1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the Base ARM implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ARM.h" 15 #include "ARMBaseInstrInfo.h" 16 #include "ARMBaseRegisterInfo.h" 17 #include "ARMConstantPoolValue.h" 18 #include "ARMFeatures.h" 19 #include "ARMHazardRecognizer.h" 20 #include "ARMMachineFunctionInfo.h" 21 #include "MCTargetDesc/ARMAddressingModes.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/CodeGen/LiveVariables.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineMemOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/SelectionDAGNodes.h" 31 #include "llvm/CodeGen/TargetSchedule.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/GlobalValue.h" 35 #include "llvm/MC/MCAsmInfo.h" 36 #include "llvm/MC/MCExpr.h" 37 #include "llvm/Support/BranchProbability.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/raw_ostream.h" 42 43 using namespace llvm; 44 45 #define DEBUG_TYPE "arm-instrinfo" 46 47 #define GET_INSTRINFO_CTOR_DTOR 48 #include "ARMGenInstrInfo.inc" 49 50 static cl::opt<bool> 51 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden, 52 cl::desc("Enable ARM 2-addr to 3-addr conv")); 53 54 static cl::opt<bool> 55 WidenVMOVS("widen-vmovs", cl::Hidden, cl::init(true), 56 cl::desc("Widen ARM vmovs to vmovd when possible")); 57 58 static cl::opt<unsigned> 59 SwiftPartialUpdateClearance("swift-partial-update-clearance", 60 cl::Hidden, cl::init(12), 61 cl::desc("Clearance before partial register updates")); 62 63 /// ARM_MLxEntry - Record information about MLA / MLS instructions. 64 struct ARM_MLxEntry { 65 uint16_t MLxOpc; // MLA / MLS opcode 66 uint16_t MulOpc; // Expanded multiplication opcode 67 uint16_t AddSubOpc; // Expanded add / sub opcode 68 bool NegAcc; // True if the acc is negated before the add / sub. 69 bool HasLane; // True if instruction has an extra "lane" operand. 70 }; 71 72 static const ARM_MLxEntry ARM_MLxTable[] = { 73 // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane 74 // fp scalar ops 75 { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false }, 76 { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false }, 77 { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false }, 78 { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false }, 79 { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false }, 80 { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false }, 81 { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false }, 82 { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false }, 83 84 // fp SIMD ops 85 { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false }, 86 { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false }, 87 { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false }, 88 { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false }, 89 { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true }, 90 { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true }, 91 { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true }, 92 { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true }, 93 }; 94 95 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI) 96 : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP), 97 Subtarget(STI) { 98 for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) { 99 if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second) 100 llvm_unreachable("Duplicated entries?"); 101 MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc); 102 MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc); 103 } 104 } 105 106 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl 107 // currently defaults to no prepass hazard recognizer. 108 ScheduleHazardRecognizer * 109 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 110 const ScheduleDAG *DAG) const { 111 if (usePreRAHazardRecognizer()) { 112 const InstrItineraryData *II = 113 static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData(); 114 return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched"); 115 } 116 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 117 } 118 119 ScheduleHazardRecognizer *ARMBaseInstrInfo:: 120 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 121 const ScheduleDAG *DAG) const { 122 if (Subtarget.isThumb2() || Subtarget.hasVFP2()) 123 return (ScheduleHazardRecognizer *)new ARMHazardRecognizer(II, DAG); 124 return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG); 125 } 126 127 MachineInstr * 128 ARMBaseInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, 129 MachineBasicBlock::iterator &MBBI, 130 LiveVariables *LV) const { 131 // FIXME: Thumb2 support. 132 133 if (!EnableARM3Addr) 134 return nullptr; 135 136 MachineInstr *MI = MBBI; 137 MachineFunction &MF = *MI->getParent()->getParent(); 138 uint64_t TSFlags = MI->getDesc().TSFlags; 139 bool isPre = false; 140 switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) { 141 default: return nullptr; 142 case ARMII::IndexModePre: 143 isPre = true; 144 break; 145 case ARMII::IndexModePost: 146 break; 147 } 148 149 // Try splitting an indexed load/store to an un-indexed one plus an add/sub 150 // operation. 151 unsigned MemOpc = getUnindexedOpcode(MI->getOpcode()); 152 if (MemOpc == 0) 153 return nullptr; 154 155 MachineInstr *UpdateMI = nullptr; 156 MachineInstr *MemMI = nullptr; 157 unsigned AddrMode = (TSFlags & ARMII::AddrModeMask); 158 const MCInstrDesc &MCID = MI->getDesc(); 159 unsigned NumOps = MCID.getNumOperands(); 160 bool isLoad = !MI->mayStore(); 161 const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0); 162 const MachineOperand &Base = MI->getOperand(2); 163 const MachineOperand &Offset = MI->getOperand(NumOps-3); 164 unsigned WBReg = WB.getReg(); 165 unsigned BaseReg = Base.getReg(); 166 unsigned OffReg = Offset.getReg(); 167 unsigned OffImm = MI->getOperand(NumOps-2).getImm(); 168 ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm(); 169 switch (AddrMode) { 170 default: llvm_unreachable("Unknown indexed op!"); 171 case ARMII::AddrMode2: { 172 bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub; 173 unsigned Amt = ARM_AM::getAM2Offset(OffImm); 174 if (OffReg == 0) { 175 if (ARM_AM::getSOImmVal(Amt) == -1) 176 // Can't encode it in a so_imm operand. This transformation will 177 // add more than 1 instruction. Abandon! 178 return nullptr; 179 UpdateMI = BuildMI(MF, MI->getDebugLoc(), 180 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 181 .addReg(BaseReg).addImm(Amt) 182 .addImm(Pred).addReg(0).addReg(0); 183 } else if (Amt != 0) { 184 ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm); 185 unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt); 186 UpdateMI = BuildMI(MF, MI->getDebugLoc(), 187 get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg) 188 .addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc) 189 .addImm(Pred).addReg(0).addReg(0); 190 } else 191 UpdateMI = BuildMI(MF, MI->getDebugLoc(), 192 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 193 .addReg(BaseReg).addReg(OffReg) 194 .addImm(Pred).addReg(0).addReg(0); 195 break; 196 } 197 case ARMII::AddrMode3 : { 198 bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub; 199 unsigned Amt = ARM_AM::getAM3Offset(OffImm); 200 if (OffReg == 0) 201 // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand. 202 UpdateMI = BuildMI(MF, MI->getDebugLoc(), 203 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 204 .addReg(BaseReg).addImm(Amt) 205 .addImm(Pred).addReg(0).addReg(0); 206 else 207 UpdateMI = BuildMI(MF, MI->getDebugLoc(), 208 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 209 .addReg(BaseReg).addReg(OffReg) 210 .addImm(Pred).addReg(0).addReg(0); 211 break; 212 } 213 } 214 215 std::vector<MachineInstr*> NewMIs; 216 if (isPre) { 217 if (isLoad) 218 MemMI = BuildMI(MF, MI->getDebugLoc(), 219 get(MemOpc), MI->getOperand(0).getReg()) 220 .addReg(WBReg).addImm(0).addImm(Pred); 221 else 222 MemMI = BuildMI(MF, MI->getDebugLoc(), 223 get(MemOpc)).addReg(MI->getOperand(1).getReg()) 224 .addReg(WBReg).addReg(0).addImm(0).addImm(Pred); 225 NewMIs.push_back(MemMI); 226 NewMIs.push_back(UpdateMI); 227 } else { 228 if (isLoad) 229 MemMI = BuildMI(MF, MI->getDebugLoc(), 230 get(MemOpc), MI->getOperand(0).getReg()) 231 .addReg(BaseReg).addImm(0).addImm(Pred); 232 else 233 MemMI = BuildMI(MF, MI->getDebugLoc(), 234 get(MemOpc)).addReg(MI->getOperand(1).getReg()) 235 .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred); 236 if (WB.isDead()) 237 UpdateMI->getOperand(0).setIsDead(); 238 NewMIs.push_back(UpdateMI); 239 NewMIs.push_back(MemMI); 240 } 241 242 // Transfer LiveVariables states, kill / dead info. 243 if (LV) { 244 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 245 MachineOperand &MO = MI->getOperand(i); 246 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 247 unsigned Reg = MO.getReg(); 248 249 LiveVariables::VarInfo &VI = LV->getVarInfo(Reg); 250 if (MO.isDef()) { 251 MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI; 252 if (MO.isDead()) 253 LV->addVirtualRegisterDead(Reg, NewMI); 254 } 255 if (MO.isUse() && MO.isKill()) { 256 for (unsigned j = 0; j < 2; ++j) { 257 // Look at the two new MI's in reverse order. 258 MachineInstr *NewMI = NewMIs[j]; 259 if (!NewMI->readsRegister(Reg)) 260 continue; 261 LV->addVirtualRegisterKilled(Reg, NewMI); 262 if (VI.removeKill(MI)) 263 VI.Kills.push_back(NewMI); 264 break; 265 } 266 } 267 } 268 } 269 } 270 271 MFI->insert(MBBI, NewMIs[1]); 272 MFI->insert(MBBI, NewMIs[0]); 273 return NewMIs[0]; 274 } 275 276 // Branch analysis. 277 bool 278 ARMBaseInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB, 279 MachineBasicBlock *&FBB, 280 SmallVectorImpl<MachineOperand> &Cond, 281 bool AllowModify) const { 282 TBB = nullptr; 283 FBB = nullptr; 284 285 MachineBasicBlock::iterator I = MBB.end(); 286 if (I == MBB.begin()) 287 return false; // Empty blocks are easy. 288 --I; 289 290 // Walk backwards from the end of the basic block until the branch is 291 // analyzed or we give up. 292 while (isPredicated(I) || I->isTerminator() || I->isDebugValue()) { 293 294 // Flag to be raised on unanalyzeable instructions. This is useful in cases 295 // where we want to clean up on the end of the basic block before we bail 296 // out. 297 bool CantAnalyze = false; 298 299 // Skip over DEBUG values and predicated nonterminators. 300 while (I->isDebugValue() || !I->isTerminator()) { 301 if (I == MBB.begin()) 302 return false; 303 --I; 304 } 305 306 if (isIndirectBranchOpcode(I->getOpcode()) || 307 isJumpTableBranchOpcode(I->getOpcode())) { 308 // Indirect branches and jump tables can't be analyzed, but we still want 309 // to clean up any instructions at the tail of the basic block. 310 CantAnalyze = true; 311 } else if (isUncondBranchOpcode(I->getOpcode())) { 312 TBB = I->getOperand(0).getMBB(); 313 } else if (isCondBranchOpcode(I->getOpcode())) { 314 // Bail out if we encounter multiple conditional branches. 315 if (!Cond.empty()) 316 return true; 317 318 assert(!FBB && "FBB should have been null."); 319 FBB = TBB; 320 TBB = I->getOperand(0).getMBB(); 321 Cond.push_back(I->getOperand(1)); 322 Cond.push_back(I->getOperand(2)); 323 } else if (I->isReturn()) { 324 // Returns can't be analyzed, but we should run cleanup. 325 CantAnalyze = !isPredicated(I); 326 } else { 327 // We encountered other unrecognized terminator. Bail out immediately. 328 return true; 329 } 330 331 // Cleanup code - to be run for unpredicated unconditional branches and 332 // returns. 333 if (!isPredicated(I) && 334 (isUncondBranchOpcode(I->getOpcode()) || 335 isIndirectBranchOpcode(I->getOpcode()) || 336 isJumpTableBranchOpcode(I->getOpcode()) || 337 I->isReturn())) { 338 // Forget any previous condition branch information - it no longer applies. 339 Cond.clear(); 340 FBB = nullptr; 341 342 // If we can modify the function, delete everything below this 343 // unconditional branch. 344 if (AllowModify) { 345 MachineBasicBlock::iterator DI = std::next(I); 346 while (DI != MBB.end()) { 347 MachineInstr *InstToDelete = DI; 348 ++DI; 349 InstToDelete->eraseFromParent(); 350 } 351 } 352 } 353 354 if (CantAnalyze) 355 return true; 356 357 if (I == MBB.begin()) 358 return false; 359 360 --I; 361 } 362 363 // We made it past the terminators without bailing out - we must have 364 // analyzed this branch successfully. 365 return false; 366 } 367 368 369 unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 370 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 371 if (I == MBB.end()) 372 return 0; 373 374 if (!isUncondBranchOpcode(I->getOpcode()) && 375 !isCondBranchOpcode(I->getOpcode())) 376 return 0; 377 378 // Remove the branch. 379 I->eraseFromParent(); 380 381 I = MBB.end(); 382 383 if (I == MBB.begin()) return 1; 384 --I; 385 if (!isCondBranchOpcode(I->getOpcode())) 386 return 1; 387 388 // Remove the branch. 389 I->eraseFromParent(); 390 return 2; 391 } 392 393 unsigned 394 ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 395 MachineBasicBlock *FBB, 396 ArrayRef<MachineOperand> Cond, 397 DebugLoc DL) const { 398 ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>(); 399 int BOpc = !AFI->isThumbFunction() 400 ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB); 401 int BccOpc = !AFI->isThumbFunction() 402 ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc); 403 bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function(); 404 405 // Shouldn't be a fall through. 406 assert(TBB && "InsertBranch must not be told to insert a fallthrough"); 407 assert((Cond.size() == 2 || Cond.size() == 0) && 408 "ARM branch conditions have two components!"); 409 410 // For conditional branches, we use addOperand to preserve CPSR flags. 411 412 if (!FBB) { 413 if (Cond.empty()) { // Unconditional branch? 414 if (isThumb) 415 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).addImm(ARMCC::AL).addReg(0); 416 else 417 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB); 418 } else 419 BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB) 420 .addImm(Cond[0].getImm()).addOperand(Cond[1]); 421 return 1; 422 } 423 424 // Two-way conditional branch. 425 BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB) 426 .addImm(Cond[0].getImm()).addOperand(Cond[1]); 427 if (isThumb) 428 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).addImm(ARMCC::AL).addReg(0); 429 else 430 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB); 431 return 2; 432 } 433 434 bool ARMBaseInstrInfo:: 435 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 436 ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm(); 437 Cond[0].setImm(ARMCC::getOppositeCondition(CC)); 438 return false; 439 } 440 441 bool ARMBaseInstrInfo::isPredicated(const MachineInstr *MI) const { 442 if (MI->isBundle()) { 443 MachineBasicBlock::const_instr_iterator I = MI->getIterator(); 444 MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end(); 445 while (++I != E && I->isInsideBundle()) { 446 int PIdx = I->findFirstPredOperandIdx(); 447 if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL) 448 return true; 449 } 450 return false; 451 } 452 453 int PIdx = MI->findFirstPredOperandIdx(); 454 return PIdx != -1 && MI->getOperand(PIdx).getImm() != ARMCC::AL; 455 } 456 457 bool ARMBaseInstrInfo:: 458 PredicateInstruction(MachineInstr *MI, ArrayRef<MachineOperand> Pred) const { 459 unsigned Opc = MI->getOpcode(); 460 if (isUncondBranchOpcode(Opc)) { 461 MI->setDesc(get(getMatchingCondBranchOpcode(Opc))); 462 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 463 .addImm(Pred[0].getImm()) 464 .addReg(Pred[1].getReg()); 465 return true; 466 } 467 468 int PIdx = MI->findFirstPredOperandIdx(); 469 if (PIdx != -1) { 470 MachineOperand &PMO = MI->getOperand(PIdx); 471 PMO.setImm(Pred[0].getImm()); 472 MI->getOperand(PIdx+1).setReg(Pred[1].getReg()); 473 return true; 474 } 475 return false; 476 } 477 478 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 479 ArrayRef<MachineOperand> Pred2) const { 480 if (Pred1.size() > 2 || Pred2.size() > 2) 481 return false; 482 483 ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm(); 484 ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm(); 485 if (CC1 == CC2) 486 return true; 487 488 switch (CC1) { 489 default: 490 return false; 491 case ARMCC::AL: 492 return true; 493 case ARMCC::HS: 494 return CC2 == ARMCC::HI; 495 case ARMCC::LS: 496 return CC2 == ARMCC::LO || CC2 == ARMCC::EQ; 497 case ARMCC::GE: 498 return CC2 == ARMCC::GT; 499 case ARMCC::LE: 500 return CC2 == ARMCC::LT; 501 } 502 } 503 504 bool ARMBaseInstrInfo::DefinesPredicate(MachineInstr *MI, 505 std::vector<MachineOperand> &Pred) const { 506 bool Found = false; 507 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 508 const MachineOperand &MO = MI->getOperand(i); 509 if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) || 510 (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) { 511 Pred.push_back(MO); 512 Found = true; 513 } 514 } 515 516 return Found; 517 } 518 519 static bool isCPSRDefined(const MachineInstr *MI) { 520 for (const auto &MO : MI->operands()) 521 if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead()) 522 return true; 523 return false; 524 } 525 526 static bool isEligibleForITBlock(const MachineInstr *MI) { 527 switch (MI->getOpcode()) { 528 default: return true; 529 case ARM::tADC: // ADC (register) T1 530 case ARM::tADDi3: // ADD (immediate) T1 531 case ARM::tADDi8: // ADD (immediate) T2 532 case ARM::tADDrr: // ADD (register) T1 533 case ARM::tAND: // AND (register) T1 534 case ARM::tASRri: // ASR (immediate) T1 535 case ARM::tASRrr: // ASR (register) T1 536 case ARM::tBIC: // BIC (register) T1 537 case ARM::tEOR: // EOR (register) T1 538 case ARM::tLSLri: // LSL (immediate) T1 539 case ARM::tLSLrr: // LSL (register) T1 540 case ARM::tLSRri: // LSR (immediate) T1 541 case ARM::tLSRrr: // LSR (register) T1 542 case ARM::tMUL: // MUL T1 543 case ARM::tMVN: // MVN (register) T1 544 case ARM::tORR: // ORR (register) T1 545 case ARM::tROR: // ROR (register) T1 546 case ARM::tRSB: // RSB (immediate) T1 547 case ARM::tSBC: // SBC (register) T1 548 case ARM::tSUBi3: // SUB (immediate) T1 549 case ARM::tSUBi8: // SUB (immediate) T2 550 case ARM::tSUBrr: // SUB (register) T1 551 return !isCPSRDefined(MI); 552 } 553 } 554 555 /// isPredicable - Return true if the specified instruction can be predicated. 556 /// By default, this returns true for every instruction with a 557 /// PredicateOperand. 558 bool ARMBaseInstrInfo::isPredicable(MachineInstr *MI) const { 559 if (!MI->isPredicable()) 560 return false; 561 562 if (!isEligibleForITBlock(MI)) 563 return false; 564 565 ARMFunctionInfo *AFI = 566 MI->getParent()->getParent()->getInfo<ARMFunctionInfo>(); 567 568 if (AFI->isThumb2Function()) { 569 if (getSubtarget().restrictIT()) 570 return isV8EligibleForIT(MI); 571 } else { // non-Thumb 572 if ((MI->getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) 573 return false; 574 } 575 576 return true; 577 } 578 579 namespace llvm { 580 template <> bool IsCPSRDead<MachineInstr>(MachineInstr *MI) { 581 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 582 const MachineOperand &MO = MI->getOperand(i); 583 if (!MO.isReg() || MO.isUndef() || MO.isUse()) 584 continue; 585 if (MO.getReg() != ARM::CPSR) 586 continue; 587 if (!MO.isDead()) 588 return false; 589 } 590 // all definitions of CPSR are dead 591 return true; 592 } 593 } 594 595 /// GetInstSize - Return the size of the specified MachineInstr. 596 /// 597 unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const { 598 const MachineBasicBlock &MBB = *MI->getParent(); 599 const MachineFunction *MF = MBB.getParent(); 600 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); 601 602 const MCInstrDesc &MCID = MI->getDesc(); 603 if (MCID.getSize()) 604 return MCID.getSize(); 605 606 // If this machine instr is an inline asm, measure it. 607 if (MI->getOpcode() == ARM::INLINEASM) 608 return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI); 609 unsigned Opc = MI->getOpcode(); 610 switch (Opc) { 611 default: 612 // pseudo-instruction sizes are zero. 613 return 0; 614 case TargetOpcode::BUNDLE: 615 return getInstBundleLength(MI); 616 case ARM::MOVi16_ga_pcrel: 617 case ARM::MOVTi16_ga_pcrel: 618 case ARM::t2MOVi16_ga_pcrel: 619 case ARM::t2MOVTi16_ga_pcrel: 620 return 4; 621 case ARM::MOVi32imm: 622 case ARM::t2MOVi32imm: 623 return 8; 624 case ARM::CONSTPOOL_ENTRY: 625 case ARM::JUMPTABLE_INSTS: 626 case ARM::JUMPTABLE_ADDRS: 627 case ARM::JUMPTABLE_TBB: 628 case ARM::JUMPTABLE_TBH: 629 // If this machine instr is a constant pool entry, its size is recorded as 630 // operand #2. 631 return MI->getOperand(2).getImm(); 632 case ARM::Int_eh_sjlj_longjmp: 633 return 16; 634 case ARM::tInt_eh_sjlj_longjmp: 635 return 10; 636 case ARM::Int_eh_sjlj_setjmp: 637 case ARM::Int_eh_sjlj_setjmp_nofp: 638 return 20; 639 case ARM::tInt_eh_sjlj_setjmp: 640 case ARM::t2Int_eh_sjlj_setjmp: 641 case ARM::t2Int_eh_sjlj_setjmp_nofp: 642 return 12; 643 case ARM::SPACE: 644 return MI->getOperand(1).getImm(); 645 } 646 } 647 648 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr *MI) const { 649 unsigned Size = 0; 650 MachineBasicBlock::const_instr_iterator I = MI->getIterator(); 651 MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end(); 652 while (++I != E && I->isInsideBundle()) { 653 assert(!I->isBundle() && "No nested bundle!"); 654 Size += GetInstSizeInBytes(&*I); 655 } 656 return Size; 657 } 658 659 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB, 660 MachineBasicBlock::iterator I, 661 unsigned DestReg, bool KillSrc, 662 const ARMSubtarget &Subtarget) const { 663 unsigned Opc = Subtarget.isThumb() 664 ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR) 665 : ARM::MRS; 666 667 MachineInstrBuilder MIB = 668 BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg); 669 670 // There is only 1 A/R class MRS instruction, and it always refers to 671 // APSR. However, there are lots of other possibilities on M-class cores. 672 if (Subtarget.isMClass()) 673 MIB.addImm(0x800); 674 675 AddDefaultPred(MIB); 676 677 MIB.addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc)); 678 } 679 680 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB, 681 MachineBasicBlock::iterator I, 682 unsigned SrcReg, bool KillSrc, 683 const ARMSubtarget &Subtarget) const { 684 unsigned Opc = Subtarget.isThumb() 685 ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR) 686 : ARM::MSR; 687 688 MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc)); 689 690 if (Subtarget.isMClass()) 691 MIB.addImm(0x800); 692 else 693 MIB.addImm(8); 694 695 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 696 697 AddDefaultPred(MIB); 698 699 MIB.addReg(ARM::CPSR, RegState::Implicit | RegState::Define); 700 } 701 702 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 703 MachineBasicBlock::iterator I, DebugLoc DL, 704 unsigned DestReg, unsigned SrcReg, 705 bool KillSrc) const { 706 bool GPRDest = ARM::GPRRegClass.contains(DestReg); 707 bool GPRSrc = ARM::GPRRegClass.contains(SrcReg); 708 709 if (GPRDest && GPRSrc) { 710 AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg) 711 .addReg(SrcReg, getKillRegState(KillSrc)))); 712 return; 713 } 714 715 bool SPRDest = ARM::SPRRegClass.contains(DestReg); 716 bool SPRSrc = ARM::SPRRegClass.contains(SrcReg); 717 718 unsigned Opc = 0; 719 if (SPRDest && SPRSrc) 720 Opc = ARM::VMOVS; 721 else if (GPRDest && SPRSrc) 722 Opc = ARM::VMOVRS; 723 else if (SPRDest && GPRSrc) 724 Opc = ARM::VMOVSR; 725 else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && !Subtarget.isFPOnlySP()) 726 Opc = ARM::VMOVD; 727 else if (ARM::QPRRegClass.contains(DestReg, SrcReg)) 728 Opc = ARM::VORRq; 729 730 if (Opc) { 731 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg); 732 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 733 if (Opc == ARM::VORRq) 734 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 735 AddDefaultPred(MIB); 736 return; 737 } 738 739 // Handle register classes that require multiple instructions. 740 unsigned BeginIdx = 0; 741 unsigned SubRegs = 0; 742 int Spacing = 1; 743 744 // Use VORRq when possible. 745 if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) { 746 Opc = ARM::VORRq; 747 BeginIdx = ARM::qsub_0; 748 SubRegs = 2; 749 } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) { 750 Opc = ARM::VORRq; 751 BeginIdx = ARM::qsub_0; 752 SubRegs = 4; 753 // Fall back to VMOVD. 754 } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) { 755 Opc = ARM::VMOVD; 756 BeginIdx = ARM::dsub_0; 757 SubRegs = 2; 758 } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) { 759 Opc = ARM::VMOVD; 760 BeginIdx = ARM::dsub_0; 761 SubRegs = 3; 762 } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) { 763 Opc = ARM::VMOVD; 764 BeginIdx = ARM::dsub_0; 765 SubRegs = 4; 766 } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) { 767 Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr; 768 BeginIdx = ARM::gsub_0; 769 SubRegs = 2; 770 } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) { 771 Opc = ARM::VMOVD; 772 BeginIdx = ARM::dsub_0; 773 SubRegs = 2; 774 Spacing = 2; 775 } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) { 776 Opc = ARM::VMOVD; 777 BeginIdx = ARM::dsub_0; 778 SubRegs = 3; 779 Spacing = 2; 780 } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) { 781 Opc = ARM::VMOVD; 782 BeginIdx = ARM::dsub_0; 783 SubRegs = 4; 784 Spacing = 2; 785 } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.isFPOnlySP()) { 786 Opc = ARM::VMOVS; 787 BeginIdx = ARM::ssub_0; 788 SubRegs = 2; 789 } else if (SrcReg == ARM::CPSR) { 790 copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget); 791 return; 792 } else if (DestReg == ARM::CPSR) { 793 copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget); 794 return; 795 } 796 797 assert(Opc && "Impossible reg-to-reg copy"); 798 799 const TargetRegisterInfo *TRI = &getRegisterInfo(); 800 MachineInstrBuilder Mov; 801 802 // Copy register tuples backward when the first Dest reg overlaps with SrcReg. 803 if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) { 804 BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing); 805 Spacing = -Spacing; 806 } 807 #ifndef NDEBUG 808 SmallSet<unsigned, 4> DstRegs; 809 #endif 810 for (unsigned i = 0; i != SubRegs; ++i) { 811 unsigned Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing); 812 unsigned Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing); 813 assert(Dst && Src && "Bad sub-register"); 814 #ifndef NDEBUG 815 assert(!DstRegs.count(Src) && "destructive vector copy"); 816 DstRegs.insert(Dst); 817 #endif 818 Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src); 819 // VORR takes two source operands. 820 if (Opc == ARM::VORRq) 821 Mov.addReg(Src); 822 Mov = AddDefaultPred(Mov); 823 // MOVr can set CC. 824 if (Opc == ARM::MOVr) 825 Mov = AddDefaultCC(Mov); 826 } 827 // Add implicit super-register defs and kills to the last instruction. 828 Mov->addRegisterDefined(DestReg, TRI); 829 if (KillSrc) 830 Mov->addRegisterKilled(SrcReg, TRI); 831 } 832 833 const MachineInstrBuilder & 834 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg, 835 unsigned SubIdx, unsigned State, 836 const TargetRegisterInfo *TRI) const { 837 if (!SubIdx) 838 return MIB.addReg(Reg, State); 839 840 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 841 return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State); 842 return MIB.addReg(Reg, State, SubIdx); 843 } 844 845 void ARMBaseInstrInfo:: 846 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, 847 unsigned SrcReg, bool isKill, int FI, 848 const TargetRegisterClass *RC, 849 const TargetRegisterInfo *TRI) const { 850 DebugLoc DL; 851 if (I != MBB.end()) DL = I->getDebugLoc(); 852 MachineFunction &MF = *MBB.getParent(); 853 MachineFrameInfo &MFI = *MF.getFrameInfo(); 854 unsigned Align = MFI.getObjectAlignment(FI); 855 856 MachineMemOperand *MMO = MF.getMachineMemOperand( 857 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore, 858 MFI.getObjectSize(FI), Align); 859 860 switch (RC->getSize()) { 861 case 4: 862 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 863 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STRi12)) 864 .addReg(SrcReg, getKillRegState(isKill)) 865 .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); 866 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 867 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRS)) 868 .addReg(SrcReg, getKillRegState(isKill)) 869 .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); 870 } else 871 llvm_unreachable("Unknown reg class!"); 872 break; 873 case 8: 874 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 875 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRD)) 876 .addReg(SrcReg, getKillRegState(isKill)) 877 .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); 878 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { 879 if (Subtarget.hasV5TEOps()) { 880 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::STRD)); 881 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); 882 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); 883 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO); 884 885 AddDefaultPred(MIB); 886 } else { 887 // Fallback to STM instruction, which has existed since the dawn of 888 // time. 889 MachineInstrBuilder MIB = 890 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STMIA)) 891 .addFrameIndex(FI).addMemOperand(MMO)); 892 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); 893 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); 894 } 895 } else 896 llvm_unreachable("Unknown reg class!"); 897 break; 898 case 16: 899 if (ARM::DPairRegClass.hasSubClassEq(RC)) { 900 // Use aligned spills if the stack can be realigned. 901 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 902 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1q64)) 903 .addFrameIndex(FI).addImm(16) 904 .addReg(SrcReg, getKillRegState(isKill)) 905 .addMemOperand(MMO)); 906 } else { 907 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMQIA)) 908 .addReg(SrcReg, getKillRegState(isKill)) 909 .addFrameIndex(FI) 910 .addMemOperand(MMO)); 911 } 912 } else 913 llvm_unreachable("Unknown reg class!"); 914 break; 915 case 24: 916 if (ARM::DTripleRegClass.hasSubClassEq(RC)) { 917 // Use aligned spills if the stack can be realigned. 918 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 919 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64TPseudo)) 920 .addFrameIndex(FI).addImm(16) 921 .addReg(SrcReg, getKillRegState(isKill)) 922 .addMemOperand(MMO)); 923 } else { 924 MachineInstrBuilder MIB = 925 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA)) 926 .addFrameIndex(FI)) 927 .addMemOperand(MMO); 928 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 929 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 930 AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 931 } 932 } else 933 llvm_unreachable("Unknown reg class!"); 934 break; 935 case 32: 936 if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) { 937 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 938 // FIXME: It's possible to only store part of the QQ register if the 939 // spilled def has a sub-register index. 940 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo)) 941 .addFrameIndex(FI).addImm(16) 942 .addReg(SrcReg, getKillRegState(isKill)) 943 .addMemOperand(MMO)); 944 } else { 945 MachineInstrBuilder MIB = 946 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA)) 947 .addFrameIndex(FI)) 948 .addMemOperand(MMO); 949 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 950 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 951 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 952 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 953 } 954 } else 955 llvm_unreachable("Unknown reg class!"); 956 break; 957 case 64: 958 if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 959 MachineInstrBuilder MIB = 960 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA)) 961 .addFrameIndex(FI)) 962 .addMemOperand(MMO); 963 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 964 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 965 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 966 MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 967 MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI); 968 MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI); 969 MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI); 970 AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI); 971 } else 972 llvm_unreachable("Unknown reg class!"); 973 break; 974 default: 975 llvm_unreachable("Unknown reg class!"); 976 } 977 } 978 979 unsigned 980 ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr *MI, 981 int &FrameIndex) const { 982 switch (MI->getOpcode()) { 983 default: break; 984 case ARM::STRrs: 985 case ARM::t2STRs: // FIXME: don't use t2STRs to access frame. 986 if (MI->getOperand(1).isFI() && 987 MI->getOperand(2).isReg() && 988 MI->getOperand(3).isImm() && 989 MI->getOperand(2).getReg() == 0 && 990 MI->getOperand(3).getImm() == 0) { 991 FrameIndex = MI->getOperand(1).getIndex(); 992 return MI->getOperand(0).getReg(); 993 } 994 break; 995 case ARM::STRi12: 996 case ARM::t2STRi12: 997 case ARM::tSTRspi: 998 case ARM::VSTRD: 999 case ARM::VSTRS: 1000 if (MI->getOperand(1).isFI() && 1001 MI->getOperand(2).isImm() && 1002 MI->getOperand(2).getImm() == 0) { 1003 FrameIndex = MI->getOperand(1).getIndex(); 1004 return MI->getOperand(0).getReg(); 1005 } 1006 break; 1007 case ARM::VST1q64: 1008 case ARM::VST1d64TPseudo: 1009 case ARM::VST1d64QPseudo: 1010 if (MI->getOperand(0).isFI() && 1011 MI->getOperand(2).getSubReg() == 0) { 1012 FrameIndex = MI->getOperand(0).getIndex(); 1013 return MI->getOperand(2).getReg(); 1014 } 1015 break; 1016 case ARM::VSTMQIA: 1017 if (MI->getOperand(1).isFI() && 1018 MI->getOperand(0).getSubReg() == 0) { 1019 FrameIndex = MI->getOperand(1).getIndex(); 1020 return MI->getOperand(0).getReg(); 1021 } 1022 break; 1023 } 1024 1025 return 0; 1026 } 1027 1028 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI, 1029 int &FrameIndex) const { 1030 const MachineMemOperand *Dummy; 1031 return MI->mayStore() && hasStoreToStackSlot(MI, Dummy, FrameIndex); 1032 } 1033 1034 void ARMBaseInstrInfo:: 1035 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, 1036 unsigned DestReg, int FI, 1037 const TargetRegisterClass *RC, 1038 const TargetRegisterInfo *TRI) const { 1039 DebugLoc DL; 1040 if (I != MBB.end()) DL = I->getDebugLoc(); 1041 MachineFunction &MF = *MBB.getParent(); 1042 MachineFrameInfo &MFI = *MF.getFrameInfo(); 1043 unsigned Align = MFI.getObjectAlignment(FI); 1044 MachineMemOperand *MMO = MF.getMachineMemOperand( 1045 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad, 1046 MFI.getObjectSize(FI), Align); 1047 1048 switch (RC->getSize()) { 1049 case 4: 1050 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 1051 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg) 1052 .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); 1053 1054 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 1055 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg) 1056 .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); 1057 } else 1058 llvm_unreachable("Unknown reg class!"); 1059 break; 1060 case 8: 1061 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 1062 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg) 1063 .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); 1064 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { 1065 MachineInstrBuilder MIB; 1066 1067 if (Subtarget.hasV5TEOps()) { 1068 MIB = BuildMI(MBB, I, DL, get(ARM::LDRD)); 1069 AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); 1070 AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); 1071 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO); 1072 1073 AddDefaultPred(MIB); 1074 } else { 1075 // Fallback to LDM instruction, which has existed since the dawn of 1076 // time. 1077 MIB = AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDMIA)) 1078 .addFrameIndex(FI).addMemOperand(MMO)); 1079 MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); 1080 MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); 1081 } 1082 1083 if (TargetRegisterInfo::isPhysicalRegister(DestReg)) 1084 MIB.addReg(DestReg, RegState::ImplicitDefine); 1085 } else 1086 llvm_unreachable("Unknown reg class!"); 1087 break; 1088 case 16: 1089 if (ARM::DPairRegClass.hasSubClassEq(RC)) { 1090 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 1091 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg) 1092 .addFrameIndex(FI).addImm(16) 1093 .addMemOperand(MMO)); 1094 } else { 1095 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg) 1096 .addFrameIndex(FI) 1097 .addMemOperand(MMO)); 1098 } 1099 } else 1100 llvm_unreachable("Unknown reg class!"); 1101 break; 1102 case 24: 1103 if (ARM::DTripleRegClass.hasSubClassEq(RC)) { 1104 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 1105 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg) 1106 .addFrameIndex(FI).addImm(16) 1107 .addMemOperand(MMO)); 1108 } else { 1109 MachineInstrBuilder MIB = 1110 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1111 .addFrameIndex(FI) 1112 .addMemOperand(MMO)); 1113 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1114 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1115 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1116 if (TargetRegisterInfo::isPhysicalRegister(DestReg)) 1117 MIB.addReg(DestReg, RegState::ImplicitDefine); 1118 } 1119 } else 1120 llvm_unreachable("Unknown reg class!"); 1121 break; 1122 case 32: 1123 if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) { 1124 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 1125 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg) 1126 .addFrameIndex(FI).addImm(16) 1127 .addMemOperand(MMO)); 1128 } else { 1129 MachineInstrBuilder MIB = 1130 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1131 .addFrameIndex(FI)) 1132 .addMemOperand(MMO); 1133 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1134 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1135 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1136 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); 1137 if (TargetRegisterInfo::isPhysicalRegister(DestReg)) 1138 MIB.addReg(DestReg, RegState::ImplicitDefine); 1139 } 1140 } else 1141 llvm_unreachable("Unknown reg class!"); 1142 break; 1143 case 64: 1144 if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 1145 MachineInstrBuilder MIB = 1146 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1147 .addFrameIndex(FI)) 1148 .addMemOperand(MMO); 1149 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1150 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1151 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1152 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); 1153 MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI); 1154 MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI); 1155 MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI); 1156 MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI); 1157 if (TargetRegisterInfo::isPhysicalRegister(DestReg)) 1158 MIB.addReg(DestReg, RegState::ImplicitDefine); 1159 } else 1160 llvm_unreachable("Unknown reg class!"); 1161 break; 1162 default: 1163 llvm_unreachable("Unknown regclass!"); 1164 } 1165 } 1166 1167 unsigned 1168 ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, 1169 int &FrameIndex) const { 1170 switch (MI->getOpcode()) { 1171 default: break; 1172 case ARM::LDRrs: 1173 case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame. 1174 if (MI->getOperand(1).isFI() && 1175 MI->getOperand(2).isReg() && 1176 MI->getOperand(3).isImm() && 1177 MI->getOperand(2).getReg() == 0 && 1178 MI->getOperand(3).getImm() == 0) { 1179 FrameIndex = MI->getOperand(1).getIndex(); 1180 return MI->getOperand(0).getReg(); 1181 } 1182 break; 1183 case ARM::LDRi12: 1184 case ARM::t2LDRi12: 1185 case ARM::tLDRspi: 1186 case ARM::VLDRD: 1187 case ARM::VLDRS: 1188 if (MI->getOperand(1).isFI() && 1189 MI->getOperand(2).isImm() && 1190 MI->getOperand(2).getImm() == 0) { 1191 FrameIndex = MI->getOperand(1).getIndex(); 1192 return MI->getOperand(0).getReg(); 1193 } 1194 break; 1195 case ARM::VLD1q64: 1196 case ARM::VLD1d64TPseudo: 1197 case ARM::VLD1d64QPseudo: 1198 if (MI->getOperand(1).isFI() && 1199 MI->getOperand(0).getSubReg() == 0) { 1200 FrameIndex = MI->getOperand(1).getIndex(); 1201 return MI->getOperand(0).getReg(); 1202 } 1203 break; 1204 case ARM::VLDMQIA: 1205 if (MI->getOperand(1).isFI() && 1206 MI->getOperand(0).getSubReg() == 0) { 1207 FrameIndex = MI->getOperand(1).getIndex(); 1208 return MI->getOperand(0).getReg(); 1209 } 1210 break; 1211 } 1212 1213 return 0; 1214 } 1215 1216 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI, 1217 int &FrameIndex) const { 1218 const MachineMemOperand *Dummy; 1219 return MI->mayLoad() && hasLoadFromStackSlot(MI, Dummy, FrameIndex); 1220 } 1221 1222 /// \brief Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD 1223 /// depending on whether the result is used. 1224 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MBBI) const { 1225 bool isThumb1 = Subtarget.isThumb1Only(); 1226 bool isThumb2 = Subtarget.isThumb2(); 1227 const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo(); 1228 1229 MachineInstr *MI = MBBI; 1230 DebugLoc dl = MI->getDebugLoc(); 1231 MachineBasicBlock *BB = MI->getParent(); 1232 1233 MachineInstrBuilder LDM, STM; 1234 if (isThumb1 || !MI->getOperand(1).isDead()) { 1235 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD 1236 : isThumb1 ? ARM::tLDMIA_UPD 1237 : ARM::LDMIA_UPD)) 1238 .addOperand(MI->getOperand(1)); 1239 } else { 1240 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA)); 1241 } 1242 1243 if (isThumb1 || !MI->getOperand(0).isDead()) { 1244 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD 1245 : isThumb1 ? ARM::tSTMIA_UPD 1246 : ARM::STMIA_UPD)) 1247 .addOperand(MI->getOperand(0)); 1248 } else { 1249 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA)); 1250 } 1251 1252 AddDefaultPred(LDM.addOperand(MI->getOperand(3))); 1253 AddDefaultPred(STM.addOperand(MI->getOperand(2))); 1254 1255 // Sort the scratch registers into ascending order. 1256 const TargetRegisterInfo &TRI = getRegisterInfo(); 1257 llvm::SmallVector<unsigned, 6> ScratchRegs; 1258 for(unsigned I = 5; I < MI->getNumOperands(); ++I) 1259 ScratchRegs.push_back(MI->getOperand(I).getReg()); 1260 std::sort(ScratchRegs.begin(), ScratchRegs.end(), 1261 [&TRI](const unsigned &Reg1, 1262 const unsigned &Reg2) -> bool { 1263 return TRI.getEncodingValue(Reg1) < 1264 TRI.getEncodingValue(Reg2); 1265 }); 1266 1267 for (const auto &Reg : ScratchRegs) { 1268 LDM.addReg(Reg, RegState::Define); 1269 STM.addReg(Reg, RegState::Kill); 1270 } 1271 1272 BB->erase(MBBI); 1273 } 1274 1275 1276 bool 1277 ARMBaseInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const { 1278 MachineFunction &MF = *MI->getParent()->getParent(); 1279 Reloc::Model RM = MF.getTarget().getRelocationModel(); 1280 1281 if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD) { 1282 assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() && 1283 "LOAD_STACK_GUARD currently supported only for MachO."); 1284 expandLoadStackGuard(MI, RM); 1285 MI->getParent()->erase(MI); 1286 return true; 1287 } 1288 1289 if (MI->getOpcode() == ARM::MEMCPY) { 1290 expandMEMCPY(MI); 1291 return true; 1292 } 1293 1294 // This hook gets to expand COPY instructions before they become 1295 // copyPhysReg() calls. Look for VMOVS instructions that can legally be 1296 // widened to VMOVD. We prefer the VMOVD when possible because it may be 1297 // changed into a VORR that can go down the NEON pipeline. 1298 if (!WidenVMOVS || !MI->isCopy() || Subtarget.isCortexA15() || 1299 Subtarget.isFPOnlySP()) 1300 return false; 1301 1302 // Look for a copy between even S-registers. That is where we keep floats 1303 // when using NEON v2f32 instructions for f32 arithmetic. 1304 unsigned DstRegS = MI->getOperand(0).getReg(); 1305 unsigned SrcRegS = MI->getOperand(1).getReg(); 1306 if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS)) 1307 return false; 1308 1309 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1310 unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0, 1311 &ARM::DPRRegClass); 1312 unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0, 1313 &ARM::DPRRegClass); 1314 if (!DstRegD || !SrcRegD) 1315 return false; 1316 1317 // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only 1318 // legal if the COPY already defines the full DstRegD, and it isn't a 1319 // sub-register insertion. 1320 if (!MI->definesRegister(DstRegD, TRI) || MI->readsRegister(DstRegD, TRI)) 1321 return false; 1322 1323 // A dead copy shouldn't show up here, but reject it just in case. 1324 if (MI->getOperand(0).isDead()) 1325 return false; 1326 1327 // All clear, widen the COPY. 1328 DEBUG(dbgs() << "widening: " << *MI); 1329 MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI); 1330 1331 // Get rid of the old <imp-def> of DstRegD. Leave it if it defines a Q-reg 1332 // or some other super-register. 1333 int ImpDefIdx = MI->findRegisterDefOperandIdx(DstRegD); 1334 if (ImpDefIdx != -1) 1335 MI->RemoveOperand(ImpDefIdx); 1336 1337 // Change the opcode and operands. 1338 MI->setDesc(get(ARM::VMOVD)); 1339 MI->getOperand(0).setReg(DstRegD); 1340 MI->getOperand(1).setReg(SrcRegD); 1341 AddDefaultPred(MIB); 1342 1343 // We are now reading SrcRegD instead of SrcRegS. This may upset the 1344 // register scavenger and machine verifier, so we need to indicate that we 1345 // are reading an undefined value from SrcRegD, but a proper value from 1346 // SrcRegS. 1347 MI->getOperand(1).setIsUndef(); 1348 MIB.addReg(SrcRegS, RegState::Implicit); 1349 1350 // SrcRegD may actually contain an unrelated value in the ssub_1 1351 // sub-register. Don't kill it. Only kill the ssub_0 sub-register. 1352 if (MI->getOperand(1).isKill()) { 1353 MI->getOperand(1).setIsKill(false); 1354 MI->addRegisterKilled(SrcRegS, TRI, true); 1355 } 1356 1357 DEBUG(dbgs() << "replaced by: " << *MI); 1358 return true; 1359 } 1360 1361 /// Create a copy of a const pool value. Update CPI to the new index and return 1362 /// the label UID. 1363 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) { 1364 MachineConstantPool *MCP = MF.getConstantPool(); 1365 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1366 1367 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI]; 1368 assert(MCPE.isMachineConstantPoolEntry() && 1369 "Expecting a machine constantpool entry!"); 1370 ARMConstantPoolValue *ACPV = 1371 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal); 1372 1373 unsigned PCLabelId = AFI->createPICLabelUId(); 1374 ARMConstantPoolValue *NewCPV = nullptr; 1375 1376 // FIXME: The below assumes PIC relocation model and that the function 1377 // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and 1378 // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR 1379 // instructions, so that's probably OK, but is PIC always correct when 1380 // we get here? 1381 if (ACPV->isGlobalValue()) 1382 NewCPV = ARMConstantPoolConstant::Create( 1383 cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue, 1384 4, ACPV->getModifier(), ACPV->mustAddCurrentAddress()); 1385 else if (ACPV->isExtSymbol()) 1386 NewCPV = ARMConstantPoolSymbol:: 1387 Create(MF.getFunction()->getContext(), 1388 cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4); 1389 else if (ACPV->isBlockAddress()) 1390 NewCPV = ARMConstantPoolConstant:: 1391 Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId, 1392 ARMCP::CPBlockAddress, 4); 1393 else if (ACPV->isLSDA()) 1394 NewCPV = ARMConstantPoolConstant::Create(MF.getFunction(), PCLabelId, 1395 ARMCP::CPLSDA, 4); 1396 else if (ACPV->isMachineBasicBlock()) 1397 NewCPV = ARMConstantPoolMBB:: 1398 Create(MF.getFunction()->getContext(), 1399 cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4); 1400 else 1401 llvm_unreachable("Unexpected ARM constantpool value type!!"); 1402 CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment()); 1403 return PCLabelId; 1404 } 1405 1406 void ARMBaseInstrInfo:: 1407 reMaterialize(MachineBasicBlock &MBB, 1408 MachineBasicBlock::iterator I, 1409 unsigned DestReg, unsigned SubIdx, 1410 const MachineInstr *Orig, 1411 const TargetRegisterInfo &TRI) const { 1412 unsigned Opcode = Orig->getOpcode(); 1413 switch (Opcode) { 1414 default: { 1415 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); 1416 MI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI); 1417 MBB.insert(I, MI); 1418 break; 1419 } 1420 case ARM::tLDRpci_pic: 1421 case ARM::t2LDRpci_pic: { 1422 MachineFunction &MF = *MBB.getParent(); 1423 unsigned CPI = Orig->getOperand(1).getIndex(); 1424 unsigned PCLabelId = duplicateCPV(MF, CPI); 1425 MachineInstrBuilder MIB = BuildMI(MBB, I, Orig->getDebugLoc(), get(Opcode), 1426 DestReg) 1427 .addConstantPoolIndex(CPI).addImm(PCLabelId); 1428 MIB->setMemRefs(Orig->memoperands_begin(), Orig->memoperands_end()); 1429 break; 1430 } 1431 } 1432 } 1433 1434 MachineInstr * 1435 ARMBaseInstrInfo::duplicate(MachineInstr *Orig, MachineFunction &MF) const { 1436 MachineInstr *MI = TargetInstrInfo::duplicate(Orig, MF); 1437 switch(Orig->getOpcode()) { 1438 case ARM::tLDRpci_pic: 1439 case ARM::t2LDRpci_pic: { 1440 unsigned CPI = Orig->getOperand(1).getIndex(); 1441 unsigned PCLabelId = duplicateCPV(MF, CPI); 1442 Orig->getOperand(1).setIndex(CPI); 1443 Orig->getOperand(2).setImm(PCLabelId); 1444 break; 1445 } 1446 } 1447 return MI; 1448 } 1449 1450 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr *MI0, 1451 const MachineInstr *MI1, 1452 const MachineRegisterInfo *MRI) const { 1453 unsigned Opcode = MI0->getOpcode(); 1454 if (Opcode == ARM::t2LDRpci || 1455 Opcode == ARM::t2LDRpci_pic || 1456 Opcode == ARM::tLDRpci || 1457 Opcode == ARM::tLDRpci_pic || 1458 Opcode == ARM::LDRLIT_ga_pcrel || 1459 Opcode == ARM::LDRLIT_ga_pcrel_ldr || 1460 Opcode == ARM::tLDRLIT_ga_pcrel || 1461 Opcode == ARM::MOV_ga_pcrel || 1462 Opcode == ARM::MOV_ga_pcrel_ldr || 1463 Opcode == ARM::t2MOV_ga_pcrel) { 1464 if (MI1->getOpcode() != Opcode) 1465 return false; 1466 if (MI0->getNumOperands() != MI1->getNumOperands()) 1467 return false; 1468 1469 const MachineOperand &MO0 = MI0->getOperand(1); 1470 const MachineOperand &MO1 = MI1->getOperand(1); 1471 if (MO0.getOffset() != MO1.getOffset()) 1472 return false; 1473 1474 if (Opcode == ARM::LDRLIT_ga_pcrel || 1475 Opcode == ARM::LDRLIT_ga_pcrel_ldr || 1476 Opcode == ARM::tLDRLIT_ga_pcrel || 1477 Opcode == ARM::MOV_ga_pcrel || 1478 Opcode == ARM::MOV_ga_pcrel_ldr || 1479 Opcode == ARM::t2MOV_ga_pcrel) 1480 // Ignore the PC labels. 1481 return MO0.getGlobal() == MO1.getGlobal(); 1482 1483 const MachineFunction *MF = MI0->getParent()->getParent(); 1484 const MachineConstantPool *MCP = MF->getConstantPool(); 1485 int CPI0 = MO0.getIndex(); 1486 int CPI1 = MO1.getIndex(); 1487 const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0]; 1488 const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1]; 1489 bool isARMCP0 = MCPE0.isMachineConstantPoolEntry(); 1490 bool isARMCP1 = MCPE1.isMachineConstantPoolEntry(); 1491 if (isARMCP0 && isARMCP1) { 1492 ARMConstantPoolValue *ACPV0 = 1493 static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal); 1494 ARMConstantPoolValue *ACPV1 = 1495 static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal); 1496 return ACPV0->hasSameValue(ACPV1); 1497 } else if (!isARMCP0 && !isARMCP1) { 1498 return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal; 1499 } 1500 return false; 1501 } else if (Opcode == ARM::PICLDR) { 1502 if (MI1->getOpcode() != Opcode) 1503 return false; 1504 if (MI0->getNumOperands() != MI1->getNumOperands()) 1505 return false; 1506 1507 unsigned Addr0 = MI0->getOperand(1).getReg(); 1508 unsigned Addr1 = MI1->getOperand(1).getReg(); 1509 if (Addr0 != Addr1) { 1510 if (!MRI || 1511 !TargetRegisterInfo::isVirtualRegister(Addr0) || 1512 !TargetRegisterInfo::isVirtualRegister(Addr1)) 1513 return false; 1514 1515 // This assumes SSA form. 1516 MachineInstr *Def0 = MRI->getVRegDef(Addr0); 1517 MachineInstr *Def1 = MRI->getVRegDef(Addr1); 1518 // Check if the loaded value, e.g. a constantpool of a global address, are 1519 // the same. 1520 if (!produceSameValue(Def0, Def1, MRI)) 1521 return false; 1522 } 1523 1524 for (unsigned i = 3, e = MI0->getNumOperands(); i != e; ++i) { 1525 // %vreg12<def> = PICLDR %vreg11, 0, pred:14, pred:%noreg 1526 const MachineOperand &MO0 = MI0->getOperand(i); 1527 const MachineOperand &MO1 = MI1->getOperand(i); 1528 if (!MO0.isIdenticalTo(MO1)) 1529 return false; 1530 } 1531 return true; 1532 } 1533 1534 return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); 1535 } 1536 1537 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to 1538 /// determine if two loads are loading from the same base address. It should 1539 /// only return true if the base pointers are the same and the only differences 1540 /// between the two addresses is the offset. It also returns the offsets by 1541 /// reference. 1542 /// 1543 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched 1544 /// is permanently disabled. 1545 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 1546 int64_t &Offset1, 1547 int64_t &Offset2) const { 1548 // Don't worry about Thumb: just ARM and Thumb2. 1549 if (Subtarget.isThumb1Only()) return false; 1550 1551 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) 1552 return false; 1553 1554 switch (Load1->getMachineOpcode()) { 1555 default: 1556 return false; 1557 case ARM::LDRi12: 1558 case ARM::LDRBi12: 1559 case ARM::LDRD: 1560 case ARM::LDRH: 1561 case ARM::LDRSB: 1562 case ARM::LDRSH: 1563 case ARM::VLDRD: 1564 case ARM::VLDRS: 1565 case ARM::t2LDRi8: 1566 case ARM::t2LDRBi8: 1567 case ARM::t2LDRDi8: 1568 case ARM::t2LDRSHi8: 1569 case ARM::t2LDRi12: 1570 case ARM::t2LDRBi12: 1571 case ARM::t2LDRSHi12: 1572 break; 1573 } 1574 1575 switch (Load2->getMachineOpcode()) { 1576 default: 1577 return false; 1578 case ARM::LDRi12: 1579 case ARM::LDRBi12: 1580 case ARM::LDRD: 1581 case ARM::LDRH: 1582 case ARM::LDRSB: 1583 case ARM::LDRSH: 1584 case ARM::VLDRD: 1585 case ARM::VLDRS: 1586 case ARM::t2LDRi8: 1587 case ARM::t2LDRBi8: 1588 case ARM::t2LDRSHi8: 1589 case ARM::t2LDRi12: 1590 case ARM::t2LDRBi12: 1591 case ARM::t2LDRSHi12: 1592 break; 1593 } 1594 1595 // Check if base addresses and chain operands match. 1596 if (Load1->getOperand(0) != Load2->getOperand(0) || 1597 Load1->getOperand(4) != Load2->getOperand(4)) 1598 return false; 1599 1600 // Index should be Reg0. 1601 if (Load1->getOperand(3) != Load2->getOperand(3)) 1602 return false; 1603 1604 // Determine the offsets. 1605 if (isa<ConstantSDNode>(Load1->getOperand(1)) && 1606 isa<ConstantSDNode>(Load2->getOperand(1))) { 1607 Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue(); 1608 Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue(); 1609 return true; 1610 } 1611 1612 return false; 1613 } 1614 1615 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to 1616 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should 1617 /// be scheduled togther. On some targets if two loads are loading from 1618 /// addresses in the same cache line, it's better if they are scheduled 1619 /// together. This function takes two integers that represent the load offsets 1620 /// from the common base address. It returns true if it decides it's desirable 1621 /// to schedule the two loads together. "NumLoads" is the number of loads that 1622 /// have already been scheduled after Load1. 1623 /// 1624 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched 1625 /// is permanently disabled. 1626 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 1627 int64_t Offset1, int64_t Offset2, 1628 unsigned NumLoads) const { 1629 // Don't worry about Thumb: just ARM and Thumb2. 1630 if (Subtarget.isThumb1Only()) return false; 1631 1632 assert(Offset2 > Offset1); 1633 1634 if ((Offset2 - Offset1) / 8 > 64) 1635 return false; 1636 1637 // Check if the machine opcodes are different. If they are different 1638 // then we consider them to not be of the same base address, 1639 // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12. 1640 // In this case, they are considered to be the same because they are different 1641 // encoding forms of the same basic instruction. 1642 if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) && 1643 !((Load1->getMachineOpcode() == ARM::t2LDRBi8 && 1644 Load2->getMachineOpcode() == ARM::t2LDRBi12) || 1645 (Load1->getMachineOpcode() == ARM::t2LDRBi12 && 1646 Load2->getMachineOpcode() == ARM::t2LDRBi8))) 1647 return false; // FIXME: overly conservative? 1648 1649 // Four loads in a row should be sufficient. 1650 if (NumLoads >= 3) 1651 return false; 1652 1653 return true; 1654 } 1655 1656 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr *MI, 1657 const MachineBasicBlock *MBB, 1658 const MachineFunction &MF) const { 1659 // Debug info is never a scheduling boundary. It's necessary to be explicit 1660 // due to the special treatment of IT instructions below, otherwise a 1661 // dbg_value followed by an IT will result in the IT instruction being 1662 // considered a scheduling hazard, which is wrong. It should be the actual 1663 // instruction preceding the dbg_value instruction(s), just like it is 1664 // when debug info is not present. 1665 if (MI->isDebugValue()) 1666 return false; 1667 1668 // Terminators and labels can't be scheduled around. 1669 if (MI->isTerminator() || MI->isPosition()) 1670 return true; 1671 1672 // Treat the start of the IT block as a scheduling boundary, but schedule 1673 // t2IT along with all instructions following it. 1674 // FIXME: This is a big hammer. But the alternative is to add all potential 1675 // true and anti dependencies to IT block instructions as implicit operands 1676 // to the t2IT instruction. The added compile time and complexity does not 1677 // seem worth it. 1678 MachineBasicBlock::const_iterator I = MI; 1679 // Make sure to skip any dbg_value instructions 1680 while (++I != MBB->end() && I->isDebugValue()) 1681 ; 1682 if (I != MBB->end() && I->getOpcode() == ARM::t2IT) 1683 return true; 1684 1685 // Don't attempt to schedule around any instruction that defines 1686 // a stack-oriented pointer, as it's unlikely to be profitable. This 1687 // saves compile time, because it doesn't require every single 1688 // stack slot reference to depend on the instruction that does the 1689 // modification. 1690 // Calls don't actually change the stack pointer, even if they have imp-defs. 1691 // No ARM calling conventions change the stack pointer. (X86 calling 1692 // conventions sometimes do). 1693 if (!MI->isCall() && MI->definesRegister(ARM::SP)) 1694 return true; 1695 1696 return false; 1697 } 1698 1699 bool ARMBaseInstrInfo:: 1700 isProfitableToIfCvt(MachineBasicBlock &MBB, 1701 unsigned NumCycles, unsigned ExtraPredCycles, 1702 BranchProbability Probability) const { 1703 if (!NumCycles) 1704 return false; 1705 1706 // If we are optimizing for size, see if the branch in the predecessor can be 1707 // lowered to cbn?z by the constant island lowering pass, and return false if 1708 // so. This results in a shorter instruction sequence. 1709 if (MBB.getParent()->getFunction()->optForSize()) { 1710 MachineBasicBlock *Pred = *MBB.pred_begin(); 1711 if (!Pred->empty()) { 1712 MachineInstr *LastMI = &*Pred->rbegin(); 1713 if (LastMI->getOpcode() == ARM::t2Bcc) { 1714 MachineBasicBlock::iterator CmpMI = LastMI; 1715 if (CmpMI != Pred->begin()) { 1716 --CmpMI; 1717 if (CmpMI->getOpcode() == ARM::tCMPi8 || 1718 CmpMI->getOpcode() == ARM::t2CMPri) { 1719 unsigned Reg = CmpMI->getOperand(0).getReg(); 1720 unsigned PredReg = 0; 1721 ARMCC::CondCodes P = getInstrPredicate(CmpMI, PredReg); 1722 if (P == ARMCC::AL && CmpMI->getOperand(1).getImm() == 0 && 1723 isARMLowRegister(Reg)) 1724 return false; 1725 } 1726 } 1727 } 1728 } 1729 } 1730 1731 // Attempt to estimate the relative costs of predication versus branching. 1732 // Here we scale up each component of UnpredCost to avoid precision issue when 1733 // scaling NumCycles by Probability. 1734 const unsigned ScalingUpFactor = 1024; 1735 unsigned UnpredCost = Probability.scale(NumCycles * ScalingUpFactor); 1736 UnpredCost += ScalingUpFactor; // The branch itself 1737 UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10; 1738 1739 return (NumCycles + ExtraPredCycles) * ScalingUpFactor <= UnpredCost; 1740 } 1741 1742 bool ARMBaseInstrInfo:: 1743 isProfitableToIfCvt(MachineBasicBlock &TMBB, 1744 unsigned TCycles, unsigned TExtra, 1745 MachineBasicBlock &FMBB, 1746 unsigned FCycles, unsigned FExtra, 1747 BranchProbability Probability) const { 1748 if (!TCycles || !FCycles) 1749 return false; 1750 1751 // Attempt to estimate the relative costs of predication versus branching. 1752 // Here we scale up each component of UnpredCost to avoid precision issue when 1753 // scaling TCycles/FCycles by Probability. 1754 const unsigned ScalingUpFactor = 1024; 1755 unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor); 1756 unsigned FUnpredCost = 1757 Probability.getCompl().scale(FCycles * ScalingUpFactor); 1758 unsigned UnpredCost = TUnpredCost + FUnpredCost; 1759 UnpredCost += 1 * ScalingUpFactor; // The branch itself 1760 UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10; 1761 1762 return (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor <= UnpredCost; 1763 } 1764 1765 bool 1766 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB, 1767 MachineBasicBlock &FMBB) const { 1768 // Reduce false anti-dependencies to let Swift's out-of-order execution 1769 // engine do its thing. 1770 return Subtarget.isSwift(); 1771 } 1772 1773 /// getInstrPredicate - If instruction is predicated, returns its predicate 1774 /// condition, otherwise returns AL. It also returns the condition code 1775 /// register by reference. 1776 ARMCC::CondCodes 1777 llvm::getInstrPredicate(const MachineInstr *MI, unsigned &PredReg) { 1778 int PIdx = MI->findFirstPredOperandIdx(); 1779 if (PIdx == -1) { 1780 PredReg = 0; 1781 return ARMCC::AL; 1782 } 1783 1784 PredReg = MI->getOperand(PIdx+1).getReg(); 1785 return (ARMCC::CondCodes)MI->getOperand(PIdx).getImm(); 1786 } 1787 1788 1789 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) { 1790 if (Opc == ARM::B) 1791 return ARM::Bcc; 1792 if (Opc == ARM::tB) 1793 return ARM::tBcc; 1794 if (Opc == ARM::t2B) 1795 return ARM::t2Bcc; 1796 1797 llvm_unreachable("Unknown unconditional branch opcode!"); 1798 } 1799 1800 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr *MI, 1801 bool NewMI, 1802 unsigned OpIdx1, 1803 unsigned OpIdx2) const { 1804 switch (MI->getOpcode()) { 1805 case ARM::MOVCCr: 1806 case ARM::t2MOVCCr: { 1807 // MOVCC can be commuted by inverting the condition. 1808 unsigned PredReg = 0; 1809 ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg); 1810 // MOVCC AL can't be inverted. Shouldn't happen. 1811 if (CC == ARMCC::AL || PredReg != ARM::CPSR) 1812 return nullptr; 1813 MI = TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 1814 if (!MI) 1815 return nullptr; 1816 // After swapping the MOVCC operands, also invert the condition. 1817 MI->getOperand(MI->findFirstPredOperandIdx()) 1818 .setImm(ARMCC::getOppositeCondition(CC)); 1819 return MI; 1820 } 1821 } 1822 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 1823 } 1824 1825 /// Identify instructions that can be folded into a MOVCC instruction, and 1826 /// return the defining instruction. 1827 static MachineInstr *canFoldIntoMOVCC(unsigned Reg, 1828 const MachineRegisterInfo &MRI, 1829 const TargetInstrInfo *TII) { 1830 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1831 return nullptr; 1832 if (!MRI.hasOneNonDBGUse(Reg)) 1833 return nullptr; 1834 MachineInstr *MI = MRI.getVRegDef(Reg); 1835 if (!MI) 1836 return nullptr; 1837 // MI is folded into the MOVCC by predicating it. 1838 if (!MI->isPredicable()) 1839 return nullptr; 1840 // Check if MI has any non-dead defs or physreg uses. This also detects 1841 // predicated instructions which will be reading CPSR. 1842 for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) { 1843 const MachineOperand &MO = MI->getOperand(i); 1844 // Reject frame index operands, PEI can't handle the predicated pseudos. 1845 if (MO.isFI() || MO.isCPI() || MO.isJTI()) 1846 return nullptr; 1847 if (!MO.isReg()) 1848 continue; 1849 // MI can't have any tied operands, that would conflict with predication. 1850 if (MO.isTied()) 1851 return nullptr; 1852 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 1853 return nullptr; 1854 if (MO.isDef() && !MO.isDead()) 1855 return nullptr; 1856 } 1857 bool DontMoveAcrossStores = true; 1858 if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores)) 1859 return nullptr; 1860 return MI; 1861 } 1862 1863 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr *MI, 1864 SmallVectorImpl<MachineOperand> &Cond, 1865 unsigned &TrueOp, unsigned &FalseOp, 1866 bool &Optimizable) const { 1867 assert((MI->getOpcode() == ARM::MOVCCr || MI->getOpcode() == ARM::t2MOVCCr) && 1868 "Unknown select instruction"); 1869 // MOVCC operands: 1870 // 0: Def. 1871 // 1: True use. 1872 // 2: False use. 1873 // 3: Condition code. 1874 // 4: CPSR use. 1875 TrueOp = 1; 1876 FalseOp = 2; 1877 Cond.push_back(MI->getOperand(3)); 1878 Cond.push_back(MI->getOperand(4)); 1879 // We can always fold a def. 1880 Optimizable = true; 1881 return false; 1882 } 1883 1884 MachineInstr * 1885 ARMBaseInstrInfo::optimizeSelect(MachineInstr *MI, 1886 SmallPtrSetImpl<MachineInstr *> &SeenMIs, 1887 bool PreferFalse) const { 1888 assert((MI->getOpcode() == ARM::MOVCCr || MI->getOpcode() == ARM::t2MOVCCr) && 1889 "Unknown select instruction"); 1890 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 1891 MachineInstr *DefMI = canFoldIntoMOVCC(MI->getOperand(2).getReg(), MRI, this); 1892 bool Invert = !DefMI; 1893 if (!DefMI) 1894 DefMI = canFoldIntoMOVCC(MI->getOperand(1).getReg(), MRI, this); 1895 if (!DefMI) 1896 return nullptr; 1897 1898 // Find new register class to use. 1899 MachineOperand FalseReg = MI->getOperand(Invert ? 2 : 1); 1900 unsigned DestReg = MI->getOperand(0).getReg(); 1901 const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg()); 1902 if (!MRI.constrainRegClass(DestReg, PreviousClass)) 1903 return nullptr; 1904 1905 // Create a new predicated version of DefMI. 1906 // Rfalse is the first use. 1907 MachineInstrBuilder NewMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1908 DefMI->getDesc(), DestReg); 1909 1910 // Copy all the DefMI operands, excluding its (null) predicate. 1911 const MCInstrDesc &DefDesc = DefMI->getDesc(); 1912 for (unsigned i = 1, e = DefDesc.getNumOperands(); 1913 i != e && !DefDesc.OpInfo[i].isPredicate(); ++i) 1914 NewMI.addOperand(DefMI->getOperand(i)); 1915 1916 unsigned CondCode = MI->getOperand(3).getImm(); 1917 if (Invert) 1918 NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode))); 1919 else 1920 NewMI.addImm(CondCode); 1921 NewMI.addOperand(MI->getOperand(4)); 1922 1923 // DefMI is not the -S version that sets CPSR, so add an optional %noreg. 1924 if (NewMI->hasOptionalDef()) 1925 AddDefaultCC(NewMI); 1926 1927 // The output register value when the predicate is false is an implicit 1928 // register operand tied to the first def. 1929 // The tie makes the register allocator ensure the FalseReg is allocated the 1930 // same register as operand 0. 1931 FalseReg.setImplicit(); 1932 NewMI.addOperand(FalseReg); 1933 NewMI->tieOperands(0, NewMI->getNumOperands() - 1); 1934 1935 // Update SeenMIs set: register newly created MI and erase removed DefMI. 1936 SeenMIs.insert(NewMI); 1937 SeenMIs.erase(DefMI); 1938 1939 // If MI is inside a loop, and DefMI is outside the loop, then kill flags on 1940 // DefMI would be invalid when tranferred inside the loop. Checking for a 1941 // loop is expensive, but at least remove kill flags if they are in different 1942 // BBs. 1943 if (DefMI->getParent() != MI->getParent()) 1944 NewMI->clearKillInfo(); 1945 1946 // The caller will erase MI, but not DefMI. 1947 DefMI->eraseFromParent(); 1948 return NewMI; 1949 } 1950 1951 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the 1952 /// instruction is encoded with an 'S' bit is determined by the optional CPSR 1953 /// def operand. 1954 /// 1955 /// This will go away once we can teach tblgen how to set the optional CPSR def 1956 /// operand itself. 1957 struct AddSubFlagsOpcodePair { 1958 uint16_t PseudoOpc; 1959 uint16_t MachineOpc; 1960 }; 1961 1962 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = { 1963 {ARM::ADDSri, ARM::ADDri}, 1964 {ARM::ADDSrr, ARM::ADDrr}, 1965 {ARM::ADDSrsi, ARM::ADDrsi}, 1966 {ARM::ADDSrsr, ARM::ADDrsr}, 1967 1968 {ARM::SUBSri, ARM::SUBri}, 1969 {ARM::SUBSrr, ARM::SUBrr}, 1970 {ARM::SUBSrsi, ARM::SUBrsi}, 1971 {ARM::SUBSrsr, ARM::SUBrsr}, 1972 1973 {ARM::RSBSri, ARM::RSBri}, 1974 {ARM::RSBSrsi, ARM::RSBrsi}, 1975 {ARM::RSBSrsr, ARM::RSBrsr}, 1976 1977 {ARM::t2ADDSri, ARM::t2ADDri}, 1978 {ARM::t2ADDSrr, ARM::t2ADDrr}, 1979 {ARM::t2ADDSrs, ARM::t2ADDrs}, 1980 1981 {ARM::t2SUBSri, ARM::t2SUBri}, 1982 {ARM::t2SUBSrr, ARM::t2SUBrr}, 1983 {ARM::t2SUBSrs, ARM::t2SUBrs}, 1984 1985 {ARM::t2RSBSri, ARM::t2RSBri}, 1986 {ARM::t2RSBSrs, ARM::t2RSBrs}, 1987 }; 1988 1989 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) { 1990 for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i) 1991 if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc) 1992 return AddSubFlagsOpcodeMap[i].MachineOpc; 1993 return 0; 1994 } 1995 1996 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB, 1997 MachineBasicBlock::iterator &MBBI, DebugLoc dl, 1998 unsigned DestReg, unsigned BaseReg, int NumBytes, 1999 ARMCC::CondCodes Pred, unsigned PredReg, 2000 const ARMBaseInstrInfo &TII, unsigned MIFlags) { 2001 if (NumBytes == 0 && DestReg != BaseReg) { 2002 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg) 2003 .addReg(BaseReg, RegState::Kill) 2004 .addImm((unsigned)Pred).addReg(PredReg).addReg(0) 2005 .setMIFlags(MIFlags); 2006 return; 2007 } 2008 2009 bool isSub = NumBytes < 0; 2010 if (isSub) NumBytes = -NumBytes; 2011 2012 while (NumBytes) { 2013 unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes); 2014 unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt); 2015 assert(ThisVal && "Didn't extract field correctly"); 2016 2017 // We will handle these bits from offset, clear them. 2018 NumBytes &= ~ThisVal; 2019 2020 assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?"); 2021 2022 // Build the new ADD / SUB. 2023 unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri; 2024 BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg) 2025 .addReg(BaseReg, RegState::Kill).addImm(ThisVal) 2026 .addImm((unsigned)Pred).addReg(PredReg).addReg(0) 2027 .setMIFlags(MIFlags); 2028 BaseReg = DestReg; 2029 } 2030 } 2031 2032 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget, 2033 MachineFunction &MF, MachineInstr *MI, 2034 unsigned NumBytes) { 2035 // This optimisation potentially adds lots of load and store 2036 // micro-operations, it's only really a great benefit to code-size. 2037 if (!MF.getFunction()->optForMinSize()) 2038 return false; 2039 2040 // If only one register is pushed/popped, LLVM can use an LDR/STR 2041 // instead. We can't modify those so make sure we're dealing with an 2042 // instruction we understand. 2043 bool IsPop = isPopOpcode(MI->getOpcode()); 2044 bool IsPush = isPushOpcode(MI->getOpcode()); 2045 if (!IsPush && !IsPop) 2046 return false; 2047 2048 bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD || 2049 MI->getOpcode() == ARM::VLDMDIA_UPD; 2050 bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH || 2051 MI->getOpcode() == ARM::tPOP || 2052 MI->getOpcode() == ARM::tPOP_RET; 2053 2054 assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP && 2055 MI->getOperand(1).getReg() == ARM::SP)) && 2056 "trying to fold sp update into non-sp-updating push/pop"); 2057 2058 // The VFP push & pop act on D-registers, so we can only fold an adjustment 2059 // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try 2060 // if this is violated. 2061 if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0) 2062 return false; 2063 2064 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 2065 // pred) so the list starts at 4. Thumb1 starts after the predicate. 2066 int RegListIdx = IsT1PushPop ? 2 : 4; 2067 2068 // Calculate the space we'll need in terms of registers. 2069 unsigned FirstReg = MI->getOperand(RegListIdx).getReg(); 2070 unsigned RD0Reg, RegsNeeded; 2071 if (IsVFPPushPop) { 2072 RD0Reg = ARM::D0; 2073 RegsNeeded = NumBytes / 8; 2074 } else { 2075 RD0Reg = ARM::R0; 2076 RegsNeeded = NumBytes / 4; 2077 } 2078 2079 // We're going to have to strip all list operands off before 2080 // re-adding them since the order matters, so save the existing ones 2081 // for later. 2082 SmallVector<MachineOperand, 4> RegList; 2083 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) 2084 RegList.push_back(MI->getOperand(i)); 2085 2086 const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo(); 2087 const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF); 2088 2089 // Now try to find enough space in the reglist to allocate NumBytes. 2090 for (unsigned CurReg = FirstReg - 1; CurReg >= RD0Reg && RegsNeeded; 2091 --CurReg) { 2092 if (!IsPop) { 2093 // Pushing any register is completely harmless, mark the 2094 // register involved as undef since we don't care about it in 2095 // the slightest. 2096 RegList.push_back(MachineOperand::CreateReg(CurReg, false, false, 2097 false, false, true)); 2098 --RegsNeeded; 2099 continue; 2100 } 2101 2102 // However, we can only pop an extra register if it's not live. For 2103 // registers live within the function we might clobber a return value 2104 // register; the other way a register can be live here is if it's 2105 // callee-saved. 2106 if (isCalleeSavedRegister(CurReg, CSRegs) || 2107 MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) != 2108 MachineBasicBlock::LQR_Dead) { 2109 // VFP pops don't allow holes in the register list, so any skip is fatal 2110 // for our transformation. GPR pops do, so we should just keep looking. 2111 if (IsVFPPushPop) 2112 return false; 2113 else 2114 continue; 2115 } 2116 2117 // Mark the unimportant registers as <def,dead> in the POP. 2118 RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false, 2119 true)); 2120 --RegsNeeded; 2121 } 2122 2123 if (RegsNeeded > 0) 2124 return false; 2125 2126 // Finally we know we can profitably perform the optimisation so go 2127 // ahead: strip all existing registers off and add them back again 2128 // in the right order. 2129 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) 2130 MI->RemoveOperand(i); 2131 2132 // Add the complete list back in. 2133 MachineInstrBuilder MIB(MF, &*MI); 2134 for (int i = RegList.size() - 1; i >= 0; --i) 2135 MIB.addOperand(RegList[i]); 2136 2137 return true; 2138 } 2139 2140 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx, 2141 unsigned FrameReg, int &Offset, 2142 const ARMBaseInstrInfo &TII) { 2143 unsigned Opcode = MI.getOpcode(); 2144 const MCInstrDesc &Desc = MI.getDesc(); 2145 unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); 2146 bool isSub = false; 2147 2148 // Memory operands in inline assembly always use AddrMode2. 2149 if (Opcode == ARM::INLINEASM) 2150 AddrMode = ARMII::AddrMode2; 2151 2152 if (Opcode == ARM::ADDri) { 2153 Offset += MI.getOperand(FrameRegIdx+1).getImm(); 2154 if (Offset == 0) { 2155 // Turn it into a move. 2156 MI.setDesc(TII.get(ARM::MOVr)); 2157 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2158 MI.RemoveOperand(FrameRegIdx+1); 2159 Offset = 0; 2160 return true; 2161 } else if (Offset < 0) { 2162 Offset = -Offset; 2163 isSub = true; 2164 MI.setDesc(TII.get(ARM::SUBri)); 2165 } 2166 2167 // Common case: small offset, fits into instruction. 2168 if (ARM_AM::getSOImmVal(Offset) != -1) { 2169 // Replace the FrameIndex with sp / fp 2170 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2171 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset); 2172 Offset = 0; 2173 return true; 2174 } 2175 2176 // Otherwise, pull as much of the immedidate into this ADDri/SUBri 2177 // as possible. 2178 unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset); 2179 unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt); 2180 2181 // We will handle these bits from offset, clear them. 2182 Offset &= ~ThisImmVal; 2183 2184 // Get the properly encoded SOImmVal field. 2185 assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 && 2186 "Bit extraction didn't work?"); 2187 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal); 2188 } else { 2189 unsigned ImmIdx = 0; 2190 int InstrOffs = 0; 2191 unsigned NumBits = 0; 2192 unsigned Scale = 1; 2193 switch (AddrMode) { 2194 case ARMII::AddrMode_i12: { 2195 ImmIdx = FrameRegIdx + 1; 2196 InstrOffs = MI.getOperand(ImmIdx).getImm(); 2197 NumBits = 12; 2198 break; 2199 } 2200 case ARMII::AddrMode2: { 2201 ImmIdx = FrameRegIdx+2; 2202 InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm()); 2203 if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2204 InstrOffs *= -1; 2205 NumBits = 12; 2206 break; 2207 } 2208 case ARMII::AddrMode3: { 2209 ImmIdx = FrameRegIdx+2; 2210 InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm()); 2211 if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2212 InstrOffs *= -1; 2213 NumBits = 8; 2214 break; 2215 } 2216 case ARMII::AddrMode4: 2217 case ARMII::AddrMode6: 2218 // Can't fold any offset even if it's zero. 2219 return false; 2220 case ARMII::AddrMode5: { 2221 ImmIdx = FrameRegIdx+1; 2222 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); 2223 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2224 InstrOffs *= -1; 2225 NumBits = 8; 2226 Scale = 4; 2227 break; 2228 } 2229 default: 2230 llvm_unreachable("Unsupported addressing mode!"); 2231 } 2232 2233 Offset += InstrOffs * Scale; 2234 assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!"); 2235 if (Offset < 0) { 2236 Offset = -Offset; 2237 isSub = true; 2238 } 2239 2240 // Attempt to fold address comp. if opcode has offset bits 2241 if (NumBits > 0) { 2242 // Common case: small offset, fits into instruction. 2243 MachineOperand &ImmOp = MI.getOperand(ImmIdx); 2244 int ImmedOffset = Offset / Scale; 2245 unsigned Mask = (1 << NumBits) - 1; 2246 if ((unsigned)Offset <= Mask * Scale) { 2247 // Replace the FrameIndex with sp 2248 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2249 // FIXME: When addrmode2 goes away, this will simplify (like the 2250 // T2 version), as the LDR.i12 versions don't need the encoding 2251 // tricks for the offset value. 2252 if (isSub) { 2253 if (AddrMode == ARMII::AddrMode_i12) 2254 ImmedOffset = -ImmedOffset; 2255 else 2256 ImmedOffset |= 1 << NumBits; 2257 } 2258 ImmOp.ChangeToImmediate(ImmedOffset); 2259 Offset = 0; 2260 return true; 2261 } 2262 2263 // Otherwise, it didn't fit. Pull in what we can to simplify the immed. 2264 ImmedOffset = ImmedOffset & Mask; 2265 if (isSub) { 2266 if (AddrMode == ARMII::AddrMode_i12) 2267 ImmedOffset = -ImmedOffset; 2268 else 2269 ImmedOffset |= 1 << NumBits; 2270 } 2271 ImmOp.ChangeToImmediate(ImmedOffset); 2272 Offset &= ~(Mask*Scale); 2273 } 2274 } 2275 2276 Offset = (isSub) ? -Offset : Offset; 2277 return Offset == 0; 2278 } 2279 2280 /// analyzeCompare - For a comparison instruction, return the source registers 2281 /// in SrcReg and SrcReg2 if having two register operands, and the value it 2282 /// compares against in CmpValue. Return true if the comparison instruction 2283 /// can be analyzed. 2284 bool ARMBaseInstrInfo:: 2285 analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2, 2286 int &CmpMask, int &CmpValue) const { 2287 switch (MI->getOpcode()) { 2288 default: break; 2289 case ARM::CMPri: 2290 case ARM::t2CMPri: 2291 SrcReg = MI->getOperand(0).getReg(); 2292 SrcReg2 = 0; 2293 CmpMask = ~0; 2294 CmpValue = MI->getOperand(1).getImm(); 2295 return true; 2296 case ARM::CMPrr: 2297 case ARM::t2CMPrr: 2298 SrcReg = MI->getOperand(0).getReg(); 2299 SrcReg2 = MI->getOperand(1).getReg(); 2300 CmpMask = ~0; 2301 CmpValue = 0; 2302 return true; 2303 case ARM::TSTri: 2304 case ARM::t2TSTri: 2305 SrcReg = MI->getOperand(0).getReg(); 2306 SrcReg2 = 0; 2307 CmpMask = MI->getOperand(1).getImm(); 2308 CmpValue = 0; 2309 return true; 2310 } 2311 2312 return false; 2313 } 2314 2315 /// isSuitableForMask - Identify a suitable 'and' instruction that 2316 /// operates on the given source register and applies the same mask 2317 /// as a 'tst' instruction. Provide a limited look-through for copies. 2318 /// When successful, MI will hold the found instruction. 2319 static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg, 2320 int CmpMask, bool CommonUse) { 2321 switch (MI->getOpcode()) { 2322 case ARM::ANDri: 2323 case ARM::t2ANDri: 2324 if (CmpMask != MI->getOperand(2).getImm()) 2325 return false; 2326 if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg()) 2327 return true; 2328 break; 2329 } 2330 2331 return false; 2332 } 2333 2334 /// getSwappedCondition - assume the flags are set by MI(a,b), return 2335 /// the condition code if we modify the instructions such that flags are 2336 /// set by MI(b,a). 2337 inline static ARMCC::CondCodes getSwappedCondition(ARMCC::CondCodes CC) { 2338 switch (CC) { 2339 default: return ARMCC::AL; 2340 case ARMCC::EQ: return ARMCC::EQ; 2341 case ARMCC::NE: return ARMCC::NE; 2342 case ARMCC::HS: return ARMCC::LS; 2343 case ARMCC::LO: return ARMCC::HI; 2344 case ARMCC::HI: return ARMCC::LO; 2345 case ARMCC::LS: return ARMCC::HS; 2346 case ARMCC::GE: return ARMCC::LE; 2347 case ARMCC::LT: return ARMCC::GT; 2348 case ARMCC::GT: return ARMCC::LT; 2349 case ARMCC::LE: return ARMCC::GE; 2350 } 2351 } 2352 2353 /// isRedundantFlagInstr - check whether the first instruction, whose only 2354 /// purpose is to update flags, can be made redundant. 2355 /// CMPrr can be made redundant by SUBrr if the operands are the same. 2356 /// CMPri can be made redundant by SUBri if the operands are the same. 2357 /// This function can be extended later on. 2358 inline static bool isRedundantFlagInstr(MachineInstr *CmpI, unsigned SrcReg, 2359 unsigned SrcReg2, int ImmValue, 2360 MachineInstr *OI) { 2361 if ((CmpI->getOpcode() == ARM::CMPrr || 2362 CmpI->getOpcode() == ARM::t2CMPrr) && 2363 (OI->getOpcode() == ARM::SUBrr || 2364 OI->getOpcode() == ARM::t2SUBrr) && 2365 ((OI->getOperand(1).getReg() == SrcReg && 2366 OI->getOperand(2).getReg() == SrcReg2) || 2367 (OI->getOperand(1).getReg() == SrcReg2 && 2368 OI->getOperand(2).getReg() == SrcReg))) 2369 return true; 2370 2371 if ((CmpI->getOpcode() == ARM::CMPri || 2372 CmpI->getOpcode() == ARM::t2CMPri) && 2373 (OI->getOpcode() == ARM::SUBri || 2374 OI->getOpcode() == ARM::t2SUBri) && 2375 OI->getOperand(1).getReg() == SrcReg && 2376 OI->getOperand(2).getImm() == ImmValue) 2377 return true; 2378 return false; 2379 } 2380 2381 /// optimizeCompareInstr - Convert the instruction supplying the argument to the 2382 /// comparison into one that sets the zero bit in the flags register; 2383 /// Remove a redundant Compare instruction if an earlier instruction can set the 2384 /// flags in the same way as Compare. 2385 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two 2386 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the 2387 /// condition code of instructions which use the flags. 2388 bool ARMBaseInstrInfo:: 2389 optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2, 2390 int CmpMask, int CmpValue, 2391 const MachineRegisterInfo *MRI) const { 2392 // Get the unique definition of SrcReg. 2393 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 2394 if (!MI) return false; 2395 2396 // Masked compares sometimes use the same register as the corresponding 'and'. 2397 if (CmpMask != ~0) { 2398 if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(MI)) { 2399 MI = nullptr; 2400 for (MachineRegisterInfo::use_instr_iterator 2401 UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end(); 2402 UI != UE; ++UI) { 2403 if (UI->getParent() != CmpInstr->getParent()) continue; 2404 MachineInstr *PotentialAND = &*UI; 2405 if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) || 2406 isPredicated(PotentialAND)) 2407 continue; 2408 MI = PotentialAND; 2409 break; 2410 } 2411 if (!MI) return false; 2412 } 2413 } 2414 2415 // Get ready to iterate backward from CmpInstr. 2416 MachineBasicBlock::iterator I = CmpInstr, E = MI, 2417 B = CmpInstr->getParent()->begin(); 2418 2419 // Early exit if CmpInstr is at the beginning of the BB. 2420 if (I == B) return false; 2421 2422 // There are two possible candidates which can be changed to set CPSR: 2423 // One is MI, the other is a SUB instruction. 2424 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 2425 // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue). 2426 MachineInstr *Sub = nullptr; 2427 if (SrcReg2 != 0) 2428 // MI is not a candidate for CMPrr. 2429 MI = nullptr; 2430 else if (MI->getParent() != CmpInstr->getParent() || CmpValue != 0) { 2431 // Conservatively refuse to convert an instruction which isn't in the same 2432 // BB as the comparison. 2433 // For CMPri w/ CmpValue != 0, a Sub may still be a candidate. 2434 // Thus we cannot return here. 2435 if (CmpInstr->getOpcode() == ARM::CMPri || 2436 CmpInstr->getOpcode() == ARM::t2CMPri) 2437 MI = nullptr; 2438 else 2439 return false; 2440 } 2441 2442 // Check that CPSR isn't set between the comparison instruction and the one we 2443 // want to change. At the same time, search for Sub. 2444 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2445 --I; 2446 for (; I != E; --I) { 2447 const MachineInstr &Instr = *I; 2448 2449 if (Instr.modifiesRegister(ARM::CPSR, TRI) || 2450 Instr.readsRegister(ARM::CPSR, TRI)) 2451 // This instruction modifies or uses CPSR after the one we want to 2452 // change. We can't do this transformation. 2453 return false; 2454 2455 // Check whether CmpInstr can be made redundant by the current instruction. 2456 if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, &*I)) { 2457 Sub = &*I; 2458 break; 2459 } 2460 2461 if (I == B) 2462 // The 'and' is below the comparison instruction. 2463 return false; 2464 } 2465 2466 // Return false if no candidates exist. 2467 if (!MI && !Sub) 2468 return false; 2469 2470 // The single candidate is called MI. 2471 if (!MI) MI = Sub; 2472 2473 // We can't use a predicated instruction - it doesn't always write the flags. 2474 if (isPredicated(MI)) 2475 return false; 2476 2477 switch (MI->getOpcode()) { 2478 default: break; 2479 case ARM::RSBrr: 2480 case ARM::RSBri: 2481 case ARM::RSCrr: 2482 case ARM::RSCri: 2483 case ARM::ADDrr: 2484 case ARM::ADDri: 2485 case ARM::ADCrr: 2486 case ARM::ADCri: 2487 case ARM::SUBrr: 2488 case ARM::SUBri: 2489 case ARM::SBCrr: 2490 case ARM::SBCri: 2491 case ARM::t2RSBri: 2492 case ARM::t2ADDrr: 2493 case ARM::t2ADDri: 2494 case ARM::t2ADCrr: 2495 case ARM::t2ADCri: 2496 case ARM::t2SUBrr: 2497 case ARM::t2SUBri: 2498 case ARM::t2SBCrr: 2499 case ARM::t2SBCri: 2500 case ARM::ANDrr: 2501 case ARM::ANDri: 2502 case ARM::t2ANDrr: 2503 case ARM::t2ANDri: 2504 case ARM::ORRrr: 2505 case ARM::ORRri: 2506 case ARM::t2ORRrr: 2507 case ARM::t2ORRri: 2508 case ARM::EORrr: 2509 case ARM::EORri: 2510 case ARM::t2EORrr: 2511 case ARM::t2EORri: { 2512 // Scan forward for the use of CPSR 2513 // When checking against MI: if it's a conditional code that requires 2514 // checking of the V bit or C bit, then this is not safe to do. 2515 // It is safe to remove CmpInstr if CPSR is redefined or killed. 2516 // If we are done with the basic block, we need to check whether CPSR is 2517 // live-out. 2518 SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4> 2519 OperandsToUpdate; 2520 bool isSafe = false; 2521 I = CmpInstr; 2522 E = CmpInstr->getParent()->end(); 2523 while (!isSafe && ++I != E) { 2524 const MachineInstr &Instr = *I; 2525 for (unsigned IO = 0, EO = Instr.getNumOperands(); 2526 !isSafe && IO != EO; ++IO) { 2527 const MachineOperand &MO = Instr.getOperand(IO); 2528 if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) { 2529 isSafe = true; 2530 break; 2531 } 2532 if (!MO.isReg() || MO.getReg() != ARM::CPSR) 2533 continue; 2534 if (MO.isDef()) { 2535 isSafe = true; 2536 break; 2537 } 2538 // Condition code is after the operand before CPSR except for VSELs. 2539 ARMCC::CondCodes CC; 2540 bool IsInstrVSel = true; 2541 switch (Instr.getOpcode()) { 2542 default: 2543 IsInstrVSel = false; 2544 CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm(); 2545 break; 2546 case ARM::VSELEQD: 2547 case ARM::VSELEQS: 2548 CC = ARMCC::EQ; 2549 break; 2550 case ARM::VSELGTD: 2551 case ARM::VSELGTS: 2552 CC = ARMCC::GT; 2553 break; 2554 case ARM::VSELGED: 2555 case ARM::VSELGES: 2556 CC = ARMCC::GE; 2557 break; 2558 case ARM::VSELVSS: 2559 case ARM::VSELVSD: 2560 CC = ARMCC::VS; 2561 break; 2562 } 2563 2564 if (Sub) { 2565 ARMCC::CondCodes NewCC = getSwappedCondition(CC); 2566 if (NewCC == ARMCC::AL) 2567 return false; 2568 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based 2569 // on CMP needs to be updated to be based on SUB. 2570 // Push the condition code operands to OperandsToUpdate. 2571 // If it is safe to remove CmpInstr, the condition code of these 2572 // operands will be modified. 2573 if (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 2574 Sub->getOperand(2).getReg() == SrcReg) { 2575 // VSel doesn't support condition code update. 2576 if (IsInstrVSel) 2577 return false; 2578 OperandsToUpdate.push_back( 2579 std::make_pair(&((*I).getOperand(IO - 1)), NewCC)); 2580 } 2581 } else { 2582 // No Sub, so this is x = <op> y, z; cmp x, 0. 2583 switch (CC) { 2584 case ARMCC::EQ: // Z 2585 case ARMCC::NE: // Z 2586 case ARMCC::MI: // N 2587 case ARMCC::PL: // N 2588 case ARMCC::AL: // none 2589 // CPSR can be used multiple times, we should continue. 2590 break; 2591 case ARMCC::HS: // C 2592 case ARMCC::LO: // C 2593 case ARMCC::VS: // V 2594 case ARMCC::VC: // V 2595 case ARMCC::HI: // C Z 2596 case ARMCC::LS: // C Z 2597 case ARMCC::GE: // N V 2598 case ARMCC::LT: // N V 2599 case ARMCC::GT: // Z N V 2600 case ARMCC::LE: // Z N V 2601 // The instruction uses the V bit or C bit which is not safe. 2602 return false; 2603 } 2604 } 2605 } 2606 } 2607 2608 // If CPSR is not killed nor re-defined, we should check whether it is 2609 // live-out. If it is live-out, do not optimize. 2610 if (!isSafe) { 2611 MachineBasicBlock *MBB = CmpInstr->getParent(); 2612 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), 2613 SE = MBB->succ_end(); SI != SE; ++SI) 2614 if ((*SI)->isLiveIn(ARM::CPSR)) 2615 return false; 2616 } 2617 2618 // Toggle the optional operand to CPSR. 2619 MI->getOperand(5).setReg(ARM::CPSR); 2620 MI->getOperand(5).setIsDef(true); 2621 assert(!isPredicated(MI) && "Can't use flags from predicated instruction"); 2622 CmpInstr->eraseFromParent(); 2623 2624 // Modify the condition code of operands in OperandsToUpdate. 2625 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 2626 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 2627 for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++) 2628 OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second); 2629 return true; 2630 } 2631 } 2632 2633 return false; 2634 } 2635 2636 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr *UseMI, 2637 MachineInstr *DefMI, unsigned Reg, 2638 MachineRegisterInfo *MRI) const { 2639 // Fold large immediates into add, sub, or, xor. 2640 unsigned DefOpc = DefMI->getOpcode(); 2641 if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm) 2642 return false; 2643 if (!DefMI->getOperand(1).isImm()) 2644 // Could be t2MOVi32imm <ga:xx> 2645 return false; 2646 2647 if (!MRI->hasOneNonDBGUse(Reg)) 2648 return false; 2649 2650 const MCInstrDesc &DefMCID = DefMI->getDesc(); 2651 if (DefMCID.hasOptionalDef()) { 2652 unsigned NumOps = DefMCID.getNumOperands(); 2653 const MachineOperand &MO = DefMI->getOperand(NumOps-1); 2654 if (MO.getReg() == ARM::CPSR && !MO.isDead()) 2655 // If DefMI defines CPSR and it is not dead, it's obviously not safe 2656 // to delete DefMI. 2657 return false; 2658 } 2659 2660 const MCInstrDesc &UseMCID = UseMI->getDesc(); 2661 if (UseMCID.hasOptionalDef()) { 2662 unsigned NumOps = UseMCID.getNumOperands(); 2663 if (UseMI->getOperand(NumOps-1).getReg() == ARM::CPSR) 2664 // If the instruction sets the flag, do not attempt this optimization 2665 // since it may change the semantics of the code. 2666 return false; 2667 } 2668 2669 unsigned UseOpc = UseMI->getOpcode(); 2670 unsigned NewUseOpc = 0; 2671 uint32_t ImmVal = (uint32_t)DefMI->getOperand(1).getImm(); 2672 uint32_t SOImmValV1 = 0, SOImmValV2 = 0; 2673 bool Commute = false; 2674 switch (UseOpc) { 2675 default: return false; 2676 case ARM::SUBrr: 2677 case ARM::ADDrr: 2678 case ARM::ORRrr: 2679 case ARM::EORrr: 2680 case ARM::t2SUBrr: 2681 case ARM::t2ADDrr: 2682 case ARM::t2ORRrr: 2683 case ARM::t2EORrr: { 2684 Commute = UseMI->getOperand(2).getReg() != Reg; 2685 switch (UseOpc) { 2686 default: break; 2687 case ARM::SUBrr: { 2688 if (Commute) 2689 return false; 2690 ImmVal = -ImmVal; 2691 NewUseOpc = ARM::SUBri; 2692 // Fallthrough 2693 } 2694 case ARM::ADDrr: 2695 case ARM::ORRrr: 2696 case ARM::EORrr: { 2697 if (!ARM_AM::isSOImmTwoPartVal(ImmVal)) 2698 return false; 2699 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); 2700 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); 2701 switch (UseOpc) { 2702 default: break; 2703 case ARM::ADDrr: NewUseOpc = ARM::ADDri; break; 2704 case ARM::ORRrr: NewUseOpc = ARM::ORRri; break; 2705 case ARM::EORrr: NewUseOpc = ARM::EORri; break; 2706 } 2707 break; 2708 } 2709 case ARM::t2SUBrr: { 2710 if (Commute) 2711 return false; 2712 ImmVal = -ImmVal; 2713 NewUseOpc = ARM::t2SUBri; 2714 // Fallthrough 2715 } 2716 case ARM::t2ADDrr: 2717 case ARM::t2ORRrr: 2718 case ARM::t2EORrr: { 2719 if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal)) 2720 return false; 2721 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); 2722 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); 2723 switch (UseOpc) { 2724 default: break; 2725 case ARM::t2ADDrr: NewUseOpc = ARM::t2ADDri; break; 2726 case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break; 2727 case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break; 2728 } 2729 break; 2730 } 2731 } 2732 } 2733 } 2734 2735 unsigned OpIdx = Commute ? 2 : 1; 2736 unsigned Reg1 = UseMI->getOperand(OpIdx).getReg(); 2737 bool isKill = UseMI->getOperand(OpIdx).isKill(); 2738 unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg)); 2739 AddDefaultCC(AddDefaultPred(BuildMI(*UseMI->getParent(), 2740 UseMI, UseMI->getDebugLoc(), 2741 get(NewUseOpc), NewReg) 2742 .addReg(Reg1, getKillRegState(isKill)) 2743 .addImm(SOImmValV1))); 2744 UseMI->setDesc(get(NewUseOpc)); 2745 UseMI->getOperand(1).setReg(NewReg); 2746 UseMI->getOperand(1).setIsKill(); 2747 UseMI->getOperand(2).ChangeToImmediate(SOImmValV2); 2748 DefMI->eraseFromParent(); 2749 return true; 2750 } 2751 2752 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData, 2753 const MachineInstr *MI) { 2754 switch (MI->getOpcode()) { 2755 default: { 2756 const MCInstrDesc &Desc = MI->getDesc(); 2757 int UOps = ItinData->getNumMicroOps(Desc.getSchedClass()); 2758 assert(UOps >= 0 && "bad # UOps"); 2759 return UOps; 2760 } 2761 2762 case ARM::LDRrs: 2763 case ARM::LDRBrs: 2764 case ARM::STRrs: 2765 case ARM::STRBrs: { 2766 unsigned ShOpVal = MI->getOperand(3).getImm(); 2767 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 2768 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 2769 if (!isSub && 2770 (ShImm == 0 || 2771 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 2772 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 2773 return 1; 2774 return 2; 2775 } 2776 2777 case ARM::LDRH: 2778 case ARM::STRH: { 2779 if (!MI->getOperand(2).getReg()) 2780 return 1; 2781 2782 unsigned ShOpVal = MI->getOperand(3).getImm(); 2783 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 2784 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 2785 if (!isSub && 2786 (ShImm == 0 || 2787 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 2788 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 2789 return 1; 2790 return 2; 2791 } 2792 2793 case ARM::LDRSB: 2794 case ARM::LDRSH: 2795 return (ARM_AM::getAM3Op(MI->getOperand(3).getImm()) == ARM_AM::sub) ? 3:2; 2796 2797 case ARM::LDRSB_POST: 2798 case ARM::LDRSH_POST: { 2799 unsigned Rt = MI->getOperand(0).getReg(); 2800 unsigned Rm = MI->getOperand(3).getReg(); 2801 return (Rt == Rm) ? 4 : 3; 2802 } 2803 2804 case ARM::LDR_PRE_REG: 2805 case ARM::LDRB_PRE_REG: { 2806 unsigned Rt = MI->getOperand(0).getReg(); 2807 unsigned Rm = MI->getOperand(3).getReg(); 2808 if (Rt == Rm) 2809 return 3; 2810 unsigned ShOpVal = MI->getOperand(4).getImm(); 2811 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 2812 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 2813 if (!isSub && 2814 (ShImm == 0 || 2815 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 2816 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 2817 return 2; 2818 return 3; 2819 } 2820 2821 case ARM::STR_PRE_REG: 2822 case ARM::STRB_PRE_REG: { 2823 unsigned ShOpVal = MI->getOperand(4).getImm(); 2824 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 2825 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 2826 if (!isSub && 2827 (ShImm == 0 || 2828 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 2829 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 2830 return 2; 2831 return 3; 2832 } 2833 2834 case ARM::LDRH_PRE: 2835 case ARM::STRH_PRE: { 2836 unsigned Rt = MI->getOperand(0).getReg(); 2837 unsigned Rm = MI->getOperand(3).getReg(); 2838 if (!Rm) 2839 return 2; 2840 if (Rt == Rm) 2841 return 3; 2842 return (ARM_AM::getAM3Op(MI->getOperand(4).getImm()) == ARM_AM::sub) 2843 ? 3 : 2; 2844 } 2845 2846 case ARM::LDR_POST_REG: 2847 case ARM::LDRB_POST_REG: 2848 case ARM::LDRH_POST: { 2849 unsigned Rt = MI->getOperand(0).getReg(); 2850 unsigned Rm = MI->getOperand(3).getReg(); 2851 return (Rt == Rm) ? 3 : 2; 2852 } 2853 2854 case ARM::LDR_PRE_IMM: 2855 case ARM::LDRB_PRE_IMM: 2856 case ARM::LDR_POST_IMM: 2857 case ARM::LDRB_POST_IMM: 2858 case ARM::STRB_POST_IMM: 2859 case ARM::STRB_POST_REG: 2860 case ARM::STRB_PRE_IMM: 2861 case ARM::STRH_POST: 2862 case ARM::STR_POST_IMM: 2863 case ARM::STR_POST_REG: 2864 case ARM::STR_PRE_IMM: 2865 return 2; 2866 2867 case ARM::LDRSB_PRE: 2868 case ARM::LDRSH_PRE: { 2869 unsigned Rm = MI->getOperand(3).getReg(); 2870 if (Rm == 0) 2871 return 3; 2872 unsigned Rt = MI->getOperand(0).getReg(); 2873 if (Rt == Rm) 2874 return 4; 2875 unsigned ShOpVal = MI->getOperand(4).getImm(); 2876 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 2877 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 2878 if (!isSub && 2879 (ShImm == 0 || 2880 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 2881 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 2882 return 3; 2883 return 4; 2884 } 2885 2886 case ARM::LDRD: { 2887 unsigned Rt = MI->getOperand(0).getReg(); 2888 unsigned Rn = MI->getOperand(2).getReg(); 2889 unsigned Rm = MI->getOperand(3).getReg(); 2890 if (Rm) 2891 return (ARM_AM::getAM3Op(MI->getOperand(4).getImm()) == ARM_AM::sub) ?4:3; 2892 return (Rt == Rn) ? 3 : 2; 2893 } 2894 2895 case ARM::STRD: { 2896 unsigned Rm = MI->getOperand(3).getReg(); 2897 if (Rm) 2898 return (ARM_AM::getAM3Op(MI->getOperand(4).getImm()) == ARM_AM::sub) ?4:3; 2899 return 2; 2900 } 2901 2902 case ARM::LDRD_POST: 2903 case ARM::t2LDRD_POST: 2904 return 3; 2905 2906 case ARM::STRD_POST: 2907 case ARM::t2STRD_POST: 2908 return 4; 2909 2910 case ARM::LDRD_PRE: { 2911 unsigned Rt = MI->getOperand(0).getReg(); 2912 unsigned Rn = MI->getOperand(3).getReg(); 2913 unsigned Rm = MI->getOperand(4).getReg(); 2914 if (Rm) 2915 return (ARM_AM::getAM3Op(MI->getOperand(5).getImm()) == ARM_AM::sub) ?5:4; 2916 return (Rt == Rn) ? 4 : 3; 2917 } 2918 2919 case ARM::t2LDRD_PRE: { 2920 unsigned Rt = MI->getOperand(0).getReg(); 2921 unsigned Rn = MI->getOperand(3).getReg(); 2922 return (Rt == Rn) ? 4 : 3; 2923 } 2924 2925 case ARM::STRD_PRE: { 2926 unsigned Rm = MI->getOperand(4).getReg(); 2927 if (Rm) 2928 return (ARM_AM::getAM3Op(MI->getOperand(5).getImm()) == ARM_AM::sub) ?5:4; 2929 return 3; 2930 } 2931 2932 case ARM::t2STRD_PRE: 2933 return 3; 2934 2935 case ARM::t2LDR_POST: 2936 case ARM::t2LDRB_POST: 2937 case ARM::t2LDRB_PRE: 2938 case ARM::t2LDRSBi12: 2939 case ARM::t2LDRSBi8: 2940 case ARM::t2LDRSBpci: 2941 case ARM::t2LDRSBs: 2942 case ARM::t2LDRH_POST: 2943 case ARM::t2LDRH_PRE: 2944 case ARM::t2LDRSBT: 2945 case ARM::t2LDRSB_POST: 2946 case ARM::t2LDRSB_PRE: 2947 case ARM::t2LDRSH_POST: 2948 case ARM::t2LDRSH_PRE: 2949 case ARM::t2LDRSHi12: 2950 case ARM::t2LDRSHi8: 2951 case ARM::t2LDRSHpci: 2952 case ARM::t2LDRSHs: 2953 return 2; 2954 2955 case ARM::t2LDRDi8: { 2956 unsigned Rt = MI->getOperand(0).getReg(); 2957 unsigned Rn = MI->getOperand(2).getReg(); 2958 return (Rt == Rn) ? 3 : 2; 2959 } 2960 2961 case ARM::t2STRB_POST: 2962 case ARM::t2STRB_PRE: 2963 case ARM::t2STRBs: 2964 case ARM::t2STRDi8: 2965 case ARM::t2STRH_POST: 2966 case ARM::t2STRH_PRE: 2967 case ARM::t2STRHs: 2968 case ARM::t2STR_POST: 2969 case ARM::t2STR_PRE: 2970 case ARM::t2STRs: 2971 return 2; 2972 } 2973 } 2974 2975 // Return the number of 32-bit words loaded by LDM or stored by STM. If this 2976 // can't be easily determined return 0 (missing MachineMemOperand). 2977 // 2978 // FIXME: The current MachineInstr design does not support relying on machine 2979 // mem operands to determine the width of a memory access. Instead, we expect 2980 // the target to provide this information based on the instruction opcode and 2981 // operands. However, using MachineMemOperand is the best solution now for 2982 // two reasons: 2983 // 2984 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI 2985 // operands. This is much more dangerous than using the MachineMemOperand 2986 // sizes because CodeGen passes can insert/remove optional machine operands. In 2987 // fact, it's totally incorrect for preRA passes and appears to be wrong for 2988 // postRA passes as well. 2989 // 2990 // 2) getNumLDMAddresses is only used by the scheduling machine model and any 2991 // machine model that calls this should handle the unknown (zero size) case. 2992 // 2993 // Long term, we should require a target hook that verifies MachineMemOperand 2994 // sizes during MC lowering. That target hook should be local to MC lowering 2995 // because we can't ensure that it is aware of other MI forms. Doing this will 2996 // ensure that MachineMemOperands are correctly propagated through all passes. 2997 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr *MI) const { 2998 unsigned Size = 0; 2999 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 3000 E = MI->memoperands_end(); I != E; ++I) { 3001 Size += (*I)->getSize(); 3002 } 3003 return Size / 4; 3004 } 3005 3006 unsigned 3007 ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, 3008 const MachineInstr *MI) const { 3009 if (!ItinData || ItinData->isEmpty()) 3010 return 1; 3011 3012 const MCInstrDesc &Desc = MI->getDesc(); 3013 unsigned Class = Desc.getSchedClass(); 3014 int ItinUOps = ItinData->getNumMicroOps(Class); 3015 if (ItinUOps >= 0) { 3016 if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore())) 3017 return getNumMicroOpsSwiftLdSt(ItinData, MI); 3018 3019 return ItinUOps; 3020 } 3021 3022 unsigned Opc = MI->getOpcode(); 3023 switch (Opc) { 3024 default: 3025 llvm_unreachable("Unexpected multi-uops instruction!"); 3026 case ARM::VLDMQIA: 3027 case ARM::VSTMQIA: 3028 return 2; 3029 3030 // The number of uOps for load / store multiple are determined by the number 3031 // registers. 3032 // 3033 // On Cortex-A8, each pair of register loads / stores can be scheduled on the 3034 // same cycle. The scheduling for the first load / store must be done 3035 // separately by assuming the address is not 64-bit aligned. 3036 // 3037 // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address 3038 // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON 3039 // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1. 3040 case ARM::VLDMDIA: 3041 case ARM::VLDMDIA_UPD: 3042 case ARM::VLDMDDB_UPD: 3043 case ARM::VLDMSIA: 3044 case ARM::VLDMSIA_UPD: 3045 case ARM::VLDMSDB_UPD: 3046 case ARM::VSTMDIA: 3047 case ARM::VSTMDIA_UPD: 3048 case ARM::VSTMDDB_UPD: 3049 case ARM::VSTMSIA: 3050 case ARM::VSTMSIA_UPD: 3051 case ARM::VSTMSDB_UPD: { 3052 unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands(); 3053 return (NumRegs / 2) + (NumRegs % 2) + 1; 3054 } 3055 3056 case ARM::LDMIA_RET: 3057 case ARM::LDMIA: 3058 case ARM::LDMDA: 3059 case ARM::LDMDB: 3060 case ARM::LDMIB: 3061 case ARM::LDMIA_UPD: 3062 case ARM::LDMDA_UPD: 3063 case ARM::LDMDB_UPD: 3064 case ARM::LDMIB_UPD: 3065 case ARM::STMIA: 3066 case ARM::STMDA: 3067 case ARM::STMDB: 3068 case ARM::STMIB: 3069 case ARM::STMIA_UPD: 3070 case ARM::STMDA_UPD: 3071 case ARM::STMDB_UPD: 3072 case ARM::STMIB_UPD: 3073 case ARM::tLDMIA: 3074 case ARM::tLDMIA_UPD: 3075 case ARM::tSTMIA_UPD: 3076 case ARM::tPOP_RET: 3077 case ARM::tPOP: 3078 case ARM::tPUSH: 3079 case ARM::t2LDMIA_RET: 3080 case ARM::t2LDMIA: 3081 case ARM::t2LDMDB: 3082 case ARM::t2LDMIA_UPD: 3083 case ARM::t2LDMDB_UPD: 3084 case ARM::t2STMIA: 3085 case ARM::t2STMDB: 3086 case ARM::t2STMIA_UPD: 3087 case ARM::t2STMDB_UPD: { 3088 unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands() + 1; 3089 if (Subtarget.isSwift()) { 3090 int UOps = 1 + NumRegs; // One for address computation, one for each ld / st. 3091 switch (Opc) { 3092 default: break; 3093 case ARM::VLDMDIA_UPD: 3094 case ARM::VLDMDDB_UPD: 3095 case ARM::VLDMSIA_UPD: 3096 case ARM::VLDMSDB_UPD: 3097 case ARM::VSTMDIA_UPD: 3098 case ARM::VSTMDDB_UPD: 3099 case ARM::VSTMSIA_UPD: 3100 case ARM::VSTMSDB_UPD: 3101 case ARM::LDMIA_UPD: 3102 case ARM::LDMDA_UPD: 3103 case ARM::LDMDB_UPD: 3104 case ARM::LDMIB_UPD: 3105 case ARM::STMIA_UPD: 3106 case ARM::STMDA_UPD: 3107 case ARM::STMDB_UPD: 3108 case ARM::STMIB_UPD: 3109 case ARM::tLDMIA_UPD: 3110 case ARM::tSTMIA_UPD: 3111 case ARM::t2LDMIA_UPD: 3112 case ARM::t2LDMDB_UPD: 3113 case ARM::t2STMIA_UPD: 3114 case ARM::t2STMDB_UPD: 3115 ++UOps; // One for base register writeback. 3116 break; 3117 case ARM::LDMIA_RET: 3118 case ARM::tPOP_RET: 3119 case ARM::t2LDMIA_RET: 3120 UOps += 2; // One for base reg wb, one for write to pc. 3121 break; 3122 } 3123 return UOps; 3124 } else if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3125 if (NumRegs < 4) 3126 return 2; 3127 // 4 registers would be issued: 2, 2. 3128 // 5 registers would be issued: 2, 2, 1. 3129 int A8UOps = (NumRegs / 2); 3130 if (NumRegs % 2) 3131 ++A8UOps; 3132 return A8UOps; 3133 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3134 int A9UOps = (NumRegs / 2); 3135 // If there are odd number of registers or if it's not 64-bit aligned, 3136 // then it takes an extra AGU (Address Generation Unit) cycle. 3137 if ((NumRegs % 2) || 3138 !MI->hasOneMemOperand() || 3139 (*MI->memoperands_begin())->getAlignment() < 8) 3140 ++A9UOps; 3141 return A9UOps; 3142 } else { 3143 // Assume the worst. 3144 return NumRegs; 3145 } 3146 } 3147 } 3148 } 3149 3150 int 3151 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData, 3152 const MCInstrDesc &DefMCID, 3153 unsigned DefClass, 3154 unsigned DefIdx, unsigned DefAlign) const { 3155 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 3156 if (RegNo <= 0) 3157 // Def is the address writeback. 3158 return ItinData->getOperandCycle(DefClass, DefIdx); 3159 3160 int DefCycle; 3161 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3162 // (regno / 2) + (regno % 2) + 1 3163 DefCycle = RegNo / 2 + 1; 3164 if (RegNo % 2) 3165 ++DefCycle; 3166 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3167 DefCycle = RegNo; 3168 bool isSLoad = false; 3169 3170 switch (DefMCID.getOpcode()) { 3171 default: break; 3172 case ARM::VLDMSIA: 3173 case ARM::VLDMSIA_UPD: 3174 case ARM::VLDMSDB_UPD: 3175 isSLoad = true; 3176 break; 3177 } 3178 3179 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 3180 // then it takes an extra cycle. 3181 if ((isSLoad && (RegNo % 2)) || DefAlign < 8) 3182 ++DefCycle; 3183 } else { 3184 // Assume the worst. 3185 DefCycle = RegNo + 2; 3186 } 3187 3188 return DefCycle; 3189 } 3190 3191 int 3192 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData, 3193 const MCInstrDesc &DefMCID, 3194 unsigned DefClass, 3195 unsigned DefIdx, unsigned DefAlign) const { 3196 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 3197 if (RegNo <= 0) 3198 // Def is the address writeback. 3199 return ItinData->getOperandCycle(DefClass, DefIdx); 3200 3201 int DefCycle; 3202 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3203 // 4 registers would be issued: 1, 2, 1. 3204 // 5 registers would be issued: 1, 2, 2. 3205 DefCycle = RegNo / 2; 3206 if (DefCycle < 1) 3207 DefCycle = 1; 3208 // Result latency is issue cycle + 2: E2. 3209 DefCycle += 2; 3210 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3211 DefCycle = (RegNo / 2); 3212 // If there are odd number of registers or if it's not 64-bit aligned, 3213 // then it takes an extra AGU (Address Generation Unit) cycle. 3214 if ((RegNo % 2) || DefAlign < 8) 3215 ++DefCycle; 3216 // Result latency is AGU cycles + 2. 3217 DefCycle += 2; 3218 } else { 3219 // Assume the worst. 3220 DefCycle = RegNo + 2; 3221 } 3222 3223 return DefCycle; 3224 } 3225 3226 int 3227 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData, 3228 const MCInstrDesc &UseMCID, 3229 unsigned UseClass, 3230 unsigned UseIdx, unsigned UseAlign) const { 3231 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 3232 if (RegNo <= 0) 3233 return ItinData->getOperandCycle(UseClass, UseIdx); 3234 3235 int UseCycle; 3236 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3237 // (regno / 2) + (regno % 2) + 1 3238 UseCycle = RegNo / 2 + 1; 3239 if (RegNo % 2) 3240 ++UseCycle; 3241 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3242 UseCycle = RegNo; 3243 bool isSStore = false; 3244 3245 switch (UseMCID.getOpcode()) { 3246 default: break; 3247 case ARM::VSTMSIA: 3248 case ARM::VSTMSIA_UPD: 3249 case ARM::VSTMSDB_UPD: 3250 isSStore = true; 3251 break; 3252 } 3253 3254 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 3255 // then it takes an extra cycle. 3256 if ((isSStore && (RegNo % 2)) || UseAlign < 8) 3257 ++UseCycle; 3258 } else { 3259 // Assume the worst. 3260 UseCycle = RegNo + 2; 3261 } 3262 3263 return UseCycle; 3264 } 3265 3266 int 3267 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData, 3268 const MCInstrDesc &UseMCID, 3269 unsigned UseClass, 3270 unsigned UseIdx, unsigned UseAlign) const { 3271 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 3272 if (RegNo <= 0) 3273 return ItinData->getOperandCycle(UseClass, UseIdx); 3274 3275 int UseCycle; 3276 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3277 UseCycle = RegNo / 2; 3278 if (UseCycle < 2) 3279 UseCycle = 2; 3280 // Read in E3. 3281 UseCycle += 2; 3282 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3283 UseCycle = (RegNo / 2); 3284 // If there are odd number of registers or if it's not 64-bit aligned, 3285 // then it takes an extra AGU (Address Generation Unit) cycle. 3286 if ((RegNo % 2) || UseAlign < 8) 3287 ++UseCycle; 3288 } else { 3289 // Assume the worst. 3290 UseCycle = 1; 3291 } 3292 return UseCycle; 3293 } 3294 3295 int 3296 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 3297 const MCInstrDesc &DefMCID, 3298 unsigned DefIdx, unsigned DefAlign, 3299 const MCInstrDesc &UseMCID, 3300 unsigned UseIdx, unsigned UseAlign) const { 3301 unsigned DefClass = DefMCID.getSchedClass(); 3302 unsigned UseClass = UseMCID.getSchedClass(); 3303 3304 if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands()) 3305 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 3306 3307 // This may be a def / use of a variable_ops instruction, the operand 3308 // latency might be determinable dynamically. Let the target try to 3309 // figure it out. 3310 int DefCycle = -1; 3311 bool LdmBypass = false; 3312 switch (DefMCID.getOpcode()) { 3313 default: 3314 DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 3315 break; 3316 3317 case ARM::VLDMDIA: 3318 case ARM::VLDMDIA_UPD: 3319 case ARM::VLDMDDB_UPD: 3320 case ARM::VLDMSIA: 3321 case ARM::VLDMSIA_UPD: 3322 case ARM::VLDMSDB_UPD: 3323 DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 3324 break; 3325 3326 case ARM::LDMIA_RET: 3327 case ARM::LDMIA: 3328 case ARM::LDMDA: 3329 case ARM::LDMDB: 3330 case ARM::LDMIB: 3331 case ARM::LDMIA_UPD: 3332 case ARM::LDMDA_UPD: 3333 case ARM::LDMDB_UPD: 3334 case ARM::LDMIB_UPD: 3335 case ARM::tLDMIA: 3336 case ARM::tLDMIA_UPD: 3337 case ARM::tPUSH: 3338 case ARM::t2LDMIA_RET: 3339 case ARM::t2LDMIA: 3340 case ARM::t2LDMDB: 3341 case ARM::t2LDMIA_UPD: 3342 case ARM::t2LDMDB_UPD: 3343 LdmBypass = 1; 3344 DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 3345 break; 3346 } 3347 3348 if (DefCycle == -1) 3349 // We can't seem to determine the result latency of the def, assume it's 2. 3350 DefCycle = 2; 3351 3352 int UseCycle = -1; 3353 switch (UseMCID.getOpcode()) { 3354 default: 3355 UseCycle = ItinData->getOperandCycle(UseClass, UseIdx); 3356 break; 3357 3358 case ARM::VSTMDIA: 3359 case ARM::VSTMDIA_UPD: 3360 case ARM::VSTMDDB_UPD: 3361 case ARM::VSTMSIA: 3362 case ARM::VSTMSIA_UPD: 3363 case ARM::VSTMSDB_UPD: 3364 UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 3365 break; 3366 3367 case ARM::STMIA: 3368 case ARM::STMDA: 3369 case ARM::STMDB: 3370 case ARM::STMIB: 3371 case ARM::STMIA_UPD: 3372 case ARM::STMDA_UPD: 3373 case ARM::STMDB_UPD: 3374 case ARM::STMIB_UPD: 3375 case ARM::tSTMIA_UPD: 3376 case ARM::tPOP_RET: 3377 case ARM::tPOP: 3378 case ARM::t2STMIA: 3379 case ARM::t2STMDB: 3380 case ARM::t2STMIA_UPD: 3381 case ARM::t2STMDB_UPD: 3382 UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 3383 break; 3384 } 3385 3386 if (UseCycle == -1) 3387 // Assume it's read in the first stage. 3388 UseCycle = 1; 3389 3390 UseCycle = DefCycle - UseCycle + 1; 3391 if (UseCycle > 0) { 3392 if (LdmBypass) { 3393 // It's a variable_ops instruction so we can't use DefIdx here. Just use 3394 // first def operand. 3395 if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1, 3396 UseClass, UseIdx)) 3397 --UseCycle; 3398 } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx, 3399 UseClass, UseIdx)) { 3400 --UseCycle; 3401 } 3402 } 3403 3404 return UseCycle; 3405 } 3406 3407 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI, 3408 const MachineInstr *MI, unsigned Reg, 3409 unsigned &DefIdx, unsigned &Dist) { 3410 Dist = 0; 3411 3412 MachineBasicBlock::const_iterator I = MI; ++I; 3413 MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator()); 3414 assert(II->isInsideBundle() && "Empty bundle?"); 3415 3416 int Idx = -1; 3417 while (II->isInsideBundle()) { 3418 Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI); 3419 if (Idx != -1) 3420 break; 3421 --II; 3422 ++Dist; 3423 } 3424 3425 assert(Idx != -1 && "Cannot find bundled definition!"); 3426 DefIdx = Idx; 3427 return &*II; 3428 } 3429 3430 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI, 3431 const MachineInstr *MI, unsigned Reg, 3432 unsigned &UseIdx, unsigned &Dist) { 3433 Dist = 0; 3434 3435 MachineBasicBlock::const_instr_iterator II = ++MI->getIterator(); 3436 assert(II->isInsideBundle() && "Empty bundle?"); 3437 MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end(); 3438 3439 // FIXME: This doesn't properly handle multiple uses. 3440 int Idx = -1; 3441 while (II != E && II->isInsideBundle()) { 3442 Idx = II->findRegisterUseOperandIdx(Reg, false, TRI); 3443 if (Idx != -1) 3444 break; 3445 if (II->getOpcode() != ARM::t2IT) 3446 ++Dist; 3447 ++II; 3448 } 3449 3450 if (Idx == -1) { 3451 Dist = 0; 3452 return nullptr; 3453 } 3454 3455 UseIdx = Idx; 3456 return &*II; 3457 } 3458 3459 /// Return the number of cycles to add to (or subtract from) the static 3460 /// itinerary based on the def opcode and alignment. The caller will ensure that 3461 /// adjusted latency is at least one cycle. 3462 static int adjustDefLatency(const ARMSubtarget &Subtarget, 3463 const MachineInstr *DefMI, 3464 const MCInstrDesc *DefMCID, unsigned DefAlign) { 3465 int Adjust = 0; 3466 if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) { 3467 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 3468 // variants are one cycle cheaper. 3469 switch (DefMCID->getOpcode()) { 3470 default: break; 3471 case ARM::LDRrs: 3472 case ARM::LDRBrs: { 3473 unsigned ShOpVal = DefMI->getOperand(3).getImm(); 3474 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3475 if (ShImm == 0 || 3476 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 3477 --Adjust; 3478 break; 3479 } 3480 case ARM::t2LDRs: 3481 case ARM::t2LDRBs: 3482 case ARM::t2LDRHs: 3483 case ARM::t2LDRSHs: { 3484 // Thumb2 mode: lsl only. 3485 unsigned ShAmt = DefMI->getOperand(3).getImm(); 3486 if (ShAmt == 0 || ShAmt == 2) 3487 --Adjust; 3488 break; 3489 } 3490 } 3491 } else if (Subtarget.isSwift()) { 3492 // FIXME: Properly handle all of the latency adjustments for address 3493 // writeback. 3494 switch (DefMCID->getOpcode()) { 3495 default: break; 3496 case ARM::LDRrs: 3497 case ARM::LDRBrs: { 3498 unsigned ShOpVal = DefMI->getOperand(3).getImm(); 3499 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3500 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3501 if (!isSub && 3502 (ShImm == 0 || 3503 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3504 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3505 Adjust -= 2; 3506 else if (!isSub && 3507 ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) 3508 --Adjust; 3509 break; 3510 } 3511 case ARM::t2LDRs: 3512 case ARM::t2LDRBs: 3513 case ARM::t2LDRHs: 3514 case ARM::t2LDRSHs: { 3515 // Thumb2 mode: lsl only. 3516 unsigned ShAmt = DefMI->getOperand(3).getImm(); 3517 if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3) 3518 Adjust -= 2; 3519 break; 3520 } 3521 } 3522 } 3523 3524 if (DefAlign < 8 && Subtarget.isLikeA9()) { 3525 switch (DefMCID->getOpcode()) { 3526 default: break; 3527 case ARM::VLD1q8: 3528 case ARM::VLD1q16: 3529 case ARM::VLD1q32: 3530 case ARM::VLD1q64: 3531 case ARM::VLD1q8wb_fixed: 3532 case ARM::VLD1q16wb_fixed: 3533 case ARM::VLD1q32wb_fixed: 3534 case ARM::VLD1q64wb_fixed: 3535 case ARM::VLD1q8wb_register: 3536 case ARM::VLD1q16wb_register: 3537 case ARM::VLD1q32wb_register: 3538 case ARM::VLD1q64wb_register: 3539 case ARM::VLD2d8: 3540 case ARM::VLD2d16: 3541 case ARM::VLD2d32: 3542 case ARM::VLD2q8: 3543 case ARM::VLD2q16: 3544 case ARM::VLD2q32: 3545 case ARM::VLD2d8wb_fixed: 3546 case ARM::VLD2d16wb_fixed: 3547 case ARM::VLD2d32wb_fixed: 3548 case ARM::VLD2q8wb_fixed: 3549 case ARM::VLD2q16wb_fixed: 3550 case ARM::VLD2q32wb_fixed: 3551 case ARM::VLD2d8wb_register: 3552 case ARM::VLD2d16wb_register: 3553 case ARM::VLD2d32wb_register: 3554 case ARM::VLD2q8wb_register: 3555 case ARM::VLD2q16wb_register: 3556 case ARM::VLD2q32wb_register: 3557 case ARM::VLD3d8: 3558 case ARM::VLD3d16: 3559 case ARM::VLD3d32: 3560 case ARM::VLD1d64T: 3561 case ARM::VLD3d8_UPD: 3562 case ARM::VLD3d16_UPD: 3563 case ARM::VLD3d32_UPD: 3564 case ARM::VLD1d64Twb_fixed: 3565 case ARM::VLD1d64Twb_register: 3566 case ARM::VLD3q8_UPD: 3567 case ARM::VLD3q16_UPD: 3568 case ARM::VLD3q32_UPD: 3569 case ARM::VLD4d8: 3570 case ARM::VLD4d16: 3571 case ARM::VLD4d32: 3572 case ARM::VLD1d64Q: 3573 case ARM::VLD4d8_UPD: 3574 case ARM::VLD4d16_UPD: 3575 case ARM::VLD4d32_UPD: 3576 case ARM::VLD1d64Qwb_fixed: 3577 case ARM::VLD1d64Qwb_register: 3578 case ARM::VLD4q8_UPD: 3579 case ARM::VLD4q16_UPD: 3580 case ARM::VLD4q32_UPD: 3581 case ARM::VLD1DUPq8: 3582 case ARM::VLD1DUPq16: 3583 case ARM::VLD1DUPq32: 3584 case ARM::VLD1DUPq8wb_fixed: 3585 case ARM::VLD1DUPq16wb_fixed: 3586 case ARM::VLD1DUPq32wb_fixed: 3587 case ARM::VLD1DUPq8wb_register: 3588 case ARM::VLD1DUPq16wb_register: 3589 case ARM::VLD1DUPq32wb_register: 3590 case ARM::VLD2DUPd8: 3591 case ARM::VLD2DUPd16: 3592 case ARM::VLD2DUPd32: 3593 case ARM::VLD2DUPd8wb_fixed: 3594 case ARM::VLD2DUPd16wb_fixed: 3595 case ARM::VLD2DUPd32wb_fixed: 3596 case ARM::VLD2DUPd8wb_register: 3597 case ARM::VLD2DUPd16wb_register: 3598 case ARM::VLD2DUPd32wb_register: 3599 case ARM::VLD4DUPd8: 3600 case ARM::VLD4DUPd16: 3601 case ARM::VLD4DUPd32: 3602 case ARM::VLD4DUPd8_UPD: 3603 case ARM::VLD4DUPd16_UPD: 3604 case ARM::VLD4DUPd32_UPD: 3605 case ARM::VLD1LNd8: 3606 case ARM::VLD1LNd16: 3607 case ARM::VLD1LNd32: 3608 case ARM::VLD1LNd8_UPD: 3609 case ARM::VLD1LNd16_UPD: 3610 case ARM::VLD1LNd32_UPD: 3611 case ARM::VLD2LNd8: 3612 case ARM::VLD2LNd16: 3613 case ARM::VLD2LNd32: 3614 case ARM::VLD2LNq16: 3615 case ARM::VLD2LNq32: 3616 case ARM::VLD2LNd8_UPD: 3617 case ARM::VLD2LNd16_UPD: 3618 case ARM::VLD2LNd32_UPD: 3619 case ARM::VLD2LNq16_UPD: 3620 case ARM::VLD2LNq32_UPD: 3621 case ARM::VLD4LNd8: 3622 case ARM::VLD4LNd16: 3623 case ARM::VLD4LNd32: 3624 case ARM::VLD4LNq16: 3625 case ARM::VLD4LNq32: 3626 case ARM::VLD4LNd8_UPD: 3627 case ARM::VLD4LNd16_UPD: 3628 case ARM::VLD4LNd32_UPD: 3629 case ARM::VLD4LNq16_UPD: 3630 case ARM::VLD4LNq32_UPD: 3631 // If the address is not 64-bit aligned, the latencies of these 3632 // instructions increases by one. 3633 ++Adjust; 3634 break; 3635 } 3636 } 3637 return Adjust; 3638 } 3639 3640 3641 3642 int 3643 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 3644 const MachineInstr *DefMI, unsigned DefIdx, 3645 const MachineInstr *UseMI, 3646 unsigned UseIdx) const { 3647 // No operand latency. The caller may fall back to getInstrLatency. 3648 if (!ItinData || ItinData->isEmpty()) 3649 return -1; 3650 3651 const MachineOperand &DefMO = DefMI->getOperand(DefIdx); 3652 unsigned Reg = DefMO.getReg(); 3653 const MCInstrDesc *DefMCID = &DefMI->getDesc(); 3654 const MCInstrDesc *UseMCID = &UseMI->getDesc(); 3655 3656 unsigned DefAdj = 0; 3657 if (DefMI->isBundle()) { 3658 DefMI = getBundledDefMI(&getRegisterInfo(), DefMI, Reg, DefIdx, DefAdj); 3659 DefMCID = &DefMI->getDesc(); 3660 } 3661 if (DefMI->isCopyLike() || DefMI->isInsertSubreg() || 3662 DefMI->isRegSequence() || DefMI->isImplicitDef()) { 3663 return 1; 3664 } 3665 3666 unsigned UseAdj = 0; 3667 if (UseMI->isBundle()) { 3668 unsigned NewUseIdx; 3669 const MachineInstr *NewUseMI = getBundledUseMI(&getRegisterInfo(), UseMI, 3670 Reg, NewUseIdx, UseAdj); 3671 if (!NewUseMI) 3672 return -1; 3673 3674 UseMI = NewUseMI; 3675 UseIdx = NewUseIdx; 3676 UseMCID = &UseMI->getDesc(); 3677 } 3678 3679 if (Reg == ARM::CPSR) { 3680 if (DefMI->getOpcode() == ARM::FMSTAT) { 3681 // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?) 3682 return Subtarget.isLikeA9() ? 1 : 20; 3683 } 3684 3685 // CPSR set and branch can be paired in the same cycle. 3686 if (UseMI->isBranch()) 3687 return 0; 3688 3689 // Otherwise it takes the instruction latency (generally one). 3690 unsigned Latency = getInstrLatency(ItinData, DefMI); 3691 3692 // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to 3693 // its uses. Instructions which are otherwise scheduled between them may 3694 // incur a code size penalty (not able to use the CPSR setting 16-bit 3695 // instructions). 3696 if (Latency > 0 && Subtarget.isThumb2()) { 3697 const MachineFunction *MF = DefMI->getParent()->getParent(); 3698 // FIXME: Use Function::optForSize(). 3699 if (MF->getFunction()->hasFnAttribute(Attribute::OptimizeForSize)) 3700 --Latency; 3701 } 3702 return Latency; 3703 } 3704 3705 if (DefMO.isImplicit() || UseMI->getOperand(UseIdx).isImplicit()) 3706 return -1; 3707 3708 unsigned DefAlign = DefMI->hasOneMemOperand() 3709 ? (*DefMI->memoperands_begin())->getAlignment() : 0; 3710 unsigned UseAlign = UseMI->hasOneMemOperand() 3711 ? (*UseMI->memoperands_begin())->getAlignment() : 0; 3712 3713 // Get the itinerary's latency if possible, and handle variable_ops. 3714 int Latency = getOperandLatency(ItinData, *DefMCID, DefIdx, DefAlign, 3715 *UseMCID, UseIdx, UseAlign); 3716 // Unable to find operand latency. The caller may resort to getInstrLatency. 3717 if (Latency < 0) 3718 return Latency; 3719 3720 // Adjust for IT block position. 3721 int Adj = DefAdj + UseAdj; 3722 3723 // Adjust for dynamic def-side opcode variants not captured by the itinerary. 3724 Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign); 3725 if (Adj >= 0 || (int)Latency > -Adj) { 3726 return Latency + Adj; 3727 } 3728 // Return the itinerary latency, which may be zero but not less than zero. 3729 return Latency; 3730 } 3731 3732 int 3733 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 3734 SDNode *DefNode, unsigned DefIdx, 3735 SDNode *UseNode, unsigned UseIdx) const { 3736 if (!DefNode->isMachineOpcode()) 3737 return 1; 3738 3739 const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode()); 3740 3741 if (isZeroCost(DefMCID.Opcode)) 3742 return 0; 3743 3744 if (!ItinData || ItinData->isEmpty()) 3745 return DefMCID.mayLoad() ? 3 : 1; 3746 3747 if (!UseNode->isMachineOpcode()) { 3748 int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx); 3749 if (Subtarget.isLikeA9() || Subtarget.isSwift()) 3750 return Latency <= 2 ? 1 : Latency - 1; 3751 else 3752 return Latency <= 3 ? 1 : Latency - 2; 3753 } 3754 3755 const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode()); 3756 const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode); 3757 unsigned DefAlign = !DefMN->memoperands_empty() 3758 ? (*DefMN->memoperands_begin())->getAlignment() : 0; 3759 const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode); 3760 unsigned UseAlign = !UseMN->memoperands_empty() 3761 ? (*UseMN->memoperands_begin())->getAlignment() : 0; 3762 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, 3763 UseMCID, UseIdx, UseAlign); 3764 3765 if (Latency > 1 && 3766 (Subtarget.isCortexA8() || Subtarget.isLikeA9() || 3767 Subtarget.isCortexA7())) { 3768 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 3769 // variants are one cycle cheaper. 3770 switch (DefMCID.getOpcode()) { 3771 default: break; 3772 case ARM::LDRrs: 3773 case ARM::LDRBrs: { 3774 unsigned ShOpVal = 3775 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 3776 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3777 if (ShImm == 0 || 3778 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 3779 --Latency; 3780 break; 3781 } 3782 case ARM::t2LDRs: 3783 case ARM::t2LDRBs: 3784 case ARM::t2LDRHs: 3785 case ARM::t2LDRSHs: { 3786 // Thumb2 mode: lsl only. 3787 unsigned ShAmt = 3788 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 3789 if (ShAmt == 0 || ShAmt == 2) 3790 --Latency; 3791 break; 3792 } 3793 } 3794 } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) { 3795 // FIXME: Properly handle all of the latency adjustments for address 3796 // writeback. 3797 switch (DefMCID.getOpcode()) { 3798 default: break; 3799 case ARM::LDRrs: 3800 case ARM::LDRBrs: { 3801 unsigned ShOpVal = 3802 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 3803 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3804 if (ShImm == 0 || 3805 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3806 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 3807 Latency -= 2; 3808 else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) 3809 --Latency; 3810 break; 3811 } 3812 case ARM::t2LDRs: 3813 case ARM::t2LDRBs: 3814 case ARM::t2LDRHs: 3815 case ARM::t2LDRSHs: { 3816 // Thumb2 mode: lsl 0-3 only. 3817 Latency -= 2; 3818 break; 3819 } 3820 } 3821 } 3822 3823 if (DefAlign < 8 && Subtarget.isLikeA9()) 3824 switch (DefMCID.getOpcode()) { 3825 default: break; 3826 case ARM::VLD1q8: 3827 case ARM::VLD1q16: 3828 case ARM::VLD1q32: 3829 case ARM::VLD1q64: 3830 case ARM::VLD1q8wb_register: 3831 case ARM::VLD1q16wb_register: 3832 case ARM::VLD1q32wb_register: 3833 case ARM::VLD1q64wb_register: 3834 case ARM::VLD1q8wb_fixed: 3835 case ARM::VLD1q16wb_fixed: 3836 case ARM::VLD1q32wb_fixed: 3837 case ARM::VLD1q64wb_fixed: 3838 case ARM::VLD2d8: 3839 case ARM::VLD2d16: 3840 case ARM::VLD2d32: 3841 case ARM::VLD2q8Pseudo: 3842 case ARM::VLD2q16Pseudo: 3843 case ARM::VLD2q32Pseudo: 3844 case ARM::VLD2d8wb_fixed: 3845 case ARM::VLD2d16wb_fixed: 3846 case ARM::VLD2d32wb_fixed: 3847 case ARM::VLD2q8PseudoWB_fixed: 3848 case ARM::VLD2q16PseudoWB_fixed: 3849 case ARM::VLD2q32PseudoWB_fixed: 3850 case ARM::VLD2d8wb_register: 3851 case ARM::VLD2d16wb_register: 3852 case ARM::VLD2d32wb_register: 3853 case ARM::VLD2q8PseudoWB_register: 3854 case ARM::VLD2q16PseudoWB_register: 3855 case ARM::VLD2q32PseudoWB_register: 3856 case ARM::VLD3d8Pseudo: 3857 case ARM::VLD3d16Pseudo: 3858 case ARM::VLD3d32Pseudo: 3859 case ARM::VLD1d64TPseudo: 3860 case ARM::VLD1d64TPseudoWB_fixed: 3861 case ARM::VLD3d8Pseudo_UPD: 3862 case ARM::VLD3d16Pseudo_UPD: 3863 case ARM::VLD3d32Pseudo_UPD: 3864 case ARM::VLD3q8Pseudo_UPD: 3865 case ARM::VLD3q16Pseudo_UPD: 3866 case ARM::VLD3q32Pseudo_UPD: 3867 case ARM::VLD3q8oddPseudo: 3868 case ARM::VLD3q16oddPseudo: 3869 case ARM::VLD3q32oddPseudo: 3870 case ARM::VLD3q8oddPseudo_UPD: 3871 case ARM::VLD3q16oddPseudo_UPD: 3872 case ARM::VLD3q32oddPseudo_UPD: 3873 case ARM::VLD4d8Pseudo: 3874 case ARM::VLD4d16Pseudo: 3875 case ARM::VLD4d32Pseudo: 3876 case ARM::VLD1d64QPseudo: 3877 case ARM::VLD1d64QPseudoWB_fixed: 3878 case ARM::VLD4d8Pseudo_UPD: 3879 case ARM::VLD4d16Pseudo_UPD: 3880 case ARM::VLD4d32Pseudo_UPD: 3881 case ARM::VLD4q8Pseudo_UPD: 3882 case ARM::VLD4q16Pseudo_UPD: 3883 case ARM::VLD4q32Pseudo_UPD: 3884 case ARM::VLD4q8oddPseudo: 3885 case ARM::VLD4q16oddPseudo: 3886 case ARM::VLD4q32oddPseudo: 3887 case ARM::VLD4q8oddPseudo_UPD: 3888 case ARM::VLD4q16oddPseudo_UPD: 3889 case ARM::VLD4q32oddPseudo_UPD: 3890 case ARM::VLD1DUPq8: 3891 case ARM::VLD1DUPq16: 3892 case ARM::VLD1DUPq32: 3893 case ARM::VLD1DUPq8wb_fixed: 3894 case ARM::VLD1DUPq16wb_fixed: 3895 case ARM::VLD1DUPq32wb_fixed: 3896 case ARM::VLD1DUPq8wb_register: 3897 case ARM::VLD1DUPq16wb_register: 3898 case ARM::VLD1DUPq32wb_register: 3899 case ARM::VLD2DUPd8: 3900 case ARM::VLD2DUPd16: 3901 case ARM::VLD2DUPd32: 3902 case ARM::VLD2DUPd8wb_fixed: 3903 case ARM::VLD2DUPd16wb_fixed: 3904 case ARM::VLD2DUPd32wb_fixed: 3905 case ARM::VLD2DUPd8wb_register: 3906 case ARM::VLD2DUPd16wb_register: 3907 case ARM::VLD2DUPd32wb_register: 3908 case ARM::VLD4DUPd8Pseudo: 3909 case ARM::VLD4DUPd16Pseudo: 3910 case ARM::VLD4DUPd32Pseudo: 3911 case ARM::VLD4DUPd8Pseudo_UPD: 3912 case ARM::VLD4DUPd16Pseudo_UPD: 3913 case ARM::VLD4DUPd32Pseudo_UPD: 3914 case ARM::VLD1LNq8Pseudo: 3915 case ARM::VLD1LNq16Pseudo: 3916 case ARM::VLD1LNq32Pseudo: 3917 case ARM::VLD1LNq8Pseudo_UPD: 3918 case ARM::VLD1LNq16Pseudo_UPD: 3919 case ARM::VLD1LNq32Pseudo_UPD: 3920 case ARM::VLD2LNd8Pseudo: 3921 case ARM::VLD2LNd16Pseudo: 3922 case ARM::VLD2LNd32Pseudo: 3923 case ARM::VLD2LNq16Pseudo: 3924 case ARM::VLD2LNq32Pseudo: 3925 case ARM::VLD2LNd8Pseudo_UPD: 3926 case ARM::VLD2LNd16Pseudo_UPD: 3927 case ARM::VLD2LNd32Pseudo_UPD: 3928 case ARM::VLD2LNq16Pseudo_UPD: 3929 case ARM::VLD2LNq32Pseudo_UPD: 3930 case ARM::VLD4LNd8Pseudo: 3931 case ARM::VLD4LNd16Pseudo: 3932 case ARM::VLD4LNd32Pseudo: 3933 case ARM::VLD4LNq16Pseudo: 3934 case ARM::VLD4LNq32Pseudo: 3935 case ARM::VLD4LNd8Pseudo_UPD: 3936 case ARM::VLD4LNd16Pseudo_UPD: 3937 case ARM::VLD4LNd32Pseudo_UPD: 3938 case ARM::VLD4LNq16Pseudo_UPD: 3939 case ARM::VLD4LNq32Pseudo_UPD: 3940 // If the address is not 64-bit aligned, the latencies of these 3941 // instructions increases by one. 3942 ++Latency; 3943 break; 3944 } 3945 3946 return Latency; 3947 } 3948 3949 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr *MI) const { 3950 if (MI->isCopyLike() || MI->isInsertSubreg() || 3951 MI->isRegSequence() || MI->isImplicitDef()) 3952 return 0; 3953 3954 if (MI->isBundle()) 3955 return 0; 3956 3957 const MCInstrDesc &MCID = MI->getDesc(); 3958 3959 if (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR)) { 3960 // When predicated, CPSR is an additional source operand for CPSR updating 3961 // instructions, this apparently increases their latencies. 3962 return 1; 3963 } 3964 return 0; 3965 } 3966 3967 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 3968 const MachineInstr *MI, 3969 unsigned *PredCost) const { 3970 if (MI->isCopyLike() || MI->isInsertSubreg() || 3971 MI->isRegSequence() || MI->isImplicitDef()) 3972 return 1; 3973 3974 // An instruction scheduler typically runs on unbundled instructions, however 3975 // other passes may query the latency of a bundled instruction. 3976 if (MI->isBundle()) { 3977 unsigned Latency = 0; 3978 MachineBasicBlock::const_instr_iterator I = MI->getIterator(); 3979 MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end(); 3980 while (++I != E && I->isInsideBundle()) { 3981 if (I->getOpcode() != ARM::t2IT) 3982 Latency += getInstrLatency(ItinData, &*I, PredCost); 3983 } 3984 return Latency; 3985 } 3986 3987 const MCInstrDesc &MCID = MI->getDesc(); 3988 if (PredCost && (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR))) { 3989 // When predicated, CPSR is an additional source operand for CPSR updating 3990 // instructions, this apparently increases their latencies. 3991 *PredCost = 1; 3992 } 3993 // Be sure to call getStageLatency for an empty itinerary in case it has a 3994 // valid MinLatency property. 3995 if (!ItinData) 3996 return MI->mayLoad() ? 3 : 1; 3997 3998 unsigned Class = MCID.getSchedClass(); 3999 4000 // For instructions with variable uops, use uops as latency. 4001 if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0) 4002 return getNumMicroOps(ItinData, MI); 4003 4004 // For the common case, fall back on the itinerary's latency. 4005 unsigned Latency = ItinData->getStageLatency(Class); 4006 4007 // Adjust for dynamic def-side opcode variants not captured by the itinerary. 4008 unsigned DefAlign = MI->hasOneMemOperand() 4009 ? (*MI->memoperands_begin())->getAlignment() : 0; 4010 int Adj = adjustDefLatency(Subtarget, MI, &MCID, DefAlign); 4011 if (Adj >= 0 || (int)Latency > -Adj) { 4012 return Latency + Adj; 4013 } 4014 return Latency; 4015 } 4016 4017 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 4018 SDNode *Node) const { 4019 if (!Node->isMachineOpcode()) 4020 return 1; 4021 4022 if (!ItinData || ItinData->isEmpty()) 4023 return 1; 4024 4025 unsigned Opcode = Node->getMachineOpcode(); 4026 switch (Opcode) { 4027 default: 4028 return ItinData->getStageLatency(get(Opcode).getSchedClass()); 4029 case ARM::VLDMQIA: 4030 case ARM::VSTMQIA: 4031 return 2; 4032 } 4033 } 4034 4035 bool ARMBaseInstrInfo:: 4036 hasHighOperandLatency(const TargetSchedModel &SchedModel, 4037 const MachineRegisterInfo *MRI, 4038 const MachineInstr *DefMI, unsigned DefIdx, 4039 const MachineInstr *UseMI, unsigned UseIdx) const { 4040 unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask; 4041 unsigned UDomain = UseMI->getDesc().TSFlags & ARMII::DomainMask; 4042 if (Subtarget.isCortexA8() && 4043 (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP)) 4044 // CortexA8 VFP instructions are not pipelined. 4045 return true; 4046 4047 // Hoist VFP / NEON instructions with 4 or higher latency. 4048 unsigned Latency 4049 = SchedModel.computeOperandLatency(DefMI, DefIdx, UseMI, UseIdx); 4050 if (Latency <= 3) 4051 return false; 4052 return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON || 4053 UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON; 4054 } 4055 4056 bool ARMBaseInstrInfo:: 4057 hasLowDefLatency(const TargetSchedModel &SchedModel, 4058 const MachineInstr *DefMI, unsigned DefIdx) const { 4059 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); 4060 if (!ItinData || ItinData->isEmpty()) 4061 return false; 4062 4063 unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask; 4064 if (DDomain == ARMII::DomainGeneral) { 4065 unsigned DefClass = DefMI->getDesc().getSchedClass(); 4066 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 4067 return (DefCycle != -1 && DefCycle <= 2); 4068 } 4069 return false; 4070 } 4071 4072 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr *MI, 4073 StringRef &ErrInfo) const { 4074 if (convertAddSubFlagsOpcode(MI->getOpcode())) { 4075 ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG"; 4076 return false; 4077 } 4078 return true; 4079 } 4080 4081 // LoadStackGuard has so far only been implemented for MachO. Different code 4082 // sequence is needed for other targets. 4083 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI, 4084 unsigned LoadImmOpc, 4085 unsigned LoadOpc, 4086 Reloc::Model RM) const { 4087 MachineBasicBlock &MBB = *MI->getParent(); 4088 DebugLoc DL = MI->getDebugLoc(); 4089 unsigned Reg = MI->getOperand(0).getReg(); 4090 const GlobalValue *GV = 4091 cast<GlobalValue>((*MI->memoperands_begin())->getValue()); 4092 MachineInstrBuilder MIB; 4093 4094 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg) 4095 .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY); 4096 4097 if (Subtarget.GVIsIndirectSymbol(GV, RM)) { 4098 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); 4099 MIB.addReg(Reg, RegState::Kill).addImm(0); 4100 unsigned Flag = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant; 4101 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand( 4102 MachinePointerInfo::getGOT(*MBB.getParent()), Flag, 4, 4); 4103 MIB.addMemOperand(MMO); 4104 AddDefaultPred(MIB); 4105 } 4106 4107 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); 4108 MIB.addReg(Reg, RegState::Kill).addImm(0); 4109 MIB.setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); 4110 AddDefaultPred(MIB); 4111 } 4112 4113 bool 4114 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc, 4115 unsigned &AddSubOpc, 4116 bool &NegAcc, bool &HasLane) const { 4117 DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode); 4118 if (I == MLxEntryMap.end()) 4119 return false; 4120 4121 const ARM_MLxEntry &Entry = ARM_MLxTable[I->second]; 4122 MulOpc = Entry.MulOpc; 4123 AddSubOpc = Entry.AddSubOpc; 4124 NegAcc = Entry.NegAcc; 4125 HasLane = Entry.HasLane; 4126 return true; 4127 } 4128 4129 //===----------------------------------------------------------------------===// 4130 // Execution domains. 4131 //===----------------------------------------------------------------------===// 4132 // 4133 // Some instructions go down the NEON pipeline, some go down the VFP pipeline, 4134 // and some can go down both. The vmov instructions go down the VFP pipeline, 4135 // but they can be changed to vorr equivalents that are executed by the NEON 4136 // pipeline. 4137 // 4138 // We use the following execution domain numbering: 4139 // 4140 enum ARMExeDomain { 4141 ExeGeneric = 0, 4142 ExeVFP = 1, 4143 ExeNEON = 2 4144 }; 4145 // 4146 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h 4147 // 4148 std::pair<uint16_t, uint16_t> 4149 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr *MI) const { 4150 // If we don't have access to NEON instructions then we won't be able 4151 // to swizzle anything to the NEON domain. Check to make sure. 4152 if (Subtarget.hasNEON()) { 4153 // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON 4154 // if they are not predicated. 4155 if (MI->getOpcode() == ARM::VMOVD && !isPredicated(MI)) 4156 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); 4157 4158 // CortexA9 is particularly picky about mixing the two and wants these 4159 // converted. 4160 if (Subtarget.isCortexA9() && !isPredicated(MI) && 4161 (MI->getOpcode() == ARM::VMOVRS || MI->getOpcode() == ARM::VMOVSR || 4162 MI->getOpcode() == ARM::VMOVS)) 4163 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); 4164 } 4165 // No other instructions can be swizzled, so just determine their domain. 4166 unsigned Domain = MI->getDesc().TSFlags & ARMII::DomainMask; 4167 4168 if (Domain & ARMII::DomainNEON) 4169 return std::make_pair(ExeNEON, 0); 4170 4171 // Certain instructions can go either way on Cortex-A8. 4172 // Treat them as NEON instructions. 4173 if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8()) 4174 return std::make_pair(ExeNEON, 0); 4175 4176 if (Domain & ARMII::DomainVFP) 4177 return std::make_pair(ExeVFP, 0); 4178 4179 return std::make_pair(ExeGeneric, 0); 4180 } 4181 4182 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI, 4183 unsigned SReg, unsigned &Lane) { 4184 unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass); 4185 Lane = 0; 4186 4187 if (DReg != ARM::NoRegister) 4188 return DReg; 4189 4190 Lane = 1; 4191 DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass); 4192 4193 assert(DReg && "S-register with no D super-register?"); 4194 return DReg; 4195 } 4196 4197 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane, 4198 /// set ImplicitSReg to a register number that must be marked as implicit-use or 4199 /// zero if no register needs to be defined as implicit-use. 4200 /// 4201 /// If the function cannot determine if an SPR should be marked implicit use or 4202 /// not, it returns false. 4203 /// 4204 /// This function handles cases where an instruction is being modified from taking 4205 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict 4206 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other 4207 /// lane of the DPR). 4208 /// 4209 /// If the other SPR is defined, an implicit-use of it should be added. Else, 4210 /// (including the case where the DPR itself is defined), it should not. 4211 /// 4212 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI, 4213 MachineInstr *MI, 4214 unsigned DReg, unsigned Lane, 4215 unsigned &ImplicitSReg) { 4216 // If the DPR is defined or used already, the other SPR lane will be chained 4217 // correctly, so there is nothing to be done. 4218 if (MI->definesRegister(DReg, TRI) || MI->readsRegister(DReg, TRI)) { 4219 ImplicitSReg = 0; 4220 return true; 4221 } 4222 4223 // Otherwise we need to go searching to see if the SPR is set explicitly. 4224 ImplicitSReg = TRI->getSubReg(DReg, 4225 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1); 4226 MachineBasicBlock::LivenessQueryResult LQR = 4227 MI->getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI); 4228 4229 if (LQR == MachineBasicBlock::LQR_Live) 4230 return true; 4231 else if (LQR == MachineBasicBlock::LQR_Unknown) 4232 return false; 4233 4234 // If the register is known not to be live, there is no need to add an 4235 // implicit-use. 4236 ImplicitSReg = 0; 4237 return true; 4238 } 4239 4240 void 4241 ARMBaseInstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const { 4242 unsigned DstReg, SrcReg, DReg; 4243 unsigned Lane; 4244 MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI); 4245 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4246 switch (MI->getOpcode()) { 4247 default: 4248 llvm_unreachable("cannot handle opcode!"); 4249 break; 4250 case ARM::VMOVD: 4251 if (Domain != ExeNEON) 4252 break; 4253 4254 // Zap the predicate operands. 4255 assert(!isPredicated(MI) && "Cannot predicate a VORRd"); 4256 4257 // Make sure we've got NEON instructions. 4258 assert(Subtarget.hasNEON() && "VORRd requires NEON"); 4259 4260 // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits) 4261 DstReg = MI->getOperand(0).getReg(); 4262 SrcReg = MI->getOperand(1).getReg(); 4263 4264 for (unsigned i = MI->getDesc().getNumOperands(); i; --i) 4265 MI->RemoveOperand(i-1); 4266 4267 // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits) 4268 MI->setDesc(get(ARM::VORRd)); 4269 AddDefaultPred(MIB.addReg(DstReg, RegState::Define) 4270 .addReg(SrcReg) 4271 .addReg(SrcReg)); 4272 break; 4273 case ARM::VMOVRS: 4274 if (Domain != ExeNEON) 4275 break; 4276 assert(!isPredicated(MI) && "Cannot predicate a VGETLN"); 4277 4278 // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits) 4279 DstReg = MI->getOperand(0).getReg(); 4280 SrcReg = MI->getOperand(1).getReg(); 4281 4282 for (unsigned i = MI->getDesc().getNumOperands(); i; --i) 4283 MI->RemoveOperand(i-1); 4284 4285 DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane); 4286 4287 // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps) 4288 // Note that DSrc has been widened and the other lane may be undef, which 4289 // contaminates the entire register. 4290 MI->setDesc(get(ARM::VGETLNi32)); 4291 AddDefaultPred(MIB.addReg(DstReg, RegState::Define) 4292 .addReg(DReg, RegState::Undef) 4293 .addImm(Lane)); 4294 4295 // The old source should be an implicit use, otherwise we might think it 4296 // was dead before here. 4297 MIB.addReg(SrcReg, RegState::Implicit); 4298 break; 4299 case ARM::VMOVSR: { 4300 if (Domain != ExeNEON) 4301 break; 4302 assert(!isPredicated(MI) && "Cannot predicate a VSETLN"); 4303 4304 // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits) 4305 DstReg = MI->getOperand(0).getReg(); 4306 SrcReg = MI->getOperand(1).getReg(); 4307 4308 DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane); 4309 4310 unsigned ImplicitSReg; 4311 if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg)) 4312 break; 4313 4314 for (unsigned i = MI->getDesc().getNumOperands(); i; --i) 4315 MI->RemoveOperand(i-1); 4316 4317 // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps) 4318 // Again DDst may be undefined at the beginning of this instruction. 4319 MI->setDesc(get(ARM::VSETLNi32)); 4320 MIB.addReg(DReg, RegState::Define) 4321 .addReg(DReg, getUndefRegState(!MI->readsRegister(DReg, TRI))) 4322 .addReg(SrcReg) 4323 .addImm(Lane); 4324 AddDefaultPred(MIB); 4325 4326 // The narrower destination must be marked as set to keep previous chains 4327 // in place. 4328 MIB.addReg(DstReg, RegState::Define | RegState::Implicit); 4329 if (ImplicitSReg != 0) 4330 MIB.addReg(ImplicitSReg, RegState::Implicit); 4331 break; 4332 } 4333 case ARM::VMOVS: { 4334 if (Domain != ExeNEON) 4335 break; 4336 4337 // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits) 4338 DstReg = MI->getOperand(0).getReg(); 4339 SrcReg = MI->getOperand(1).getReg(); 4340 4341 unsigned DstLane = 0, SrcLane = 0, DDst, DSrc; 4342 DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane); 4343 DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane); 4344 4345 unsigned ImplicitSReg; 4346 if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg)) 4347 break; 4348 4349 for (unsigned i = MI->getDesc().getNumOperands(); i; --i) 4350 MI->RemoveOperand(i-1); 4351 4352 if (DSrc == DDst) { 4353 // Destination can be: 4354 // %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits) 4355 MI->setDesc(get(ARM::VDUPLN32d)); 4356 MIB.addReg(DDst, RegState::Define) 4357 .addReg(DDst, getUndefRegState(!MI->readsRegister(DDst, TRI))) 4358 .addImm(SrcLane); 4359 AddDefaultPred(MIB); 4360 4361 // Neither the source or the destination are naturally represented any 4362 // more, so add them in manually. 4363 MIB.addReg(DstReg, RegState::Implicit | RegState::Define); 4364 MIB.addReg(SrcReg, RegState::Implicit); 4365 if (ImplicitSReg != 0) 4366 MIB.addReg(ImplicitSReg, RegState::Implicit); 4367 break; 4368 } 4369 4370 // In general there's no single instruction that can perform an S <-> S 4371 // move in NEON space, but a pair of VEXT instructions *can* do the 4372 // job. It turns out that the VEXTs needed will only use DSrc once, with 4373 // the position based purely on the combination of lane-0 and lane-1 4374 // involved. For example 4375 // vmov s0, s2 -> vext.32 d0, d0, d1, #1 vext.32 d0, d0, d0, #1 4376 // vmov s1, s3 -> vext.32 d0, d1, d0, #1 vext.32 d0, d0, d0, #1 4377 // vmov s0, s3 -> vext.32 d0, d0, d0, #1 vext.32 d0, d1, d0, #1 4378 // vmov s1, s2 -> vext.32 d0, d0, d0, #1 vext.32 d0, d0, d1, #1 4379 // 4380 // Pattern of the MachineInstrs is: 4381 // %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits) 4382 MachineInstrBuilder NewMIB; 4383 NewMIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 4384 get(ARM::VEXTd32), DDst); 4385 4386 // On the first instruction, both DSrc and DDst may be <undef> if present. 4387 // Specifically when the original instruction didn't have them as an 4388 // <imp-use>. 4389 unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst; 4390 bool CurUndef = !MI->readsRegister(CurReg, TRI); 4391 NewMIB.addReg(CurReg, getUndefRegState(CurUndef)); 4392 4393 CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst; 4394 CurUndef = !MI->readsRegister(CurReg, TRI); 4395 NewMIB.addReg(CurReg, getUndefRegState(CurUndef)); 4396 4397 NewMIB.addImm(1); 4398 AddDefaultPred(NewMIB); 4399 4400 if (SrcLane == DstLane) 4401 NewMIB.addReg(SrcReg, RegState::Implicit); 4402 4403 MI->setDesc(get(ARM::VEXTd32)); 4404 MIB.addReg(DDst, RegState::Define); 4405 4406 // On the second instruction, DDst has definitely been defined above, so 4407 // it is not <undef>. DSrc, if present, can be <undef> as above. 4408 CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst; 4409 CurUndef = CurReg == DSrc && !MI->readsRegister(CurReg, TRI); 4410 MIB.addReg(CurReg, getUndefRegState(CurUndef)); 4411 4412 CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst; 4413 CurUndef = CurReg == DSrc && !MI->readsRegister(CurReg, TRI); 4414 MIB.addReg(CurReg, getUndefRegState(CurUndef)); 4415 4416 MIB.addImm(1); 4417 AddDefaultPred(MIB); 4418 4419 if (SrcLane != DstLane) 4420 MIB.addReg(SrcReg, RegState::Implicit); 4421 4422 // As before, the original destination is no longer represented, add it 4423 // implicitly. 4424 MIB.addReg(DstReg, RegState::Define | RegState::Implicit); 4425 if (ImplicitSReg != 0) 4426 MIB.addReg(ImplicitSReg, RegState::Implicit); 4427 break; 4428 } 4429 } 4430 4431 } 4432 4433 //===----------------------------------------------------------------------===// 4434 // Partial register updates 4435 //===----------------------------------------------------------------------===// 4436 // 4437 // Swift renames NEON registers with 64-bit granularity. That means any 4438 // instruction writing an S-reg implicitly reads the containing D-reg. The 4439 // problem is mostly avoided by translating f32 operations to v2f32 operations 4440 // on D-registers, but f32 loads are still a problem. 4441 // 4442 // These instructions can load an f32 into a NEON register: 4443 // 4444 // VLDRS - Only writes S, partial D update. 4445 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops. 4446 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops. 4447 // 4448 // FCONSTD can be used as a dependency-breaking instruction. 4449 unsigned ARMBaseInstrInfo:: 4450 getPartialRegUpdateClearance(const MachineInstr *MI, 4451 unsigned OpNum, 4452 const TargetRegisterInfo *TRI) const { 4453 if (!SwiftPartialUpdateClearance || 4454 !(Subtarget.isSwift() || Subtarget.isCortexA15())) 4455 return 0; 4456 4457 assert(TRI && "Need TRI instance"); 4458 4459 const MachineOperand &MO = MI->getOperand(OpNum); 4460 if (MO.readsReg()) 4461 return 0; 4462 unsigned Reg = MO.getReg(); 4463 int UseOp = -1; 4464 4465 switch(MI->getOpcode()) { 4466 // Normal instructions writing only an S-register. 4467 case ARM::VLDRS: 4468 case ARM::FCONSTS: 4469 case ARM::VMOVSR: 4470 case ARM::VMOVv8i8: 4471 case ARM::VMOVv4i16: 4472 case ARM::VMOVv2i32: 4473 case ARM::VMOVv2f32: 4474 case ARM::VMOVv1i64: 4475 UseOp = MI->findRegisterUseOperandIdx(Reg, false, TRI); 4476 break; 4477 4478 // Explicitly reads the dependency. 4479 case ARM::VLD1LNd32: 4480 UseOp = 3; 4481 break; 4482 default: 4483 return 0; 4484 } 4485 4486 // If this instruction actually reads a value from Reg, there is no unwanted 4487 // dependency. 4488 if (UseOp != -1 && MI->getOperand(UseOp).readsReg()) 4489 return 0; 4490 4491 // We must be able to clobber the whole D-reg. 4492 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 4493 // Virtual register must be a foo:ssub_0<def,undef> operand. 4494 if (!MO.getSubReg() || MI->readsVirtualRegister(Reg)) 4495 return 0; 4496 } else if (ARM::SPRRegClass.contains(Reg)) { 4497 // Physical register: MI must define the full D-reg. 4498 unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0, 4499 &ARM::DPRRegClass); 4500 if (!DReg || !MI->definesRegister(DReg, TRI)) 4501 return 0; 4502 } 4503 4504 // MI has an unwanted D-register dependency. 4505 // Avoid defs in the previous N instructrions. 4506 return SwiftPartialUpdateClearance; 4507 } 4508 4509 // Break a partial register dependency after getPartialRegUpdateClearance 4510 // returned non-zero. 4511 void ARMBaseInstrInfo:: 4512 breakPartialRegDependency(MachineBasicBlock::iterator MI, 4513 unsigned OpNum, 4514 const TargetRegisterInfo *TRI) const { 4515 assert(MI && OpNum < MI->getDesc().getNumDefs() && "OpNum is not a def"); 4516 assert(TRI && "Need TRI instance"); 4517 4518 const MachineOperand &MO = MI->getOperand(OpNum); 4519 unsigned Reg = MO.getReg(); 4520 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && 4521 "Can't break virtual register dependencies."); 4522 unsigned DReg = Reg; 4523 4524 // If MI defines an S-reg, find the corresponding D super-register. 4525 if (ARM::SPRRegClass.contains(Reg)) { 4526 DReg = ARM::D0 + (Reg - ARM::S0) / 2; 4527 assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken"); 4528 } 4529 4530 assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps"); 4531 assert(MI->definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg"); 4532 4533 // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines 4534 // the full D-register by loading the same value to both lanes. The 4535 // instruction is micro-coded with 2 uops, so don't do this until we can 4536 // properly schedule micro-coded instructions. The dispatcher stalls cause 4537 // too big regressions. 4538 4539 // Insert the dependency-breaking FCONSTD before MI. 4540 // 96 is the encoding of 0.5, but the actual value doesn't matter here. 4541 AddDefaultPred(BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 4542 get(ARM::FCONSTD), DReg).addImm(96)); 4543 MI->addRegisterKilled(DReg, TRI, true); 4544 } 4545 4546 bool ARMBaseInstrInfo::hasNOP() const { 4547 return Subtarget.getFeatureBits()[ARM::HasV6KOps]; 4548 } 4549 4550 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const { 4551 if (MI->getNumOperands() < 4) 4552 return true; 4553 unsigned ShOpVal = MI->getOperand(3).getImm(); 4554 unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal); 4555 // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1. 4556 if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) || 4557 ((ShImm == 1 || ShImm == 2) && 4558 ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl)) 4559 return true; 4560 4561 return false; 4562 } 4563 4564 bool ARMBaseInstrInfo::getRegSequenceLikeInputs( 4565 const MachineInstr &MI, unsigned DefIdx, 4566 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 4567 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 4568 assert(MI.isRegSequenceLike() && "Invalid kind of instruction"); 4569 4570 switch (MI.getOpcode()) { 4571 case ARM::VMOVDRR: 4572 // dX = VMOVDRR rY, rZ 4573 // is the same as: 4574 // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1 4575 // Populate the InputRegs accordingly. 4576 // rY 4577 const MachineOperand *MOReg = &MI.getOperand(1); 4578 InputRegs.push_back( 4579 RegSubRegPairAndIdx(MOReg->getReg(), MOReg->getSubReg(), ARM::ssub_0)); 4580 // rZ 4581 MOReg = &MI.getOperand(2); 4582 InputRegs.push_back( 4583 RegSubRegPairAndIdx(MOReg->getReg(), MOReg->getSubReg(), ARM::ssub_1)); 4584 return true; 4585 } 4586 llvm_unreachable("Target dependent opcode missing"); 4587 } 4588 4589 bool ARMBaseInstrInfo::getExtractSubregLikeInputs( 4590 const MachineInstr &MI, unsigned DefIdx, 4591 RegSubRegPairAndIdx &InputReg) const { 4592 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 4593 assert(MI.isExtractSubregLike() && "Invalid kind of instruction"); 4594 4595 switch (MI.getOpcode()) { 4596 case ARM::VMOVRRD: 4597 // rX, rY = VMOVRRD dZ 4598 // is the same as: 4599 // rX = EXTRACT_SUBREG dZ, ssub_0 4600 // rY = EXTRACT_SUBREG dZ, ssub_1 4601 const MachineOperand &MOReg = MI.getOperand(2); 4602 InputReg.Reg = MOReg.getReg(); 4603 InputReg.SubReg = MOReg.getSubReg(); 4604 InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1; 4605 return true; 4606 } 4607 llvm_unreachable("Target dependent opcode missing"); 4608 } 4609 4610 bool ARMBaseInstrInfo::getInsertSubregLikeInputs( 4611 const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg, 4612 RegSubRegPairAndIdx &InsertedReg) const { 4613 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 4614 assert(MI.isInsertSubregLike() && "Invalid kind of instruction"); 4615 4616 switch (MI.getOpcode()) { 4617 case ARM::VSETLNi32: 4618 // dX = VSETLNi32 dY, rZ, imm 4619 const MachineOperand &MOBaseReg = MI.getOperand(1); 4620 const MachineOperand &MOInsertedReg = MI.getOperand(2); 4621 const MachineOperand &MOIndex = MI.getOperand(3); 4622 BaseReg.Reg = MOBaseReg.getReg(); 4623 BaseReg.SubReg = MOBaseReg.getSubReg(); 4624 4625 InsertedReg.Reg = MOInsertedReg.getReg(); 4626 InsertedReg.SubReg = MOInsertedReg.getSubReg(); 4627 InsertedReg.SubIdx = MOIndex.getImm() == 0 ? ARM::ssub_0 : ARM::ssub_1; 4628 return true; 4629 } 4630 llvm_unreachable("Target dependent opcode missing"); 4631 } 4632