val.getNode()))
   1747           Opc = AtomicOpcTbl[Op][SextConstantI32];
   1748         else
   1749           Opc = AtomicOpcTbl[Op][ConstantI32];
   1750       } else
   1751         Opc = AtomicOpcTbl[Op][I32];
   1752       break;
   1753     case MVT::i64:
   1754       Opc = AtomicOpcTbl[Op][I64];
   1755       if (isCN) {
   1756         if (immSext8(Val.getNode()))
   1757           Opc = AtomicOpcTbl[Op][SextConstantI64];
   1758         else if (i64immSExt32(Val.getNode()))
   1759           Opc = AtomicOpcTbl[Op][ConstantI64];
   1760       }
   1761       break;
   1762   }
   1763 
   1764   assert(Opc != 0 && "Invalid arith lock transform!");
   1765 
   1766   SDValue Ret;
   1767   SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
   1768                                                  dl, NVT), 0);
   1769   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   1770   MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
   1771   if (isUnOp) {
   1772     SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
   1773     Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops,
   1774                                          array_lengthof(Ops)), 0);
   1775   } else {
   1776     SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
   1777     Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops,
   1778                                          array_lengthof(Ops)), 0);
   1779   }
   1780   cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
   1781   SDValue RetVals[] = { Undef, Ret };
   1782   return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
   1783 }
   1784 
   1785 /// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
   1786 /// any uses which require the SF or OF bits to be accurate.
   1787 static bool HasNoSignedComparisonUses(SDNode *N) {
   1788   // Examine each user of the node.
   1789   for (SDNode::use_iterator UI = N->use_begin(),
   1790          UE = N->use_end(); UI != UE; ++UI) {
   1791     // Only examine CopyToReg uses.
   1792     if (UI->getOpcode() != ISD::CopyToReg)
   1793       return false;
   1794     // Only examine CopyToReg uses that copy to EFLAGS.
   1795     if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
   1796           X86::EFLAGS)
   1797       return false;
   1798     // Examine each user of the CopyToReg use.
   1799     for (SDNode::use_iterator FlagUI = UI->use_begin(),
   1800            FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
   1801       // Only examine the Flag result.
   1802       if (FlagUI.getUse().getResNo() != 1) continue;
   1803       // Anything unusual: assume conservatively.
   1804       if (!FlagUI->isMachineOpcode()) return false;
   1805       // Examine the opcode of the user.
   1806       switch (FlagUI->getMachineOpcode()) {
   1807       // These comparisons don't treat the most significant bit specially.
   1808       case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
   1809       case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
   1810       case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
   1811       case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
   1812       case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4:
   1813       case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4:
   1814       case X86::CMOVA16rr: case X86::CMOVA16rm:
   1815       case X86::CMOVA32rr: case X86::CMOVA32rm:
   1816       case X86::CMOVA64rr: case X86::CMOVA64rm:
   1817       case X86::CMOVAE16rr: case X86::CMOVAE16rm:
   1818       case X86::CMOVAE32rr: case X86::CMOVAE32rm:
   1819       case X86::CMOVAE64rr: case X86::CMOVAE64rm:
   1820       case X86::CMOVB16rr: case X86::CMOVB16rm:
   1821       case X86::CMOVB32rr: case X86::CMOVB32rm:
   1822       case X86::CMOVB64rr: case X86::CMOVB64rm:
   1823       case X86::CMOVBE16rr: case X86::CMOVBE16rm:
   1824       case X86::CMOVBE32rr: case X86::CMOVBE32rm:
   1825       case X86::CMOVBE64rr: case X86::CMOVBE64rm:
   1826       case X86::CMOVE16rr: case X86::CMOVE16rm:
   1827       case X86::CMOVE32rr: case X86::CMOVE32rm:
   1828       case X86::CMOVE64rr: case X86::CMOVE64rm:
   1829       case X86::CMOVNE16rr: case X86::CMOVNE16rm:
   1830       case X86::CMOVNE32rr: case X86::CMOVNE32rm:
   1831       case X86::CMOVNE64rr: case X86::CMOVNE64rm:
   1832       case X86::CMOVNP16rr: case X86::CMOVNP16rm:
   1833       case X86::CMOVNP32rr: case X86::CMOVNP32rm:
   1834       case X86::CMOVNP64rr: case X86::CMOVNP64rm:
   1835       case X86::CMOVP16rr: case X86::CMOVP16rm:
   1836       case X86::CMOVP32rr: case X86::CMOVP32rm:
   1837       case X86::CMOVP64rr: case X86::CMOVP64rm:
   1838         continue;
   1839       // Anything else: assume conservatively.
   1840       default: return false;
   1841       }
   1842     }
   1843   }
   1844   return true;
   1845 }
   1846 
   1847 /// isLoadIncOrDecStore - Check whether or not the chain ending in StoreNode
   1848 /// is suitable for doing the {load; increment or decrement; store} to modify
   1849 /// transformation.
   1850 static bool isLoadIncOrDecStore(StoreSDNode *StoreNode, unsigned Opc,
   1851                                 SDValue StoredVal, SelectionDAG *CurDAG,
   1852                                 LoadSDNode* &LoadNode, SDValue &InputChain) {
   1853 
   1854   // is the value stored the result of a DEC or INC?
   1855   if (!(Opc == X86ISD::DEC || Opc == X86ISD::INC)) return false;
   1856 
   1857   // is the stored value result 0 of the load?
   1858   if (StoredVal.getResNo() != 0) return false;
   1859 
   1860   // are there other uses of the loaded value than the inc or dec?
   1861   if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;
   1862 
   1863   // is the store non-extending and non-indexed?
   1864   if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
   1865     return false;
   1866 
   1867   SDValue Load = StoredVal->getOperand(0);
   1868   // Is the stored value a non-extending and non-indexed load?
   1869   if (!ISD::isNormalLoad(Load.getNode())) return false;
   1870 
   1871   // Return LoadNode by reference.
   1872   LoadNode = cast<LoadSDNode>(Load);
   1873   // is the size of the value one that we can handle? (i.e. 64, 32, 16, or 8)
   1874   EVT LdVT = LoadNode->getMemoryVT();
   1875   if (LdVT != MVT::i64 && LdVT != MVT::i32 && LdVT != MVT::i16 &&
   1876       LdVT != MVT::i8)
   1877     return false;
   1878 
   1879   // Is store the only read of the loaded value?
   1880   if (!Load.hasOneUse())
   1881     return false;
   1882 
   1883   // Is the address of the store the same as the load?
   1884   if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
   1885       LoadNode->getOffset() != StoreNode->getOffset())
   1886     return false;
   1887 
   1888   // Check if the chain is produced by the load or is a TokenFactor with
   1889   // the load output chain as an operand. Return InputChain by reference.
   1890   SDValue Chain = StoreNode->getChain();
   1891 
   1892   bool ChainCheck = false;
   1893   if (Chain == Load.getValue(1)) {
   1894     ChainCheck = true;
   1895     InputChain = LoadNode->getChain();
   1896   } else if (Chain.getOpcode() == ISD::TokenFactor) {
   1897     SmallVector<SDValue, 4> ChainOps;
   1898     for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
   1899       SDValue Op = Chain.getOperand(i);
   1900       if (Op == Load.getValue(1)) {
   1901         ChainCheck = true;
   1902         continue;
   1903       }
   1904 
   1905       // Make sure using Op as part of the chain would not cause a cycle here.
   1906       // In theory, we could check whether the chain node is a predecessor of
   1907       // the load. But that can be very expensive. Instead visit the uses and
   1908       // make sure they all have smaller node id than the load.
   1909       int LoadId = LoadNode->getNodeId();
   1910       for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
   1911              UE = UI->use_end(); UI != UE; ++UI) {
   1912         if (UI.getUse().getResNo() != 0)
   1913           continue;
   1914         if (UI->getNodeId() > LoadId)
   1915           return false;
   1916       }
   1917 
   1918       ChainOps.push_back(Op);
   1919     }
   1920 
   1921     if (ChainCheck)
   1922       // Make a new TokenFactor with all the other input chains except
   1923       // for the load.
   1924       InputChain = CurDAG->getNode(ISD::TokenFactor, Chain.getDebugLoc(),
   1925                                    MVT::Other, &ChainOps[0], ChainOps.size());
   1926   }
   1927   if (!ChainCheck)
   1928     return false;
   1929 
   1930   return true;
   1931 }
   1932 
   1933 /// getFusedLdStOpcode - Get the appropriate X86 opcode for an in memory
   1934 /// increment or decrement. Opc should be X86ISD::DEC or X86ISD::INC.
   1935 static unsigned getFusedLdStOpcode(EVT &LdVT, unsigned Opc) {
   1936   if (Opc == X86ISD::DEC) {
   1937     if (LdVT == MVT::i64) return X86::DEC64m;
   1938     if (LdVT == MVT::i32) return X86::DEC32m;
   1939     if (LdVT == MVT::i16) return X86::DEC16m;
   1940     if (LdVT == MVT::i8)  return X86::DEC8m;
   1941   } else {
   1942     assert(Opc == X86ISD::INC && "unrecognized opcode");
   1943     if (LdVT == MVT::i64) return X86::INC64m;
   1944     if (LdVT == MVT::i32) return X86::INC32m;
   1945     if (LdVT == MVT::i16) return X86::INC16m;
   1946     if (LdVT == MVT::i8)  return X86::INC8m;
   1947   }
   1948   llvm_unreachable("unrecognized size for LdVT");
   1949 }
   1950 
   1951 /// SelectGather - Customized ISel for GATHER operations.
   1952 ///
   1953 SDNode *X86DAGToDAGISel::SelectGather(SDNode *Node, unsigned Opc) {
   1954   // Operands of Gather: VSrc, Base, VIdx, VMask, Scale
   1955   SDValue Chain = Node->getOperand(0);
   1956   SDValue VSrc = Node->getOperand(2);
   1957   SDValue Base = Node->getOperand(3);
   1958   SDValue VIdx = Node->getOperand(4);
   1959   SDValue VMask = Node->getOperand(5);
   1960   ConstantSDNode *Scale = dyn_cast<ConstantSDNode>(Node->getOperand(6));
   1961   if (!Scale)
   1962     return 0;
   1963 
   1964   SDVTList VTs = CurDAG->getVTList(VSrc.getValueType(), VSrc.getValueType(),
   1965                                    MVT::Other);
   1966 
   1967   // Memory Operands: Base, Scale, Index, Disp, Segment
   1968   SDValue Disp = CurDAG->getTargetConstant(0, MVT::i32);
   1969   SDValue Segment = CurDAG->getRegister(0, MVT::i32);
   1970   const SDValue Ops[] = { VSrc, Base, getI8Imm(Scale->getSExtValue()), VIdx,
   1971                           Disp, Segment, VMask, Chain};
   1972   SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
   1973                                            VTs, Ops, array_lengthof(Ops));
   1974   // Node has 2 outputs: VDst and MVT::Other.
   1975   // ResNode has 3 outputs: VDst, VMask_wb, and MVT::Other.
   1976   // We replace VDst of Node with VDst of ResNode, and Other of Node with Other
   1977   // of ResNode.
   1978   ReplaceUses(SDValue(Node, 0), SDValue(ResNode, 0));
   1979   ReplaceUses(SDValue(Node, 1), SDValue(ResNode, 2));
   1980   return ResNode;
   1981 }
   1982 
   1983 SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
   1984   EVT NVT = Node->getValueType(0);
   1985   unsigned Opc, MOpc;
   1986   unsigned Opcode = Node->getOpcode();
   1987   DebugLoc dl = Node->getDebugLoc();
   1988 
   1989   DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n');
   1990 
   1991   if (Node->isMachineOpcode()) {
   1992     DEBUG(dbgs() << "== ";  Node->dump(CurDAG); dbgs() << '\n');
   1993     return NULL;   // Already selected.
   1994   }
   1995 
   1996   switch (Opcode) {
   1997   default: break;
   1998   case ISD::INTRINSIC_W_CHAIN: {
   1999     unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
   2000     switch (IntNo) {
   2001     default: break;
   2002     case Intrinsic::x86_avx2_gather_d_pd:
   2003     case Intrinsic::x86_avx2_gather_d_pd_256:
   2004     case Intrinsic::x86_avx2_gather_q_pd:
   2005     case Intrinsic::x86_avx2_gather_q_pd_256:
   2006     case Intrinsic::x86_avx2_gather_d_ps:
   2007     case Intrinsic::x86_avx2_gather_d_ps_256:
   2008     case Intrinsic::x86_avx2_gather_q_ps:
   2009     case Intrinsic::x86_avx2_gather_q_ps_256:
   2010     case Intrinsic::x86_avx2_gather_d_q:
   2011     case Intrinsic::x86_avx2_gather_d_q_256:
   2012     case Intrinsic::x86_avx2_gather_q_q:
   2013     case Intrinsic::x86_avx2_gather_q_q_256:
   2014     case Intrinsic::x86_avx2_gather_d_d:
   2015     case Intrinsic::x86_avx2_gather_d_d_256:
   2016     case Intrinsic::x86_avx2_gather_q_d:
   2017     case Intrinsic::x86_avx2_gather_q_d_256: {
   2018       unsigned Opc;
   2019       switch (IntNo) {
   2020       default: llvm_unreachable("Impossible intrinsic");
   2021       case Intrinsic::x86_avx2_gather_d_pd:     Opc = X86::VGATHERDPDrm;  break;
   2022       case Intrinsic::x86_avx2_gather_d_pd_256: Opc = X86::VGATHERDPDYrm; break;
   2023       case Intrinsic::x86_avx2_gather_q_pd:     Opc = X86::VGATHERQPDrm;  break;
   2024       case Intrinsic::x86_avx2_gather_q_pd_256: Opc = X86::VGATHERQPDYrm; break;
   2025       case Intrinsic::x86_avx2_gather_d_ps:     Opc = X86::VGATHERDPSrm;  break;
   2026       case Intrinsic::x86_avx2_gather_d_ps_256: Opc = X86::VGATHERDPSYrm; break;
   2027       case Intrinsic::x86_avx2_gather_q_ps:     Opc = X86::VGATHERQPSrm;  break;
   2028       case Intrinsic::x86_avx2_gather_q_ps_256: Opc = X86::VGATHERQPSYrm; break;
   2029       case Intrinsic::x86_avx2_gather_d_q:      Opc = X86::VPGATHERDQrm;  break;
   2030       case Intrinsic::x86_avx2_gather_d_q_256:  Opc = X86::VPGATHERDQYrm; break;
   2031       case Intrinsic::x86_avx2_gather_q_q:      Opc = X86::VPGATHERQQrm;  break;
   2032       case Intrinsic::x86_avx2_gather_q_q_256:  Opc = X86::VPGATHERQQYrm; break;
   2033       case Intrinsic::x86_avx2_gather_d_d:      Opc = X86::VPGATHERDDrm;  break;
   2034       case Intrinsic::x86_avx2_gather_d_d_256:  Opc = X86::VPGATHERDDYrm; break;
   2035       case Intrinsic::x86_avx2_gather_q_d:      Opc = X86::VPGATHERQDrm;  break;
   2036       case Intrinsic::x86_avx2_gather_q_d_256:  Opc = X86::VPGATHERQDYrm; break;
   2037       }
   2038       SDNode *RetVal = SelectGather(Node, Opc);
   2039       if (RetVal)
   2040         // We already called ReplaceUses inside SelectGather.
   2041         return NULL;
   2042       break;
   2043     }
   2044     }
   2045     break;
   2046   }
   2047   case X86ISD::GlobalBaseReg:
   2048     return getGlobalBaseReg();
   2049 
   2050 
   2051   case X86ISD::ATOMOR64_DAG:
   2052   case X86ISD::ATOMXOR64_DAG:
   2053   case X86ISD::ATOMADD64_DAG:
   2054   case X86ISD::ATOMSUB64_DAG:
   2055   case X86ISD::ATOMNAND64_DAG:
   2056   case X86ISD::ATOMAND64_DAG:
   2057   case X86ISD::ATOMMAX64_DAG:
   2058   case X86ISD::ATOMMIN64_DAG:
   2059   case X86ISD::ATOMUMAX64_DAG:
   2060   case X86ISD::ATOMUMIN64_DAG:
   2061   case X86ISD::ATOMSWAP64_DAG: {
   2062     unsigned Opc;
   2063     switch (Opcode) {
   2064     default: llvm_unreachable("Impossible opcode");
   2065     case X86ISD::ATOMOR64_DAG:   Opc = X86::ATOMOR6432;   break;
   2066     case X86ISD::ATOMXOR64_DAG:  Opc = X86::ATOMXOR6432;  break;
   2067     case X86ISD::ATOMADD64_DAG:  Opc = X86::ATOMADD6432;  break;
   2068     case X86ISD::ATOMSUB64_DAG:  Opc = X86::ATOMSUB6432;  break;
   2069     case X86ISD::ATOMNAND64_DAG: Opc = X86::ATOMNAND6432; break;
   2070     case X86ISD::ATOMAND64_DAG:  Opc = X86::ATOMAND6432;  break;
   2071     case X86ISD::ATOMMAX64_DAG:  Opc = X86::ATOMMAX6432;  break;
   2072     case X86ISD::ATOMMIN64_DAG:  Opc = X86::ATOMMIN6432;  break;
   2073     case X86ISD::ATOMUMAX64_DAG: Opc = X86::ATOMUMAX6432; break;
   2074     case X86ISD::ATOMUMIN64_DAG: Opc = X86::ATOMUMIN6432; break;
   2075     case X86ISD::ATOMSWAP64_DAG: Opc = X86::ATOMSWAP6432; break;
   2076     }
   2077     SDNode *RetVal = SelectAtomic64(Node, Opc);
   2078     if (RetVal)
   2079       return RetVal;
   2080     break;
   2081   }
   2082 
   2083   case ISD::ATOMIC_LOAD_XOR:
   2084   case ISD::ATOMIC_LOAD_AND:
   2085   case ISD::ATOMIC_LOAD_OR:
   2086   case ISD::ATOMIC_LOAD_ADD: {
   2087     SDNode *RetVal = SelectAtomicLoadArith(Node, NVT);
   2088     if (RetVal)
   2089       return RetVal;
   2090     break;
   2091   }
   2092   case ISD::AND:
   2093   case ISD::OR:
   2094   case ISD::XOR: {
   2095     // For operations of the form (x << C1) op C2, check if we can use a smaller
   2096     // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
   2097     SDValue N0 = Node->getOperand(0);
   2098     SDValue N1 = Node->getOperand(1);
   2099 
   2100     if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse())
   2101       break;
   2102 
   2103     // i8 is unshrinkable, i16 should be promoted to i32.
   2104     if (NVT != MVT::i32 && NVT != MVT::i64)
   2105       break;
   2106 
   2107     ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
   2108     ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
   2109     if (!Cst || !ShlCst)
   2110       break;
   2111 
   2112     int64_t Val = Cst->getSExtValue();
   2113     uint64_t ShlVal = ShlCst->getZExtValue();
   2114 
   2115     // Make sure that we don't change the operation by removing bits.
   2116     // This only matters for OR and XOR, AND is unaffected.
   2117     uint64_t RemovedBitsMask = (1ULL << ShlVal) - 1;
   2118     if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
   2119       break;
   2120 
   2121     unsigned ShlOp, Op;
   2122     EVT CstVT = NVT;
   2123 
   2124     // Check the minimum bitwidth for the new constant.
   2125     // TODO: AND32ri is the same as AND64ri32 with zext imm.
   2126     // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr
   2127     // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
   2128     if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal))
   2129       CstVT = MVT::i8;
   2130     else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal))
   2131       CstVT = MVT::i32;
   2132 
   2133     // Bail if there is no smaller encoding.
   2134     if (NVT == CstVT)
   2135       break;
   2136 
   2137     switch (NVT.getSimpleVT().SimpleTy) {
   2138     default: llvm_unreachable("Unsupported VT!");
   2139     case MVT::i32:
   2140       assert(CstVT == MVT::i8);
   2141       ShlOp = X86::SHL32ri;
   2142 
   2143       switch (Opcode) {
   2144       default: llvm_unreachable("Impossible opcode");
   2145       case ISD::AND: Op = X86::AND32ri8; break;
   2146       case ISD::OR:  Op =  X86::OR32ri8; break;
   2147       case ISD::XOR: Op = X86::XOR32ri8; break;
   2148       }
   2149       break;
   2150     case MVT::i64:
   2151       assert(CstVT == MVT::i8 || CstVT == MVT::i32);
   2152       ShlOp = X86::SHL64ri;
   2153 
   2154       switch (Opcode) {
   2155       default: llvm_unreachable("Impossible opcode");
   2156       case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break;
   2157       case ISD::OR:  Op = CstVT==MVT::i8?  X86::OR64ri8 :  X86::OR64ri32; break;
   2158       case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break;
   2159       }
   2160       break;
   2161     }
   2162 
   2163     // Emit the smaller op and the shift.
   2164     SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, CstVT);
   2165     SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst);
   2166     return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0),
   2167                                 getI8Imm(ShlVal));
   2168   }
   2169   case X86ISD::UMUL: {
   2170     SDValue N0 = Node->getOperand(0);
   2171     SDValue N1 = Node->getOperand(1);
   2172 
   2173     unsigned LoReg;
   2174     switch (NVT.getSimpleVT().SimpleTy) {
   2175     default: llvm_unreachable("Unsupported VT!");
   2176     case MVT::i8:  LoReg = X86::AL;  Opc = X86::MUL8r; break;
   2177     case MVT::i16: LoReg = X86::AX;  Opc = X86::MUL16r; break;
   2178     case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break;
   2179     case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break;
   2180     }
   2181 
   2182     SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
   2183                                           N0, SDValue()).getValue(1);
   2184 
   2185     SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
   2186     SDValue Ops[] = {N1, InFlag};
   2187     SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops, 2);
   2188 
   2189     ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
   2190     ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
   2191     ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2));
   2192     return NULL;
   2193   }
   2194 
   2195   case ISD::SMUL_LOHI:
   2196   case ISD::UMUL_LOHI: {
   2197     SDValue N0 = Node->getOperand(0);
   2198     SDValue N1 = Node->getOperand(1);
   2199 
   2200     bool isSigned = Opcode == ISD::SMUL_LOHI;
   2201     bool hasBMI2 = Subtarget->hasBMI2();
   2202     if (!isSigned) {
   2203       switch (NVT.getSimpleVT().SimpleTy) {
   2204       default: llvm_unreachable("Unsupported VT!");
   2205       case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
   2206       case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
   2207       case MVT::i32: Opc = hasBMI2 ? X86::MULX32rr : X86::MUL32r;
   2208                      MOpc = hasBMI2 ? X86::MULX32rm : X86::MUL32m; break;
   2209       case MVT::i64: Opc = hasBMI2 ? X86::MULX64rr : X86::MUL64r;
   2210                      MOpc = hasBMI2 ? X86::MULX64rm : X86::MUL64m; break;
   2211       }
   2212     } else {
   2213       switch (NVT.getSimpleVT().SimpleTy) {
   2214       default: llvm_unreachable("Unsupported VT!");
   2215       case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
   2216       case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
   2217       case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
   2218       case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
   2219       }
   2220     }
   2221 
   2222     unsigned SrcReg, LoReg, HiReg;
   2223     switch (Opc) {
   2224     default: llvm_unreachable("Unknown MUL opcode!");
   2225     case X86::IMUL8r:
   2226     case X86::MUL8r:
   2227       SrcReg = LoReg = X86::AL; HiReg = X86::AH;
   2228       break;
   2229     case X86::IMUL16r:
   2230     case X86::MUL16r:
   2231       SrcReg = LoReg = X86::AX; HiReg = X86::DX;
   2232       break;
   2233     case X86::IMUL32r:
   2234     case X86::MUL32r:
   2235       SrcReg = LoReg = X86::EAX; HiReg = X86::EDX;
   2236       break;
   2237     case X86::IMUL64r:
   2238     case X86::MUL64r:
   2239       SrcReg = LoReg = X86::RAX; HiReg = X86::RDX;
   2240       break;
   2241     case X86::MULX32rr:
   2242       SrcReg = X86::EDX; LoReg = HiReg = 0;
   2243       break;
   2244     case X86::MULX64rr:
   2245       SrcReg = X86::RDX; LoReg = HiReg = 0;
   2246       break;
   2247     }
   2248 
   2249     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
   2250     bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
   2251     // Multiply is commmutative.
   2252     if (!foldedLoad) {
   2253       foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
   2254       if (foldedLoad)
   2255         std::swap(N0, N1);
   2256     }
   2257 
   2258     SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, SrcReg,
   2259                                           N0, SDValue()).getValue(1);
   2260     SDValue ResHi, ResLo;
   2261 
   2262     if (foldedLoad) {
   2263       SDValue Chain;
   2264       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
   2265                         InFlag };
   2266       if (MOpc == X86::MULX32rm || MOpc == X86::MULX64rm) {
   2267         SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other, MVT::Glue);
   2268         SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops,
   2269                                                array_lengthof(Ops));
   2270         ResHi = SDValue(CNode, 0);
   2271         ResLo = SDValue(CNode, 1);
   2272         Chain = SDValue(CNode, 2);
   2273         InFlag = SDValue(CNode, 3);
   2274       } else {
   2275         SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
   2276         SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops,
   2277                                                array_lengthof(Ops));
   2278         Chain = SDValue(CNode, 0);
   2279         InFlag = SDValue(CNode, 1);
   2280       }
   2281 
   2282       // Update the chain.
   2283       ReplaceUses(N1.getValue(1), Chain);
   2284     } else {
   2285       SDValue Ops[] = { N1, InFlag };
   2286       if (Opc == X86::MULX32rr || Opc == X86::MULX64rr) {
   2287         SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Glue);
   2288         SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops,
   2289                                                array_lengthof(Ops));
   2290         ResHi = SDValue(CNode, 0);
   2291         ResLo = SDValue(CNode, 1);
   2292         InFlag = SDValue(CNode, 2);
   2293       } else {
   2294         SDVTList VTs = CurDAG->getVTList(MVT::Glue);
   2295         SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops,
   2296                                                array_lengthof(Ops));
   2297         InFlag = SDValue(CNode, 0);
   2298       }
   2299     }
   2300 
   2301     // Prevent use of AH in a REX instruction by referencing AX instead.
   2302     if (HiReg == X86::AH && Subtarget->is64Bit() &&
   2303         !SDValue(Node, 1).use_empty()) {
   2304       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
   2305                                               X86::AX, MVT::i16, InFlag);
   2306       InFlag = Result.getValue(2);
   2307       // Get the low part if needed. Don't use getCopyFromReg for aliasing
   2308       // registers.
   2309       if (!SDValue(Node, 0).use_empty())
   2310         ReplaceUses(SDValue(Node, 1),
   2311           CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
   2312 
   2313       // Shift AX down 8 bits.
   2314       Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
   2315                                               Result,
   2316                                      CurDAG->getTargetConstant(8, MVT::i8)), 0);
   2317       // Then truncate it down to i8.
   2318       ReplaceUses(SDValue(Node, 1),
   2319         CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
   2320     }
   2321     // Copy the low half of the result, if it is needed.
   2322     if (!SDValue(Node, 0).use_empty()) {
   2323       if (ResLo.getNode() == 0) {
   2324         assert(LoReg && "Register for low half is not defined!");
   2325         ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg, NVT,
   2326                                        InFlag);
   2327         InFlag = ResLo.getValue(2);
   2328       }
   2329       ReplaceUses(SDValue(Node, 0), ResLo);
   2330       DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG); dbgs() << '\n');
   2331     }
   2332     // Copy the high half of the result, if it is needed.
   2333     if (!SDValue(Node, 1).use_empty()) {
   2334       if (ResHi.getNode() == 0) {
   2335         assert(HiReg && "Register for high half is not defined!");
   2336         ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg, NVT,
   2337                                        InFlag);
   2338         InFlag = ResHi.getValue(2);
   2339       }
   2340       ReplaceUses(SDValue(Node, 1), ResHi);
   2341       DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG); dbgs() << '\n');
   2342     }
   2343 
   2344     return NULL;
   2345   }
   2346 
   2347   case ISD::SDIVREM:
   2348   case ISD::UDIVREM: {
   2349     SDValue N0 = Node->getOperand(0);
   2350     SDValue N1 = Node->getOperand(1);
   2351 
   2352     bool isSigned = Opcode == ISD::SDIVREM;
   2353     if (!isSigned) {
   2354       switch (NVT.getSimpleVT().SimpleTy) {
   2355       default: llvm_unreachable("Unsupported VT!");
   2356       case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
   2357       case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
   2358       case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
   2359       case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
   2360       }
   2361     } else {
   2362       switch (NVT.getSimpleVT().SimpleTy) {
   2363       default: llvm_unreachable("Unsupported VT!");
   2364       case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
   2365       case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
   2366       case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
   2367       case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
   2368       }
   2369     }
   2370 
   2371     unsigned LoReg, HiReg, ClrReg;
   2372     unsigned ClrOpcode, SExtOpcode;
   2373     switch (NVT.getSimpleVT().SimpleTy) {
   2374     default: llvm_unreachable("Unsupported VT!");
   2375     case MVT::i8:
   2376       LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
   2377       ClrOpcode  = 0;
   2378       SExtOpcode = X86::CBW;
   2379       break;
   2380     case MVT::i16:
   2381       LoReg = X86::AX;  HiReg = X86::DX;
   2382       ClrOpcode  = X86::MOV16r0; ClrReg = X86::DX;
   2383       SExtOpcode = X86::CWD;
   2384       break;
   2385     case MVT::i32:
   2386       LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
   2387       ClrOpcode  = X86::MOV32r0;
   2388       SExtOpcode = X86::CDQ;
   2389       break;
   2390     case MVT::i64:
   2391       LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
   2392       ClrOpcode  = X86::MOV64r0;
   2393       SExtOpcode = X86::CQO;
   2394       break;
   2395     }
   2396 
   2397     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
   2398     bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
   2399     bool signBitIsZero = CurDAG->SignBitIsZero(N0);
   2400 
   2401     SDValue InFlag;
   2402     if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
   2403       // Special case for div8, just use a move with zero extension to AX to
   2404       // clear the upper 8 bits (AH).
   2405       SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
   2406       if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
   2407         SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
   2408         Move =
   2409           SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32,
   2410                                          MVT::Other, Ops,
   2411                                          array_lengthof(Ops)), 0);
   2412         Chain = Move.getValue(1);
   2413         ReplaceUses(N0.getValue(1), Chain);
   2414       } else {
   2415         Move =
   2416           SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0);
   2417         Chain = CurDAG->getEntryNode();
   2418       }
   2419       Chain  = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue());
   2420       InFlag = Chain.getValue(1);
   2421     } else {
   2422       InFlag =
   2423         CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
   2424                              LoReg, N0, SDValue()).getValue(1);
   2425       if (isSigned && !signBitIsZero) {
   2426         // Sign extend the low part into the high part.
   2427         InFlag =
   2428           SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
   2429       } else {
   2430         // Zero out the high part, effectively zero extending the input.
   2431         SDValue ClrNode =
   2432           SDValue(CurDAG->getMachineNode(ClrOpcode, dl, NVT), 0);
   2433         InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
   2434                                       ClrNode, InFlag).getValue(1);
   2435       }
   2436     }
   2437 
   2438     if (foldedLoad) {
   2439       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
   2440                         InFlag };
   2441       SDNode *CNode =
   2442         CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops,
   2443                                array_lengthof(Ops));
   2444       InFlag = SDValue(CNode, 1);
   2445       // Update the chain.
   2446       ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
   2447     } else {
   2448       InFlag =
   2449         SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
   2450     }
   2451 
   2452     // Prevent use of AH in a REX instruction by referencing AX instead.
   2453     // Shift it down 8 bits.
   2454     if (HiReg == X86::AH && Subtarget->is64Bit() &&
   2455         !SDValue(Node, 1).use_empty()) {
   2456       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
   2457                                               X86::AX, MVT::i16, InFlag);
   2458       InFlag = Result.getValue(2);
   2459 
   2460       // If we also need AL (the quotient), get it by extracting a subreg from
   2461       // Result. The fast register allocator does not like multiple CopyFromReg
   2462       // nodes using aliasing registers.
   2463       if (!SDValue(Node, 0).use_empty())
   2464         ReplaceUses(SDValue(Node, 0),
   2465           CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
   2466 
   2467       // Shift AX right by 8 bits instead of using AH.
   2468       Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
   2469                                          Result,
   2470                                          CurDAG->getTargetConstant(8, MVT::i8)),
   2471                        0);
   2472       ReplaceUses(SDValue(Node, 1),
   2473         CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
   2474     }
   2475     // Copy the division (low) result, if it is needed.
   2476     if (!SDValue(Node, 0).use_empty()) {
   2477       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
   2478                                                 LoReg, NVT, InFlag);
   2479       InFlag = Result.getValue(2);
   2480       ReplaceUses(SDValue(Node, 0), Result);
   2481       DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
   2482     }
   2483     // Copy the remainder (high) result, if it is needed.
   2484     if (!SDValue(Node, 1).use_empty()) {
   2485       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
   2486                                               HiReg, NVT, InFlag);
   2487       InFlag = Result.getValue(2);
   2488       ReplaceUses(SDValue(Node, 1), Result);
   2489       DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
   2490     }
   2491     return NULL;
   2492   }
   2493 
   2494   case X86ISD::CMP:
   2495   case X86ISD::SUB: {
   2496     // Sometimes a SUB is used to perform comparison.
   2497     if (Opcode == X86ISD::SUB && Node->hasAnyUseOfValue(0))
   2498       // This node is not a CMP.
   2499       break;
   2500     SDValue N0 = Node->getOperand(0);
   2501     SDValue N1 = Node->getOperand(1);
   2502 
   2503     // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
   2504     // use a smaller encoding.
   2505     if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
   2506         HasNoSignedComparisonUses(Node))
   2507       // Look past the truncate if CMP is the only use of it.
   2508       N0 = N0.getOperand(0);
   2509     if ((N0.getNode()->getOpcode() == ISD::AND ||
   2510          (N0.getResNo() == 0 && N0.getNode()->getOpcode() == X86ISD::AND)) &&
   2511         N0.getNode()->hasOneUse() &&
   2512         N0.getValueType() != MVT::i8 &&
   2513         X86::isZeroNode(N1)) {
   2514       ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
   2515       if (!C) break;
   2516 
   2517       // For example, convert "testl %eax, $8" to "testb %al, $8"
   2518       if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
   2519           (!(C->getZExtValue() & 0x80) ||
   2520            HasNoSignedComparisonUses(Node))) {
   2521         SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
   2522         SDValue Reg = N0.getNode()->getOperand(0);
   2523 
   2524         // On x86-32, only the ABCD registers have 8-bit subregisters.
   2525         if (!Subtarget->is64Bit()) {
   2526           const TargetRegisterClass *TRC;
   2527           switch (N0.getValueType().getSimpleVT().SimpleTy) {
   2528           case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
   2529           case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
   2530           default: llvm_unreachable("Unsupported TEST operand type!");
   2531           }
   2532           SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
   2533           Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
   2534                                                Reg.getValueType(), Reg, RC), 0);
   2535         }
   2536 
   2537         // Extract the l-register.
   2538         SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl,
   2539                                                         MVT::i8, Reg);
   2540 
   2541         // Emit a testb.
   2542         SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
   2543                                                  Subreg, Imm);
   2544         // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
   2545         // one, do not call ReplaceAllUsesWith.
   2546         ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
   2547                     SDValue(NewNode, 0));
   2548         return NULL;
   2549       }
   2550 
   2551       // For example, "testl %eax, $2048" to "testb %ah, $8".
   2552       if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
   2553           (!(C->getZExtValue() & 0x8000) ||
   2554            HasNoSignedComparisonUses(Node))) {
   2555         // Shift the immediate right by 8 bits.
   2556         SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
   2557                                                        MVT::i8);
   2558         SDValue Reg = N0.getNode()->getOperand(0);
   2559 
   2560         // Put the value in an ABCD register.
   2561         const TargetRegisterClass *TRC;
   2562         switch (N0.getValueType().getSimpleVT().SimpleTy) {
   2563         case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
   2564         case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
   2565         case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
   2566         default: llvm_unreachable("Unsupported TEST operand type!");
   2567         }
   2568         SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
   2569         Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
   2570                                              Reg.getValueType(), Reg, RC), 0);
   2571 
   2572         // Extract the h-register.
   2573         SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl,
   2574                                                         MVT::i8, Reg);
   2575 
   2576         // Emit a testb.  The EXTRACT_SUBREG becomes a COPY that can only
   2577         // target GR8_NOREX registers, so make sure the register class is
   2578         // forced.
   2579         SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri_NOREX, dl,
   2580                                                  MVT::i32, Subreg, ShiftedImm);
   2581         // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
   2582         // one, do not call ReplaceAllUsesWith.
   2583         ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
   2584                     SDValue(NewNode, 0));
   2585         return NULL;
   2586       }
   2587 
   2588       // For example, "testl %eax, $32776" to "testw %ax, $32776".
   2589       if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
   2590           N0.getValueType() != MVT::i16 &&
   2591           (!(C->getZExtValue() & 0x8000) ||
   2592            HasNoSignedComparisonUses(Node))) {
   2593         SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
   2594         SDValue Reg = N0.getNode()->getOperand(0);
   2595 
   2596         // Extract the 16-bit subregister.
   2597         SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl,
   2598                                                         MVT::i16, Reg);
   2599 
   2600         // Emit a testw.
   2601         SDNode *NewNode = CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32,
   2602                                                  Subreg, Imm);
   2603         // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
   2604         // one, do not call ReplaceAllUsesWith.
   2605         ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
   2606                     SDValue(NewNode, 0));
   2607         return NULL;
   2608       }
   2609 
   2610       // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
   2611       if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
   2612           N0.getValueType() == MVT::i64 &&
   2613           (!(C->getZExtValue() & 0x80000000) ||
   2614            HasNoSignedComparisonUses(Node))) {
   2615         SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
   2616         SDValue Reg = N0.getNode()->getOperand(0);
   2617 
   2618         // Extract the 32-bit subregister.
   2619         SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl,
   2620                                                         MVT::i32, Reg);
   2621 
   2622         // Emit a testl.
   2623         SDNode *NewNode = CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32,
   2624                                                  Subreg, Imm);
   2625         // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
   2626         // one, do not call ReplaceAllUsesWith.
   2627         ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
   2628                     SDValue(NewNode, 0));
   2629         return NULL;
   2630       }
   2631     }
   2632     break;
   2633   }
   2634   case ISD::STORE: {
   2635     // Change a chain of {load; incr or dec; store} of the same value into
   2636     // a simple increment or decrement through memory of that value, if the
   2637     // uses of the modified value and its address are suitable.
   2638     // The DEC64m tablegen pattern is currently not able to match the case where
   2639     // the EFLAGS on the original DEC are used. (This also applies to
   2640     // {INC,DEC}X{64,32,16,8}.)
   2641     // We'll need to improve tablegen to allow flags to be transferred from a
   2642     // node in the pattern to the result node.  probably with a new keyword
   2643     // for example, we have this
   2644     // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
   2645     //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
   2646     //   (implicit EFLAGS)]>;
   2647     // but maybe need something like this
   2648     // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
   2649     //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
   2650     //   (transferrable EFLAGS)]>;
   2651 
   2652     StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
   2653     SDValue StoredVal = StoreNode->getOperand(1);
   2654     unsigned Opc = StoredVal->getOpcode();
   2655 
   2656     LoadSDNode *LoadNode = 0;
   2657     SDValue InputChain;
   2658     if (!isLoadIncOrDecStore(StoreNode, Opc, StoredVal, CurDAG,
   2659                              LoadNode, InputChain))
   2660       break;
   2661 
   2662     SDValue Base, Scale, Index, Disp, Segment;
   2663     if (!SelectAddr(LoadNode, LoadNode->getBasePtr(),
   2664                     Base, Scale, Index, Disp, Segment))
   2665       break;
   2666 
   2667     MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(2);
   2668     MemOp[0] = StoreNode->getMemOperand();
   2669     MemOp[1] = LoadNode->getMemOperand();
   2670     const SDValue Ops[] = { Base, Scale, Index, Disp, Segment, InputChain };
   2671     EVT LdVT = LoadNode->getMemoryVT();
   2672     unsigned newOpc = getFusedLdStOpcode(LdVT, Opc);
   2673     MachineSDNode *Result = CurDAG->getMachineNode(newOpc,
   2674                                                    Node->getDebugLoc(),
   2675                                                    MVT::i32, MVT::Other, Ops,
   2676                                                    array_lengthof(Ops));
   2677     Result->setMemRefs(MemOp, MemOp + 2);
   2678 
   2679     ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
   2680     ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
   2681 
   2682     return Result;
   2683   }
   2684   }
   2685 
   2686   SDNode *ResNode = SelectCode(Node);
   2687 
   2688   DEBUG(dbgs() << "=> ";
   2689         if (ResNode == NULL || ResNode == Node)
   2690           Node->dump(CurDAG);
   2691         else
   2692           ResNode->dump(CurDAG);
   2693         dbgs() << '\n');
   2694 
   2695   return ResNode;
   2696 }
   2697 
   2698 bool X86DAGToDAGISel::
   2699 SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
   2700                              std::vector<SDValue> &OutOps) {
   2701   SDValue Op0, Op1, Op2, Op3, Op4;
   2702   switch (ConstraintCode) {
   2703   case 'o':   // offsetable        ??
   2704   case 'v':   // not offsetable    ??
   2705   default: return true;
   2706   case 'm':   // memory
   2707     if (!SelectAddr(0, Op, Op0, Op1, Op2, Op3, Op4))
   2708       return true;
   2709     break;
   2710   }
   2711 
   2712   OutOps.push_back(Op0);
   2713   OutOps.push_back(Op1);
   2714   OutOps.push_back(Op2);
   2715   OutOps.push_back(Op3);
   2716   OutOps.push_back(Op4);
   2717   return false;
   2718 }
   2719 
   2720 /// createX86ISelDag - This pass converts a legalized DAG into a
   2721 /// X86-specific DAG, ready for instruction scheduling.
   2722 ///
   2723 FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
   2724                                      CodeGenOpt::Level OptLevel) {
   2725   return new X86DAGToDAGISel(TM, OptLevel);
   2726 }
   2727