Home | History | Annotate | Download | only in X86
      1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the X86 implementation of TargetFrameLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "X86FrameLowering.h"
     15 #include "X86InstrBuilder.h"
     16 #include "X86InstrInfo.h"
     17 #include "X86MachineFunctionInfo.h"
     18 #include "X86Subtarget.h"
     19 #include "X86TargetMachine.h"
     20 #include "llvm/ADT/SmallSet.h"
     21 #include "llvm/Analysis/EHPersonalities.h"
     22 #include "llvm/CodeGen/MachineFrameInfo.h"
     23 #include "llvm/CodeGen/MachineFunction.h"
     24 #include "llvm/CodeGen/MachineInstrBuilder.h"
     25 #include "llvm/CodeGen/MachineModuleInfo.h"
     26 #include "llvm/CodeGen/MachineRegisterInfo.h"
     27 #include "llvm/CodeGen/WinEHFuncInfo.h"
     28 #include "llvm/IR/DataLayout.h"
     29 #include "llvm/IR/Function.h"
     30 #include "llvm/MC/MCAsmInfo.h"
     31 #include "llvm/MC/MCSymbol.h"
     32 #include "llvm/Target/TargetOptions.h"
     33 #include "llvm/Support/Debug.h"
     34 #include <cstdlib>
     35 
     36 using namespace llvm;
     37 
     38 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI,
     39                                    unsigned StackAlignOverride)
     40     : TargetFrameLowering(StackGrowsDown, StackAlignOverride,
     41                           STI.is64Bit() ? -8 : -4),
     42       STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) {
     43   // Cache a bunch of frame-related predicates for this subtarget.
     44   SlotSize = TRI->getSlotSize();
     45   Is64Bit = STI.is64Bit();
     46   IsLP64 = STI.isTarget64BitLP64();
     47   // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
     48   Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
     49   StackPtr = TRI->getStackRegister();
     50 }
     51 
     52 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
     53   return !MF.getFrameInfo()->hasVarSizedObjects() &&
     54          !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
     55 }
     56 
     57 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
     58 /// call frame pseudos can be simplified.  Having a FP, as in the default
     59 /// implementation, is not sufficient here since we can't always use it.
     60 /// Use a more nuanced condition.
     61 bool
     62 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
     63   return hasReservedCallFrame(MF) ||
     64          (hasFP(MF) && !TRI->needsStackRealignment(MF)) ||
     65          TRI->hasBasePointer(MF);
     66 }
     67 
     68 // needsFrameIndexResolution - Do we need to perform FI resolution for
     69 // this function. Normally, this is required only when the function
     70 // has any stack objects. However, FI resolution actually has another job,
     71 // not apparent from the title - it resolves callframesetup/destroy
     72 // that were not simplified earlier.
     73 // So, this is required for x86 functions that have push sequences even
     74 // when there are no stack objects.
     75 bool
     76 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const {
     77   return MF.getFrameInfo()->hasStackObjects() ||
     78          MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
     79 }
     80 
     81 /// hasFP - Return true if the specified function should have a dedicated frame
     82 /// pointer register.  This is true if the function has variable sized allocas
     83 /// or if frame pointer elimination is disabled.
     84 bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
     85   const MachineFrameInfo *MFI = MF.getFrameInfo();
     86   const MachineModuleInfo &MMI = MF.getMMI();
     87 
     88   return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
     89           TRI->needsStackRealignment(MF) ||
     90           MFI->hasVarSizedObjects() ||
     91           MFI->isFrameAddressTaken() || MFI->hasOpaqueSPAdjustment() ||
     92           MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
     93           MMI.callsUnwindInit() || MMI.hasEHFunclets() || MMI.callsEHReturn() ||
     94           MFI->hasStackMap() || MFI->hasPatchPoint());
     95 }
     96 
     97 static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) {
     98   if (IsLP64) {
     99     if (isInt<8>(Imm))
    100       return X86::SUB64ri8;
    101     return X86::SUB64ri32;
    102   } else {
    103     if (isInt<8>(Imm))
    104       return X86::SUB32ri8;
    105     return X86::SUB32ri;
    106   }
    107 }
    108 
    109 static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) {
    110   if (IsLP64) {
    111     if (isInt<8>(Imm))
    112       return X86::ADD64ri8;
    113     return X86::ADD64ri32;
    114   } else {
    115     if (isInt<8>(Imm))
    116       return X86::ADD32ri8;
    117     return X86::ADD32ri;
    118   }
    119 }
    120 
    121 static unsigned getSUBrrOpcode(unsigned isLP64) {
    122   return isLP64 ? X86::SUB64rr : X86::SUB32rr;
    123 }
    124 
    125 static unsigned getADDrrOpcode(unsigned isLP64) {
    126   return isLP64 ? X86::ADD64rr : X86::ADD32rr;
    127 }
    128 
    129 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
    130   if (IsLP64) {
    131     if (isInt<8>(Imm))
    132       return X86::AND64ri8;
    133     return X86::AND64ri32;
    134   }
    135   if (isInt<8>(Imm))
    136     return X86::AND32ri8;
    137   return X86::AND32ri;
    138 }
    139 
    140 static unsigned getLEArOpcode(unsigned IsLP64) {
    141   return IsLP64 ? X86::LEA64r : X86::LEA32r;
    142 }
    143 
    144 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live
    145 /// when it reaches the "return" instruction. We can then pop a stack object
    146 /// to this register without worry about clobbering it.
    147 static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
    148                                        MachineBasicBlock::iterator &MBBI,
    149                                        const X86RegisterInfo *TRI,
    150                                        bool Is64Bit) {
    151   const MachineFunction *MF = MBB.getParent();
    152   const Function *F = MF->getFunction();
    153   if (!F || MF->getMMI().callsEHReturn())
    154     return 0;
    155 
    156   const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF);
    157 
    158   unsigned Opc = MBBI->getOpcode();
    159   switch (Opc) {
    160   default: return 0;
    161   case X86::RETL:
    162   case X86::RETQ:
    163   case X86::RETIL:
    164   case X86::RETIQ:
    165   case X86::TCRETURNdi:
    166   case X86::TCRETURNri:
    167   case X86::TCRETURNmi:
    168   case X86::TCRETURNdi64:
    169   case X86::TCRETURNri64:
    170   case X86::TCRETURNmi64:
    171   case X86::EH_RETURN:
    172   case X86::EH_RETURN64: {
    173     SmallSet<uint16_t, 8> Uses;
    174     for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
    175       MachineOperand &MO = MBBI->getOperand(i);
    176       if (!MO.isReg() || MO.isDef())
    177         continue;
    178       unsigned Reg = MO.getReg();
    179       if (!Reg)
    180         continue;
    181       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
    182         Uses.insert(*AI);
    183     }
    184 
    185     for (auto CS : AvailableRegs)
    186       if (!Uses.count(CS) && CS != X86::RIP)
    187         return CS;
    188   }
    189   }
    190 
    191   return 0;
    192 }
    193 
    194 static bool isEAXLiveIn(MachineFunction &MF) {
    195   for (MachineRegisterInfo::livein_iterator II = MF.getRegInfo().livein_begin(),
    196        EE = MF.getRegInfo().livein_end(); II != EE; ++II) {
    197     unsigned Reg = II->first;
    198 
    199     if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX ||
    200         Reg == X86::AH || Reg == X86::AL)
    201       return true;
    202   }
    203 
    204   return false;
    205 }
    206 
    207 /// Check if the flags need to be preserved before the terminators.
    208 /// This would be the case, if the eflags is live-in of the region
    209 /// composed by the terminators or live-out of that region, without
    210 /// being defined by a terminator.
    211 static bool
    212 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) {
    213   for (const MachineInstr &MI : MBB.terminators()) {
    214     bool BreakNext = false;
    215     for (const MachineOperand &MO : MI.operands()) {
    216       if (!MO.isReg())
    217         continue;
    218       unsigned Reg = MO.getReg();
    219       if (Reg != X86::EFLAGS)
    220         continue;
    221 
    222       // This terminator needs an eflags that is not defined
    223       // by a previous another terminator:
    224       // EFLAGS is live-in of the region composed by the terminators.
    225       if (!MO.isDef())
    226         return true;
    227       // This terminator defines the eflags, i.e., we don't need to preserve it.
    228       // However, we still need to check this specific terminator does not
    229       // read a live-in value.
    230       BreakNext = true;
    231     }
    232     // We found a definition of the eflags, no need to preserve them.
    233     if (BreakNext)
    234       return false;
    235   }
    236 
    237   // None of the terminators use or define the eflags.
    238   // Check if they are live-out, that would imply we need to preserve them.
    239   for (const MachineBasicBlock *Succ : MBB.successors())
    240     if (Succ->isLiveIn(X86::EFLAGS))
    241       return true;
    242 
    243   return false;
    244 }
    245 
    246 /// emitSPUpdate - Emit a series of instructions to increment / decrement the
    247 /// stack pointer by a constant value.
    248 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB,
    249                                     MachineBasicBlock::iterator &MBBI,
    250                                     int64_t NumBytes, bool InEpilogue) const {
    251   bool isSub = NumBytes < 0;
    252   uint64_t Offset = isSub ? -NumBytes : NumBytes;
    253 
    254   uint64_t Chunk = (1LL << 31) - 1;
    255   DebugLoc DL = MBB.findDebugLoc(MBBI);
    256 
    257   while (Offset) {
    258     if (Offset > Chunk) {
    259       // Rather than emit a long series of instructions for large offsets,
    260       // load the offset into a register and do one sub/add
    261       unsigned Reg = 0;
    262 
    263       if (isSub && !isEAXLiveIn(*MBB.getParent()))
    264         Reg = (unsigned)(Is64Bit ? X86::RAX : X86::EAX);
    265       else
    266         Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
    267 
    268       if (Reg) {
    269         unsigned Opc = Is64Bit ? X86::MOV64ri : X86::MOV32ri;
    270         BuildMI(MBB, MBBI, DL, TII.get(Opc), Reg)
    271           .addImm(Offset);
    272         Opc = isSub
    273           ? getSUBrrOpcode(Is64Bit)
    274           : getADDrrOpcode(Is64Bit);
    275         MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
    276           .addReg(StackPtr)
    277           .addReg(Reg);
    278         MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
    279         Offset = 0;
    280         continue;
    281       }
    282     }
    283 
    284     uint64_t ThisVal = std::min(Offset, Chunk);
    285     if (ThisVal == (Is64Bit ? 8 : 4)) {
    286       // Use push / pop instead.
    287       unsigned Reg = isSub
    288         ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
    289         : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
    290       if (Reg) {
    291         unsigned Opc = isSub
    292           ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
    293           : (Is64Bit ? X86::POP64r  : X86::POP32r);
    294         MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc))
    295           .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub));
    296         if (isSub)
    297           MI->setFlag(MachineInstr::FrameSetup);
    298         else
    299           MI->setFlag(MachineInstr::FrameDestroy);
    300         Offset -= ThisVal;
    301         continue;
    302       }
    303     }
    304 
    305     MachineInstrBuilder MI = BuildStackAdjustment(
    306         MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue);
    307     if (isSub)
    308       MI.setMIFlag(MachineInstr::FrameSetup);
    309     else
    310       MI.setMIFlag(MachineInstr::FrameDestroy);
    311 
    312     Offset -= ThisVal;
    313   }
    314 }
    315 
    316 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment(
    317     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, DebugLoc DL,
    318     int64_t Offset, bool InEpilogue) const {
    319   assert(Offset != 0 && "zero offset stack adjustment requested");
    320 
    321   // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue
    322   // is tricky.
    323   bool UseLEA;
    324   if (!InEpilogue) {
    325     // Check if inserting the prologue at the beginning
    326     // of MBB would require to use LEA operations.
    327     // We need to use LEA operations if EFLAGS is live in, because
    328     // it means an instruction will read it before it gets defined.
    329     UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS);
    330   } else {
    331     // If we can use LEA for SP but we shouldn't, check that none
    332     // of the terminators uses the eflags. Otherwise we will insert
    333     // a ADD that will redefine the eflags and break the condition.
    334     // Alternatively, we could move the ADD, but this may not be possible
    335     // and is an optimization anyway.
    336     UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent());
    337     if (UseLEA && !STI.useLeaForSP())
    338       UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB);
    339     // If that assert breaks, that means we do not do the right thing
    340     // in canUseAsEpilogue.
    341     assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) &&
    342            "We shouldn't have allowed this insertion point");
    343   }
    344 
    345   MachineInstrBuilder MI;
    346   if (UseLEA) {
    347     MI = addRegOffset(BuildMI(MBB, MBBI, DL,
    348                               TII.get(getLEArOpcode(Uses64BitFramePtr)),
    349                               StackPtr),
    350                       StackPtr, false, Offset);
    351   } else {
    352     bool IsSub = Offset < 0;
    353     uint64_t AbsOffset = IsSub ? -Offset : Offset;
    354     unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset)
    355                          : getADDriOpcode(Uses64BitFramePtr, AbsOffset);
    356     MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
    357              .addReg(StackPtr)
    358              .addImm(AbsOffset);
    359     MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
    360   }
    361   return MI;
    362 }
    363 
    364 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB,
    365                                      MachineBasicBlock::iterator &MBBI,
    366                                      bool doMergeWithPrevious) const {
    367   if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
    368       (!doMergeWithPrevious && MBBI == MBB.end()))
    369     return 0;
    370 
    371   MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI;
    372   MachineBasicBlock::iterator NI = doMergeWithPrevious ? nullptr
    373                                                        : std::next(MBBI);
    374   unsigned Opc = PI->getOpcode();
    375   int Offset = 0;
    376 
    377   if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
    378        Opc == X86::ADD32ri || Opc == X86::ADD32ri8 ||
    379        Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
    380       PI->getOperand(0).getReg() == StackPtr){
    381     Offset += PI->getOperand(2).getImm();
    382     MBB.erase(PI);
    383     if (!doMergeWithPrevious) MBBI = NI;
    384   } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
    385               Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
    386              PI->getOperand(0).getReg() == StackPtr) {
    387     Offset -= PI->getOperand(2).getImm();
    388     MBB.erase(PI);
    389     if (!doMergeWithPrevious) MBBI = NI;
    390   }
    391 
    392   return Offset;
    393 }
    394 
    395 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB,
    396                                 MachineBasicBlock::iterator MBBI, DebugLoc DL,
    397                                 MCCFIInstruction CFIInst) const {
    398   MachineFunction &MF = *MBB.getParent();
    399   unsigned CFIIndex = MF.getMMI().addFrameInst(CFIInst);
    400   BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
    401       .addCFIIndex(CFIIndex);
    402 }
    403 
    404 void
    405 X86FrameLowering::emitCalleeSavedFrameMoves(MachineBasicBlock &MBB,
    406                                             MachineBasicBlock::iterator MBBI,
    407                                             DebugLoc DL) const {
    408   MachineFunction &MF = *MBB.getParent();
    409   MachineFrameInfo *MFI = MF.getFrameInfo();
    410   MachineModuleInfo &MMI = MF.getMMI();
    411   const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
    412 
    413   // Add callee saved registers to move list.
    414   const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
    415   if (CSI.empty()) return;
    416 
    417   // Calculate offsets.
    418   for (std::vector<CalleeSavedInfo>::const_iterator
    419          I = CSI.begin(), E = CSI.end(); I != E; ++I) {
    420     int64_t Offset = MFI->getObjectOffset(I->getFrameIdx());
    421     unsigned Reg = I->getReg();
    422 
    423     unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
    424     BuildCFI(MBB, MBBI, DL,
    425              MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
    426   }
    427 }
    428 
    429 /// usesTheStack - This function checks if any of the users of EFLAGS
    430 /// copies the EFLAGS. We know that the code that lowers COPY of EFLAGS has
    431 /// to use the stack, and if we don't adjust the stack we clobber the first
    432 /// frame index.
    433 /// See X86InstrInfo::copyPhysReg.
    434 static bool usesTheStack(const MachineFunction &MF) {
    435   const MachineRegisterInfo &MRI = MF.getRegInfo();
    436 
    437   for (MachineRegisterInfo::reg_instr_iterator
    438        ri = MRI.reg_instr_begin(X86::EFLAGS), re = MRI.reg_instr_end();
    439        ri != re; ++ri)
    440     if (ri->isCopy())
    441       return true;
    442 
    443   return false;
    444 }
    445 
    446 MachineInstr *X86FrameLowering::emitStackProbe(MachineFunction &MF,
    447                                                MachineBasicBlock &MBB,
    448                                                MachineBasicBlock::iterator MBBI,
    449                                                DebugLoc DL,
    450                                                bool InProlog) const {
    451   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
    452   if (STI.isTargetWindowsCoreCLR()) {
    453     if (InProlog) {
    454       return emitStackProbeInlineStub(MF, MBB, MBBI, DL, true);
    455     } else {
    456       return emitStackProbeInline(MF, MBB, MBBI, DL, false);
    457     }
    458   } else {
    459     return emitStackProbeCall(MF, MBB, MBBI, DL, InProlog);
    460   }
    461 }
    462 
    463 void X86FrameLowering::inlineStackProbe(MachineFunction &MF,
    464                                         MachineBasicBlock &PrologMBB) const {
    465   const StringRef ChkStkStubSymbol = "__chkstk_stub";
    466   MachineInstr *ChkStkStub = nullptr;
    467 
    468   for (MachineInstr &MI : PrologMBB) {
    469     if (MI.isCall() && MI.getOperand(0).isSymbol() &&
    470         ChkStkStubSymbol == MI.getOperand(0).getSymbolName()) {
    471       ChkStkStub = &MI;
    472       break;
    473     }
    474   }
    475 
    476   if (ChkStkStub != nullptr) {
    477     MachineBasicBlock::iterator MBBI = std::next(ChkStkStub->getIterator());
    478     assert(std::prev(MBBI).operator==(ChkStkStub) &&
    479       "MBBI expected after __chkstk_stub.");
    480     DebugLoc DL = PrologMBB.findDebugLoc(MBBI);
    481     emitStackProbeInline(MF, PrologMBB, MBBI, DL, true);
    482     ChkStkStub->eraseFromParent();
    483   }
    484 }
    485 
    486 MachineInstr *X86FrameLowering::emitStackProbeInline(
    487   MachineFunction &MF, MachineBasicBlock &MBB,
    488   MachineBasicBlock::iterator MBBI, DebugLoc DL, bool InProlog) const {
    489   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
    490   assert(STI.is64Bit() && "different expansion needed for 32 bit");
    491   assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR");
    492   const TargetInstrInfo &TII = *STI.getInstrInfo();
    493   const BasicBlock *LLVM_BB = MBB.getBasicBlock();
    494 
    495   // RAX contains the number of bytes of desired stack adjustment.
    496   // The handling here assumes this value has already been updated so as to
    497   // maintain stack alignment.
    498   //
    499   // We need to exit with RSP modified by this amount and execute suitable
    500   // page touches to notify the OS that we're growing the stack responsibly.
    501   // All stack probing must be done without modifying RSP.
    502   //
    503   // MBB:
    504   //    SizeReg = RAX;
    505   //    ZeroReg = 0
    506   //    CopyReg = RSP
    507   //    Flags, TestReg = CopyReg - SizeReg
    508   //    FinalReg = !Flags.Ovf ? TestReg : ZeroReg
    509   //    LimitReg = gs magic thread env access
    510   //    if FinalReg >= LimitReg goto ContinueMBB
    511   // RoundBB:
    512   //    RoundReg = page address of FinalReg
    513   // LoopMBB:
    514   //    LoopReg = PHI(LimitReg,ProbeReg)
    515   //    ProbeReg = LoopReg - PageSize
    516   //    [ProbeReg] = 0
    517   //    if (ProbeReg > RoundReg) goto LoopMBB
    518   // ContinueMBB:
    519   //    RSP = RSP - RAX
    520   //    [rest of original MBB]
    521 
    522   // Set up the new basic blocks
    523   MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB);
    524   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
    525   MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB);
    526 
    527   MachineFunction::iterator MBBIter = std::next(MBB.getIterator());
    528   MF.insert(MBBIter, RoundMBB);
    529   MF.insert(MBBIter, LoopMBB);
    530   MF.insert(MBBIter, ContinueMBB);
    531 
    532   // Split MBB and move the tail portion down to ContinueMBB.
    533   MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI);
    534   ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end());
    535   ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB);
    536 
    537   // Some useful constants
    538   const int64_t ThreadEnvironmentStackLimit = 0x10;
    539   const int64_t PageSize = 0x1000;
    540   const int64_t PageMask = ~(PageSize - 1);
    541 
    542   // Registers we need. For the normal case we use virtual
    543   // registers. For the prolog expansion we use RAX, RCX and RDX.
    544   MachineRegisterInfo &MRI = MF.getRegInfo();
    545   const TargetRegisterClass *RegClass = &X86::GR64RegClass;
    546   const unsigned SizeReg = InProlog ? (unsigned)X86::RAX
    547                                     : MRI.createVirtualRegister(RegClass),
    548                  ZeroReg = InProlog ? (unsigned)X86::RCX
    549                                     : MRI.createVirtualRegister(RegClass),
    550                  CopyReg = InProlog ? (unsigned)X86::RDX
    551                                     : MRI.createVirtualRegister(RegClass),
    552                  TestReg = InProlog ? (unsigned)X86::RDX
    553                                     : MRI.createVirtualRegister(RegClass),
    554                  FinalReg = InProlog ? (unsigned)X86::RDX
    555                                      : MRI.createVirtualRegister(RegClass),
    556                  RoundedReg = InProlog ? (unsigned)X86::RDX
    557                                        : MRI.createVirtualRegister(RegClass),
    558                  LimitReg = InProlog ? (unsigned)X86::RCX
    559                                      : MRI.createVirtualRegister(RegClass),
    560                  JoinReg = InProlog ? (unsigned)X86::RCX
    561                                     : MRI.createVirtualRegister(RegClass),
    562                  ProbeReg = InProlog ? (unsigned)X86::RCX
    563                                      : MRI.createVirtualRegister(RegClass);
    564 
    565   // SP-relative offsets where we can save RCX and RDX.
    566   int64_t RCXShadowSlot = 0;
    567   int64_t RDXShadowSlot = 0;
    568 
    569   // If inlining in the prolog, save RCX and RDX.
    570   // Future optimization: don't save or restore if not live in.
    571   if (InProlog) {
    572     // Compute the offsets. We need to account for things already
    573     // pushed onto the stack at this point: return address, frame
    574     // pointer (if used), and callee saves.
    575     X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
    576     const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize();
    577     const bool HasFP = hasFP(MF);
    578     RCXShadowSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0);
    579     RDXShadowSlot = RCXShadowSlot + 8;
    580     // Emit the saves.
    581     addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
    582                  RCXShadowSlot)
    583         .addReg(X86::RCX);
    584     addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
    585                  RDXShadowSlot)
    586         .addReg(X86::RDX);
    587   } else {
    588     // Not in the prolog. Copy RAX to a virtual reg.
    589     BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX);
    590   }
    591 
    592   // Add code to MBB to check for overflow and set the new target stack pointer
    593   // to zero if so.
    594   BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg)
    595       .addReg(ZeroReg, RegState::Undef)
    596       .addReg(ZeroReg, RegState::Undef);
    597   BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP);
    598   BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg)
    599       .addReg(CopyReg)
    600       .addReg(SizeReg);
    601   BuildMI(&MBB, DL, TII.get(X86::CMOVB64rr), FinalReg)
    602       .addReg(TestReg)
    603       .addReg(ZeroReg);
    604 
    605   // FinalReg now holds final stack pointer value, or zero if
    606   // allocation would overflow. Compare against the current stack
    607   // limit from the thread environment block. Note this limit is the
    608   // lowest touched page on the stack, not the point at which the OS
    609   // will cause an overflow exception, so this is just an optimization
    610   // to avoid unnecessarily touching pages that are below the current
    611   // SP but already commited to the stack by the OS.
    612   BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg)
    613       .addReg(0)
    614       .addImm(1)
    615       .addReg(0)
    616       .addImm(ThreadEnvironmentStackLimit)
    617       .addReg(X86::GS);
    618   BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg);
    619   // Jump if the desired stack pointer is at or above the stack limit.
    620   BuildMI(&MBB, DL, TII.get(X86::JAE_1)).addMBB(ContinueMBB);
    621 
    622   // Add code to roundMBB to round the final stack pointer to a page boundary.
    623   BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg)
    624       .addReg(FinalReg)
    625       .addImm(PageMask);
    626   BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB);
    627 
    628   // LimitReg now holds the current stack limit, RoundedReg page-rounded
    629   // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page
    630   // and probe until we reach RoundedReg.
    631   if (!InProlog) {
    632     BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg)
    633         .addReg(LimitReg)
    634         .addMBB(RoundMBB)
    635         .addReg(ProbeReg)
    636         .addMBB(LoopMBB);
    637   }
    638 
    639   addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg,
    640                false, -PageSize);
    641 
    642   // Probe by storing a byte onto the stack.
    643   BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi))
    644       .addReg(ProbeReg)
    645       .addImm(1)
    646       .addReg(0)
    647       .addImm(0)
    648       .addReg(0)
    649       .addImm(0);
    650   BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr))
    651       .addReg(RoundedReg)
    652       .addReg(ProbeReg);
    653   BuildMI(LoopMBB, DL, TII.get(X86::JNE_1)).addMBB(LoopMBB);
    654 
    655   MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI();
    656 
    657   // If in prolog, restore RDX and RCX.
    658   if (InProlog) {
    659     addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::MOV64rm),
    660                          X86::RCX),
    661                  X86::RSP, false, RCXShadowSlot);
    662     addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::MOV64rm),
    663                          X86::RDX),
    664                  X86::RSP, false, RDXShadowSlot);
    665   }
    666 
    667   // Now that the probing is done, add code to continueMBB to update
    668   // the stack pointer for real.
    669   BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
    670       .addReg(X86::RSP)
    671       .addReg(SizeReg);
    672 
    673   // Add the control flow edges we need.
    674   MBB.addSuccessor(ContinueMBB);
    675   MBB.addSuccessor(RoundMBB);
    676   RoundMBB->addSuccessor(LoopMBB);
    677   LoopMBB->addSuccessor(ContinueMBB);
    678   LoopMBB->addSuccessor(LoopMBB);
    679 
    680   // Mark all the instructions added to the prolog as frame setup.
    681   if (InProlog) {
    682     for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) {
    683       BeforeMBBI->setFlag(MachineInstr::FrameSetup);
    684     }
    685     for (MachineInstr &MI : *RoundMBB) {
    686       MI.setFlag(MachineInstr::FrameSetup);
    687     }
    688     for (MachineInstr &MI : *LoopMBB) {
    689       MI.setFlag(MachineInstr::FrameSetup);
    690     }
    691     for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin();
    692          CMBBI != ContinueMBBI; ++CMBBI) {
    693       CMBBI->setFlag(MachineInstr::FrameSetup);
    694     }
    695   }
    696 
    697   // Possible TODO: physreg liveness for InProlog case.
    698 
    699   return ContinueMBBI;
    700 }
    701 
    702 MachineInstr *X86FrameLowering::emitStackProbeCall(
    703     MachineFunction &MF, MachineBasicBlock &MBB,
    704     MachineBasicBlock::iterator MBBI, DebugLoc DL, bool InProlog) const {
    705   bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large;
    706 
    707   unsigned CallOp;
    708   if (Is64Bit)
    709     CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32;
    710   else
    711     CallOp = X86::CALLpcrel32;
    712 
    713   const char *Symbol;
    714   if (Is64Bit) {
    715     if (STI.isTargetCygMing()) {
    716       Symbol = "___chkstk_ms";
    717     } else {
    718       Symbol = "__chkstk";
    719     }
    720   } else if (STI.isTargetCygMing())
    721     Symbol = "_alloca";
    722   else
    723     Symbol = "_chkstk";
    724 
    725   MachineInstrBuilder CI;
    726   MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI);
    727 
    728   // All current stack probes take AX and SP as input, clobber flags, and
    729   // preserve all registers. x86_64 probes leave RSP unmodified.
    730   if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
    731     // For the large code model, we have to call through a register. Use R11,
    732     // as it is scratch in all supported calling conventions.
    733     BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
    734         .addExternalSymbol(Symbol);
    735     CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11);
    736   } else {
    737     CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addExternalSymbol(Symbol);
    738   }
    739 
    740   unsigned AX = Is64Bit ? X86::RAX : X86::EAX;
    741   unsigned SP = Is64Bit ? X86::RSP : X86::ESP;
    742   CI.addReg(AX, RegState::Implicit)
    743       .addReg(SP, RegState::Implicit)
    744       .addReg(AX, RegState::Define | RegState::Implicit)
    745       .addReg(SP, RegState::Define | RegState::Implicit)
    746       .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
    747 
    748   if (Is64Bit) {
    749     // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
    750     // themselves. It also does not clobber %rax so we can reuse it when
    751     // adjusting %rsp.
    752     BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
    753         .addReg(X86::RSP)
    754         .addReg(X86::RAX);
    755   }
    756 
    757   if (InProlog) {
    758     // Apply the frame setup flag to all inserted instrs.
    759     for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI)
    760       ExpansionMBBI->setFlag(MachineInstr::FrameSetup);
    761   }
    762 
    763   return MBBI;
    764 }
    765 
    766 MachineInstr *X86FrameLowering::emitStackProbeInlineStub(
    767     MachineFunction &MF, MachineBasicBlock &MBB,
    768     MachineBasicBlock::iterator MBBI, DebugLoc DL, bool InProlog) const {
    769 
    770   assert(InProlog && "ChkStkStub called outside prolog!");
    771 
    772   BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
    773       .addExternalSymbol("__chkstk_stub");
    774 
    775   return MBBI;
    776 }
    777 
    778 static unsigned calculateSetFPREG(uint64_t SPAdjust) {
    779   // Win64 ABI has a less restrictive limitation of 240; 128 works equally well
    780   // and might require smaller successive adjustments.
    781   const uint64_t Win64MaxSEHOffset = 128;
    782   uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset);
    783   // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode.
    784   return SEHFrameOffset & -16;
    785 }
    786 
    787 // If we're forcing a stack realignment we can't rely on just the frame
    788 // info, we need to know the ABI stack alignment as well in case we
    789 // have a call out.  Otherwise just make sure we have some alignment - we'll
    790 // go with the minimum SlotSize.
    791 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const {
    792   const MachineFrameInfo *MFI = MF.getFrameInfo();
    793   uint64_t MaxAlign = MFI->getMaxAlignment(); // Desired stack alignment.
    794   unsigned StackAlign = getStackAlignment();
    795   if (MF.getFunction()->hasFnAttribute("stackrealign")) {
    796     if (MFI->hasCalls())
    797       MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
    798     else if (MaxAlign < SlotSize)
    799       MaxAlign = SlotSize;
    800   }
    801   return MaxAlign;
    802 }
    803 
    804 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB,
    805                                           MachineBasicBlock::iterator MBBI,
    806                                           DebugLoc DL, unsigned Reg,
    807                                           uint64_t MaxAlign) const {
    808   uint64_t Val = -MaxAlign;
    809   unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val);
    810   MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg)
    811                          .addReg(Reg)
    812                          .addImm(Val)
    813                          .setMIFlag(MachineInstr::FrameSetup);
    814 
    815   // The EFLAGS implicit def is dead.
    816   MI->getOperand(3).setIsDead();
    817 }
    818 
    819 /// emitPrologue - Push callee-saved registers onto the stack, which
    820 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate
    821 /// space for local variables. Also emit labels used by the exception handler to
    822 /// generate the exception handling frames.
    823 
    824 /*
    825   Here's a gist of what gets emitted:
    826 
    827   ; Establish frame pointer, if needed
    828   [if needs FP]
    829       push  %rbp
    830       .cfi_def_cfa_offset 16
    831       .cfi_offset %rbp, -16
    832       .seh_pushreg %rpb
    833       mov  %rsp, %rbp
    834       .cfi_def_cfa_register %rbp
    835 
    836   ; Spill general-purpose registers
    837   [for all callee-saved GPRs]
    838       pushq %<reg>
    839       [if not needs FP]
    840          .cfi_def_cfa_offset (offset from RETADDR)
    841       .seh_pushreg %<reg>
    842 
    843   ; If the required stack alignment > default stack alignment
    844   ; rsp needs to be re-aligned.  This creates a "re-alignment gap"
    845   ; of unknown size in the stack frame.
    846   [if stack needs re-alignment]
    847       and  $MASK, %rsp
    848 
    849   ; Allocate space for locals
    850   [if target is Windows and allocated space > 4096 bytes]
    851       ; Windows needs special care for allocations larger
    852       ; than one page.
    853       mov $NNN, %rax
    854       call ___chkstk_ms/___chkstk
    855       sub  %rax, %rsp
    856   [else]
    857       sub  $NNN, %rsp
    858 
    859   [if needs FP]
    860       .seh_stackalloc (size of XMM spill slots)
    861       .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
    862   [else]
    863       .seh_stackalloc NNN
    864 
    865   ; Spill XMMs
    866   ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
    867   ; they may get spilled on any platform, if the current function
    868   ; calls @llvm.eh.unwind.init
    869   [if needs FP]
    870       [for all callee-saved XMM registers]
    871           movaps  %<xmm reg>, -MMM(%rbp)
    872       [for all callee-saved XMM registers]
    873           .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
    874               ; i.e. the offset relative to (%rbp - SEHFrameOffset)
    875   [else]
    876       [for all callee-saved XMM registers]
    877           movaps  %<xmm reg>, KKK(%rsp)
    878       [for all callee-saved XMM registers]
    879           .seh_savexmm %<xmm reg>, KKK
    880 
    881   .seh_endprologue
    882 
    883   [if needs base pointer]
    884       mov  %rsp, %rbx
    885       [if needs to restore base pointer]
    886           mov %rsp, -MMM(%rbp)
    887 
    888   ; Emit CFI info
    889   [if needs FP]
    890       [for all callee-saved registers]
    891           .cfi_offset %<reg>, (offset from %rbp)
    892   [else]
    893        .cfi_def_cfa_offset (offset from RETADDR)
    894       [for all callee-saved registers]
    895           .cfi_offset %<reg>, (offset from %rsp)
    896 
    897   Notes:
    898   - .seh directives are emitted only for Windows 64 ABI
    899   - .cfi directives are emitted for all other ABIs
    900   - for 32-bit code, substitute %e?? registers for %r??
    901 */
    902 
    903 void X86FrameLowering::emitPrologue(MachineFunction &MF,
    904                                     MachineBasicBlock &MBB) const {
    905   assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
    906          "MF used frame lowering for wrong subtarget");
    907   MachineBasicBlock::iterator MBBI = MBB.begin();
    908   MachineFrameInfo *MFI = MF.getFrameInfo();
    909   const Function *Fn = MF.getFunction();
    910   MachineModuleInfo &MMI = MF.getMMI();
    911   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
    912   uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment.
    913   uint64_t StackSize = MFI->getStackSize();    // Number of bytes to allocate.
    914   bool IsFunclet = MBB.isEHFuncletEntry();
    915   EHPersonality Personality = EHPersonality::Unknown;
    916   if (Fn->hasPersonalityFn())
    917     Personality = classifyEHPersonality(Fn->getPersonalityFn());
    918   bool FnHasClrFunclet =
    919       MMI.hasEHFunclets() && Personality == EHPersonality::CoreCLR;
    920   bool IsClrFunclet = IsFunclet && FnHasClrFunclet;
    921   bool HasFP = hasFP(MF);
    922   bool IsWin64CC = STI.isCallingConvWin64(Fn->getCallingConv());
    923   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
    924   bool NeedsWinCFI = IsWin64Prologue && Fn->needsUnwindTableEntry();
    925   bool NeedsDwarfCFI =
    926       !IsWin64Prologue && (MMI.hasDebugInfo() || Fn->needsUnwindTableEntry());
    927   unsigned FramePtr = TRI->getFrameRegister(MF);
    928   const unsigned MachineFramePtr =
    929       STI.isTarget64BitILP32()
    930           ? getX86SubSuperRegister(FramePtr, MVT::i64, false)
    931           : FramePtr;
    932   unsigned BasePtr = TRI->getBaseRegister();
    933 
    934   // Debug location must be unknown since the first debug location is used
    935   // to determine the end of the prologue.
    936   DebugLoc DL;
    937 
    938   // Add RETADDR move area to callee saved frame size.
    939   int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
    940   if (TailCallReturnAddrDelta && IsWin64Prologue)
    941     report_fatal_error("Can't handle guaranteed tail call under win64 yet");
    942 
    943   if (TailCallReturnAddrDelta < 0)
    944     X86FI->setCalleeSavedFrameSize(
    945       X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
    946 
    947   bool UseStackProbe = (STI.isOSWindows() && !STI.isTargetMachO());
    948 
    949   // The default stack probe size is 4096 if the function has no stackprobesize
    950   // attribute.
    951   unsigned StackProbeSize = 4096;
    952   if (Fn->hasFnAttribute("stack-probe-size"))
    953     Fn->getFnAttribute("stack-probe-size")
    954         .getValueAsString()
    955         .getAsInteger(0, StackProbeSize);
    956 
    957   // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
    958   // function, and use up to 128 bytes of stack space, don't have a frame
    959   // pointer, calls, or dynamic alloca then we do not need to adjust the
    960   // stack pointer (we fit in the Red Zone). We also check that we don't
    961   // push and pop from the stack.
    962   if (Is64Bit && !Fn->hasFnAttribute(Attribute::NoRedZone) &&
    963       !TRI->needsStackRealignment(MF) &&
    964       !MFI->hasVarSizedObjects() && // No dynamic alloca.
    965       !MFI->adjustsStack() &&       // No calls.
    966       !IsWin64CC &&                 // Win64 has no Red Zone
    967       !usesTheStack(MF) &&          // Don't push and pop.
    968       !MF.shouldSplitStack()) {     // Regular stack
    969     uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
    970     if (HasFP) MinSize += SlotSize;
    971     StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
    972     MFI->setStackSize(StackSize);
    973   }
    974 
    975   // Insert stack pointer adjustment for later moving of return addr.  Only
    976   // applies to tail call optimized functions where the callee argument stack
    977   // size is bigger than the callers.
    978   if (TailCallReturnAddrDelta < 0) {
    979     BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta,
    980                          /*InEpilogue=*/false)
    981         .setMIFlag(MachineInstr::FrameSetup);
    982   }
    983 
    984   // Mapping for machine moves:
    985   //
    986   //   DST: VirtualFP AND
    987   //        SRC: VirtualFP              => DW_CFA_def_cfa_offset
    988   //        ELSE                        => DW_CFA_def_cfa
    989   //
    990   //   SRC: VirtualFP AND
    991   //        DST: Register               => DW_CFA_def_cfa_register
    992   //
    993   //   ELSE
    994   //        OFFSET < 0                  => DW_CFA_offset_extended_sf
    995   //        REG < 64                    => DW_CFA_offset + Reg
    996   //        ELSE                        => DW_CFA_offset_extended
    997 
    998   uint64_t NumBytes = 0;
    999   int stackGrowth = -SlotSize;
   1000 
   1001   // Find the funclet establisher parameter
   1002   unsigned Establisher = X86::NoRegister;
   1003   if (IsClrFunclet)
   1004     Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX;
   1005   else if (IsFunclet)
   1006     Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX;
   1007 
   1008   if (IsWin64Prologue && IsFunclet && !IsClrFunclet) {
   1009     // Immediately spill establisher into the home slot.
   1010     // The runtime cares about this.
   1011     // MOV64mr %rdx, 16(%rsp)
   1012     unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
   1013     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16)
   1014         .addReg(Establisher)
   1015         .setMIFlag(MachineInstr::FrameSetup);
   1016     MBB.addLiveIn(Establisher);
   1017   }
   1018 
   1019   if (HasFP) {
   1020     // Calculate required stack adjustment.
   1021     uint64_t FrameSize = StackSize - SlotSize;
   1022     // If required, include space for extra hidden slot for stashing base pointer.
   1023     if (X86FI->getRestoreBasePointer())
   1024       FrameSize += SlotSize;
   1025 
   1026     NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
   1027 
   1028     // Callee-saved registers are pushed on stack before the stack is realigned.
   1029     if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
   1030       NumBytes = RoundUpToAlignment(NumBytes, MaxAlign);
   1031 
   1032     // Get the offset of the stack slot for the EBP register, which is
   1033     // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
   1034     // Update the frame offset adjustment.
   1035     if (!IsFunclet)
   1036       MFI->setOffsetAdjustment(-NumBytes);
   1037     else
   1038       assert(MFI->getOffsetAdjustment() == -(int)NumBytes &&
   1039              "should calculate same local variable offset for funclets");
   1040 
   1041     // Save EBP/RBP into the appropriate stack slot.
   1042     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
   1043       .addReg(MachineFramePtr, RegState::Kill)
   1044       .setMIFlag(MachineInstr::FrameSetup);
   1045 
   1046     if (NeedsDwarfCFI) {
   1047       // Mark the place where EBP/RBP was saved.
   1048       // Define the current CFA rule to use the provided offset.
   1049       assert(StackSize);
   1050       BuildCFI(MBB, MBBI, DL,
   1051                MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth));
   1052 
   1053       // Change the rule for the FramePtr to be an "offset" rule.
   1054       unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
   1055       BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset(
   1056                                   nullptr, DwarfFramePtr, 2 * stackGrowth));
   1057     }
   1058 
   1059     if (NeedsWinCFI) {
   1060       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
   1061           .addImm(FramePtr)
   1062           .setMIFlag(MachineInstr::FrameSetup);
   1063     }
   1064 
   1065     if (!IsWin64Prologue && !IsFunclet) {
   1066       // Update EBP with the new base value.
   1067       BuildMI(MBB, MBBI, DL,
   1068               TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
   1069               FramePtr)
   1070           .addReg(StackPtr)
   1071           .setMIFlag(MachineInstr::FrameSetup);
   1072 
   1073       if (NeedsDwarfCFI) {
   1074         // Mark effective beginning of when frame pointer becomes valid.
   1075         // Define the current CFA to use the EBP/RBP register.
   1076         unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
   1077         BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister(
   1078                                     nullptr, DwarfFramePtr));
   1079       }
   1080     }
   1081 
   1082     // Mark the FramePtr as live-in in every block. Don't do this again for
   1083     // funclet prologues.
   1084     if (!IsFunclet) {
   1085       for (MachineBasicBlock &EveryMBB : MF)
   1086         EveryMBB.addLiveIn(MachineFramePtr);
   1087     }
   1088   } else {
   1089     assert(!IsFunclet && "funclets without FPs not yet implemented");
   1090     NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
   1091   }
   1092 
   1093   // For EH funclets, only allocate enough space for outgoing calls. Save the
   1094   // NumBytes value that we would've used for the parent frame.
   1095   unsigned ParentFrameNumBytes = NumBytes;
   1096   if (IsFunclet)
   1097     NumBytes = getWinEHFuncletFrameSize(MF);
   1098 
   1099   // Skip the callee-saved push instructions.
   1100   bool PushedRegs = false;
   1101   int StackOffset = 2 * stackGrowth;
   1102 
   1103   while (MBBI != MBB.end() &&
   1104          MBBI->getFlag(MachineInstr::FrameSetup) &&
   1105          (MBBI->getOpcode() == X86::PUSH32r ||
   1106           MBBI->getOpcode() == X86::PUSH64r)) {
   1107     PushedRegs = true;
   1108     unsigned Reg = MBBI->getOperand(0).getReg();
   1109     ++MBBI;
   1110 
   1111     if (!HasFP && NeedsDwarfCFI) {
   1112       // Mark callee-saved push instruction.
   1113       // Define the current CFA rule to use the provided offset.
   1114       assert(StackSize);
   1115       BuildCFI(MBB, MBBI, DL,
   1116                MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset));
   1117       StackOffset += stackGrowth;
   1118     }
   1119 
   1120     if (NeedsWinCFI) {
   1121       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)).addImm(Reg).setMIFlag(
   1122           MachineInstr::FrameSetup);
   1123     }
   1124   }
   1125 
   1126   // Realign stack after we pushed callee-saved registers (so that we'll be
   1127   // able to calculate their offsets from the frame pointer).
   1128   // Don't do this for Win64, it needs to realign the stack after the prologue.
   1129   if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) {
   1130     assert(HasFP && "There should be a frame pointer if stack is realigned.");
   1131     BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign);
   1132   }
   1133 
   1134   // If there is an SUB32ri of ESP immediately before this instruction, merge
   1135   // the two. This can be the case when tail call elimination is enabled and
   1136   // the callee has more arguments then the caller.
   1137   NumBytes -= mergeSPUpdates(MBB, MBBI, true);
   1138 
   1139   // Adjust stack pointer: ESP -= numbytes.
   1140 
   1141   // Windows and cygwin/mingw require a prologue helper routine when allocating
   1142   // more than 4K bytes on the stack.  Windows uses __chkstk and cygwin/mingw
   1143   // uses __alloca.  __alloca and the 32-bit version of __chkstk will probe the
   1144   // stack and adjust the stack pointer in one go.  The 64-bit version of
   1145   // __chkstk is only responsible for probing the stack.  The 64-bit prologue is
   1146   // responsible for adjusting the stack pointer.  Touching the stack at 4K
   1147   // increments is necessary to ensure that the guard pages used by the OS
   1148   // virtual memory manager are allocated in correct sequence.
   1149   uint64_t AlignedNumBytes = NumBytes;
   1150   if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF))
   1151     AlignedNumBytes = RoundUpToAlignment(AlignedNumBytes, MaxAlign);
   1152   if (AlignedNumBytes >= StackProbeSize && UseStackProbe) {
   1153     // Check whether EAX is livein for this function.
   1154     bool isEAXAlive = isEAXLiveIn(MF);
   1155 
   1156     if (isEAXAlive) {
   1157       // Sanity check that EAX is not livein for this function.
   1158       // It should not be, so throw an assert.
   1159       assert(!Is64Bit && "EAX is livein in x64 case!");
   1160 
   1161       // Save EAX
   1162       BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
   1163         .addReg(X86::EAX, RegState::Kill)
   1164         .setMIFlag(MachineInstr::FrameSetup);
   1165     }
   1166 
   1167     if (Is64Bit) {
   1168       // Handle the 64-bit Windows ABI case where we need to call __chkstk.
   1169       // Function prologue is responsible for adjusting the stack pointer.
   1170       if (isUInt<32>(NumBytes)) {
   1171         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
   1172             .addImm(NumBytes)
   1173             .setMIFlag(MachineInstr::FrameSetup);
   1174       } else if (isInt<32>(NumBytes)) {
   1175         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX)
   1176             .addImm(NumBytes)
   1177             .setMIFlag(MachineInstr::FrameSetup);
   1178       } else {
   1179         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
   1180             .addImm(NumBytes)
   1181             .setMIFlag(MachineInstr::FrameSetup);
   1182       }
   1183     } else {
   1184       // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
   1185       // We'll also use 4 already allocated bytes for EAX.
   1186       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
   1187           .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
   1188           .setMIFlag(MachineInstr::FrameSetup);
   1189     }
   1190 
   1191     // Call __chkstk, __chkstk_ms, or __alloca.
   1192     emitStackProbe(MF, MBB, MBBI, DL, true);
   1193 
   1194     if (isEAXAlive) {
   1195       // Restore EAX
   1196       MachineInstr *MI =
   1197           addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX),
   1198                        StackPtr, false, NumBytes - 4);
   1199       MI->setFlag(MachineInstr::FrameSetup);
   1200       MBB.insert(MBBI, MI);
   1201     }
   1202   } else if (NumBytes) {
   1203     emitSPUpdate(MBB, MBBI, -(int64_t)NumBytes, /*InEpilogue=*/false);
   1204   }
   1205 
   1206   if (NeedsWinCFI && NumBytes)
   1207     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
   1208         .addImm(NumBytes)
   1209         .setMIFlag(MachineInstr::FrameSetup);
   1210 
   1211   int SEHFrameOffset = 0;
   1212   unsigned SPOrEstablisher;
   1213   if (IsFunclet) {
   1214     if (IsClrFunclet) {
   1215       // The establisher parameter passed to a CLR funclet is actually a pointer
   1216       // to the (mostly empty) frame of its nearest enclosing funclet; we have
   1217       // to find the root function establisher frame by loading the PSPSym from
   1218       // the intermediate frame.
   1219       unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
   1220       MachinePointerInfo NoInfo;
   1221       MBB.addLiveIn(Establisher);
   1222       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher),
   1223                    Establisher, false, PSPSlotOffset)
   1224           .addMemOperand(MF.getMachineMemOperand(
   1225               NoInfo, MachineMemOperand::MOLoad, SlotSize, SlotSize));
   1226       ;
   1227       // Save the root establisher back into the current funclet's (mostly
   1228       // empty) frame, in case a sub-funclet or the GC needs it.
   1229       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr,
   1230                    false, PSPSlotOffset)
   1231           .addReg(Establisher)
   1232           .addMemOperand(
   1233               MF.getMachineMemOperand(NoInfo, MachineMemOperand::MOStore |
   1234                                                   MachineMemOperand::MOVolatile,
   1235                                       SlotSize, SlotSize));
   1236     }
   1237     SPOrEstablisher = Establisher;
   1238   } else {
   1239     SPOrEstablisher = StackPtr;
   1240   }
   1241 
   1242   if (IsWin64Prologue && HasFP) {
   1243     // Set RBP to a small fixed offset from RSP. In the funclet case, we base
   1244     // this calculation on the incoming establisher, which holds the value of
   1245     // RSP from the parent frame at the end of the prologue.
   1246     SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes);
   1247     if (SEHFrameOffset)
   1248       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr),
   1249                    SPOrEstablisher, false, SEHFrameOffset);
   1250     else
   1251       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr)
   1252           .addReg(SPOrEstablisher);
   1253 
   1254     // If this is not a funclet, emit the CFI describing our frame pointer.
   1255     if (NeedsWinCFI && !IsFunclet) {
   1256       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
   1257           .addImm(FramePtr)
   1258           .addImm(SEHFrameOffset)
   1259           .setMIFlag(MachineInstr::FrameSetup);
   1260       if (isAsynchronousEHPersonality(Personality))
   1261         MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset;
   1262     }
   1263   } else if (IsFunclet && STI.is32Bit()) {
   1264     // Reset EBP / ESI to something good for funclets.
   1265     MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL);
   1266     // If we're a catch funclet, we can be returned to via catchret. Save ESP
   1267     // into the registration node so that the runtime will restore it for us.
   1268     if (!MBB.isCleanupFuncletEntry()) {
   1269       assert(Personality == EHPersonality::MSVC_CXX);
   1270       unsigned FrameReg;
   1271       int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex;
   1272       int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg);
   1273       // ESP is the first field, so no extra displacement is needed.
   1274       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg,
   1275                    false, EHRegOffset)
   1276           .addReg(X86::ESP);
   1277     }
   1278   }
   1279 
   1280   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) {
   1281     const MachineInstr *FrameInstr = &*MBBI;
   1282     ++MBBI;
   1283 
   1284     if (NeedsWinCFI) {
   1285       int FI;
   1286       if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) {
   1287         if (X86::FR64RegClass.contains(Reg)) {
   1288           unsigned IgnoredFrameReg;
   1289           int Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg);
   1290           Offset += SEHFrameOffset;
   1291 
   1292           BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
   1293               .addImm(Reg)
   1294               .addImm(Offset)
   1295               .setMIFlag(MachineInstr::FrameSetup);
   1296         }
   1297       }
   1298     }
   1299   }
   1300 
   1301   if (NeedsWinCFI)
   1302     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
   1303         .setMIFlag(MachineInstr::FrameSetup);
   1304 
   1305   if (FnHasClrFunclet && !IsFunclet) {
   1306     // Save the so-called Initial-SP (i.e. the value of the stack pointer
   1307     // immediately after the prolog)  into the PSPSlot so that funclets
   1308     // and the GC can recover it.
   1309     unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
   1310     auto PSPInfo = MachinePointerInfo::getFixedStack(
   1311         MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx);
   1312     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false,
   1313                  PSPSlotOffset)
   1314         .addReg(StackPtr)
   1315         .addMemOperand(MF.getMachineMemOperand(
   1316             PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
   1317             SlotSize, SlotSize));
   1318   }
   1319 
   1320   // Realign stack after we spilled callee-saved registers (so that we'll be
   1321   // able to calculate their offsets from the frame pointer).
   1322   // Win64 requires aligning the stack after the prologue.
   1323   if (IsWin64Prologue && TRI->needsStackRealignment(MF)) {
   1324     assert(HasFP && "There should be a frame pointer if stack is realigned.");
   1325     BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign);
   1326   }
   1327 
   1328   // We already dealt with stack realignment and funclets above.
   1329   if (IsFunclet && STI.is32Bit())
   1330     return;
   1331 
   1332   // If we need a base pointer, set it up here. It's whatever the value
   1333   // of the stack pointer is at this point. Any variable size objects
   1334   // will be allocated after this, so we can still use the base pointer
   1335   // to reference locals.
   1336   if (TRI->hasBasePointer(MF)) {
   1337     // Update the base pointer with the current stack pointer.
   1338     unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
   1339     BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
   1340       .addReg(SPOrEstablisher)
   1341       .setMIFlag(MachineInstr::FrameSetup);
   1342     if (X86FI->getRestoreBasePointer()) {
   1343       // Stash value of base pointer.  Saving RSP instead of EBP shortens
   1344       // dependence chain. Used by SjLj EH.
   1345       unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
   1346       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)),
   1347                    FramePtr, true, X86FI->getRestoreBasePointerOffset())
   1348         .addReg(SPOrEstablisher)
   1349         .setMIFlag(MachineInstr::FrameSetup);
   1350     }
   1351 
   1352     if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) {
   1353       // Stash the value of the frame pointer relative to the base pointer for
   1354       // Win32 EH. This supports Win32 EH, which does the inverse of the above:
   1355       // it recovers the frame pointer from the base pointer rather than the
   1356       // other way around.
   1357       unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
   1358       unsigned UsedReg;
   1359       int Offset =
   1360           getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
   1361       assert(UsedReg == BasePtr);
   1362       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset)
   1363           .addReg(FramePtr)
   1364           .setMIFlag(MachineInstr::FrameSetup);
   1365     }
   1366   }
   1367 
   1368   if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
   1369     // Mark end of stack pointer adjustment.
   1370     if (!HasFP && NumBytes) {
   1371       // Define the current CFA rule to use the provided offset.
   1372       assert(StackSize);
   1373       BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset(
   1374                                   nullptr, -StackSize + stackGrowth));
   1375     }
   1376 
   1377     // Emit DWARF info specifying the offsets of the callee-saved registers.
   1378     if (PushedRegs)
   1379       emitCalleeSavedFrameMoves(MBB, MBBI, DL);
   1380   }
   1381 }
   1382 
   1383 bool X86FrameLowering::canUseLEAForSPInEpilogue(
   1384     const MachineFunction &MF) const {
   1385   // We can't use LEA instructions for adjusting the stack pointer if this is a
   1386   // leaf function in the Win64 ABI.  Only ADD instructions may be used to
   1387   // deallocate the stack.
   1388   // This means that we can use LEA for SP in two situations:
   1389   // 1. We *aren't* using the Win64 ABI which means we are free to use LEA.
   1390   // 2. We *have* a frame pointer which means we are permitted to use LEA.
   1391   return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF);
   1392 }
   1393 
   1394 static bool isFuncletReturnInstr(MachineInstr *MI) {
   1395   switch (MI->getOpcode()) {
   1396   case X86::CATCHRET:
   1397   case X86::CLEANUPRET:
   1398     return true;
   1399   default:
   1400     return false;
   1401   }
   1402   llvm_unreachable("impossible");
   1403 }
   1404 
   1405 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the
   1406 // stack. It holds a pointer to the bottom of the root function frame.  The
   1407 // establisher frame pointer passed to a nested funclet may point to the
   1408 // (mostly empty) frame of its parent funclet, but it will need to find
   1409 // the frame of the root function to access locals.  To facilitate this,
   1410 // every funclet copies the pointer to the bottom of the root function
   1411 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the
   1412 // same offset for the PSPSym in the root function frame that's used in the
   1413 // funclets' frames allows each funclet to dynamically accept any ancestor
   1414 // frame as its establisher argument (the runtime doesn't guarantee the
   1415 // immediate parent for some reason lost to history), and also allows the GC,
   1416 // which uses the PSPSym for some bookkeeping, to find it in any funclet's
   1417 // frame with only a single offset reported for the entire method.
   1418 unsigned
   1419 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const {
   1420   const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo();
   1421   // getFrameIndexReferenceFromSP has an out ref parameter for the stack
   1422   // pointer register; pass a dummy that we ignore
   1423   unsigned SPReg;
   1424   int Offset = getFrameIndexReferenceFromSP(MF, Info.PSPSymFrameIdx, SPReg);
   1425   assert(Offset >= 0);
   1426   return static_cast<unsigned>(Offset);
   1427 }
   1428 
   1429 unsigned
   1430 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const {
   1431   // This is the size of the pushed CSRs.
   1432   unsigned CSSize =
   1433       MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
   1434   // This is the amount of stack a funclet needs to allocate.
   1435   unsigned UsedSize;
   1436   EHPersonality Personality =
   1437       classifyEHPersonality(MF.getFunction()->getPersonalityFn());
   1438   if (Personality == EHPersonality::CoreCLR) {
   1439     // CLR funclets need to hold enough space to include the PSPSym, at the
   1440     // same offset from the stack pointer (immediately after the prolog) as it
   1441     // resides at in the main function.
   1442     UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize;
   1443   } else {
   1444     // Other funclets just need enough stack for outgoing call arguments.
   1445     UsedSize = MF.getFrameInfo()->getMaxCallFrameSize();
   1446   }
   1447   // RBP is not included in the callee saved register block. After pushing RBP,
   1448   // everything is 16 byte aligned. Everything we allocate before an outgoing
   1449   // call must also be 16 byte aligned.
   1450   unsigned FrameSizeMinusRBP =
   1451       RoundUpToAlignment(CSSize + UsedSize, getStackAlignment());
   1452   // Subtract out the size of the callee saved registers. This is how much stack
   1453   // each funclet will allocate.
   1454   return FrameSizeMinusRBP - CSSize;
   1455 }
   1456 
   1457 void X86FrameLowering::emitEpilogue(MachineFunction &MF,
   1458                                     MachineBasicBlock &MBB) const {
   1459   const MachineFrameInfo *MFI = MF.getFrameInfo();
   1460   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
   1461   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
   1462   DebugLoc DL;
   1463   if (MBBI != MBB.end())
   1464     DL = MBBI->getDebugLoc();
   1465   // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
   1466   const bool Is64BitILP32 = STI.isTarget64BitILP32();
   1467   unsigned FramePtr = TRI->getFrameRegister(MF);
   1468   unsigned MachineFramePtr =
   1469       Is64BitILP32 ? getX86SubSuperRegister(FramePtr, MVT::i64, false)
   1470                    : FramePtr;
   1471 
   1472   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
   1473   bool NeedsWinCFI =
   1474       IsWin64Prologue && MF.getFunction()->needsUnwindTableEntry();
   1475   bool IsFunclet = isFuncletReturnInstr(MBBI);
   1476   MachineBasicBlock *TargetMBB = nullptr;
   1477 
   1478   // Get the number of bytes to allocate from the FrameInfo.
   1479   uint64_t StackSize = MFI->getStackSize();
   1480   uint64_t MaxAlign = calculateMaxStackAlign(MF);
   1481   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
   1482   uint64_t NumBytes = 0;
   1483 
   1484   if (MBBI->getOpcode() == X86::CATCHRET) {
   1485     // SEH shouldn't use catchret.
   1486     assert(!isAsynchronousEHPersonality(
   1487                classifyEHPersonality(MF.getFunction()->getPersonalityFn())) &&
   1488            "SEH should not use CATCHRET");
   1489 
   1490     NumBytes = getWinEHFuncletFrameSize(MF);
   1491     assert(hasFP(MF) && "EH funclets without FP not yet implemented");
   1492     TargetMBB = MBBI->getOperand(0).getMBB();
   1493 
   1494     // Pop EBP.
   1495     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
   1496             MachineFramePtr)
   1497         .setMIFlag(MachineInstr::FrameDestroy);
   1498   } else if (MBBI->getOpcode() == X86::CLEANUPRET) {
   1499     NumBytes = getWinEHFuncletFrameSize(MF);
   1500     assert(hasFP(MF) && "EH funclets without FP not yet implemented");
   1501     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
   1502             MachineFramePtr)
   1503         .setMIFlag(MachineInstr::FrameDestroy);
   1504   } else if (hasFP(MF)) {
   1505     // Calculate required stack adjustment.
   1506     uint64_t FrameSize = StackSize - SlotSize;
   1507     NumBytes = FrameSize - CSSize;
   1508 
   1509     // Callee-saved registers were pushed on stack before the stack was
   1510     // realigned.
   1511     if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
   1512       NumBytes = RoundUpToAlignment(FrameSize, MaxAlign);
   1513 
   1514     // Pop EBP.
   1515     BuildMI(MBB, MBBI, DL,
   1516             TII.get(Is64Bit ? X86::POP64r : X86::POP32r), MachineFramePtr)
   1517         .setMIFlag(MachineInstr::FrameDestroy);
   1518   } else {
   1519     NumBytes = StackSize - CSSize;
   1520   }
   1521   uint64_t SEHStackAllocAmt = NumBytes;
   1522 
   1523   // Skip the callee-saved pop instructions.
   1524   while (MBBI != MBB.begin()) {
   1525     MachineBasicBlock::iterator PI = std::prev(MBBI);
   1526     unsigned Opc = PI->getOpcode();
   1527 
   1528     if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
   1529         (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
   1530         Opc != X86::DBG_VALUE && !PI->isTerminator())
   1531       break;
   1532 
   1533     --MBBI;
   1534   }
   1535   MachineBasicBlock::iterator FirstCSPop = MBBI;
   1536 
   1537   if (TargetMBB) {
   1538     // Fill EAX/RAX with the address of the target block.
   1539     unsigned ReturnReg = STI.is64Bit() ? X86::RAX : X86::EAX;
   1540     if (STI.is64Bit()) {
   1541       // LEA64r TargetMBB(%rip), %rax
   1542       BuildMI(MBB, FirstCSPop, DL, TII.get(X86::LEA64r), ReturnReg)
   1543           .addReg(X86::RIP)
   1544           .addImm(0)
   1545           .addReg(0)
   1546           .addMBB(TargetMBB)
   1547           .addReg(0);
   1548     } else {
   1549       // MOV32ri $TargetMBB, %eax
   1550       BuildMI(MBB, FirstCSPop, DL, TII.get(X86::MOV32ri), ReturnReg)
   1551           .addMBB(TargetMBB);
   1552     }
   1553     // Record that we've taken the address of TargetMBB and no longer just
   1554     // reference it in a terminator.
   1555     TargetMBB->setHasAddressTaken();
   1556   }
   1557 
   1558   if (MBBI != MBB.end())
   1559     DL = MBBI->getDebugLoc();
   1560 
   1561   // If there is an ADD32ri or SUB32ri of ESP immediately before this
   1562   // instruction, merge the two instructions.
   1563   if (NumBytes || MFI->hasVarSizedObjects())
   1564     NumBytes += mergeSPUpdates(MBB, MBBI, true);
   1565 
   1566   // If dynamic alloca is used, then reset esp to point to the last callee-saved
   1567   // slot before popping them off! Same applies for the case, when stack was
   1568   // realigned. Don't do this if this was a funclet epilogue, since the funclets
   1569   // will not do realignment or dynamic stack allocation.
   1570   if ((TRI->needsStackRealignment(MF) || MFI->hasVarSizedObjects()) &&
   1571       !IsFunclet) {
   1572     if (TRI->needsStackRealignment(MF))
   1573       MBBI = FirstCSPop;
   1574     unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt);
   1575     uint64_t LEAAmount =
   1576         IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize;
   1577 
   1578     // There are only two legal forms of epilogue:
   1579     // - add SEHAllocationSize, %rsp
   1580     // - lea SEHAllocationSize(%FramePtr), %rsp
   1581     //
   1582     // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence.
   1583     // However, we may use this sequence if we have a frame pointer because the
   1584     // effects of the prologue can safely be undone.
   1585     if (LEAAmount != 0) {
   1586       unsigned Opc = getLEArOpcode(Uses64BitFramePtr);
   1587       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
   1588                    FramePtr, false, LEAAmount);
   1589       --MBBI;
   1590     } else {
   1591       unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
   1592       BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
   1593         .addReg(FramePtr);
   1594       --MBBI;
   1595     }
   1596   } else if (NumBytes) {
   1597     // Adjust stack pointer back: ESP += numbytes.
   1598     emitSPUpdate(MBB, MBBI, NumBytes, /*InEpilogue=*/true);
   1599     --MBBI;
   1600   }
   1601 
   1602   // Windows unwinder will not invoke function's exception handler if IP is
   1603   // either in prologue or in epilogue.  This behavior causes a problem when a
   1604   // call immediately precedes an epilogue, because the return address points
   1605   // into the epilogue.  To cope with that, we insert an epilogue marker here,
   1606   // then replace it with a 'nop' if it ends up immediately after a CALL in the
   1607   // final emitted code.
   1608   if (NeedsWinCFI)
   1609     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));
   1610 
   1611   // Add the return addr area delta back since we are not tail calling.
   1612   int Offset = -1 * X86FI->getTCReturnAddrDelta();
   1613   assert(Offset >= 0 && "TCDelta should never be positive");
   1614   if (Offset) {
   1615     MBBI = MBB.getFirstTerminator();
   1616 
   1617     // Check for possible merge with preceding ADD instruction.
   1618     Offset += mergeSPUpdates(MBB, MBBI, true);
   1619     emitSPUpdate(MBB, MBBI, Offset, /*InEpilogue=*/true);
   1620   }
   1621 }
   1622 
   1623 // NOTE: this only has a subset of the full frame index logic. In
   1624 // particular, the FI < 0 and AfterFPPop logic is handled in
   1625 // X86RegisterInfo::eliminateFrameIndex, but not here. Possibly
   1626 // (probably?) it should be moved into here.
   1627 int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
   1628                                              unsigned &FrameReg) const {
   1629   const MachineFrameInfo *MFI = MF.getFrameInfo();
   1630 
   1631   // We can't calculate offset from frame pointer if the stack is realigned,
   1632   // so enforce usage of stack/base pointer.  The base pointer is used when we
   1633   // have dynamic allocas in addition to dynamic realignment.
   1634   if (TRI->hasBasePointer(MF))
   1635     FrameReg = TRI->getBaseRegister();
   1636   else if (TRI->needsStackRealignment(MF))
   1637     FrameReg = TRI->getStackRegister();
   1638   else
   1639     FrameReg = TRI->getFrameRegister(MF);
   1640 
   1641   // Offset will hold the offset from the stack pointer at function entry to the
   1642   // object.
   1643   // We need to factor in additional offsets applied during the prologue to the
   1644   // frame, base, and stack pointer depending on which is used.
   1645   int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea();
   1646   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
   1647   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
   1648   uint64_t StackSize = MFI->getStackSize();
   1649   bool HasFP = hasFP(MF);
   1650   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
   1651   int64_t FPDelta = 0;
   1652 
   1653   if (IsWin64Prologue) {
   1654     assert(!MFI->hasCalls() || (StackSize % 16) == 8);
   1655 
   1656     // Calculate required stack adjustment.
   1657     uint64_t FrameSize = StackSize - SlotSize;
   1658     // If required, include space for extra hidden slot for stashing base pointer.
   1659     if (X86FI->getRestoreBasePointer())
   1660       FrameSize += SlotSize;
   1661     uint64_t NumBytes = FrameSize - CSSize;
   1662 
   1663     uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes);
   1664     if (FI && FI == X86FI->getFAIndex())
   1665       return -SEHFrameOffset;
   1666 
   1667     // FPDelta is the offset from the "traditional" FP location of the old base
   1668     // pointer followed by return address and the location required by the
   1669     // restricted Win64 prologue.
   1670     // Add FPDelta to all offsets below that go through the frame pointer.
   1671     FPDelta = FrameSize - SEHFrameOffset;
   1672     assert((!MFI->hasCalls() || (FPDelta % 16) == 0) &&
   1673            "FPDelta isn't aligned per the Win64 ABI!");
   1674   }
   1675 
   1676 
   1677   if (TRI->hasBasePointer(MF)) {
   1678     assert(HasFP && "VLAs and dynamic stack realign, but no FP?!");
   1679     if (FI < 0) {
   1680       // Skip the saved EBP.
   1681       return Offset + SlotSize + FPDelta;
   1682     } else {
   1683       assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
   1684       return Offset + StackSize;
   1685     }
   1686   } else if (TRI->needsStackRealignment(MF)) {
   1687     if (FI < 0) {
   1688       // Skip the saved EBP.
   1689       return Offset + SlotSize + FPDelta;
   1690     } else {
   1691       assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
   1692       return Offset + StackSize;
   1693     }
   1694     // FIXME: Support tail calls
   1695   } else {
   1696     if (!HasFP)
   1697       return Offset + StackSize;
   1698 
   1699     // Skip the saved EBP.
   1700     Offset += SlotSize;
   1701 
   1702     // Skip the RETADDR move area
   1703     int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
   1704     if (TailCallReturnAddrDelta < 0)
   1705       Offset -= TailCallReturnAddrDelta;
   1706   }
   1707 
   1708   return Offset + FPDelta;
   1709 }
   1710 
   1711 // Simplified from getFrameIndexReference keeping only StackPointer cases
   1712 int X86FrameLowering::getFrameIndexReferenceFromSP(const MachineFunction &MF,
   1713                                                    int FI,
   1714                                                    unsigned &FrameReg) const {
   1715   const MachineFrameInfo *MFI = MF.getFrameInfo();
   1716   // Does not include any dynamic realign.
   1717   const uint64_t StackSize = MFI->getStackSize();
   1718   {
   1719 #ifndef NDEBUG
   1720     // LLVM arranges the stack as follows:
   1721     //   ...
   1722     //   ARG2
   1723     //   ARG1
   1724     //   RETADDR
   1725     //   PUSH RBP   <-- RBP points here
   1726     //   PUSH CSRs
   1727     //   ~~~~~~~    <-- possible stack realignment (non-win64)
   1728     //   ...
   1729     //   STACK OBJECTS
   1730     //   ...        <-- RSP after prologue points here
   1731     //   ~~~~~~~    <-- possible stack realignment (win64)
   1732     //
   1733     // if (hasVarSizedObjects()):
   1734     //   ...        <-- "base pointer" (ESI/RBX) points here
   1735     //   DYNAMIC ALLOCAS
   1736     //   ...        <-- RSP points here
   1737     //
   1738     // Case 1: In the simple case of no stack realignment and no dynamic
   1739     // allocas, both "fixed" stack objects (arguments and CSRs) are addressable
   1740     // with fixed offsets from RSP.
   1741     //
   1742     // Case 2: In the case of stack realignment with no dynamic allocas, fixed
   1743     // stack objects are addressed with RBP and regular stack objects with RSP.
   1744     //
   1745     // Case 3: In the case of dynamic allocas and stack realignment, RSP is used
   1746     // to address stack arguments for outgoing calls and nothing else. The "base
   1747     // pointer" points to local variables, and RBP points to fixed objects.
   1748     //
   1749     // In cases 2 and 3, we can only answer for non-fixed stack objects, and the
   1750     // answer we give is relative to the SP after the prologue, and not the
   1751     // SP in the middle of the function.
   1752 
   1753     assert((!MFI->isFixedObjectIndex(FI) || !TRI->needsStackRealignment(MF) ||
   1754             STI.isTargetWin64()) &&
   1755            "offset from fixed object to SP is not static");
   1756 
   1757     // We don't handle tail calls, and shouldn't be seeing them either.
   1758     int TailCallReturnAddrDelta =
   1759         MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta();
   1760     assert(!(TailCallReturnAddrDelta < 0) && "we don't handle this case!");
   1761 #endif
   1762   }
   1763 
   1764   // Fill in FrameReg output argument.
   1765   FrameReg = TRI->getStackRegister();
   1766 
   1767   // This is how the math works out:
   1768   //
   1769   //  %rsp grows (i.e. gets lower) left to right. Each box below is
   1770   //  one word (eight bytes).  Obj0 is the stack slot we're trying to
   1771   //  get to.
   1772   //
   1773   //    ----------------------------------
   1774   //    | BP | Obj0 | Obj1 | ... | ObjN |
   1775   //    ----------------------------------
   1776   //    ^    ^      ^                   ^
   1777   //    A    B      C                   E
   1778   //
   1779   // A is the incoming stack pointer.
   1780   // (B - A) is the local area offset (-8 for x86-64) [1]
   1781   // (C - A) is the Offset returned by MFI->getObjectOffset for Obj0 [2]
   1782   //
   1783   // |(E - B)| is the StackSize (absolute value, positive).  For a
   1784   // stack that grown down, this works out to be (B - E). [3]
   1785   //
   1786   // E is also the value of %rsp after stack has been set up, and we
   1787   // want (C - E) -- the value we can add to %rsp to get to Obj0.  Now
   1788   // (C - E) == (C - A) - (B - A) + (B - E)
   1789   //            { Using [1], [2] and [3] above }
   1790   //         == getObjectOffset - LocalAreaOffset + StackSize
   1791   //
   1792 
   1793   // Get the Offset from the StackPointer
   1794   int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea();
   1795 
   1796   return Offset + StackSize;
   1797 }
   1798 
   1799 bool X86FrameLowering::assignCalleeSavedSpillSlots(
   1800     MachineFunction &MF, const TargetRegisterInfo *TRI,
   1801     std::vector<CalleeSavedInfo> &CSI) const {
   1802   MachineFrameInfo *MFI = MF.getFrameInfo();
   1803   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
   1804 
   1805   unsigned CalleeSavedFrameSize = 0;
   1806   int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();
   1807 
   1808   if (hasFP(MF)) {
   1809     // emitPrologue always spills frame register the first thing.
   1810     SpillSlotOffset -= SlotSize;
   1811     MFI->CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
   1812 
   1813     // Since emitPrologue and emitEpilogue will handle spilling and restoring of
   1814     // the frame register, we can delete it from CSI list and not have to worry
   1815     // about avoiding it later.
   1816     unsigned FPReg = TRI->getFrameRegister(MF);
   1817     for (unsigned i = 0; i < CSI.size(); ++i) {
   1818       if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) {
   1819         CSI.erase(CSI.begin() + i);
   1820         break;
   1821       }
   1822     }
   1823   }
   1824 
   1825   // Assign slots for GPRs. It increases frame size.
   1826   for (unsigned i = CSI.size(); i != 0; --i) {
   1827     unsigned Reg = CSI[i - 1].getReg();
   1828 
   1829     if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
   1830       continue;
   1831 
   1832     SpillSlotOffset -= SlotSize;
   1833     CalleeSavedFrameSize += SlotSize;
   1834 
   1835     int SlotIndex = MFI->CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
   1836     CSI[i - 1].setFrameIdx(SlotIndex);
   1837   }
   1838 
   1839   X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);
   1840 
   1841   // Assign slots for XMMs.
   1842   for (unsigned i = CSI.size(); i != 0; --i) {
   1843     unsigned Reg = CSI[i - 1].getReg();
   1844     if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
   1845       continue;
   1846 
   1847     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
   1848     // ensure alignment
   1849     SpillSlotOffset -= std::abs(SpillSlotOffset) % RC->getAlignment();
   1850     // spill into slot
   1851     SpillSlotOffset -= RC->getSize();
   1852     int SlotIndex =
   1853         MFI->CreateFixedSpillStackObject(RC->getSize(), SpillSlotOffset);
   1854     CSI[i - 1].setFrameIdx(SlotIndex);
   1855     MFI->ensureMaxAlignment(RC->getAlignment());
   1856   }
   1857 
   1858   return true;
   1859 }
   1860 
   1861 bool X86FrameLowering::spillCalleeSavedRegisters(
   1862     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
   1863     const std::vector<CalleeSavedInfo> &CSI,
   1864     const TargetRegisterInfo *TRI) const {
   1865   DebugLoc DL = MBB.findDebugLoc(MI);
   1866 
   1867   // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI
   1868   // for us, and there are no XMM CSRs on Win32.
   1869   if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows())
   1870     return true;
   1871 
   1872   // Push GPRs. It increases frame size.
   1873   unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
   1874   for (unsigned i = CSI.size(); i != 0; --i) {
   1875     unsigned Reg = CSI[i - 1].getReg();
   1876 
   1877     if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
   1878       continue;
   1879     // Add the callee-saved register as live-in. It's killed at the spill.
   1880     MBB.addLiveIn(Reg);
   1881 
   1882     BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, RegState::Kill)
   1883       .setMIFlag(MachineInstr::FrameSetup);
   1884   }
   1885 
   1886   // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
   1887   // It can be done by spilling XMMs to stack frame.
   1888   for (unsigned i = CSI.size(); i != 0; --i) {
   1889     unsigned Reg = CSI[i-1].getReg();
   1890     if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
   1891       continue;
   1892     // Add the callee-saved register as live-in. It's killed at the spill.
   1893     MBB.addLiveIn(Reg);
   1894     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
   1895 
   1896     TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC,
   1897                             TRI);
   1898     --MI;
   1899     MI->setFlag(MachineInstr::FrameSetup);
   1900     ++MI;
   1901   }
   1902 
   1903   return true;
   1904 }
   1905 
   1906 bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
   1907                                                MachineBasicBlock::iterator MI,
   1908                                         const std::vector<CalleeSavedInfo> &CSI,
   1909                                           const TargetRegisterInfo *TRI) const {
   1910   if (CSI.empty())
   1911     return false;
   1912 
   1913   if (isFuncletReturnInstr(MI) && STI.isOSWindows()) {
   1914     // Don't restore CSRs in 32-bit EH funclets. Matches
   1915     // spillCalleeSavedRegisters.
   1916     if (STI.is32Bit())
   1917       return true;
   1918     // Don't restore CSRs before an SEH catchret. SEH except blocks do not form
   1919     // funclets. emitEpilogue transforms these to normal jumps.
   1920     if (MI->getOpcode() == X86::CATCHRET) {
   1921       const Function *Func = MBB.getParent()->getFunction();
   1922       bool IsSEH = isAsynchronousEHPersonality(
   1923           classifyEHPersonality(Func->getPersonalityFn()));
   1924       if (IsSEH)
   1925         return true;
   1926     }
   1927   }
   1928 
   1929   DebugLoc DL = MBB.findDebugLoc(MI);
   1930 
   1931   // Reload XMMs from stack frame.
   1932   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
   1933     unsigned Reg = CSI[i].getReg();
   1934     if (X86::GR64RegClass.contains(Reg) ||
   1935         X86::GR32RegClass.contains(Reg))
   1936       continue;
   1937 
   1938     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
   1939     TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI);
   1940   }
   1941 
   1942   // POP GPRs.
   1943   unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
   1944   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
   1945     unsigned Reg = CSI[i].getReg();
   1946     if (!X86::GR64RegClass.contains(Reg) &&
   1947         !X86::GR32RegClass.contains(Reg))
   1948       continue;
   1949 
   1950     BuildMI(MBB, MI, DL, TII.get(Opc), Reg)
   1951         .setMIFlag(MachineInstr::FrameDestroy);
   1952   }
   1953   return true;
   1954 }
   1955 
   1956 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF,
   1957                                             BitVector &SavedRegs,
   1958                                             RegScavenger *RS) const {
   1959   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
   1960 
   1961   MachineFrameInfo *MFI = MF.getFrameInfo();
   1962 
   1963   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
   1964   int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
   1965 
   1966   if (TailCallReturnAddrDelta < 0) {
   1967     // create RETURNADDR area
   1968     //   arg
   1969     //   arg
   1970     //   RETADDR
   1971     //   { ...
   1972     //     RETADDR area
   1973     //     ...
   1974     //   }
   1975     //   [EBP]
   1976     MFI->CreateFixedObject(-TailCallReturnAddrDelta,
   1977                            TailCallReturnAddrDelta - SlotSize, true);
   1978   }
   1979 
   1980   // Spill the BasePtr if it's used.
   1981   if (TRI->hasBasePointer(MF)) {
   1982     SavedRegs.set(TRI->getBaseRegister());
   1983 
   1984     // Allocate a spill slot for EBP if we have a base pointer and EH funclets.
   1985     if (MF.getMMI().hasEHFunclets()) {
   1986       int FI = MFI->CreateSpillStackObject(SlotSize, SlotSize);
   1987       X86FI->setHasSEHFramePtrSave(true);
   1988       X86FI->setSEHFramePtrSaveIndex(FI);
   1989     }
   1990   }
   1991 }
   1992 
   1993 static bool
   1994 HasNestArgument(const MachineFunction *MF) {
   1995   const Function *F = MF->getFunction();
   1996   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
   1997        I != E; I++) {
   1998     if (I->hasNestAttr())
   1999       return true;
   2000   }
   2001   return false;
   2002 }
   2003 
   2004 /// GetScratchRegister - Get a temp register for performing work in the
   2005 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
   2006 /// and the properties of the function either one or two registers will be
   2007 /// needed. Set primary to true for the first register, false for the second.
   2008 static unsigned
   2009 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) {
   2010   CallingConv::ID CallingConvention = MF.getFunction()->getCallingConv();
   2011 
   2012   // Erlang stuff.
   2013   if (CallingConvention == CallingConv::HiPE) {
   2014     if (Is64Bit)
   2015       return Primary ? X86::R14 : X86::R13;
   2016     else
   2017       return Primary ? X86::EBX : X86::EDI;
   2018   }
   2019 
   2020   if (Is64Bit) {
   2021     if (IsLP64)
   2022       return Primary ? X86::R11 : X86::R12;
   2023     else
   2024       return Primary ? X86::R11D : X86::R12D;
   2025   }
   2026 
   2027   bool IsNested = HasNestArgument(&MF);
   2028 
   2029   if (CallingConvention == CallingConv::X86_FastCall ||
   2030       CallingConvention == CallingConv::Fast) {
   2031     if (IsNested)
   2032       report_fatal_error("Segmented stacks does not support fastcall with "
   2033                          "nested function.");
   2034     return Primary ? X86::EAX : X86::ECX;
   2035   }
   2036   if (IsNested)
   2037     return Primary ? X86::EDX : X86::EAX;
   2038   return Primary ? X86::ECX : X86::EAX;
   2039 }
   2040 
   2041 // The stack limit in the TCB is set to this many bytes above the actual stack
   2042 // limit.
   2043 static const uint64_t kSplitStackAvailable = 256;
   2044 
   2045 void X86FrameLowering::adjustForSegmentedStacks(
   2046     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
   2047   MachineFrameInfo *MFI = MF.getFrameInfo();
   2048   uint64_t StackSize;
   2049   unsigned TlsReg, TlsOffset;
   2050   DebugLoc DL;
   2051 
   2052   unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
   2053   assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
   2054          "Scratch register is live-in");
   2055 
   2056   if (MF.getFunction()->isVarArg())
   2057     report_fatal_error("Segmented stacks do not support vararg functions.");
   2058   if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
   2059       !STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
   2060       !STI.isTargetDragonFly())
   2061     report_fatal_error("Segmented stacks not supported on this platform.");
   2062 
   2063   // Eventually StackSize will be calculated by a link-time pass; which will
   2064   // also decide whether checking code needs to be injected into this particular
   2065   // prologue.
   2066   StackSize = MFI->getStackSize();
   2067 
   2068   // Do not generate a prologue for functions with a stack of size zero
   2069   if (StackSize == 0)
   2070     return;
   2071 
   2072   MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
   2073   MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
   2074   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
   2075   bool IsNested = false;
   2076 
   2077   // We need to know if the function has a nest argument only in 64 bit mode.
   2078   if (Is64Bit)
   2079     IsNested = HasNestArgument(&MF);
   2080 
   2081   // The MOV R10, RAX needs to be in a different block, since the RET we emit in
   2082   // allocMBB needs to be last (terminating) instruction.
   2083 
   2084   for (const auto &LI : PrologueMBB.liveins()) {
   2085     allocMBB->addLiveIn(LI);
   2086     checkMBB->addLiveIn(LI);
   2087   }
   2088 
   2089   if (IsNested)
   2090     allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);
   2091 
   2092   MF.push_front(allocMBB);
   2093   MF.push_front(checkMBB);
   2094 
   2095   // When the frame size is less than 256 we just compare the stack
   2096   // boundary directly to the value of the stack pointer, per gcc.
   2097   bool CompareStackPointer = StackSize < kSplitStackAvailable;
   2098 
   2099   // Read the limit off the current stacklet off the stack_guard location.
   2100   if (Is64Bit) {
   2101     if (STI.isTargetLinux()) {
   2102       TlsReg = X86::FS;
   2103       TlsOffset = IsLP64 ? 0x70 : 0x40;
   2104     } else if (STI.isTargetDarwin()) {
   2105       TlsReg = X86::GS;
   2106       TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
   2107     } else if (STI.isTargetWin64()) {
   2108       TlsReg = X86::GS;
   2109       TlsOffset = 0x28; // pvArbitrary, reserved for application use
   2110     } else if (STI.isTargetFreeBSD()) {
   2111       TlsReg = X86::FS;
   2112       TlsOffset = 0x18;
   2113     } else if (STI.isTargetDragonFly()) {
   2114       TlsReg = X86::FS;
   2115       TlsOffset = 0x20; // use tls_tcb.tcb_segstack
   2116     } else {
   2117       report_fatal_error("Segmented stacks not supported on this platform.");
   2118     }
   2119 
   2120     if (CompareStackPointer)
   2121       ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
   2122     else
   2123       BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP)
   2124         .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
   2125 
   2126     BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg)
   2127       .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
   2128   } else {
   2129     if (STI.isTargetLinux()) {
   2130       TlsReg = X86::GS;
   2131       TlsOffset = 0x30;
   2132     } else if (STI.isTargetDarwin()) {
   2133       TlsReg = X86::GS;
   2134       TlsOffset = 0x48 + 90*4;
   2135     } else if (STI.isTargetWin32()) {
   2136       TlsReg = X86::FS;
   2137       TlsOffset = 0x14; // pvArbitrary, reserved for application use
   2138     } else if (STI.isTargetDragonFly()) {
   2139       TlsReg = X86::FS;
   2140       TlsOffset = 0x10; // use tls_tcb.tcb_segstack
   2141     } else if (STI.isTargetFreeBSD()) {
   2142       report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
   2143     } else {
   2144       report_fatal_error("Segmented stacks not supported on this platform.");
   2145     }
   2146 
   2147     if (CompareStackPointer)
   2148       ScratchReg = X86::ESP;
   2149     else
   2150       BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
   2151         .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
   2152 
   2153     if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
   2154         STI.isTargetDragonFly()) {
   2155       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
   2156         .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
   2157     } else if (STI.isTargetDarwin()) {
   2158 
   2159       // TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
   2160       unsigned ScratchReg2;
   2161       bool SaveScratch2;
   2162       if (CompareStackPointer) {
   2163         // The primary scratch register is available for holding the TLS offset.
   2164         ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true);
   2165         SaveScratch2 = false;
   2166       } else {
   2167         // Need to use a second register to hold the TLS offset
   2168         ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false);
   2169 
   2170         // Unfortunately, with fastcc the second scratch register may hold an
   2171         // argument.
   2172         SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
   2173       }
   2174 
   2175       // If Scratch2 is live-in then it needs to be saved.
   2176       assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
   2177              "Scratch register is live-in and not saved");
   2178 
   2179       if (SaveScratch2)
   2180         BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
   2181           .addReg(ScratchReg2, RegState::Kill);
   2182 
   2183       BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
   2184         .addImm(TlsOffset);
   2185       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
   2186         .addReg(ScratchReg)
   2187         .addReg(ScratchReg2).addImm(1).addReg(0)
   2188         .addImm(0)
   2189         .addReg(TlsReg);
   2190 
   2191       if (SaveScratch2)
   2192         BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
   2193     }
   2194   }
   2195 
   2196   // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
   2197   // It jumps to normal execution of the function body.
   2198   BuildMI(checkMBB, DL, TII.get(X86::JA_1)).addMBB(&PrologueMBB);
   2199 
   2200   // On 32 bit we first push the arguments size and then the frame size. On 64
   2201   // bit, we pass the stack frame size in r10 and the argument size in r11.
   2202   if (Is64Bit) {
   2203     // Functions with nested arguments use R10, so it needs to be saved across
   2204     // the call to _morestack
   2205 
   2206     const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
   2207     const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
   2208     const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
   2209     const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
   2210     const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri;
   2211 
   2212     if (IsNested)
   2213       BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);
   2214 
   2215     BuildMI(allocMBB, DL, TII.get(MOVri), Reg10)
   2216       .addImm(StackSize);
   2217     BuildMI(allocMBB, DL, TII.get(MOVri), Reg11)
   2218       .addImm(X86FI->getArgumentStackSize());
   2219   } else {
   2220     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
   2221       .addImm(X86FI->getArgumentStackSize());
   2222     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
   2223       .addImm(StackSize);
   2224   }
   2225 
   2226   // __morestack is in libgcc
   2227   if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
   2228     // Under the large code model, we cannot assume that __morestack lives
   2229     // within 2^31 bytes of the call site, so we cannot use pc-relative
   2230     // addressing. We cannot perform the call via a temporary register,
   2231     // as the rax register may be used to store the static chain, and all
   2232     // other suitable registers may be either callee-save or used for
   2233     // parameter passing. We cannot use the stack at this point either
   2234     // because __morestack manipulates the stack directly.
   2235     //
   2236     // To avoid these issues, perform an indirect call via a read-only memory
   2237     // location containing the address.
   2238     //
   2239     // This solution is not perfect, as it assumes that the .rodata section
   2240     // is laid out within 2^31 bytes of each function body, but this seems
   2241     // to be sufficient for JIT.
   2242     BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
   2243         .addReg(X86::RIP)
   2244         .addImm(0)
   2245         .addReg(0)
   2246         .addExternalSymbol("__morestack_addr")
   2247         .addReg(0);
   2248     MF.getMMI().setUsesMorestackAddr(true);
   2249   } else {
   2250     if (Is64Bit)
   2251       BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
   2252         .addExternalSymbol("__morestack");
   2253     else
   2254       BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
   2255         .addExternalSymbol("__morestack");
   2256   }
   2257 
   2258   if (IsNested)
   2259     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
   2260   else
   2261     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
   2262 
   2263   allocMBB->addSuccessor(&PrologueMBB);
   2264 
   2265   checkMBB->addSuccessor(allocMBB);
   2266   checkMBB->addSuccessor(&PrologueMBB);
   2267 
   2268 #ifdef XDEBUG
   2269   MF.verify();
   2270 #endif
   2271 }
   2272 
   2273 /// Erlang programs may need a special prologue to handle the stack size they
   2274 /// might need at runtime. That is because Erlang/OTP does not implement a C
   2275 /// stack but uses a custom implementation of hybrid stack/heap architecture.
   2276 /// (for more information see Eric Stenman's Ph.D. thesis:
   2277 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
   2278 ///
   2279 /// CheckStack:
   2280 ///       temp0 = sp - MaxStack
   2281 ///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
   2282 /// OldStart:
   2283 ///       ...
   2284 /// IncStack:
   2285 ///       call inc_stack   # doubles the stack space
   2286 ///       temp0 = sp - MaxStack
   2287 ///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
   2288 void X86FrameLowering::adjustForHiPEPrologue(
   2289     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
   2290   MachineFrameInfo *MFI = MF.getFrameInfo();
   2291   DebugLoc DL;
   2292   // HiPE-specific values
   2293   const unsigned HipeLeafWords = 24;
   2294   const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
   2295   const unsigned Guaranteed = HipeLeafWords * SlotSize;
   2296   unsigned CallerStkArity = MF.getFunction()->arg_size() > CCRegisteredArgs ?
   2297                             MF.getFunction()->arg_size() - CCRegisteredArgs : 0;
   2298   unsigned MaxStack = MFI->getStackSize() + CallerStkArity*SlotSize + SlotSize;
   2299 
   2300   assert(STI.isTargetLinux() &&
   2301          "HiPE prologue is only supported on Linux operating systems.");
   2302 
   2303   // Compute the largest caller's frame that is needed to fit the callees'
   2304   // frames. This 'MaxStack' is computed from:
   2305   //
   2306   // a) the fixed frame size, which is the space needed for all spilled temps,
   2307   // b) outgoing on-stack parameter areas, and
   2308   // c) the minimum stack space this function needs to make available for the
   2309   //    functions it calls (a tunable ABI property).
   2310   if (MFI->hasCalls()) {
   2311     unsigned MoreStackForCalls = 0;
   2312 
   2313     for (MachineFunction::iterator MBBI = MF.begin(), MBBE = MF.end();
   2314          MBBI != MBBE; ++MBBI)
   2315       for (MachineBasicBlock::iterator MI = MBBI->begin(), ME = MBBI->end();
   2316            MI != ME; ++MI) {
   2317         if (!MI->isCall())
   2318           continue;
   2319 
   2320         // Get callee operand.
   2321         const MachineOperand &MO = MI->getOperand(0);
   2322 
   2323         // Only take account of global function calls (no closures etc.).
   2324         if (!MO.isGlobal())
   2325           continue;
   2326 
   2327         const Function *F = dyn_cast<Function>(MO.getGlobal());
   2328         if (!F)
   2329           continue;
   2330 
   2331         // Do not update 'MaxStack' for primitive and built-in functions
   2332         // (encoded with names either starting with "erlang."/"bif_" or not
   2333         // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
   2334         // "_", such as the BIF "suspend_0") as they are executed on another
   2335         // stack.
   2336         if (F->getName().find("erlang.") != StringRef::npos ||
   2337             F->getName().find("bif_") != StringRef::npos ||
   2338             F->getName().find_first_of("._") == StringRef::npos)
   2339           continue;
   2340 
   2341         unsigned CalleeStkArity =
   2342           F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
   2343         if (HipeLeafWords - 1 > CalleeStkArity)
   2344           MoreStackForCalls = std::max(MoreStackForCalls,
   2345                                (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
   2346       }
   2347     MaxStack += MoreStackForCalls;
   2348   }
   2349 
   2350   // If the stack frame needed is larger than the guaranteed then runtime checks
   2351   // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
   2352   if (MaxStack > Guaranteed) {
   2353     MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
   2354     MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
   2355 
   2356     for (const auto &LI : PrologueMBB.liveins()) {
   2357       stackCheckMBB->addLiveIn(LI);
   2358       incStackMBB->addLiveIn(LI);
   2359     }
   2360 
   2361     MF.push_front(incStackMBB);
   2362     MF.push_front(stackCheckMBB);
   2363 
   2364     unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
   2365     unsigned LEAop, CMPop, CALLop;
   2366     if (Is64Bit) {
   2367       SPReg = X86::RSP;
   2368       PReg  = X86::RBP;
   2369       LEAop = X86::LEA64r;
   2370       CMPop = X86::CMP64rm;
   2371       CALLop = X86::CALL64pcrel32;
   2372       SPLimitOffset = 0x90;
   2373     } else {
   2374       SPReg = X86::ESP;
   2375       PReg  = X86::EBP;
   2376       LEAop = X86::LEA32r;
   2377       CMPop = X86::CMP32rm;
   2378       CALLop = X86::CALLpcrel32;
   2379       SPLimitOffset = 0x4c;
   2380     }
   2381 
   2382     ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
   2383     assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
   2384            "HiPE prologue scratch register is live-in");
   2385 
   2386     // Create new MBB for StackCheck:
   2387     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
   2388                  SPReg, false, -MaxStack);
   2389     // SPLimitOffset is in a fixed heap location (pointed by BP).
   2390     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
   2391                  .addReg(ScratchReg), PReg, false, SPLimitOffset);
   2392     BuildMI(stackCheckMBB, DL, TII.get(X86::JAE_1)).addMBB(&PrologueMBB);
   2393 
   2394     // Create new MBB for IncStack:
   2395     BuildMI(incStackMBB, DL, TII.get(CALLop)).
   2396       addExternalSymbol("inc_stack_0");
   2397     addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
   2398                  SPReg, false, -MaxStack);
   2399     addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
   2400                  .addReg(ScratchReg), PReg, false, SPLimitOffset);
   2401     BuildMI(incStackMBB, DL, TII.get(X86::JLE_1)).addMBB(incStackMBB);
   2402 
   2403     stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100});
   2404     stackCheckMBB->addSuccessor(incStackMBB, {1, 100});
   2405     incStackMBB->addSuccessor(&PrologueMBB, {99, 100});
   2406     incStackMBB->addSuccessor(incStackMBB, {1, 100});
   2407   }
   2408 #ifdef XDEBUG
   2409   MF.verify();
   2410 #endif
   2411 }
   2412 
   2413 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB,
   2414     MachineBasicBlock::iterator MBBI, DebugLoc DL, int Offset) const {
   2415 
   2416   if (Offset <= 0)
   2417     return false;
   2418 
   2419   if (Offset % SlotSize)
   2420     return false;
   2421 
   2422   int NumPops = Offset / SlotSize;
   2423   // This is only worth it if we have at most 2 pops.
   2424   if (NumPops != 1 && NumPops != 2)
   2425     return false;
   2426 
   2427   // Handle only the trivial case where the adjustment directly follows
   2428   // a call. This is the most common one, anyway.
   2429   if (MBBI == MBB.begin())
   2430     return false;
   2431   MachineBasicBlock::iterator Prev = std::prev(MBBI);
   2432   if (!Prev->isCall() || !Prev->getOperand(1).isRegMask())
   2433     return false;
   2434 
   2435   unsigned Regs[2];
   2436   unsigned FoundRegs = 0;
   2437 
   2438   auto RegMask = Prev->getOperand(1);
   2439 
   2440   auto &RegClass =
   2441       Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass;
   2442   // Try to find up to NumPops free registers.
   2443   for (auto Candidate : RegClass) {
   2444 
   2445     // Poor man's liveness:
   2446     // Since we're immediately after a call, any register that is clobbered
   2447     // by the call and not defined by it can be considered dead.
   2448     if (!RegMask.clobbersPhysReg(Candidate))
   2449       continue;
   2450 
   2451     bool IsDef = false;
   2452     for (const MachineOperand &MO : Prev->implicit_operands()) {
   2453       if (MO.isReg() && MO.isDef() && MO.getReg() == Candidate) {
   2454         IsDef = true;
   2455         break;
   2456       }
   2457     }
   2458 
   2459     if (IsDef)
   2460       continue;
   2461 
   2462     Regs[FoundRegs++] = Candidate;
   2463     if (FoundRegs == (unsigned)NumPops)
   2464       break;
   2465   }
   2466 
   2467   if (FoundRegs == 0)
   2468     return false;
   2469 
   2470   // If we found only one free register, but need two, reuse the same one twice.
   2471   while (FoundRegs < (unsigned)NumPops)
   2472     Regs[FoundRegs++] = Regs[0];
   2473 
   2474   for (int i = 0; i < NumPops; ++i)
   2475     BuildMI(MBB, MBBI, DL,
   2476             TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]);
   2477 
   2478   return true;
   2479 }
   2480 
   2481 void X86FrameLowering::
   2482 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
   2483                               MachineBasicBlock::iterator I) const {
   2484   bool reserveCallFrame = hasReservedCallFrame(MF);
   2485   unsigned Opcode = I->getOpcode();
   2486   bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
   2487   DebugLoc DL = I->getDebugLoc();
   2488   uint64_t Amount = !reserveCallFrame ? I->getOperand(0).getImm() : 0;
   2489   uint64_t InternalAmt = (isDestroy || Amount) ? I->getOperand(1).getImm() : 0;
   2490   I = MBB.erase(I);
   2491 
   2492   if (!reserveCallFrame) {
   2493     // If the stack pointer can be changed after prologue, turn the
   2494     // adjcallstackup instruction into a 'sub ESP, <amt>' and the
   2495     // adjcallstackdown instruction into 'add ESP, <amt>'
   2496 
   2497     // We need to keep the stack aligned properly.  To do this, we round the
   2498     // amount of space needed for the outgoing arguments up to the next
   2499     // alignment boundary.
   2500     unsigned StackAlign = getStackAlignment();
   2501     Amount = RoundUpToAlignment(Amount, StackAlign);
   2502 
   2503     MachineModuleInfo &MMI = MF.getMMI();
   2504     const Function *Fn = MF.getFunction();
   2505     bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
   2506     bool DwarfCFI = !WindowsCFI &&
   2507                     (MMI.hasDebugInfo() || Fn->needsUnwindTableEntry());
   2508 
   2509     // If we have any exception handlers in this function, and we adjust
   2510     // the SP before calls, we may need to indicate this to the unwinder
   2511     // using GNU_ARGS_SIZE. Note that this may be necessary even when
   2512     // Amount == 0, because the preceding function may have set a non-0
   2513     // GNU_ARGS_SIZE.
   2514     // TODO: We don't need to reset this between subsequent functions,
   2515     // if it didn't change.
   2516     bool HasDwarfEHHandlers = !WindowsCFI &&
   2517                               !MF.getMMI().getLandingPads().empty();
   2518 
   2519     if (HasDwarfEHHandlers && !isDestroy &&
   2520         MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences())
   2521       BuildCFI(MBB, I, DL,
   2522                MCCFIInstruction::createGnuArgsSize(nullptr, Amount));
   2523 
   2524     if (Amount == 0)
   2525       return;
   2526 
   2527     // Factor out the amount that gets handled inside the sequence
   2528     // (Pushes of argument for frame setup, callee pops for frame destroy)
   2529     Amount -= InternalAmt;
   2530 
   2531     // TODO: This is needed only if we require precise CFA.
   2532     // If this is a callee-pop calling convention, emit a CFA adjust for
   2533     // the amount the callee popped.
   2534     if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF))
   2535       BuildCFI(MBB, I, DL,
   2536                MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt));
   2537 
   2538     if (Amount) {
   2539       // Add Amount to SP to destroy a frame, and subtract to setup.
   2540       int Offset = isDestroy ? Amount : -Amount;
   2541 
   2542       if (!(Fn->optForMinSize() &&
   2543             adjustStackWithPops(MBB, I, DL, Offset)))
   2544         BuildStackAdjustment(MBB, I, DL, Offset, /*InEpilogue=*/false);
   2545     }
   2546 
   2547     if (DwarfCFI && !hasFP(MF)) {
   2548       // If we don't have FP, but need to generate unwind information,
   2549       // we need to set the correct CFA offset after the stack adjustment.
   2550       // How much we adjust the CFA offset depends on whether we're emitting
   2551       // CFI only for EH purposes or for debugging. EH only requires the CFA
   2552       // offset to be correct at each call site, while for debugging we want
   2553       // it to be more precise.
   2554       int CFAOffset = Amount;
   2555       // TODO: When not using precise CFA, we also need to adjust for the
   2556       // InternalAmt here.
   2557 
   2558       if (CFAOffset) {
   2559         CFAOffset = isDestroy ? -CFAOffset : CFAOffset;
   2560         BuildCFI(MBB, I, DL,
   2561                  MCCFIInstruction::createAdjustCfaOffset(nullptr, CFAOffset));
   2562       }
   2563     }
   2564 
   2565     return;
   2566   }
   2567 
   2568   if (isDestroy && InternalAmt) {
   2569     // If we are performing frame pointer elimination and if the callee pops
   2570     // something off the stack pointer, add it back.  We do this until we have
   2571     // more advanced stack pointer tracking ability.
   2572     // We are not tracking the stack pointer adjustment by the callee, so make
   2573     // sure we restore the stack pointer immediately after the call, there may
   2574     // be spill code inserted between the CALL and ADJCALLSTACKUP instructions.
   2575     MachineBasicBlock::iterator B = MBB.begin();
   2576     while (I != B && !std::prev(I)->isCall())
   2577       --I;
   2578     BuildStackAdjustment(MBB, I, DL, -InternalAmt, /*InEpilogue=*/false);
   2579   }
   2580 }
   2581 
   2582 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
   2583   assert(MBB.getParent() && "Block is not attached to a function!");
   2584 
   2585   // Win64 has strict requirements in terms of epilogue and we are
   2586   // not taking a chance at messing with them.
   2587   // I.e., unless this block is already an exit block, we can't use
   2588   // it as an epilogue.
   2589   if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock())
   2590     return false;
   2591 
   2592   if (canUseLEAForSPInEpilogue(*MBB.getParent()))
   2593     return true;
   2594 
   2595   // If we cannot use LEA to adjust SP, we may need to use ADD, which
   2596   // clobbers the EFLAGS. Check that we do not need to preserve it,
   2597   // otherwise, conservatively assume this is not
   2598   // safe to insert the epilogue here.
   2599   return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
   2600 }
   2601 
   2602 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
   2603   // If we may need to emit frameless compact unwind information, give
   2604   // up as this is currently broken: PR25614.
   2605   return MF.getFunction()->hasFnAttribute(Attribute::NoUnwind) || hasFP(MF);
   2606 }
   2607 
   2608 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers(
   2609     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
   2610     DebugLoc DL, bool RestoreSP) const {
   2611   assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env");
   2612   assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32");
   2613   assert(STI.is32Bit() && !Uses64BitFramePtr &&
   2614          "restoring EBP/ESI on non-32-bit target");
   2615 
   2616   MachineFunction &MF = *MBB.getParent();
   2617   unsigned FramePtr = TRI->getFrameRegister(MF);
   2618   unsigned BasePtr = TRI->getBaseRegister();
   2619   WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo();
   2620   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
   2621   MachineFrameInfo *MFI = MF.getFrameInfo();
   2622 
   2623   // FIXME: Don't set FrameSetup flag in catchret case.
   2624 
   2625   int FI = FuncInfo.EHRegNodeFrameIndex;
   2626   int EHRegSize = MFI->getObjectSize(FI);
   2627 
   2628   if (RestoreSP) {
   2629     // MOV32rm -EHRegSize(%ebp), %esp
   2630     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP),
   2631                  X86::EBP, true, -EHRegSize)
   2632         .setMIFlag(MachineInstr::FrameSetup);
   2633   }
   2634 
   2635   unsigned UsedReg;
   2636   int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg);
   2637   int EndOffset = -EHRegOffset - EHRegSize;
   2638   FuncInfo.EHRegNodeEndOffset = EndOffset;
   2639 
   2640   if (UsedReg == FramePtr) {
   2641     // ADD $offset, %ebp
   2642     unsigned ADDri = getADDriOpcode(false, EndOffset);
   2643     BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr)
   2644         .addReg(FramePtr)
   2645         .addImm(EndOffset)
   2646         .setMIFlag(MachineInstr::FrameSetup)
   2647         ->getOperand(3)
   2648         .setIsDead();
   2649     assert(EndOffset >= 0 &&
   2650            "end of registration object above normal EBP position!");
   2651   } else if (UsedReg == BasePtr) {
   2652     // LEA offset(%ebp), %esi
   2653     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr),
   2654                  FramePtr, false, EndOffset)
   2655         .setMIFlag(MachineInstr::FrameSetup);
   2656     // MOV32rm SavedEBPOffset(%esi), %ebp
   2657     assert(X86FI->getHasSEHFramePtrSave());
   2658     int Offset =
   2659         getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
   2660     assert(UsedReg == BasePtr);
   2661     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr),
   2662                  UsedReg, true, Offset)
   2663         .setMIFlag(MachineInstr::FrameSetup);
   2664   } else {
   2665     llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr");
   2666   }
   2667   return MBBI;
   2668 }
   2669 
   2670 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const {
   2671   // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue.
   2672   unsigned Offset = 16;
   2673   // RBP is immediately pushed.
   2674   Offset += SlotSize;
   2675   // All callee-saved registers are then pushed.
   2676   Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
   2677   // Every funclet allocates enough stack space for the largest outgoing call.
   2678   Offset += getWinEHFuncletFrameSize(MF);
   2679   return Offset;
   2680 }
   2681 
   2682 void X86FrameLowering::processFunctionBeforeFrameFinalized(
   2683     MachineFunction &MF, RegScavenger *RS) const {
   2684   // If this function isn't doing Win64-style C++ EH, we don't need to do
   2685   // anything.
   2686   const Function *Fn = MF.getFunction();
   2687   if (!STI.is64Bit() || !MF.getMMI().hasEHFunclets() ||
   2688       classifyEHPersonality(Fn->getPersonalityFn()) != EHPersonality::MSVC_CXX)
   2689     return;
   2690 
   2691   // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset
   2692   // relative to RSP after the prologue.  Find the offset of the last fixed
   2693   // object, so that we can allocate a slot immediately following it. If there
   2694   // were no fixed objects, use offset -SlotSize, which is immediately after the
   2695   // return address. Fixed objects have negative frame indices.
   2696   MachineFrameInfo *MFI = MF.getFrameInfo();
   2697   int64_t MinFixedObjOffset = -SlotSize;
   2698   for (int I = MFI->getObjectIndexBegin(); I < 0; ++I)
   2699     MinFixedObjOffset = std::min(MinFixedObjOffset, MFI->getObjectOffset(I));
   2700 
   2701   int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize;
   2702   int UnwindHelpFI =
   2703       MFI->CreateFixedObject(SlotSize, UnwindHelpOffset, /*Immutable=*/false);
   2704   MF.getWinEHFuncInfo()->UnwindHelpFrameIdx = UnwindHelpFI;
   2705 
   2706   // Store -2 into UnwindHelp on function entry. We have to scan forwards past
   2707   // other frame setup instructions.
   2708   MachineBasicBlock &MBB = MF.front();
   2709   auto MBBI = MBB.begin();
   2710   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
   2711     ++MBBI;
   2712 
   2713   DebugLoc DL = MBB.findDebugLoc(MBBI);
   2714   addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)),
   2715                     UnwindHelpFI)
   2716       .addImm(-2);
   2717 }
   2718