Home | History | Annotate | Download | only in ARM
      1 //===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the ARM-specific support for the FastISel class. Some
     11 // of the target-specific code is generated by tablegen in the file
     12 // ARMGenFastISel.inc, which is #included here.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "ARM.h"
     17 #include "ARMBaseRegisterInfo.h"
     18 #include "ARMCallingConv.h"
     19 #include "ARMConstantPoolValue.h"
     20 #include "ARMISelLowering.h"
     21 #include "ARMMachineFunctionInfo.h"
     22 #include "ARMSubtarget.h"
     23 #include "MCTargetDesc/ARMAddressingModes.h"
     24 #include "llvm/ADT/STLExtras.h"
     25 #include "llvm/CodeGen/Analysis.h"
     26 #include "llvm/CodeGen/FastISel.h"
     27 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     28 #include "llvm/CodeGen/MachineConstantPool.h"
     29 #include "llvm/CodeGen/MachineFrameInfo.h"
     30 #include "llvm/CodeGen/MachineInstrBuilder.h"
     31 #include "llvm/CodeGen/MachineMemOperand.h"
     32 #include "llvm/CodeGen/MachineModuleInfo.h"
     33 #include "llvm/CodeGen/MachineRegisterInfo.h"
     34 #include "llvm/IR/CallSite.h"
     35 #include "llvm/IR/CallingConv.h"
     36 #include "llvm/IR/DataLayout.h"
     37 #include "llvm/IR/DerivedTypes.h"
     38 #include "llvm/IR/GetElementPtrTypeIterator.h"
     39 #include "llvm/IR/GlobalVariable.h"
     40 #include "llvm/IR/Instructions.h"
     41 #include "llvm/IR/IntrinsicInst.h"
     42 #include "llvm/IR/Module.h"
     43 #include "llvm/IR/Operator.h"
     44 #include "llvm/Support/CommandLine.h"
     45 #include "llvm/Support/ErrorHandling.h"
     46 #include "llvm/Target/TargetInstrInfo.h"
     47 #include "llvm/Target/TargetLowering.h"
     48 #include "llvm/Target/TargetMachine.h"
     49 #include "llvm/Target/TargetOptions.h"
     50 using namespace llvm;
     51 
     52 namespace {
     53 
     54   // All possible address modes, plus some.
     55   typedef struct Address {
     56     enum {
     57       RegBase,
     58       FrameIndexBase
     59     } BaseType;
     60 
     61     union {
     62       unsigned Reg;
     63       int FI;
     64     } Base;
     65 
     66     int Offset;
     67 
     68     // Innocuous defaults for our address.
     69     Address()
     70      : BaseType(RegBase), Offset(0) {
     71        Base.Reg = 0;
     72      }
     73   } Address;
     74 
     75 class ARMFastISel final : public FastISel {
     76 
     77   /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
     78   /// make the right decision when generating code for different targets.
     79   const ARMSubtarget *Subtarget;
     80   Module &M;
     81   const TargetMachine &TM;
     82   const TargetInstrInfo &TII;
     83   const TargetLowering &TLI;
     84   ARMFunctionInfo *AFI;
     85 
     86   // Convenience variables to avoid some queries.
     87   bool isThumb2;
     88   LLVMContext *Context;
     89 
     90   public:
     91     explicit ARMFastISel(FunctionLoweringInfo &funcInfo,
     92                          const TargetLibraryInfo *libInfo)
     93         : FastISel(funcInfo, libInfo),
     94           Subtarget(
     95               &static_cast<const ARMSubtarget &>(funcInfo.MF->getSubtarget())),
     96           M(const_cast<Module &>(*funcInfo.Fn->getParent())),
     97           TM(funcInfo.MF->getTarget()), TII(*Subtarget->getInstrInfo()),
     98           TLI(*Subtarget->getTargetLowering()) {
     99       AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
    100       isThumb2 = AFI->isThumbFunction();
    101       Context = &funcInfo.Fn->getContext();
    102     }
    103 
    104     // Code from FastISel.cpp.
    105   private:
    106     unsigned fastEmitInst_r(unsigned MachineInstOpcode,
    107                             const TargetRegisterClass *RC,
    108                             unsigned Op0, bool Op0IsKill);
    109     unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
    110                              const TargetRegisterClass *RC,
    111                              unsigned Op0, bool Op0IsKill,
    112                              unsigned Op1, bool Op1IsKill);
    113     unsigned fastEmitInst_rrr(unsigned MachineInstOpcode,
    114                               const TargetRegisterClass *RC,
    115                               unsigned Op0, bool Op0IsKill,
    116                               unsigned Op1, bool Op1IsKill,
    117                               unsigned Op2, bool Op2IsKill);
    118     unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
    119                              const TargetRegisterClass *RC,
    120                              unsigned Op0, bool Op0IsKill,
    121                              uint64_t Imm);
    122     unsigned fastEmitInst_rri(unsigned MachineInstOpcode,
    123                               const TargetRegisterClass *RC,
    124                               unsigned Op0, bool Op0IsKill,
    125                               unsigned Op1, bool Op1IsKill,
    126                               uint64_t Imm);
    127     unsigned fastEmitInst_i(unsigned MachineInstOpcode,
    128                             const TargetRegisterClass *RC,
    129                             uint64_t Imm);
    130 
    131     // Backend specific FastISel code.
    132   private:
    133     bool fastSelectInstruction(const Instruction *I) override;
    134     unsigned fastMaterializeConstant(const Constant *C) override;
    135     unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
    136     bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
    137                              const LoadInst *LI) override;
    138     bool fastLowerArguments() override;
    139   private:
    140   #include "ARMGenFastISel.inc"
    141 
    142     // Instruction selection routines.
    143   private:
    144     bool SelectLoad(const Instruction *I);
    145     bool SelectStore(const Instruction *I);
    146     bool SelectBranch(const Instruction *I);
    147     bool SelectIndirectBr(const Instruction *I);
    148     bool SelectCmp(const Instruction *I);
    149     bool SelectFPExt(const Instruction *I);
    150     bool SelectFPTrunc(const Instruction *I);
    151     bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
    152     bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode);
    153     bool SelectIToFP(const Instruction *I, bool isSigned);
    154     bool SelectFPToI(const Instruction *I, bool isSigned);
    155     bool SelectDiv(const Instruction *I, bool isSigned);
    156     bool SelectRem(const Instruction *I, bool isSigned);
    157     bool SelectCall(const Instruction *I, const char *IntrMemName);
    158     bool SelectIntrinsicCall(const IntrinsicInst &I);
    159     bool SelectSelect(const Instruction *I);
    160     bool SelectRet(const Instruction *I);
    161     bool SelectTrunc(const Instruction *I);
    162     bool SelectIntExt(const Instruction *I);
    163     bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy);
    164 
    165     // Utility routines.
    166   private:
    167     bool isTypeLegal(Type *Ty, MVT &VT);
    168     bool isLoadTypeLegal(Type *Ty, MVT &VT);
    169     bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
    170                     bool isZExt);
    171     bool ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
    172                      unsigned Alignment = 0, bool isZExt = true,
    173                      bool allocReg = true);
    174     bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
    175                       unsigned Alignment = 0);
    176     bool ARMComputeAddress(const Value *Obj, Address &Addr);
    177     void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3);
    178     bool ARMIsMemCpySmall(uint64_t Len);
    179     bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
    180                                unsigned Alignment);
    181     unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
    182     unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT);
    183     unsigned ARMMaterializeInt(const Constant *C, MVT VT);
    184     unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT);
    185     unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg);
    186     unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg);
    187     unsigned ARMSelectCallOp(bool UseReg);
    188     unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, MVT VT);
    189 
    190     const TargetLowering *getTargetLowering() { return &TLI; }
    191 
    192     // Call handling routines.
    193   private:
    194     CCAssignFn *CCAssignFnForCall(CallingConv::ID CC,
    195                                   bool Return,
    196                                   bool isVarArg);
    197     bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
    198                          SmallVectorImpl<unsigned> &ArgRegs,
    199                          SmallVectorImpl<MVT> &ArgVTs,
    200                          SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
    201                          SmallVectorImpl<unsigned> &RegArgs,
    202                          CallingConv::ID CC,
    203                          unsigned &NumBytes,
    204                          bool isVarArg);
    205     unsigned getLibcallReg(const Twine &Name);
    206     bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
    207                     const Instruction *I, CallingConv::ID CC,
    208                     unsigned &NumBytes, bool isVarArg);
    209     bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
    210 
    211     // OptionalDef handling routines.
    212   private:
    213     bool isARMNEONPred(const MachineInstr *MI);
    214     bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
    215     const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
    216     void AddLoadStoreOperands(MVT VT, Address &Addr,
    217                               const MachineInstrBuilder &MIB,
    218                               unsigned Flags, bool useAM3);
    219 };
    220 
    221 } // end anonymous namespace
    222 
    223 #include "ARMGenCallingConv.inc"
    224 
    225 // DefinesOptionalPredicate - This is different from DefinesPredicate in that
    226 // we don't care about implicit defs here, just places we'll need to add a
    227 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
    228 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
    229   if (!MI->hasOptionalDef())
    230     return false;
    231 
    232   // Look to see if our OptionalDef is defining CPSR or CCR.
    233   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    234     const MachineOperand &MO = MI->getOperand(i);
    235     if (!MO.isReg() || !MO.isDef()) continue;
    236     if (MO.getReg() == ARM::CPSR)
    237       *CPSR = true;
    238   }
    239   return true;
    240 }
    241 
    242 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
    243   const MCInstrDesc &MCID = MI->getDesc();
    244 
    245   // If we're a thumb2 or not NEON function we'll be handled via isPredicable.
    246   if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
    247        AFI->isThumb2Function())
    248     return MI->isPredicable();
    249 
    250   for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i)
    251     if (MCID.OpInfo[i].isPredicate())
    252       return true;
    253 
    254   return false;
    255 }
    256 
    257 // If the machine is predicable go ahead and add the predicate operands, if
    258 // it needs default CC operands add those.
    259 // TODO: If we want to support thumb1 then we'll need to deal with optional
    260 // CPSR defs that need to be added before the remaining operands. See s_cc_out
    261 // for descriptions why.
    262 const MachineInstrBuilder &
    263 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
    264   MachineInstr *MI = &*MIB;
    265 
    266   // Do we use a predicate? or...
    267   // Are we NEON in ARM mode and have a predicate operand? If so, I know
    268   // we're not predicable but add it anyways.
    269   if (isARMNEONPred(MI))
    270     AddDefaultPred(MIB);
    271 
    272   // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
    273   // defines CPSR. All other OptionalDefines in ARM are the CCR register.
    274   bool CPSR = false;
    275   if (DefinesOptionalPredicate(MI, &CPSR)) {
    276     if (CPSR)
    277       AddDefaultT1CC(MIB);
    278     else
    279       AddDefaultCC(MIB);
    280   }
    281   return MIB;
    282 }
    283 
    284 unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
    285                                      const TargetRegisterClass *RC,
    286                                      unsigned Op0, bool Op0IsKill) {
    287   unsigned ResultReg = createResultReg(RC);
    288   const MCInstrDesc &II = TII.get(MachineInstOpcode);
    289 
    290   // Make sure the input operand is sufficiently constrained to be legal
    291   // for this instruction.
    292   Op0 = constrainOperandRegClass(II, Op0, 1);
    293   if (II.getNumDefs() >= 1) {
    294     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
    295                             ResultReg).addReg(Op0, Op0IsKill * RegState::Kill));
    296   } else {
    297     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
    298                    .addReg(Op0, Op0IsKill * RegState::Kill));
    299     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
    300                    TII.get(TargetOpcode::COPY), ResultReg)
    301                    .addReg(II.ImplicitDefs[0]));
    302   }
    303   return ResultReg;
    304 }
    305 
    306 unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
    307                                       const TargetRegisterClass *RC,
    308                                       unsigned Op0, bool Op0IsKill,
    309                                       unsigned Op1, bool Op1IsKill) {
    310   unsigned ResultReg = createResultReg(RC);
    311   const MCInstrDesc &II = TII.get(MachineInstOpcode);
    312 
    313   // Make sure the input operands are sufficiently constrained to be legal
    314   // for this instruction.
    315   Op0 = constrainOperandRegClass(II, Op0, 1);
    316   Op1 = constrainOperandRegClass(II, Op1, 2);
    317 
    318   if (II.getNumDefs() >= 1) {
    319     AddOptionalDefs(
    320         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
    321             .addReg(Op0, Op0IsKill * RegState::Kill)
    322             .addReg(Op1, Op1IsKill * RegState::Kill));
    323   } else {
    324     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
    325                    .addReg(Op0, Op0IsKill * RegState::Kill)
    326                    .addReg(Op1, Op1IsKill * RegState::Kill));
    327     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
    328                            TII.get(TargetOpcode::COPY), ResultReg)
    329                    .addReg(II.ImplicitDefs[0]));
    330   }
    331   return ResultReg;
    332 }
    333 
    334 unsigned ARMFastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
    335                                        const TargetRegisterClass *RC,
    336                                        unsigned Op0, bool Op0IsKill,
    337                                        unsigned Op1, bool Op1IsKill,
    338                                        unsigned Op2, bool Op2IsKill) {
    339   unsigned ResultReg = createResultReg(RC);
    340   const MCInstrDesc &II = TII.get(MachineInstOpcode);
    341 
    342   // Make sure the input operands are sufficiently constrained to be legal
    343   // for this instruction.
    344   Op0 = constrainOperandRegClass(II, Op0, 1);
    345   Op1 = constrainOperandRegClass(II, Op1, 2);
    346   Op2 = constrainOperandRegClass(II, Op1, 3);
    347 
    348   if (II.getNumDefs() >= 1) {
    349     AddOptionalDefs(
    350         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
    351             .addReg(Op0, Op0IsKill * RegState::Kill)
    352             .addReg(Op1, Op1IsKill * RegState::Kill)
    353             .addReg(Op2, Op2IsKill * RegState::Kill));
    354   } else {
    355     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
    356                    .addReg(Op0, Op0IsKill * RegState::Kill)
    357                    .addReg(Op1, Op1IsKill * RegState::Kill)
    358                    .addReg(Op2, Op2IsKill * RegState::Kill));
    359     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
    360                            TII.get(TargetOpcode::COPY), ResultReg)
    361                    .addReg(II.ImplicitDefs[0]));
    362   }
    363   return ResultReg;
    364 }
    365 
    366 unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
    367                                       const TargetRegisterClass *RC,
    368                                       unsigned Op0, bool Op0IsKill,
    369                                       uint64_t Imm) {
    370   unsigned ResultReg = createResultReg(RC);
    371   const MCInstrDesc &II = TII.get(MachineInstOpcode);
    372 
    373   // Make sure the input operand is sufficiently constrained to be legal
    374   // for this instruction.
    375   Op0 = constrainOperandRegClass(II, Op0, 1);
    376   if (II.getNumDefs() >= 1) {
    377     AddOptionalDefs(
    378         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
    379             .addReg(Op0, Op0IsKill * RegState::Kill)
    380             .addImm(Imm));
    381   } else {
    382     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
    383                    .addReg(Op0, Op0IsKill * RegState::Kill)
    384                    .addImm(Imm));
    385     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
    386                            TII.get(TargetOpcode::COPY), ResultReg)
    387                    .addReg(II.ImplicitDefs[0]));
    388   }
    389   return ResultReg;
    390 }
    391 
    392 unsigned ARMFastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
    393                                        const TargetRegisterClass *RC,
    394                                        unsigned Op0, bool Op0IsKill,
    395                                        unsigned Op1, bool Op1IsKill,
    396                                        uint64_t Imm) {
    397   unsigned ResultReg = createResultReg(RC);
    398   const MCInstrDesc &II = TII.get(MachineInstOpcode);
    399 
    400   // Make sure the input operands are sufficiently constrained to be legal
    401   // for this instruction.
    402   Op0 = constrainOperandRegClass(II, Op0, 1);
    403   Op1 = constrainOperandRegClass(II, Op1, 2);
    404   if (II.getNumDefs() >= 1) {
    405     AddOptionalDefs(
    406         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
    407             .addReg(Op0, Op0IsKill * RegState::Kill)
    408             .addReg(Op1, Op1IsKill * RegState::Kill)
    409             .addImm(Imm));
    410   } else {
    411     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
    412                    .addReg(Op0, Op0IsKill * RegState::Kill)
    413                    .addReg(Op1, Op1IsKill * RegState::Kill)
    414                    .addImm(Imm));
    415     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
    416                            TII.get(TargetOpcode::COPY), ResultReg)
    417                    .addReg(II.ImplicitDefs[0]));
    418   }
    419   return ResultReg;
    420 }
    421 
    422 unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode,
    423                                      const TargetRegisterClass *RC,
    424                                      uint64_t Imm) {
    425   unsigned ResultReg = createResultReg(RC);
    426   const MCInstrDesc &II = TII.get(MachineInstOpcode);
    427 
    428   if (II.getNumDefs() >= 1) {
    429     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
    430                             ResultReg).addImm(Imm));
    431   } else {
    432     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
    433                    .addImm(Imm));
    434     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
    435                            TII.get(TargetOpcode::COPY), ResultReg)
    436                    .addReg(II.ImplicitDefs[0]));
    437   }
    438   return ResultReg;
    439 }
    440 
    441 // TODO: Don't worry about 64-bit now, but when this is fixed remove the
    442 // checks from the various callers.
    443 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) {
    444   if (VT == MVT::f64) return 0;
    445 
    446   unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
    447   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
    448                           TII.get(ARM::VMOVSR), MoveReg)
    449                   .addReg(SrcReg));
    450   return MoveReg;
    451 }
    452 
    453 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) {
    454   if (VT == MVT::i64) return 0;
    455 
    456   unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
    457   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
    458                           TII.get(ARM::VMOVRS), MoveReg)
    459                   .addReg(SrcReg));
    460   return MoveReg;
    461 }
    462 
    463 // For double width floating point we need to materialize two constants
    464 // (the high and the low) into integer registers then use a move to get
    465 // the combined constant into an FP reg.
    466 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) {
    467   const APFloat Val = CFP->getValueAPF();
    468   bool is64bit = VT == MVT::f64;
    469 
    470   // This checks to see if we can use VFP3 instructions to materialize
    471   // a constant, otherwise we have to go through the constant pool.
    472   if (TLI.isFPImmLegal(Val, VT)) {
    473     int Imm;
    474     unsigned Opc;
    475     if (is64bit) {
    476       Imm = ARM_AM::getFP64Imm(Val);
    477       Opc = ARM::FCONSTD;
    478     } else {
    479       Imm = ARM_AM::getFP32Imm(Val);
    480       Opc = ARM::FCONSTS;
    481     }
    482     unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
    483     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
    484                             TII.get(Opc), DestReg).addImm(Imm));
    485     return DestReg;
    486   }
    487 
    488   // Require VFP2 for loading fp constants.
    489   if (!Subtarget->hasVFP2()) return false;
    490 
    491   // MachineConstantPool wants an explicit alignment.
    492   unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
    493   if (Align == 0) {
    494     // TODO: Figure out if this is correct.
    495     Align = DL.getTypeAllocSize(CFP->getType());
    496   }
    497   unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
    498   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
    499   unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
    500 
    501   // The extra reg is for addrmode5.
    502   AddOptionalDefs(
    503       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
    504           .addConstantPoolIndex(Idx)
    505           .addReg(0));
    506   return DestReg;
    507 }
    508 
    509 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) {
    510 
    511   if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
    512     return 0;
    513 
    514   // If we can do this in a single instruction without a constant pool entry
    515   // do so now.
    516   const ConstantInt *CI = cast<ConstantInt>(C);
    517   if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
    518     unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
    519     const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
    520       &ARM::GPRRegClass;
    521     unsigned ImmReg = createResultReg(RC);
    522     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
    523                             TII.get(Opc), ImmReg)
    524                     .addImm(CI->getZExtValue()));
    525     return ImmReg;
    526   }
    527 
    528   // Use MVN to emit negative constants.
    529   if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
    530     unsigned Imm = (unsigned)~(CI->getSExtValue());
    531     bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
    532       (ARM_AM::getSOImmVal(Imm) != -1);
    533     if (UseImm) {
    534       unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
    535       const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
    536                                                  &ARM::GPRRegClass;
    537       unsigned ImmReg = createResultReg(RC);
    538       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
    539                               TII.get(Opc), ImmReg)
    540                       .addImm(Imm));
    541       return ImmReg;
    542     }
    543   }
    544 
    545   unsigned ResultReg = 0;
    546   if (Subtarget->useMovt(*FuncInfo.MF))
    547     ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
    548 
    549   if (ResultReg)
    550     return ResultReg;
    551 
    552   // Load from constant pool.  For now 32-bit only.
    553   if (VT != MVT::i32)
    554     return 0;
    555 
    556   // MachineConstantPool wants an explicit alignment.
    557   unsigned Align = DL.getPrefTypeAlignment(C->getType());
    558   if (Align == 0) {
    559     // TODO: Figure out if this is correct.
    560     Align = DL.getTypeAllocSize(C->getType());
    561   }
    562   unsigned Idx = MCP.getConstantPoolIndex(C, Align);
    563   ResultReg = createResultReg(TLI.getRegClassFor(VT));
    564   if (isThumb2)
    565     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
    566                             TII.get(ARM::t2LDRpci), ResultReg)
    567                       .addConstantPoolIndex(Idx));
    568   else {
    569     // The extra immediate is for addrmode2.
    570     ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0);
    571     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
    572                             TII.get(ARM::LDRcp), ResultReg)
    573                       .addConstantPoolIndex(Idx)
    574                       .addImm(0));
    575   }
    576   return ResultReg;
    577 }
    578 
    579 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) {
    580   // For now 32-bit only.
    581   if (VT != MVT::i32) return 0;
    582 
    583   Reloc::Model RelocM = TM.getRelocationModel();
    584   bool IsIndirect = Subtarget->GVIsIndirectSymbol(GV, RelocM);
    585   const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
    586                                            : &ARM::GPRRegClass;
    587   unsigned DestReg = createResultReg(RC);
    588 
    589   // FastISel TLS support on non-MachO is broken, punt to SelectionDAG.
    590   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
    591   bool IsThreadLocal = GVar && GVar->isThreadLocal();
    592   if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0;
    593 
    594   // Use movw+movt when possible, it avoids constant pool entries.
    595   // Non-darwin targets only support static movt relocations in FastISel.
    596   if (Subtarget->useMovt(*FuncInfo.MF) &&
    597       (Subtarget->isTargetMachO() || RelocM == Reloc::Static)) {
    598     unsigned Opc;
    599     unsigned char TF = 0;
    600     if (Subtarget->isTargetMachO())
    601       TF = ARMII::MO_NONLAZY;
    602 
    603     switch (RelocM) {
    604     case Reloc::PIC_:
    605       Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel;
    606       break;
    607     default:
    608       Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm;
    609       break;
    610     }
    611     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
    612                             TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF));
    613   } else {
    614     // MachineConstantPool wants an explicit alignment.
    615     unsigned Align = DL.getPrefTypeAlignment(GV->getType());
    616     if (Align == 0) {
    617       // TODO: Figure out if this is correct.
    618       Align = DL.getTypeAllocSize(GV->getType());
    619     }
    620 
    621     if (Subtarget->isTargetELF() && RelocM == Reloc::PIC_)
    622       return ARMLowerPICELF(GV, Align, VT);
    623 
    624     // Grab index.
    625     unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 :
    626       (Subtarget->isThumb() ? 4 : 8);
    627     unsigned Id = AFI->createPICLabelUId();
    628     ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
    629                                                                 ARMCP::CPValue,
    630                                                                 PCAdj);
    631     unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
    632 
    633     // Load value.
    634     MachineInstrBuilder MIB;
    635     if (isThumb2) {
    636       unsigned Opc = (RelocM!=Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
    637       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
    638                     DestReg).addConstantPoolIndex(Idx);
    639       if (RelocM == Reloc::PIC_)
    640         MIB.addImm(Id);
    641       AddOptionalDefs(MIB);
    642     } else {
    643       // The extra immediate is for addrmode2.
    644       DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0);
    645       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
    646                     TII.get(ARM::LDRcp), DestReg)
    647                 .addConstantPoolIndex(Idx)
    648                 .addImm(0);
    649       AddOptionalDefs(MIB);
    650 
    651       if (RelocM == Reloc::PIC_) {
    652         unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD;
    653         unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
    654 
    655         MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
    656                                           DbgLoc, TII.get(Opc), NewDestReg)
    657                                   .addReg(DestReg)
    658                                   .addImm(Id);
    659         AddOptionalDefs(MIB);
    660         return NewDestReg;
    661       }
    662     }
    663   }
    664 
    665   if (IsIndirect) {
    666     MachineInstrBuilder MIB;
    667     unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
    668     if (isThumb2)
    669       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
    670                     TII.get(ARM::t2LDRi12), NewDestReg)
    671             .addReg(DestReg)
    672             .addImm(0);
    673     else
    674       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
    675                     TII.get(ARM::LDRi12), NewDestReg)
    676                 .addReg(DestReg)
    677                 .addImm(0);
    678     DestReg = NewDestReg;
    679     AddOptionalDefs(MIB);
    680   }
    681 
    682   return DestReg;
    683 }
    684 
    685 unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) {
    686   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
    687 
    688   // Only handle simple types.
    689   if (!CEVT.isSimple()) return 0;
    690   MVT VT = CEVT.getSimpleVT();
    691 
    692   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
    693     return ARMMaterializeFP(CFP, VT);
    694   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
    695     return ARMMaterializeGV(GV, VT);
    696   else if (isa<ConstantInt>(C))
    697     return ARMMaterializeInt(C, VT);
    698 
    699   return 0;
    700 }
    701 
    702 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
    703 
    704 unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
    705   // Don't handle dynamic allocas.
    706   if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
    707 
    708   MVT VT;
    709   if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
    710 
    711   DenseMap<const AllocaInst*, int>::iterator SI =
    712     FuncInfo.StaticAllocaMap.find(AI);
    713 
    714   // This will get lowered later into the correct offsets and registers
    715   // via rewriteXFrameIndex.
    716   if (SI != FuncInfo.StaticAllocaMap.end()) {
    717     unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
    718     const TargetRegisterClass* RC = TLI.getRegClassFor(VT);
    719     unsigned ResultReg = createResultReg(RC);
    720     ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0);
    721 
    722     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
    723                             TII.get(Opc), ResultReg)
    724                             .addFrameIndex(SI->second)
    725                             .addImm(0));
    726     return ResultReg;
    727   }
    728 
    729   return 0;
    730 }
    731 
    732 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
    733   EVT evt = TLI.getValueType(DL, Ty, true);
    734 
    735   // Only handle simple types.
    736   if (evt == MVT::Other || !evt.isSimple()) return false;
    737   VT = evt.getSimpleVT();
    738 
    739   // Handle all legal types, i.e. a register that will directly hold this
    740   // value.
    741   return TLI.isTypeLegal(VT);
    742 }
    743 
    744 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
    745   if (isTypeLegal(Ty, VT)) return true;
    746 
    747   // If this is a type than can be sign or zero-extended to a basic operation
    748   // go ahead and accept it now.
    749   if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
    750     return true;
    751 
    752   return false;
    753 }
    754 
    755 // Computes the address to get to an object.
    756 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
    757   // Some boilerplate from the X86 FastISel.
    758   const User *U = nullptr;
    759   unsigned Opcode = Instruction::UserOp1;
    760   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
    761     // Don't walk into other basic blocks unless the object is an alloca from
    762     // another block, otherwise it may not have a virtual register assigned.
    763     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
    764         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
    765       Opcode = I->getOpcode();
    766       U = I;
    767     }
    768   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
    769     Opcode = C->getOpcode();
    770     U = C;
    771   }
    772 
    773   if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
    774     if (Ty->getAddressSpace() > 255)
    775       // Fast instruction selection doesn't support the special
    776       // address spaces.
    777       return false;
    778 
    779   switch (Opcode) {
    780     default:
    781     break;
    782     case Instruction::BitCast:
    783       // Look through bitcasts.
    784       return ARMComputeAddress(U->getOperand(0), Addr);
    785     case Instruction::IntToPtr:
    786       // Look past no-op inttoptrs.
    787       if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
    788           TLI.getPointerTy(DL))
    789         return ARMComputeAddress(U->getOperand(0), Addr);
    790       break;
    791     case Instruction::PtrToInt:
    792       // Look past no-op ptrtoints.
    793       if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
    794         return ARMComputeAddress(U->getOperand(0), Addr);
    795       break;
    796     case Instruction::GetElementPtr: {
    797       Address SavedAddr = Addr;
    798       int TmpOffset = Addr.Offset;
    799 
    800       // Iterate through the GEP folding the constants into offsets where
    801       // we can.
    802       gep_type_iterator GTI = gep_type_begin(U);
    803       for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
    804            i != e; ++i, ++GTI) {
    805         const Value *Op = *i;
    806         if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    807           const StructLayout *SL = DL.getStructLayout(STy);
    808           unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
    809           TmpOffset += SL->getElementOffset(Idx);
    810         } else {
    811           uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
    812           for (;;) {
    813             if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
    814               // Constant-offset addressing.
    815               TmpOffset += CI->getSExtValue() * S;
    816               break;
    817             }
    818             if (canFoldAddIntoGEP(U, Op)) {
    819               // A compatible add with a constant operand. Fold the constant.
    820               ConstantInt *CI =
    821               cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
    822               TmpOffset += CI->getSExtValue() * S;
    823               // Iterate on the other operand.
    824               Op = cast<AddOperator>(Op)->getOperand(0);
    825               continue;
    826             }
    827             // Unsupported
    828             goto unsupported_gep;
    829           }
    830         }
    831       }
    832 
    833       // Try to grab the base operand now.
    834       Addr.Offset = TmpOffset;
    835       if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
    836 
    837       // We failed, restore everything and try the other options.
    838       Addr = SavedAddr;
    839 
    840       unsupported_gep:
    841       break;
    842     }
    843     case Instruction::Alloca: {
    844       const AllocaInst *AI = cast<AllocaInst>(Obj);
    845       DenseMap<const AllocaInst*, int>::iterator SI =
    846         FuncInfo.StaticAllocaMap.find(AI);
    847       if (SI != FuncInfo.StaticAllocaMap.end()) {
    848         Addr.BaseType = Address::FrameIndexBase;
    849         Addr.Base.FI = SI->second;
    850         return true;
    851       }
    852       break;
    853     }
    854   }
    855 
    856   // Try to get this in a register if nothing else has worked.
    857   if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
    858   return Addr.Base.Reg != 0;
    859 }
    860 
    861 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) {
    862   bool needsLowering = false;
    863   switch (VT.SimpleTy) {
    864     default: llvm_unreachable("Unhandled load/store type!");
    865     case MVT::i1:
    866     case MVT::i8:
    867     case MVT::i16:
    868     case MVT::i32:
    869       if (!useAM3) {
    870         // Integer loads/stores handle 12-bit offsets.
    871         needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
    872         // Handle negative offsets.
    873         if (needsLowering && isThumb2)
    874           needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
    875                             Addr.Offset > -256);
    876       } else {
    877         // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
    878         needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
    879       }
    880       break;
    881     case MVT::f32:
    882     case MVT::f64:
    883       // Floating point operands handle 8-bit offsets.
    884       needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
    885       break;
    886   }
    887 
    888   // If this is a stack pointer and the offset needs to be simplified then
    889   // put the alloca address into a register, set the base type back to
    890   // register and continue. This should almost never happen.
    891   if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
    892     const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
    893                                              : &ARM::GPRRegClass;
    894     unsigned ResultReg = createResultReg(RC);
    895     unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
    896     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
    897                             TII.get(Opc), ResultReg)
    898                             .addFrameIndex(Addr.Base.FI)
    899                             .addImm(0));
    900     Addr.Base.Reg = ResultReg;
    901     Addr.BaseType = Address::RegBase;
    902   }
    903 
    904   // Since the offset is too large for the load/store instruction
    905   // get the reg+offset into a register.
    906   if (needsLowering) {
    907     Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
    908                                  /*Op0IsKill*/false, Addr.Offset, MVT::i32);
    909     Addr.Offset = 0;
    910   }
    911 }
    912 
    913 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr,
    914                                        const MachineInstrBuilder &MIB,
    915                                        unsigned Flags, bool useAM3) {
    916   // addrmode5 output depends on the selection dag addressing dividing the
    917   // offset by 4 that it then later multiplies. Do this here as well.
    918   if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64)
    919     Addr.Offset /= 4;
    920 
    921   // Frame base works a bit differently. Handle it separately.
    922   if (Addr.BaseType == Address::FrameIndexBase) {
    923     int FI = Addr.Base.FI;
    924     int Offset = Addr.Offset;
    925     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
    926         MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags,
    927         MFI.getObjectSize(FI), MFI.getObjectAlignment(FI));
    928     // Now add the rest of the operands.
    929     MIB.addFrameIndex(FI);
    930 
    931     // ARM halfword load/stores and signed byte loads need an additional
    932     // operand.
    933     if (useAM3) {
    934       signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
    935       MIB.addReg(0);
    936       MIB.addImm(Imm);
    937     } else {
    938       MIB.addImm(Addr.Offset);
    939     }
    940     MIB.addMemOperand(MMO);
    941   } else {
    942     // Now add the rest of the operands.
    943     MIB.addReg(Addr.Base.Reg);
    944 
    945     // ARM halfword load/stores and signed byte loads need an additional
    946     // operand.
    947     if (useAM3) {
    948       signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
    949       MIB.addReg(0);
    950       MIB.addImm(Imm);
    951     } else {
    952       MIB.addImm(Addr.Offset);
    953     }
    954   }
    955   AddOptionalDefs(MIB);
    956 }
    957 
    958 bool ARMFastISel::ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
    959                               unsigned Alignment, bool isZExt, bool allocReg) {
    960   unsigned Opc;
    961   bool useAM3 = false;
    962   bool needVMOV = false;
    963   const TargetRegisterClass *RC;
    964   switch (VT.SimpleTy) {
    965     // This is mostly going to be Neon/vector support.
    966     default: return false;
    967     case MVT::i1:
    968     case MVT::i8:
    969       if (isThumb2) {
    970         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
    971           Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
    972         else
    973           Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
    974       } else {
    975         if (isZExt) {
    976           Opc = ARM::LDRBi12;
    977         } else {
    978           Opc = ARM::LDRSB;
    979           useAM3 = true;
    980         }
    981       }
    982       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
    983       break;
    984     case MVT::i16:
    985       if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
    986         return false;
    987 
    988       if (isThumb2) {
    989         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
    990           Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
    991         else
    992           Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
    993       } else {
    994         Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
    995         useAM3 = true;
    996       }
    997       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
    998       break;
    999     case MVT::i32:
   1000       if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
   1001         return false;
   1002 
   1003       if (isThumb2) {
   1004         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
   1005           Opc = ARM::t2LDRi8;
   1006         else
   1007           Opc = ARM::t2LDRi12;
   1008       } else {
   1009         Opc = ARM::LDRi12;
   1010       }
   1011       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
   1012       break;
   1013     case MVT::f32:
   1014       if (!Subtarget->hasVFP2()) return false;
   1015       // Unaligned loads need special handling. Floats require word-alignment.
   1016       if (Alignment && Alignment < 4) {
   1017         needVMOV = true;
   1018         VT = MVT::i32;
   1019         Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
   1020         RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
   1021       } else {
   1022         Opc = ARM::VLDRS;
   1023         RC = TLI.getRegClassFor(VT);
   1024       }
   1025       break;
   1026     case MVT::f64:
   1027       if (!Subtarget->hasVFP2()) return false;
   1028       // FIXME: Unaligned loads need special handling.  Doublewords require
   1029       // word-alignment.
   1030       if (Alignment && Alignment < 4)
   1031         return false;
   1032 
   1033       Opc = ARM::VLDRD;
   1034       RC = TLI.getRegClassFor(VT);
   1035       break;
   1036   }
   1037   // Simplify this down to something we can handle.
   1038   ARMSimplifyAddress(Addr, VT, useAM3);
   1039 
   1040   // Create the base instruction, then add the operands.
   1041   if (allocReg)
   1042     ResultReg = createResultReg(RC);
   1043   assert (ResultReg > 255 && "Expected an allocated virtual register.");
   1044   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1045                                     TII.get(Opc), ResultReg);
   1046   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
   1047 
   1048   // If we had an unaligned load of a float we've converted it to an regular
   1049   // load.  Now we must move from the GRP to the FP register.
   1050   if (needVMOV) {
   1051     unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32));
   1052     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1053                             TII.get(ARM::VMOVSR), MoveReg)
   1054                     .addReg(ResultReg));
   1055     ResultReg = MoveReg;
   1056   }
   1057   return true;
   1058 }
   1059 
   1060 bool ARMFastISel::SelectLoad(const Instruction *I) {
   1061   // Atomic loads need special handling.
   1062   if (cast<LoadInst>(I)->isAtomic())
   1063     return false;
   1064 
   1065   // Verify we have a legal type before going any further.
   1066   MVT VT;
   1067   if (!isLoadTypeLegal(I->getType(), VT))
   1068     return false;
   1069 
   1070   // See if we can handle this address.
   1071   Address Addr;
   1072   if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
   1073 
   1074   unsigned ResultReg;
   1075   if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
   1076     return false;
   1077   updateValueMap(I, ResultReg);
   1078   return true;
   1079 }
   1080 
   1081 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
   1082                                unsigned Alignment) {
   1083   unsigned StrOpc;
   1084   bool useAM3 = false;
   1085   switch (VT.SimpleTy) {
   1086     // This is mostly going to be Neon/vector support.
   1087     default: return false;
   1088     case MVT::i1: {
   1089       unsigned Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass
   1090                                               : &ARM::GPRRegClass);
   1091       unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
   1092       SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1);
   1093       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1094                               TII.get(Opc), Res)
   1095                       .addReg(SrcReg).addImm(1));
   1096       SrcReg = Res;
   1097     } // Fallthrough here.
   1098     case MVT::i8:
   1099       if (isThumb2) {
   1100         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
   1101           StrOpc = ARM::t2STRBi8;
   1102         else
   1103           StrOpc = ARM::t2STRBi12;
   1104       } else {
   1105         StrOpc = ARM::STRBi12;
   1106       }
   1107       break;
   1108     case MVT::i16:
   1109       if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
   1110         return false;
   1111 
   1112       if (isThumb2) {
   1113         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
   1114           StrOpc = ARM::t2STRHi8;
   1115         else
   1116           StrOpc = ARM::t2STRHi12;
   1117       } else {
   1118         StrOpc = ARM::STRH;
   1119         useAM3 = true;
   1120       }
   1121       break;
   1122     case MVT::i32:
   1123       if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
   1124         return false;
   1125 
   1126       if (isThumb2) {
   1127         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
   1128           StrOpc = ARM::t2STRi8;
   1129         else
   1130           StrOpc = ARM::t2STRi12;
   1131       } else {
   1132         StrOpc = ARM::STRi12;
   1133       }
   1134       break;
   1135     case MVT::f32:
   1136       if (!Subtarget->hasVFP2()) return false;
   1137       // Unaligned stores need special handling. Floats require word-alignment.
   1138       if (Alignment && Alignment < 4) {
   1139         unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
   1140         AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1141                                 TII.get(ARM::VMOVRS), MoveReg)
   1142                         .addReg(SrcReg));
   1143         SrcReg = MoveReg;
   1144         VT = MVT::i32;
   1145         StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
   1146       } else {
   1147         StrOpc = ARM::VSTRS;
   1148       }
   1149       break;
   1150     case MVT::f64:
   1151       if (!Subtarget->hasVFP2()) return false;
   1152       // FIXME: Unaligned stores need special handling.  Doublewords require
   1153       // word-alignment.
   1154       if (Alignment && Alignment < 4)
   1155           return false;
   1156 
   1157       StrOpc = ARM::VSTRD;
   1158       break;
   1159   }
   1160   // Simplify this down to something we can handle.
   1161   ARMSimplifyAddress(Addr, VT, useAM3);
   1162 
   1163   // Create the base instruction, then add the operands.
   1164   SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0);
   1165   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1166                                     TII.get(StrOpc))
   1167                             .addReg(SrcReg);
   1168   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
   1169   return true;
   1170 }
   1171 
   1172 bool ARMFastISel::SelectStore(const Instruction *I) {
   1173   Value *Op0 = I->getOperand(0);
   1174   unsigned SrcReg = 0;
   1175 
   1176   // Atomic stores need special handling.
   1177   if (cast<StoreInst>(I)->isAtomic())
   1178     return false;
   1179 
   1180   // Verify we have a legal type before going any further.
   1181   MVT VT;
   1182   if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
   1183     return false;
   1184 
   1185   // Get the value to be stored into a register.
   1186   SrcReg = getRegForValue(Op0);
   1187   if (SrcReg == 0) return false;
   1188 
   1189   // See if we can handle this address.
   1190   Address Addr;
   1191   if (!ARMComputeAddress(I->getOperand(1), Addr))
   1192     return false;
   1193 
   1194   if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
   1195     return false;
   1196   return true;
   1197 }
   1198 
   1199 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
   1200   switch (Pred) {
   1201     // Needs two compares...
   1202     case CmpInst::FCMP_ONE:
   1203     case CmpInst::FCMP_UEQ:
   1204     default:
   1205       // AL is our "false" for now. The other two need more compares.
   1206       return ARMCC::AL;
   1207     case CmpInst::ICMP_EQ:
   1208     case CmpInst::FCMP_OEQ:
   1209       return ARMCC::EQ;
   1210     case CmpInst::ICMP_SGT:
   1211     case CmpInst::FCMP_OGT:
   1212       return ARMCC::GT;
   1213     case CmpInst::ICMP_SGE:
   1214     case CmpInst::FCMP_OGE:
   1215       return ARMCC::GE;
   1216     case CmpInst::ICMP_UGT:
   1217     case CmpInst::FCMP_UGT:
   1218       return ARMCC::HI;
   1219     case CmpInst::FCMP_OLT:
   1220       return ARMCC::MI;
   1221     case CmpInst::ICMP_ULE:
   1222     case CmpInst::FCMP_OLE:
   1223       return ARMCC::LS;
   1224     case CmpInst::FCMP_ORD:
   1225       return ARMCC::VC;
   1226     case CmpInst::FCMP_UNO:
   1227       return ARMCC::VS;
   1228     case CmpInst::FCMP_UGE:
   1229       return ARMCC::PL;
   1230     case CmpInst::ICMP_SLT:
   1231     case CmpInst::FCMP_ULT:
   1232       return ARMCC::LT;
   1233     case CmpInst::ICMP_SLE:
   1234     case CmpInst::FCMP_ULE:
   1235       return ARMCC::LE;
   1236     case CmpInst::FCMP_UNE:
   1237     case CmpInst::ICMP_NE:
   1238       return ARMCC::NE;
   1239     case CmpInst::ICMP_UGE:
   1240       return ARMCC::HS;
   1241     case CmpInst::ICMP_ULT:
   1242       return ARMCC::LO;
   1243   }
   1244 }
   1245 
   1246 bool ARMFastISel::SelectBranch(const Instruction *I) {
   1247   const BranchInst *BI = cast<BranchInst>(I);
   1248   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
   1249   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
   1250 
   1251   // Simple branch support.
   1252 
   1253   // If we can, avoid recomputing the compare - redoing it could lead to wonky
   1254   // behavior.
   1255   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
   1256     if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
   1257 
   1258       // Get the compare predicate.
   1259       // Try to take advantage of fallthrough opportunities.
   1260       CmpInst::Predicate Predicate = CI->getPredicate();
   1261       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
   1262         std::swap(TBB, FBB);
   1263         Predicate = CmpInst::getInversePredicate(Predicate);
   1264       }
   1265 
   1266       ARMCC::CondCodes ARMPred = getComparePred(Predicate);
   1267 
   1268       // We may not handle every CC for now.
   1269       if (ARMPred == ARMCC::AL) return false;
   1270 
   1271       // Emit the compare.
   1272       if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
   1273         return false;
   1274 
   1275       unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
   1276       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
   1277       .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
   1278       finishCondBranch(BI->getParent(), TBB, FBB);
   1279       return true;
   1280     }
   1281   } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
   1282     MVT SourceVT;
   1283     if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
   1284         (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
   1285       unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
   1286       unsigned OpReg = getRegForValue(TI->getOperand(0));
   1287       OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0);
   1288       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1289                               TII.get(TstOpc))
   1290                       .addReg(OpReg).addImm(1));
   1291 
   1292       unsigned CCMode = ARMCC::NE;
   1293       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
   1294         std::swap(TBB, FBB);
   1295         CCMode = ARMCC::EQ;
   1296       }
   1297 
   1298       unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
   1299       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
   1300       .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
   1301 
   1302       finishCondBranch(BI->getParent(), TBB, FBB);
   1303       return true;
   1304     }
   1305   } else if (const ConstantInt *CI =
   1306              dyn_cast<ConstantInt>(BI->getCondition())) {
   1307     uint64_t Imm = CI->getZExtValue();
   1308     MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
   1309     fastEmitBranch(Target, DbgLoc);
   1310     return true;
   1311   }
   1312 
   1313   unsigned CmpReg = getRegForValue(BI->getCondition());
   1314   if (CmpReg == 0) return false;
   1315 
   1316   // We've been divorced from our compare!  Our block was split, and
   1317   // now our compare lives in a predecessor block.  We musn't
   1318   // re-compare here, as the children of the compare aren't guaranteed
   1319   // live across the block boundary (we *could* check for this).
   1320   // Regardless, the compare has been done in the predecessor block,
   1321   // and it left a value for us in a virtual register.  Ergo, we test
   1322   // the one-bit value left in the virtual register.
   1323   unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
   1324   CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0);
   1325   AddOptionalDefs(
   1326       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
   1327           .addReg(CmpReg)
   1328           .addImm(1));
   1329 
   1330   unsigned CCMode = ARMCC::NE;
   1331   if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
   1332     std::swap(TBB, FBB);
   1333     CCMode = ARMCC::EQ;
   1334   }
   1335 
   1336   unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
   1337   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
   1338                   .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
   1339   finishCondBranch(BI->getParent(), TBB, FBB);
   1340   return true;
   1341 }
   1342 
   1343 bool ARMFastISel::SelectIndirectBr(const Instruction *I) {
   1344   unsigned AddrReg = getRegForValue(I->getOperand(0));
   1345   if (AddrReg == 0) return false;
   1346 
   1347   unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX;
   1348   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1349                           TII.get(Opc)).addReg(AddrReg));
   1350 
   1351   const IndirectBrInst *IB = cast<IndirectBrInst>(I);
   1352   for (const BasicBlock *SuccBB : IB->successors())
   1353     FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);
   1354 
   1355   return true;
   1356 }
   1357 
   1358 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
   1359                              bool isZExt) {
   1360   Type *Ty = Src1Value->getType();
   1361   EVT SrcEVT = TLI.getValueType(DL, Ty, true);
   1362   if (!SrcEVT.isSimple()) return false;
   1363   MVT SrcVT = SrcEVT.getSimpleVT();
   1364 
   1365   bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy());
   1366   if (isFloat && !Subtarget->hasVFP2())
   1367     return false;
   1368 
   1369   // Check to see if the 2nd operand is a constant that we can encode directly
   1370   // in the compare.
   1371   int Imm = 0;
   1372   bool UseImm = false;
   1373   bool isNegativeImm = false;
   1374   // FIXME: At -O0 we don't have anything that canonicalizes operand order.
   1375   // Thus, Src1Value may be a ConstantInt, but we're missing it.
   1376   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
   1377     if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
   1378         SrcVT == MVT::i1) {
   1379       const APInt &CIVal = ConstInt->getValue();
   1380       Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
   1381       // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather
   1382       // then a cmn, because there is no way to represent 2147483648 as a
   1383       // signed 32-bit int.
   1384       if (Imm < 0 && Imm != (int)0x80000000) {
   1385         isNegativeImm = true;
   1386         Imm = -Imm;
   1387       }
   1388       UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
   1389         (ARM_AM::getSOImmVal(Imm) != -1);
   1390     }
   1391   } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
   1392     if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
   1393       if (ConstFP->isZero() && !ConstFP->isNegative())
   1394         UseImm = true;
   1395   }
   1396 
   1397   unsigned CmpOpc;
   1398   bool isICmp = true;
   1399   bool needsExt = false;
   1400   switch (SrcVT.SimpleTy) {
   1401     default: return false;
   1402     // TODO: Verify compares.
   1403     case MVT::f32:
   1404       isICmp = false;
   1405       CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES;
   1406       break;
   1407     case MVT::f64:
   1408       isICmp = false;
   1409       CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED;
   1410       break;
   1411     case MVT::i1:
   1412     case MVT::i8:
   1413     case MVT::i16:
   1414       needsExt = true;
   1415     // Intentional fall-through.
   1416     case MVT::i32:
   1417       if (isThumb2) {
   1418         if (!UseImm)
   1419           CmpOpc = ARM::t2CMPrr;
   1420         else
   1421           CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri;
   1422       } else {
   1423         if (!UseImm)
   1424           CmpOpc = ARM::CMPrr;
   1425         else
   1426           CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri;
   1427       }
   1428       break;
   1429   }
   1430 
   1431   unsigned SrcReg1 = getRegForValue(Src1Value);
   1432   if (SrcReg1 == 0) return false;
   1433 
   1434   unsigned SrcReg2 = 0;
   1435   if (!UseImm) {
   1436     SrcReg2 = getRegForValue(Src2Value);
   1437     if (SrcReg2 == 0) return false;
   1438   }
   1439 
   1440   // We have i1, i8, or i16, we need to either zero extend or sign extend.
   1441   if (needsExt) {
   1442     SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
   1443     if (SrcReg1 == 0) return false;
   1444     if (!UseImm) {
   1445       SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
   1446       if (SrcReg2 == 0) return false;
   1447     }
   1448   }
   1449 
   1450   const MCInstrDesc &II = TII.get(CmpOpc);
   1451   SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0);
   1452   if (!UseImm) {
   1453     SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1);
   1454     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
   1455                     .addReg(SrcReg1).addReg(SrcReg2));
   1456   } else {
   1457     MachineInstrBuilder MIB;
   1458     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
   1459       .addReg(SrcReg1);
   1460 
   1461     // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
   1462     if (isICmp)
   1463       MIB.addImm(Imm);
   1464     AddOptionalDefs(MIB);
   1465   }
   1466 
   1467   // For floating point we need to move the result to a comparison register
   1468   // that we can then use for branches.
   1469   if (Ty->isFloatTy() || Ty->isDoubleTy())
   1470     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1471                             TII.get(ARM::FMSTAT)));
   1472   return true;
   1473 }
   1474 
   1475 bool ARMFastISel::SelectCmp(const Instruction *I) {
   1476   const CmpInst *CI = cast<CmpInst>(I);
   1477 
   1478   // Get the compare predicate.
   1479   ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
   1480 
   1481   // We may not handle every CC for now.
   1482   if (ARMPred == ARMCC::AL) return false;
   1483 
   1484   // Emit the compare.
   1485   if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
   1486     return false;
   1487 
   1488   // Now set a register based on the comparison. Explicitly set the predicates
   1489   // here.
   1490   unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
   1491   const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
   1492                                            : &ARM::GPRRegClass;
   1493   unsigned DestReg = createResultReg(RC);
   1494   Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
   1495   unsigned ZeroReg = fastMaterializeConstant(Zero);
   1496   // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR.
   1497   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg)
   1498           .addReg(ZeroReg).addImm(1)
   1499           .addImm(ARMPred).addReg(ARM::CPSR);
   1500 
   1501   updateValueMap(I, DestReg);
   1502   return true;
   1503 }
   1504 
   1505 bool ARMFastISel::SelectFPExt(const Instruction *I) {
   1506   // Make sure we have VFP and that we're extending float to double.
   1507   if (!Subtarget->hasVFP2()) return false;
   1508 
   1509   Value *V = I->getOperand(0);
   1510   if (!I->getType()->isDoubleTy() ||
   1511       !V->getType()->isFloatTy()) return false;
   1512 
   1513   unsigned Op = getRegForValue(V);
   1514   if (Op == 0) return false;
   1515 
   1516   unsigned Result = createResultReg(&ARM::DPRRegClass);
   1517   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1518                           TII.get(ARM::VCVTDS), Result)
   1519                   .addReg(Op));
   1520   updateValueMap(I, Result);
   1521   return true;
   1522 }
   1523 
   1524 bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
   1525   // Make sure we have VFP and that we're truncating double to float.
   1526   if (!Subtarget->hasVFP2()) return false;
   1527 
   1528   Value *V = I->getOperand(0);
   1529   if (!(I->getType()->isFloatTy() &&
   1530         V->getType()->isDoubleTy())) return false;
   1531 
   1532   unsigned Op = getRegForValue(V);
   1533   if (Op == 0) return false;
   1534 
   1535   unsigned Result = createResultReg(&ARM::SPRRegClass);
   1536   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1537                           TII.get(ARM::VCVTSD), Result)
   1538                   .addReg(Op));
   1539   updateValueMap(I, Result);
   1540   return true;
   1541 }
   1542 
   1543 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) {
   1544   // Make sure we have VFP.
   1545   if (!Subtarget->hasVFP2()) return false;
   1546 
   1547   MVT DstVT;
   1548   Type *Ty = I->getType();
   1549   if (!isTypeLegal(Ty, DstVT))
   1550     return false;
   1551 
   1552   Value *Src = I->getOperand(0);
   1553   EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
   1554   if (!SrcEVT.isSimple())
   1555     return false;
   1556   MVT SrcVT = SrcEVT.getSimpleVT();
   1557   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
   1558     return false;
   1559 
   1560   unsigned SrcReg = getRegForValue(Src);
   1561   if (SrcReg == 0) return false;
   1562 
   1563   // Handle sign-extension.
   1564   if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
   1565     SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32,
   1566                                        /*isZExt*/!isSigned);
   1567     if (SrcReg == 0) return false;
   1568   }
   1569 
   1570   // The conversion routine works on fp-reg to fp-reg and the operand above
   1571   // was an integer, move it to the fp registers if possible.
   1572   unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
   1573   if (FP == 0) return false;
   1574 
   1575   unsigned Opc;
   1576   if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS;
   1577   else if (Ty->isDoubleTy()) Opc = isSigned ? ARM::VSITOD : ARM::VUITOD;
   1578   else return false;
   1579 
   1580   unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
   1581   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1582                           TII.get(Opc), ResultReg).addReg(FP));
   1583   updateValueMap(I, ResultReg);
   1584   return true;
   1585 }
   1586 
   1587 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) {
   1588   // Make sure we have VFP.
   1589   if (!Subtarget->hasVFP2()) return false;
   1590 
   1591   MVT DstVT;
   1592   Type *RetTy = I->getType();
   1593   if (!isTypeLegal(RetTy, DstVT))
   1594     return false;
   1595 
   1596   unsigned Op = getRegForValue(I->getOperand(0));
   1597   if (Op == 0) return false;
   1598 
   1599   unsigned Opc;
   1600   Type *OpTy = I->getOperand(0)->getType();
   1601   if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS;
   1602   else if (OpTy->isDoubleTy()) Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD;
   1603   else return false;
   1604 
   1605   // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg.
   1606   unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
   1607   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1608                           TII.get(Opc), ResultReg).addReg(Op));
   1609 
   1610   // This result needs to be in an integer register, but the conversion only
   1611   // takes place in fp-regs.
   1612   unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
   1613   if (IntReg == 0) return false;
   1614 
   1615   updateValueMap(I, IntReg);
   1616   return true;
   1617 }
   1618 
   1619 bool ARMFastISel::SelectSelect(const Instruction *I) {
   1620   MVT VT;
   1621   if (!isTypeLegal(I->getType(), VT))
   1622     return false;
   1623 
   1624   // Things need to be register sized for register moves.
   1625   if (VT != MVT::i32) return false;
   1626 
   1627   unsigned CondReg = getRegForValue(I->getOperand(0));
   1628   if (CondReg == 0) return false;
   1629   unsigned Op1Reg = getRegForValue(I->getOperand(1));
   1630   if (Op1Reg == 0) return false;
   1631 
   1632   // Check to see if we can use an immediate in the conditional move.
   1633   int Imm = 0;
   1634   bool UseImm = false;
   1635   bool isNegativeImm = false;
   1636   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
   1637     assert (VT == MVT::i32 && "Expecting an i32.");
   1638     Imm = (int)ConstInt->getValue().getZExtValue();
   1639     if (Imm < 0) {
   1640       isNegativeImm = true;
   1641       Imm = ~Imm;
   1642     }
   1643     UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
   1644       (ARM_AM::getSOImmVal(Imm) != -1);
   1645   }
   1646 
   1647   unsigned Op2Reg = 0;
   1648   if (!UseImm) {
   1649     Op2Reg = getRegForValue(I->getOperand(2));
   1650     if (Op2Reg == 0) return false;
   1651   }
   1652 
   1653   unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
   1654   CondReg = constrainOperandRegClass(TII.get(TstOpc), CondReg, 0);
   1655   AddOptionalDefs(
   1656       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
   1657           .addReg(CondReg)
   1658           .addImm(1));
   1659 
   1660   unsigned MovCCOpc;
   1661   const TargetRegisterClass *RC;
   1662   if (!UseImm) {
   1663     RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
   1664     MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
   1665   } else {
   1666     RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass;
   1667     if (!isNegativeImm)
   1668       MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
   1669     else
   1670       MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
   1671   }
   1672   unsigned ResultReg = createResultReg(RC);
   1673   if (!UseImm) {
   1674     Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1);
   1675     Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2);
   1676     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
   1677             ResultReg)
   1678         .addReg(Op2Reg)
   1679         .addReg(Op1Reg)
   1680         .addImm(ARMCC::NE)
   1681         .addReg(ARM::CPSR);
   1682   } else {
   1683     Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1);
   1684     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
   1685             ResultReg)
   1686         .addReg(Op1Reg)
   1687         .addImm(Imm)
   1688         .addImm(ARMCC::EQ)
   1689         .addReg(ARM::CPSR);
   1690   }
   1691   updateValueMap(I, ResultReg);
   1692   return true;
   1693 }
   1694 
   1695 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) {
   1696   MVT VT;
   1697   Type *Ty = I->getType();
   1698   if (!isTypeLegal(Ty, VT))
   1699     return false;
   1700 
   1701   // If we have integer div support we should have selected this automagically.
   1702   // In case we have a real miss go ahead and return false and we'll pick
   1703   // it up later.
   1704   if (Subtarget->hasDivide()) return false;
   1705 
   1706   // Otherwise emit a libcall.
   1707   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
   1708   if (VT == MVT::i8)
   1709     LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8;
   1710   else if (VT == MVT::i16)
   1711     LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16;
   1712   else if (VT == MVT::i32)
   1713     LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32;
   1714   else if (VT == MVT::i64)
   1715     LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64;
   1716   else if (VT == MVT::i128)
   1717     LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128;
   1718   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
   1719 
   1720   return ARMEmitLibcall(I, LC);
   1721 }
   1722 
   1723 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) {
   1724   MVT VT;
   1725   Type *Ty = I->getType();
   1726   if (!isTypeLegal(Ty, VT))
   1727     return false;
   1728 
   1729   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
   1730   if (VT == MVT::i8)
   1731     LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8;
   1732   else if (VT == MVT::i16)
   1733     LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16;
   1734   else if (VT == MVT::i32)
   1735     LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32;
   1736   else if (VT == MVT::i64)
   1737     LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64;
   1738   else if (VT == MVT::i128)
   1739     LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128;
   1740   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
   1741 
   1742   return ARMEmitLibcall(I, LC);
   1743 }
   1744 
   1745 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
   1746   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
   1747 
   1748   // We can get here in the case when we have a binary operation on a non-legal
   1749   // type and the target independent selector doesn't know how to handle it.
   1750   if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
   1751     return false;
   1752 
   1753   unsigned Opc;
   1754   switch (ISDOpcode) {
   1755     default: return false;
   1756     case ISD::ADD:
   1757       Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr;
   1758       break;
   1759     case ISD::OR:
   1760       Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr;
   1761       break;
   1762     case ISD::SUB:
   1763       Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr;
   1764       break;
   1765   }
   1766 
   1767   unsigned SrcReg1 = getRegForValue(I->getOperand(0));
   1768   if (SrcReg1 == 0) return false;
   1769 
   1770   // TODO: Often the 2nd operand is an immediate, which can be encoded directly
   1771   // in the instruction, rather then materializing the value in a register.
   1772   unsigned SrcReg2 = getRegForValue(I->getOperand(1));
   1773   if (SrcReg2 == 0) return false;
   1774 
   1775   unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
   1776   SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1);
   1777   SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2);
   1778   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1779                           TII.get(Opc), ResultReg)
   1780                   .addReg(SrcReg1).addReg(SrcReg2));
   1781   updateValueMap(I, ResultReg);
   1782   return true;
   1783 }
   1784 
   1785 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) {
   1786   EVT FPVT = TLI.getValueType(DL, I->getType(), true);
   1787   if (!FPVT.isSimple()) return false;
   1788   MVT VT = FPVT.getSimpleVT();
   1789 
   1790   // FIXME: Support vector types where possible.
   1791   if (VT.isVector())
   1792     return false;
   1793 
   1794   // We can get here in the case when we want to use NEON for our fp
   1795   // operations, but can't figure out how to. Just use the vfp instructions
   1796   // if we have them.
   1797   // FIXME: It'd be nice to use NEON instructions.
   1798   Type *Ty = I->getType();
   1799   bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
   1800   if (isFloat && !Subtarget->hasVFP2())
   1801     return false;
   1802 
   1803   unsigned Opc;
   1804   bool is64bit = VT == MVT::f64 || VT == MVT::i64;
   1805   switch (ISDOpcode) {
   1806     default: return false;
   1807     case ISD::FADD:
   1808       Opc = is64bit ? ARM::VADDD : ARM::VADDS;
   1809       break;
   1810     case ISD::FSUB:
   1811       Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
   1812       break;
   1813     case ISD::FMUL:
   1814       Opc = is64bit ? ARM::VMULD : ARM::VMULS;
   1815       break;
   1816   }
   1817   unsigned Op1 = getRegForValue(I->getOperand(0));
   1818   if (Op1 == 0) return false;
   1819 
   1820   unsigned Op2 = getRegForValue(I->getOperand(1));
   1821   if (Op2 == 0) return false;
   1822 
   1823   unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
   1824   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1825                           TII.get(Opc), ResultReg)
   1826                   .addReg(Op1).addReg(Op2));
   1827   updateValueMap(I, ResultReg);
   1828   return true;
   1829 }
   1830 
   1831 // Call Handling Code
   1832 
   1833 // This is largely taken directly from CCAssignFnForNode
   1834 // TODO: We may not support all of this.
   1835 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC,
   1836                                            bool Return,
   1837                                            bool isVarArg) {
   1838   switch (CC) {
   1839   default:
   1840     llvm_unreachable("Unsupported calling convention");
   1841   case CallingConv::Fast:
   1842     if (Subtarget->hasVFP2() && !isVarArg) {
   1843       if (!Subtarget->isAAPCS_ABI())
   1844         return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
   1845       // For AAPCS ABI targets, just use VFP variant of the calling convention.
   1846       return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
   1847     }
   1848     // Fallthrough
   1849   case CallingConv::C:
   1850     // Use target triple & subtarget features to do actual dispatch.
   1851     if (Subtarget->isAAPCS_ABI()) {
   1852       if (Subtarget->hasVFP2() &&
   1853           TM.Options.FloatABIType == FloatABI::Hard && !isVarArg)
   1854         return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
   1855       else
   1856         return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
   1857     } else {
   1858       return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
   1859     }
   1860   case CallingConv::ARM_AAPCS_VFP:
   1861     if (!isVarArg)
   1862       return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
   1863     // Fall through to soft float variant, variadic functions don't
   1864     // use hard floating point ABI.
   1865   case CallingConv::ARM_AAPCS:
   1866     return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
   1867   case CallingConv::ARM_APCS:
   1868     return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
   1869   case CallingConv::GHC:
   1870     if (Return)
   1871       llvm_unreachable("Can't return in GHC call convention");
   1872     else
   1873       return CC_ARM_APCS_GHC;
   1874   }
   1875 }
   1876 
   1877 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
   1878                                   SmallVectorImpl<unsigned> &ArgRegs,
   1879                                   SmallVectorImpl<MVT> &ArgVTs,
   1880                                   SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
   1881                                   SmallVectorImpl<unsigned> &RegArgs,
   1882                                   CallingConv::ID CC,
   1883                                   unsigned &NumBytes,
   1884                                   bool isVarArg) {
   1885   SmallVector<CCValAssign, 16> ArgLocs;
   1886   CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context);
   1887   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags,
   1888                              CCAssignFnForCall(CC, false, isVarArg));
   1889 
   1890   // Check that we can handle all of the arguments. If we can't, then bail out
   1891   // now before we add code to the MBB.
   1892   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   1893     CCValAssign &VA = ArgLocs[i];
   1894     MVT ArgVT = ArgVTs[VA.getValNo()];
   1895 
   1896     // We don't handle NEON/vector parameters yet.
   1897     if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
   1898       return false;
   1899 
   1900     // Now copy/store arg to correct locations.
   1901     if (VA.isRegLoc() && !VA.needsCustom()) {
   1902       continue;
   1903     } else if (VA.needsCustom()) {
   1904       // TODO: We need custom lowering for vector (v2f64) args.
   1905       if (VA.getLocVT() != MVT::f64 ||
   1906           // TODO: Only handle register args for now.
   1907           !VA.isRegLoc() || !ArgLocs[++i].isRegLoc())
   1908         return false;
   1909     } else {
   1910       switch (ArgVT.SimpleTy) {
   1911       default:
   1912         return false;
   1913       case MVT::i1:
   1914       case MVT::i8:
   1915       case MVT::i16:
   1916       case MVT::i32:
   1917         break;
   1918       case MVT::f32:
   1919         if (!Subtarget->hasVFP2())
   1920           return false;
   1921         break;
   1922       case MVT::f64:
   1923         if (!Subtarget->hasVFP2())
   1924           return false;
   1925         break;
   1926       }
   1927     }
   1928   }
   1929 
   1930   // At the point, we are able to handle the call's arguments in fast isel.
   1931 
   1932   // Get a count of how many bytes are to be pushed on the stack.
   1933   NumBytes = CCInfo.getNextStackOffset();
   1934 
   1935   // Issue CALLSEQ_START
   1936   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
   1937   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1938                           TII.get(AdjStackDown))
   1939                   .addImm(NumBytes));
   1940 
   1941   // Process the args.
   1942   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   1943     CCValAssign &VA = ArgLocs[i];
   1944     const Value *ArgVal = Args[VA.getValNo()];
   1945     unsigned Arg = ArgRegs[VA.getValNo()];
   1946     MVT ArgVT = ArgVTs[VA.getValNo()];
   1947 
   1948     assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) &&
   1949            "We don't handle NEON/vector parameters yet.");
   1950 
   1951     // Handle arg promotion, etc.
   1952     switch (VA.getLocInfo()) {
   1953       case CCValAssign::Full: break;
   1954       case CCValAssign::SExt: {
   1955         MVT DestVT = VA.getLocVT();
   1956         Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false);
   1957         assert (Arg != 0 && "Failed to emit a sext");
   1958         ArgVT = DestVT;
   1959         break;
   1960       }
   1961       case CCValAssign::AExt:
   1962         // Intentional fall-through.  Handle AExt and ZExt.
   1963       case CCValAssign::ZExt: {
   1964         MVT DestVT = VA.getLocVT();
   1965         Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true);
   1966         assert (Arg != 0 && "Failed to emit a zext");
   1967         ArgVT = DestVT;
   1968         break;
   1969       }
   1970       case CCValAssign::BCvt: {
   1971         unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
   1972                                  /*TODO: Kill=*/false);
   1973         assert(BC != 0 && "Failed to emit a bitcast!");
   1974         Arg = BC;
   1975         ArgVT = VA.getLocVT();
   1976         break;
   1977       }
   1978       default: llvm_unreachable("Unknown arg promotion!");
   1979     }
   1980 
   1981     // Now copy/store arg to correct locations.
   1982     if (VA.isRegLoc() && !VA.needsCustom()) {
   1983       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1984               TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
   1985       RegArgs.push_back(VA.getLocReg());
   1986     } else if (VA.needsCustom()) {
   1987       // TODO: We need custom lowering for vector (v2f64) args.
   1988       assert(VA.getLocVT() == MVT::f64 &&
   1989              "Custom lowering for v2f64 args not available");
   1990 
   1991       CCValAssign &NextVA = ArgLocs[++i];
   1992 
   1993       assert(VA.isRegLoc() && NextVA.isRegLoc() &&
   1994              "We only handle register args!");
   1995 
   1996       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1997                               TII.get(ARM::VMOVRRD), VA.getLocReg())
   1998                       .addReg(NextVA.getLocReg(), RegState::Define)
   1999                       .addReg(Arg));
   2000       RegArgs.push_back(VA.getLocReg());
   2001       RegArgs.push_back(NextVA.getLocReg());
   2002     } else {
   2003       assert(VA.isMemLoc());
   2004       // Need to store on the stack.
   2005 
   2006       // Don't emit stores for undef values.
   2007       if (isa<UndefValue>(ArgVal))
   2008         continue;
   2009 
   2010       Address Addr;
   2011       Addr.BaseType = Address::RegBase;
   2012       Addr.Base.Reg = ARM::SP;
   2013       Addr.Offset = VA.getLocMemOffset();
   2014 
   2015       bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet;
   2016       assert(EmitRet && "Could not emit a store for argument!");
   2017     }
   2018   }
   2019 
   2020   return true;
   2021 }
   2022 
   2023 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
   2024                              const Instruction *I, CallingConv::ID CC,
   2025                              unsigned &NumBytes, bool isVarArg) {
   2026   // Issue CALLSEQ_END
   2027   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
   2028   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   2029                           TII.get(AdjStackUp))
   2030                   .addImm(NumBytes).addImm(0));
   2031 
   2032   // Now the return value.
   2033   if (RetVT != MVT::isVoid) {
   2034     SmallVector<CCValAssign, 16> RVLocs;
   2035     CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
   2036     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
   2037 
   2038     // Copy all of the result registers out of their specified physreg.
   2039     if (RVLocs.size() == 2 && RetVT == MVT::f64) {
   2040       // For this move we copy into two registers and then move into the
   2041       // double fp reg we want.
   2042       MVT DestVT = RVLocs[0].getValVT();
   2043       const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
   2044       unsigned ResultReg = createResultReg(DstRC);
   2045       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   2046                               TII.get(ARM::VMOVDRR), ResultReg)
   2047                       .addReg(RVLocs[0].getLocReg())
   2048                       .addReg(RVLocs[1].getLocReg()));
   2049 
   2050       UsedRegs.push_back(RVLocs[0].getLocReg());
   2051       UsedRegs.push_back(RVLocs[1].getLocReg());
   2052 
   2053       // Finally update the result.
   2054       updateValueMap(I, ResultReg);
   2055     } else {
   2056       assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
   2057       MVT CopyVT = RVLocs[0].getValVT();
   2058 
   2059       // Special handling for extended integers.
   2060       if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
   2061         CopyVT = MVT::i32;
   2062 
   2063       const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
   2064 
   2065       unsigned ResultReg = createResultReg(DstRC);
   2066       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   2067               TII.get(TargetOpcode::COPY),
   2068               ResultReg).addReg(RVLocs[0].getLocReg());
   2069       UsedRegs.push_back(RVLocs[0].getLocReg());
   2070 
   2071       // Finally update the result.
   2072       updateValueMap(I, ResultReg);
   2073     }
   2074   }
   2075 
   2076   return true;
   2077 }
   2078 
   2079 bool ARMFastISel::SelectRet(const Instruction *I) {
   2080   const ReturnInst *Ret = cast<ReturnInst>(I);
   2081   const Function &F = *I->getParent()->getParent();
   2082 
   2083   if (!FuncInfo.CanLowerReturn)
   2084     return false;
   2085 
   2086   // Build a list of return value registers.
   2087   SmallVector<unsigned, 4> RetRegs;
   2088 
   2089   CallingConv::ID CC = F.getCallingConv();
   2090   if (Ret->getNumOperands() > 0) {
   2091     SmallVector<ISD::OutputArg, 4> Outs;
   2092     GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
   2093 
   2094     // Analyze operands of the call, assigning locations to each operand.
   2095     SmallVector<CCValAssign, 16> ValLocs;
   2096     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
   2097     CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */,
   2098                                                  F.isVarArg()));
   2099 
   2100     const Value *RV = Ret->getOperand(0);
   2101     unsigned Reg = getRegForValue(RV);
   2102     if (Reg == 0)
   2103       return false;
   2104 
   2105     // Only handle a single return value for now.
   2106     if (ValLocs.size() != 1)
   2107       return false;
   2108 
   2109     CCValAssign &VA = ValLocs[0];
   2110 
   2111     // Don't bother handling odd stuff for now.
   2112     if (VA.getLocInfo() != CCValAssign::Full)
   2113       return false;
   2114     // Only handle register returns for now.
   2115     if (!VA.isRegLoc())
   2116       return false;
   2117 
   2118     unsigned SrcReg = Reg + VA.getValNo();
   2119     EVT RVEVT = TLI.getValueType(DL, RV->getType());
   2120     if (!RVEVT.isSimple()) return false;
   2121     MVT RVVT = RVEVT.getSimpleVT();
   2122     MVT DestVT = VA.getValVT();
   2123     // Special handling for extended integers.
   2124     if (RVVT != DestVT) {
   2125       if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
   2126         return false;
   2127 
   2128       assert(DestVT == MVT::i32 && "ARM should always ext to i32");
   2129 
   2130       // Perform extension if flagged as either zext or sext.  Otherwise, do
   2131       // nothing.
   2132       if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
   2133         SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt());
   2134         if (SrcReg == 0) return false;
   2135       }
   2136     }
   2137 
   2138     // Make the copy.
   2139     unsigned DstReg = VA.getLocReg();
   2140     const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
   2141     // Avoid a cross-class copy. This is very unlikely.
   2142     if (!SrcRC->contains(DstReg))
   2143       return false;
   2144     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   2145             TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
   2146 
   2147     // Add register to return instruction.
   2148     RetRegs.push_back(VA.getLocReg());
   2149   }
   2150 
   2151   unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET;
   2152   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   2153                                     TII.get(RetOpc));
   2154   AddOptionalDefs(MIB);
   2155   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
   2156     MIB.addReg(RetRegs[i], RegState::Implicit);
   2157   return true;
   2158 }
   2159 
   2160 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) {
   2161   if (UseReg)
   2162     return isThumb2 ? ARM::tBLXr : ARM::BLX;
   2163   else
   2164     return isThumb2 ? ARM::tBL : ARM::BL;
   2165 }
   2166 
   2167 unsigned ARMFastISel::getLibcallReg(const Twine &Name) {
   2168   // Manually compute the global's type to avoid building it when unnecessary.
   2169   Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0);
   2170   EVT LCREVT = TLI.getValueType(DL, GVTy);
   2171   if (!LCREVT.isSimple()) return 0;
   2172 
   2173   GlobalValue *GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false,
   2174                                        GlobalValue::ExternalLinkage, nullptr,
   2175                                        Name);
   2176   assert(GV->getType() == GVTy && "We miscomputed the type for the global!");
   2177   return ARMMaterializeGV(GV, LCREVT.getSimpleVT());
   2178 }
   2179 
   2180 // A quick function that will emit a call for a named libcall in F with the
   2181 // vector of passed arguments for the Instruction in I. We can assume that we
   2182 // can emit a call for any libcall we can produce. This is an abridged version
   2183 // of the full call infrastructure since we won't need to worry about things
   2184 // like computed function pointers or strange arguments at call sites.
   2185 // TODO: Try to unify this and the normal call bits for ARM, then try to unify
   2186 // with X86.
   2187 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
   2188   CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
   2189 
   2190   // Handle *simple* calls for now.
   2191   Type *RetTy = I->getType();
   2192   MVT RetVT;
   2193   if (RetTy->isVoidTy())
   2194     RetVT = MVT::isVoid;
   2195   else if (!isTypeLegal(RetTy, RetVT))
   2196     return false;
   2197 
   2198   // Can't handle non-double multi-reg retvals.
   2199   if (RetVT != MVT::isVoid && RetVT != MVT::i32) {
   2200     SmallVector<CCValAssign, 16> RVLocs;
   2201     CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
   2202     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false));
   2203     if (RVLocs.size() >= 2 && RetVT != MVT::f64)
   2204       return false;
   2205   }
   2206 
   2207   // Set up the argument vectors.
   2208   SmallVector<Value*, 8> Args;
   2209   SmallVector<unsigned, 8> ArgRegs;
   2210   SmallVector<MVT, 8> ArgVTs;
   2211   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
   2212   Args.reserve(I->getNumOperands());
   2213   ArgRegs.reserve(I->getNumOperands());
   2214   ArgVTs.reserve(I->getNumOperands());
   2215   ArgFlags.reserve(I->getNumOperands());
   2216   for (unsigned i = 0; i < I->getNumOperands(); ++i) {
   2217     Value *Op = I->getOperand(i);
   2218     unsigned Arg = getRegForValue(Op);
   2219     if (Arg == 0) return false;
   2220 
   2221     Type *ArgTy = Op->getType();
   2222     MVT ArgVT;
   2223     if (!isTypeLegal(ArgTy, ArgVT)) return false;
   2224 
   2225     ISD::ArgFlagsTy Flags;
   2226     unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
   2227     Flags.setOrigAlign(OriginalAlignment);
   2228 
   2229     Args.push_back(Op);
   2230     ArgRegs.push_back(Arg);
   2231     ArgVTs.push_back(ArgVT);
   2232     ArgFlags.push_back(Flags);
   2233   }
   2234 
   2235   // Handle the arguments now that we've gotten them.
   2236   SmallVector<unsigned, 4> RegArgs;
   2237   unsigned NumBytes;
   2238   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
   2239                        RegArgs, CC, NumBytes, false))
   2240     return false;
   2241 
   2242   unsigned CalleeReg = 0;
   2243   if (Subtarget->genLongCalls()) {
   2244     CalleeReg = getLibcallReg(TLI.getLibcallName(Call));
   2245     if (CalleeReg == 0) return false;
   2246   }
   2247 
   2248   // Issue the call.
   2249   unsigned CallOpc = ARMSelectCallOp(Subtarget->genLongCalls());
   2250   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
   2251                                     DbgLoc, TII.get(CallOpc));
   2252   // BL / BLX don't take a predicate, but tBL / tBLX do.
   2253   if (isThumb2)
   2254     AddDefaultPred(MIB);
   2255   if (Subtarget->genLongCalls())
   2256     MIB.addReg(CalleeReg);
   2257   else
   2258     MIB.addExternalSymbol(TLI.getLibcallName(Call));
   2259 
   2260   // Add implicit physical register uses to the call.
   2261   for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
   2262     MIB.addReg(RegArgs[i], RegState::Implicit);
   2263 
   2264   // Add a register mask with the call-preserved registers.
   2265   // Proper defs for return values will be added by setPhysRegsDeadExcept().
   2266   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
   2267 
   2268   // Finish off the call including any return values.
   2269   SmallVector<unsigned, 4> UsedRegs;
   2270   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false;
   2271 
   2272   // Set all unused physreg defs as dead.
   2273   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
   2274 
   2275   return true;
   2276 }
   2277 
   2278 bool ARMFastISel::SelectCall(const Instruction *I,
   2279                              const char *IntrMemName = nullptr) {
   2280   const CallInst *CI = cast<CallInst>(I);
   2281   const Value *Callee = CI->getCalledValue();
   2282 
   2283   // Can't handle inline asm.
   2284   if (isa<InlineAsm>(Callee)) return false;
   2285 
   2286   // Allow SelectionDAG isel to handle tail calls.
   2287   if (CI->isTailCall()) return false;
   2288 
   2289   // Check the calling convention.
   2290   ImmutableCallSite CS(CI);
   2291   CallingConv::ID CC = CS.getCallingConv();
   2292 
   2293   // TODO: Avoid some calling conventions?
   2294 
   2295   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
   2296   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
   2297   bool isVarArg = FTy->isVarArg();
   2298 
   2299   // Handle *simple* calls for now.
   2300   Type *RetTy = I->getType();
   2301   MVT RetVT;
   2302   if (RetTy->isVoidTy())
   2303     RetVT = MVT::isVoid;
   2304   else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
   2305            RetVT != MVT::i8  && RetVT != MVT::i1)
   2306     return false;
   2307 
   2308   // Can't handle non-double multi-reg retvals.
   2309   if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 &&
   2310       RetVT != MVT::i16 && RetVT != MVT::i32) {
   2311     SmallVector<CCValAssign, 16> RVLocs;
   2312     CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
   2313     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
   2314     if (RVLocs.size() >= 2 && RetVT != MVT::f64)
   2315       return false;
   2316   }
   2317 
   2318   // Set up the argument vectors.
   2319   SmallVector<Value*, 8> Args;
   2320   SmallVector<unsigned, 8> ArgRegs;
   2321   SmallVector<MVT, 8> ArgVTs;
   2322   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
   2323   unsigned arg_size = CS.arg_size();
   2324   Args.reserve(arg_size);
   2325   ArgRegs.reserve(arg_size);
   2326   ArgVTs.reserve(arg_size);
   2327   ArgFlags.reserve(arg_size);
   2328   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
   2329        i != e; ++i) {
   2330     // If we're lowering a memory intrinsic instead of a regular call, skip the
   2331     // last two arguments, which shouldn't be passed to the underlying function.
   2332     if (IntrMemName && e-i <= 2)
   2333       break;
   2334 
   2335     ISD::ArgFlagsTy Flags;
   2336     unsigned AttrInd = i - CS.arg_begin() + 1;
   2337     if (CS.paramHasAttr(AttrInd, Attribute::SExt))
   2338       Flags.setSExt();
   2339     if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
   2340       Flags.setZExt();
   2341 
   2342     // FIXME: Only handle *easy* calls for now.
   2343     if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
   2344         CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
   2345         CS.paramHasAttr(AttrInd, Attribute::Nest) ||
   2346         CS.paramHasAttr(AttrInd, Attribute::ByVal))
   2347       return false;
   2348 
   2349     Type *ArgTy = (*i)->getType();
   2350     MVT ArgVT;
   2351     if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
   2352         ArgVT != MVT::i1)
   2353       return false;
   2354 
   2355     unsigned Arg = getRegForValue(*i);
   2356     if (Arg == 0)
   2357       return false;
   2358 
   2359     unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
   2360     Flags.setOrigAlign(OriginalAlignment);
   2361 
   2362     Args.push_back(*i);
   2363     ArgRegs.push_back(Arg);
   2364     ArgVTs.push_back(ArgVT);
   2365     ArgFlags.push_back(Flags);
   2366   }
   2367 
   2368   // Handle the arguments now that we've gotten them.
   2369   SmallVector<unsigned, 4> RegArgs;
   2370   unsigned NumBytes;
   2371   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
   2372                        RegArgs, CC, NumBytes, isVarArg))
   2373     return false;
   2374 
   2375   bool UseReg = false;
   2376   const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
   2377   if (!GV || Subtarget->genLongCalls()) UseReg = true;
   2378 
   2379   unsigned CalleeReg = 0;
   2380   if (UseReg) {
   2381     if (IntrMemName)
   2382       CalleeReg = getLibcallReg(IntrMemName);
   2383     else
   2384       CalleeReg = getRegForValue(Callee);
   2385 
   2386     if (CalleeReg == 0) return false;
   2387   }
   2388 
   2389   // Issue the call.
   2390   unsigned CallOpc = ARMSelectCallOp(UseReg);
   2391   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
   2392                                     DbgLoc, TII.get(CallOpc));
   2393 
   2394   unsigned char OpFlags = 0;
   2395 
   2396   // Add MO_PLT for global address or external symbol in the PIC relocation
   2397   // model.
   2398   if (Subtarget->isTargetELF() && TM.getRelocationModel() == Reloc::PIC_)
   2399     OpFlags = ARMII::MO_PLT;
   2400 
   2401   // ARM calls don't take a predicate, but tBL / tBLX do.
   2402   if(isThumb2)
   2403     AddDefaultPred(MIB);
   2404   if (UseReg)
   2405     MIB.addReg(CalleeReg);
   2406   else if (!IntrMemName)
   2407     MIB.addGlobalAddress(GV, 0, OpFlags);
   2408   else
   2409     MIB.addExternalSymbol(IntrMemName, OpFlags);
   2410 
   2411   // Add implicit physical register uses to the call.
   2412   for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
   2413     MIB.addReg(RegArgs[i], RegState::Implicit);
   2414 
   2415   // Add a register mask with the call-preserved registers.
   2416   // Proper defs for return values will be added by setPhysRegsDeadExcept().
   2417   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
   2418 
   2419   // Finish off the call including any return values.
   2420   SmallVector<unsigned, 4> UsedRegs;
   2421   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg))
   2422     return false;
   2423 
   2424   // Set all unused physreg defs as dead.
   2425   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
   2426 
   2427   return true;
   2428 }
   2429 
   2430 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
   2431   return Len <= 16;
   2432 }
   2433 
   2434 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src,
   2435                                         uint64_t Len, unsigned Alignment) {
   2436   // Make sure we don't bloat code by inlining very large memcpy's.
   2437   if (!ARMIsMemCpySmall(Len))
   2438     return false;
   2439 
   2440   while (Len) {
   2441     MVT VT;
   2442     if (!Alignment || Alignment >= 4) {
   2443       if (Len >= 4)
   2444         VT = MVT::i32;
   2445       else if (Len >= 2)
   2446         VT = MVT::i16;
   2447       else {
   2448         assert (Len == 1 && "Expected a length of 1!");
   2449         VT = MVT::i8;
   2450       }
   2451     } else {
   2452       // Bound based on alignment.
   2453       if (Len >= 2 && Alignment == 2)
   2454         VT = MVT::i16;
   2455       else {
   2456         VT = MVT::i8;
   2457       }
   2458     }
   2459 
   2460     bool RV;
   2461     unsigned ResultReg;
   2462     RV = ARMEmitLoad(VT, ResultReg, Src);
   2463     assert (RV == true && "Should be able to handle this load.");
   2464     RV = ARMEmitStore(VT, ResultReg, Dest);
   2465     assert (RV == true && "Should be able to handle this store.");
   2466     (void)RV;
   2467 
   2468     unsigned Size = VT.getSizeInBits()/8;
   2469     Len -= Size;
   2470     Dest.Offset += Size;
   2471     Src.Offset += Size;
   2472   }
   2473 
   2474   return true;
   2475 }
   2476 
   2477 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
   2478   // FIXME: Handle more intrinsics.
   2479   switch (I.getIntrinsicID()) {
   2480   default: return false;
   2481   case Intrinsic::frameaddress: {
   2482     MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo();
   2483     MFI->setFrameAddressIsTaken(true);
   2484 
   2485     unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
   2486     const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
   2487                                              : &ARM::GPRRegClass;
   2488 
   2489     const ARMBaseRegisterInfo *RegInfo =
   2490         static_cast<const ARMBaseRegisterInfo *>(Subtarget->getRegisterInfo());
   2491     unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
   2492     unsigned SrcReg = FramePtr;
   2493 
   2494     // Recursively load frame address
   2495     // ldr r0 [fp]
   2496     // ldr r0 [r0]
   2497     // ldr r0 [r0]
   2498     // ...
   2499     unsigned DestReg;
   2500     unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue();
   2501     while (Depth--) {
   2502       DestReg = createResultReg(RC);
   2503       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   2504                               TII.get(LdrOpc), DestReg)
   2505                       .addReg(SrcReg).addImm(0));
   2506       SrcReg = DestReg;
   2507     }
   2508     updateValueMap(&I, SrcReg);
   2509     return true;
   2510   }
   2511   case Intrinsic::memcpy:
   2512   case Intrinsic::memmove: {
   2513     const MemTransferInst &MTI = cast<MemTransferInst>(I);
   2514     // Don't handle volatile.
   2515     if (MTI.isVolatile())
   2516       return false;
   2517 
   2518     // Disable inlining for memmove before calls to ComputeAddress.  Otherwise,
   2519     // we would emit dead code because we don't currently handle memmoves.
   2520     bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
   2521     if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
   2522       // Small memcpy's are common enough that we want to do them without a call
   2523       // if possible.
   2524       uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
   2525       if (ARMIsMemCpySmall(Len)) {
   2526         Address Dest, Src;
   2527         if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
   2528             !ARMComputeAddress(MTI.getRawSource(), Src))
   2529           return false;
   2530         unsigned Alignment = MTI.getAlignment();
   2531         if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment))
   2532           return true;
   2533       }
   2534     }
   2535 
   2536     if (!MTI.getLength()->getType()->isIntegerTy(32))
   2537       return false;
   2538 
   2539     if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
   2540       return false;
   2541 
   2542     const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
   2543     return SelectCall(&I, IntrMemName);
   2544   }
   2545   case Intrinsic::memset: {
   2546     const MemSetInst &MSI = cast<MemSetInst>(I);
   2547     // Don't handle volatile.
   2548     if (MSI.isVolatile())
   2549       return false;
   2550 
   2551     if (!MSI.getLength()->getType()->isIntegerTy(32))
   2552       return false;
   2553 
   2554     if (MSI.getDestAddressSpace() > 255)
   2555       return false;
   2556 
   2557     return SelectCall(&I, "memset");
   2558   }
   2559   case Intrinsic::trap: {
   2560     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(
   2561       Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP));
   2562     return true;
   2563   }
   2564   }
   2565 }
   2566 
   2567 bool ARMFastISel::SelectTrunc(const Instruction *I) {
   2568   // The high bits for a type smaller than the register size are assumed to be
   2569   // undefined.
   2570   Value *Op = I->getOperand(0);
   2571 
   2572   EVT SrcVT, DestVT;
   2573   SrcVT = TLI.getValueType(DL, Op->getType(), true);
   2574   DestVT = TLI.getValueType(DL, I->getType(), true);
   2575 
   2576   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
   2577     return false;
   2578   if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
   2579     return false;
   2580 
   2581   unsigned SrcReg = getRegForValue(Op);
   2582   if (!SrcReg) return false;
   2583 
   2584   // Because the high bits are undefined, a truncate doesn't generate
   2585   // any code.
   2586   updateValueMap(I, SrcReg);
   2587   return true;
   2588 }
   2589 
   2590 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
   2591                                     bool isZExt) {
   2592   if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
   2593     return 0;
   2594   if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1)
   2595     return 0;
   2596 
   2597   // Table of which combinations can be emitted as a single instruction,
   2598   // and which will require two.
   2599   static const uint8_t isSingleInstrTbl[3][2][2][2] = {
   2600     //            ARM                     Thumb
   2601     //           !hasV6Ops  hasV6Ops     !hasV6Ops  hasV6Ops
   2602     //    ext:     s  z      s  z          s  z      s  z
   2603     /*  1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } },
   2604     /*  8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } },
   2605     /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }
   2606   };
   2607 
   2608   // Target registers for:
   2609   //  - For ARM can never be PC.
   2610   //  - For 16-bit Thumb are restricted to lower 8 registers.
   2611   //  - For 32-bit Thumb are restricted to non-SP and non-PC.
   2612   static const TargetRegisterClass *RCTbl[2][2] = {
   2613     // Instructions: Two                     Single
   2614     /* ARM      */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass },
   2615     /* Thumb    */ { &ARM::tGPRRegClass,    &ARM::rGPRRegClass    }
   2616   };
   2617 
   2618   // Table governing the instruction(s) to be emitted.
   2619   static const struct InstructionTable {
   2620     uint32_t Opc   : 16;
   2621     uint32_t hasS  :  1; // Some instructions have an S bit, always set it to 0.
   2622     uint32_t Shift :  7; // For shift operand addressing mode, used by MOVsi.
   2623     uint32_t Imm   :  8; // All instructions have either a shift or a mask.
   2624   } IT[2][2][3][2] = {
   2625     { // Two instructions (first is left shift, second is in this table).
   2626       { // ARM                Opc           S  Shift             Imm
   2627         /*  1 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  31 },
   2628         /*  1 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  31 } },
   2629         /*  8 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  24 },
   2630         /*  8 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  24 } },
   2631         /* 16 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  16 },
   2632         /* 16 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  16 } }
   2633       },
   2634       { // Thumb              Opc           S  Shift             Imm
   2635         /*  1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  31 },
   2636         /*  1 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  31 } },
   2637         /*  8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  24 },
   2638         /*  8 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  24 } },
   2639         /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  16 },
   2640         /* 16 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  16 } }
   2641       }
   2642     },
   2643     { // Single instruction.
   2644       { // ARM                Opc           S  Shift             Imm
   2645         /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 },
   2646         /*  1 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift,   1 } },
   2647         /*  8 bit sext */ { { ARM::SXTB   , 0, ARM_AM::no_shift,   0 },
   2648         /*  8 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift, 255 } },
   2649         /* 16 bit sext */ { { ARM::SXTH   , 0, ARM_AM::no_shift,   0 },
   2650         /* 16 bit zext */   { ARM::UXTH   , 0, ARM_AM::no_shift,   0 } }
   2651       },
   2652       { // Thumb              Opc           S  Shift             Imm
   2653         /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 },
   2654         /*  1 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift,   1 } },
   2655         /*  8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift,   0 },
   2656         /*  8 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } },
   2657         /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift,   0 },
   2658         /* 16 bit zext */   { ARM::t2UXTH , 0, ARM_AM::no_shift,   0 } }
   2659       }
   2660     }
   2661   };
   2662 
   2663   unsigned SrcBits = SrcVT.getSizeInBits();
   2664   unsigned DestBits = DestVT.getSizeInBits();
   2665   (void) DestBits;
   2666   assert((SrcBits < DestBits) && "can only extend to larger types");
   2667   assert((DestBits == 32 || DestBits == 16 || DestBits == 8) &&
   2668          "other sizes unimplemented");
   2669   assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) &&
   2670          "other sizes unimplemented");
   2671 
   2672   bool hasV6Ops = Subtarget->hasV6Ops();
   2673   unsigned Bitness = SrcBits / 8;  // {1,8,16}=>{0,1,2}
   2674   assert((Bitness < 3) && "sanity-check table bounds");
   2675 
   2676   bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt];
   2677   const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr];
   2678   const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt];
   2679   unsigned Opc = ITP->Opc;
   2680   assert(ARM::KILL != Opc && "Invalid table entry");
   2681   unsigned hasS = ITP->hasS;
   2682   ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift;
   2683   assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) &&
   2684          "only MOVsi has shift operand addressing mode");
   2685   unsigned Imm = ITP->Imm;
   2686 
   2687   // 16-bit Thumb instructions always set CPSR (unless they're in an IT block).
   2688   bool setsCPSR = &ARM::tGPRRegClass == RC;
   2689   unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi;
   2690   unsigned ResultReg;
   2691   // MOVsi encodes shift and immediate in shift operand addressing mode.
   2692   // The following condition has the same value when emitting two
   2693   // instruction sequences: both are shifts.
   2694   bool ImmIsSO = (Shift != ARM_AM::no_shift);
   2695 
   2696   // Either one or two instructions are emitted.
   2697   // They're always of the form:
   2698   //   dst = in OP imm
   2699   // CPSR is set only by 16-bit Thumb instructions.
   2700   // Predicate, if any, is AL.
   2701   // S bit, if available, is always 0.
   2702   // When two are emitted the first's result will feed as the second's input,
   2703   // that value is then dead.
   2704   unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2;
   2705   for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) {
   2706     ResultReg = createResultReg(RC);
   2707     bool isLsl = (0 == Instr) && !isSingleInstr;
   2708     unsigned Opcode = isLsl ? LSLOpc : Opc;
   2709     ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift;
   2710     unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm;
   2711     bool isKill = 1 == Instr;
   2712     MachineInstrBuilder MIB = BuildMI(
   2713         *FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode), ResultReg);
   2714     if (setsCPSR)
   2715       MIB.addReg(ARM::CPSR, RegState::Define);
   2716     SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR);
   2717     AddDefaultPred(MIB.addReg(SrcReg, isKill * RegState::Kill).addImm(ImmEnc));
   2718     if (hasS)
   2719       AddDefaultCC(MIB);
   2720     // Second instruction consumes the first's result.
   2721     SrcReg = ResultReg;
   2722   }
   2723 
   2724   return ResultReg;
   2725 }
   2726 
   2727 bool ARMFastISel::SelectIntExt(const Instruction *I) {
   2728   // On ARM, in general, integer casts don't involve legal types; this code
   2729   // handles promotable integers.
   2730   Type *DestTy = I->getType();
   2731   Value *Src = I->getOperand(0);
   2732   Type *SrcTy = Src->getType();
   2733 
   2734   bool isZExt = isa<ZExtInst>(I);
   2735   unsigned SrcReg = getRegForValue(Src);
   2736   if (!SrcReg) return false;
   2737 
   2738   EVT SrcEVT, DestEVT;
   2739   SrcEVT = TLI.getValueType(DL, SrcTy, true);
   2740   DestEVT = TLI.getValueType(DL, DestTy, true);
   2741   if (!SrcEVT.isSimple()) return false;
   2742   if (!DestEVT.isSimple()) return false;
   2743 
   2744   MVT SrcVT = SrcEVT.getSimpleVT();
   2745   MVT DestVT = DestEVT.getSimpleVT();
   2746   unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
   2747   if (ResultReg == 0) return false;
   2748   updateValueMap(I, ResultReg);
   2749   return true;
   2750 }
   2751 
   2752 bool ARMFastISel::SelectShift(const Instruction *I,
   2753                               ARM_AM::ShiftOpc ShiftTy) {
   2754   // We handle thumb2 mode by target independent selector
   2755   // or SelectionDAG ISel.
   2756   if (isThumb2)
   2757     return false;
   2758 
   2759   // Only handle i32 now.
   2760   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
   2761   if (DestVT != MVT::i32)
   2762     return false;
   2763 
   2764   unsigned Opc = ARM::MOVsr;
   2765   unsigned ShiftImm;
   2766   Value *Src2Value = I->getOperand(1);
   2767   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) {
   2768     ShiftImm = CI->getZExtValue();
   2769 
   2770     // Fall back to selection DAG isel if the shift amount
   2771     // is zero or greater than the width of the value type.
   2772     if (ShiftImm == 0 || ShiftImm >=32)
   2773       return false;
   2774 
   2775     Opc = ARM::MOVsi;
   2776   }
   2777 
   2778   Value *Src1Value = I->getOperand(0);
   2779   unsigned Reg1 = getRegForValue(Src1Value);
   2780   if (Reg1 == 0) return false;
   2781 
   2782   unsigned Reg2 = 0;
   2783   if (Opc == ARM::MOVsr) {
   2784     Reg2 = getRegForValue(Src2Value);
   2785     if (Reg2 == 0) return false;
   2786   }
   2787 
   2788   unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
   2789   if(ResultReg == 0) return false;
   2790 
   2791   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   2792                                     TII.get(Opc), ResultReg)
   2793                             .addReg(Reg1);
   2794 
   2795   if (Opc == ARM::MOVsi)
   2796     MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm));
   2797   else if (Opc == ARM::MOVsr) {
   2798     MIB.addReg(Reg2);
   2799     MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0));
   2800   }
   2801 
   2802   AddOptionalDefs(MIB);
   2803   updateValueMap(I, ResultReg);
   2804   return true;
   2805 }
   2806 
   2807 // TODO: SoftFP support.
   2808 bool ARMFastISel::fastSelectInstruction(const Instruction *I) {
   2809 
   2810   switch (I->getOpcode()) {
   2811     case Instruction::Load:
   2812       return SelectLoad(I);
   2813     case Instruction::Store:
   2814       return SelectStore(I);
   2815     case Instruction::Br:
   2816       return SelectBranch(I);
   2817     case Instruction::IndirectBr:
   2818       return SelectIndirectBr(I);
   2819     case Instruction::ICmp:
   2820     case Instruction::FCmp:
   2821       return SelectCmp(I);
   2822     case Instruction::FPExt:
   2823       return SelectFPExt(I);
   2824     case Instruction::FPTrunc:
   2825       return SelectFPTrunc(I);
   2826     case Instruction::SIToFP:
   2827       return SelectIToFP(I, /*isSigned*/ true);
   2828     case Instruction::UIToFP:
   2829       return SelectIToFP(I, /*isSigned*/ false);
   2830     case Instruction::FPToSI:
   2831       return SelectFPToI(I, /*isSigned*/ true);
   2832     case Instruction::FPToUI:
   2833       return SelectFPToI(I, /*isSigned*/ false);
   2834     case Instruction::Add:
   2835       return SelectBinaryIntOp(I, ISD::ADD);
   2836     case Instruction::Or:
   2837       return SelectBinaryIntOp(I, ISD::OR);
   2838     case Instruction::Sub:
   2839       return SelectBinaryIntOp(I, ISD::SUB);
   2840     case Instruction::FAdd:
   2841       return SelectBinaryFPOp(I, ISD::FADD);
   2842     case Instruction::FSub:
   2843       return SelectBinaryFPOp(I, ISD::FSUB);
   2844     case Instruction::FMul:
   2845       return SelectBinaryFPOp(I, ISD::FMUL);
   2846     case Instruction::SDiv:
   2847       return SelectDiv(I, /*isSigned*/ true);
   2848     case Instruction::UDiv:
   2849       return SelectDiv(I, /*isSigned*/ false);
   2850     case Instruction::SRem:
   2851       return SelectRem(I, /*isSigned*/ true);
   2852     case Instruction::URem:
   2853       return SelectRem(I, /*isSigned*/ false);
   2854     case Instruction::Call:
   2855       if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
   2856         return SelectIntrinsicCall(*II);
   2857       return SelectCall(I);
   2858     case Instruction::Select:
   2859       return SelectSelect(I);
   2860     case Instruction::Ret:
   2861       return SelectRet(I);
   2862     case Instruction::Trunc:
   2863       return SelectTrunc(I);
   2864     case Instruction::ZExt:
   2865     case Instruction::SExt:
   2866       return SelectIntExt(I);
   2867     case Instruction::Shl:
   2868       return SelectShift(I, ARM_AM::lsl);
   2869     case Instruction::LShr:
   2870       return SelectShift(I, ARM_AM::lsr);
   2871     case Instruction::AShr:
   2872       return SelectShift(I, ARM_AM::asr);
   2873     default: break;
   2874   }
   2875   return false;
   2876 }
   2877 
   2878 namespace {
   2879 // This table describes sign- and zero-extend instructions which can be
   2880 // folded into a preceding load. All of these extends have an immediate
   2881 // (sometimes a mask and sometimes a shift) that's applied after
   2882 // extension.
   2883 const struct FoldableLoadExtendsStruct {
   2884   uint16_t Opc[2];  // ARM, Thumb.
   2885   uint8_t ExpectedImm;
   2886   uint8_t isZExt     : 1;
   2887   uint8_t ExpectedVT : 7;
   2888 } FoldableLoadExtends[] = {
   2889   { { ARM::SXTH,  ARM::t2SXTH  },   0, 0, MVT::i16 },
   2890   { { ARM::UXTH,  ARM::t2UXTH  },   0, 1, MVT::i16 },
   2891   { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8  },
   2892   { { ARM::SXTB,  ARM::t2SXTB  },   0, 0, MVT::i8  },
   2893   { { ARM::UXTB,  ARM::t2UXTB  },   0, 1, MVT::i8  }
   2894 };
   2895 }
   2896 
   2897 /// \brief The specified machine instr operand is a vreg, and that
   2898 /// vreg is being provided by the specified load instruction.  If possible,
   2899 /// try to fold the load as an operand to the instruction, returning true if
   2900 /// successful.
   2901 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
   2902                                       const LoadInst *LI) {
   2903   // Verify we have a legal type before going any further.
   2904   MVT VT;
   2905   if (!isLoadTypeLegal(LI->getType(), VT))
   2906     return false;
   2907 
   2908   // Combine load followed by zero- or sign-extend.
   2909   // ldrb r1, [r0]       ldrb r1, [r0]
   2910   // uxtb r2, r1     =>
   2911   // mov  r3, r2         mov  r3, r1
   2912   if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm())
   2913     return false;
   2914   const uint64_t Imm = MI->getOperand(2).getImm();
   2915 
   2916   bool Found = false;
   2917   bool isZExt;
   2918   for (unsigned i = 0, e = array_lengthof(FoldableLoadExtends);
   2919        i != e; ++i) {
   2920     if (FoldableLoadExtends[i].Opc[isThumb2] == MI->getOpcode() &&
   2921         (uint64_t)FoldableLoadExtends[i].ExpectedImm == Imm &&
   2922         MVT((MVT::SimpleValueType)FoldableLoadExtends[i].ExpectedVT) == VT) {
   2923       Found = true;
   2924       isZExt = FoldableLoadExtends[i].isZExt;
   2925     }
   2926   }
   2927   if (!Found) return false;
   2928 
   2929   // See if we can handle this address.
   2930   Address Addr;
   2931   if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
   2932 
   2933   unsigned ResultReg = MI->getOperand(0).getReg();
   2934   if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false))
   2935     return false;
   2936   MI->eraseFromParent();
   2937   return true;
   2938 }
   2939 
   2940 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV,
   2941                                      unsigned Align, MVT VT) {
   2942   bool UseGOT_PREL =
   2943       !(GV->hasHiddenVisibility() || GV->hasLocalLinkage());
   2944 
   2945   LLVMContext *Context = &MF->getFunction()->getContext();
   2946   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   2947   unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
   2948   ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(
   2949       GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj,
   2950       UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier,
   2951       /*AddCurrentAddress=*/UseGOT_PREL);
   2952 
   2953   unsigned ConstAlign =
   2954       MF->getDataLayout().getPrefTypeAlignment(Type::getInt32PtrTy(*Context));
   2955   unsigned Idx = MF->getConstantPool()->getConstantPoolIndex(CPV, ConstAlign);
   2956 
   2957   unsigned TempReg = MF->getRegInfo().createVirtualRegister(&ARM::rGPRRegClass);
   2958   unsigned Opc = isThumb2 ? ARM::t2LDRpci : ARM::LDRcp;
   2959   MachineInstrBuilder MIB =
   2960       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), TempReg)
   2961           .addConstantPoolIndex(Idx);
   2962   if (Opc == ARM::LDRcp)
   2963     MIB.addImm(0);
   2964   AddDefaultPred(MIB);
   2965 
   2966   // Fix the address by adding pc.
   2967   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
   2968   Opc = Subtarget->isThumb() ? ARM::tPICADD : UseGOT_PREL ? ARM::PICLDR
   2969                                                           : ARM::PICADD;
   2970   DestReg = constrainOperandRegClass(TII.get(Opc), DestReg, 0);
   2971   MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
   2972             .addReg(TempReg)
   2973             .addImm(ARMPCLabelIndex);
   2974   if (!Subtarget->isThumb())
   2975     AddDefaultPred(MIB);
   2976 
   2977   if (UseGOT_PREL && Subtarget->isThumb()) {
   2978     unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
   2979     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   2980                   TII.get(ARM::t2LDRi12), NewDestReg)
   2981               .addReg(DestReg)
   2982               .addImm(0);
   2983     DestReg = NewDestReg;
   2984     AddOptionalDefs(MIB);
   2985   }
   2986   return DestReg;
   2987 }
   2988 
   2989 bool ARMFastISel::fastLowerArguments() {
   2990   if (!FuncInfo.CanLowerReturn)
   2991     return false;
   2992 
   2993   const Function *F = FuncInfo.Fn;
   2994   if (F->isVarArg())
   2995     return false;
   2996 
   2997   CallingConv::ID CC = F->getCallingConv();
   2998   switch (CC) {
   2999   default:
   3000     return false;
   3001   case CallingConv::Fast:
   3002   case CallingConv::C:
   3003   case CallingConv::ARM_AAPCS_VFP:
   3004   case CallingConv::ARM_AAPCS:
   3005   case CallingConv::ARM_APCS:
   3006     break;
   3007   }
   3008 
   3009   // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments
   3010   // which are passed in r0 - r3.
   3011   unsigned Idx = 1;
   3012   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
   3013        I != E; ++I, ++Idx) {
   3014     if (Idx > 4)
   3015       return false;
   3016 
   3017     if (F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
   3018         F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
   3019         F->getAttributes().hasAttribute(Idx, Attribute::ByVal))
   3020       return false;
   3021 
   3022     Type *ArgTy = I->getType();
   3023     if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
   3024       return false;
   3025 
   3026     EVT ArgVT = TLI.getValueType(DL, ArgTy);
   3027     if (!ArgVT.isSimple()) return false;
   3028     switch (ArgVT.getSimpleVT().SimpleTy) {
   3029     case MVT::i8:
   3030     case MVT::i16:
   3031     case MVT::i32:
   3032       break;
   3033     default:
   3034       return false;
   3035     }
   3036   }
   3037 
   3038 
   3039   static const MCPhysReg GPRArgRegs[] = {
   3040     ARM::R0, ARM::R1, ARM::R2, ARM::R3
   3041   };
   3042 
   3043   const TargetRegisterClass *RC = &ARM::rGPRRegClass;
   3044   Idx = 0;
   3045   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
   3046        I != E; ++I, ++Idx) {
   3047     unsigned SrcReg = GPRArgRegs[Idx];
   3048     unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
   3049     // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
   3050     // Without this, EmitLiveInCopies may eliminate the livein if its only
   3051     // use is a bitcast (which isn't turned into an instruction).
   3052     unsigned ResultReg = createResultReg(RC);
   3053     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   3054             TII.get(TargetOpcode::COPY),
   3055             ResultReg).addReg(DstReg, getKillRegState(true));
   3056     updateValueMap(&*I, ResultReg);
   3057   }
   3058 
   3059   return true;
   3060 }
   3061 
   3062 namespace llvm {
   3063   FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo,
   3064                                 const TargetLibraryInfo *libInfo) {
   3065     if (funcInfo.MF->getSubtarget<ARMSubtarget>().useFastISel())
   3066       return new ARMFastISel(funcInfo, libInfo);
   3067 
   3068     return nullptr;
   3069   }
   3070 }
   3071