1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the X86 implementation of TargetFrameLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "X86FrameLowering.h" 15 #include "X86InstrBuilder.h" 16 #include "X86InstrInfo.h" 17 #include "X86MachineFunctionInfo.h" 18 #include "X86Subtarget.h" 19 #include "X86TargetMachine.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/Analysis/EHPersonalities.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/WinEHFuncInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/MC/MCAsmInfo.h" 31 #include "llvm/MC/MCSymbol.h" 32 #include "llvm/Target/TargetOptions.h" 33 #include "llvm/Support/Debug.h" 34 #include <cstdlib> 35 36 using namespace llvm; 37 38 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI, 39 unsigned StackAlignOverride) 40 : TargetFrameLowering(StackGrowsDown, StackAlignOverride, 41 STI.is64Bit() ? -8 : -4), 42 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) { 43 // Cache a bunch of frame-related predicates for this subtarget. 44 SlotSize = TRI->getSlotSize(); 45 Is64Bit = STI.is64Bit(); 46 IsLP64 = STI.isTarget64BitLP64(); 47 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 48 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64(); 49 StackPtr = TRI->getStackRegister(); 50 } 51 52 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 53 return !MF.getFrameInfo()->hasVarSizedObjects() && 54 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); 55 } 56 57 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 58 /// call frame pseudos can be simplified. Having a FP, as in the default 59 /// implementation, is not sufficient here since we can't always use it. 60 /// Use a more nuanced condition. 61 bool 62 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 63 return hasReservedCallFrame(MF) || 64 (hasFP(MF) && !TRI->needsStackRealignment(MF)) || 65 TRI->hasBasePointer(MF); 66 } 67 68 // needsFrameIndexResolution - Do we need to perform FI resolution for 69 // this function. Normally, this is required only when the function 70 // has any stack objects. However, FI resolution actually has another job, 71 // not apparent from the title - it resolves callframesetup/destroy 72 // that were not simplified earlier. 73 // So, this is required for x86 functions that have push sequences even 74 // when there are no stack objects. 75 bool 76 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const { 77 return MF.getFrameInfo()->hasStackObjects() || 78 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); 79 } 80 81 /// hasFP - Return true if the specified function should have a dedicated frame 82 /// pointer register. This is true if the function has variable sized allocas 83 /// or if frame pointer elimination is disabled. 84 bool X86FrameLowering::hasFP(const MachineFunction &MF) const { 85 const MachineFrameInfo *MFI = MF.getFrameInfo(); 86 const MachineModuleInfo &MMI = MF.getMMI(); 87 88 return (MF.getTarget().Options.DisableFramePointerElim(MF) || 89 TRI->needsStackRealignment(MF) || 90 MFI->hasVarSizedObjects() || 91 MFI->isFrameAddressTaken() || MFI->hasOpaqueSPAdjustment() || 92 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || 93 MMI.callsUnwindInit() || MMI.hasEHFunclets() || MMI.callsEHReturn() || 94 MFI->hasStackMap() || MFI->hasPatchPoint()); 95 } 96 97 static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) { 98 if (IsLP64) { 99 if (isInt<8>(Imm)) 100 return X86::SUB64ri8; 101 return X86::SUB64ri32; 102 } else { 103 if (isInt<8>(Imm)) 104 return X86::SUB32ri8; 105 return X86::SUB32ri; 106 } 107 } 108 109 static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) { 110 if (IsLP64) { 111 if (isInt<8>(Imm)) 112 return X86::ADD64ri8; 113 return X86::ADD64ri32; 114 } else { 115 if (isInt<8>(Imm)) 116 return X86::ADD32ri8; 117 return X86::ADD32ri; 118 } 119 } 120 121 static unsigned getSUBrrOpcode(unsigned isLP64) { 122 return isLP64 ? X86::SUB64rr : X86::SUB32rr; 123 } 124 125 static unsigned getADDrrOpcode(unsigned isLP64) { 126 return isLP64 ? X86::ADD64rr : X86::ADD32rr; 127 } 128 129 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) { 130 if (IsLP64) { 131 if (isInt<8>(Imm)) 132 return X86::AND64ri8; 133 return X86::AND64ri32; 134 } 135 if (isInt<8>(Imm)) 136 return X86::AND32ri8; 137 return X86::AND32ri; 138 } 139 140 static unsigned getLEArOpcode(unsigned IsLP64) { 141 return IsLP64 ? X86::LEA64r : X86::LEA32r; 142 } 143 144 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live 145 /// when it reaches the "return" instruction. We can then pop a stack object 146 /// to this register without worry about clobbering it. 147 static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB, 148 MachineBasicBlock::iterator &MBBI, 149 const X86RegisterInfo *TRI, 150 bool Is64Bit) { 151 const MachineFunction *MF = MBB.getParent(); 152 const Function *F = MF->getFunction(); 153 if (!F || MF->getMMI().callsEHReturn()) 154 return 0; 155 156 const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF); 157 158 unsigned Opc = MBBI->getOpcode(); 159 switch (Opc) { 160 default: return 0; 161 case X86::RETL: 162 case X86::RETQ: 163 case X86::RETIL: 164 case X86::RETIQ: 165 case X86::TCRETURNdi: 166 case X86::TCRETURNri: 167 case X86::TCRETURNmi: 168 case X86::TCRETURNdi64: 169 case X86::TCRETURNri64: 170 case X86::TCRETURNmi64: 171 case X86::EH_RETURN: 172 case X86::EH_RETURN64: { 173 SmallSet<uint16_t, 8> Uses; 174 for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) { 175 MachineOperand &MO = MBBI->getOperand(i); 176 if (!MO.isReg() || MO.isDef()) 177 continue; 178 unsigned Reg = MO.getReg(); 179 if (!Reg) 180 continue; 181 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 182 Uses.insert(*AI); 183 } 184 185 for (auto CS : AvailableRegs) 186 if (!Uses.count(CS) && CS != X86::RIP) 187 return CS; 188 } 189 } 190 191 return 0; 192 } 193 194 static bool isEAXLiveIn(MachineFunction &MF) { 195 for (MachineRegisterInfo::livein_iterator II = MF.getRegInfo().livein_begin(), 196 EE = MF.getRegInfo().livein_end(); II != EE; ++II) { 197 unsigned Reg = II->first; 198 199 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX || 200 Reg == X86::AH || Reg == X86::AL) 201 return true; 202 } 203 204 return false; 205 } 206 207 /// Check if the flags need to be preserved before the terminators. 208 /// This would be the case, if the eflags is live-in of the region 209 /// composed by the terminators or live-out of that region, without 210 /// being defined by a terminator. 211 static bool 212 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) { 213 for (const MachineInstr &MI : MBB.terminators()) { 214 bool BreakNext = false; 215 for (const MachineOperand &MO : MI.operands()) { 216 if (!MO.isReg()) 217 continue; 218 unsigned Reg = MO.getReg(); 219 if (Reg != X86::EFLAGS) 220 continue; 221 222 // This terminator needs an eflags that is not defined 223 // by a previous another terminator: 224 // EFLAGS is live-in of the region composed by the terminators. 225 if (!MO.isDef()) 226 return true; 227 // This terminator defines the eflags, i.e., we don't need to preserve it. 228 // However, we still need to check this specific terminator does not 229 // read a live-in value. 230 BreakNext = true; 231 } 232 // We found a definition of the eflags, no need to preserve them. 233 if (BreakNext) 234 return false; 235 } 236 237 // None of the terminators use or define the eflags. 238 // Check if they are live-out, that would imply we need to preserve them. 239 for (const MachineBasicBlock *Succ : MBB.successors()) 240 if (Succ->isLiveIn(X86::EFLAGS)) 241 return true; 242 243 return false; 244 } 245 246 /// emitSPUpdate - Emit a series of instructions to increment / decrement the 247 /// stack pointer by a constant value. 248 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB, 249 MachineBasicBlock::iterator &MBBI, 250 int64_t NumBytes, bool InEpilogue) const { 251 bool isSub = NumBytes < 0; 252 uint64_t Offset = isSub ? -NumBytes : NumBytes; 253 254 uint64_t Chunk = (1LL << 31) - 1; 255 DebugLoc DL = MBB.findDebugLoc(MBBI); 256 257 while (Offset) { 258 if (Offset > Chunk) { 259 // Rather than emit a long series of instructions for large offsets, 260 // load the offset into a register and do one sub/add 261 unsigned Reg = 0; 262 263 if (isSub && !isEAXLiveIn(*MBB.getParent())) 264 Reg = (unsigned)(Is64Bit ? X86::RAX : X86::EAX); 265 else 266 Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit); 267 268 if (Reg) { 269 unsigned Opc = Is64Bit ? X86::MOV64ri : X86::MOV32ri; 270 BuildMI(MBB, MBBI, DL, TII.get(Opc), Reg) 271 .addImm(Offset); 272 Opc = isSub 273 ? getSUBrrOpcode(Is64Bit) 274 : getADDrrOpcode(Is64Bit); 275 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 276 .addReg(StackPtr) 277 .addReg(Reg); 278 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 279 Offset = 0; 280 continue; 281 } 282 } 283 284 uint64_t ThisVal = std::min(Offset, Chunk); 285 if (ThisVal == (Is64Bit ? 8 : 4)) { 286 // Use push / pop instead. 287 unsigned Reg = isSub 288 ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX) 289 : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit); 290 if (Reg) { 291 unsigned Opc = isSub 292 ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r) 293 : (Is64Bit ? X86::POP64r : X86::POP32r); 294 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc)) 295 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub)); 296 if (isSub) 297 MI->setFlag(MachineInstr::FrameSetup); 298 else 299 MI->setFlag(MachineInstr::FrameDestroy); 300 Offset -= ThisVal; 301 continue; 302 } 303 } 304 305 MachineInstrBuilder MI = BuildStackAdjustment( 306 MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue); 307 if (isSub) 308 MI.setMIFlag(MachineInstr::FrameSetup); 309 else 310 MI.setMIFlag(MachineInstr::FrameDestroy); 311 312 Offset -= ThisVal; 313 } 314 } 315 316 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment( 317 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, DebugLoc DL, 318 int64_t Offset, bool InEpilogue) const { 319 assert(Offset != 0 && "zero offset stack adjustment requested"); 320 321 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue 322 // is tricky. 323 bool UseLEA; 324 if (!InEpilogue) { 325 // Check if inserting the prologue at the beginning 326 // of MBB would require to use LEA operations. 327 // We need to use LEA operations if EFLAGS is live in, because 328 // it means an instruction will read it before it gets defined. 329 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS); 330 } else { 331 // If we can use LEA for SP but we shouldn't, check that none 332 // of the terminators uses the eflags. Otherwise we will insert 333 // a ADD that will redefine the eflags and break the condition. 334 // Alternatively, we could move the ADD, but this may not be possible 335 // and is an optimization anyway. 336 UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent()); 337 if (UseLEA && !STI.useLeaForSP()) 338 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB); 339 // If that assert breaks, that means we do not do the right thing 340 // in canUseAsEpilogue. 341 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) && 342 "We shouldn't have allowed this insertion point"); 343 } 344 345 MachineInstrBuilder MI; 346 if (UseLEA) { 347 MI = addRegOffset(BuildMI(MBB, MBBI, DL, 348 TII.get(getLEArOpcode(Uses64BitFramePtr)), 349 StackPtr), 350 StackPtr, false, Offset); 351 } else { 352 bool IsSub = Offset < 0; 353 uint64_t AbsOffset = IsSub ? -Offset : Offset; 354 unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset) 355 : getADDriOpcode(Uses64BitFramePtr, AbsOffset); 356 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 357 .addReg(StackPtr) 358 .addImm(AbsOffset); 359 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 360 } 361 return MI; 362 } 363 364 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB, 365 MachineBasicBlock::iterator &MBBI, 366 bool doMergeWithPrevious) const { 367 if ((doMergeWithPrevious && MBBI == MBB.begin()) || 368 (!doMergeWithPrevious && MBBI == MBB.end())) 369 return 0; 370 371 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI; 372 MachineBasicBlock::iterator NI = doMergeWithPrevious ? nullptr 373 : std::next(MBBI); 374 unsigned Opc = PI->getOpcode(); 375 int Offset = 0; 376 377 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 378 Opc == X86::ADD32ri || Opc == X86::ADD32ri8 || 379 Opc == X86::LEA32r || Opc == X86::LEA64_32r) && 380 PI->getOperand(0).getReg() == StackPtr){ 381 Offset += PI->getOperand(2).getImm(); 382 MBB.erase(PI); 383 if (!doMergeWithPrevious) MBBI = NI; 384 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 385 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 386 PI->getOperand(0).getReg() == StackPtr) { 387 Offset -= PI->getOperand(2).getImm(); 388 MBB.erase(PI); 389 if (!doMergeWithPrevious) MBBI = NI; 390 } 391 392 return Offset; 393 } 394 395 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB, 396 MachineBasicBlock::iterator MBBI, DebugLoc DL, 397 MCCFIInstruction CFIInst) const { 398 MachineFunction &MF = *MBB.getParent(); 399 unsigned CFIIndex = MF.getMMI().addFrameInst(CFIInst); 400 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 401 .addCFIIndex(CFIIndex); 402 } 403 404 void 405 X86FrameLowering::emitCalleeSavedFrameMoves(MachineBasicBlock &MBB, 406 MachineBasicBlock::iterator MBBI, 407 DebugLoc DL) const { 408 MachineFunction &MF = *MBB.getParent(); 409 MachineFrameInfo *MFI = MF.getFrameInfo(); 410 MachineModuleInfo &MMI = MF.getMMI(); 411 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 412 413 // Add callee saved registers to move list. 414 const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo(); 415 if (CSI.empty()) return; 416 417 // Calculate offsets. 418 for (std::vector<CalleeSavedInfo>::const_iterator 419 I = CSI.begin(), E = CSI.end(); I != E; ++I) { 420 int64_t Offset = MFI->getObjectOffset(I->getFrameIdx()); 421 unsigned Reg = I->getReg(); 422 423 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 424 BuildCFI(MBB, MBBI, DL, 425 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 426 } 427 } 428 429 /// usesTheStack - This function checks if any of the users of EFLAGS 430 /// copies the EFLAGS. We know that the code that lowers COPY of EFLAGS has 431 /// to use the stack, and if we don't adjust the stack we clobber the first 432 /// frame index. 433 /// See X86InstrInfo::copyPhysReg. 434 static bool usesTheStack(const MachineFunction &MF) { 435 const MachineRegisterInfo &MRI = MF.getRegInfo(); 436 437 for (MachineRegisterInfo::reg_instr_iterator 438 ri = MRI.reg_instr_begin(X86::EFLAGS), re = MRI.reg_instr_end(); 439 ri != re; ++ri) 440 if (ri->isCopy()) 441 return true; 442 443 return false; 444 } 445 446 MachineInstr *X86FrameLowering::emitStackProbe(MachineFunction &MF, 447 MachineBasicBlock &MBB, 448 MachineBasicBlock::iterator MBBI, 449 DebugLoc DL, 450 bool InProlog) const { 451 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 452 if (STI.isTargetWindowsCoreCLR()) { 453 if (InProlog) { 454 return emitStackProbeInlineStub(MF, MBB, MBBI, DL, true); 455 } else { 456 return emitStackProbeInline(MF, MBB, MBBI, DL, false); 457 } 458 } else { 459 return emitStackProbeCall(MF, MBB, MBBI, DL, InProlog); 460 } 461 } 462 463 void X86FrameLowering::inlineStackProbe(MachineFunction &MF, 464 MachineBasicBlock &PrologMBB) const { 465 const StringRef ChkStkStubSymbol = "__chkstk_stub"; 466 MachineInstr *ChkStkStub = nullptr; 467 468 for (MachineInstr &MI : PrologMBB) { 469 if (MI.isCall() && MI.getOperand(0).isSymbol() && 470 ChkStkStubSymbol == MI.getOperand(0).getSymbolName()) { 471 ChkStkStub = &MI; 472 break; 473 } 474 } 475 476 if (ChkStkStub != nullptr) { 477 MachineBasicBlock::iterator MBBI = std::next(ChkStkStub->getIterator()); 478 assert(std::prev(MBBI).operator==(ChkStkStub) && 479 "MBBI expected after __chkstk_stub."); 480 DebugLoc DL = PrologMBB.findDebugLoc(MBBI); 481 emitStackProbeInline(MF, PrologMBB, MBBI, DL, true); 482 ChkStkStub->eraseFromParent(); 483 } 484 } 485 486 MachineInstr *X86FrameLowering::emitStackProbeInline( 487 MachineFunction &MF, MachineBasicBlock &MBB, 488 MachineBasicBlock::iterator MBBI, DebugLoc DL, bool InProlog) const { 489 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 490 assert(STI.is64Bit() && "different expansion needed for 32 bit"); 491 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR"); 492 const TargetInstrInfo &TII = *STI.getInstrInfo(); 493 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 494 495 // RAX contains the number of bytes of desired stack adjustment. 496 // The handling here assumes this value has already been updated so as to 497 // maintain stack alignment. 498 // 499 // We need to exit with RSP modified by this amount and execute suitable 500 // page touches to notify the OS that we're growing the stack responsibly. 501 // All stack probing must be done without modifying RSP. 502 // 503 // MBB: 504 // SizeReg = RAX; 505 // ZeroReg = 0 506 // CopyReg = RSP 507 // Flags, TestReg = CopyReg - SizeReg 508 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg 509 // LimitReg = gs magic thread env access 510 // if FinalReg >= LimitReg goto ContinueMBB 511 // RoundBB: 512 // RoundReg = page address of FinalReg 513 // LoopMBB: 514 // LoopReg = PHI(LimitReg,ProbeReg) 515 // ProbeReg = LoopReg - PageSize 516 // [ProbeReg] = 0 517 // if (ProbeReg > RoundReg) goto LoopMBB 518 // ContinueMBB: 519 // RSP = RSP - RAX 520 // [rest of original MBB] 521 522 // Set up the new basic blocks 523 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB); 524 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 525 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB); 526 527 MachineFunction::iterator MBBIter = std::next(MBB.getIterator()); 528 MF.insert(MBBIter, RoundMBB); 529 MF.insert(MBBIter, LoopMBB); 530 MF.insert(MBBIter, ContinueMBB); 531 532 // Split MBB and move the tail portion down to ContinueMBB. 533 MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI); 534 ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end()); 535 ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB); 536 537 // Some useful constants 538 const int64_t ThreadEnvironmentStackLimit = 0x10; 539 const int64_t PageSize = 0x1000; 540 const int64_t PageMask = ~(PageSize - 1); 541 542 // Registers we need. For the normal case we use virtual 543 // registers. For the prolog expansion we use RAX, RCX and RDX. 544 MachineRegisterInfo &MRI = MF.getRegInfo(); 545 const TargetRegisterClass *RegClass = &X86::GR64RegClass; 546 const unsigned SizeReg = InProlog ? (unsigned)X86::RAX 547 : MRI.createVirtualRegister(RegClass), 548 ZeroReg = InProlog ? (unsigned)X86::RCX 549 : MRI.createVirtualRegister(RegClass), 550 CopyReg = InProlog ? (unsigned)X86::RDX 551 : MRI.createVirtualRegister(RegClass), 552 TestReg = InProlog ? (unsigned)X86::RDX 553 : MRI.createVirtualRegister(RegClass), 554 FinalReg = InProlog ? (unsigned)X86::RDX 555 : MRI.createVirtualRegister(RegClass), 556 RoundedReg = InProlog ? (unsigned)X86::RDX 557 : MRI.createVirtualRegister(RegClass), 558 LimitReg = InProlog ? (unsigned)X86::RCX 559 : MRI.createVirtualRegister(RegClass), 560 JoinReg = InProlog ? (unsigned)X86::RCX 561 : MRI.createVirtualRegister(RegClass), 562 ProbeReg = InProlog ? (unsigned)X86::RCX 563 : MRI.createVirtualRegister(RegClass); 564 565 // SP-relative offsets where we can save RCX and RDX. 566 int64_t RCXShadowSlot = 0; 567 int64_t RDXShadowSlot = 0; 568 569 // If inlining in the prolog, save RCX and RDX. 570 // Future optimization: don't save or restore if not live in. 571 if (InProlog) { 572 // Compute the offsets. We need to account for things already 573 // pushed onto the stack at this point: return address, frame 574 // pointer (if used), and callee saves. 575 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 576 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize(); 577 const bool HasFP = hasFP(MF); 578 RCXShadowSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0); 579 RDXShadowSlot = RCXShadowSlot + 8; 580 // Emit the saves. 581 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 582 RCXShadowSlot) 583 .addReg(X86::RCX); 584 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 585 RDXShadowSlot) 586 .addReg(X86::RDX); 587 } else { 588 // Not in the prolog. Copy RAX to a virtual reg. 589 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX); 590 } 591 592 // Add code to MBB to check for overflow and set the new target stack pointer 593 // to zero if so. 594 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg) 595 .addReg(ZeroReg, RegState::Undef) 596 .addReg(ZeroReg, RegState::Undef); 597 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP); 598 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg) 599 .addReg(CopyReg) 600 .addReg(SizeReg); 601 BuildMI(&MBB, DL, TII.get(X86::CMOVB64rr), FinalReg) 602 .addReg(TestReg) 603 .addReg(ZeroReg); 604 605 // FinalReg now holds final stack pointer value, or zero if 606 // allocation would overflow. Compare against the current stack 607 // limit from the thread environment block. Note this limit is the 608 // lowest touched page on the stack, not the point at which the OS 609 // will cause an overflow exception, so this is just an optimization 610 // to avoid unnecessarily touching pages that are below the current 611 // SP but already commited to the stack by the OS. 612 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg) 613 .addReg(0) 614 .addImm(1) 615 .addReg(0) 616 .addImm(ThreadEnvironmentStackLimit) 617 .addReg(X86::GS); 618 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg); 619 // Jump if the desired stack pointer is at or above the stack limit. 620 BuildMI(&MBB, DL, TII.get(X86::JAE_1)).addMBB(ContinueMBB); 621 622 // Add code to roundMBB to round the final stack pointer to a page boundary. 623 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg) 624 .addReg(FinalReg) 625 .addImm(PageMask); 626 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB); 627 628 // LimitReg now holds the current stack limit, RoundedReg page-rounded 629 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page 630 // and probe until we reach RoundedReg. 631 if (!InProlog) { 632 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg) 633 .addReg(LimitReg) 634 .addMBB(RoundMBB) 635 .addReg(ProbeReg) 636 .addMBB(LoopMBB); 637 } 638 639 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg, 640 false, -PageSize); 641 642 // Probe by storing a byte onto the stack. 643 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi)) 644 .addReg(ProbeReg) 645 .addImm(1) 646 .addReg(0) 647 .addImm(0) 648 .addReg(0) 649 .addImm(0); 650 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr)) 651 .addReg(RoundedReg) 652 .addReg(ProbeReg); 653 BuildMI(LoopMBB, DL, TII.get(X86::JNE_1)).addMBB(LoopMBB); 654 655 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI(); 656 657 // If in prolog, restore RDX and RCX. 658 if (InProlog) { 659 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::MOV64rm), 660 X86::RCX), 661 X86::RSP, false, RCXShadowSlot); 662 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::MOV64rm), 663 X86::RDX), 664 X86::RSP, false, RDXShadowSlot); 665 } 666 667 // Now that the probing is done, add code to continueMBB to update 668 // the stack pointer for real. 669 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP) 670 .addReg(X86::RSP) 671 .addReg(SizeReg); 672 673 // Add the control flow edges we need. 674 MBB.addSuccessor(ContinueMBB); 675 MBB.addSuccessor(RoundMBB); 676 RoundMBB->addSuccessor(LoopMBB); 677 LoopMBB->addSuccessor(ContinueMBB); 678 LoopMBB->addSuccessor(LoopMBB); 679 680 // Mark all the instructions added to the prolog as frame setup. 681 if (InProlog) { 682 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) { 683 BeforeMBBI->setFlag(MachineInstr::FrameSetup); 684 } 685 for (MachineInstr &MI : *RoundMBB) { 686 MI.setFlag(MachineInstr::FrameSetup); 687 } 688 for (MachineInstr &MI : *LoopMBB) { 689 MI.setFlag(MachineInstr::FrameSetup); 690 } 691 for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin(); 692 CMBBI != ContinueMBBI; ++CMBBI) { 693 CMBBI->setFlag(MachineInstr::FrameSetup); 694 } 695 } 696 697 // Possible TODO: physreg liveness for InProlog case. 698 699 return ContinueMBBI; 700 } 701 702 MachineInstr *X86FrameLowering::emitStackProbeCall( 703 MachineFunction &MF, MachineBasicBlock &MBB, 704 MachineBasicBlock::iterator MBBI, DebugLoc DL, bool InProlog) const { 705 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large; 706 707 unsigned CallOp; 708 if (Is64Bit) 709 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32; 710 else 711 CallOp = X86::CALLpcrel32; 712 713 const char *Symbol; 714 if (Is64Bit) { 715 if (STI.isTargetCygMing()) { 716 Symbol = "___chkstk_ms"; 717 } else { 718 Symbol = "__chkstk"; 719 } 720 } else if (STI.isTargetCygMing()) 721 Symbol = "_alloca"; 722 else 723 Symbol = "_chkstk"; 724 725 MachineInstrBuilder CI; 726 MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI); 727 728 // All current stack probes take AX and SP as input, clobber flags, and 729 // preserve all registers. x86_64 probes leave RSP unmodified. 730 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 731 // For the large code model, we have to call through a register. Use R11, 732 // as it is scratch in all supported calling conventions. 733 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11) 734 .addExternalSymbol(Symbol); 735 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11); 736 } else { 737 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addExternalSymbol(Symbol); 738 } 739 740 unsigned AX = Is64Bit ? X86::RAX : X86::EAX; 741 unsigned SP = Is64Bit ? X86::RSP : X86::ESP; 742 CI.addReg(AX, RegState::Implicit) 743 .addReg(SP, RegState::Implicit) 744 .addReg(AX, RegState::Define | RegState::Implicit) 745 .addReg(SP, RegState::Define | RegState::Implicit) 746 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); 747 748 if (Is64Bit) { 749 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp 750 // themselves. It also does not clobber %rax so we can reuse it when 751 // adjusting %rsp. 752 BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64rr), X86::RSP) 753 .addReg(X86::RSP) 754 .addReg(X86::RAX); 755 } 756 757 if (InProlog) { 758 // Apply the frame setup flag to all inserted instrs. 759 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI) 760 ExpansionMBBI->setFlag(MachineInstr::FrameSetup); 761 } 762 763 return MBBI; 764 } 765 766 MachineInstr *X86FrameLowering::emitStackProbeInlineStub( 767 MachineFunction &MF, MachineBasicBlock &MBB, 768 MachineBasicBlock::iterator MBBI, DebugLoc DL, bool InProlog) const { 769 770 assert(InProlog && "ChkStkStub called outside prolog!"); 771 772 BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32)) 773 .addExternalSymbol("__chkstk_stub"); 774 775 return MBBI; 776 } 777 778 static unsigned calculateSetFPREG(uint64_t SPAdjust) { 779 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well 780 // and might require smaller successive adjustments. 781 const uint64_t Win64MaxSEHOffset = 128; 782 uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset); 783 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode. 784 return SEHFrameOffset & -16; 785 } 786 787 // If we're forcing a stack realignment we can't rely on just the frame 788 // info, we need to know the ABI stack alignment as well in case we 789 // have a call out. Otherwise just make sure we have some alignment - we'll 790 // go with the minimum SlotSize. 791 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const { 792 const MachineFrameInfo *MFI = MF.getFrameInfo(); 793 uint64_t MaxAlign = MFI->getMaxAlignment(); // Desired stack alignment. 794 unsigned StackAlign = getStackAlignment(); 795 if (MF.getFunction()->hasFnAttribute("stackrealign")) { 796 if (MFI->hasCalls()) 797 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign; 798 else if (MaxAlign < SlotSize) 799 MaxAlign = SlotSize; 800 } 801 return MaxAlign; 802 } 803 804 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB, 805 MachineBasicBlock::iterator MBBI, 806 DebugLoc DL, unsigned Reg, 807 uint64_t MaxAlign) const { 808 uint64_t Val = -MaxAlign; 809 unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val); 810 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg) 811 .addReg(Reg) 812 .addImm(Val) 813 .setMIFlag(MachineInstr::FrameSetup); 814 815 // The EFLAGS implicit def is dead. 816 MI->getOperand(3).setIsDead(); 817 } 818 819 /// emitPrologue - Push callee-saved registers onto the stack, which 820 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate 821 /// space for local variables. Also emit labels used by the exception handler to 822 /// generate the exception handling frames. 823 824 /* 825 Here's a gist of what gets emitted: 826 827 ; Establish frame pointer, if needed 828 [if needs FP] 829 push %rbp 830 .cfi_def_cfa_offset 16 831 .cfi_offset %rbp, -16 832 .seh_pushreg %rpb 833 mov %rsp, %rbp 834 .cfi_def_cfa_register %rbp 835 836 ; Spill general-purpose registers 837 [for all callee-saved GPRs] 838 pushq %<reg> 839 [if not needs FP] 840 .cfi_def_cfa_offset (offset from RETADDR) 841 .seh_pushreg %<reg> 842 843 ; If the required stack alignment > default stack alignment 844 ; rsp needs to be re-aligned. This creates a "re-alignment gap" 845 ; of unknown size in the stack frame. 846 [if stack needs re-alignment] 847 and $MASK, %rsp 848 849 ; Allocate space for locals 850 [if target is Windows and allocated space > 4096 bytes] 851 ; Windows needs special care for allocations larger 852 ; than one page. 853 mov $NNN, %rax 854 call ___chkstk_ms/___chkstk 855 sub %rax, %rsp 856 [else] 857 sub $NNN, %rsp 858 859 [if needs FP] 860 .seh_stackalloc (size of XMM spill slots) 861 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots 862 [else] 863 .seh_stackalloc NNN 864 865 ; Spill XMMs 866 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved, 867 ; they may get spilled on any platform, if the current function 868 ; calls @llvm.eh.unwind.init 869 [if needs FP] 870 [for all callee-saved XMM registers] 871 movaps %<xmm reg>, -MMM(%rbp) 872 [for all callee-saved XMM registers] 873 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset) 874 ; i.e. the offset relative to (%rbp - SEHFrameOffset) 875 [else] 876 [for all callee-saved XMM registers] 877 movaps %<xmm reg>, KKK(%rsp) 878 [for all callee-saved XMM registers] 879 .seh_savexmm %<xmm reg>, KKK 880 881 .seh_endprologue 882 883 [if needs base pointer] 884 mov %rsp, %rbx 885 [if needs to restore base pointer] 886 mov %rsp, -MMM(%rbp) 887 888 ; Emit CFI info 889 [if needs FP] 890 [for all callee-saved registers] 891 .cfi_offset %<reg>, (offset from %rbp) 892 [else] 893 .cfi_def_cfa_offset (offset from RETADDR) 894 [for all callee-saved registers] 895 .cfi_offset %<reg>, (offset from %rsp) 896 897 Notes: 898 - .seh directives are emitted only for Windows 64 ABI 899 - .cfi directives are emitted for all other ABIs 900 - for 32-bit code, substitute %e?? registers for %r?? 901 */ 902 903 void X86FrameLowering::emitPrologue(MachineFunction &MF, 904 MachineBasicBlock &MBB) const { 905 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 906 "MF used frame lowering for wrong subtarget"); 907 MachineBasicBlock::iterator MBBI = MBB.begin(); 908 MachineFrameInfo *MFI = MF.getFrameInfo(); 909 const Function *Fn = MF.getFunction(); 910 MachineModuleInfo &MMI = MF.getMMI(); 911 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 912 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment. 913 uint64_t StackSize = MFI->getStackSize(); // Number of bytes to allocate. 914 bool IsFunclet = MBB.isEHFuncletEntry(); 915 EHPersonality Personality = EHPersonality::Unknown; 916 if (Fn->hasPersonalityFn()) 917 Personality = classifyEHPersonality(Fn->getPersonalityFn()); 918 bool FnHasClrFunclet = 919 MMI.hasEHFunclets() && Personality == EHPersonality::CoreCLR; 920 bool IsClrFunclet = IsFunclet && FnHasClrFunclet; 921 bool HasFP = hasFP(MF); 922 bool IsWin64CC = STI.isCallingConvWin64(Fn->getCallingConv()); 923 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 924 bool NeedsWinCFI = IsWin64Prologue && Fn->needsUnwindTableEntry(); 925 bool NeedsDwarfCFI = 926 !IsWin64Prologue && (MMI.hasDebugInfo() || Fn->needsUnwindTableEntry()); 927 unsigned FramePtr = TRI->getFrameRegister(MF); 928 const unsigned MachineFramePtr = 929 STI.isTarget64BitILP32() 930 ? getX86SubSuperRegister(FramePtr, MVT::i64, false) 931 : FramePtr; 932 unsigned BasePtr = TRI->getBaseRegister(); 933 934 // Debug location must be unknown since the first debug location is used 935 // to determine the end of the prologue. 936 DebugLoc DL; 937 938 // Add RETADDR move area to callee saved frame size. 939 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 940 if (TailCallReturnAddrDelta && IsWin64Prologue) 941 report_fatal_error("Can't handle guaranteed tail call under win64 yet"); 942 943 if (TailCallReturnAddrDelta < 0) 944 X86FI->setCalleeSavedFrameSize( 945 X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta); 946 947 bool UseStackProbe = (STI.isOSWindows() && !STI.isTargetMachO()); 948 949 // The default stack probe size is 4096 if the function has no stackprobesize 950 // attribute. 951 unsigned StackProbeSize = 4096; 952 if (Fn->hasFnAttribute("stack-probe-size")) 953 Fn->getFnAttribute("stack-probe-size") 954 .getValueAsString() 955 .getAsInteger(0, StackProbeSize); 956 957 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf 958 // function, and use up to 128 bytes of stack space, don't have a frame 959 // pointer, calls, or dynamic alloca then we do not need to adjust the 960 // stack pointer (we fit in the Red Zone). We also check that we don't 961 // push and pop from the stack. 962 if (Is64Bit && !Fn->hasFnAttribute(Attribute::NoRedZone) && 963 !TRI->needsStackRealignment(MF) && 964 !MFI->hasVarSizedObjects() && // No dynamic alloca. 965 !MFI->adjustsStack() && // No calls. 966 !IsWin64CC && // Win64 has no Red Zone 967 !usesTheStack(MF) && // Don't push and pop. 968 !MF.shouldSplitStack()) { // Regular stack 969 uint64_t MinSize = X86FI->getCalleeSavedFrameSize(); 970 if (HasFP) MinSize += SlotSize; 971 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); 972 MFI->setStackSize(StackSize); 973 } 974 975 // Insert stack pointer adjustment for later moving of return addr. Only 976 // applies to tail call optimized functions where the callee argument stack 977 // size is bigger than the callers. 978 if (TailCallReturnAddrDelta < 0) { 979 BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta, 980 /*InEpilogue=*/false) 981 .setMIFlag(MachineInstr::FrameSetup); 982 } 983 984 // Mapping for machine moves: 985 // 986 // DST: VirtualFP AND 987 // SRC: VirtualFP => DW_CFA_def_cfa_offset 988 // ELSE => DW_CFA_def_cfa 989 // 990 // SRC: VirtualFP AND 991 // DST: Register => DW_CFA_def_cfa_register 992 // 993 // ELSE 994 // OFFSET < 0 => DW_CFA_offset_extended_sf 995 // REG < 64 => DW_CFA_offset + Reg 996 // ELSE => DW_CFA_offset_extended 997 998 uint64_t NumBytes = 0; 999 int stackGrowth = -SlotSize; 1000 1001 // Find the funclet establisher parameter 1002 unsigned Establisher = X86::NoRegister; 1003 if (IsClrFunclet) 1004 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX; 1005 else if (IsFunclet) 1006 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX; 1007 1008 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) { 1009 // Immediately spill establisher into the home slot. 1010 // The runtime cares about this. 1011 // MOV64mr %rdx, 16(%rsp) 1012 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1013 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16) 1014 .addReg(Establisher) 1015 .setMIFlag(MachineInstr::FrameSetup); 1016 MBB.addLiveIn(Establisher); 1017 } 1018 1019 if (HasFP) { 1020 // Calculate required stack adjustment. 1021 uint64_t FrameSize = StackSize - SlotSize; 1022 // If required, include space for extra hidden slot for stashing base pointer. 1023 if (X86FI->getRestoreBasePointer()) 1024 FrameSize += SlotSize; 1025 1026 NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize(); 1027 1028 // Callee-saved registers are pushed on stack before the stack is realigned. 1029 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue) 1030 NumBytes = RoundUpToAlignment(NumBytes, MaxAlign); 1031 1032 // Get the offset of the stack slot for the EBP register, which is 1033 // guaranteed to be the last slot by processFunctionBeforeFrameFinalized. 1034 // Update the frame offset adjustment. 1035 if (!IsFunclet) 1036 MFI->setOffsetAdjustment(-NumBytes); 1037 else 1038 assert(MFI->getOffsetAdjustment() == -(int)NumBytes && 1039 "should calculate same local variable offset for funclets"); 1040 1041 // Save EBP/RBP into the appropriate stack slot. 1042 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) 1043 .addReg(MachineFramePtr, RegState::Kill) 1044 .setMIFlag(MachineInstr::FrameSetup); 1045 1046 if (NeedsDwarfCFI) { 1047 // Mark the place where EBP/RBP was saved. 1048 // Define the current CFA rule to use the provided offset. 1049 assert(StackSize); 1050 BuildCFI(MBB, MBBI, DL, 1051 MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth)); 1052 1053 // Change the rule for the FramePtr to be an "offset" rule. 1054 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1055 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset( 1056 nullptr, DwarfFramePtr, 2 * stackGrowth)); 1057 } 1058 1059 if (NeedsWinCFI) { 1060 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1061 .addImm(FramePtr) 1062 .setMIFlag(MachineInstr::FrameSetup); 1063 } 1064 1065 if (!IsWin64Prologue && !IsFunclet) { 1066 // Update EBP with the new base value. 1067 BuildMI(MBB, MBBI, DL, 1068 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), 1069 FramePtr) 1070 .addReg(StackPtr) 1071 .setMIFlag(MachineInstr::FrameSetup); 1072 1073 if (NeedsDwarfCFI) { 1074 // Mark effective beginning of when frame pointer becomes valid. 1075 // Define the current CFA to use the EBP/RBP register. 1076 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1077 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister( 1078 nullptr, DwarfFramePtr)); 1079 } 1080 } 1081 1082 // Mark the FramePtr as live-in in every block. Don't do this again for 1083 // funclet prologues. 1084 if (!IsFunclet) { 1085 for (MachineBasicBlock &EveryMBB : MF) 1086 EveryMBB.addLiveIn(MachineFramePtr); 1087 } 1088 } else { 1089 assert(!IsFunclet && "funclets without FPs not yet implemented"); 1090 NumBytes = StackSize - X86FI->getCalleeSavedFrameSize(); 1091 } 1092 1093 // For EH funclets, only allocate enough space for outgoing calls. Save the 1094 // NumBytes value that we would've used for the parent frame. 1095 unsigned ParentFrameNumBytes = NumBytes; 1096 if (IsFunclet) 1097 NumBytes = getWinEHFuncletFrameSize(MF); 1098 1099 // Skip the callee-saved push instructions. 1100 bool PushedRegs = false; 1101 int StackOffset = 2 * stackGrowth; 1102 1103 while (MBBI != MBB.end() && 1104 MBBI->getFlag(MachineInstr::FrameSetup) && 1105 (MBBI->getOpcode() == X86::PUSH32r || 1106 MBBI->getOpcode() == X86::PUSH64r)) { 1107 PushedRegs = true; 1108 unsigned Reg = MBBI->getOperand(0).getReg(); 1109 ++MBBI; 1110 1111 if (!HasFP && NeedsDwarfCFI) { 1112 // Mark callee-saved push instruction. 1113 // Define the current CFA rule to use the provided offset. 1114 assert(StackSize); 1115 BuildCFI(MBB, MBBI, DL, 1116 MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset)); 1117 StackOffset += stackGrowth; 1118 } 1119 1120 if (NeedsWinCFI) { 1121 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)).addImm(Reg).setMIFlag( 1122 MachineInstr::FrameSetup); 1123 } 1124 } 1125 1126 // Realign stack after we pushed callee-saved registers (so that we'll be 1127 // able to calculate their offsets from the frame pointer). 1128 // Don't do this for Win64, it needs to realign the stack after the prologue. 1129 if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) { 1130 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1131 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign); 1132 } 1133 1134 // If there is an SUB32ri of ESP immediately before this instruction, merge 1135 // the two. This can be the case when tail call elimination is enabled and 1136 // the callee has more arguments then the caller. 1137 NumBytes -= mergeSPUpdates(MBB, MBBI, true); 1138 1139 // Adjust stack pointer: ESP -= numbytes. 1140 1141 // Windows and cygwin/mingw require a prologue helper routine when allocating 1142 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw 1143 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the 1144 // stack and adjust the stack pointer in one go. The 64-bit version of 1145 // __chkstk is only responsible for probing the stack. The 64-bit prologue is 1146 // responsible for adjusting the stack pointer. Touching the stack at 4K 1147 // increments is necessary to ensure that the guard pages used by the OS 1148 // virtual memory manager are allocated in correct sequence. 1149 uint64_t AlignedNumBytes = NumBytes; 1150 if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) 1151 AlignedNumBytes = RoundUpToAlignment(AlignedNumBytes, MaxAlign); 1152 if (AlignedNumBytes >= StackProbeSize && UseStackProbe) { 1153 // Check whether EAX is livein for this function. 1154 bool isEAXAlive = isEAXLiveIn(MF); 1155 1156 if (isEAXAlive) { 1157 // Sanity check that EAX is not livein for this function. 1158 // It should not be, so throw an assert. 1159 assert(!Is64Bit && "EAX is livein in x64 case!"); 1160 1161 // Save EAX 1162 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) 1163 .addReg(X86::EAX, RegState::Kill) 1164 .setMIFlag(MachineInstr::FrameSetup); 1165 } 1166 1167 if (Is64Bit) { 1168 // Handle the 64-bit Windows ABI case where we need to call __chkstk. 1169 // Function prologue is responsible for adjusting the stack pointer. 1170 if (isUInt<32>(NumBytes)) { 1171 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1172 .addImm(NumBytes) 1173 .setMIFlag(MachineInstr::FrameSetup); 1174 } else if (isInt<32>(NumBytes)) { 1175 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX) 1176 .addImm(NumBytes) 1177 .setMIFlag(MachineInstr::FrameSetup); 1178 } else { 1179 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX) 1180 .addImm(NumBytes) 1181 .setMIFlag(MachineInstr::FrameSetup); 1182 } 1183 } else { 1184 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive. 1185 // We'll also use 4 already allocated bytes for EAX. 1186 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1187 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes) 1188 .setMIFlag(MachineInstr::FrameSetup); 1189 } 1190 1191 // Call __chkstk, __chkstk_ms, or __alloca. 1192 emitStackProbe(MF, MBB, MBBI, DL, true); 1193 1194 if (isEAXAlive) { 1195 // Restore EAX 1196 MachineInstr *MI = 1197 addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX), 1198 StackPtr, false, NumBytes - 4); 1199 MI->setFlag(MachineInstr::FrameSetup); 1200 MBB.insert(MBBI, MI); 1201 } 1202 } else if (NumBytes) { 1203 emitSPUpdate(MBB, MBBI, -(int64_t)NumBytes, /*InEpilogue=*/false); 1204 } 1205 1206 if (NeedsWinCFI && NumBytes) 1207 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc)) 1208 .addImm(NumBytes) 1209 .setMIFlag(MachineInstr::FrameSetup); 1210 1211 int SEHFrameOffset = 0; 1212 unsigned SPOrEstablisher; 1213 if (IsFunclet) { 1214 if (IsClrFunclet) { 1215 // The establisher parameter passed to a CLR funclet is actually a pointer 1216 // to the (mostly empty) frame of its nearest enclosing funclet; we have 1217 // to find the root function establisher frame by loading the PSPSym from 1218 // the intermediate frame. 1219 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1220 MachinePointerInfo NoInfo; 1221 MBB.addLiveIn(Establisher); 1222 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher), 1223 Establisher, false, PSPSlotOffset) 1224 .addMemOperand(MF.getMachineMemOperand( 1225 NoInfo, MachineMemOperand::MOLoad, SlotSize, SlotSize)); 1226 ; 1227 // Save the root establisher back into the current funclet's (mostly 1228 // empty) frame, in case a sub-funclet or the GC needs it. 1229 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, 1230 false, PSPSlotOffset) 1231 .addReg(Establisher) 1232 .addMemOperand( 1233 MF.getMachineMemOperand(NoInfo, MachineMemOperand::MOStore | 1234 MachineMemOperand::MOVolatile, 1235 SlotSize, SlotSize)); 1236 } 1237 SPOrEstablisher = Establisher; 1238 } else { 1239 SPOrEstablisher = StackPtr; 1240 } 1241 1242 if (IsWin64Prologue && HasFP) { 1243 // Set RBP to a small fixed offset from RSP. In the funclet case, we base 1244 // this calculation on the incoming establisher, which holds the value of 1245 // RSP from the parent frame at the end of the prologue. 1246 SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes); 1247 if (SEHFrameOffset) 1248 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr), 1249 SPOrEstablisher, false, SEHFrameOffset); 1250 else 1251 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr) 1252 .addReg(SPOrEstablisher); 1253 1254 // If this is not a funclet, emit the CFI describing our frame pointer. 1255 if (NeedsWinCFI && !IsFunclet) { 1256 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1257 .addImm(FramePtr) 1258 .addImm(SEHFrameOffset) 1259 .setMIFlag(MachineInstr::FrameSetup); 1260 if (isAsynchronousEHPersonality(Personality)) 1261 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset; 1262 } 1263 } else if (IsFunclet && STI.is32Bit()) { 1264 // Reset EBP / ESI to something good for funclets. 1265 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL); 1266 // If we're a catch funclet, we can be returned to via catchret. Save ESP 1267 // into the registration node so that the runtime will restore it for us. 1268 if (!MBB.isCleanupFuncletEntry()) { 1269 assert(Personality == EHPersonality::MSVC_CXX); 1270 unsigned FrameReg; 1271 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex; 1272 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg); 1273 // ESP is the first field, so no extra displacement is needed. 1274 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg, 1275 false, EHRegOffset) 1276 .addReg(X86::ESP); 1277 } 1278 } 1279 1280 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) { 1281 const MachineInstr *FrameInstr = &*MBBI; 1282 ++MBBI; 1283 1284 if (NeedsWinCFI) { 1285 int FI; 1286 if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) { 1287 if (X86::FR64RegClass.contains(Reg)) { 1288 unsigned IgnoredFrameReg; 1289 int Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg); 1290 Offset += SEHFrameOffset; 1291 1292 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM)) 1293 .addImm(Reg) 1294 .addImm(Offset) 1295 .setMIFlag(MachineInstr::FrameSetup); 1296 } 1297 } 1298 } 1299 } 1300 1301 if (NeedsWinCFI) 1302 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue)) 1303 .setMIFlag(MachineInstr::FrameSetup); 1304 1305 if (FnHasClrFunclet && !IsFunclet) { 1306 // Save the so-called Initial-SP (i.e. the value of the stack pointer 1307 // immediately after the prolog) into the PSPSlot so that funclets 1308 // and the GC can recover it. 1309 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1310 auto PSPInfo = MachinePointerInfo::getFixedStack( 1311 MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx); 1312 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false, 1313 PSPSlotOffset) 1314 .addReg(StackPtr) 1315 .addMemOperand(MF.getMachineMemOperand( 1316 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 1317 SlotSize, SlotSize)); 1318 } 1319 1320 // Realign stack after we spilled callee-saved registers (so that we'll be 1321 // able to calculate their offsets from the frame pointer). 1322 // Win64 requires aligning the stack after the prologue. 1323 if (IsWin64Prologue && TRI->needsStackRealignment(MF)) { 1324 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1325 BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign); 1326 } 1327 1328 // We already dealt with stack realignment and funclets above. 1329 if (IsFunclet && STI.is32Bit()) 1330 return; 1331 1332 // If we need a base pointer, set it up here. It's whatever the value 1333 // of the stack pointer is at this point. Any variable size objects 1334 // will be allocated after this, so we can still use the base pointer 1335 // to reference locals. 1336 if (TRI->hasBasePointer(MF)) { 1337 // Update the base pointer with the current stack pointer. 1338 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr; 1339 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr) 1340 .addReg(SPOrEstablisher) 1341 .setMIFlag(MachineInstr::FrameSetup); 1342 if (X86FI->getRestoreBasePointer()) { 1343 // Stash value of base pointer. Saving RSP instead of EBP shortens 1344 // dependence chain. Used by SjLj EH. 1345 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1346 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), 1347 FramePtr, true, X86FI->getRestoreBasePointerOffset()) 1348 .addReg(SPOrEstablisher) 1349 .setMIFlag(MachineInstr::FrameSetup); 1350 } 1351 1352 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) { 1353 // Stash the value of the frame pointer relative to the base pointer for 1354 // Win32 EH. This supports Win32 EH, which does the inverse of the above: 1355 // it recovers the frame pointer from the base pointer rather than the 1356 // other way around. 1357 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1358 unsigned UsedReg; 1359 int Offset = 1360 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg); 1361 assert(UsedReg == BasePtr); 1362 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset) 1363 .addReg(FramePtr) 1364 .setMIFlag(MachineInstr::FrameSetup); 1365 } 1366 } 1367 1368 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) { 1369 // Mark end of stack pointer adjustment. 1370 if (!HasFP && NumBytes) { 1371 // Define the current CFA rule to use the provided offset. 1372 assert(StackSize); 1373 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset( 1374 nullptr, -StackSize + stackGrowth)); 1375 } 1376 1377 // Emit DWARF info specifying the offsets of the callee-saved registers. 1378 if (PushedRegs) 1379 emitCalleeSavedFrameMoves(MBB, MBBI, DL); 1380 } 1381 } 1382 1383 bool X86FrameLowering::canUseLEAForSPInEpilogue( 1384 const MachineFunction &MF) const { 1385 // We can't use LEA instructions for adjusting the stack pointer if this is a 1386 // leaf function in the Win64 ABI. Only ADD instructions may be used to 1387 // deallocate the stack. 1388 // This means that we can use LEA for SP in two situations: 1389 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA. 1390 // 2. We *have* a frame pointer which means we are permitted to use LEA. 1391 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF); 1392 } 1393 1394 static bool isFuncletReturnInstr(MachineInstr *MI) { 1395 switch (MI->getOpcode()) { 1396 case X86::CATCHRET: 1397 case X86::CLEANUPRET: 1398 return true; 1399 default: 1400 return false; 1401 } 1402 llvm_unreachable("impossible"); 1403 } 1404 1405 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the 1406 // stack. It holds a pointer to the bottom of the root function frame. The 1407 // establisher frame pointer passed to a nested funclet may point to the 1408 // (mostly empty) frame of its parent funclet, but it will need to find 1409 // the frame of the root function to access locals. To facilitate this, 1410 // every funclet copies the pointer to the bottom of the root function 1411 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the 1412 // same offset for the PSPSym in the root function frame that's used in the 1413 // funclets' frames allows each funclet to dynamically accept any ancestor 1414 // frame as its establisher argument (the runtime doesn't guarantee the 1415 // immediate parent for some reason lost to history), and also allows the GC, 1416 // which uses the PSPSym for some bookkeeping, to find it in any funclet's 1417 // frame with only a single offset reported for the entire method. 1418 unsigned 1419 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const { 1420 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo(); 1421 // getFrameIndexReferenceFromSP has an out ref parameter for the stack 1422 // pointer register; pass a dummy that we ignore 1423 unsigned SPReg; 1424 int Offset = getFrameIndexReferenceFromSP(MF, Info.PSPSymFrameIdx, SPReg); 1425 assert(Offset >= 0); 1426 return static_cast<unsigned>(Offset); 1427 } 1428 1429 unsigned 1430 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const { 1431 // This is the size of the pushed CSRs. 1432 unsigned CSSize = 1433 MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize(); 1434 // This is the amount of stack a funclet needs to allocate. 1435 unsigned UsedSize; 1436 EHPersonality Personality = 1437 classifyEHPersonality(MF.getFunction()->getPersonalityFn()); 1438 if (Personality == EHPersonality::CoreCLR) { 1439 // CLR funclets need to hold enough space to include the PSPSym, at the 1440 // same offset from the stack pointer (immediately after the prolog) as it 1441 // resides at in the main function. 1442 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize; 1443 } else { 1444 // Other funclets just need enough stack for outgoing call arguments. 1445 UsedSize = MF.getFrameInfo()->getMaxCallFrameSize(); 1446 } 1447 // RBP is not included in the callee saved register block. After pushing RBP, 1448 // everything is 16 byte aligned. Everything we allocate before an outgoing 1449 // call must also be 16 byte aligned. 1450 unsigned FrameSizeMinusRBP = 1451 RoundUpToAlignment(CSSize + UsedSize, getStackAlignment()); 1452 // Subtract out the size of the callee saved registers. This is how much stack 1453 // each funclet will allocate. 1454 return FrameSizeMinusRBP - CSSize; 1455 } 1456 1457 void X86FrameLowering::emitEpilogue(MachineFunction &MF, 1458 MachineBasicBlock &MBB) const { 1459 const MachineFrameInfo *MFI = MF.getFrameInfo(); 1460 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1461 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 1462 DebugLoc DL; 1463 if (MBBI != MBB.end()) 1464 DL = MBBI->getDebugLoc(); 1465 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 1466 const bool Is64BitILP32 = STI.isTarget64BitILP32(); 1467 unsigned FramePtr = TRI->getFrameRegister(MF); 1468 unsigned MachineFramePtr = 1469 Is64BitILP32 ? getX86SubSuperRegister(FramePtr, MVT::i64, false) 1470 : FramePtr; 1471 1472 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1473 bool NeedsWinCFI = 1474 IsWin64Prologue && MF.getFunction()->needsUnwindTableEntry(); 1475 bool IsFunclet = isFuncletReturnInstr(MBBI); 1476 MachineBasicBlock *TargetMBB = nullptr; 1477 1478 // Get the number of bytes to allocate from the FrameInfo. 1479 uint64_t StackSize = MFI->getStackSize(); 1480 uint64_t MaxAlign = calculateMaxStackAlign(MF); 1481 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1482 uint64_t NumBytes = 0; 1483 1484 if (MBBI->getOpcode() == X86::CATCHRET) { 1485 // SEH shouldn't use catchret. 1486 assert(!isAsynchronousEHPersonality( 1487 classifyEHPersonality(MF.getFunction()->getPersonalityFn())) && 1488 "SEH should not use CATCHRET"); 1489 1490 NumBytes = getWinEHFuncletFrameSize(MF); 1491 assert(hasFP(MF) && "EH funclets without FP not yet implemented"); 1492 TargetMBB = MBBI->getOperand(0).getMBB(); 1493 1494 // Pop EBP. 1495 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), 1496 MachineFramePtr) 1497 .setMIFlag(MachineInstr::FrameDestroy); 1498 } else if (MBBI->getOpcode() == X86::CLEANUPRET) { 1499 NumBytes = getWinEHFuncletFrameSize(MF); 1500 assert(hasFP(MF) && "EH funclets without FP not yet implemented"); 1501 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), 1502 MachineFramePtr) 1503 .setMIFlag(MachineInstr::FrameDestroy); 1504 } else if (hasFP(MF)) { 1505 // Calculate required stack adjustment. 1506 uint64_t FrameSize = StackSize - SlotSize; 1507 NumBytes = FrameSize - CSSize; 1508 1509 // Callee-saved registers were pushed on stack before the stack was 1510 // realigned. 1511 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue) 1512 NumBytes = RoundUpToAlignment(FrameSize, MaxAlign); 1513 1514 // Pop EBP. 1515 BuildMI(MBB, MBBI, DL, 1516 TII.get(Is64Bit ? X86::POP64r : X86::POP32r), MachineFramePtr) 1517 .setMIFlag(MachineInstr::FrameDestroy); 1518 } else { 1519 NumBytes = StackSize - CSSize; 1520 } 1521 uint64_t SEHStackAllocAmt = NumBytes; 1522 1523 // Skip the callee-saved pop instructions. 1524 while (MBBI != MBB.begin()) { 1525 MachineBasicBlock::iterator PI = std::prev(MBBI); 1526 unsigned Opc = PI->getOpcode(); 1527 1528 if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) && 1529 (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)) && 1530 Opc != X86::DBG_VALUE && !PI->isTerminator()) 1531 break; 1532 1533 --MBBI; 1534 } 1535 MachineBasicBlock::iterator FirstCSPop = MBBI; 1536 1537 if (TargetMBB) { 1538 // Fill EAX/RAX with the address of the target block. 1539 unsigned ReturnReg = STI.is64Bit() ? X86::RAX : X86::EAX; 1540 if (STI.is64Bit()) { 1541 // LEA64r TargetMBB(%rip), %rax 1542 BuildMI(MBB, FirstCSPop, DL, TII.get(X86::LEA64r), ReturnReg) 1543 .addReg(X86::RIP) 1544 .addImm(0) 1545 .addReg(0) 1546 .addMBB(TargetMBB) 1547 .addReg(0); 1548 } else { 1549 // MOV32ri $TargetMBB, %eax 1550 BuildMI(MBB, FirstCSPop, DL, TII.get(X86::MOV32ri), ReturnReg) 1551 .addMBB(TargetMBB); 1552 } 1553 // Record that we've taken the address of TargetMBB and no longer just 1554 // reference it in a terminator. 1555 TargetMBB->setHasAddressTaken(); 1556 } 1557 1558 if (MBBI != MBB.end()) 1559 DL = MBBI->getDebugLoc(); 1560 1561 // If there is an ADD32ri or SUB32ri of ESP immediately before this 1562 // instruction, merge the two instructions. 1563 if (NumBytes || MFI->hasVarSizedObjects()) 1564 NumBytes += mergeSPUpdates(MBB, MBBI, true); 1565 1566 // If dynamic alloca is used, then reset esp to point to the last callee-saved 1567 // slot before popping them off! Same applies for the case, when stack was 1568 // realigned. Don't do this if this was a funclet epilogue, since the funclets 1569 // will not do realignment or dynamic stack allocation. 1570 if ((TRI->needsStackRealignment(MF) || MFI->hasVarSizedObjects()) && 1571 !IsFunclet) { 1572 if (TRI->needsStackRealignment(MF)) 1573 MBBI = FirstCSPop; 1574 unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt); 1575 uint64_t LEAAmount = 1576 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize; 1577 1578 // There are only two legal forms of epilogue: 1579 // - add SEHAllocationSize, %rsp 1580 // - lea SEHAllocationSize(%FramePtr), %rsp 1581 // 1582 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence. 1583 // However, we may use this sequence if we have a frame pointer because the 1584 // effects of the prologue can safely be undone. 1585 if (LEAAmount != 0) { 1586 unsigned Opc = getLEArOpcode(Uses64BitFramePtr); 1587 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), 1588 FramePtr, false, LEAAmount); 1589 --MBBI; 1590 } else { 1591 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr); 1592 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 1593 .addReg(FramePtr); 1594 --MBBI; 1595 } 1596 } else if (NumBytes) { 1597 // Adjust stack pointer back: ESP += numbytes. 1598 emitSPUpdate(MBB, MBBI, NumBytes, /*InEpilogue=*/true); 1599 --MBBI; 1600 } 1601 1602 // Windows unwinder will not invoke function's exception handler if IP is 1603 // either in prologue or in epilogue. This behavior causes a problem when a 1604 // call immediately precedes an epilogue, because the return address points 1605 // into the epilogue. To cope with that, we insert an epilogue marker here, 1606 // then replace it with a 'nop' if it ends up immediately after a CALL in the 1607 // final emitted code. 1608 if (NeedsWinCFI) 1609 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue)); 1610 1611 // Add the return addr area delta back since we are not tail calling. 1612 int Offset = -1 * X86FI->getTCReturnAddrDelta(); 1613 assert(Offset >= 0 && "TCDelta should never be positive"); 1614 if (Offset) { 1615 MBBI = MBB.getFirstTerminator(); 1616 1617 // Check for possible merge with preceding ADD instruction. 1618 Offset += mergeSPUpdates(MBB, MBBI, true); 1619 emitSPUpdate(MBB, MBBI, Offset, /*InEpilogue=*/true); 1620 } 1621 } 1622 1623 // NOTE: this only has a subset of the full frame index logic. In 1624 // particular, the FI < 0 and AfterFPPop logic is handled in 1625 // X86RegisterInfo::eliminateFrameIndex, but not here. Possibly 1626 // (probably?) it should be moved into here. 1627 int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, 1628 unsigned &FrameReg) const { 1629 const MachineFrameInfo *MFI = MF.getFrameInfo(); 1630 1631 // We can't calculate offset from frame pointer if the stack is realigned, 1632 // so enforce usage of stack/base pointer. The base pointer is used when we 1633 // have dynamic allocas in addition to dynamic realignment. 1634 if (TRI->hasBasePointer(MF)) 1635 FrameReg = TRI->getBaseRegister(); 1636 else if (TRI->needsStackRealignment(MF)) 1637 FrameReg = TRI->getStackRegister(); 1638 else 1639 FrameReg = TRI->getFrameRegister(MF); 1640 1641 // Offset will hold the offset from the stack pointer at function entry to the 1642 // object. 1643 // We need to factor in additional offsets applied during the prologue to the 1644 // frame, base, and stack pointer depending on which is used. 1645 int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea(); 1646 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1647 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1648 uint64_t StackSize = MFI->getStackSize(); 1649 bool HasFP = hasFP(MF); 1650 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1651 int64_t FPDelta = 0; 1652 1653 if (IsWin64Prologue) { 1654 assert(!MFI->hasCalls() || (StackSize % 16) == 8); 1655 1656 // Calculate required stack adjustment. 1657 uint64_t FrameSize = StackSize - SlotSize; 1658 // If required, include space for extra hidden slot for stashing base pointer. 1659 if (X86FI->getRestoreBasePointer()) 1660 FrameSize += SlotSize; 1661 uint64_t NumBytes = FrameSize - CSSize; 1662 1663 uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes); 1664 if (FI && FI == X86FI->getFAIndex()) 1665 return -SEHFrameOffset; 1666 1667 // FPDelta is the offset from the "traditional" FP location of the old base 1668 // pointer followed by return address and the location required by the 1669 // restricted Win64 prologue. 1670 // Add FPDelta to all offsets below that go through the frame pointer. 1671 FPDelta = FrameSize - SEHFrameOffset; 1672 assert((!MFI->hasCalls() || (FPDelta % 16) == 0) && 1673 "FPDelta isn't aligned per the Win64 ABI!"); 1674 } 1675 1676 1677 if (TRI->hasBasePointer(MF)) { 1678 assert(HasFP && "VLAs and dynamic stack realign, but no FP?!"); 1679 if (FI < 0) { 1680 // Skip the saved EBP. 1681 return Offset + SlotSize + FPDelta; 1682 } else { 1683 assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0); 1684 return Offset + StackSize; 1685 } 1686 } else if (TRI->needsStackRealignment(MF)) { 1687 if (FI < 0) { 1688 // Skip the saved EBP. 1689 return Offset + SlotSize + FPDelta; 1690 } else { 1691 assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0); 1692 return Offset + StackSize; 1693 } 1694 // FIXME: Support tail calls 1695 } else { 1696 if (!HasFP) 1697 return Offset + StackSize; 1698 1699 // Skip the saved EBP. 1700 Offset += SlotSize; 1701 1702 // Skip the RETADDR move area 1703 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 1704 if (TailCallReturnAddrDelta < 0) 1705 Offset -= TailCallReturnAddrDelta; 1706 } 1707 1708 return Offset + FPDelta; 1709 } 1710 1711 // Simplified from getFrameIndexReference keeping only StackPointer cases 1712 int X86FrameLowering::getFrameIndexReferenceFromSP(const MachineFunction &MF, 1713 int FI, 1714 unsigned &FrameReg) const { 1715 const MachineFrameInfo *MFI = MF.getFrameInfo(); 1716 // Does not include any dynamic realign. 1717 const uint64_t StackSize = MFI->getStackSize(); 1718 { 1719 #ifndef NDEBUG 1720 // LLVM arranges the stack as follows: 1721 // ... 1722 // ARG2 1723 // ARG1 1724 // RETADDR 1725 // PUSH RBP <-- RBP points here 1726 // PUSH CSRs 1727 // ~~~~~~~ <-- possible stack realignment (non-win64) 1728 // ... 1729 // STACK OBJECTS 1730 // ... <-- RSP after prologue points here 1731 // ~~~~~~~ <-- possible stack realignment (win64) 1732 // 1733 // if (hasVarSizedObjects()): 1734 // ... <-- "base pointer" (ESI/RBX) points here 1735 // DYNAMIC ALLOCAS 1736 // ... <-- RSP points here 1737 // 1738 // Case 1: In the simple case of no stack realignment and no dynamic 1739 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable 1740 // with fixed offsets from RSP. 1741 // 1742 // Case 2: In the case of stack realignment with no dynamic allocas, fixed 1743 // stack objects are addressed with RBP and regular stack objects with RSP. 1744 // 1745 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used 1746 // to address stack arguments for outgoing calls and nothing else. The "base 1747 // pointer" points to local variables, and RBP points to fixed objects. 1748 // 1749 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the 1750 // answer we give is relative to the SP after the prologue, and not the 1751 // SP in the middle of the function. 1752 1753 assert((!MFI->isFixedObjectIndex(FI) || !TRI->needsStackRealignment(MF) || 1754 STI.isTargetWin64()) && 1755 "offset from fixed object to SP is not static"); 1756 1757 // We don't handle tail calls, and shouldn't be seeing them either. 1758 int TailCallReturnAddrDelta = 1759 MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta(); 1760 assert(!(TailCallReturnAddrDelta < 0) && "we don't handle this case!"); 1761 #endif 1762 } 1763 1764 // Fill in FrameReg output argument. 1765 FrameReg = TRI->getStackRegister(); 1766 1767 // This is how the math works out: 1768 // 1769 // %rsp grows (i.e. gets lower) left to right. Each box below is 1770 // one word (eight bytes). Obj0 is the stack slot we're trying to 1771 // get to. 1772 // 1773 // ---------------------------------- 1774 // | BP | Obj0 | Obj1 | ... | ObjN | 1775 // ---------------------------------- 1776 // ^ ^ ^ ^ 1777 // A B C E 1778 // 1779 // A is the incoming stack pointer. 1780 // (B - A) is the local area offset (-8 for x86-64) [1] 1781 // (C - A) is the Offset returned by MFI->getObjectOffset for Obj0 [2] 1782 // 1783 // |(E - B)| is the StackSize (absolute value, positive). For a 1784 // stack that grown down, this works out to be (B - E). [3] 1785 // 1786 // E is also the value of %rsp after stack has been set up, and we 1787 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now 1788 // (C - E) == (C - A) - (B - A) + (B - E) 1789 // { Using [1], [2] and [3] above } 1790 // == getObjectOffset - LocalAreaOffset + StackSize 1791 // 1792 1793 // Get the Offset from the StackPointer 1794 int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea(); 1795 1796 return Offset + StackSize; 1797 } 1798 1799 bool X86FrameLowering::assignCalleeSavedSpillSlots( 1800 MachineFunction &MF, const TargetRegisterInfo *TRI, 1801 std::vector<CalleeSavedInfo> &CSI) const { 1802 MachineFrameInfo *MFI = MF.getFrameInfo(); 1803 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1804 1805 unsigned CalleeSavedFrameSize = 0; 1806 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta(); 1807 1808 if (hasFP(MF)) { 1809 // emitPrologue always spills frame register the first thing. 1810 SpillSlotOffset -= SlotSize; 1811 MFI->CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 1812 1813 // Since emitPrologue and emitEpilogue will handle spilling and restoring of 1814 // the frame register, we can delete it from CSI list and not have to worry 1815 // about avoiding it later. 1816 unsigned FPReg = TRI->getFrameRegister(MF); 1817 for (unsigned i = 0; i < CSI.size(); ++i) { 1818 if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) { 1819 CSI.erase(CSI.begin() + i); 1820 break; 1821 } 1822 } 1823 } 1824 1825 // Assign slots for GPRs. It increases frame size. 1826 for (unsigned i = CSI.size(); i != 0; --i) { 1827 unsigned Reg = CSI[i - 1].getReg(); 1828 1829 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 1830 continue; 1831 1832 SpillSlotOffset -= SlotSize; 1833 CalleeSavedFrameSize += SlotSize; 1834 1835 int SlotIndex = MFI->CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 1836 CSI[i - 1].setFrameIdx(SlotIndex); 1837 } 1838 1839 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize); 1840 1841 // Assign slots for XMMs. 1842 for (unsigned i = CSI.size(); i != 0; --i) { 1843 unsigned Reg = CSI[i - 1].getReg(); 1844 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 1845 continue; 1846 1847 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); 1848 // ensure alignment 1849 SpillSlotOffset -= std::abs(SpillSlotOffset) % RC->getAlignment(); 1850 // spill into slot 1851 SpillSlotOffset -= RC->getSize(); 1852 int SlotIndex = 1853 MFI->CreateFixedSpillStackObject(RC->getSize(), SpillSlotOffset); 1854 CSI[i - 1].setFrameIdx(SlotIndex); 1855 MFI->ensureMaxAlignment(RC->getAlignment()); 1856 } 1857 1858 return true; 1859 } 1860 1861 bool X86FrameLowering::spillCalleeSavedRegisters( 1862 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 1863 const std::vector<CalleeSavedInfo> &CSI, 1864 const TargetRegisterInfo *TRI) const { 1865 DebugLoc DL = MBB.findDebugLoc(MI); 1866 1867 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI 1868 // for us, and there are no XMM CSRs on Win32. 1869 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows()) 1870 return true; 1871 1872 // Push GPRs. It increases frame size. 1873 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r; 1874 for (unsigned i = CSI.size(); i != 0; --i) { 1875 unsigned Reg = CSI[i - 1].getReg(); 1876 1877 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 1878 continue; 1879 // Add the callee-saved register as live-in. It's killed at the spill. 1880 MBB.addLiveIn(Reg); 1881 1882 BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, RegState::Kill) 1883 .setMIFlag(MachineInstr::FrameSetup); 1884 } 1885 1886 // Make XMM regs spilled. X86 does not have ability of push/pop XMM. 1887 // It can be done by spilling XMMs to stack frame. 1888 for (unsigned i = CSI.size(); i != 0; --i) { 1889 unsigned Reg = CSI[i-1].getReg(); 1890 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 1891 continue; 1892 // Add the callee-saved register as live-in. It's killed at the spill. 1893 MBB.addLiveIn(Reg); 1894 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); 1895 1896 TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC, 1897 TRI); 1898 --MI; 1899 MI->setFlag(MachineInstr::FrameSetup); 1900 ++MI; 1901 } 1902 1903 return true; 1904 } 1905 1906 bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB, 1907 MachineBasicBlock::iterator MI, 1908 const std::vector<CalleeSavedInfo> &CSI, 1909 const TargetRegisterInfo *TRI) const { 1910 if (CSI.empty()) 1911 return false; 1912 1913 if (isFuncletReturnInstr(MI) && STI.isOSWindows()) { 1914 // Don't restore CSRs in 32-bit EH funclets. Matches 1915 // spillCalleeSavedRegisters. 1916 if (STI.is32Bit()) 1917 return true; 1918 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form 1919 // funclets. emitEpilogue transforms these to normal jumps. 1920 if (MI->getOpcode() == X86::CATCHRET) { 1921 const Function *Func = MBB.getParent()->getFunction(); 1922 bool IsSEH = isAsynchronousEHPersonality( 1923 classifyEHPersonality(Func->getPersonalityFn())); 1924 if (IsSEH) 1925 return true; 1926 } 1927 } 1928 1929 DebugLoc DL = MBB.findDebugLoc(MI); 1930 1931 // Reload XMMs from stack frame. 1932 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 1933 unsigned Reg = CSI[i].getReg(); 1934 if (X86::GR64RegClass.contains(Reg) || 1935 X86::GR32RegClass.contains(Reg)) 1936 continue; 1937 1938 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); 1939 TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI); 1940 } 1941 1942 // POP GPRs. 1943 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r; 1944 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 1945 unsigned Reg = CSI[i].getReg(); 1946 if (!X86::GR64RegClass.contains(Reg) && 1947 !X86::GR32RegClass.contains(Reg)) 1948 continue; 1949 1950 BuildMI(MBB, MI, DL, TII.get(Opc), Reg) 1951 .setMIFlag(MachineInstr::FrameDestroy); 1952 } 1953 return true; 1954 } 1955 1956 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF, 1957 BitVector &SavedRegs, 1958 RegScavenger *RS) const { 1959 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 1960 1961 MachineFrameInfo *MFI = MF.getFrameInfo(); 1962 1963 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1964 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 1965 1966 if (TailCallReturnAddrDelta < 0) { 1967 // create RETURNADDR area 1968 // arg 1969 // arg 1970 // RETADDR 1971 // { ... 1972 // RETADDR area 1973 // ... 1974 // } 1975 // [EBP] 1976 MFI->CreateFixedObject(-TailCallReturnAddrDelta, 1977 TailCallReturnAddrDelta - SlotSize, true); 1978 } 1979 1980 // Spill the BasePtr if it's used. 1981 if (TRI->hasBasePointer(MF)) { 1982 SavedRegs.set(TRI->getBaseRegister()); 1983 1984 // Allocate a spill slot for EBP if we have a base pointer and EH funclets. 1985 if (MF.getMMI().hasEHFunclets()) { 1986 int FI = MFI->CreateSpillStackObject(SlotSize, SlotSize); 1987 X86FI->setHasSEHFramePtrSave(true); 1988 X86FI->setSEHFramePtrSaveIndex(FI); 1989 } 1990 } 1991 } 1992 1993 static bool 1994 HasNestArgument(const MachineFunction *MF) { 1995 const Function *F = MF->getFunction(); 1996 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 1997 I != E; I++) { 1998 if (I->hasNestAttr()) 1999 return true; 2000 } 2001 return false; 2002 } 2003 2004 /// GetScratchRegister - Get a temp register for performing work in the 2005 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform 2006 /// and the properties of the function either one or two registers will be 2007 /// needed. Set primary to true for the first register, false for the second. 2008 static unsigned 2009 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) { 2010 CallingConv::ID CallingConvention = MF.getFunction()->getCallingConv(); 2011 2012 // Erlang stuff. 2013 if (CallingConvention == CallingConv::HiPE) { 2014 if (Is64Bit) 2015 return Primary ? X86::R14 : X86::R13; 2016 else 2017 return Primary ? X86::EBX : X86::EDI; 2018 } 2019 2020 if (Is64Bit) { 2021 if (IsLP64) 2022 return Primary ? X86::R11 : X86::R12; 2023 else 2024 return Primary ? X86::R11D : X86::R12D; 2025 } 2026 2027 bool IsNested = HasNestArgument(&MF); 2028 2029 if (CallingConvention == CallingConv::X86_FastCall || 2030 CallingConvention == CallingConv::Fast) { 2031 if (IsNested) 2032 report_fatal_error("Segmented stacks does not support fastcall with " 2033 "nested function."); 2034 return Primary ? X86::EAX : X86::ECX; 2035 } 2036 if (IsNested) 2037 return Primary ? X86::EDX : X86::EAX; 2038 return Primary ? X86::ECX : X86::EAX; 2039 } 2040 2041 // The stack limit in the TCB is set to this many bytes above the actual stack 2042 // limit. 2043 static const uint64_t kSplitStackAvailable = 256; 2044 2045 void X86FrameLowering::adjustForSegmentedStacks( 2046 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2047 MachineFrameInfo *MFI = MF.getFrameInfo(); 2048 uint64_t StackSize; 2049 unsigned TlsReg, TlsOffset; 2050 DebugLoc DL; 2051 2052 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2053 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 2054 "Scratch register is live-in"); 2055 2056 if (MF.getFunction()->isVarArg()) 2057 report_fatal_error("Segmented stacks do not support vararg functions."); 2058 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() && 2059 !STI.isTargetWin64() && !STI.isTargetFreeBSD() && 2060 !STI.isTargetDragonFly()) 2061 report_fatal_error("Segmented stacks not supported on this platform."); 2062 2063 // Eventually StackSize will be calculated by a link-time pass; which will 2064 // also decide whether checking code needs to be injected into this particular 2065 // prologue. 2066 StackSize = MFI->getStackSize(); 2067 2068 // Do not generate a prologue for functions with a stack of size zero 2069 if (StackSize == 0) 2070 return; 2071 2072 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock(); 2073 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock(); 2074 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2075 bool IsNested = false; 2076 2077 // We need to know if the function has a nest argument only in 64 bit mode. 2078 if (Is64Bit) 2079 IsNested = HasNestArgument(&MF); 2080 2081 // The MOV R10, RAX needs to be in a different block, since the RET we emit in 2082 // allocMBB needs to be last (terminating) instruction. 2083 2084 for (const auto &LI : PrologueMBB.liveins()) { 2085 allocMBB->addLiveIn(LI); 2086 checkMBB->addLiveIn(LI); 2087 } 2088 2089 if (IsNested) 2090 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D); 2091 2092 MF.push_front(allocMBB); 2093 MF.push_front(checkMBB); 2094 2095 // When the frame size is less than 256 we just compare the stack 2096 // boundary directly to the value of the stack pointer, per gcc. 2097 bool CompareStackPointer = StackSize < kSplitStackAvailable; 2098 2099 // Read the limit off the current stacklet off the stack_guard location. 2100 if (Is64Bit) { 2101 if (STI.isTargetLinux()) { 2102 TlsReg = X86::FS; 2103 TlsOffset = IsLP64 ? 0x70 : 0x40; 2104 } else if (STI.isTargetDarwin()) { 2105 TlsReg = X86::GS; 2106 TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90. 2107 } else if (STI.isTargetWin64()) { 2108 TlsReg = X86::GS; 2109 TlsOffset = 0x28; // pvArbitrary, reserved for application use 2110 } else if (STI.isTargetFreeBSD()) { 2111 TlsReg = X86::FS; 2112 TlsOffset = 0x18; 2113 } else if (STI.isTargetDragonFly()) { 2114 TlsReg = X86::FS; 2115 TlsOffset = 0x20; // use tls_tcb.tcb_segstack 2116 } else { 2117 report_fatal_error("Segmented stacks not supported on this platform."); 2118 } 2119 2120 if (CompareStackPointer) 2121 ScratchReg = IsLP64 ? X86::RSP : X86::ESP; 2122 else 2123 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP) 2124 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2125 2126 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg) 2127 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2128 } else { 2129 if (STI.isTargetLinux()) { 2130 TlsReg = X86::GS; 2131 TlsOffset = 0x30; 2132 } else if (STI.isTargetDarwin()) { 2133 TlsReg = X86::GS; 2134 TlsOffset = 0x48 + 90*4; 2135 } else if (STI.isTargetWin32()) { 2136 TlsReg = X86::FS; 2137 TlsOffset = 0x14; // pvArbitrary, reserved for application use 2138 } else if (STI.isTargetDragonFly()) { 2139 TlsReg = X86::FS; 2140 TlsOffset = 0x10; // use tls_tcb.tcb_segstack 2141 } else if (STI.isTargetFreeBSD()) { 2142 report_fatal_error("Segmented stacks not supported on FreeBSD i386."); 2143 } else { 2144 report_fatal_error("Segmented stacks not supported on this platform."); 2145 } 2146 2147 if (CompareStackPointer) 2148 ScratchReg = X86::ESP; 2149 else 2150 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP) 2151 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2152 2153 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() || 2154 STI.isTargetDragonFly()) { 2155 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg) 2156 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2157 } else if (STI.isTargetDarwin()) { 2158 2159 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register. 2160 unsigned ScratchReg2; 2161 bool SaveScratch2; 2162 if (CompareStackPointer) { 2163 // The primary scratch register is available for holding the TLS offset. 2164 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2165 SaveScratch2 = false; 2166 } else { 2167 // Need to use a second register to hold the TLS offset 2168 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false); 2169 2170 // Unfortunately, with fastcc the second scratch register may hold an 2171 // argument. 2172 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2); 2173 } 2174 2175 // If Scratch2 is live-in then it needs to be saved. 2176 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) && 2177 "Scratch register is live-in and not saved"); 2178 2179 if (SaveScratch2) 2180 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r)) 2181 .addReg(ScratchReg2, RegState::Kill); 2182 2183 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2) 2184 .addImm(TlsOffset); 2185 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)) 2186 .addReg(ScratchReg) 2187 .addReg(ScratchReg2).addImm(1).addReg(0) 2188 .addImm(0) 2189 .addReg(TlsReg); 2190 2191 if (SaveScratch2) 2192 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2); 2193 } 2194 } 2195 2196 // This jump is taken if SP >= (Stacklet Limit + Stack Space required). 2197 // It jumps to normal execution of the function body. 2198 BuildMI(checkMBB, DL, TII.get(X86::JA_1)).addMBB(&PrologueMBB); 2199 2200 // On 32 bit we first push the arguments size and then the frame size. On 64 2201 // bit, we pass the stack frame size in r10 and the argument size in r11. 2202 if (Is64Bit) { 2203 // Functions with nested arguments use R10, so it needs to be saved across 2204 // the call to _morestack 2205 2206 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX; 2207 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D; 2208 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D; 2209 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr; 2210 const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri; 2211 2212 if (IsNested) 2213 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10); 2214 2215 BuildMI(allocMBB, DL, TII.get(MOVri), Reg10) 2216 .addImm(StackSize); 2217 BuildMI(allocMBB, DL, TII.get(MOVri), Reg11) 2218 .addImm(X86FI->getArgumentStackSize()); 2219 } else { 2220 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 2221 .addImm(X86FI->getArgumentStackSize()); 2222 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 2223 .addImm(StackSize); 2224 } 2225 2226 // __morestack is in libgcc 2227 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 2228 // Under the large code model, we cannot assume that __morestack lives 2229 // within 2^31 bytes of the call site, so we cannot use pc-relative 2230 // addressing. We cannot perform the call via a temporary register, 2231 // as the rax register may be used to store the static chain, and all 2232 // other suitable registers may be either callee-save or used for 2233 // parameter passing. We cannot use the stack at this point either 2234 // because __morestack manipulates the stack directly. 2235 // 2236 // To avoid these issues, perform an indirect call via a read-only memory 2237 // location containing the address. 2238 // 2239 // This solution is not perfect, as it assumes that the .rodata section 2240 // is laid out within 2^31 bytes of each function body, but this seems 2241 // to be sufficient for JIT. 2242 BuildMI(allocMBB, DL, TII.get(X86::CALL64m)) 2243 .addReg(X86::RIP) 2244 .addImm(0) 2245 .addReg(0) 2246 .addExternalSymbol("__morestack_addr") 2247 .addReg(0); 2248 MF.getMMI().setUsesMorestackAddr(true); 2249 } else { 2250 if (Is64Bit) 2251 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32)) 2252 .addExternalSymbol("__morestack"); 2253 else 2254 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32)) 2255 .addExternalSymbol("__morestack"); 2256 } 2257 2258 if (IsNested) 2259 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10)); 2260 else 2261 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET)); 2262 2263 allocMBB->addSuccessor(&PrologueMBB); 2264 2265 checkMBB->addSuccessor(allocMBB); 2266 checkMBB->addSuccessor(&PrologueMBB); 2267 2268 #ifdef XDEBUG 2269 MF.verify(); 2270 #endif 2271 } 2272 2273 /// Erlang programs may need a special prologue to handle the stack size they 2274 /// might need at runtime. That is because Erlang/OTP does not implement a C 2275 /// stack but uses a custom implementation of hybrid stack/heap architecture. 2276 /// (for more information see Eric Stenman's Ph.D. thesis: 2277 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf) 2278 /// 2279 /// CheckStack: 2280 /// temp0 = sp - MaxStack 2281 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 2282 /// OldStart: 2283 /// ... 2284 /// IncStack: 2285 /// call inc_stack # doubles the stack space 2286 /// temp0 = sp - MaxStack 2287 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 2288 void X86FrameLowering::adjustForHiPEPrologue( 2289 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2290 MachineFrameInfo *MFI = MF.getFrameInfo(); 2291 DebugLoc DL; 2292 // HiPE-specific values 2293 const unsigned HipeLeafWords = 24; 2294 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5; 2295 const unsigned Guaranteed = HipeLeafWords * SlotSize; 2296 unsigned CallerStkArity = MF.getFunction()->arg_size() > CCRegisteredArgs ? 2297 MF.getFunction()->arg_size() - CCRegisteredArgs : 0; 2298 unsigned MaxStack = MFI->getStackSize() + CallerStkArity*SlotSize + SlotSize; 2299 2300 assert(STI.isTargetLinux() && 2301 "HiPE prologue is only supported on Linux operating systems."); 2302 2303 // Compute the largest caller's frame that is needed to fit the callees' 2304 // frames. This 'MaxStack' is computed from: 2305 // 2306 // a) the fixed frame size, which is the space needed for all spilled temps, 2307 // b) outgoing on-stack parameter areas, and 2308 // c) the minimum stack space this function needs to make available for the 2309 // functions it calls (a tunable ABI property). 2310 if (MFI->hasCalls()) { 2311 unsigned MoreStackForCalls = 0; 2312 2313 for (MachineFunction::iterator MBBI = MF.begin(), MBBE = MF.end(); 2314 MBBI != MBBE; ++MBBI) 2315 for (MachineBasicBlock::iterator MI = MBBI->begin(), ME = MBBI->end(); 2316 MI != ME; ++MI) { 2317 if (!MI->isCall()) 2318 continue; 2319 2320 // Get callee operand. 2321 const MachineOperand &MO = MI->getOperand(0); 2322 2323 // Only take account of global function calls (no closures etc.). 2324 if (!MO.isGlobal()) 2325 continue; 2326 2327 const Function *F = dyn_cast<Function>(MO.getGlobal()); 2328 if (!F) 2329 continue; 2330 2331 // Do not update 'MaxStack' for primitive and built-in functions 2332 // (encoded with names either starting with "erlang."/"bif_" or not 2333 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an 2334 // "_", such as the BIF "suspend_0") as they are executed on another 2335 // stack. 2336 if (F->getName().find("erlang.") != StringRef::npos || 2337 F->getName().find("bif_") != StringRef::npos || 2338 F->getName().find_first_of("._") == StringRef::npos) 2339 continue; 2340 2341 unsigned CalleeStkArity = 2342 F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0; 2343 if (HipeLeafWords - 1 > CalleeStkArity) 2344 MoreStackForCalls = std::max(MoreStackForCalls, 2345 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize); 2346 } 2347 MaxStack += MoreStackForCalls; 2348 } 2349 2350 // If the stack frame needed is larger than the guaranteed then runtime checks 2351 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue. 2352 if (MaxStack > Guaranteed) { 2353 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock(); 2354 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock(); 2355 2356 for (const auto &LI : PrologueMBB.liveins()) { 2357 stackCheckMBB->addLiveIn(LI); 2358 incStackMBB->addLiveIn(LI); 2359 } 2360 2361 MF.push_front(incStackMBB); 2362 MF.push_front(stackCheckMBB); 2363 2364 unsigned ScratchReg, SPReg, PReg, SPLimitOffset; 2365 unsigned LEAop, CMPop, CALLop; 2366 if (Is64Bit) { 2367 SPReg = X86::RSP; 2368 PReg = X86::RBP; 2369 LEAop = X86::LEA64r; 2370 CMPop = X86::CMP64rm; 2371 CALLop = X86::CALL64pcrel32; 2372 SPLimitOffset = 0x90; 2373 } else { 2374 SPReg = X86::ESP; 2375 PReg = X86::EBP; 2376 LEAop = X86::LEA32r; 2377 CMPop = X86::CMP32rm; 2378 CALLop = X86::CALLpcrel32; 2379 SPLimitOffset = 0x4c; 2380 } 2381 2382 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2383 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 2384 "HiPE prologue scratch register is live-in"); 2385 2386 // Create new MBB for StackCheck: 2387 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg), 2388 SPReg, false, -MaxStack); 2389 // SPLimitOffset is in a fixed heap location (pointed by BP). 2390 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop)) 2391 .addReg(ScratchReg), PReg, false, SPLimitOffset); 2392 BuildMI(stackCheckMBB, DL, TII.get(X86::JAE_1)).addMBB(&PrologueMBB); 2393 2394 // Create new MBB for IncStack: 2395 BuildMI(incStackMBB, DL, TII.get(CALLop)). 2396 addExternalSymbol("inc_stack_0"); 2397 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg), 2398 SPReg, false, -MaxStack); 2399 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop)) 2400 .addReg(ScratchReg), PReg, false, SPLimitOffset); 2401 BuildMI(incStackMBB, DL, TII.get(X86::JLE_1)).addMBB(incStackMBB); 2402 2403 stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100}); 2404 stackCheckMBB->addSuccessor(incStackMBB, {1, 100}); 2405 incStackMBB->addSuccessor(&PrologueMBB, {99, 100}); 2406 incStackMBB->addSuccessor(incStackMBB, {1, 100}); 2407 } 2408 #ifdef XDEBUG 2409 MF.verify(); 2410 #endif 2411 } 2412 2413 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB, 2414 MachineBasicBlock::iterator MBBI, DebugLoc DL, int Offset) const { 2415 2416 if (Offset <= 0) 2417 return false; 2418 2419 if (Offset % SlotSize) 2420 return false; 2421 2422 int NumPops = Offset / SlotSize; 2423 // This is only worth it if we have at most 2 pops. 2424 if (NumPops != 1 && NumPops != 2) 2425 return false; 2426 2427 // Handle only the trivial case where the adjustment directly follows 2428 // a call. This is the most common one, anyway. 2429 if (MBBI == MBB.begin()) 2430 return false; 2431 MachineBasicBlock::iterator Prev = std::prev(MBBI); 2432 if (!Prev->isCall() || !Prev->getOperand(1).isRegMask()) 2433 return false; 2434 2435 unsigned Regs[2]; 2436 unsigned FoundRegs = 0; 2437 2438 auto RegMask = Prev->getOperand(1); 2439 2440 auto &RegClass = 2441 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass; 2442 // Try to find up to NumPops free registers. 2443 for (auto Candidate : RegClass) { 2444 2445 // Poor man's liveness: 2446 // Since we're immediately after a call, any register that is clobbered 2447 // by the call and not defined by it can be considered dead. 2448 if (!RegMask.clobbersPhysReg(Candidate)) 2449 continue; 2450 2451 bool IsDef = false; 2452 for (const MachineOperand &MO : Prev->implicit_operands()) { 2453 if (MO.isReg() && MO.isDef() && MO.getReg() == Candidate) { 2454 IsDef = true; 2455 break; 2456 } 2457 } 2458 2459 if (IsDef) 2460 continue; 2461 2462 Regs[FoundRegs++] = Candidate; 2463 if (FoundRegs == (unsigned)NumPops) 2464 break; 2465 } 2466 2467 if (FoundRegs == 0) 2468 return false; 2469 2470 // If we found only one free register, but need two, reuse the same one twice. 2471 while (FoundRegs < (unsigned)NumPops) 2472 Regs[FoundRegs++] = Regs[0]; 2473 2474 for (int i = 0; i < NumPops; ++i) 2475 BuildMI(MBB, MBBI, DL, 2476 TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]); 2477 2478 return true; 2479 } 2480 2481 void X86FrameLowering:: 2482 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 2483 MachineBasicBlock::iterator I) const { 2484 bool reserveCallFrame = hasReservedCallFrame(MF); 2485 unsigned Opcode = I->getOpcode(); 2486 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode(); 2487 DebugLoc DL = I->getDebugLoc(); 2488 uint64_t Amount = !reserveCallFrame ? I->getOperand(0).getImm() : 0; 2489 uint64_t InternalAmt = (isDestroy || Amount) ? I->getOperand(1).getImm() : 0; 2490 I = MBB.erase(I); 2491 2492 if (!reserveCallFrame) { 2493 // If the stack pointer can be changed after prologue, turn the 2494 // adjcallstackup instruction into a 'sub ESP, <amt>' and the 2495 // adjcallstackdown instruction into 'add ESP, <amt>' 2496 2497 // We need to keep the stack aligned properly. To do this, we round the 2498 // amount of space needed for the outgoing arguments up to the next 2499 // alignment boundary. 2500 unsigned StackAlign = getStackAlignment(); 2501 Amount = RoundUpToAlignment(Amount, StackAlign); 2502 2503 MachineModuleInfo &MMI = MF.getMMI(); 2504 const Function *Fn = MF.getFunction(); 2505 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2506 bool DwarfCFI = !WindowsCFI && 2507 (MMI.hasDebugInfo() || Fn->needsUnwindTableEntry()); 2508 2509 // If we have any exception handlers in this function, and we adjust 2510 // the SP before calls, we may need to indicate this to the unwinder 2511 // using GNU_ARGS_SIZE. Note that this may be necessary even when 2512 // Amount == 0, because the preceding function may have set a non-0 2513 // GNU_ARGS_SIZE. 2514 // TODO: We don't need to reset this between subsequent functions, 2515 // if it didn't change. 2516 bool HasDwarfEHHandlers = !WindowsCFI && 2517 !MF.getMMI().getLandingPads().empty(); 2518 2519 if (HasDwarfEHHandlers && !isDestroy && 2520 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences()) 2521 BuildCFI(MBB, I, DL, 2522 MCCFIInstruction::createGnuArgsSize(nullptr, Amount)); 2523 2524 if (Amount == 0) 2525 return; 2526 2527 // Factor out the amount that gets handled inside the sequence 2528 // (Pushes of argument for frame setup, callee pops for frame destroy) 2529 Amount -= InternalAmt; 2530 2531 // TODO: This is needed only if we require precise CFA. 2532 // If this is a callee-pop calling convention, emit a CFA adjust for 2533 // the amount the callee popped. 2534 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF)) 2535 BuildCFI(MBB, I, DL, 2536 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt)); 2537 2538 if (Amount) { 2539 // Add Amount to SP to destroy a frame, and subtract to setup. 2540 int Offset = isDestroy ? Amount : -Amount; 2541 2542 if (!(Fn->optForMinSize() && 2543 adjustStackWithPops(MBB, I, DL, Offset))) 2544 BuildStackAdjustment(MBB, I, DL, Offset, /*InEpilogue=*/false); 2545 } 2546 2547 if (DwarfCFI && !hasFP(MF)) { 2548 // If we don't have FP, but need to generate unwind information, 2549 // we need to set the correct CFA offset after the stack adjustment. 2550 // How much we adjust the CFA offset depends on whether we're emitting 2551 // CFI only for EH purposes or for debugging. EH only requires the CFA 2552 // offset to be correct at each call site, while for debugging we want 2553 // it to be more precise. 2554 int CFAOffset = Amount; 2555 // TODO: When not using precise CFA, we also need to adjust for the 2556 // InternalAmt here. 2557 2558 if (CFAOffset) { 2559 CFAOffset = isDestroy ? -CFAOffset : CFAOffset; 2560 BuildCFI(MBB, I, DL, 2561 MCCFIInstruction::createAdjustCfaOffset(nullptr, CFAOffset)); 2562 } 2563 } 2564 2565 return; 2566 } 2567 2568 if (isDestroy && InternalAmt) { 2569 // If we are performing frame pointer elimination and if the callee pops 2570 // something off the stack pointer, add it back. We do this until we have 2571 // more advanced stack pointer tracking ability. 2572 // We are not tracking the stack pointer adjustment by the callee, so make 2573 // sure we restore the stack pointer immediately after the call, there may 2574 // be spill code inserted between the CALL and ADJCALLSTACKUP instructions. 2575 MachineBasicBlock::iterator B = MBB.begin(); 2576 while (I != B && !std::prev(I)->isCall()) 2577 --I; 2578 BuildStackAdjustment(MBB, I, DL, -InternalAmt, /*InEpilogue=*/false); 2579 } 2580 } 2581 2582 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { 2583 assert(MBB.getParent() && "Block is not attached to a function!"); 2584 2585 // Win64 has strict requirements in terms of epilogue and we are 2586 // not taking a chance at messing with them. 2587 // I.e., unless this block is already an exit block, we can't use 2588 // it as an epilogue. 2589 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock()) 2590 return false; 2591 2592 if (canUseLEAForSPInEpilogue(*MBB.getParent())) 2593 return true; 2594 2595 // If we cannot use LEA to adjust SP, we may need to use ADD, which 2596 // clobbers the EFLAGS. Check that we do not need to preserve it, 2597 // otherwise, conservatively assume this is not 2598 // safe to insert the epilogue here. 2599 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 2600 } 2601 2602 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 2603 // If we may need to emit frameless compact unwind information, give 2604 // up as this is currently broken: PR25614. 2605 return MF.getFunction()->hasFnAttribute(Attribute::NoUnwind) || hasFP(MF); 2606 } 2607 2608 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers( 2609 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 2610 DebugLoc DL, bool RestoreSP) const { 2611 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env"); 2612 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32"); 2613 assert(STI.is32Bit() && !Uses64BitFramePtr && 2614 "restoring EBP/ESI on non-32-bit target"); 2615 2616 MachineFunction &MF = *MBB.getParent(); 2617 unsigned FramePtr = TRI->getFrameRegister(MF); 2618 unsigned BasePtr = TRI->getBaseRegister(); 2619 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo(); 2620 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2621 MachineFrameInfo *MFI = MF.getFrameInfo(); 2622 2623 // FIXME: Don't set FrameSetup flag in catchret case. 2624 2625 int FI = FuncInfo.EHRegNodeFrameIndex; 2626 int EHRegSize = MFI->getObjectSize(FI); 2627 2628 if (RestoreSP) { 2629 // MOV32rm -EHRegSize(%ebp), %esp 2630 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP), 2631 X86::EBP, true, -EHRegSize) 2632 .setMIFlag(MachineInstr::FrameSetup); 2633 } 2634 2635 unsigned UsedReg; 2636 int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg); 2637 int EndOffset = -EHRegOffset - EHRegSize; 2638 FuncInfo.EHRegNodeEndOffset = EndOffset; 2639 2640 if (UsedReg == FramePtr) { 2641 // ADD $offset, %ebp 2642 unsigned ADDri = getADDriOpcode(false, EndOffset); 2643 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr) 2644 .addReg(FramePtr) 2645 .addImm(EndOffset) 2646 .setMIFlag(MachineInstr::FrameSetup) 2647 ->getOperand(3) 2648 .setIsDead(); 2649 assert(EndOffset >= 0 && 2650 "end of registration object above normal EBP position!"); 2651 } else if (UsedReg == BasePtr) { 2652 // LEA offset(%ebp), %esi 2653 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr), 2654 FramePtr, false, EndOffset) 2655 .setMIFlag(MachineInstr::FrameSetup); 2656 // MOV32rm SavedEBPOffset(%esi), %ebp 2657 assert(X86FI->getHasSEHFramePtrSave()); 2658 int Offset = 2659 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg); 2660 assert(UsedReg == BasePtr); 2661 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr), 2662 UsedReg, true, Offset) 2663 .setMIFlag(MachineInstr::FrameSetup); 2664 } else { 2665 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr"); 2666 } 2667 return MBBI; 2668 } 2669 2670 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const { 2671 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue. 2672 unsigned Offset = 16; 2673 // RBP is immediately pushed. 2674 Offset += SlotSize; 2675 // All callee-saved registers are then pushed. 2676 Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize(); 2677 // Every funclet allocates enough stack space for the largest outgoing call. 2678 Offset += getWinEHFuncletFrameSize(MF); 2679 return Offset; 2680 } 2681 2682 void X86FrameLowering::processFunctionBeforeFrameFinalized( 2683 MachineFunction &MF, RegScavenger *RS) const { 2684 // If this function isn't doing Win64-style C++ EH, we don't need to do 2685 // anything. 2686 const Function *Fn = MF.getFunction(); 2687 if (!STI.is64Bit() || !MF.getMMI().hasEHFunclets() || 2688 classifyEHPersonality(Fn->getPersonalityFn()) != EHPersonality::MSVC_CXX) 2689 return; 2690 2691 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset 2692 // relative to RSP after the prologue. Find the offset of the last fixed 2693 // object, so that we can allocate a slot immediately following it. If there 2694 // were no fixed objects, use offset -SlotSize, which is immediately after the 2695 // return address. Fixed objects have negative frame indices. 2696 MachineFrameInfo *MFI = MF.getFrameInfo(); 2697 int64_t MinFixedObjOffset = -SlotSize; 2698 for (int I = MFI->getObjectIndexBegin(); I < 0; ++I) 2699 MinFixedObjOffset = std::min(MinFixedObjOffset, MFI->getObjectOffset(I)); 2700 2701 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize; 2702 int UnwindHelpFI = 2703 MFI->CreateFixedObject(SlotSize, UnwindHelpOffset, /*Immutable=*/false); 2704 MF.getWinEHFuncInfo()->UnwindHelpFrameIdx = UnwindHelpFI; 2705 2706 // Store -2 into UnwindHelp on function entry. We have to scan forwards past 2707 // other frame setup instructions. 2708 MachineBasicBlock &MBB = MF.front(); 2709 auto MBBI = MBB.begin(); 2710 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) 2711 ++MBBI; 2712 2713 DebugLoc DL = MBB.findDebugLoc(MBBI); 2714 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)), 2715 UnwindHelpFI) 2716 .addImm(-2); 2717 } 2718