1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetInstrInfo.h" 15 #include "llvm/CodeGen/MachineFrameInfo.h" 16 #include "llvm/CodeGen/MachineMemOperand.h" 17 #include "llvm/CodeGen/MachineRegisterInfo.h" 18 #include "llvm/CodeGen/PseudoSourceValue.h" 19 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" 20 #include "llvm/MC/MCAsmInfo.h" 21 #include "llvm/MC/MCInstrItineraries.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/Support/ErrorHandling.h" 24 #include "llvm/Support/raw_ostream.h" 25 #include "llvm/Target/TargetLowering.h" 26 #include "llvm/Target/TargetMachine.h" 27 #include "llvm/Target/TargetRegisterInfo.h" 28 #include <cctype> 29 using namespace llvm; 30 31 static cl::opt<bool> DisableHazardRecognizer( 32 "disable-sched-hazard", cl::Hidden, cl::init(false), 33 cl::desc("Disable hazard detection during preRA scheduling")); 34 35 TargetInstrInfo::~TargetInstrInfo() { 36 } 37 38 const TargetRegisterClass* 39 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum, 40 const TargetRegisterInfo *TRI, 41 const MachineFunction &MF) const { 42 if (OpNum >= MCID.getNumOperands()) 43 return 0; 44 45 short RegClass = MCID.OpInfo[OpNum].RegClass; 46 if (MCID.OpInfo[OpNum].isLookupPtrRegClass()) 47 return TRI->getPointerRegClass(MF, RegClass); 48 49 // Instructions like INSERT_SUBREG do not have fixed register classes. 50 if (RegClass < 0) 51 return 0; 52 53 // Otherwise just look it up normally. 54 return TRI->getRegClass(RegClass); 55 } 56 57 /// insertNoop - Insert a noop into the instruction stream at the specified 58 /// point. 59 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB, 60 MachineBasicBlock::iterator MI) const { 61 llvm_unreachable("Target didn't implement insertNoop!"); 62 } 63 64 /// Measure the specified inline asm to determine an approximation of its 65 /// length. 66 /// Comments (which run till the next SeparatorString or newline) do not 67 /// count as an instruction. 68 /// Any other non-whitespace text is considered an instruction, with 69 /// multiple instructions separated by SeparatorString or newlines. 70 /// Variable-length instructions are not handled here; this function 71 /// may be overloaded in the target code to do that. 72 unsigned TargetInstrInfo::getInlineAsmLength(const char *Str, 73 const MCAsmInfo &MAI) const { 74 75 76 // Count the number of instructions in the asm. 77 bool atInsnStart = true; 78 unsigned Length = 0; 79 for (; *Str; ++Str) { 80 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(), 81 strlen(MAI.getSeparatorString())) == 0) 82 atInsnStart = true; 83 if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) { 84 Length += MAI.getMaxInstLength(); 85 atInsnStart = false; 86 } 87 if (atInsnStart && strncmp(Str, MAI.getCommentString(), 88 strlen(MAI.getCommentString())) == 0) 89 atInsnStart = false; 90 } 91 92 return Length; 93 } 94 95 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything 96 /// after it, replacing it with an unconditional branch to NewDest. 97 void 98 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, 99 MachineBasicBlock *NewDest) const { 100 MachineBasicBlock *MBB = Tail->getParent(); 101 102 // Remove all the old successors of MBB from the CFG. 103 while (!MBB->succ_empty()) 104 MBB->removeSuccessor(MBB->succ_begin()); 105 106 // Remove all the dead instructions from the end of MBB. 107 MBB->erase(Tail, MBB->end()); 108 109 // If MBB isn't immediately before MBB, insert a branch to it. 110 if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest)) 111 InsertBranch(*MBB, NewDest, 0, SmallVector<MachineOperand, 0>(), 112 Tail->getDebugLoc()); 113 MBB->addSuccessor(NewDest); 114 } 115 116 // commuteInstruction - The default implementation of this method just exchanges 117 // the two operands returned by findCommutedOpIndices. 118 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr *MI, 119 bool NewMI) const { 120 const MCInstrDesc &MCID = MI->getDesc(); 121 bool HasDef = MCID.getNumDefs(); 122 if (HasDef && !MI->getOperand(0).isReg()) 123 // No idea how to commute this instruction. Target should implement its own. 124 return 0; 125 unsigned Idx1, Idx2; 126 if (!findCommutedOpIndices(MI, Idx1, Idx2)) { 127 std::string msg; 128 raw_string_ostream Msg(msg); 129 Msg << "Don't know how to commute: " << *MI; 130 report_fatal_error(Msg.str()); 131 } 132 133 assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() && 134 "This only knows how to commute register operands so far"); 135 unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0; 136 unsigned Reg1 = MI->getOperand(Idx1).getReg(); 137 unsigned Reg2 = MI->getOperand(Idx2).getReg(); 138 unsigned SubReg0 = HasDef ? MI->getOperand(0).getSubReg() : 0; 139 unsigned SubReg1 = MI->getOperand(Idx1).getSubReg(); 140 unsigned SubReg2 = MI->getOperand(Idx2).getSubReg(); 141 bool Reg1IsKill = MI->getOperand(Idx1).isKill(); 142 bool Reg2IsKill = MI->getOperand(Idx2).isKill(); 143 // If destination is tied to either of the commuted source register, then 144 // it must be updated. 145 if (HasDef && Reg0 == Reg1 && 146 MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) { 147 Reg2IsKill = false; 148 Reg0 = Reg2; 149 SubReg0 = SubReg2; 150 } else if (HasDef && Reg0 == Reg2 && 151 MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) { 152 Reg1IsKill = false; 153 Reg0 = Reg1; 154 SubReg0 = SubReg1; 155 } 156 157 if (NewMI) { 158 // Create a new instruction. 159 MachineFunction &MF = *MI->getParent()->getParent(); 160 MI = MF.CloneMachineInstr(MI); 161 } 162 163 if (HasDef) { 164 MI->getOperand(0).setReg(Reg0); 165 MI->getOperand(0).setSubReg(SubReg0); 166 } 167 MI->getOperand(Idx2).setReg(Reg1); 168 MI->getOperand(Idx1).setReg(Reg2); 169 MI->getOperand(Idx2).setSubReg(SubReg1); 170 MI->getOperand(Idx1).setSubReg(SubReg2); 171 MI->getOperand(Idx2).setIsKill(Reg1IsKill); 172 MI->getOperand(Idx1).setIsKill(Reg2IsKill); 173 return MI; 174 } 175 176 /// findCommutedOpIndices - If specified MI is commutable, return the two 177 /// operand indices that would swap value. Return true if the instruction 178 /// is not in a form which this routine understands. 179 bool TargetInstrInfo::findCommutedOpIndices(MachineInstr *MI, 180 unsigned &SrcOpIdx1, 181 unsigned &SrcOpIdx2) const { 182 assert(!MI->isBundle() && 183 "TargetInstrInfo::findCommutedOpIndices() can't handle bundles"); 184 185 const MCInstrDesc &MCID = MI->getDesc(); 186 if (!MCID.isCommutable()) 187 return false; 188 // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this 189 // is not true, then the target must implement this. 190 SrcOpIdx1 = MCID.getNumDefs(); 191 SrcOpIdx2 = SrcOpIdx1 + 1; 192 if (!MI->getOperand(SrcOpIdx1).isReg() || 193 !MI->getOperand(SrcOpIdx2).isReg()) 194 // No idea. 195 return false; 196 return true; 197 } 198 199 200 bool 201 TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { 202 if (!MI->isTerminator()) return false; 203 204 // Conditional branch is a special case. 205 if (MI->isBranch() && !MI->isBarrier()) 206 return true; 207 if (!MI->isPredicable()) 208 return true; 209 return !isPredicated(MI); 210 } 211 212 213 bool TargetInstrInfo::PredicateInstruction(MachineInstr *MI, 214 const SmallVectorImpl<MachineOperand> &Pred) const { 215 bool MadeChange = false; 216 217 assert(!MI->isBundle() && 218 "TargetInstrInfo::PredicateInstruction() can't handle bundles"); 219 220 const MCInstrDesc &MCID = MI->getDesc(); 221 if (!MI->isPredicable()) 222 return false; 223 224 for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) { 225 if (MCID.OpInfo[i].isPredicate()) { 226 MachineOperand &MO = MI->getOperand(i); 227 if (MO.isReg()) { 228 MO.setReg(Pred[j].getReg()); 229 MadeChange = true; 230 } else if (MO.isImm()) { 231 MO.setImm(Pred[j].getImm()); 232 MadeChange = true; 233 } else if (MO.isMBB()) { 234 MO.setMBB(Pred[j].getMBB()); 235 MadeChange = true; 236 } 237 ++j; 238 } 239 } 240 return MadeChange; 241 } 242 243 bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr *MI, 244 const MachineMemOperand *&MMO, 245 int &FrameIndex) const { 246 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), 247 oe = MI->memoperands_end(); 248 o != oe; 249 ++o) { 250 if ((*o)->isLoad() && (*o)->getValue()) 251 if (const FixedStackPseudoSourceValue *Value = 252 dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) { 253 FrameIndex = Value->getFrameIndex(); 254 MMO = *o; 255 return true; 256 } 257 } 258 return false; 259 } 260 261 bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr *MI, 262 const MachineMemOperand *&MMO, 263 int &FrameIndex) const { 264 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), 265 oe = MI->memoperands_end(); 266 o != oe; 267 ++o) { 268 if ((*o)->isStore() && (*o)->getValue()) 269 if (const FixedStackPseudoSourceValue *Value = 270 dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) { 271 FrameIndex = Value->getFrameIndex(); 272 MMO = *o; 273 return true; 274 } 275 } 276 return false; 277 } 278 279 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB, 280 MachineBasicBlock::iterator I, 281 unsigned DestReg, 282 unsigned SubIdx, 283 const MachineInstr *Orig, 284 const TargetRegisterInfo &TRI) const { 285 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); 286 MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI); 287 MBB.insert(I, MI); 288 } 289 290 bool 291 TargetInstrInfo::produceSameValue(const MachineInstr *MI0, 292 const MachineInstr *MI1, 293 const MachineRegisterInfo *MRI) const { 294 return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); 295 } 296 297 MachineInstr *TargetInstrInfo::duplicate(MachineInstr *Orig, 298 MachineFunction &MF) const { 299 assert(!Orig->isNotDuplicable() && 300 "Instruction cannot be duplicated"); 301 return MF.CloneMachineInstr(Orig); 302 } 303 304 // If the COPY instruction in MI can be folded to a stack operation, return 305 // the register class to use. 306 static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI, 307 unsigned FoldIdx) { 308 assert(MI->isCopy() && "MI must be a COPY instruction"); 309 if (MI->getNumOperands() != 2) 310 return 0; 311 assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand"); 312 313 const MachineOperand &FoldOp = MI->getOperand(FoldIdx); 314 const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx); 315 316 if (FoldOp.getSubReg() || LiveOp.getSubReg()) 317 return 0; 318 319 unsigned FoldReg = FoldOp.getReg(); 320 unsigned LiveReg = LiveOp.getReg(); 321 322 assert(TargetRegisterInfo::isVirtualRegister(FoldReg) && 323 "Cannot fold physregs"); 324 325 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 326 const TargetRegisterClass *RC = MRI.getRegClass(FoldReg); 327 328 if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg())) 329 return RC->contains(LiveOp.getReg()) ? RC : 0; 330 331 if (RC->hasSubClassEq(MRI.getRegClass(LiveReg))) 332 return RC; 333 334 // FIXME: Allow folding when register classes are memory compatible. 335 return 0; 336 } 337 338 bool TargetInstrInfo:: 339 canFoldMemoryOperand(const MachineInstr *MI, 340 const SmallVectorImpl<unsigned> &Ops) const { 341 return MI->isCopy() && Ops.size() == 1 && canFoldCopy(MI, Ops[0]); 342 } 343 344 /// foldMemoryOperand - Attempt to fold a load or store of the specified stack 345 /// slot into the specified machine instruction for the specified operand(s). 346 /// If this is possible, a new instruction is returned with the specified 347 /// operand folded, otherwise NULL is returned. The client is responsible for 348 /// removing the old instruction and adding the new one in the instruction 349 /// stream. 350 MachineInstr* 351 TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI, 352 const SmallVectorImpl<unsigned> &Ops, 353 int FI) const { 354 unsigned Flags = 0; 355 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 356 if (MI->getOperand(Ops[i]).isDef()) 357 Flags |= MachineMemOperand::MOStore; 358 else 359 Flags |= MachineMemOperand::MOLoad; 360 361 MachineBasicBlock *MBB = MI->getParent(); 362 assert(MBB && "foldMemoryOperand needs an inserted instruction"); 363 MachineFunction &MF = *MBB->getParent(); 364 365 // Ask the target to do the actual folding. 366 if (MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, FI)) { 367 // Add a memory operand, foldMemoryOperandImpl doesn't do that. 368 assert((!(Flags & MachineMemOperand::MOStore) || 369 NewMI->mayStore()) && 370 "Folded a def to a non-store!"); 371 assert((!(Flags & MachineMemOperand::MOLoad) || 372 NewMI->mayLoad()) && 373 "Folded a use to a non-load!"); 374 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 375 assert(MFI.getObjectOffset(FI) != -1); 376 MachineMemOperand *MMO = 377 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI), 378 Flags, MFI.getObjectSize(FI), 379 MFI.getObjectAlignment(FI)); 380 NewMI->addMemOperand(MF, MMO); 381 382 // FIXME: change foldMemoryOperandImpl semantics to also insert NewMI. 383 return MBB->insert(MI, NewMI); 384 } 385 386 // Straight COPY may fold as load/store. 387 if (!MI->isCopy() || Ops.size() != 1) 388 return 0; 389 390 const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]); 391 if (!RC) 392 return 0; 393 394 const MachineOperand &MO = MI->getOperand(1-Ops[0]); 395 MachineBasicBlock::iterator Pos = MI; 396 const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo(); 397 398 if (Flags == MachineMemOperand::MOStore) 399 storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI); 400 else 401 loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI); 402 return --Pos; 403 } 404 405 /// foldMemoryOperand - Same as the previous version except it allows folding 406 /// of any load and store from / to any address, not just from a specific 407 /// stack slot. 408 MachineInstr* 409 TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI, 410 const SmallVectorImpl<unsigned> &Ops, 411 MachineInstr* LoadMI) const { 412 assert(LoadMI->canFoldAsLoad() && "LoadMI isn't foldable!"); 413 #ifndef NDEBUG 414 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 415 assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!"); 416 #endif 417 MachineBasicBlock &MBB = *MI->getParent(); 418 MachineFunction &MF = *MBB.getParent(); 419 420 // Ask the target to do the actual folding. 421 MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI); 422 if (!NewMI) return 0; 423 424 NewMI = MBB.insert(MI, NewMI); 425 426 // Copy the memoperands from the load to the folded instruction. 427 NewMI->setMemRefs(LoadMI->memoperands_begin(), 428 LoadMI->memoperands_end()); 429 430 return NewMI; 431 } 432 433 bool TargetInstrInfo:: 434 isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI, 435 AliasAnalysis *AA) const { 436 const MachineFunction &MF = *MI->getParent()->getParent(); 437 const MachineRegisterInfo &MRI = MF.getRegInfo(); 438 const TargetMachine &TM = MF.getTarget(); 439 const TargetInstrInfo &TII = *TM.getInstrInfo(); 440 441 // Remat clients assume operand 0 is the defined register. 442 if (!MI->getNumOperands() || !MI->getOperand(0).isReg()) 443 return false; 444 unsigned DefReg = MI->getOperand(0).getReg(); 445 446 // A sub-register definition can only be rematerialized if the instruction 447 // doesn't read the other parts of the register. Otherwise it is really a 448 // read-modify-write operation on the full virtual register which cannot be 449 // moved safely. 450 if (TargetRegisterInfo::isVirtualRegister(DefReg) && 451 MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg)) 452 return false; 453 454 // A load from a fixed stack slot can be rematerialized. This may be 455 // redundant with subsequent checks, but it's target-independent, 456 // simple, and a common case. 457 int FrameIdx = 0; 458 if (TII.isLoadFromStackSlot(MI, FrameIdx) && 459 MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx)) 460 return true; 461 462 // Avoid instructions obviously unsafe for remat. 463 if (MI->isNotDuplicable() || MI->mayStore() || 464 MI->hasUnmodeledSideEffects()) 465 return false; 466 467 // Don't remat inline asm. We have no idea how expensive it is 468 // even if it's side effect free. 469 if (MI->isInlineAsm()) 470 return false; 471 472 // Avoid instructions which load from potentially varying memory. 473 if (MI->mayLoad() && !MI->isInvariantLoad(AA)) 474 return false; 475 476 // If any of the registers accessed are non-constant, conservatively assume 477 // the instruction is not rematerializable. 478 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 479 const MachineOperand &MO = MI->getOperand(i); 480 if (!MO.isReg()) continue; 481 unsigned Reg = MO.getReg(); 482 if (Reg == 0) 483 continue; 484 485 // Check for a well-behaved physical register. 486 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 487 if (MO.isUse()) { 488 // If the physreg has no defs anywhere, it's just an ambient register 489 // and we can freely move its uses. Alternatively, if it's allocatable, 490 // it could get allocated to something with a def during allocation. 491 if (!MRI.isConstantPhysReg(Reg, MF)) 492 return false; 493 } else { 494 // A physreg def. We can't remat it. 495 return false; 496 } 497 continue; 498 } 499 500 // Only allow one virtual-register def. There may be multiple defs of the 501 // same virtual register, though. 502 if (MO.isDef() && Reg != DefReg) 503 return false; 504 505 // Don't allow any virtual-register uses. Rematting an instruction with 506 // virtual register uses would length the live ranges of the uses, which 507 // is not necessarily a good idea, certainly not "trivial". 508 if (MO.isUse()) 509 return false; 510 } 511 512 // Everything checked out. 513 return true; 514 } 515 516 /// isSchedulingBoundary - Test if the given instruction should be 517 /// considered a scheduling boundary. This primarily includes labels 518 /// and terminators. 519 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr *MI, 520 const MachineBasicBlock *MBB, 521 const MachineFunction &MF) const { 522 // Terminators and labels can't be scheduled around. 523 if (MI->isTerminator() || MI->isLabel()) 524 return true; 525 526 // Don't attempt to schedule around any instruction that defines 527 // a stack-oriented pointer, as it's unlikely to be profitable. This 528 // saves compile time, because it doesn't require every single 529 // stack slot reference to depend on the instruction that does the 530 // modification. 531 const TargetLowering &TLI = *MF.getTarget().getTargetLowering(); 532 const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo(); 533 if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI)) 534 return true; 535 536 return false; 537 } 538 539 // Provide a global flag for disabling the PreRA hazard recognizer that targets 540 // may choose to honor. 541 bool TargetInstrInfo::usePreRAHazardRecognizer() const { 542 return !DisableHazardRecognizer; 543 } 544 545 // Default implementation of CreateTargetRAHazardRecognizer. 546 ScheduleHazardRecognizer *TargetInstrInfo:: 547 CreateTargetHazardRecognizer(const TargetMachine *TM, 548 const ScheduleDAG *DAG) const { 549 // Dummy hazard recognizer allows all instructions to issue. 550 return new ScheduleHazardRecognizer(); 551 } 552 553 // Default implementation of CreateTargetMIHazardRecognizer. 554 ScheduleHazardRecognizer *TargetInstrInfo:: 555 CreateTargetMIHazardRecognizer(const InstrItineraryData *II, 556 const ScheduleDAG *DAG) const { 557 return (ScheduleHazardRecognizer *) 558 new ScoreboardHazardRecognizer(II, DAG, "misched"); 559 } 560 561 // Default implementation of CreateTargetPostRAHazardRecognizer. 562 ScheduleHazardRecognizer *TargetInstrInfo:: 563 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 564 const ScheduleDAG *DAG) const { 565 return (ScheduleHazardRecognizer *) 566 new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched"); 567 } 568 569 //===----------------------------------------------------------------------===// 570 // SelectionDAG latency interface. 571 //===----------------------------------------------------------------------===// 572 573 int 574 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 575 SDNode *DefNode, unsigned DefIdx, 576 SDNode *UseNode, unsigned UseIdx) const { 577 if (!ItinData || ItinData->isEmpty()) 578 return -1; 579 580 if (!DefNode->isMachineOpcode()) 581 return -1; 582 583 unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass(); 584 if (!UseNode->isMachineOpcode()) 585 return ItinData->getOperandCycle(DefClass, DefIdx); 586 unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass(); 587 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 588 } 589 590 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 591 SDNode *N) const { 592 if (!ItinData || ItinData->isEmpty()) 593 return 1; 594 595 if (!N->isMachineOpcode()) 596 return 1; 597 598 return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass()); 599 } 600 601 //===----------------------------------------------------------------------===// 602 // MachineInstr latency interface. 603 //===----------------------------------------------------------------------===// 604 605 unsigned 606 TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, 607 const MachineInstr *MI) const { 608 if (!ItinData || ItinData->isEmpty()) 609 return 1; 610 611 unsigned Class = MI->getDesc().getSchedClass(); 612 int UOps = ItinData->Itineraries[Class].NumMicroOps; 613 if (UOps >= 0) 614 return UOps; 615 616 // The # of u-ops is dynamically determined. The specific target should 617 // override this function to return the right number. 618 return 1; 619 } 620 621 /// Return the default expected latency for a def based on it's opcode. 622 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel *SchedModel, 623 const MachineInstr *DefMI) const { 624 if (DefMI->isTransient()) 625 return 0; 626 if (DefMI->mayLoad()) 627 return SchedModel->LoadLatency; 628 if (isHighLatencyDef(DefMI->getOpcode())) 629 return SchedModel->HighLatency; 630 return 1; 631 } 632 633 unsigned TargetInstrInfo:: 634 getInstrLatency(const InstrItineraryData *ItinData, 635 const MachineInstr *MI, 636 unsigned *PredCost) const { 637 // Default to one cycle for no itinerary. However, an "empty" itinerary may 638 // still have a MinLatency property, which getStageLatency checks. 639 if (!ItinData) 640 return MI->mayLoad() ? 2 : 1; 641 642 return ItinData->getStageLatency(MI->getDesc().getSchedClass()); 643 } 644 645 bool TargetInstrInfo::hasLowDefLatency(const InstrItineraryData *ItinData, 646 const MachineInstr *DefMI, 647 unsigned DefIdx) const { 648 if (!ItinData || ItinData->isEmpty()) 649 return false; 650 651 unsigned DefClass = DefMI->getDesc().getSchedClass(); 652 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 653 return (DefCycle != -1 && DefCycle <= 1); 654 } 655 656 /// Both DefMI and UseMI must be valid. By default, call directly to the 657 /// itinerary. This may be overriden by the target. 658 int TargetInstrInfo:: 659 getOperandLatency(const InstrItineraryData *ItinData, 660 const MachineInstr *DefMI, unsigned DefIdx, 661 const MachineInstr *UseMI, unsigned UseIdx) const { 662 unsigned DefClass = DefMI->getDesc().getSchedClass(); 663 unsigned UseClass = UseMI->getDesc().getSchedClass(); 664 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 665 } 666 667 /// If we can determine the operand latency from the def only, without itinerary 668 /// lookup, do so. Otherwise return -1. 669 int TargetInstrInfo::computeDefOperandLatency( 670 const InstrItineraryData *ItinData, 671 const MachineInstr *DefMI) const { 672 673 // Let the target hook getInstrLatency handle missing itineraries. 674 if (!ItinData) 675 return getInstrLatency(ItinData, DefMI); 676 677 if(ItinData->isEmpty()) 678 return defaultDefLatency(ItinData->SchedModel, DefMI); 679 680 // ...operand lookup required 681 return -1; 682 } 683 684 /// computeOperandLatency - Compute and return the latency of the given data 685 /// dependent def and use when the operand indices are already known. UseMI may 686 /// be NULL for an unknown use. 687 /// 688 /// FindMin may be set to get the minimum vs. expected latency. Minimum 689 /// latency is used for scheduling groups, while expected latency is for 690 /// instruction cost and critical path. 691 /// 692 /// Depending on the subtarget's itinerary properties, this may or may not need 693 /// to call getOperandLatency(). For most subtargets, we don't need DefIdx or 694 /// UseIdx to compute min latency. 695 unsigned TargetInstrInfo:: 696 computeOperandLatency(const InstrItineraryData *ItinData, 697 const MachineInstr *DefMI, unsigned DefIdx, 698 const MachineInstr *UseMI, unsigned UseIdx) const { 699 700 int DefLatency = computeDefOperandLatency(ItinData, DefMI); 701 if (DefLatency >= 0) 702 return DefLatency; 703 704 assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail"); 705 706 int OperLatency = 0; 707 if (UseMI) 708 OperLatency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx); 709 else { 710 unsigned DefClass = DefMI->getDesc().getSchedClass(); 711 OperLatency = ItinData->getOperandCycle(DefClass, DefIdx); 712 } 713 if (OperLatency >= 0) 714 return OperLatency; 715 716 // No operand latency was found. 717 unsigned InstrLatency = getInstrLatency(ItinData, DefMI); 718 719 // Expected latency is the max of the stage latency and itinerary props. 720 InstrLatency = std::max(InstrLatency, 721 defaultDefLatency(ItinData->SchedModel, DefMI)); 722 return InstrLatency; 723 } 724