Home | History | Annotate | Download | only in CodeGen
      1 //===- ExecutionDepsFix.cpp - Fix execution dependecy issues ----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the execution dependency fix pass.
     11 //
     12 // Some X86 SSE instructions like mov, and, or, xor are available in different
     13 // variants for different operand types. These variant instructions are
     14 // equivalent, but on Nehalem and newer cpus there is extra latency
     15 // transferring data between integer and floating point domains.  ARM cores
     16 // have similar issues when they are configured with both VFP and NEON
     17 // pipelines.
     18 //
     19 // This pass changes the variant instructions to minimize domain crossings.
     20 //
     21 //===----------------------------------------------------------------------===//
     22 
     23 #include "llvm/CodeGen/Passes.h"
     24 #include "llvm/ADT/PostOrderIterator.h"
     25 #include "llvm/ADT/iterator_range.h"
     26 #include "llvm/CodeGen/LivePhysRegs.h"
     27 #include "llvm/CodeGen/MachineFunctionPass.h"
     28 #include "llvm/CodeGen/MachineRegisterInfo.h"
     29 #include "llvm/Support/Allocator.h"
     30 #include "llvm/Support/Debug.h"
     31 #include "llvm/Support/raw_ostream.h"
     32 #include "llvm/Target/TargetInstrInfo.h"
     33 #include "llvm/Target/TargetSubtargetInfo.h"
     34 
     35 using namespace llvm;
     36 
     37 #define DEBUG_TYPE "execution-fix"
     38 
     39 /// A DomainValue is a bit like LiveIntervals' ValNo, but it also keeps track
     40 /// of execution domains.
     41 ///
     42 /// An open DomainValue represents a set of instructions that can still switch
     43 /// execution domain. Multiple registers may refer to the same open
     44 /// DomainValue - they will eventually be collapsed to the same execution
     45 /// domain.
     46 ///
     47 /// A collapsed DomainValue represents a single register that has been forced
     48 /// into one of more execution domains. There is a separate collapsed
     49 /// DomainValue for each register, but it may contain multiple execution
     50 /// domains. A register value is initially created in a single execution
     51 /// domain, but if we were forced to pay the penalty of a domain crossing, we
     52 /// keep track of the fact that the register is now available in multiple
     53 /// domains.
     54 namespace {
     55 struct DomainValue {
     56   // Basic reference counting.
     57   unsigned Refs;
     58 
     59   // Bitmask of available domains. For an open DomainValue, it is the still
     60   // possible domains for collapsing. For a collapsed DomainValue it is the
     61   // domains where the register is available for free.
     62   unsigned AvailableDomains;
     63 
     64   // Pointer to the next DomainValue in a chain.  When two DomainValues are
     65   // merged, Victim.Next is set to point to Victor, so old DomainValue
     66   // references can be updated by following the chain.
     67   DomainValue *Next;
     68 
     69   // Twiddleable instructions using or defining these registers.
     70   SmallVector<MachineInstr*, 8> Instrs;
     71 
     72   // A collapsed DomainValue has no instructions to twiddle - it simply keeps
     73   // track of the domains where the registers are already available.
     74   bool isCollapsed() const { return Instrs.empty(); }
     75 
     76   // Is domain available?
     77   bool hasDomain(unsigned domain) const {
     78     assert(domain <
     79                static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
     80            "undefined behavior");
     81     return AvailableDomains & (1u << domain);
     82   }
     83 
     84   // Mark domain as available.
     85   void addDomain(unsigned domain) {
     86     AvailableDomains |= 1u << domain;
     87   }
     88 
     89   // Restrict to a single domain available.
     90   void setSingleDomain(unsigned domain) {
     91     AvailableDomains = 1u << domain;
     92   }
     93 
     94   // Return bitmask of domains that are available and in mask.
     95   unsigned getCommonDomains(unsigned mask) const {
     96     return AvailableDomains & mask;
     97   }
     98 
     99   // First domain available.
    100   unsigned getFirstDomain() const {
    101     return countTrailingZeros(AvailableDomains);
    102   }
    103 
    104   DomainValue() : Refs(0) { clear(); }
    105 
    106   // Clear this DomainValue and point to next which has all its data.
    107   void clear() {
    108     AvailableDomains = 0;
    109     Next = nullptr;
    110     Instrs.clear();
    111   }
    112 };
    113 }
    114 
    115 namespace {
    116 /// Information about a live register.
    117 struct LiveReg {
    118   /// Value currently in this register, or NULL when no value is being tracked.
    119   /// This counts as a DomainValue reference.
    120   DomainValue *Value;
    121 
    122   /// Instruction that defined this register, relative to the beginning of the
    123   /// current basic block.  When a LiveReg is used to represent a live-out
    124   /// register, this value is relative to the end of the basic block, so it
    125   /// will be a negative number.
    126   int Def;
    127 };
    128 } // anonymous namespace
    129 
    130 namespace {
    131 class ExeDepsFix : public MachineFunctionPass {
    132   static char ID;
    133   SpecificBumpPtrAllocator<DomainValue> Allocator;
    134   SmallVector<DomainValue*,16> Avail;
    135 
    136   const TargetRegisterClass *const RC;
    137   MachineFunction *MF;
    138   const TargetInstrInfo *TII;
    139   const TargetRegisterInfo *TRI;
    140   std::vector<SmallVector<int, 1>> AliasMap;
    141   const unsigned NumRegs;
    142   LiveReg *LiveRegs;
    143   typedef DenseMap<MachineBasicBlock*, LiveReg*> LiveOutMap;
    144   LiveOutMap LiveOuts;
    145 
    146   /// List of undefined register reads in this block in forward order.
    147   std::vector<std::pair<MachineInstr*, unsigned> > UndefReads;
    148 
    149   /// Storage for register unit liveness.
    150   LivePhysRegs LiveRegSet;
    151 
    152   /// Current instruction number.
    153   /// The first instruction in each basic block is 0.
    154   int CurInstr;
    155 
    156   /// True when the current block has a predecessor that hasn't been visited
    157   /// yet.
    158   bool SeenUnknownBackEdge;
    159 
    160 public:
    161   ExeDepsFix(const TargetRegisterClass *rc)
    162     : MachineFunctionPass(ID), RC(rc), NumRegs(RC->getNumRegs()) {}
    163 
    164   void getAnalysisUsage(AnalysisUsage &AU) const override {
    165     AU.setPreservesAll();
    166     MachineFunctionPass::getAnalysisUsage(AU);
    167   }
    168 
    169   bool runOnMachineFunction(MachineFunction &MF) override;
    170 
    171   const char *getPassName() const override {
    172     return "Execution dependency fix";
    173   }
    174 
    175 private:
    176   iterator_range<SmallVectorImpl<int>::const_iterator>
    177   regIndices(unsigned Reg) const;
    178 
    179   // DomainValue allocation.
    180   DomainValue *alloc(int domain = -1);
    181   DomainValue *retain(DomainValue *DV) {
    182     if (DV) ++DV->Refs;
    183     return DV;
    184   }
    185   void release(DomainValue*);
    186   DomainValue *resolve(DomainValue*&);
    187 
    188   // LiveRegs manipulations.
    189   void setLiveReg(int rx, DomainValue *DV);
    190   void kill(int rx);
    191   void force(int rx, unsigned domain);
    192   void collapse(DomainValue *dv, unsigned domain);
    193   bool merge(DomainValue *A, DomainValue *B);
    194 
    195   void enterBasicBlock(MachineBasicBlock*);
    196   void leaveBasicBlock(MachineBasicBlock*);
    197   void visitInstr(MachineInstr*);
    198   void processDefs(MachineInstr*, bool Kill);
    199   void visitSoftInstr(MachineInstr*, unsigned mask);
    200   void visitHardInstr(MachineInstr*, unsigned domain);
    201   bool shouldBreakDependence(MachineInstr*, unsigned OpIdx, unsigned Pref);
    202   void processUndefReads(MachineBasicBlock*);
    203 };
    204 }
    205 
    206 char ExeDepsFix::ID = 0;
    207 
    208 /// Translate TRI register number to a list of indices into our smaller tables
    209 /// of interesting registers.
    210 iterator_range<SmallVectorImpl<int>::const_iterator>
    211 ExeDepsFix::regIndices(unsigned Reg) const {
    212   assert(Reg < AliasMap.size() && "Invalid register");
    213   const auto &Entry = AliasMap[Reg];
    214   return make_range(Entry.begin(), Entry.end());
    215 }
    216 
    217 DomainValue *ExeDepsFix::alloc(int domain) {
    218   DomainValue *dv = Avail.empty() ?
    219                       new(Allocator.Allocate()) DomainValue :
    220                       Avail.pop_back_val();
    221   if (domain >= 0)
    222     dv->addDomain(domain);
    223   assert(dv->Refs == 0 && "Reference count wasn't cleared");
    224   assert(!dv->Next && "Chained DomainValue shouldn't have been recycled");
    225   return dv;
    226 }
    227 
    228 /// Release a reference to DV.  When the last reference is released,
    229 /// collapse if needed.
    230 void ExeDepsFix::release(DomainValue *DV) {
    231   while (DV) {
    232     assert(DV->Refs && "Bad DomainValue");
    233     if (--DV->Refs)
    234       return;
    235 
    236     // There are no more DV references. Collapse any contained instructions.
    237     if (DV->AvailableDomains && !DV->isCollapsed())
    238       collapse(DV, DV->getFirstDomain());
    239 
    240     DomainValue *Next = DV->Next;
    241     DV->clear();
    242     Avail.push_back(DV);
    243     // Also release the next DomainValue in the chain.
    244     DV = Next;
    245   }
    246 }
    247 
    248 /// Follow the chain of dead DomainValues until a live DomainValue is reached.
    249 /// Update the referenced pointer when necessary.
    250 DomainValue *ExeDepsFix::resolve(DomainValue *&DVRef) {
    251   DomainValue *DV = DVRef;
    252   if (!DV || !DV->Next)
    253     return DV;
    254 
    255   // DV has a chain. Find the end.
    256   do DV = DV->Next;
    257   while (DV->Next);
    258 
    259   // Update DVRef to point to DV.
    260   retain(DV);
    261   release(DVRef);
    262   DVRef = DV;
    263   return DV;
    264 }
    265 
    266 /// Set LiveRegs[rx] = dv, updating reference counts.
    267 void ExeDepsFix::setLiveReg(int rx, DomainValue *dv) {
    268   assert(unsigned(rx) < NumRegs && "Invalid index");
    269   assert(LiveRegs && "Must enter basic block first.");
    270 
    271   if (LiveRegs[rx].Value == dv)
    272     return;
    273   if (LiveRegs[rx].Value)
    274     release(LiveRegs[rx].Value);
    275   LiveRegs[rx].Value = retain(dv);
    276 }
    277 
    278 // Kill register rx, recycle or collapse any DomainValue.
    279 void ExeDepsFix::kill(int rx) {
    280   assert(unsigned(rx) < NumRegs && "Invalid index");
    281   assert(LiveRegs && "Must enter basic block first.");
    282   if (!LiveRegs[rx].Value)
    283     return;
    284 
    285   release(LiveRegs[rx].Value);
    286   LiveRegs[rx].Value = nullptr;
    287 }
    288 
    289 /// Force register rx into domain.
    290 void ExeDepsFix::force(int rx, unsigned domain) {
    291   assert(unsigned(rx) < NumRegs && "Invalid index");
    292   assert(LiveRegs && "Must enter basic block first.");
    293   if (DomainValue *dv = LiveRegs[rx].Value) {
    294     if (dv->isCollapsed())
    295       dv->addDomain(domain);
    296     else if (dv->hasDomain(domain))
    297       collapse(dv, domain);
    298     else {
    299       // This is an incompatible open DomainValue. Collapse it to whatever and
    300       // force the new value into domain. This costs a domain crossing.
    301       collapse(dv, dv->getFirstDomain());
    302       assert(LiveRegs[rx].Value && "Not live after collapse?");
    303       LiveRegs[rx].Value->addDomain(domain);
    304     }
    305   } else {
    306     // Set up basic collapsed DomainValue.
    307     setLiveReg(rx, alloc(domain));
    308   }
    309 }
    310 
    311 /// Collapse open DomainValue into given domain. If there are multiple
    312 /// registers using dv, they each get a unique collapsed DomainValue.
    313 void ExeDepsFix::collapse(DomainValue *dv, unsigned domain) {
    314   assert(dv->hasDomain(domain) && "Cannot collapse");
    315 
    316   // Collapse all the instructions.
    317   while (!dv->Instrs.empty())
    318     TII->setExecutionDomain(dv->Instrs.pop_back_val(), domain);
    319   dv->setSingleDomain(domain);
    320 
    321   // If there are multiple users, give them new, unique DomainValues.
    322   if (LiveRegs && dv->Refs > 1)
    323     for (unsigned rx = 0; rx != NumRegs; ++rx)
    324       if (LiveRegs[rx].Value == dv)
    325         setLiveReg(rx, alloc(domain));
    326 }
    327 
    328 /// All instructions and registers in B are moved to A, and B is released.
    329 bool ExeDepsFix::merge(DomainValue *A, DomainValue *B) {
    330   assert(!A->isCollapsed() && "Cannot merge into collapsed");
    331   assert(!B->isCollapsed() && "Cannot merge from collapsed");
    332   if (A == B)
    333     return true;
    334   // Restrict to the domains that A and B have in common.
    335   unsigned common = A->getCommonDomains(B->AvailableDomains);
    336   if (!common)
    337     return false;
    338   A->AvailableDomains = common;
    339   A->Instrs.append(B->Instrs.begin(), B->Instrs.end());
    340 
    341   // Clear the old DomainValue so we won't try to swizzle instructions twice.
    342   B->clear();
    343   // All uses of B are referred to A.
    344   B->Next = retain(A);
    345 
    346   for (unsigned rx = 0; rx != NumRegs; ++rx) {
    347     assert(LiveRegs && "no space allocated for live registers");
    348     if (LiveRegs[rx].Value == B)
    349       setLiveReg(rx, A);
    350   }
    351   return true;
    352 }
    353 
    354 /// Set up LiveRegs by merging predecessor live-out values.
    355 void ExeDepsFix::enterBasicBlock(MachineBasicBlock *MBB) {
    356   // Detect back-edges from predecessors we haven't processed yet.
    357   SeenUnknownBackEdge = false;
    358 
    359   // Reset instruction counter in each basic block.
    360   CurInstr = 0;
    361 
    362   // Set up UndefReads to track undefined register reads.
    363   UndefReads.clear();
    364   LiveRegSet.clear();
    365 
    366   // Set up LiveRegs to represent registers entering MBB.
    367   if (!LiveRegs)
    368     LiveRegs = new LiveReg[NumRegs];
    369 
    370   // Default values are 'nothing happened a long time ago'.
    371   for (unsigned rx = 0; rx != NumRegs; ++rx) {
    372     LiveRegs[rx].Value = nullptr;
    373     LiveRegs[rx].Def = -(1 << 20);
    374   }
    375 
    376   // This is the entry block.
    377   if (MBB->pred_empty()) {
    378     for (const auto &LI : MBB->liveins()) {
    379       for (int rx : regIndices(LI.PhysReg)) {
    380         // Treat function live-ins as if they were defined just before the first
    381         // instruction.  Usually, function arguments are set up immediately
    382         // before the call.
    383         LiveRegs[rx].Def = -1;
    384       }
    385     }
    386     DEBUG(dbgs() << "BB#" << MBB->getNumber() << ": entry\n");
    387     return;
    388   }
    389 
    390   // Try to coalesce live-out registers from predecessors.
    391   for (MachineBasicBlock::const_pred_iterator pi = MBB->pred_begin(),
    392        pe = MBB->pred_end(); pi != pe; ++pi) {
    393     LiveOutMap::const_iterator fi = LiveOuts.find(*pi);
    394     if (fi == LiveOuts.end()) {
    395       SeenUnknownBackEdge = true;
    396       continue;
    397     }
    398     assert(fi->second && "Can't have NULL entries");
    399 
    400     for (unsigned rx = 0; rx != NumRegs; ++rx) {
    401       // Use the most recent predecessor def for each register.
    402       LiveRegs[rx].Def = std::max(LiveRegs[rx].Def, fi->second[rx].Def);
    403 
    404       DomainValue *pdv = resolve(fi->second[rx].Value);
    405       if (!pdv)
    406         continue;
    407       if (!LiveRegs[rx].Value) {
    408         setLiveReg(rx, pdv);
    409         continue;
    410       }
    411 
    412       // We have a live DomainValue from more than one predecessor.
    413       if (LiveRegs[rx].Value->isCollapsed()) {
    414         // We are already collapsed, but predecessor is not. Force it.
    415         unsigned Domain = LiveRegs[rx].Value->getFirstDomain();
    416         if (!pdv->isCollapsed() && pdv->hasDomain(Domain))
    417           collapse(pdv, Domain);
    418         continue;
    419       }
    420 
    421       // Currently open, merge in predecessor.
    422       if (!pdv->isCollapsed())
    423         merge(LiveRegs[rx].Value, pdv);
    424       else
    425         force(rx, pdv->getFirstDomain());
    426     }
    427   }
    428   DEBUG(dbgs() << "BB#" << MBB->getNumber()
    429         << (SeenUnknownBackEdge ? ": incomplete\n" : ": all preds known\n"));
    430 }
    431 
    432 void ExeDepsFix::leaveBasicBlock(MachineBasicBlock *MBB) {
    433   assert(LiveRegs && "Must enter basic block first.");
    434   // Save live registers at end of MBB - used by enterBasicBlock().
    435   // Also use LiveOuts as a visited set to detect back-edges.
    436   bool First = LiveOuts.insert(std::make_pair(MBB, LiveRegs)).second;
    437 
    438   if (First) {
    439     // LiveRegs was inserted in LiveOuts.  Adjust all defs to be relative to
    440     // the end of this block instead of the beginning.
    441     for (unsigned i = 0, e = NumRegs; i != e; ++i)
    442       LiveRegs[i].Def -= CurInstr;
    443   } else {
    444     // Insertion failed, this must be the second pass.
    445     // Release all the DomainValues instead of keeping them.
    446     for (unsigned i = 0, e = NumRegs; i != e; ++i)
    447       release(LiveRegs[i].Value);
    448     delete[] LiveRegs;
    449   }
    450   LiveRegs = nullptr;
    451 }
    452 
    453 void ExeDepsFix::visitInstr(MachineInstr *MI) {
    454   if (MI->isDebugValue())
    455     return;
    456 
    457   // Update instructions with explicit execution domains.
    458   std::pair<uint16_t, uint16_t> DomP = TII->getExecutionDomain(MI);
    459   if (DomP.first) {
    460     if (DomP.second)
    461       visitSoftInstr(MI, DomP.second);
    462     else
    463       visitHardInstr(MI, DomP.first);
    464   }
    465 
    466   // Process defs to track register ages, and kill values clobbered by generic
    467   // instructions.
    468   processDefs(MI, !DomP.first);
    469 }
    470 
    471 /// \brief Return true to if it makes sense to break dependence on a partial def
    472 /// or undef use.
    473 bool ExeDepsFix::shouldBreakDependence(MachineInstr *MI, unsigned OpIdx,
    474                                        unsigned Pref) {
    475   unsigned reg = MI->getOperand(OpIdx).getReg();
    476   for (int rx : regIndices(reg)) {
    477     unsigned Clearance = CurInstr - LiveRegs[rx].Def;
    478     DEBUG(dbgs() << "Clearance: " << Clearance << ", want " << Pref);
    479 
    480     if (Pref > Clearance) {
    481       DEBUG(dbgs() << ": Break dependency.\n");
    482       continue;
    483     }
    484     // The current clearance seems OK, but we may be ignoring a def from a
    485     // back-edge.
    486     if (!SeenUnknownBackEdge || Pref <= unsigned(CurInstr)) {
    487       DEBUG(dbgs() << ": OK .\n");
    488       return false;
    489     }
    490     // A def from an unprocessed back-edge may make us break this dependency.
    491     DEBUG(dbgs() << ": Wait for back-edge to resolve.\n");
    492     return false;
    493   }
    494   return true;
    495 }
    496 
    497 // Update def-ages for registers defined by MI.
    498 // If Kill is set, also kill off DomainValues clobbered by the defs.
    499 //
    500 // Also break dependencies on partial defs and undef uses.
    501 void ExeDepsFix::processDefs(MachineInstr *MI, bool Kill) {
    502   assert(!MI->isDebugValue() && "Won't process debug values");
    503 
    504   // Break dependence on undef uses. Do this before updating LiveRegs below.
    505   unsigned OpNum;
    506   unsigned Pref = TII->getUndefRegClearance(MI, OpNum, TRI);
    507   if (Pref) {
    508     if (shouldBreakDependence(MI, OpNum, Pref))
    509       UndefReads.push_back(std::make_pair(MI, OpNum));
    510   }
    511   const MCInstrDesc &MCID = MI->getDesc();
    512   for (unsigned i = 0,
    513          e = MI->isVariadic() ? MI->getNumOperands() : MCID.getNumDefs();
    514          i != e; ++i) {
    515     MachineOperand &MO = MI->getOperand(i);
    516     if (!MO.isReg())
    517       continue;
    518     if (MO.isImplicit())
    519       break;
    520     if (MO.isUse())
    521       continue;
    522     for (int rx : regIndices(MO.getReg())) {
    523       // This instruction explicitly defines rx.
    524       DEBUG(dbgs() << TRI->getName(RC->getRegister(rx)) << ":\t" << CurInstr
    525                    << '\t' << *MI);
    526 
    527       // Check clearance before partial register updates.
    528       // Call breakDependence before setting LiveRegs[rx].Def.
    529       unsigned Pref = TII->getPartialRegUpdateClearance(MI, i, TRI);
    530       if (Pref && shouldBreakDependence(MI, i, Pref))
    531         TII->breakPartialRegDependency(MI, i, TRI);
    532 
    533       // How many instructions since rx was last written?
    534       LiveRegs[rx].Def = CurInstr;
    535 
    536       // Kill off domains redefined by generic instructions.
    537       if (Kill)
    538         kill(rx);
    539     }
    540   }
    541   ++CurInstr;
    542 }
    543 
    544 /// \break Break false dependencies on undefined register reads.
    545 ///
    546 /// Walk the block backward computing precise liveness. This is expensive, so we
    547 /// only do it on demand. Note that the occurrence of undefined register reads
    548 /// that should be broken is very rare, but when they occur we may have many in
    549 /// a single block.
    550 void ExeDepsFix::processUndefReads(MachineBasicBlock *MBB) {
    551   if (UndefReads.empty())
    552     return;
    553 
    554   // Collect this block's live out register units.
    555   LiveRegSet.init(TRI);
    556   LiveRegSet.addLiveOuts(MBB);
    557 
    558   MachineInstr *UndefMI = UndefReads.back().first;
    559   unsigned OpIdx = UndefReads.back().second;
    560 
    561   for (MachineInstr &I : make_range(MBB->rbegin(), MBB->rend())) {
    562     // Update liveness, including the current instruction's defs.
    563     LiveRegSet.stepBackward(I);
    564 
    565     if (UndefMI == &I) {
    566       if (!LiveRegSet.contains(UndefMI->getOperand(OpIdx).getReg()))
    567         TII->breakPartialRegDependency(UndefMI, OpIdx, TRI);
    568 
    569       UndefReads.pop_back();
    570       if (UndefReads.empty())
    571         return;
    572 
    573       UndefMI = UndefReads.back().first;
    574       OpIdx = UndefReads.back().second;
    575     }
    576   }
    577 }
    578 
    579 // A hard instruction only works in one domain. All input registers will be
    580 // forced into that domain.
    581 void ExeDepsFix::visitHardInstr(MachineInstr *mi, unsigned domain) {
    582   // Collapse all uses.
    583   for (unsigned i = mi->getDesc().getNumDefs(),
    584                 e = mi->getDesc().getNumOperands(); i != e; ++i) {
    585     MachineOperand &mo = mi->getOperand(i);
    586     if (!mo.isReg()) continue;
    587     for (int rx : regIndices(mo.getReg())) {
    588       force(rx, domain);
    589     }
    590   }
    591 
    592   // Kill all defs and force them.
    593   for (unsigned i = 0, e = mi->getDesc().getNumDefs(); i != e; ++i) {
    594     MachineOperand &mo = mi->getOperand(i);
    595     if (!mo.isReg()) continue;
    596     for (int rx : regIndices(mo.getReg())) {
    597       kill(rx);
    598       force(rx, domain);
    599     }
    600   }
    601 }
    602 
    603 // A soft instruction can be changed to work in other domains given by mask.
    604 void ExeDepsFix::visitSoftInstr(MachineInstr *mi, unsigned mask) {
    605   // Bitmask of available domains for this instruction after taking collapsed
    606   // operands into account.
    607   unsigned available = mask;
    608 
    609   // Scan the explicit use operands for incoming domains.
    610   SmallVector<int, 4> used;
    611   if (LiveRegs)
    612     for (unsigned i = mi->getDesc().getNumDefs(),
    613                   e = mi->getDesc().getNumOperands(); i != e; ++i) {
    614       MachineOperand &mo = mi->getOperand(i);
    615       if (!mo.isReg()) continue;
    616       for (int rx : regIndices(mo.getReg())) {
    617         DomainValue *dv = LiveRegs[rx].Value;
    618         if (dv == nullptr)
    619           continue;
    620         // Bitmask of domains that dv and available have in common.
    621         unsigned common = dv->getCommonDomains(available);
    622         // Is it possible to use this collapsed register for free?
    623         if (dv->isCollapsed()) {
    624           // Restrict available domains to the ones in common with the operand.
    625           // If there are no common domains, we must pay the cross-domain
    626           // penalty for this operand.
    627           if (common) available = common;
    628         } else if (common)
    629           // Open DomainValue is compatible, save it for merging.
    630           used.push_back(rx);
    631         else
    632           // Open DomainValue is not compatible with instruction. It is useless
    633           // now.
    634           kill(rx);
    635       }
    636     }
    637 
    638   // If the collapsed operands force a single domain, propagate the collapse.
    639   if (isPowerOf2_32(available)) {
    640     unsigned domain = countTrailingZeros(available);
    641     TII->setExecutionDomain(mi, domain);
    642     visitHardInstr(mi, domain);
    643     return;
    644   }
    645 
    646   // Kill off any remaining uses that don't match available, and build a list of
    647   // incoming DomainValues that we want to merge.
    648   SmallVector<LiveReg, 4> Regs;
    649   for (SmallVectorImpl<int>::iterator i=used.begin(), e=used.end(); i!=e; ++i) {
    650     int rx = *i;
    651     assert(LiveRegs && "no space allocated for live registers");
    652     const LiveReg &LR = LiveRegs[rx];
    653     // This useless DomainValue could have been missed above.
    654     if (!LR.Value->getCommonDomains(available)) {
    655       kill(rx);
    656       continue;
    657     }
    658     // Sorted insertion.
    659     bool Inserted = false;
    660     for (SmallVectorImpl<LiveReg>::iterator i = Regs.begin(), e = Regs.end();
    661            i != e && !Inserted; ++i) {
    662       if (LR.Def < i->Def) {
    663         Inserted = true;
    664         Regs.insert(i, LR);
    665       }
    666     }
    667     if (!Inserted)
    668       Regs.push_back(LR);
    669   }
    670 
    671   // doms are now sorted in order of appearance. Try to merge them all, giving
    672   // priority to the latest ones.
    673   DomainValue *dv = nullptr;
    674   while (!Regs.empty()) {
    675     if (!dv) {
    676       dv = Regs.pop_back_val().Value;
    677       // Force the first dv to match the current instruction.
    678       dv->AvailableDomains = dv->getCommonDomains(available);
    679       assert(dv->AvailableDomains && "Domain should have been filtered");
    680       continue;
    681     }
    682 
    683     DomainValue *Latest = Regs.pop_back_val().Value;
    684     // Skip already merged values.
    685     if (Latest == dv || Latest->Next)
    686       continue;
    687     if (merge(dv, Latest))
    688       continue;
    689 
    690     // If latest didn't merge, it is useless now. Kill all registers using it.
    691     for (int i : used) {
    692       assert(LiveRegs && "no space allocated for live registers");
    693       if (LiveRegs[i].Value == Latest)
    694         kill(i);
    695     }
    696   }
    697 
    698   // dv is the DomainValue we are going to use for this instruction.
    699   if (!dv) {
    700     dv = alloc();
    701     dv->AvailableDomains = available;
    702   }
    703   dv->Instrs.push_back(mi);
    704 
    705   // Finally set all defs and non-collapsed uses to dv. We must iterate through
    706   // all the operators, including imp-def ones.
    707   for (MachineInstr::mop_iterator ii = mi->operands_begin(),
    708                                   ee = mi->operands_end();
    709                                   ii != ee; ++ii) {
    710     MachineOperand &mo = *ii;
    711     if (!mo.isReg()) continue;
    712     for (int rx : regIndices(mo.getReg())) {
    713       if (!LiveRegs[rx].Value || (mo.isDef() && LiveRegs[rx].Value != dv)) {
    714         kill(rx);
    715         setLiveReg(rx, dv);
    716       }
    717     }
    718   }
    719 }
    720 
    721 bool ExeDepsFix::runOnMachineFunction(MachineFunction &mf) {
    722   MF = &mf;
    723   TII = MF->getSubtarget().getInstrInfo();
    724   TRI = MF->getSubtarget().getRegisterInfo();
    725   LiveRegs = nullptr;
    726   assert(NumRegs == RC->getNumRegs() && "Bad regclass");
    727 
    728   DEBUG(dbgs() << "********** FIX EXECUTION DEPENDENCIES: "
    729                << TRI->getRegClassName(RC) << " **********\n");
    730 
    731   // If no relevant registers are used in the function, we can skip it
    732   // completely.
    733   bool anyregs = false;
    734   const MachineRegisterInfo &MRI = mf.getRegInfo();
    735   for (unsigned Reg : *RC) {
    736     if (MRI.isPhysRegUsed(Reg)) {
    737       anyregs = true;
    738       break;
    739     }
    740   }
    741   if (!anyregs) return false;
    742 
    743   // Initialize the AliasMap on the first use.
    744   if (AliasMap.empty()) {
    745     // Given a PhysReg, AliasMap[PhysReg] returns a list of indices into RC and
    746     // therefore the LiveRegs array.
    747     AliasMap.resize(TRI->getNumRegs());
    748     for (unsigned i = 0, e = RC->getNumRegs(); i != e; ++i)
    749       for (MCRegAliasIterator AI(RC->getRegister(i), TRI, true);
    750            AI.isValid(); ++AI)
    751         AliasMap[*AI].push_back(i);
    752   }
    753 
    754   MachineBasicBlock *Entry = &*MF->begin();
    755   ReversePostOrderTraversal<MachineBasicBlock*> RPOT(Entry);
    756   SmallVector<MachineBasicBlock*, 16> Loops;
    757   for (ReversePostOrderTraversal<MachineBasicBlock*>::rpo_iterator
    758          MBBI = RPOT.begin(), MBBE = RPOT.end(); MBBI != MBBE; ++MBBI) {
    759     MachineBasicBlock *MBB = *MBBI;
    760     enterBasicBlock(MBB);
    761     if (SeenUnknownBackEdge)
    762       Loops.push_back(MBB);
    763     for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
    764         ++I)
    765       visitInstr(I);
    766     processUndefReads(MBB);
    767     leaveBasicBlock(MBB);
    768   }
    769 
    770   // Visit all the loop blocks again in order to merge DomainValues from
    771   // back-edges.
    772   for (unsigned i = 0, e = Loops.size(); i != e; ++i) {
    773     MachineBasicBlock *MBB = Loops[i];
    774     enterBasicBlock(MBB);
    775     for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
    776         ++I)
    777       if (!I->isDebugValue())
    778         processDefs(I, false);
    779     processUndefReads(MBB);
    780     leaveBasicBlock(MBB);
    781   }
    782 
    783   // Clear the LiveOuts vectors and collapse any remaining DomainValues.
    784   for (ReversePostOrderTraversal<MachineBasicBlock*>::rpo_iterator
    785          MBBI = RPOT.begin(), MBBE = RPOT.end(); MBBI != MBBE; ++MBBI) {
    786     LiveOutMap::const_iterator FI = LiveOuts.find(*MBBI);
    787     if (FI == LiveOuts.end() || !FI->second)
    788       continue;
    789     for (unsigned i = 0, e = NumRegs; i != e; ++i)
    790       if (FI->second[i].Value)
    791         release(FI->second[i].Value);
    792     delete[] FI->second;
    793   }
    794   LiveOuts.clear();
    795   UndefReads.clear();
    796   Avail.clear();
    797   Allocator.DestroyAll();
    798 
    799   return false;
    800 }
    801 
    802 FunctionPass *
    803 llvm::createExecutionDependencyFixPass(const TargetRegisterClass *RC) {
    804   return new ExeDepsFix(RC);
    805 }
    806