Home | History | Annotate | Download | only in CodeGen
      1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // These classes wrap the information about a call or function
     11 // definition used to handle ABI compliancy.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "TargetInfo.h"
     16 #include "ABIInfo.h"
     17 #include "CGCXXABI.h"
     18 #include "CGValue.h"
     19 #include "CodeGenFunction.h"
     20 #include "clang/AST/RecordLayout.h"
     21 #include "clang/CodeGen/CGFunctionInfo.h"
     22 #include "clang/Frontend/CodeGenOptions.h"
     23 #include "llvm/ADT/StringExtras.h"
     24 #include "llvm/ADT/Triple.h"
     25 #include "llvm/IR/DataLayout.h"
     26 #include "llvm/IR/Type.h"
     27 #include "llvm/Support/raw_ostream.h"
     28 #include <algorithm>    // std::sort
     29 
     30 using namespace clang;
     31 using namespace CodeGen;
     32 
     33 // Helper for coercing an aggregate argument or return value into an
     34 // integer array of the same size (including padding).
     35 //
     36 // This is needed for RenderScript on ARM targets. The RenderScript
     37 // compiler assumes that the size of the argument / return value in
     38 // the IR is the same as the size of the corresponding qualified
     39 // type. It is necessary to coerce the aggregate type into an
     40 // array. We cannot pass a struct directly as an argument because
     41 // clang's struct passing logic breaks up the struct into its
     42 // constitutent fields.
     43 //
     44 // Ty          - The argument / return value type
     45 // Context     - The associated ASTContext
     46 // LLVMContext - The associated LLVMContext
     47 static ABIArgInfo coerceToIntArray(QualType Ty,
     48                                    ASTContext &Context,
     49                                    llvm::LLVMContext &LLVMContext) {
     50   // Alignment and Size are measured in bits.
     51   const uint64_t Size = Context.getTypeSize(Ty);
     52   const uint64_t Alignment = Context.getTypeAlign(Ty);
     53   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
     54   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
     55   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
     56 }
     57 
     58 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
     59                                llvm::Value *Array,
     60                                llvm::Value *Value,
     61                                unsigned FirstIndex,
     62                                unsigned LastIndex) {
     63   // Alternatively, we could emit this as a loop in the source.
     64   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
     65     llvm::Value *Cell =
     66         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
     67     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
     68   }
     69 }
     70 
     71 static bool isAggregateTypeForABI(QualType T) {
     72   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
     73          T->isMemberFunctionPointerType();
     74 }
     75 
     76 ABIArgInfo
     77 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
     78                                  llvm::Type *Padding) const {
     79   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
     80                                  ByRef, Realign, Padding);
     81 }
     82 
     83 ABIArgInfo
     84 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
     85   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
     86                                       /*ByRef*/ false, Realign);
     87 }
     88 
     89 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
     90                              QualType Ty) const {
     91   return Address::invalid();
     92 }
     93 
     94 ABIInfo::~ABIInfo() {}
     95 
     96 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
     97                                               CGCXXABI &CXXABI) {
     98   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
     99   if (!RD)
    100     return CGCXXABI::RAA_Default;
    101   return CXXABI.getRecordArgABI(RD);
    102 }
    103 
    104 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
    105                                               CGCXXABI &CXXABI) {
    106   const RecordType *RT = T->getAs<RecordType>();
    107   if (!RT)
    108     return CGCXXABI::RAA_Default;
    109   return getRecordArgABI(RT, CXXABI);
    110 }
    111 
    112 /// Pass transparent unions as if they were the type of the first element. Sema
    113 /// should ensure that all elements of the union have the same "machine type".
    114 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
    115   if (const RecordType *UT = Ty->getAsUnionType()) {
    116     const RecordDecl *UD = UT->getDecl();
    117     if (UD->hasAttr<TransparentUnionAttr>()) {
    118       assert(!UD->field_empty() && "sema created an empty transparent union");
    119       return UD->field_begin()->getType();
    120     }
    121   }
    122   return Ty;
    123 }
    124 
    125 CGCXXABI &ABIInfo::getCXXABI() const {
    126   return CGT.getCXXABI();
    127 }
    128 
    129 ASTContext &ABIInfo::getContext() const {
    130   return CGT.getContext();
    131 }
    132 
    133 llvm::LLVMContext &ABIInfo::getVMContext() const {
    134   return CGT.getLLVMContext();
    135 }
    136 
    137 const llvm::DataLayout &ABIInfo::getDataLayout() const {
    138   return CGT.getDataLayout();
    139 }
    140 
    141 const TargetInfo &ABIInfo::getTarget() const {
    142   return CGT.getTarget();
    143 }
    144 
    145 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
    146   return false;
    147 }
    148 
    149 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
    150                                                 uint64_t Members) const {
    151   return false;
    152 }
    153 
    154 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
    155   return false;
    156 }
    157 
    158 void ABIArgInfo::dump() const {
    159   raw_ostream &OS = llvm::errs();
    160   OS << "(ABIArgInfo Kind=";
    161   switch (TheKind) {
    162   case Direct:
    163     OS << "Direct Type=";
    164     if (llvm::Type *Ty = getCoerceToType())
    165       Ty->print(OS);
    166     else
    167       OS << "null";
    168     break;
    169   case Extend:
    170     OS << "Extend";
    171     break;
    172   case Ignore:
    173     OS << "Ignore";
    174     break;
    175   case InAlloca:
    176     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
    177     break;
    178   case Indirect:
    179     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
    180        << " ByVal=" << getIndirectByVal()
    181        << " Realign=" << getIndirectRealign();
    182     break;
    183   case Expand:
    184     OS << "Expand";
    185     break;
    186   }
    187   OS << ")\n";
    188 }
    189 
    190 // Dynamically round a pointer up to a multiple of the given alignment.
    191 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
    192                                                   llvm::Value *Ptr,
    193                                                   CharUnits Align) {
    194   llvm::Value *PtrAsInt = Ptr;
    195   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
    196   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
    197   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
    198         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
    199   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
    200            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
    201   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
    202                                         Ptr->getType(),
    203                                         Ptr->getName() + ".aligned");
    204   return PtrAsInt;
    205 }
    206 
    207 /// Emit va_arg for a platform using the common void* representation,
    208 /// where arguments are simply emitted in an array of slots on the stack.
    209 ///
    210 /// This version implements the core direct-value passing rules.
    211 ///
    212 /// \param SlotSize - The size and alignment of a stack slot.
    213 ///   Each argument will be allocated to a multiple of this number of
    214 ///   slots, and all the slots will be aligned to this value.
    215 /// \param AllowHigherAlign - The slot alignment is not a cap;
    216 ///   an argument type with an alignment greater than the slot size
    217 ///   will be emitted on a higher-alignment address, potentially
    218 ///   leaving one or more empty slots behind as padding.  If this
    219 ///   is false, the returned address might be less-aligned than
    220 ///   DirectAlign.
    221 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
    222                                       Address VAListAddr,
    223                                       llvm::Type *DirectTy,
    224                                       CharUnits DirectSize,
    225                                       CharUnits DirectAlign,
    226                                       CharUnits SlotSize,
    227                                       bool AllowHigherAlign) {
    228   // Cast the element type to i8* if necessary.  Some platforms define
    229   // va_list as a struct containing an i8* instead of just an i8*.
    230   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
    231     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
    232 
    233   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
    234 
    235   // If the CC aligns values higher than the slot size, do so if needed.
    236   Address Addr = Address::invalid();
    237   if (AllowHigherAlign && DirectAlign > SlotSize) {
    238     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
    239                                                  DirectAlign);
    240   } else {
    241     Addr = Address(Ptr, SlotSize);
    242   }
    243 
    244   // Advance the pointer past the argument, then store that back.
    245   CharUnits FullDirectSize = DirectSize.RoundUpToAlignment(SlotSize);
    246   llvm::Value *NextPtr =
    247     CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize,
    248                                            "argp.next");
    249   CGF.Builder.CreateStore(NextPtr, VAListAddr);
    250 
    251   // If the argument is smaller than a slot, and this is a big-endian
    252   // target, the argument will be right-adjusted in its slot.
    253   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian()) {
    254     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
    255   }
    256 
    257   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
    258   return Addr;
    259 }
    260 
    261 /// Emit va_arg for a platform using the common void* representation,
    262 /// where arguments are simply emitted in an array of slots on the stack.
    263 ///
    264 /// \param IsIndirect - Values of this type are passed indirectly.
    265 /// \param ValueInfo - The size and alignment of this type, generally
    266 ///   computed with getContext().getTypeInfoInChars(ValueTy).
    267 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
    268 ///   Each argument will be allocated to a multiple of this number of
    269 ///   slots, and all the slots will be aligned to this value.
    270 /// \param AllowHigherAlign - The slot alignment is not a cap;
    271 ///   an argument type with an alignment greater than the slot size
    272 ///   will be emitted on a higher-alignment address, potentially
    273 ///   leaving one or more empty slots behind as padding.
    274 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
    275                                 QualType ValueTy, bool IsIndirect,
    276                                 std::pair<CharUnits, CharUnits> ValueInfo,
    277                                 CharUnits SlotSizeAndAlign,
    278                                 bool AllowHigherAlign) {
    279   // The size and alignment of the value that was passed directly.
    280   CharUnits DirectSize, DirectAlign;
    281   if (IsIndirect) {
    282     DirectSize = CGF.getPointerSize();
    283     DirectAlign = CGF.getPointerAlign();
    284   } else {
    285     DirectSize = ValueInfo.first;
    286     DirectAlign = ValueInfo.second;
    287   }
    288 
    289   // Cast the address we've calculated to the right type.
    290   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
    291   if (IsIndirect)
    292     DirectTy = DirectTy->getPointerTo(0);
    293 
    294   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
    295                                         DirectSize, DirectAlign,
    296                                         SlotSizeAndAlign,
    297                                         AllowHigherAlign);
    298 
    299   if (IsIndirect) {
    300     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
    301   }
    302 
    303   return Addr;
    304 
    305 }
    306 
    307 static Address emitMergePHI(CodeGenFunction &CGF,
    308                             Address Addr1, llvm::BasicBlock *Block1,
    309                             Address Addr2, llvm::BasicBlock *Block2,
    310                             const llvm::Twine &Name = "") {
    311   assert(Addr1.getType() == Addr2.getType());
    312   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
    313   PHI->addIncoming(Addr1.getPointer(), Block1);
    314   PHI->addIncoming(Addr2.getPointer(), Block2);
    315   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
    316   return Address(PHI, Align);
    317 }
    318 
    319 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
    320 
    321 // If someone can figure out a general rule for this, that would be great.
    322 // It's probably just doomed to be platform-dependent, though.
    323 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
    324   // Verified for:
    325   //   x86-64     FreeBSD, Linux, Darwin
    326   //   x86-32     FreeBSD, Linux, Darwin
    327   //   PowerPC    Linux, Darwin
    328   //   ARM        Darwin (*not* EABI)
    329   //   AArch64    Linux
    330   return 32;
    331 }
    332 
    333 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
    334                                      const FunctionNoProtoType *fnType) const {
    335   // The following conventions are known to require this to be false:
    336   //   x86_stdcall
    337   //   MIPS
    338   // For everything else, we just prefer false unless we opt out.
    339   return false;
    340 }
    341 
    342 void
    343 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
    344                                              llvm::SmallString<24> &Opt) const {
    345   // This assumes the user is passing a library name like "rt" instead of a
    346   // filename like "librt.a/so", and that they don't care whether it's static or
    347   // dynamic.
    348   Opt = "-l";
    349   Opt += Lib;
    350 }
    351 
    352 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
    353 
    354 /// isEmptyField - Return true iff a the field is "empty", that is it
    355 /// is an unnamed bit-field or an (array of) empty record(s).
    356 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
    357                          bool AllowArrays) {
    358   if (FD->isUnnamedBitfield())
    359     return true;
    360 
    361   QualType FT = FD->getType();
    362 
    363   // Constant arrays of empty records count as empty, strip them off.
    364   // Constant arrays of zero length always count as empty.
    365   if (AllowArrays)
    366     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
    367       if (AT->getSize() == 0)
    368         return true;
    369       FT = AT->getElementType();
    370     }
    371 
    372   const RecordType *RT = FT->getAs<RecordType>();
    373   if (!RT)
    374     return false;
    375 
    376   // C++ record fields are never empty, at least in the Itanium ABI.
    377   //
    378   // FIXME: We should use a predicate for whether this behavior is true in the
    379   // current ABI.
    380   if (isa<CXXRecordDecl>(RT->getDecl()))
    381     return false;
    382 
    383   return isEmptyRecord(Context, FT, AllowArrays);
    384 }
    385 
    386 /// isEmptyRecord - Return true iff a structure contains only empty
    387 /// fields. Note that a structure with a flexible array member is not
    388 /// considered empty.
    389 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
    390   const RecordType *RT = T->getAs<RecordType>();
    391   if (!RT)
    392     return 0;
    393   const RecordDecl *RD = RT->getDecl();
    394   if (RD->hasFlexibleArrayMember())
    395     return false;
    396 
    397   // If this is a C++ record, check the bases first.
    398   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
    399     for (const auto &I : CXXRD->bases())
    400       if (!isEmptyRecord(Context, I.getType(), true))
    401         return false;
    402 
    403   for (const auto *I : RD->fields())
    404     if (!isEmptyField(Context, I, AllowArrays))
    405       return false;
    406   return true;
    407 }
    408 
    409 /// isSingleElementStruct - Determine if a structure is a "single
    410 /// element struct", i.e. it has exactly one non-empty field or
    411 /// exactly one field which is itself a single element
    412 /// struct. Structures with flexible array members are never
    413 /// considered single element structs.
    414 ///
    415 /// \return The field declaration for the single non-empty field, if
    416 /// it exists.
    417 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
    418   const RecordType *RT = T->getAs<RecordType>();
    419   if (!RT)
    420     return nullptr;
    421 
    422   const RecordDecl *RD = RT->getDecl();
    423   if (RD->hasFlexibleArrayMember())
    424     return nullptr;
    425 
    426   const Type *Found = nullptr;
    427 
    428   // If this is a C++ record, check the bases first.
    429   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
    430     for (const auto &I : CXXRD->bases()) {
    431       // Ignore empty records.
    432       if (isEmptyRecord(Context, I.getType(), true))
    433         continue;
    434 
    435       // If we already found an element then this isn't a single-element struct.
    436       if (Found)
    437         return nullptr;
    438 
    439       // If this is non-empty and not a single element struct, the composite
    440       // cannot be a single element struct.
    441       Found = isSingleElementStruct(I.getType(), Context);
    442       if (!Found)
    443         return nullptr;
    444     }
    445   }
    446 
    447   // Check for single element.
    448   for (const auto *FD : RD->fields()) {
    449     QualType FT = FD->getType();
    450 
    451     // Ignore empty fields.
    452     if (isEmptyField(Context, FD, true))
    453       continue;
    454 
    455     // If we already found an element then this isn't a single-element
    456     // struct.
    457     if (Found)
    458       return nullptr;
    459 
    460     // Treat single element arrays as the element.
    461     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
    462       if (AT->getSize().getZExtValue() != 1)
    463         break;
    464       FT = AT->getElementType();
    465     }
    466 
    467     if (!isAggregateTypeForABI(FT)) {
    468       Found = FT.getTypePtr();
    469     } else {
    470       Found = isSingleElementStruct(FT, Context);
    471       if (!Found)
    472         return nullptr;
    473     }
    474   }
    475 
    476   // We don't consider a struct a single-element struct if it has
    477   // padding beyond the element type.
    478   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
    479     return nullptr;
    480 
    481   return Found;
    482 }
    483 
    484 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
    485   // Treat complex types as the element type.
    486   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
    487     Ty = CTy->getElementType();
    488 
    489   // Check for a type which we know has a simple scalar argument-passing
    490   // convention without any padding.  (We're specifically looking for 32
    491   // and 64-bit integer and integer-equivalents, float, and double.)
    492   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
    493       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
    494     return false;
    495 
    496   uint64_t Size = Context.getTypeSize(Ty);
    497   return Size == 32 || Size == 64;
    498 }
    499 
    500 /// canExpandIndirectArgument - Test whether an argument type which is to be
    501 /// passed indirectly (on the stack) would have the equivalent layout if it was
    502 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
    503 /// inhibiting optimizations.
    504 ///
    505 // FIXME: This predicate is missing many cases, currently it just follows
    506 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
    507 // should probably make this smarter, or better yet make the LLVM backend
    508 // capable of handling it.
    509 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
    510   // We can only expand structure types.
    511   const RecordType *RT = Ty->getAs<RecordType>();
    512   if (!RT)
    513     return false;
    514 
    515   // We can only expand (C) structures.
    516   //
    517   // FIXME: This needs to be generalized to handle classes as well.
    518   const RecordDecl *RD = RT->getDecl();
    519   if (!RD->isStruct())
    520     return false;
    521 
    522   // We try to expand CLike CXXRecordDecl.
    523   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
    524     if (!CXXRD->isCLike())
    525       return false;
    526   }
    527 
    528   uint64_t Size = 0;
    529 
    530   for (const auto *FD : RD->fields()) {
    531     if (!is32Or64BitBasicType(FD->getType(), Context))
    532       return false;
    533 
    534     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
    535     // how to expand them yet, and the predicate for telling if a bitfield still
    536     // counts as "basic" is more complicated than what we were doing previously.
    537     if (FD->isBitField())
    538       return false;
    539 
    540     Size += Context.getTypeSize(FD->getType());
    541   }
    542 
    543   // Make sure there are not any holes in the struct.
    544   if (Size != Context.getTypeSize(Ty))
    545     return false;
    546 
    547   return true;
    548 }
    549 
    550 namespace {
    551 /// DefaultABIInfo - The default implementation for ABI specific
    552 /// details. This implementation provides information which results in
    553 /// self-consistent and sensible LLVM IR generation, but does not
    554 /// conform to any particular ABI.
    555 class DefaultABIInfo : public ABIInfo {
    556 public:
    557   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
    558 
    559   ABIArgInfo classifyReturnType(QualType RetTy) const;
    560   ABIArgInfo classifyArgumentType(QualType RetTy) const;
    561 
    562   void computeInfo(CGFunctionInfo &FI) const override {
    563     if (!getCXXABI().classifyReturnType(FI))
    564       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
    565     for (auto &I : FI.arguments())
    566       I.info = classifyArgumentType(I.type);
    567   }
    568 
    569   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
    570                     QualType Ty) const override;
    571 };
    572 
    573 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
    574 public:
    575   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
    576     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
    577 };
    578 
    579 Address DefaultABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
    580                                   QualType Ty) const {
    581   return Address::invalid();
    582 }
    583 
    584 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
    585   Ty = useFirstFieldIfTransparentUnion(Ty);
    586 
    587   if (isAggregateTypeForABI(Ty)) {
    588     // Records with non-trivial destructors/copy-constructors should not be
    589     // passed by value.
    590     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
    591       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
    592 
    593     return getNaturalAlignIndirect(Ty);
    594   }
    595 
    596   // Treat an enum type as its underlying type.
    597   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
    598     Ty = EnumTy->getDecl()->getIntegerType();
    599 
    600   return (Ty->isPromotableIntegerType() ?
    601           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
    602 }
    603 
    604 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
    605   if (RetTy->isVoidType())
    606     return ABIArgInfo::getIgnore();
    607 
    608   if (isAggregateTypeForABI(RetTy))
    609     return getNaturalAlignIndirect(RetTy);
    610 
    611   // Treat an enum type as its underlying type.
    612   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
    613     RetTy = EnumTy->getDecl()->getIntegerType();
    614 
    615   return (RetTy->isPromotableIntegerType() ?
    616           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
    617 }
    618 
    619 //===----------------------------------------------------------------------===//
    620 // WebAssembly ABI Implementation
    621 //
    622 // This is a very simple ABI that relies a lot on DefaultABIInfo.
    623 //===----------------------------------------------------------------------===//
    624 
    625 class WebAssemblyABIInfo final : public DefaultABIInfo {
    626 public:
    627   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT)
    628       : DefaultABIInfo(CGT) {}
    629 
    630 private:
    631   ABIArgInfo classifyReturnType(QualType RetTy) const;
    632   ABIArgInfo classifyArgumentType(QualType Ty) const;
    633 
    634   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
    635   // non-virtual, but computeInfo is virtual, so we overload that.
    636   void computeInfo(CGFunctionInfo &FI) const override {
    637     if (!getCXXABI().classifyReturnType(FI))
    638       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
    639     for (auto &Arg : FI.arguments())
    640       Arg.info = classifyArgumentType(Arg.type);
    641   }
    642 };
    643 
    644 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
    645 public:
    646   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
    647       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {}
    648 };
    649 
    650 /// \brief Classify argument of given type \p Ty.
    651 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
    652   Ty = useFirstFieldIfTransparentUnion(Ty);
    653 
    654   if (isAggregateTypeForABI(Ty)) {
    655     // Records with non-trivial destructors/copy-constructors should not be
    656     // passed by value.
    657     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
    658       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
    659     // Ignore empty structs/unions.
    660     if (isEmptyRecord(getContext(), Ty, true))
    661       return ABIArgInfo::getIgnore();
    662     // Lower single-element structs to just pass a regular value. TODO: We
    663     // could do reasonable-size multiple-element structs too, using getExpand(),
    664     // though watch out for things like bitfields.
    665     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
    666       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
    667   }
    668 
    669   // Otherwise just do the default thing.
    670   return DefaultABIInfo::classifyArgumentType(Ty);
    671 }
    672 
    673 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
    674   if (isAggregateTypeForABI(RetTy)) {
    675     // Records with non-trivial destructors/copy-constructors should not be
    676     // returned by value.
    677     if (!getRecordArgABI(RetTy, getCXXABI())) {
    678       // Ignore empty structs/unions.
    679       if (isEmptyRecord(getContext(), RetTy, true))
    680         return ABIArgInfo::getIgnore();
    681       // Lower single-element structs to just return a regular value. TODO: We
    682       // could do reasonable-size multiple-element structs too, using
    683       // ABIArgInfo::getDirect().
    684       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
    685         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
    686     }
    687   }
    688 
    689   // Otherwise just do the default thing.
    690   return DefaultABIInfo::classifyReturnType(RetTy);
    691 }
    692 
    693 //===----------------------------------------------------------------------===//
    694 // le32/PNaCl bitcode ABI Implementation
    695 //
    696 // This is a simplified version of the x86_32 ABI.  Arguments and return values
    697 // are always passed on the stack.
    698 //===----------------------------------------------------------------------===//
    699 
    700 class PNaClABIInfo : public ABIInfo {
    701  public:
    702   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
    703 
    704   ABIArgInfo classifyReturnType(QualType RetTy) const;
    705   ABIArgInfo classifyArgumentType(QualType RetTy) const;
    706 
    707   void computeInfo(CGFunctionInfo &FI) const override;
    708   Address EmitVAArg(CodeGenFunction &CGF,
    709                     Address VAListAddr, QualType Ty) const override;
    710 };
    711 
    712 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
    713  public:
    714   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
    715     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
    716 };
    717 
    718 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
    719   if (!getCXXABI().classifyReturnType(FI))
    720     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
    721 
    722   for (auto &I : FI.arguments())
    723     I.info = classifyArgumentType(I.type);
    724 }
    725 
    726 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
    727                                 QualType Ty) const {
    728   return Address::invalid();
    729 }
    730 
    731 /// \brief Classify argument of given type \p Ty.
    732 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
    733   if (isAggregateTypeForABI(Ty)) {
    734     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
    735       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
    736     return getNaturalAlignIndirect(Ty);
    737   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
    738     // Treat an enum type as its underlying type.
    739     Ty = EnumTy->getDecl()->getIntegerType();
    740   } else if (Ty->isFloatingType()) {
    741     // Floating-point types don't go inreg.
    742     return ABIArgInfo::getDirect();
    743   }
    744 
    745   return (Ty->isPromotableIntegerType() ?
    746           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
    747 }
    748 
    749 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
    750   if (RetTy->isVoidType())
    751     return ABIArgInfo::getIgnore();
    752 
    753   // In the PNaCl ABI we always return records/structures on the stack.
    754   if (isAggregateTypeForABI(RetTy))
    755     return getNaturalAlignIndirect(RetTy);
    756 
    757   // Treat an enum type as its underlying type.
    758   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
    759     RetTy = EnumTy->getDecl()->getIntegerType();
    760 
    761   return (RetTy->isPromotableIntegerType() ?
    762           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
    763 }
    764 
    765 /// IsX86_MMXType - Return true if this is an MMX type.
    766 bool IsX86_MMXType(llvm::Type *IRType) {
    767   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
    768   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
    769     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
    770     IRType->getScalarSizeInBits() != 64;
    771 }
    772 
    773 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
    774                                           StringRef Constraint,
    775                                           llvm::Type* Ty) {
    776   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
    777     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
    778       // Invalid MMX constraint
    779       return nullptr;
    780     }
    781 
    782     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
    783   }
    784 
    785   // No operation needed
    786   return Ty;
    787 }
    788 
    789 /// Returns true if this type can be passed in SSE registers with the
    790 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
    791 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
    792   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
    793     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half)
    794       return true;
    795   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
    796     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
    797     // registers specially.
    798     unsigned VecSize = Context.getTypeSize(VT);
    799     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
    800       return true;
    801   }
    802   return false;
    803 }
    804 
    805 /// Returns true if this aggregate is small enough to be passed in SSE registers
    806 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
    807 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
    808   return NumMembers <= 4;
    809 }
    810 
    811 //===----------------------------------------------------------------------===//
    812 // X86-32 ABI Implementation
    813 //===----------------------------------------------------------------------===//
    814 
    815 /// \brief Similar to llvm::CCState, but for Clang.
    816 struct CCState {
    817   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
    818 
    819   unsigned CC;
    820   unsigned FreeRegs;
    821   unsigned FreeSSERegs;
    822 };
    823 
    824 /// X86_32ABIInfo - The X86-32 ABI information.
    825 class X86_32ABIInfo : public ABIInfo {
    826   enum Class {
    827     Integer,
    828     Float
    829   };
    830 
    831   static const unsigned MinABIStackAlignInBytes = 4;
    832 
    833   bool IsDarwinVectorABI;
    834   bool IsRetSmallStructInRegABI;
    835   bool IsWin32StructABI;
    836   bool IsSoftFloatABI;
    837   bool IsMCUABI;
    838   unsigned DefaultNumRegisterParameters;
    839 
    840   static bool isRegisterSize(unsigned Size) {
    841     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
    842   }
    843 
    844   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
    845     // FIXME: Assumes vectorcall is in use.
    846     return isX86VectorTypeForVectorCall(getContext(), Ty);
    847   }
    848 
    849   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
    850                                          uint64_t NumMembers) const override {
    851     // FIXME: Assumes vectorcall is in use.
    852     return isX86VectorCallAggregateSmallEnough(NumMembers);
    853   }
    854 
    855   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
    856 
    857   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
    858   /// such that the argument will be passed in memory.
    859   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
    860 
    861   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
    862 
    863   /// \brief Return the alignment to use for the given type on the stack.
    864   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
    865 
    866   Class classify(QualType Ty) const;
    867   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
    868   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
    869   bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const;
    870 
    871   /// \brief Rewrite the function info so that all memory arguments use
    872   /// inalloca.
    873   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
    874 
    875   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
    876                            CharUnits &StackOffset, ABIArgInfo &Info,
    877                            QualType Type) const;
    878 
    879 public:
    880 
    881   void computeInfo(CGFunctionInfo &FI) const override;
    882   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
    883                     QualType Ty) const override;
    884 
    885   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
    886                 bool RetSmallStructInRegABI, bool Win32StructABI,
    887                 unsigned NumRegisterParameters, bool SoftFloatABI)
    888     : ABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
    889       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
    890       IsWin32StructABI(Win32StructABI),
    891       IsSoftFloatABI(SoftFloatABI),
    892       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
    893       DefaultNumRegisterParameters(NumRegisterParameters) {}
    894 };
    895 
    896 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
    897 public:
    898   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
    899                           bool RetSmallStructInRegABI, bool Win32StructABI,
    900                           unsigned NumRegisterParameters, bool SoftFloatABI)
    901       : TargetCodeGenInfo(new X86_32ABIInfo(
    902             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
    903             NumRegisterParameters, SoftFloatABI)) {}
    904 
    905   static bool isStructReturnInRegABI(
    906       const llvm::Triple &Triple, const CodeGenOptions &Opts);
    907 
    908   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
    909                            CodeGen::CodeGenModule &CGM) const override;
    910 
    911   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
    912     // Darwin uses different dwarf register numbers for EH.
    913     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
    914     return 4;
    915   }
    916 
    917   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
    918                                llvm::Value *Address) const override;
    919 
    920   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
    921                                   StringRef Constraint,
    922                                   llvm::Type* Ty) const override {
    923     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
    924   }
    925 
    926   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
    927                                 std::string &Constraints,
    928                                 std::vector<llvm::Type *> &ResultRegTypes,
    929                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
    930                                 std::vector<LValue> &ResultRegDests,
    931                                 std::string &AsmString,
    932                                 unsigned NumOutputs) const override;
    933 
    934   llvm::Constant *
    935   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
    936     unsigned Sig = (0xeb << 0) |  // jmp rel8
    937                    (0x06 << 8) |  //           .+0x08
    938                    ('F' << 16) |
    939                    ('T' << 24);
    940     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
    941   }
    942 };
    943 
    944 }
    945 
    946 /// Rewrite input constraint references after adding some output constraints.
    947 /// In the case where there is one output and one input and we add one output,
    948 /// we need to replace all operand references greater than or equal to 1:
    949 ///     mov $0, $1
    950 ///     mov eax, $1
    951 /// The result will be:
    952 ///     mov $0, $2
    953 ///     mov eax, $2
    954 static void rewriteInputConstraintReferences(unsigned FirstIn,
    955                                              unsigned NumNewOuts,
    956                                              std::string &AsmString) {
    957   std::string Buf;
    958   llvm::raw_string_ostream OS(Buf);
    959   size_t Pos = 0;
    960   while (Pos < AsmString.size()) {
    961     size_t DollarStart = AsmString.find('$', Pos);
    962     if (DollarStart == std::string::npos)
    963       DollarStart = AsmString.size();
    964     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
    965     if (DollarEnd == std::string::npos)
    966       DollarEnd = AsmString.size();
    967     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
    968     Pos = DollarEnd;
    969     size_t NumDollars = DollarEnd - DollarStart;
    970     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
    971       // We have an operand reference.
    972       size_t DigitStart = Pos;
    973       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
    974       if (DigitEnd == std::string::npos)
    975         DigitEnd = AsmString.size();
    976       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
    977       unsigned OperandIndex;
    978       if (!OperandStr.getAsInteger(10, OperandIndex)) {
    979         if (OperandIndex >= FirstIn)
    980           OperandIndex += NumNewOuts;
    981         OS << OperandIndex;
    982       } else {
    983         OS << OperandStr;
    984       }
    985       Pos = DigitEnd;
    986     }
    987   }
    988   AsmString = std::move(OS.str());
    989 }
    990 
    991 /// Add output constraints for EAX:EDX because they are return registers.
    992 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
    993     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
    994     std::vector<llvm::Type *> &ResultRegTypes,
    995     std::vector<llvm::Type *> &ResultTruncRegTypes,
    996     std::vector<LValue> &ResultRegDests, std::string &AsmString,
    997     unsigned NumOutputs) const {
    998   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
    999 
   1000   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
   1001   // larger.
   1002   if (!Constraints.empty())
   1003     Constraints += ',';
   1004   if (RetWidth <= 32) {
   1005     Constraints += "={eax}";
   1006     ResultRegTypes.push_back(CGF.Int32Ty);
   1007   } else {
   1008     // Use the 'A' constraint for EAX:EDX.
   1009     Constraints += "=A";
   1010     ResultRegTypes.push_back(CGF.Int64Ty);
   1011   }
   1012 
   1013   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
   1014   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
   1015   ResultTruncRegTypes.push_back(CoerceTy);
   1016 
   1017   // Coerce the integer by bitcasting the return slot pointer.
   1018   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
   1019                                                   CoerceTy->getPointerTo()));
   1020   ResultRegDests.push_back(ReturnSlot);
   1021 
   1022   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
   1023 }
   1024 
   1025 /// shouldReturnTypeInRegister - Determine if the given type should be
   1026 /// returned in a register (for the Darwin and MCU ABI).
   1027 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
   1028                                                ASTContext &Context) const {
   1029   uint64_t Size = Context.getTypeSize(Ty);
   1030 
   1031   // Type must be register sized.
   1032   if (!isRegisterSize(Size))
   1033     return false;
   1034 
   1035   if (Ty->isVectorType()) {
   1036     // 64- and 128- bit vectors inside structures are not returned in
   1037     // registers.
   1038     if (Size == 64 || Size == 128)
   1039       return false;
   1040 
   1041     return true;
   1042   }
   1043 
   1044   // If this is a builtin, pointer, enum, complex type, member pointer, or
   1045   // member function pointer it is ok.
   1046   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
   1047       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
   1048       Ty->isBlockPointerType() || Ty->isMemberPointerType())
   1049     return true;
   1050 
   1051   // Arrays are treated like records.
   1052   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
   1053     return shouldReturnTypeInRegister(AT->getElementType(), Context);
   1054 
   1055   // Otherwise, it must be a record type.
   1056   const RecordType *RT = Ty->getAs<RecordType>();
   1057   if (!RT) return false;
   1058 
   1059   // FIXME: Traverse bases here too.
   1060 
   1061   // Structure types are passed in register if all fields would be
   1062   // passed in a register.
   1063   for (const auto *FD : RT->getDecl()->fields()) {
   1064     // Empty fields are ignored.
   1065     if (isEmptyField(Context, FD, true))
   1066       continue;
   1067 
   1068     // Check fields recursively.
   1069     if (!shouldReturnTypeInRegister(FD->getType(), Context))
   1070       return false;
   1071   }
   1072   return true;
   1073 }
   1074 
   1075 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
   1076   // If the return value is indirect, then the hidden argument is consuming one
   1077   // integer register.
   1078   if (State.FreeRegs) {
   1079     --State.FreeRegs;
   1080     return getNaturalAlignIndirectInReg(RetTy);
   1081   }
   1082   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
   1083 }
   1084 
   1085 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
   1086                                              CCState &State) const {
   1087   if (RetTy->isVoidType())
   1088     return ABIArgInfo::getIgnore();
   1089 
   1090   const Type *Base = nullptr;
   1091   uint64_t NumElts = 0;
   1092   if (State.CC == llvm::CallingConv::X86_VectorCall &&
   1093       isHomogeneousAggregate(RetTy, Base, NumElts)) {
   1094     // The LLVM struct type for such an aggregate should lower properly.
   1095     return ABIArgInfo::getDirect();
   1096   }
   1097 
   1098   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
   1099     // On Darwin, some vectors are returned in registers.
   1100     if (IsDarwinVectorABI) {
   1101       uint64_t Size = getContext().getTypeSize(RetTy);
   1102 
   1103       // 128-bit vectors are a special case; they are returned in
   1104       // registers and we need to make sure to pick a type the LLVM
   1105       // backend will like.
   1106       if (Size == 128)
   1107         return ABIArgInfo::getDirect(llvm::VectorType::get(
   1108                   llvm::Type::getInt64Ty(getVMContext()), 2));
   1109 
   1110       // Always return in register if it fits in a general purpose
   1111       // register, or if it is 64 bits and has a single element.
   1112       if ((Size == 8 || Size == 16 || Size == 32) ||
   1113           (Size == 64 && VT->getNumElements() == 1))
   1114         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
   1115                                                             Size));
   1116 
   1117       return getIndirectReturnResult(RetTy, State);
   1118     }
   1119 
   1120     return ABIArgInfo::getDirect();
   1121   }
   1122 
   1123   if (isAggregateTypeForABI(RetTy)) {
   1124     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
   1125       // Structures with flexible arrays are always indirect.
   1126       if (RT->getDecl()->hasFlexibleArrayMember())
   1127         return getIndirectReturnResult(RetTy, State);
   1128     }
   1129 
   1130     // If specified, structs and unions are always indirect.
   1131     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
   1132       return getIndirectReturnResult(RetTy, State);
   1133 
   1134     // Small structures which are register sized are generally returned
   1135     // in a register.
   1136     if (shouldReturnTypeInRegister(RetTy, getContext())) {
   1137       uint64_t Size = getContext().getTypeSize(RetTy);
   1138 
   1139       // As a special-case, if the struct is a "single-element" struct, and
   1140       // the field is of type "float" or "double", return it in a
   1141       // floating-point register. (MSVC does not apply this special case.)
   1142       // We apply a similar transformation for pointer types to improve the
   1143       // quality of the generated IR.
   1144       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
   1145         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
   1146             || SeltTy->hasPointerRepresentation())
   1147           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
   1148 
   1149       // FIXME: We should be able to narrow this integer in cases with dead
   1150       // padding.
   1151       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
   1152     }
   1153 
   1154     return getIndirectReturnResult(RetTy, State);
   1155   }
   1156 
   1157   // Treat an enum type as its underlying type.
   1158   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
   1159     RetTy = EnumTy->getDecl()->getIntegerType();
   1160 
   1161   return (RetTy->isPromotableIntegerType() ?
   1162           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   1163 }
   1164 
   1165 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
   1166   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
   1167 }
   1168 
   1169 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
   1170   const RecordType *RT = Ty->getAs<RecordType>();
   1171   if (!RT)
   1172     return 0;
   1173   const RecordDecl *RD = RT->getDecl();
   1174 
   1175   // If this is a C++ record, check the bases first.
   1176   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
   1177     for (const auto &I : CXXRD->bases())
   1178       if (!isRecordWithSSEVectorType(Context, I.getType()))
   1179         return false;
   1180 
   1181   for (const auto *i : RD->fields()) {
   1182     QualType FT = i->getType();
   1183 
   1184     if (isSSEVectorType(Context, FT))
   1185       return true;
   1186 
   1187     if (isRecordWithSSEVectorType(Context, FT))
   1188       return true;
   1189   }
   1190 
   1191   return false;
   1192 }
   1193 
   1194 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
   1195                                                  unsigned Align) const {
   1196   // Otherwise, if the alignment is less than or equal to the minimum ABI
   1197   // alignment, just use the default; the backend will handle this.
   1198   if (Align <= MinABIStackAlignInBytes)
   1199     return 0; // Use default alignment.
   1200 
   1201   // On non-Darwin, the stack type alignment is always 4.
   1202   if (!IsDarwinVectorABI) {
   1203     // Set explicit alignment, since we may need to realign the top.
   1204     return MinABIStackAlignInBytes;
   1205   }
   1206 
   1207   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
   1208   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
   1209                       isRecordWithSSEVectorType(getContext(), Ty)))
   1210     return 16;
   1211 
   1212   return MinABIStackAlignInBytes;
   1213 }
   1214 
   1215 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
   1216                                             CCState &State) const {
   1217   if (!ByVal) {
   1218     if (State.FreeRegs) {
   1219       --State.FreeRegs; // Non-byval indirects just use one pointer.
   1220       return getNaturalAlignIndirectInReg(Ty);
   1221     }
   1222     return getNaturalAlignIndirect(Ty, false);
   1223   }
   1224 
   1225   // Compute the byval alignment.
   1226   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
   1227   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
   1228   if (StackAlign == 0)
   1229     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
   1230 
   1231   // If the stack alignment is less than the type alignment, realign the
   1232   // argument.
   1233   bool Realign = TypeAlign > StackAlign;
   1234   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
   1235                                  /*ByVal=*/true, Realign);
   1236 }
   1237 
   1238 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
   1239   const Type *T = isSingleElementStruct(Ty, getContext());
   1240   if (!T)
   1241     T = Ty.getTypePtr();
   1242 
   1243   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
   1244     BuiltinType::Kind K = BT->getKind();
   1245     if (K == BuiltinType::Float || K == BuiltinType::Double)
   1246       return Float;
   1247   }
   1248   return Integer;
   1249 }
   1250 
   1251 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State,
   1252                                    bool &NeedsPadding) const {
   1253   NeedsPadding = false;
   1254   if (!IsSoftFloatABI) {
   1255     Class C = classify(Ty);
   1256     if (C == Float)
   1257       return false;
   1258   }
   1259 
   1260   unsigned Size = getContext().getTypeSize(Ty);
   1261   unsigned SizeInRegs = (Size + 31) / 32;
   1262 
   1263   if (SizeInRegs == 0)
   1264     return false;
   1265 
   1266   if (!IsMCUABI) {
   1267     if (SizeInRegs > State.FreeRegs) {
   1268       State.FreeRegs = 0;
   1269       return false;
   1270     }
   1271   } else {
   1272     // The MCU psABI allows passing parameters in-reg even if there are
   1273     // earlier parameters that are passed on the stack. Also,
   1274     // it does not allow passing >8-byte structs in-register,
   1275     // even if there are 3 free registers available.
   1276     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
   1277       return false;
   1278   }
   1279 
   1280   State.FreeRegs -= SizeInRegs;
   1281 
   1282   if (State.CC == llvm::CallingConv::X86_FastCall ||
   1283       State.CC == llvm::CallingConv::X86_VectorCall) {
   1284     if (Size > 32)
   1285       return false;
   1286 
   1287     if (Ty->isIntegralOrEnumerationType())
   1288       return true;
   1289 
   1290     if (Ty->isPointerType())
   1291       return true;
   1292 
   1293     if (Ty->isReferenceType())
   1294       return true;
   1295 
   1296     if (State.FreeRegs)
   1297       NeedsPadding = true;
   1298 
   1299     return false;
   1300   }
   1301 
   1302   return true;
   1303 }
   1304 
   1305 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
   1306                                                CCState &State) const {
   1307   // FIXME: Set alignment on indirect arguments.
   1308 
   1309   Ty = useFirstFieldIfTransparentUnion(Ty);
   1310 
   1311   // Check with the C++ ABI first.
   1312   const RecordType *RT = Ty->getAs<RecordType>();
   1313   if (RT) {
   1314     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
   1315     if (RAA == CGCXXABI::RAA_Indirect) {
   1316       return getIndirectResult(Ty, false, State);
   1317     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
   1318       // The field index doesn't matter, we'll fix it up later.
   1319       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
   1320     }
   1321   }
   1322 
   1323   // vectorcall adds the concept of a homogenous vector aggregate, similar
   1324   // to other targets.
   1325   const Type *Base = nullptr;
   1326   uint64_t NumElts = 0;
   1327   if (State.CC == llvm::CallingConv::X86_VectorCall &&
   1328       isHomogeneousAggregate(Ty, Base, NumElts)) {
   1329     if (State.FreeSSERegs >= NumElts) {
   1330       State.FreeSSERegs -= NumElts;
   1331       if (Ty->isBuiltinType() || Ty->isVectorType())
   1332         return ABIArgInfo::getDirect();
   1333       return ABIArgInfo::getExpand();
   1334     }
   1335     return getIndirectResult(Ty, /*ByVal=*/false, State);
   1336   }
   1337 
   1338   if (isAggregateTypeForABI(Ty)) {
   1339     if (RT) {
   1340       // Structs are always byval on win32, regardless of what they contain.
   1341       if (IsWin32StructABI)
   1342         return getIndirectResult(Ty, true, State);
   1343 
   1344       // Structures with flexible arrays are always indirect.
   1345       if (RT->getDecl()->hasFlexibleArrayMember())
   1346         return getIndirectResult(Ty, true, State);
   1347     }
   1348 
   1349     // Ignore empty structs/unions.
   1350     if (isEmptyRecord(getContext(), Ty, true))
   1351       return ABIArgInfo::getIgnore();
   1352 
   1353     llvm::LLVMContext &LLVMContext = getVMContext();
   1354     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
   1355     bool NeedsPadding;
   1356     if (shouldUseInReg(Ty, State, NeedsPadding)) {
   1357       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
   1358       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
   1359       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
   1360       return ABIArgInfo::getDirectInReg(Result);
   1361     }
   1362     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
   1363 
   1364     // Expand small (<= 128-bit) record types when we know that the stack layout
   1365     // of those arguments will match the struct. This is important because the
   1366     // LLVM backend isn't smart enough to remove byval, which inhibits many
   1367     // optimizations.
   1368     if (getContext().getTypeSize(Ty) <= 4*32 &&
   1369         canExpandIndirectArgument(Ty, getContext()))
   1370       return ABIArgInfo::getExpandWithPadding(
   1371           State.CC == llvm::CallingConv::X86_FastCall ||
   1372               State.CC == llvm::CallingConv::X86_VectorCall,
   1373           PaddingType);
   1374 
   1375     return getIndirectResult(Ty, true, State);
   1376   }
   1377 
   1378   if (const VectorType *VT = Ty->getAs<VectorType>()) {
   1379     // On Darwin, some vectors are passed in memory, we handle this by passing
   1380     // it as an i8/i16/i32/i64.
   1381     if (IsDarwinVectorABI) {
   1382       uint64_t Size = getContext().getTypeSize(Ty);
   1383       if ((Size == 8 || Size == 16 || Size == 32) ||
   1384           (Size == 64 && VT->getNumElements() == 1))
   1385         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
   1386                                                             Size));
   1387     }
   1388 
   1389     if (IsX86_MMXType(CGT.ConvertType(Ty)))
   1390       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
   1391 
   1392     return ABIArgInfo::getDirect();
   1393   }
   1394 
   1395 
   1396   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
   1397     Ty = EnumTy->getDecl()->getIntegerType();
   1398 
   1399   bool NeedsPadding;
   1400   bool InReg = shouldUseInReg(Ty, State, NeedsPadding);
   1401 
   1402   if (Ty->isPromotableIntegerType()) {
   1403     if (InReg)
   1404       return ABIArgInfo::getExtendInReg();
   1405     return ABIArgInfo::getExtend();
   1406   }
   1407   if (InReg)
   1408     return ABIArgInfo::getDirectInReg();
   1409   return ABIArgInfo::getDirect();
   1410 }
   1411 
   1412 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
   1413   CCState State(FI.getCallingConvention());
   1414   if (State.CC == llvm::CallingConv::X86_FastCall)
   1415     State.FreeRegs = 2;
   1416   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
   1417     State.FreeRegs = 2;
   1418     State.FreeSSERegs = 6;
   1419   } else if (FI.getHasRegParm())
   1420     State.FreeRegs = FI.getRegParm();
   1421   else if (IsMCUABI)
   1422     State.FreeRegs = 3;
   1423   else
   1424     State.FreeRegs = DefaultNumRegisterParameters;
   1425 
   1426   if (!getCXXABI().classifyReturnType(FI)) {
   1427     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
   1428   } else if (FI.getReturnInfo().isIndirect()) {
   1429     // The C++ ABI is not aware of register usage, so we have to check if the
   1430     // return value was sret and put it in a register ourselves if appropriate.
   1431     if (State.FreeRegs) {
   1432       --State.FreeRegs;  // The sret parameter consumes a register.
   1433       FI.getReturnInfo().setInReg(true);
   1434     }
   1435   }
   1436 
   1437   // The chain argument effectively gives us another free register.
   1438   if (FI.isChainCall())
   1439     ++State.FreeRegs;
   1440 
   1441   bool UsedInAlloca = false;
   1442   for (auto &I : FI.arguments()) {
   1443     I.info = classifyArgumentType(I.type, State);
   1444     UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
   1445   }
   1446 
   1447   // If we needed to use inalloca for any argument, do a second pass and rewrite
   1448   // all the memory arguments to use inalloca.
   1449   if (UsedInAlloca)
   1450     rewriteWithInAlloca(FI);
   1451 }
   1452 
   1453 void
   1454 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
   1455                                    CharUnits &StackOffset, ABIArgInfo &Info,
   1456                                    QualType Type) const {
   1457   // Arguments are always 4-byte-aligned.
   1458   CharUnits FieldAlign = CharUnits::fromQuantity(4);
   1459 
   1460   assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct");
   1461   Info = ABIArgInfo::getInAlloca(FrameFields.size());
   1462   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
   1463   StackOffset += getContext().getTypeSizeInChars(Type);
   1464 
   1465   // Insert padding bytes to respect alignment.
   1466   CharUnits FieldEnd = StackOffset;
   1467   StackOffset = FieldEnd.RoundUpToAlignment(FieldAlign);
   1468   if (StackOffset != FieldEnd) {
   1469     CharUnits NumBytes = StackOffset - FieldEnd;
   1470     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
   1471     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
   1472     FrameFields.push_back(Ty);
   1473   }
   1474 }
   1475 
   1476 static bool isArgInAlloca(const ABIArgInfo &Info) {
   1477   // Leave ignored and inreg arguments alone.
   1478   switch (Info.getKind()) {
   1479   case ABIArgInfo::InAlloca:
   1480     return true;
   1481   case ABIArgInfo::Indirect:
   1482     assert(Info.getIndirectByVal());
   1483     return true;
   1484   case ABIArgInfo::Ignore:
   1485     return false;
   1486   case ABIArgInfo::Direct:
   1487   case ABIArgInfo::Extend:
   1488   case ABIArgInfo::Expand:
   1489     if (Info.getInReg())
   1490       return false;
   1491     return true;
   1492   }
   1493   llvm_unreachable("invalid enum");
   1494 }
   1495 
   1496 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
   1497   assert(IsWin32StructABI && "inalloca only supported on win32");
   1498 
   1499   // Build a packed struct type for all of the arguments in memory.
   1500   SmallVector<llvm::Type *, 6> FrameFields;
   1501 
   1502   // The stack alignment is always 4.
   1503   CharUnits StackAlign = CharUnits::fromQuantity(4);
   1504 
   1505   CharUnits StackOffset;
   1506   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
   1507 
   1508   // Put 'this' into the struct before 'sret', if necessary.
   1509   bool IsThisCall =
   1510       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
   1511   ABIArgInfo &Ret = FI.getReturnInfo();
   1512   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
   1513       isArgInAlloca(I->info)) {
   1514     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
   1515     ++I;
   1516   }
   1517 
   1518   // Put the sret parameter into the inalloca struct if it's in memory.
   1519   if (Ret.isIndirect() && !Ret.getInReg()) {
   1520     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
   1521     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
   1522     // On Windows, the hidden sret parameter is always returned in eax.
   1523     Ret.setInAllocaSRet(IsWin32StructABI);
   1524   }
   1525 
   1526   // Skip the 'this' parameter in ecx.
   1527   if (IsThisCall)
   1528     ++I;
   1529 
   1530   // Put arguments passed in memory into the struct.
   1531   for (; I != E; ++I) {
   1532     if (isArgInAlloca(I->info))
   1533       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
   1534   }
   1535 
   1536   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
   1537                                         /*isPacked=*/true),
   1538                   StackAlign);
   1539 }
   1540 
   1541 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
   1542                                  Address VAListAddr, QualType Ty) const {
   1543 
   1544   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
   1545 
   1546   // x86-32 changes the alignment of certain arguments on the stack.
   1547   //
   1548   // Just messing with TypeInfo like this works because we never pass
   1549   // anything indirectly.
   1550   TypeInfo.second = CharUnits::fromQuantity(
   1551                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
   1552 
   1553   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
   1554                           TypeInfo, CharUnits::fromQuantity(4),
   1555                           /*AllowHigherAlign*/ true);
   1556 }
   1557 
   1558 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
   1559     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
   1560   assert(Triple.getArch() == llvm::Triple::x86);
   1561 
   1562   switch (Opts.getStructReturnConvention()) {
   1563   case CodeGenOptions::SRCK_Default:
   1564     break;
   1565   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
   1566     return false;
   1567   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
   1568     return true;
   1569   }
   1570 
   1571   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
   1572     return true;
   1573 
   1574   switch (Triple.getOS()) {
   1575   case llvm::Triple::DragonFly:
   1576   case llvm::Triple::FreeBSD:
   1577   case llvm::Triple::OpenBSD:
   1578   case llvm::Triple::Bitrig:
   1579   case llvm::Triple::Win32:
   1580     return true;
   1581   default:
   1582     return false;
   1583   }
   1584 }
   1585 
   1586 void X86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
   1587                                                   llvm::GlobalValue *GV,
   1588                                             CodeGen::CodeGenModule &CGM) const {
   1589   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
   1590     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
   1591       // Get the LLVM function.
   1592       llvm::Function *Fn = cast<llvm::Function>(GV);
   1593 
   1594       // Now add the 'alignstack' attribute with a value of 16.
   1595       llvm::AttrBuilder B;
   1596       B.addStackAlignmentAttr(16);
   1597       Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
   1598                       llvm::AttributeSet::get(CGM.getLLVMContext(),
   1599                                               llvm::AttributeSet::FunctionIndex,
   1600                                               B));
   1601     }
   1602   }
   1603 }
   1604 
   1605 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
   1606                                                CodeGen::CodeGenFunction &CGF,
   1607                                                llvm::Value *Address) const {
   1608   CodeGen::CGBuilderTy &Builder = CGF.Builder;
   1609 
   1610   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
   1611 
   1612   // 0-7 are the eight integer registers;  the order is different
   1613   //   on Darwin (for EH), but the range is the same.
   1614   // 8 is %eip.
   1615   AssignToArrayRange(Builder, Address, Four8, 0, 8);
   1616 
   1617   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
   1618     // 12-16 are st(0..4).  Not sure why we stop at 4.
   1619     // These have size 16, which is sizeof(long double) on
   1620     // platforms with 8-byte alignment for that type.
   1621     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
   1622     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
   1623 
   1624   } else {
   1625     // 9 is %eflags, which doesn't get a size on Darwin for some
   1626     // reason.
   1627     Builder.CreateAlignedStore(
   1628         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
   1629                                CharUnits::One());
   1630 
   1631     // 11-16 are st(0..5).  Not sure why we stop at 5.
   1632     // These have size 12, which is sizeof(long double) on
   1633     // platforms with 4-byte alignment for that type.
   1634     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
   1635     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
   1636   }
   1637 
   1638   return false;
   1639 }
   1640 
   1641 //===----------------------------------------------------------------------===//
   1642 // X86-64 ABI Implementation
   1643 //===----------------------------------------------------------------------===//
   1644 
   1645 
   1646 namespace {
   1647 /// The AVX ABI level for X86 targets.
   1648 enum class X86AVXABILevel {
   1649   None,
   1650   AVX,
   1651   AVX512
   1652 };
   1653 
   1654 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
   1655 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
   1656   switch (AVXLevel) {
   1657   case X86AVXABILevel::AVX512:
   1658     return 512;
   1659   case X86AVXABILevel::AVX:
   1660     return 256;
   1661   case X86AVXABILevel::None:
   1662     return 128;
   1663   }
   1664   llvm_unreachable("Unknown AVXLevel");
   1665 }
   1666 
   1667 /// X86_64ABIInfo - The X86_64 ABI information.
   1668 class X86_64ABIInfo : public ABIInfo {
   1669   enum Class {
   1670     Integer = 0,
   1671     SSE,
   1672     SSEUp,
   1673     X87,
   1674     X87Up,
   1675     ComplexX87,
   1676     NoClass,
   1677     Memory
   1678   };
   1679 
   1680   /// merge - Implement the X86_64 ABI merging algorithm.
   1681   ///
   1682   /// Merge an accumulating classification \arg Accum with a field
   1683   /// classification \arg Field.
   1684   ///
   1685   /// \param Accum - The accumulating classification. This should
   1686   /// always be either NoClass or the result of a previous merge
   1687   /// call. In addition, this should never be Memory (the caller
   1688   /// should just return Memory for the aggregate).
   1689   static Class merge(Class Accum, Class Field);
   1690 
   1691   /// postMerge - Implement the X86_64 ABI post merging algorithm.
   1692   ///
   1693   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
   1694   /// final MEMORY or SSE classes when necessary.
   1695   ///
   1696   /// \param AggregateSize - The size of the current aggregate in
   1697   /// the classification process.
   1698   ///
   1699   /// \param Lo - The classification for the parts of the type
   1700   /// residing in the low word of the containing object.
   1701   ///
   1702   /// \param Hi - The classification for the parts of the type
   1703   /// residing in the higher words of the containing object.
   1704   ///
   1705   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
   1706 
   1707   /// classify - Determine the x86_64 register classes in which the
   1708   /// given type T should be passed.
   1709   ///
   1710   /// \param Lo - The classification for the parts of the type
   1711   /// residing in the low word of the containing object.
   1712   ///
   1713   /// \param Hi - The classification for the parts of the type
   1714   /// residing in the high word of the containing object.
   1715   ///
   1716   /// \param OffsetBase - The bit offset of this type in the
   1717   /// containing object.  Some parameters are classified different
   1718   /// depending on whether they straddle an eightbyte boundary.
   1719   ///
   1720   /// \param isNamedArg - Whether the argument in question is a "named"
   1721   /// argument, as used in AMD64-ABI 3.5.7.
   1722   ///
   1723   /// If a word is unused its result will be NoClass; if a type should
   1724   /// be passed in Memory then at least the classification of \arg Lo
   1725   /// will be Memory.
   1726   ///
   1727   /// The \arg Lo class will be NoClass iff the argument is ignored.
   1728   ///
   1729   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
   1730   /// also be ComplexX87.
   1731   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
   1732                 bool isNamedArg) const;
   1733 
   1734   llvm::Type *GetByteVectorType(QualType Ty) const;
   1735   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
   1736                                  unsigned IROffset, QualType SourceTy,
   1737                                  unsigned SourceOffset) const;
   1738   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
   1739                                      unsigned IROffset, QualType SourceTy,
   1740                                      unsigned SourceOffset) const;
   1741 
   1742   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
   1743   /// such that the argument will be returned in memory.
   1744   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
   1745 
   1746   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
   1747   /// such that the argument will be passed in memory.
   1748   ///
   1749   /// \param freeIntRegs - The number of free integer registers remaining
   1750   /// available.
   1751   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
   1752 
   1753   ABIArgInfo classifyReturnType(QualType RetTy) const;
   1754 
   1755   ABIArgInfo classifyArgumentType(QualType Ty,
   1756                                   unsigned freeIntRegs,
   1757                                   unsigned &neededInt,
   1758                                   unsigned &neededSSE,
   1759                                   bool isNamedArg) const;
   1760 
   1761   bool IsIllegalVectorType(QualType Ty) const;
   1762 
   1763   /// The 0.98 ABI revision clarified a lot of ambiguities,
   1764   /// unfortunately in ways that were not always consistent with
   1765   /// certain previous compilers.  In particular, platforms which
   1766   /// required strict binary compatibility with older versions of GCC
   1767   /// may need to exempt themselves.
   1768   bool honorsRevision0_98() const {
   1769     return !getTarget().getTriple().isOSDarwin();
   1770   }
   1771 
   1772   X86AVXABILevel AVXLevel;
   1773   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
   1774   // 64-bit hardware.
   1775   bool Has64BitPointers;
   1776 
   1777 public:
   1778   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
   1779       ABIInfo(CGT), AVXLevel(AVXLevel),
   1780       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
   1781   }
   1782 
   1783   bool isPassedUsingAVXType(QualType type) const {
   1784     unsigned neededInt, neededSSE;
   1785     // The freeIntRegs argument doesn't matter here.
   1786     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
   1787                                            /*isNamedArg*/true);
   1788     if (info.isDirect()) {
   1789       llvm::Type *ty = info.getCoerceToType();
   1790       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
   1791         return (vectorTy->getBitWidth() > 128);
   1792     }
   1793     return false;
   1794   }
   1795 
   1796   void computeInfo(CGFunctionInfo &FI) const override;
   1797 
   1798   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   1799                     QualType Ty) const override;
   1800   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
   1801                       QualType Ty) const override;
   1802 
   1803   bool has64BitPointers() const {
   1804     return Has64BitPointers;
   1805   }
   1806 };
   1807 
   1808 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
   1809 class WinX86_64ABIInfo : public ABIInfo {
   1810 public:
   1811   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT)
   1812       : ABIInfo(CGT),
   1813         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
   1814 
   1815   void computeInfo(CGFunctionInfo &FI) const override;
   1816 
   1817   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   1818                     QualType Ty) const override;
   1819 
   1820   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
   1821     // FIXME: Assumes vectorcall is in use.
   1822     return isX86VectorTypeForVectorCall(getContext(), Ty);
   1823   }
   1824 
   1825   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
   1826                                          uint64_t NumMembers) const override {
   1827     // FIXME: Assumes vectorcall is in use.
   1828     return isX86VectorCallAggregateSmallEnough(NumMembers);
   1829   }
   1830 
   1831 private:
   1832   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs,
   1833                       bool IsReturnType) const;
   1834 
   1835   bool IsMingw64;
   1836 };
   1837 
   1838 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
   1839 public:
   1840   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
   1841       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
   1842 
   1843   const X86_64ABIInfo &getABIInfo() const {
   1844     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
   1845   }
   1846 
   1847   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
   1848     return 7;
   1849   }
   1850 
   1851   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
   1852                                llvm::Value *Address) const override {
   1853     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
   1854 
   1855     // 0-15 are the 16 integer registers.
   1856     // 16 is %rip.
   1857     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
   1858     return false;
   1859   }
   1860 
   1861   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
   1862                                   StringRef Constraint,
   1863                                   llvm::Type* Ty) const override {
   1864     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
   1865   }
   1866 
   1867   bool isNoProtoCallVariadic(const CallArgList &args,
   1868                              const FunctionNoProtoType *fnType) const override {
   1869     // The default CC on x86-64 sets %al to the number of SSA
   1870     // registers used, and GCC sets this when calling an unprototyped
   1871     // function, so we override the default behavior.  However, don't do
   1872     // that when AVX types are involved: the ABI explicitly states it is
   1873     // undefined, and it doesn't work in practice because of how the ABI
   1874     // defines varargs anyway.
   1875     if (fnType->getCallConv() == CC_C) {
   1876       bool HasAVXType = false;
   1877       for (CallArgList::const_iterator
   1878              it = args.begin(), ie = args.end(); it != ie; ++it) {
   1879         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
   1880           HasAVXType = true;
   1881           break;
   1882         }
   1883       }
   1884 
   1885       if (!HasAVXType)
   1886         return true;
   1887     }
   1888 
   1889     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
   1890   }
   1891 
   1892   llvm::Constant *
   1893   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
   1894     unsigned Sig;
   1895     if (getABIInfo().has64BitPointers())
   1896       Sig = (0xeb << 0) |  // jmp rel8
   1897             (0x0a << 8) |  //           .+0x0c
   1898             ('F' << 16) |
   1899             ('T' << 24);
   1900     else
   1901       Sig = (0xeb << 0) |  // jmp rel8
   1902             (0x06 << 8) |  //           .+0x08
   1903             ('F' << 16) |
   1904             ('T' << 24);
   1905     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
   1906   }
   1907 };
   1908 
   1909 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
   1910 public:
   1911   PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
   1912     : X86_64TargetCodeGenInfo(CGT, AVXLevel) {}
   1913 
   1914   void getDependentLibraryOption(llvm::StringRef Lib,
   1915                                  llvm::SmallString<24> &Opt) const override {
   1916     Opt = "\01";
   1917     // If the argument contains a space, enclose it in quotes.
   1918     if (Lib.find(" ") != StringRef::npos)
   1919       Opt += "\"" + Lib.str() + "\"";
   1920     else
   1921       Opt += Lib;
   1922   }
   1923 };
   1924 
   1925 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
   1926   // If the argument does not end in .lib, automatically add the suffix.
   1927   // If the argument contains a space, enclose it in quotes.
   1928   // This matches the behavior of MSVC.
   1929   bool Quote = (Lib.find(" ") != StringRef::npos);
   1930   std::string ArgStr = Quote ? "\"" : "";
   1931   ArgStr += Lib;
   1932   if (!Lib.endswith_lower(".lib"))
   1933     ArgStr += ".lib";
   1934   ArgStr += Quote ? "\"" : "";
   1935   return ArgStr;
   1936 }
   1937 
   1938 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
   1939 public:
   1940   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
   1941         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
   1942         unsigned NumRegisterParameters)
   1943     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
   1944         Win32StructABI, NumRegisterParameters, false) {}
   1945 
   1946   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
   1947                            CodeGen::CodeGenModule &CGM) const override;
   1948 
   1949   void getDependentLibraryOption(llvm::StringRef Lib,
   1950                                  llvm::SmallString<24> &Opt) const override {
   1951     Opt = "/DEFAULTLIB:";
   1952     Opt += qualifyWindowsLibrary(Lib);
   1953   }
   1954 
   1955   void getDetectMismatchOption(llvm::StringRef Name,
   1956                                llvm::StringRef Value,
   1957                                llvm::SmallString<32> &Opt) const override {
   1958     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
   1959   }
   1960 };
   1961 
   1962 static void addStackProbeSizeTargetAttribute(const Decl *D,
   1963                                              llvm::GlobalValue *GV,
   1964                                              CodeGen::CodeGenModule &CGM) {
   1965   if (D && isa<FunctionDecl>(D)) {
   1966     if (CGM.getCodeGenOpts().StackProbeSize != 4096) {
   1967       llvm::Function *Fn = cast<llvm::Function>(GV);
   1968 
   1969       Fn->addFnAttr("stack-probe-size",
   1970                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
   1971     }
   1972   }
   1973 }
   1974 
   1975 void WinX86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
   1976                                                      llvm::GlobalValue *GV,
   1977                                             CodeGen::CodeGenModule &CGM) const {
   1978   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
   1979 
   1980   addStackProbeSizeTargetAttribute(D, GV, CGM);
   1981 }
   1982 
   1983 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
   1984 public:
   1985   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
   1986                              X86AVXABILevel AVXLevel)
   1987       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
   1988 
   1989   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
   1990                            CodeGen::CodeGenModule &CGM) const override;
   1991 
   1992   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
   1993     return 7;
   1994   }
   1995 
   1996   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
   1997                                llvm::Value *Address) const override {
   1998     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
   1999 
   2000     // 0-15 are the 16 integer registers.
   2001     // 16 is %rip.
   2002     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
   2003     return false;
   2004   }
   2005 
   2006   void getDependentLibraryOption(llvm::StringRef Lib,
   2007                                  llvm::SmallString<24> &Opt) const override {
   2008     Opt = "/DEFAULTLIB:";
   2009     Opt += qualifyWindowsLibrary(Lib);
   2010   }
   2011 
   2012   void getDetectMismatchOption(llvm::StringRef Name,
   2013                                llvm::StringRef Value,
   2014                                llvm::SmallString<32> &Opt) const override {
   2015     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
   2016   }
   2017 };
   2018 
   2019 void WinX86_64TargetCodeGenInfo::setTargetAttributes(const Decl *D,
   2020                                                      llvm::GlobalValue *GV,
   2021                                             CodeGen::CodeGenModule &CGM) const {
   2022   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
   2023 
   2024   addStackProbeSizeTargetAttribute(D, GV, CGM);
   2025 }
   2026 }
   2027 
   2028 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
   2029                               Class &Hi) const {
   2030   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
   2031   //
   2032   // (a) If one of the classes is Memory, the whole argument is passed in
   2033   //     memory.
   2034   //
   2035   // (b) If X87UP is not preceded by X87, the whole argument is passed in
   2036   //     memory.
   2037   //
   2038   // (c) If the size of the aggregate exceeds two eightbytes and the first
   2039   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
   2040   //     argument is passed in memory. NOTE: This is necessary to keep the
   2041   //     ABI working for processors that don't support the __m256 type.
   2042   //
   2043   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
   2044   //
   2045   // Some of these are enforced by the merging logic.  Others can arise
   2046   // only with unions; for example:
   2047   //   union { _Complex double; unsigned; }
   2048   //
   2049   // Note that clauses (b) and (c) were added in 0.98.
   2050   //
   2051   if (Hi == Memory)
   2052     Lo = Memory;
   2053   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
   2054     Lo = Memory;
   2055   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
   2056     Lo = Memory;
   2057   if (Hi == SSEUp && Lo != SSE)
   2058     Hi = SSE;
   2059 }
   2060 
   2061 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
   2062   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
   2063   // classified recursively so that always two fields are
   2064   // considered. The resulting class is calculated according to
   2065   // the classes of the fields in the eightbyte:
   2066   //
   2067   // (a) If both classes are equal, this is the resulting class.
   2068   //
   2069   // (b) If one of the classes is NO_CLASS, the resulting class is
   2070   // the other class.
   2071   //
   2072   // (c) If one of the classes is MEMORY, the result is the MEMORY
   2073   // class.
   2074   //
   2075   // (d) If one of the classes is INTEGER, the result is the
   2076   // INTEGER.
   2077   //
   2078   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
   2079   // MEMORY is used as class.
   2080   //
   2081   // (f) Otherwise class SSE is used.
   2082 
   2083   // Accum should never be memory (we should have returned) or
   2084   // ComplexX87 (because this cannot be passed in a structure).
   2085   assert((Accum != Memory && Accum != ComplexX87) &&
   2086          "Invalid accumulated classification during merge.");
   2087   if (Accum == Field || Field == NoClass)
   2088     return Accum;
   2089   if (Field == Memory)
   2090     return Memory;
   2091   if (Accum == NoClass)
   2092     return Field;
   2093   if (Accum == Integer || Field == Integer)
   2094     return Integer;
   2095   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
   2096       Accum == X87 || Accum == X87Up)
   2097     return Memory;
   2098   return SSE;
   2099 }
   2100 
   2101 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
   2102                              Class &Lo, Class &Hi, bool isNamedArg) const {
   2103   // FIXME: This code can be simplified by introducing a simple value class for
   2104   // Class pairs with appropriate constructor methods for the various
   2105   // situations.
   2106 
   2107   // FIXME: Some of the split computations are wrong; unaligned vectors
   2108   // shouldn't be passed in registers for example, so there is no chance they
   2109   // can straddle an eightbyte. Verify & simplify.
   2110 
   2111   Lo = Hi = NoClass;
   2112 
   2113   Class &Current = OffsetBase < 64 ? Lo : Hi;
   2114   Current = Memory;
   2115 
   2116   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
   2117     BuiltinType::Kind k = BT->getKind();
   2118 
   2119     if (k == BuiltinType::Void) {
   2120       Current = NoClass;
   2121     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
   2122       Lo = Integer;
   2123       Hi = Integer;
   2124     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
   2125       Current = Integer;
   2126     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
   2127       Current = SSE;
   2128     } else if (k == BuiltinType::LongDouble) {
   2129       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
   2130       if (LDF == &llvm::APFloat::IEEEquad) {
   2131         Lo = SSE;
   2132         Hi = SSEUp;
   2133       } else if (LDF == &llvm::APFloat::x87DoubleExtended) {
   2134         Lo = X87;
   2135         Hi = X87Up;
   2136       } else if (LDF == &llvm::APFloat::IEEEdouble) {
   2137         Current = SSE;
   2138       } else
   2139         llvm_unreachable("unexpected long double representation!");
   2140     }
   2141     // FIXME: _Decimal32 and _Decimal64 are SSE.
   2142     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
   2143     return;
   2144   }
   2145 
   2146   if (const EnumType *ET = Ty->getAs<EnumType>()) {
   2147     // Classify the underlying integer type.
   2148     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
   2149     return;
   2150   }
   2151 
   2152   if (Ty->hasPointerRepresentation()) {
   2153     Current = Integer;
   2154     return;
   2155   }
   2156 
   2157   if (Ty->isMemberPointerType()) {
   2158     if (Ty->isMemberFunctionPointerType()) {
   2159       if (Has64BitPointers) {
   2160         // If Has64BitPointers, this is an {i64, i64}, so classify both
   2161         // Lo and Hi now.
   2162         Lo = Hi = Integer;
   2163       } else {
   2164         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
   2165         // straddles an eightbyte boundary, Hi should be classified as well.
   2166         uint64_t EB_FuncPtr = (OffsetBase) / 64;
   2167         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
   2168         if (EB_FuncPtr != EB_ThisAdj) {
   2169           Lo = Hi = Integer;
   2170         } else {
   2171           Current = Integer;
   2172         }
   2173       }
   2174     } else {
   2175       Current = Integer;
   2176     }
   2177     return;
   2178   }
   2179 
   2180   if (const VectorType *VT = Ty->getAs<VectorType>()) {
   2181     uint64_t Size = getContext().getTypeSize(VT);
   2182     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
   2183       // gcc passes the following as integer:
   2184       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
   2185       // 2 bytes - <2 x char>, <1 x short>
   2186       // 1 byte  - <1 x char>
   2187       Current = Integer;
   2188 
   2189       // If this type crosses an eightbyte boundary, it should be
   2190       // split.
   2191       uint64_t EB_Lo = (OffsetBase) / 64;
   2192       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
   2193       if (EB_Lo != EB_Hi)
   2194         Hi = Lo;
   2195     } else if (Size == 64) {
   2196       // gcc passes <1 x double> in memory. :(
   2197       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
   2198         return;
   2199 
   2200       // gcc passes <1 x long long> as INTEGER.
   2201       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
   2202           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
   2203           VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
   2204           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
   2205         Current = Integer;
   2206       else
   2207         Current = SSE;
   2208 
   2209       // If this type crosses an eightbyte boundary, it should be
   2210       // split.
   2211       if (OffsetBase && OffsetBase != 64)
   2212         Hi = Lo;
   2213     } else if (Size == 128 ||
   2214                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
   2215       // Arguments of 256-bits are split into four eightbyte chunks. The
   2216       // least significant one belongs to class SSE and all the others to class
   2217       // SSEUP. The original Lo and Hi design considers that types can't be
   2218       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
   2219       // This design isn't correct for 256-bits, but since there're no cases
   2220       // where the upper parts would need to be inspected, avoid adding
   2221       // complexity and just consider Hi to match the 64-256 part.
   2222       //
   2223       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
   2224       // registers if they are "named", i.e. not part of the "..." of a
   2225       // variadic function.
   2226       //
   2227       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
   2228       // split into eight eightbyte chunks, one SSE and seven SSEUP.
   2229       Lo = SSE;
   2230       Hi = SSEUp;
   2231     }
   2232     return;
   2233   }
   2234 
   2235   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
   2236     QualType ET = getContext().getCanonicalType(CT->getElementType());
   2237 
   2238     uint64_t Size = getContext().getTypeSize(Ty);
   2239     if (ET->isIntegralOrEnumerationType()) {
   2240       if (Size <= 64)
   2241         Current = Integer;
   2242       else if (Size <= 128)
   2243         Lo = Hi = Integer;
   2244     } else if (ET == getContext().FloatTy) {
   2245       Current = SSE;
   2246     } else if (ET == getContext().DoubleTy) {
   2247       Lo = Hi = SSE;
   2248     } else if (ET == getContext().LongDoubleTy) {
   2249       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
   2250       if (LDF == &llvm::APFloat::IEEEquad)
   2251         Current = Memory;
   2252       else if (LDF == &llvm::APFloat::x87DoubleExtended)
   2253         Current = ComplexX87;
   2254       else if (LDF == &llvm::APFloat::IEEEdouble)
   2255         Lo = Hi = SSE;
   2256       else
   2257         llvm_unreachable("unexpected long double representation!");
   2258     }
   2259 
   2260     // If this complex type crosses an eightbyte boundary then it
   2261     // should be split.
   2262     uint64_t EB_Real = (OffsetBase) / 64;
   2263     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
   2264     if (Hi == NoClass && EB_Real != EB_Imag)
   2265       Hi = Lo;
   2266 
   2267     return;
   2268   }
   2269 
   2270   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
   2271     // Arrays are treated like structures.
   2272 
   2273     uint64_t Size = getContext().getTypeSize(Ty);
   2274 
   2275     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
   2276     // than four eightbytes, ..., it has class MEMORY.
   2277     if (Size > 256)
   2278       return;
   2279 
   2280     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
   2281     // fields, it has class MEMORY.
   2282     //
   2283     // Only need to check alignment of array base.
   2284     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
   2285       return;
   2286 
   2287     // Otherwise implement simplified merge. We could be smarter about
   2288     // this, but it isn't worth it and would be harder to verify.
   2289     Current = NoClass;
   2290     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
   2291     uint64_t ArraySize = AT->getSize().getZExtValue();
   2292 
   2293     // The only case a 256-bit wide vector could be used is when the array
   2294     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
   2295     // to work for sizes wider than 128, early check and fallback to memory.
   2296     if (Size > 128 && EltSize != 256)
   2297       return;
   2298 
   2299     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
   2300       Class FieldLo, FieldHi;
   2301       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
   2302       Lo = merge(Lo, FieldLo);
   2303       Hi = merge(Hi, FieldHi);
   2304       if (Lo == Memory || Hi == Memory)
   2305         break;
   2306     }
   2307 
   2308     postMerge(Size, Lo, Hi);
   2309     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
   2310     return;
   2311   }
   2312 
   2313   if (const RecordType *RT = Ty->getAs<RecordType>()) {
   2314     uint64_t Size = getContext().getTypeSize(Ty);
   2315 
   2316     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
   2317     // than four eightbytes, ..., it has class MEMORY.
   2318     if (Size > 256)
   2319       return;
   2320 
   2321     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
   2322     // copy constructor or a non-trivial destructor, it is passed by invisible
   2323     // reference.
   2324     if (getRecordArgABI(RT, getCXXABI()))
   2325       return;
   2326 
   2327     const RecordDecl *RD = RT->getDecl();
   2328 
   2329     // Assume variable sized types are passed in memory.
   2330     if (RD->hasFlexibleArrayMember())
   2331       return;
   2332 
   2333     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
   2334 
   2335     // Reset Lo class, this will be recomputed.
   2336     Current = NoClass;
   2337 
   2338     // If this is a C++ record, classify the bases first.
   2339     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
   2340       for (const auto &I : CXXRD->bases()) {
   2341         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
   2342                "Unexpected base class!");
   2343         const CXXRecordDecl *Base =
   2344           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
   2345 
   2346         // Classify this field.
   2347         //
   2348         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
   2349         // single eightbyte, each is classified separately. Each eightbyte gets
   2350         // initialized to class NO_CLASS.
   2351         Class FieldLo, FieldHi;
   2352         uint64_t Offset =
   2353           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
   2354         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
   2355         Lo = merge(Lo, FieldLo);
   2356         Hi = merge(Hi, FieldHi);
   2357         if (Lo == Memory || Hi == Memory) {
   2358           postMerge(Size, Lo, Hi);
   2359           return;
   2360         }
   2361       }
   2362     }
   2363 
   2364     // Classify the fields one at a time, merging the results.
   2365     unsigned idx = 0;
   2366     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
   2367            i != e; ++i, ++idx) {
   2368       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
   2369       bool BitField = i->isBitField();
   2370 
   2371       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
   2372       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
   2373       //
   2374       // The only case a 256-bit wide vector could be used is when the struct
   2375       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
   2376       // to work for sizes wider than 128, early check and fallback to memory.
   2377       //
   2378       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
   2379         Lo = Memory;
   2380         postMerge(Size, Lo, Hi);
   2381         return;
   2382       }
   2383       // Note, skip this test for bit-fields, see below.
   2384       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
   2385         Lo = Memory;
   2386         postMerge(Size, Lo, Hi);
   2387         return;
   2388       }
   2389 
   2390       // Classify this field.
   2391       //
   2392       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
   2393       // exceeds a single eightbyte, each is classified
   2394       // separately. Each eightbyte gets initialized to class
   2395       // NO_CLASS.
   2396       Class FieldLo, FieldHi;
   2397 
   2398       // Bit-fields require special handling, they do not force the
   2399       // structure to be passed in memory even if unaligned, and
   2400       // therefore they can straddle an eightbyte.
   2401       if (BitField) {
   2402         // Ignore padding bit-fields.
   2403         if (i->isUnnamedBitfield())
   2404           continue;
   2405 
   2406         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
   2407         uint64_t Size = i->getBitWidthValue(getContext());
   2408 
   2409         uint64_t EB_Lo = Offset / 64;
   2410         uint64_t EB_Hi = (Offset + Size - 1) / 64;
   2411 
   2412         if (EB_Lo) {
   2413           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
   2414           FieldLo = NoClass;
   2415           FieldHi = Integer;
   2416         } else {
   2417           FieldLo = Integer;
   2418           FieldHi = EB_Hi ? Integer : NoClass;
   2419         }
   2420       } else
   2421         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
   2422       Lo = merge(Lo, FieldLo);
   2423       Hi = merge(Hi, FieldHi);
   2424       if (Lo == Memory || Hi == Memory)
   2425         break;
   2426     }
   2427 
   2428     postMerge(Size, Lo, Hi);
   2429   }
   2430 }
   2431 
   2432 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
   2433   // If this is a scalar LLVM value then assume LLVM will pass it in the right
   2434   // place naturally.
   2435   if (!isAggregateTypeForABI(Ty)) {
   2436     // Treat an enum type as its underlying type.
   2437     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
   2438       Ty = EnumTy->getDecl()->getIntegerType();
   2439 
   2440     return (Ty->isPromotableIntegerType() ?
   2441             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   2442   }
   2443 
   2444   return getNaturalAlignIndirect(Ty);
   2445 }
   2446 
   2447 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
   2448   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
   2449     uint64_t Size = getContext().getTypeSize(VecTy);
   2450     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
   2451     if (Size <= 64 || Size > LargestVector)
   2452       return true;
   2453   }
   2454 
   2455   return false;
   2456 }
   2457 
   2458 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
   2459                                             unsigned freeIntRegs) const {
   2460   // If this is a scalar LLVM value then assume LLVM will pass it in the right
   2461   // place naturally.
   2462   //
   2463   // This assumption is optimistic, as there could be free registers available
   2464   // when we need to pass this argument in memory, and LLVM could try to pass
   2465   // the argument in the free register. This does not seem to happen currently,
   2466   // but this code would be much safer if we could mark the argument with
   2467   // 'onstack'. See PR12193.
   2468   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
   2469     // Treat an enum type as its underlying type.
   2470     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
   2471       Ty = EnumTy->getDecl()->getIntegerType();
   2472 
   2473     return (Ty->isPromotableIntegerType() ?
   2474             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   2475   }
   2476 
   2477   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
   2478     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
   2479 
   2480   // Compute the byval alignment. We specify the alignment of the byval in all
   2481   // cases so that the mid-level optimizer knows the alignment of the byval.
   2482   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
   2483 
   2484   // Attempt to avoid passing indirect results using byval when possible. This
   2485   // is important for good codegen.
   2486   //
   2487   // We do this by coercing the value into a scalar type which the backend can
   2488   // handle naturally (i.e., without using byval).
   2489   //
   2490   // For simplicity, we currently only do this when we have exhausted all of the
   2491   // free integer registers. Doing this when there are free integer registers
   2492   // would require more care, as we would have to ensure that the coerced value
   2493   // did not claim the unused register. That would require either reording the
   2494   // arguments to the function (so that any subsequent inreg values came first),
   2495   // or only doing this optimization when there were no following arguments that
   2496   // might be inreg.
   2497   //
   2498   // We currently expect it to be rare (particularly in well written code) for
   2499   // arguments to be passed on the stack when there are still free integer
   2500   // registers available (this would typically imply large structs being passed
   2501   // by value), so this seems like a fair tradeoff for now.
   2502   //
   2503   // We can revisit this if the backend grows support for 'onstack' parameter
   2504   // attributes. See PR12193.
   2505   if (freeIntRegs == 0) {
   2506     uint64_t Size = getContext().getTypeSize(Ty);
   2507 
   2508     // If this type fits in an eightbyte, coerce it into the matching integral
   2509     // type, which will end up on the stack (with alignment 8).
   2510     if (Align == 8 && Size <= 64)
   2511       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
   2512                                                           Size));
   2513   }
   2514 
   2515   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
   2516 }
   2517 
   2518 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
   2519 /// register. Pick an LLVM IR type that will be passed as a vector register.
   2520 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
   2521   // Wrapper structs/arrays that only contain vectors are passed just like
   2522   // vectors; strip them off if present.
   2523   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
   2524     Ty = QualType(InnerTy, 0);
   2525 
   2526   llvm::Type *IRType = CGT.ConvertType(Ty);
   2527   if (isa<llvm::VectorType>(IRType) ||
   2528       IRType->getTypeID() == llvm::Type::FP128TyID)
   2529     return IRType;
   2530 
   2531   // We couldn't find the preferred IR vector type for 'Ty'.
   2532   uint64_t Size = getContext().getTypeSize(Ty);
   2533   assert((Size == 128 || Size == 256) && "Invalid type found!");
   2534 
   2535   // Return a LLVM IR vector type based on the size of 'Ty'.
   2536   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
   2537                                Size / 64);
   2538 }
   2539 
   2540 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
   2541 /// is known to either be off the end of the specified type or being in
   2542 /// alignment padding.  The user type specified is known to be at most 128 bits
   2543 /// in size, and have passed through X86_64ABIInfo::classify with a successful
   2544 /// classification that put one of the two halves in the INTEGER class.
   2545 ///
   2546 /// It is conservatively correct to return false.
   2547 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
   2548                                   unsigned EndBit, ASTContext &Context) {
   2549   // If the bytes being queried are off the end of the type, there is no user
   2550   // data hiding here.  This handles analysis of builtins, vectors and other
   2551   // types that don't contain interesting padding.
   2552   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
   2553   if (TySize <= StartBit)
   2554     return true;
   2555 
   2556   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
   2557     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
   2558     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
   2559 
   2560     // Check each element to see if the element overlaps with the queried range.
   2561     for (unsigned i = 0; i != NumElts; ++i) {
   2562       // If the element is after the span we care about, then we're done..
   2563       unsigned EltOffset = i*EltSize;
   2564       if (EltOffset >= EndBit) break;
   2565 
   2566       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
   2567       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
   2568                                  EndBit-EltOffset, Context))
   2569         return false;
   2570     }
   2571     // If it overlaps no elements, then it is safe to process as padding.
   2572     return true;
   2573   }
   2574 
   2575   if (const RecordType *RT = Ty->getAs<RecordType>()) {
   2576     const RecordDecl *RD = RT->getDecl();
   2577     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
   2578 
   2579     // If this is a C++ record, check the bases first.
   2580     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
   2581       for (const auto &I : CXXRD->bases()) {
   2582         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
   2583                "Unexpected base class!");
   2584         const CXXRecordDecl *Base =
   2585           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
   2586 
   2587         // If the base is after the span we care about, ignore it.
   2588         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
   2589         if (BaseOffset >= EndBit) continue;
   2590 
   2591         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
   2592         if (!BitsContainNoUserData(I.getType(), BaseStart,
   2593                                    EndBit-BaseOffset, Context))
   2594           return false;
   2595       }
   2596     }
   2597 
   2598     // Verify that no field has data that overlaps the region of interest.  Yes
   2599     // this could be sped up a lot by being smarter about queried fields,
   2600     // however we're only looking at structs up to 16 bytes, so we don't care
   2601     // much.
   2602     unsigned idx = 0;
   2603     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
   2604          i != e; ++i, ++idx) {
   2605       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
   2606 
   2607       // If we found a field after the region we care about, then we're done.
   2608       if (FieldOffset >= EndBit) break;
   2609 
   2610       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
   2611       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
   2612                                  Context))
   2613         return false;
   2614     }
   2615 
   2616     // If nothing in this record overlapped the area of interest, then we're
   2617     // clean.
   2618     return true;
   2619   }
   2620 
   2621   return false;
   2622 }
   2623 
   2624 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
   2625 /// float member at the specified offset.  For example, {int,{float}} has a
   2626 /// float at offset 4.  It is conservatively correct for this routine to return
   2627 /// false.
   2628 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
   2629                                   const llvm::DataLayout &TD) {
   2630   // Base case if we find a float.
   2631   if (IROffset == 0 && IRType->isFloatTy())
   2632     return true;
   2633 
   2634   // If this is a struct, recurse into the field at the specified offset.
   2635   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
   2636     const llvm::StructLayout *SL = TD.getStructLayout(STy);
   2637     unsigned Elt = SL->getElementContainingOffset(IROffset);
   2638     IROffset -= SL->getElementOffset(Elt);
   2639     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
   2640   }
   2641 
   2642   // If this is an array, recurse into the field at the specified offset.
   2643   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
   2644     llvm::Type *EltTy = ATy->getElementType();
   2645     unsigned EltSize = TD.getTypeAllocSize(EltTy);
   2646     IROffset -= IROffset/EltSize*EltSize;
   2647     return ContainsFloatAtOffset(EltTy, IROffset, TD);
   2648   }
   2649 
   2650   return false;
   2651 }
   2652 
   2653 
   2654 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
   2655 /// low 8 bytes of an XMM register, corresponding to the SSE class.
   2656 llvm::Type *X86_64ABIInfo::
   2657 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
   2658                    QualType SourceTy, unsigned SourceOffset) const {
   2659   // The only three choices we have are either double, <2 x float>, or float. We
   2660   // pass as float if the last 4 bytes is just padding.  This happens for
   2661   // structs that contain 3 floats.
   2662   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
   2663                             SourceOffset*8+64, getContext()))
   2664     return llvm::Type::getFloatTy(getVMContext());
   2665 
   2666   // We want to pass as <2 x float> if the LLVM IR type contains a float at
   2667   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
   2668   // case.
   2669   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
   2670       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
   2671     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
   2672 
   2673   return llvm::Type::getDoubleTy(getVMContext());
   2674 }
   2675 
   2676 
   2677 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
   2678 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
   2679 /// about the high or low part of an up-to-16-byte struct.  This routine picks
   2680 /// the best LLVM IR type to represent this, which may be i64 or may be anything
   2681 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
   2682 /// etc).
   2683 ///
   2684 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
   2685 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
   2686 /// the 8-byte value references.  PrefType may be null.
   2687 ///
   2688 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
   2689 /// an offset into this that we're processing (which is always either 0 or 8).
   2690 ///
   2691 llvm::Type *X86_64ABIInfo::
   2692 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
   2693                        QualType SourceTy, unsigned SourceOffset) const {
   2694   // If we're dealing with an un-offset LLVM IR type, then it means that we're
   2695   // returning an 8-byte unit starting with it.  See if we can safely use it.
   2696   if (IROffset == 0) {
   2697     // Pointers and int64's always fill the 8-byte unit.
   2698     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
   2699         IRType->isIntegerTy(64))
   2700       return IRType;
   2701 
   2702     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
   2703     // goodness in the source type is just tail padding.  This is allowed to
   2704     // kick in for struct {double,int} on the int, but not on
   2705     // struct{double,int,int} because we wouldn't return the second int.  We
   2706     // have to do this analysis on the source type because we can't depend on
   2707     // unions being lowered a specific way etc.
   2708     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
   2709         IRType->isIntegerTy(32) ||
   2710         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
   2711       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
   2712           cast<llvm::IntegerType>(IRType)->getBitWidth();
   2713 
   2714       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
   2715                                 SourceOffset*8+64, getContext()))
   2716         return IRType;
   2717     }
   2718   }
   2719 
   2720   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
   2721     // If this is a struct, recurse into the field at the specified offset.
   2722     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
   2723     if (IROffset < SL->getSizeInBytes()) {
   2724       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
   2725       IROffset -= SL->getElementOffset(FieldIdx);
   2726 
   2727       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
   2728                                     SourceTy, SourceOffset);
   2729     }
   2730   }
   2731 
   2732   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
   2733     llvm::Type *EltTy = ATy->getElementType();
   2734     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
   2735     unsigned EltOffset = IROffset/EltSize*EltSize;
   2736     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
   2737                                   SourceOffset);
   2738   }
   2739 
   2740   // Okay, we don't have any better idea of what to pass, so we pass this in an
   2741   // integer register that isn't too big to fit the rest of the struct.
   2742   unsigned TySizeInBytes =
   2743     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
   2744 
   2745   assert(TySizeInBytes != SourceOffset && "Empty field?");
   2746 
   2747   // It is always safe to classify this as an integer type up to i64 that
   2748   // isn't larger than the structure.
   2749   return llvm::IntegerType::get(getVMContext(),
   2750                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
   2751 }
   2752 
   2753 
   2754 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
   2755 /// be used as elements of a two register pair to pass or return, return a
   2756 /// first class aggregate to represent them.  For example, if the low part of
   2757 /// a by-value argument should be passed as i32* and the high part as float,
   2758 /// return {i32*, float}.
   2759 static llvm::Type *
   2760 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
   2761                            const llvm::DataLayout &TD) {
   2762   // In order to correctly satisfy the ABI, we need to the high part to start
   2763   // at offset 8.  If the high and low parts we inferred are both 4-byte types
   2764   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
   2765   // the second element at offset 8.  Check for this:
   2766   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
   2767   unsigned HiAlign = TD.getABITypeAlignment(Hi);
   2768   unsigned HiStart = llvm::RoundUpToAlignment(LoSize, HiAlign);
   2769   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
   2770 
   2771   // To handle this, we have to increase the size of the low part so that the
   2772   // second element will start at an 8 byte offset.  We can't increase the size
   2773   // of the second element because it might make us access off the end of the
   2774   // struct.
   2775   if (HiStart != 8) {
   2776     // There are usually two sorts of types the ABI generation code can produce
   2777     // for the low part of a pair that aren't 8 bytes in size: float or
   2778     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
   2779     // NaCl).
   2780     // Promote these to a larger type.
   2781     if (Lo->isFloatTy())
   2782       Lo = llvm::Type::getDoubleTy(Lo->getContext());
   2783     else {
   2784       assert((Lo->isIntegerTy() || Lo->isPointerTy())
   2785              && "Invalid/unknown lo type");
   2786       Lo = llvm::Type::getInt64Ty(Lo->getContext());
   2787     }
   2788   }
   2789 
   2790   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr);
   2791 
   2792 
   2793   // Verify that the second element is at an 8-byte offset.
   2794   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
   2795          "Invalid x86-64 argument pair!");
   2796   return Result;
   2797 }
   2798 
   2799 ABIArgInfo X86_64ABIInfo::
   2800 classifyReturnType(QualType RetTy) const {
   2801   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
   2802   // classification algorithm.
   2803   X86_64ABIInfo::Class Lo, Hi;
   2804   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
   2805 
   2806   // Check some invariants.
   2807   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
   2808   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
   2809 
   2810   llvm::Type *ResType = nullptr;
   2811   switch (Lo) {
   2812   case NoClass:
   2813     if (Hi == NoClass)
   2814       return ABIArgInfo::getIgnore();
   2815     // If the low part is just padding, it takes no register, leave ResType
   2816     // null.
   2817     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
   2818            "Unknown missing lo part");
   2819     break;
   2820 
   2821   case SSEUp:
   2822   case X87Up:
   2823     llvm_unreachable("Invalid classification for lo word.");
   2824 
   2825     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
   2826     // hidden argument.
   2827   case Memory:
   2828     return getIndirectReturnResult(RetTy);
   2829 
   2830     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
   2831     // available register of the sequence %rax, %rdx is used.
   2832   case Integer:
   2833     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
   2834 
   2835     // If we have a sign or zero extended integer, make sure to return Extend
   2836     // so that the parameter gets the right LLVM IR attributes.
   2837     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
   2838       // Treat an enum type as its underlying type.
   2839       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
   2840         RetTy = EnumTy->getDecl()->getIntegerType();
   2841 
   2842       if (RetTy->isIntegralOrEnumerationType() &&
   2843           RetTy->isPromotableIntegerType())
   2844         return ABIArgInfo::getExtend();
   2845     }
   2846     break;
   2847 
   2848     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
   2849     // available SSE register of the sequence %xmm0, %xmm1 is used.
   2850   case SSE:
   2851     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
   2852     break;
   2853 
   2854     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
   2855     // returned on the X87 stack in %st0 as 80-bit x87 number.
   2856   case X87:
   2857     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
   2858     break;
   2859 
   2860     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
   2861     // part of the value is returned in %st0 and the imaginary part in
   2862     // %st1.
   2863   case ComplexX87:
   2864     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
   2865     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
   2866                                     llvm::Type::getX86_FP80Ty(getVMContext()),
   2867                                     nullptr);
   2868     break;
   2869   }
   2870 
   2871   llvm::Type *HighPart = nullptr;
   2872   switch (Hi) {
   2873     // Memory was handled previously and X87 should
   2874     // never occur as a hi class.
   2875   case Memory:
   2876   case X87:
   2877     llvm_unreachable("Invalid classification for hi word.");
   2878 
   2879   case ComplexX87: // Previously handled.
   2880   case NoClass:
   2881     break;
   2882 
   2883   case Integer:
   2884     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
   2885     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
   2886       return ABIArgInfo::getDirect(HighPart, 8);
   2887     break;
   2888   case SSE:
   2889     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
   2890     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
   2891       return ABIArgInfo::getDirect(HighPart, 8);
   2892     break;
   2893 
   2894     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
   2895     // is passed in the next available eightbyte chunk if the last used
   2896     // vector register.
   2897     //
   2898     // SSEUP should always be preceded by SSE, just widen.
   2899   case SSEUp:
   2900     assert(Lo == SSE && "Unexpected SSEUp classification.");
   2901     ResType = GetByteVectorType(RetTy);
   2902     break;
   2903 
   2904     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
   2905     // returned together with the previous X87 value in %st0.
   2906   case X87Up:
   2907     // If X87Up is preceded by X87, we don't need to do
   2908     // anything. However, in some cases with unions it may not be
   2909     // preceded by X87. In such situations we follow gcc and pass the
   2910     // extra bits in an SSE reg.
   2911     if (Lo != X87) {
   2912       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
   2913       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
   2914         return ABIArgInfo::getDirect(HighPart, 8);
   2915     }
   2916     break;
   2917   }
   2918 
   2919   // If a high part was specified, merge it together with the low part.  It is
   2920   // known to pass in the high eightbyte of the result.  We do this by forming a
   2921   // first class struct aggregate with the high and low part: {low, high}
   2922   if (HighPart)
   2923     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
   2924 
   2925   return ABIArgInfo::getDirect(ResType);
   2926 }
   2927 
   2928 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
   2929   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
   2930   bool isNamedArg)
   2931   const
   2932 {
   2933   Ty = useFirstFieldIfTransparentUnion(Ty);
   2934 
   2935   X86_64ABIInfo::Class Lo, Hi;
   2936   classify(Ty, 0, Lo, Hi, isNamedArg);
   2937 
   2938   // Check some invariants.
   2939   // FIXME: Enforce these by construction.
   2940   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
   2941   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
   2942 
   2943   neededInt = 0;
   2944   neededSSE = 0;
   2945   llvm::Type *ResType = nullptr;
   2946   switch (Lo) {
   2947   case NoClass:
   2948     if (Hi == NoClass)
   2949       return ABIArgInfo::getIgnore();
   2950     // If the low part is just padding, it takes no register, leave ResType
   2951     // null.
   2952     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
   2953            "Unknown missing lo part");
   2954     break;
   2955 
   2956     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
   2957     // on the stack.
   2958   case Memory:
   2959 
   2960     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
   2961     // COMPLEX_X87, it is passed in memory.
   2962   case X87:
   2963   case ComplexX87:
   2964     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
   2965       ++neededInt;
   2966     return getIndirectResult(Ty, freeIntRegs);
   2967 
   2968   case SSEUp:
   2969   case X87Up:
   2970     llvm_unreachable("Invalid classification for lo word.");
   2971 
   2972     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
   2973     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
   2974     // and %r9 is used.
   2975   case Integer:
   2976     ++neededInt;
   2977 
   2978     // Pick an 8-byte type based on the preferred type.
   2979     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
   2980 
   2981     // If we have a sign or zero extended integer, make sure to return Extend
   2982     // so that the parameter gets the right LLVM IR attributes.
   2983     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
   2984       // Treat an enum type as its underlying type.
   2985       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
   2986         Ty = EnumTy->getDecl()->getIntegerType();
   2987 
   2988       if (Ty->isIntegralOrEnumerationType() &&
   2989           Ty->isPromotableIntegerType())
   2990         return ABIArgInfo::getExtend();
   2991     }
   2992 
   2993     break;
   2994 
   2995     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
   2996     // available SSE register is used, the registers are taken in the
   2997     // order from %xmm0 to %xmm7.
   2998   case SSE: {
   2999     llvm::Type *IRType = CGT.ConvertType(Ty);
   3000     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
   3001     ++neededSSE;
   3002     break;
   3003   }
   3004   }
   3005 
   3006   llvm::Type *HighPart = nullptr;
   3007   switch (Hi) {
   3008     // Memory was handled previously, ComplexX87 and X87 should
   3009     // never occur as hi classes, and X87Up must be preceded by X87,
   3010     // which is passed in memory.
   3011   case Memory:
   3012   case X87:
   3013   case ComplexX87:
   3014     llvm_unreachable("Invalid classification for hi word.");
   3015 
   3016   case NoClass: break;
   3017 
   3018   case Integer:
   3019     ++neededInt;
   3020     // Pick an 8-byte type based on the preferred type.
   3021     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
   3022 
   3023     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
   3024       return ABIArgInfo::getDirect(HighPart, 8);
   3025     break;
   3026 
   3027     // X87Up generally doesn't occur here (long double is passed in
   3028     // memory), except in situations involving unions.
   3029   case X87Up:
   3030   case SSE:
   3031     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
   3032 
   3033     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
   3034       return ABIArgInfo::getDirect(HighPart, 8);
   3035 
   3036     ++neededSSE;
   3037     break;
   3038 
   3039     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
   3040     // eightbyte is passed in the upper half of the last used SSE
   3041     // register.  This only happens when 128-bit vectors are passed.
   3042   case SSEUp:
   3043     assert(Lo == SSE && "Unexpected SSEUp classification");
   3044     ResType = GetByteVectorType(Ty);
   3045     break;
   3046   }
   3047 
   3048   // If a high part was specified, merge it together with the low part.  It is
   3049   // known to pass in the high eightbyte of the result.  We do this by forming a
   3050   // first class struct aggregate with the high and low part: {low, high}
   3051   if (HighPart)
   3052     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
   3053 
   3054   return ABIArgInfo::getDirect(ResType);
   3055 }
   3056 
   3057 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
   3058 
   3059   if (!getCXXABI().classifyReturnType(FI))
   3060     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
   3061 
   3062   // Keep track of the number of assigned registers.
   3063   unsigned freeIntRegs = 6, freeSSERegs = 8;
   3064 
   3065   // If the return value is indirect, then the hidden argument is consuming one
   3066   // integer register.
   3067   if (FI.getReturnInfo().isIndirect())
   3068     --freeIntRegs;
   3069 
   3070   // The chain argument effectively gives us another free register.
   3071   if (FI.isChainCall())
   3072     ++freeIntRegs;
   3073 
   3074   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
   3075   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
   3076   // get assigned (in left-to-right order) for passing as follows...
   3077   unsigned ArgNo = 0;
   3078   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
   3079        it != ie; ++it, ++ArgNo) {
   3080     bool IsNamedArg = ArgNo < NumRequiredArgs;
   3081 
   3082     unsigned neededInt, neededSSE;
   3083     it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
   3084                                     neededSSE, IsNamedArg);
   3085 
   3086     // AMD64-ABI 3.2.3p3: If there are no registers available for any
   3087     // eightbyte of an argument, the whole argument is passed on the
   3088     // stack. If registers have already been assigned for some
   3089     // eightbytes of such an argument, the assignments get reverted.
   3090     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
   3091       freeIntRegs -= neededInt;
   3092       freeSSERegs -= neededSSE;
   3093     } else {
   3094       it->info = getIndirectResult(it->type, freeIntRegs);
   3095     }
   3096   }
   3097 }
   3098 
   3099 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
   3100                                          Address VAListAddr, QualType Ty) {
   3101   Address overflow_arg_area_p = CGF.Builder.CreateStructGEP(
   3102       VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p");
   3103   llvm::Value *overflow_arg_area =
   3104     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
   3105 
   3106   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
   3107   // byte boundary if alignment needed by type exceeds 8 byte boundary.
   3108   // It isn't stated explicitly in the standard, but in practice we use
   3109   // alignment greater than 16 where necessary.
   3110   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
   3111   if (Align > CharUnits::fromQuantity(8)) {
   3112     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
   3113                                                       Align);
   3114   }
   3115 
   3116   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
   3117   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
   3118   llvm::Value *Res =
   3119     CGF.Builder.CreateBitCast(overflow_arg_area,
   3120                               llvm::PointerType::getUnqual(LTy));
   3121 
   3122   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
   3123   // l->overflow_arg_area + sizeof(type).
   3124   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
   3125   // an 8 byte boundary.
   3126 
   3127   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
   3128   llvm::Value *Offset =
   3129       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
   3130   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
   3131                                             "overflow_arg_area.next");
   3132   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
   3133 
   3134   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
   3135   return Address(Res, Align);
   3136 }
   3137 
   3138 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   3139                                  QualType Ty) const {
   3140   // Assume that va_list type is correct; should be pointer to LLVM type:
   3141   // struct {
   3142   //   i32 gp_offset;
   3143   //   i32 fp_offset;
   3144   //   i8* overflow_arg_area;
   3145   //   i8* reg_save_area;
   3146   // };
   3147   unsigned neededInt, neededSSE;
   3148 
   3149   Ty = getContext().getCanonicalType(Ty);
   3150   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
   3151                                        /*isNamedArg*/false);
   3152 
   3153   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
   3154   // in the registers. If not go to step 7.
   3155   if (!neededInt && !neededSSE)
   3156     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
   3157 
   3158   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
   3159   // general purpose registers needed to pass type and num_fp to hold
   3160   // the number of floating point registers needed.
   3161 
   3162   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
   3163   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
   3164   // l->fp_offset > 304 - num_fp * 16 go to step 7.
   3165   //
   3166   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
   3167   // register save space).
   3168 
   3169   llvm::Value *InRegs = nullptr;
   3170   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
   3171   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
   3172   if (neededInt) {
   3173     gp_offset_p =
   3174         CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(),
   3175                                     "gp_offset_p");
   3176     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
   3177     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
   3178     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
   3179   }
   3180 
   3181   if (neededSSE) {
   3182     fp_offset_p =
   3183         CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4),
   3184                                     "fp_offset_p");
   3185     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
   3186     llvm::Value *FitsInFP =
   3187       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
   3188     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
   3189     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
   3190   }
   3191 
   3192   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
   3193   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
   3194   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
   3195   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
   3196 
   3197   // Emit code to load the value if it was passed in registers.
   3198 
   3199   CGF.EmitBlock(InRegBlock);
   3200 
   3201   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
   3202   // an offset of l->gp_offset and/or l->fp_offset. This may require
   3203   // copying to a temporary location in case the parameter is passed
   3204   // in different register classes or requires an alignment greater
   3205   // than 8 for general purpose registers and 16 for XMM registers.
   3206   //
   3207   // FIXME: This really results in shameful code when we end up needing to
   3208   // collect arguments from different places; often what should result in a
   3209   // simple assembling of a structure from scattered addresses has many more
   3210   // loads than necessary. Can we clean this up?
   3211   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
   3212   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
   3213       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)),
   3214                                   "reg_save_area");
   3215 
   3216   Address RegAddr = Address::invalid();
   3217   if (neededInt && neededSSE) {
   3218     // FIXME: Cleanup.
   3219     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
   3220     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
   3221     Address Tmp = CGF.CreateMemTemp(Ty);
   3222     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
   3223     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
   3224     llvm::Type *TyLo = ST->getElementType(0);
   3225     llvm::Type *TyHi = ST->getElementType(1);
   3226     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
   3227            "Unexpected ABI info for mixed regs");
   3228     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
   3229     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
   3230     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
   3231     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
   3232     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
   3233     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
   3234 
   3235     // Copy the first element.
   3236     llvm::Value *V =
   3237       CGF.Builder.CreateDefaultAlignedLoad(
   3238                                CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
   3239     CGF.Builder.CreateStore(V,
   3240                     CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
   3241 
   3242     // Copy the second element.
   3243     V = CGF.Builder.CreateDefaultAlignedLoad(
   3244                                CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
   3245     CharUnits Offset = CharUnits::fromQuantity(
   3246                    getDataLayout().getStructLayout(ST)->getElementOffset(1));
   3247     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset));
   3248 
   3249     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
   3250   } else if (neededInt) {
   3251     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
   3252                       CharUnits::fromQuantity(8));
   3253     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
   3254 
   3255     // Copy to a temporary if necessary to ensure the appropriate alignment.
   3256     std::pair<CharUnits, CharUnits> SizeAlign =
   3257         getContext().getTypeInfoInChars(Ty);
   3258     uint64_t TySize = SizeAlign.first.getQuantity();
   3259     CharUnits TyAlign = SizeAlign.second;
   3260 
   3261     // Copy into a temporary if the type is more aligned than the
   3262     // register save area.
   3263     if (TyAlign.getQuantity() > 8) {
   3264       Address Tmp = CGF.CreateMemTemp(Ty);
   3265       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
   3266       RegAddr = Tmp;
   3267     }
   3268 
   3269   } else if (neededSSE == 1) {
   3270     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
   3271                       CharUnits::fromQuantity(16));
   3272     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
   3273   } else {
   3274     assert(neededSSE == 2 && "Invalid number of needed registers!");
   3275     // SSE registers are spaced 16 bytes apart in the register save
   3276     // area, we need to collect the two eightbytes together.
   3277     // The ABI isn't explicit about this, but it seems reasonable
   3278     // to assume that the slots are 16-byte aligned, since the stack is
   3279     // naturally 16-byte aligned and the prologue is expected to store
   3280     // all the SSE registers to the RSA.
   3281     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
   3282                                 CharUnits::fromQuantity(16));
   3283     Address RegAddrHi =
   3284       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
   3285                                              CharUnits::fromQuantity(16));
   3286     llvm::Type *DoubleTy = CGF.DoubleTy;
   3287     llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr);
   3288     llvm::Value *V;
   3289     Address Tmp = CGF.CreateMemTemp(Ty);
   3290     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
   3291     V = CGF.Builder.CreateLoad(
   3292                    CGF.Builder.CreateElementBitCast(RegAddrLo, DoubleTy));
   3293     CGF.Builder.CreateStore(V,
   3294                    CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
   3295     V = CGF.Builder.CreateLoad(
   3296                    CGF.Builder.CreateElementBitCast(RegAddrHi, DoubleTy));
   3297     CGF.Builder.CreateStore(V,
   3298           CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8)));
   3299 
   3300     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
   3301   }
   3302 
   3303   // AMD64-ABI 3.5.7p5: Step 5. Set:
   3304   // l->gp_offset = l->gp_offset + num_gp * 8
   3305   // l->fp_offset = l->fp_offset + num_fp * 16.
   3306   if (neededInt) {
   3307     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
   3308     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
   3309                             gp_offset_p);
   3310   }
   3311   if (neededSSE) {
   3312     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
   3313     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
   3314                             fp_offset_p);
   3315   }
   3316   CGF.EmitBranch(ContBlock);
   3317 
   3318   // Emit code to load the value if it was passed in memory.
   3319 
   3320   CGF.EmitBlock(InMemBlock);
   3321   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
   3322 
   3323   // Return the appropriate result.
   3324 
   3325   CGF.EmitBlock(ContBlock);
   3326   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
   3327                                  "vaarg.addr");
   3328   return ResAddr;
   3329 }
   3330 
   3331 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
   3332                                    QualType Ty) const {
   3333   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
   3334                           CGF.getContext().getTypeInfoInChars(Ty),
   3335                           CharUnits::fromQuantity(8),
   3336                           /*allowHigherAlign*/ false);
   3337 }
   3338 
   3339 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
   3340                                       bool IsReturnType) const {
   3341 
   3342   if (Ty->isVoidType())
   3343     return ABIArgInfo::getIgnore();
   3344 
   3345   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
   3346     Ty = EnumTy->getDecl()->getIntegerType();
   3347 
   3348   TypeInfo Info = getContext().getTypeInfo(Ty);
   3349   uint64_t Width = Info.Width;
   3350   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
   3351 
   3352   const RecordType *RT = Ty->getAs<RecordType>();
   3353   if (RT) {
   3354     if (!IsReturnType) {
   3355       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
   3356         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
   3357     }
   3358 
   3359     if (RT->getDecl()->hasFlexibleArrayMember())
   3360       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
   3361 
   3362   }
   3363 
   3364   // vectorcall adds the concept of a homogenous vector aggregate, similar to
   3365   // other targets.
   3366   const Type *Base = nullptr;
   3367   uint64_t NumElts = 0;
   3368   if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) {
   3369     if (FreeSSERegs >= NumElts) {
   3370       FreeSSERegs -= NumElts;
   3371       if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
   3372         return ABIArgInfo::getDirect();
   3373       return ABIArgInfo::getExpand();
   3374     }
   3375     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
   3376   }
   3377 
   3378 
   3379   if (Ty->isMemberPointerType()) {
   3380     // If the member pointer is represented by an LLVM int or ptr, pass it
   3381     // directly.
   3382     llvm::Type *LLTy = CGT.ConvertType(Ty);
   3383     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
   3384       return ABIArgInfo::getDirect();
   3385   }
   3386 
   3387   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
   3388     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
   3389     // not 1, 2, 4, or 8 bytes, must be passed by reference."
   3390     if (Width > 64 || !llvm::isPowerOf2_64(Width))
   3391       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
   3392 
   3393     // Otherwise, coerce it to a small integer.
   3394     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
   3395   }
   3396 
   3397   // Bool type is always extended to the ABI, other builtin types are not
   3398   // extended.
   3399   const BuiltinType *BT = Ty->getAs<BuiltinType>();
   3400   if (BT && BT->getKind() == BuiltinType::Bool)
   3401     return ABIArgInfo::getExtend();
   3402 
   3403   // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It
   3404   // passes them indirectly through memory.
   3405   if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) {
   3406     const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
   3407     if (LDF == &llvm::APFloat::x87DoubleExtended)
   3408       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
   3409   }
   3410 
   3411   return ABIArgInfo::getDirect();
   3412 }
   3413 
   3414 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
   3415   bool IsVectorCall =
   3416       FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
   3417 
   3418   // We can use up to 4 SSE return registers with vectorcall.
   3419   unsigned FreeSSERegs = IsVectorCall ? 4 : 0;
   3420   if (!getCXXABI().classifyReturnType(FI))
   3421     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true);
   3422 
   3423   // We can use up to 6 SSE register parameters with vectorcall.
   3424   FreeSSERegs = IsVectorCall ? 6 : 0;
   3425   for (auto &I : FI.arguments())
   3426     I.info = classify(I.type, FreeSSERegs, false);
   3427 }
   3428 
   3429 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   3430                                     QualType Ty) const {
   3431   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
   3432                           CGF.getContext().getTypeInfoInChars(Ty),
   3433                           CharUnits::fromQuantity(8),
   3434                           /*allowHigherAlign*/ false);
   3435 }
   3436 
   3437 // PowerPC-32
   3438 namespace {
   3439 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
   3440 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
   3441 bool IsSoftFloatABI;
   3442 public:
   3443   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI)
   3444       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {}
   3445 
   3446   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   3447                     QualType Ty) const override;
   3448 };
   3449 
   3450 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
   3451 public:
   3452   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI)
   3453       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {}
   3454 
   3455   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
   3456     // This is recovered from gcc output.
   3457     return 1; // r1 is the dedicated stack pointer
   3458   }
   3459 
   3460   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
   3461                                llvm::Value *Address) const override;
   3462 };
   3463 
   3464 }
   3465 
   3466 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
   3467                                       QualType Ty) const {
   3468   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
   3469     // TODO: Implement this. For now ignore.
   3470     (void)CTy;
   3471     return Address::invalid();
   3472   }
   3473 
   3474   // struct __va_list_tag {
   3475   //   unsigned char gpr;
   3476   //   unsigned char fpr;
   3477   //   unsigned short reserved;
   3478   //   void *overflow_arg_area;
   3479   //   void *reg_save_area;
   3480   // };
   3481 
   3482   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
   3483   bool isInt =
   3484       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
   3485   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
   3486 
   3487   // All aggregates are passed indirectly?  That doesn't seem consistent
   3488   // with the argument-lowering code.
   3489   bool isIndirect = Ty->isAggregateType();
   3490 
   3491   CGBuilderTy &Builder = CGF.Builder;
   3492 
   3493   // The calling convention either uses 1-2 GPRs or 1 FPR.
   3494   Address NumRegsAddr = Address::invalid();
   3495   if (isInt || IsSoftFloatABI) {
   3496     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr");
   3497   } else {
   3498     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr");
   3499   }
   3500 
   3501   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
   3502 
   3503   // "Align" the register count when TY is i64.
   3504   if (isI64 || (isF64 && IsSoftFloatABI)) {
   3505     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
   3506     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
   3507   }
   3508 
   3509   llvm::Value *CC =
   3510       Builder.CreateICmpULT(NumRegs, Builder.getInt8(8), "cond");
   3511 
   3512   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
   3513   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
   3514   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
   3515 
   3516   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
   3517 
   3518   llvm::Type *DirectTy = CGF.ConvertType(Ty);
   3519   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
   3520 
   3521   // Case 1: consume registers.
   3522   Address RegAddr = Address::invalid();
   3523   {
   3524     CGF.EmitBlock(UsingRegs);
   3525 
   3526     Address RegSaveAreaPtr =
   3527       Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8));
   3528     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
   3529                       CharUnits::fromQuantity(8));
   3530     assert(RegAddr.getElementType() == CGF.Int8Ty);
   3531 
   3532     // Floating-point registers start after the general-purpose registers.
   3533     if (!(isInt || IsSoftFloatABI)) {
   3534       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
   3535                                                    CharUnits::fromQuantity(32));
   3536     }
   3537 
   3538     // Get the address of the saved value by scaling the number of
   3539     // registers we've used by the number of
   3540     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
   3541     llvm::Value *RegOffset =
   3542       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
   3543     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
   3544                                             RegAddr.getPointer(), RegOffset),
   3545                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
   3546     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
   3547 
   3548     // Increase the used-register count.
   3549     NumRegs =
   3550       Builder.CreateAdd(NumRegs,
   3551                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
   3552     Builder.CreateStore(NumRegs, NumRegsAddr);
   3553 
   3554     CGF.EmitBranch(Cont);
   3555   }
   3556 
   3557   // Case 2: consume space in the overflow area.
   3558   Address MemAddr = Address::invalid();
   3559   {
   3560     CGF.EmitBlock(UsingOverflow);
   3561 
   3562     // Everything in the overflow area is rounded up to a size of at least 4.
   3563     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
   3564 
   3565     CharUnits Size;
   3566     if (!isIndirect) {
   3567       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
   3568       Size = TypeInfo.first.RoundUpToAlignment(OverflowAreaAlign);
   3569     } else {
   3570       Size = CGF.getPointerSize();
   3571     }
   3572 
   3573     Address OverflowAreaAddr =
   3574       Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4));
   3575     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
   3576                          OverflowAreaAlign);
   3577     // Round up address of argument to alignment
   3578     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
   3579     if (Align > OverflowAreaAlign) {
   3580       llvm::Value *Ptr = OverflowArea.getPointer();
   3581       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
   3582                                                            Align);
   3583     }
   3584 
   3585     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
   3586 
   3587     // Increase the overflow area.
   3588     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
   3589     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
   3590     CGF.EmitBranch(Cont);
   3591   }
   3592 
   3593   CGF.EmitBlock(Cont);
   3594 
   3595   // Merge the cases with a phi.
   3596   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
   3597                                 "vaarg.addr");
   3598 
   3599   // Load the pointer if the argument was passed indirectly.
   3600   if (isIndirect) {
   3601     Result = Address(Builder.CreateLoad(Result, "aggr"),
   3602                      getContext().getTypeAlignInChars(Ty));
   3603   }
   3604 
   3605   return Result;
   3606 }
   3607 
   3608 bool
   3609 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
   3610                                                 llvm::Value *Address) const {
   3611   // This is calculated from the LLVM and GCC tables and verified
   3612   // against gcc output.  AFAIK all ABIs use the same encoding.
   3613 
   3614   CodeGen::CGBuilderTy &Builder = CGF.Builder;
   3615 
   3616   llvm::IntegerType *i8 = CGF.Int8Ty;
   3617   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
   3618   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
   3619   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
   3620 
   3621   // 0-31: r0-31, the 4-byte general-purpose registers
   3622   AssignToArrayRange(Builder, Address, Four8, 0, 31);
   3623 
   3624   // 32-63: fp0-31, the 8-byte floating-point registers
   3625   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
   3626 
   3627   // 64-76 are various 4-byte special-purpose registers:
   3628   // 64: mq
   3629   // 65: lr
   3630   // 66: ctr
   3631   // 67: ap
   3632   // 68-75 cr0-7
   3633   // 76: xer
   3634   AssignToArrayRange(Builder, Address, Four8, 64, 76);
   3635 
   3636   // 77-108: v0-31, the 16-byte vector registers
   3637   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
   3638 
   3639   // 109: vrsave
   3640   // 110: vscr
   3641   // 111: spe_acc
   3642   // 112: spefscr
   3643   // 113: sfp
   3644   AssignToArrayRange(Builder, Address, Four8, 109, 113);
   3645 
   3646   return false;
   3647 }
   3648 
   3649 // PowerPC-64
   3650 
   3651 namespace {
   3652 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
   3653 class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
   3654 public:
   3655   enum ABIKind {
   3656     ELFv1 = 0,
   3657     ELFv2
   3658   };
   3659 
   3660 private:
   3661   static const unsigned GPRBits = 64;
   3662   ABIKind Kind;
   3663   bool HasQPX;
   3664 
   3665   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
   3666   // will be passed in a QPX register.
   3667   bool IsQPXVectorTy(const Type *Ty) const {
   3668     if (!HasQPX)
   3669       return false;
   3670 
   3671     if (const VectorType *VT = Ty->getAs<VectorType>()) {
   3672       unsigned NumElements = VT->getNumElements();
   3673       if (NumElements == 1)
   3674         return false;
   3675 
   3676       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
   3677         if (getContext().getTypeSize(Ty) <= 256)
   3678           return true;
   3679       } else if (VT->getElementType()->
   3680                    isSpecificBuiltinType(BuiltinType::Float)) {
   3681         if (getContext().getTypeSize(Ty) <= 128)
   3682           return true;
   3683       }
   3684     }
   3685 
   3686     return false;
   3687   }
   3688 
   3689   bool IsQPXVectorTy(QualType Ty) const {
   3690     return IsQPXVectorTy(Ty.getTypePtr());
   3691   }
   3692 
   3693 public:
   3694   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX)
   3695     : DefaultABIInfo(CGT), Kind(Kind), HasQPX(HasQPX) {}
   3696 
   3697   bool isPromotableTypeForABI(QualType Ty) const;
   3698   CharUnits getParamTypeAlignment(QualType Ty) const;
   3699 
   3700   ABIArgInfo classifyReturnType(QualType RetTy) const;
   3701   ABIArgInfo classifyArgumentType(QualType Ty) const;
   3702 
   3703   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
   3704   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
   3705                                          uint64_t Members) const override;
   3706 
   3707   // TODO: We can add more logic to computeInfo to improve performance.
   3708   // Example: For aggregate arguments that fit in a register, we could
   3709   // use getDirectInReg (as is done below for structs containing a single
   3710   // floating-point value) to avoid pushing them to memory on function
   3711   // entry.  This would require changing the logic in PPCISelLowering
   3712   // when lowering the parameters in the caller and args in the callee.
   3713   void computeInfo(CGFunctionInfo &FI) const override {
   3714     if (!getCXXABI().classifyReturnType(FI))
   3715       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
   3716     for (auto &I : FI.arguments()) {
   3717       // We rely on the default argument classification for the most part.
   3718       // One exception:  An aggregate containing a single floating-point
   3719       // or vector item must be passed in a register if one is available.
   3720       const Type *T = isSingleElementStruct(I.type, getContext());
   3721       if (T) {
   3722         const BuiltinType *BT = T->getAs<BuiltinType>();
   3723         if (IsQPXVectorTy(T) ||
   3724             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
   3725             (BT && BT->isFloatingPoint())) {
   3726           QualType QT(T, 0);
   3727           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
   3728           continue;
   3729         }
   3730       }
   3731       I.info = classifyArgumentType(I.type);
   3732     }
   3733   }
   3734 
   3735   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   3736                     QualType Ty) const override;
   3737 };
   3738 
   3739 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
   3740 
   3741 public:
   3742   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
   3743                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX)
   3744       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX)) {}
   3745 
   3746   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
   3747     // This is recovered from gcc output.
   3748     return 1; // r1 is the dedicated stack pointer
   3749   }
   3750 
   3751   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
   3752                                llvm::Value *Address) const override;
   3753 };
   3754 
   3755 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
   3756 public:
   3757   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
   3758 
   3759   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
   3760     // This is recovered from gcc output.
   3761     return 1; // r1 is the dedicated stack pointer
   3762   }
   3763 
   3764   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
   3765                                llvm::Value *Address) const override;
   3766 };
   3767 
   3768 }
   3769 
   3770 // Return true if the ABI requires Ty to be passed sign- or zero-
   3771 // extended to 64 bits.
   3772 bool
   3773 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
   3774   // Treat an enum type as its underlying type.
   3775   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
   3776     Ty = EnumTy->getDecl()->getIntegerType();
   3777 
   3778   // Promotable integer types are required to be promoted by the ABI.
   3779   if (Ty->isPromotableIntegerType())
   3780     return true;
   3781 
   3782   // In addition to the usual promotable integer types, we also need to
   3783   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
   3784   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
   3785     switch (BT->getKind()) {
   3786     case BuiltinType::Int:
   3787     case BuiltinType::UInt:
   3788       return true;
   3789     default:
   3790       break;
   3791     }
   3792 
   3793   return false;
   3794 }
   3795 
   3796 /// isAlignedParamType - Determine whether a type requires 16-byte or
   3797 /// higher alignment in the parameter area.  Always returns at least 8.
   3798 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
   3799   // Complex types are passed just like their elements.
   3800   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
   3801     Ty = CTy->getElementType();
   3802 
   3803   // Only vector types of size 16 bytes need alignment (larger types are
   3804   // passed via reference, smaller types are not aligned).
   3805   if (IsQPXVectorTy(Ty)) {
   3806     if (getContext().getTypeSize(Ty) > 128)
   3807       return CharUnits::fromQuantity(32);
   3808 
   3809     return CharUnits::fromQuantity(16);
   3810   } else if (Ty->isVectorType()) {
   3811     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
   3812   }
   3813 
   3814   // For single-element float/vector structs, we consider the whole type
   3815   // to have the same alignment requirements as its single element.
   3816   const Type *AlignAsType = nullptr;
   3817   const Type *EltType = isSingleElementStruct(Ty, getContext());
   3818   if (EltType) {
   3819     const BuiltinType *BT = EltType->getAs<BuiltinType>();
   3820     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
   3821          getContext().getTypeSize(EltType) == 128) ||
   3822         (BT && BT->isFloatingPoint()))
   3823       AlignAsType = EltType;
   3824   }
   3825 
   3826   // Likewise for ELFv2 homogeneous aggregates.
   3827   const Type *Base = nullptr;
   3828   uint64_t Members = 0;
   3829   if (!AlignAsType && Kind == ELFv2 &&
   3830       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
   3831     AlignAsType = Base;
   3832 
   3833   // With special case aggregates, only vector base types need alignment.
   3834   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
   3835     if (getContext().getTypeSize(AlignAsType) > 128)
   3836       return CharUnits::fromQuantity(32);
   3837 
   3838     return CharUnits::fromQuantity(16);
   3839   } else if (AlignAsType) {
   3840     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
   3841   }
   3842 
   3843   // Otherwise, we only need alignment for any aggregate type that
   3844   // has an alignment requirement of >= 16 bytes.
   3845   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
   3846     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
   3847       return CharUnits::fromQuantity(32);
   3848     return CharUnits::fromQuantity(16);
   3849   }
   3850 
   3851   return CharUnits::fromQuantity(8);
   3852 }
   3853 
   3854 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
   3855 /// aggregate.  Base is set to the base element type, and Members is set
   3856 /// to the number of base elements.
   3857 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
   3858                                      uint64_t &Members) const {
   3859   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
   3860     uint64_t NElements = AT->getSize().getZExtValue();
   3861     if (NElements == 0)
   3862       return false;
   3863     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
   3864       return false;
   3865     Members *= NElements;
   3866   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
   3867     const RecordDecl *RD = RT->getDecl();
   3868     if (RD->hasFlexibleArrayMember())
   3869       return false;
   3870 
   3871     Members = 0;
   3872 
   3873     // If this is a C++ record, check the bases first.
   3874     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
   3875       for (const auto &I : CXXRD->bases()) {
   3876         // Ignore empty records.
   3877         if (isEmptyRecord(getContext(), I.getType(), true))
   3878           continue;
   3879 
   3880         uint64_t FldMembers;
   3881         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
   3882           return false;
   3883 
   3884         Members += FldMembers;
   3885       }
   3886     }
   3887 
   3888     for (const auto *FD : RD->fields()) {
   3889       // Ignore (non-zero arrays of) empty records.
   3890       QualType FT = FD->getType();
   3891       while (const ConstantArrayType *AT =
   3892              getContext().getAsConstantArrayType(FT)) {
   3893         if (AT->getSize().getZExtValue() == 0)
   3894           return false;
   3895         FT = AT->getElementType();
   3896       }
   3897       if (isEmptyRecord(getContext(), FT, true))
   3898         continue;
   3899 
   3900       // For compatibility with GCC, ignore empty bitfields in C++ mode.
   3901       if (getContext().getLangOpts().CPlusPlus &&
   3902           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
   3903         continue;
   3904 
   3905       uint64_t FldMembers;
   3906       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
   3907         return false;
   3908 
   3909       Members = (RD->isUnion() ?
   3910                  std::max(Members, FldMembers) : Members + FldMembers);
   3911     }
   3912 
   3913     if (!Base)
   3914       return false;
   3915 
   3916     // Ensure there is no padding.
   3917     if (getContext().getTypeSize(Base) * Members !=
   3918         getContext().getTypeSize(Ty))
   3919       return false;
   3920   } else {
   3921     Members = 1;
   3922     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
   3923       Members = 2;
   3924       Ty = CT->getElementType();
   3925     }
   3926 
   3927     // Most ABIs only support float, double, and some vector type widths.
   3928     if (!isHomogeneousAggregateBaseType(Ty))
   3929       return false;
   3930 
   3931     // The base type must be the same for all members.  Types that
   3932     // agree in both total size and mode (float vs. vector) are
   3933     // treated as being equivalent here.
   3934     const Type *TyPtr = Ty.getTypePtr();
   3935     if (!Base)
   3936       Base = TyPtr;
   3937 
   3938     if (Base->isVectorType() != TyPtr->isVectorType() ||
   3939         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
   3940       return false;
   3941   }
   3942   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
   3943 }
   3944 
   3945 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
   3946   // Homogeneous aggregates for ELFv2 must have base types of float,
   3947   // double, long double, or 128-bit vectors.
   3948   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
   3949     if (BT->getKind() == BuiltinType::Float ||
   3950         BT->getKind() == BuiltinType::Double ||
   3951         BT->getKind() == BuiltinType::LongDouble)
   3952       return true;
   3953   }
   3954   if (const VectorType *VT = Ty->getAs<VectorType>()) {
   3955     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
   3956       return true;
   3957   }
   3958   return false;
   3959 }
   3960 
   3961 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
   3962     const Type *Base, uint64_t Members) const {
   3963   // Vector types require one register, floating point types require one
   3964   // or two registers depending on their size.
   3965   uint32_t NumRegs =
   3966       Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64;
   3967 
   3968   // Homogeneous Aggregates may occupy at most 8 registers.
   3969   return Members * NumRegs <= 8;
   3970 }
   3971 
   3972 ABIArgInfo
   3973 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
   3974   Ty = useFirstFieldIfTransparentUnion(Ty);
   3975 
   3976   if (Ty->isAnyComplexType())
   3977     return ABIArgInfo::getDirect();
   3978 
   3979   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
   3980   // or via reference (larger than 16 bytes).
   3981   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
   3982     uint64_t Size = getContext().getTypeSize(Ty);
   3983     if (Size > 128)
   3984       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
   3985     else if (Size < 128) {
   3986       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
   3987       return ABIArgInfo::getDirect(CoerceTy);
   3988     }
   3989   }
   3990 
   3991   if (isAggregateTypeForABI(Ty)) {
   3992     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
   3993       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
   3994 
   3995     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
   3996     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
   3997 
   3998     // ELFv2 homogeneous aggregates are passed as array types.
   3999     const Type *Base = nullptr;
   4000     uint64_t Members = 0;
   4001     if (Kind == ELFv2 &&
   4002         isHomogeneousAggregate(Ty, Base, Members)) {
   4003       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
   4004       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
   4005       return ABIArgInfo::getDirect(CoerceTy);
   4006     }
   4007 
   4008     // If an aggregate may end up fully in registers, we do not
   4009     // use the ByVal method, but pass the aggregate as array.
   4010     // This is usually beneficial since we avoid forcing the
   4011     // back-end to store the argument to memory.
   4012     uint64_t Bits = getContext().getTypeSize(Ty);
   4013     if (Bits > 0 && Bits <= 8 * GPRBits) {
   4014       llvm::Type *CoerceTy;
   4015 
   4016       // Types up to 8 bytes are passed as integer type (which will be
   4017       // properly aligned in the argument save area doubleword).
   4018       if (Bits <= GPRBits)
   4019         CoerceTy = llvm::IntegerType::get(getVMContext(),
   4020                                           llvm::RoundUpToAlignment(Bits, 8));
   4021       // Larger types are passed as arrays, with the base type selected
   4022       // according to the required alignment in the save area.
   4023       else {
   4024         uint64_t RegBits = ABIAlign * 8;
   4025         uint64_t NumRegs = llvm::RoundUpToAlignment(Bits, RegBits) / RegBits;
   4026         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
   4027         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
   4028       }
   4029 
   4030       return ABIArgInfo::getDirect(CoerceTy);
   4031     }
   4032 
   4033     // All other aggregates are passed ByVal.
   4034     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
   4035                                    /*ByVal=*/true,
   4036                                    /*Realign=*/TyAlign > ABIAlign);
   4037   }
   4038 
   4039   return (isPromotableTypeForABI(Ty) ?
   4040           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   4041 }
   4042 
   4043 ABIArgInfo
   4044 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
   4045   if (RetTy->isVoidType())
   4046     return ABIArgInfo::getIgnore();
   4047 
   4048   if (RetTy->isAnyComplexType())
   4049     return ABIArgInfo::getDirect();
   4050 
   4051   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
   4052   // or via reference (larger than 16 bytes).
   4053   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
   4054     uint64_t Size = getContext().getTypeSize(RetTy);
   4055     if (Size > 128)
   4056       return getNaturalAlignIndirect(RetTy);
   4057     else if (Size < 128) {
   4058       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
   4059       return ABIArgInfo::getDirect(CoerceTy);
   4060     }
   4061   }
   4062 
   4063   if (isAggregateTypeForABI(RetTy)) {
   4064     // ELFv2 homogeneous aggregates are returned as array types.
   4065     const Type *Base = nullptr;
   4066     uint64_t Members = 0;
   4067     if (Kind == ELFv2 &&
   4068         isHomogeneousAggregate(RetTy, Base, Members)) {
   4069       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
   4070       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
   4071       return ABIArgInfo::getDirect(CoerceTy);
   4072     }
   4073 
   4074     // ELFv2 small aggregates are returned in up to two registers.
   4075     uint64_t Bits = getContext().getTypeSize(RetTy);
   4076     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
   4077       if (Bits == 0)
   4078         return ABIArgInfo::getIgnore();
   4079 
   4080       llvm::Type *CoerceTy;
   4081       if (Bits > GPRBits) {
   4082         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
   4083         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr);
   4084       } else
   4085         CoerceTy = llvm::IntegerType::get(getVMContext(),
   4086                                           llvm::RoundUpToAlignment(Bits, 8));
   4087       return ABIArgInfo::getDirect(CoerceTy);
   4088     }
   4089 
   4090     // All other aggregates are returned indirectly.
   4091     return getNaturalAlignIndirect(RetTy);
   4092   }
   4093 
   4094   return (isPromotableTypeForABI(RetTy) ?
   4095           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   4096 }
   4097 
   4098 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
   4099 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   4100                                       QualType Ty) const {
   4101   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
   4102   TypeInfo.second = getParamTypeAlignment(Ty);
   4103 
   4104   CharUnits SlotSize = CharUnits::fromQuantity(8);
   4105 
   4106   // If we have a complex type and the base type is smaller than 8 bytes,
   4107   // the ABI calls for the real and imaginary parts to be right-adjusted
   4108   // in separate doublewords.  However, Clang expects us to produce a
   4109   // pointer to a structure with the two parts packed tightly.  So generate
   4110   // loads of the real and imaginary parts relative to the va_list pointer,
   4111   // and store them to a temporary structure.
   4112   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
   4113     CharUnits EltSize = TypeInfo.first / 2;
   4114     if (EltSize < SlotSize) {
   4115       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
   4116                                             SlotSize * 2, SlotSize,
   4117                                             SlotSize, /*AllowHigher*/ true);
   4118 
   4119       Address RealAddr = Addr;
   4120       Address ImagAddr = RealAddr;
   4121       if (CGF.CGM.getDataLayout().isBigEndian()) {
   4122         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
   4123                                                           SlotSize - EltSize);
   4124         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
   4125                                                       2 * SlotSize - EltSize);
   4126       } else {
   4127         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
   4128       }
   4129 
   4130       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
   4131       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
   4132       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
   4133       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
   4134       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
   4135 
   4136       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
   4137       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
   4138                              /*init*/ true);
   4139       return Temp;
   4140     }
   4141   }
   4142 
   4143   // Otherwise, just use the general rule.
   4144   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
   4145                           TypeInfo, SlotSize, /*AllowHigher*/ true);
   4146 }
   4147 
   4148 static bool
   4149 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
   4150                               llvm::Value *Address) {
   4151   // This is calculated from the LLVM and GCC tables and verified
   4152   // against gcc output.  AFAIK all ABIs use the same encoding.
   4153 
   4154   CodeGen::CGBuilderTy &Builder = CGF.Builder;
   4155 
   4156   llvm::IntegerType *i8 = CGF.Int8Ty;
   4157   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
   4158   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
   4159   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
   4160 
   4161   // 0-31: r0-31, the 8-byte general-purpose registers
   4162   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
   4163 
   4164   // 32-63: fp0-31, the 8-byte floating-point registers
   4165   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
   4166 
   4167   // 64-76 are various 4-byte special-purpose registers:
   4168   // 64: mq
   4169   // 65: lr
   4170   // 66: ctr
   4171   // 67: ap
   4172   // 68-75 cr0-7
   4173   // 76: xer
   4174   AssignToArrayRange(Builder, Address, Four8, 64, 76);
   4175 
   4176   // 77-108: v0-31, the 16-byte vector registers
   4177   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
   4178 
   4179   // 109: vrsave
   4180   // 110: vscr
   4181   // 111: spe_acc
   4182   // 112: spefscr
   4183   // 113: sfp
   4184   AssignToArrayRange(Builder, Address, Four8, 109, 113);
   4185 
   4186   return false;
   4187 }
   4188 
   4189 bool
   4190 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
   4191   CodeGen::CodeGenFunction &CGF,
   4192   llvm::Value *Address) const {
   4193 
   4194   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
   4195 }
   4196 
   4197 bool
   4198 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
   4199                                                 llvm::Value *Address) const {
   4200 
   4201   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
   4202 }
   4203 
   4204 //===----------------------------------------------------------------------===//
   4205 // AArch64 ABI Implementation
   4206 //===----------------------------------------------------------------------===//
   4207 
   4208 namespace {
   4209 
   4210 class AArch64ABIInfo : public ABIInfo {
   4211 public:
   4212   enum ABIKind {
   4213     AAPCS = 0,
   4214     DarwinPCS
   4215   };
   4216 
   4217 private:
   4218   ABIKind Kind;
   4219 
   4220 public:
   4221   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {}
   4222 
   4223 private:
   4224   ABIKind getABIKind() const { return Kind; }
   4225   bool isDarwinPCS() const { return Kind == DarwinPCS; }
   4226 
   4227   ABIArgInfo classifyReturnType(QualType RetTy) const;
   4228   ABIArgInfo classifyArgumentType(QualType RetTy) const;
   4229   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
   4230   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
   4231                                          uint64_t Members) const override;
   4232 
   4233   bool isIllegalVectorType(QualType Ty) const;
   4234 
   4235   void computeInfo(CGFunctionInfo &FI) const override {
   4236     if (!getCXXABI().classifyReturnType(FI))
   4237       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
   4238 
   4239     for (auto &it : FI.arguments())
   4240       it.info = classifyArgumentType(it.type);
   4241   }
   4242 
   4243   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
   4244                           CodeGenFunction &CGF) const;
   4245 
   4246   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
   4247                          CodeGenFunction &CGF) const;
   4248 
   4249   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   4250                     QualType Ty) const override {
   4251     return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
   4252                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
   4253   }
   4254 };
   4255 
   4256 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
   4257 public:
   4258   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
   4259       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
   4260 
   4261   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
   4262     return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue";
   4263   }
   4264 
   4265   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
   4266     return 31;
   4267   }
   4268 
   4269   bool doesReturnSlotInterfereWithArgs() const override { return false; }
   4270 };
   4271 }
   4272 
   4273 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
   4274   Ty = useFirstFieldIfTransparentUnion(Ty);
   4275 
   4276   // Handle illegal vector types here.
   4277   if (isIllegalVectorType(Ty)) {
   4278     uint64_t Size = getContext().getTypeSize(Ty);
   4279     // Android promotes <2 x i8> to i16, not i32
   4280     if (Size <= 16) {
   4281       llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
   4282       return ABIArgInfo::getDirect(ResType);
   4283     }
   4284     if (Size == 32) {
   4285       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
   4286       return ABIArgInfo::getDirect(ResType);
   4287     }
   4288     if (Size == 64) {
   4289       llvm::Type *ResType =
   4290           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
   4291       return ABIArgInfo::getDirect(ResType);
   4292     }
   4293     if (Size == 128) {
   4294       llvm::Type *ResType =
   4295           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
   4296       return ABIArgInfo::getDirect(ResType);
   4297     }
   4298     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
   4299   }
   4300 
   4301   if (!isAggregateTypeForABI(Ty)) {
   4302     // Treat an enum type as its underlying type.
   4303     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
   4304       Ty = EnumTy->getDecl()->getIntegerType();
   4305 
   4306     return (Ty->isPromotableIntegerType() && isDarwinPCS()
   4307                 ? ABIArgInfo::getExtend()
   4308                 : ABIArgInfo::getDirect());
   4309   }
   4310 
   4311   // Structures with either a non-trivial destructor or a non-trivial
   4312   // copy constructor are always indirect.
   4313   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
   4314     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
   4315                                      CGCXXABI::RAA_DirectInMemory);
   4316   }
   4317 
   4318   // Empty records are always ignored on Darwin, but actually passed in C++ mode
   4319   // elsewhere for GNU compatibility.
   4320   if (isEmptyRecord(getContext(), Ty, true)) {
   4321     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
   4322       return ABIArgInfo::getIgnore();
   4323 
   4324     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
   4325   }
   4326 
   4327   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
   4328   const Type *Base = nullptr;
   4329   uint64_t Members = 0;
   4330   if (isHomogeneousAggregate(Ty, Base, Members)) {
   4331     return ABIArgInfo::getDirect(
   4332         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
   4333   }
   4334 
   4335   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
   4336   uint64_t Size = getContext().getTypeSize(Ty);
   4337   if (Size <= 128) {
   4338     if (getContext().getLangOpts().Renderscript) {
   4339       return coerceToIntArray(Ty, getContext(), getVMContext());
   4340     }
   4341     unsigned Alignment = getContext().getTypeAlign(Ty);
   4342     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
   4343 
   4344     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
   4345     // For aggregates with 16-byte alignment, we use i128.
   4346     if (Alignment < 128 && Size == 128) {
   4347       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
   4348       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
   4349     }
   4350     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
   4351   }
   4352 
   4353   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
   4354 }
   4355 
   4356 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
   4357   if (RetTy->isVoidType())
   4358     return ABIArgInfo::getIgnore();
   4359 
   4360   // Large vector types should be returned via memory.
   4361   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
   4362     return getNaturalAlignIndirect(RetTy);
   4363 
   4364   if (!isAggregateTypeForABI(RetTy)) {
   4365     // Treat an enum type as its underlying type.
   4366     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
   4367       RetTy = EnumTy->getDecl()->getIntegerType();
   4368 
   4369     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
   4370                 ? ABIArgInfo::getExtend()
   4371                 : ABIArgInfo::getDirect());
   4372   }
   4373 
   4374   if (isEmptyRecord(getContext(), RetTy, true))
   4375     return ABIArgInfo::getIgnore();
   4376 
   4377   const Type *Base = nullptr;
   4378   uint64_t Members = 0;
   4379   if (isHomogeneousAggregate(RetTy, Base, Members))
   4380     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
   4381     return ABIArgInfo::getDirect();
   4382 
   4383   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
   4384   uint64_t Size = getContext().getTypeSize(RetTy);
   4385   if (Size <= 128) {
   4386     if (getContext().getLangOpts().Renderscript) {
   4387       return coerceToIntArray(RetTy, getContext(), getVMContext());
   4388     }
   4389     unsigned Alignment = getContext().getTypeAlign(RetTy);
   4390     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
   4391 
   4392     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
   4393     // For aggregates with 16-byte alignment, we use i128.
   4394     if (Alignment < 128 && Size == 128) {
   4395       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
   4396       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
   4397     }
   4398     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
   4399   }
   4400 
   4401   return getNaturalAlignIndirect(RetTy);
   4402 }
   4403 
   4404 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
   4405 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
   4406   if (const VectorType *VT = Ty->getAs<VectorType>()) {
   4407     // Check whether VT is legal.
   4408     unsigned NumElements = VT->getNumElements();
   4409     uint64_t Size = getContext().getTypeSize(VT);
   4410     // NumElements should be power of 2 between 1 and 16.
   4411     if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16)
   4412       return true;
   4413     return Size != 64 && (Size != 128 || NumElements == 1);
   4414   }
   4415   return false;
   4416 }
   4417 
   4418 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
   4419   // Homogeneous aggregates for AAPCS64 must have base types of a floating
   4420   // point type or a short-vector type. This is the same as the 32-bit ABI,
   4421   // but with the difference that any floating-point type is allowed,
   4422   // including __fp16.
   4423   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
   4424     if (BT->isFloatingPoint())
   4425       return true;
   4426   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
   4427     unsigned VecSize = getContext().getTypeSize(VT);
   4428     if (VecSize == 64 || VecSize == 128)
   4429       return true;
   4430   }
   4431   return false;
   4432 }
   4433 
   4434 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
   4435                                                        uint64_t Members) const {
   4436   return Members <= 4;
   4437 }
   4438 
   4439 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
   4440                                             QualType Ty,
   4441                                             CodeGenFunction &CGF) const {
   4442   ABIArgInfo AI = classifyArgumentType(Ty);
   4443   bool IsIndirect = AI.isIndirect();
   4444 
   4445   llvm::Type *BaseTy = CGF.ConvertType(Ty);
   4446   if (IsIndirect)
   4447     BaseTy = llvm::PointerType::getUnqual(BaseTy);
   4448   else if (AI.getCoerceToType())
   4449     BaseTy = AI.getCoerceToType();
   4450 
   4451   unsigned NumRegs = 1;
   4452   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
   4453     BaseTy = ArrTy->getElementType();
   4454     NumRegs = ArrTy->getNumElements();
   4455   }
   4456   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
   4457 
   4458   // The AArch64 va_list type and handling is specified in the Procedure Call
   4459   // Standard, section B.4:
   4460   //
   4461   // struct {
   4462   //   void *__stack;
   4463   //   void *__gr_top;
   4464   //   void *__vr_top;
   4465   //   int __gr_offs;
   4466   //   int __vr_offs;
   4467   // };
   4468 
   4469   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
   4470   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
   4471   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
   4472   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
   4473 
   4474   auto TyInfo = getContext().getTypeInfoInChars(Ty);
   4475   CharUnits TyAlign = TyInfo.second;
   4476 
   4477   Address reg_offs_p = Address::invalid();
   4478   llvm::Value *reg_offs = nullptr;
   4479   int reg_top_index;
   4480   CharUnits reg_top_offset;
   4481   int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity();
   4482   if (!IsFPR) {
   4483     // 3 is the field number of __gr_offs
   4484     reg_offs_p =
   4485         CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
   4486                                     "gr_offs_p");
   4487     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
   4488     reg_top_index = 1; // field number for __gr_top
   4489     reg_top_offset = CharUnits::fromQuantity(8);
   4490     RegSize = llvm::RoundUpToAlignment(RegSize, 8);
   4491   } else {
   4492     // 4 is the field number of __vr_offs.
   4493     reg_offs_p =
   4494         CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28),
   4495                                     "vr_offs_p");
   4496     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
   4497     reg_top_index = 2; // field number for __vr_top
   4498     reg_top_offset = CharUnits::fromQuantity(16);
   4499     RegSize = 16 * NumRegs;
   4500   }
   4501 
   4502   //=======================================
   4503   // Find out where argument was passed
   4504   //=======================================
   4505 
   4506   // If reg_offs >= 0 we're already using the stack for this type of
   4507   // argument. We don't want to keep updating reg_offs (in case it overflows,
   4508   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
   4509   // whatever they get).
   4510   llvm::Value *UsingStack = nullptr;
   4511   UsingStack = CGF.Builder.CreateICmpSGE(
   4512       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
   4513 
   4514   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
   4515 
   4516   // Otherwise, at least some kind of argument could go in these registers, the
   4517   // question is whether this particular type is too big.
   4518   CGF.EmitBlock(MaybeRegBlock);
   4519 
   4520   // Integer arguments may need to correct register alignment (for example a
   4521   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
   4522   // align __gr_offs to calculate the potential address.
   4523   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
   4524     int Align = TyAlign.getQuantity();
   4525 
   4526     reg_offs = CGF.Builder.CreateAdd(
   4527         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
   4528         "align_regoffs");
   4529     reg_offs = CGF.Builder.CreateAnd(
   4530         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
   4531         "aligned_regoffs");
   4532   }
   4533 
   4534   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
   4535   // The fact that this is done unconditionally reflects the fact that
   4536   // allocating an argument to the stack also uses up all the remaining
   4537   // registers of the appropriate kind.
   4538   llvm::Value *NewOffset = nullptr;
   4539   NewOffset = CGF.Builder.CreateAdd(
   4540       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
   4541   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
   4542 
   4543   // Now we're in a position to decide whether this argument really was in
   4544   // registers or not.
   4545   llvm::Value *InRegs = nullptr;
   4546   InRegs = CGF.Builder.CreateICmpSLE(
   4547       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
   4548 
   4549   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
   4550 
   4551   //=======================================
   4552   // Argument was in registers
   4553   //=======================================
   4554 
   4555   // Now we emit the code for if the argument was originally passed in
   4556   // registers. First start the appropriate block:
   4557   CGF.EmitBlock(InRegBlock);
   4558 
   4559   llvm::Value *reg_top = nullptr;
   4560   Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index,
   4561                                                   reg_top_offset, "reg_top_p");
   4562   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
   4563   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
   4564                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
   4565   Address RegAddr = Address::invalid();
   4566   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
   4567 
   4568   if (IsIndirect) {
   4569     // If it's been passed indirectly (actually a struct), whatever we find from
   4570     // stored registers or on the stack will actually be a struct **.
   4571     MemTy = llvm::PointerType::getUnqual(MemTy);
   4572   }
   4573 
   4574   const Type *Base = nullptr;
   4575   uint64_t NumMembers = 0;
   4576   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
   4577   if (IsHFA && NumMembers > 1) {
   4578     // Homogeneous aggregates passed in registers will have their elements split
   4579     // and stored 16-bytes apart regardless of size (they're notionally in qN,
   4580     // qN+1, ...). We reload and store into a temporary local variable
   4581     // contiguously.
   4582     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
   4583     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
   4584     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
   4585     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
   4586     Address Tmp = CGF.CreateTempAlloca(HFATy,
   4587                                        std::max(TyAlign, BaseTyInfo.second));
   4588 
   4589     // On big-endian platforms, the value will be right-aligned in its slot.
   4590     int Offset = 0;
   4591     if (CGF.CGM.getDataLayout().isBigEndian() &&
   4592         BaseTyInfo.first.getQuantity() < 16)
   4593       Offset = 16 - BaseTyInfo.first.getQuantity();
   4594 
   4595     for (unsigned i = 0; i < NumMembers; ++i) {
   4596       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
   4597       Address LoadAddr =
   4598         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
   4599       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
   4600 
   4601       Address StoreAddr =
   4602         CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first);
   4603 
   4604       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
   4605       CGF.Builder.CreateStore(Elem, StoreAddr);
   4606     }
   4607 
   4608     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
   4609   } else {
   4610     // Otherwise the object is contiguous in memory.
   4611 
   4612     // It might be right-aligned in its slot.
   4613     CharUnits SlotSize = BaseAddr.getAlignment();
   4614     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
   4615         (IsHFA || !isAggregateTypeForABI(Ty)) &&
   4616         TyInfo.first < SlotSize) {
   4617       CharUnits Offset = SlotSize - TyInfo.first;
   4618       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
   4619     }
   4620 
   4621     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
   4622   }
   4623 
   4624   CGF.EmitBranch(ContBlock);
   4625 
   4626   //=======================================
   4627   // Argument was on the stack
   4628   //=======================================
   4629   CGF.EmitBlock(OnStackBlock);
   4630 
   4631   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0,
   4632                                                 CharUnits::Zero(), "stack_p");
   4633   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
   4634 
   4635   // Again, stack arguments may need realignment. In this case both integer and
   4636   // floating-point ones might be affected.
   4637   if (!IsIndirect && TyAlign.getQuantity() > 8) {
   4638     int Align = TyAlign.getQuantity();
   4639 
   4640     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
   4641 
   4642     OnStackPtr = CGF.Builder.CreateAdd(
   4643         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
   4644         "align_stack");
   4645     OnStackPtr = CGF.Builder.CreateAnd(
   4646         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
   4647         "align_stack");
   4648 
   4649     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
   4650   }
   4651   Address OnStackAddr(OnStackPtr,
   4652                       std::max(CharUnits::fromQuantity(8), TyAlign));
   4653 
   4654   // All stack slots are multiples of 8 bytes.
   4655   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
   4656   CharUnits StackSize;
   4657   if (IsIndirect)
   4658     StackSize = StackSlotSize;
   4659   else
   4660     StackSize = TyInfo.first.RoundUpToAlignment(StackSlotSize);
   4661 
   4662   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
   4663   llvm::Value *NewStack =
   4664       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
   4665 
   4666   // Write the new value of __stack for the next call to va_arg
   4667   CGF.Builder.CreateStore(NewStack, stack_p);
   4668 
   4669   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
   4670       TyInfo.first < StackSlotSize) {
   4671     CharUnits Offset = StackSlotSize - TyInfo.first;
   4672     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
   4673   }
   4674 
   4675   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
   4676 
   4677   CGF.EmitBranch(ContBlock);
   4678 
   4679   //=======================================
   4680   // Tidy up
   4681   //=======================================
   4682   CGF.EmitBlock(ContBlock);
   4683 
   4684   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
   4685                                  OnStackAddr, OnStackBlock, "vaargs.addr");
   4686 
   4687   if (IsIndirect)
   4688     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
   4689                    TyInfo.second);
   4690 
   4691   return ResAddr;
   4692 }
   4693 
   4694 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
   4695                                         CodeGenFunction &CGF) const {
   4696   // The backend's lowering doesn't support va_arg for aggregates or
   4697   // illegal vector types.  Lower VAArg here for these cases and use
   4698   // the LLVM va_arg instruction for everything else.
   4699   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
   4700     return Address::invalid();
   4701 
   4702   CharUnits SlotSize = CharUnits::fromQuantity(8);
   4703 
   4704   // Empty records are ignored for parameter passing purposes.
   4705   if (isEmptyRecord(getContext(), Ty, true)) {
   4706     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
   4707     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
   4708     return Addr;
   4709   }
   4710 
   4711   // The size of the actual thing passed, which might end up just
   4712   // being a pointer for indirect types.
   4713   auto TyInfo = getContext().getTypeInfoInChars(Ty);
   4714 
   4715   // Arguments bigger than 16 bytes which aren't homogeneous
   4716   // aggregates should be passed indirectly.
   4717   bool IsIndirect = false;
   4718   if (TyInfo.first.getQuantity() > 16) {
   4719     const Type *Base = nullptr;
   4720     uint64_t Members = 0;
   4721     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
   4722   }
   4723 
   4724   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
   4725                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
   4726 }
   4727 
   4728 //===----------------------------------------------------------------------===//
   4729 // ARM ABI Implementation
   4730 //===----------------------------------------------------------------------===//
   4731 
   4732 namespace {
   4733 
   4734 class ARMABIInfo : public ABIInfo {
   4735 public:
   4736   enum ABIKind {
   4737     APCS = 0,
   4738     AAPCS = 1,
   4739     AAPCS_VFP = 2,
   4740     AAPCS16_VFP = 3,
   4741   };
   4742 
   4743 private:
   4744   ABIKind Kind;
   4745 
   4746 public:
   4747   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {
   4748     setCCs();
   4749   }
   4750 
   4751   bool isEABI() const {
   4752     switch (getTarget().getTriple().getEnvironment()) {
   4753     case llvm::Triple::Android:
   4754     case llvm::Triple::EABI:
   4755     case llvm::Triple::EABIHF:
   4756     case llvm::Triple::GNUEABI:
   4757     case llvm::Triple::GNUEABIHF:
   4758       return true;
   4759     default:
   4760       return false;
   4761     }
   4762   }
   4763 
   4764   bool isEABIHF() const {
   4765     switch (getTarget().getTriple().getEnvironment()) {
   4766     case llvm::Triple::EABIHF:
   4767     case llvm::Triple::GNUEABIHF:
   4768       return true;
   4769     default:
   4770       return false;
   4771     }
   4772   }
   4773 
   4774   bool isAndroid() const {
   4775     return (getTarget().getTriple().getEnvironment() ==
   4776             llvm::Triple::Android || getContext().getLangOpts().Renderscript);
   4777   }
   4778 
   4779   ABIKind getABIKind() const { return Kind; }
   4780 
   4781 private:
   4782   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
   4783   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const;
   4784   bool isIllegalVectorType(QualType Ty) const;
   4785 
   4786   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
   4787   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
   4788                                          uint64_t Members) const override;
   4789 
   4790   void computeInfo(CGFunctionInfo &FI) const override;
   4791 
   4792   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   4793                     QualType Ty) const override;
   4794 
   4795   llvm::CallingConv::ID getLLVMDefaultCC() const;
   4796   llvm::CallingConv::ID getABIDefaultCC() const;
   4797   void setCCs();
   4798 };
   4799 
   4800 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
   4801 public:
   4802   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
   4803     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
   4804 
   4805   const ARMABIInfo &getABIInfo() const {
   4806     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
   4807   }
   4808 
   4809   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
   4810     return 13;
   4811   }
   4812 
   4813   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
   4814     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
   4815   }
   4816 
   4817   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
   4818                                llvm::Value *Address) const override {
   4819     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
   4820 
   4821     // 0-15 are the 16 integer registers.
   4822     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
   4823     return false;
   4824   }
   4825 
   4826   unsigned getSizeOfUnwindException() const override {
   4827     if (getABIInfo().isEABI()) return 88;
   4828     return TargetCodeGenInfo::getSizeOfUnwindException();
   4829   }
   4830 
   4831   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
   4832                            CodeGen::CodeGenModule &CGM) const override {
   4833     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
   4834     if (!FD)
   4835       return;
   4836 
   4837     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
   4838     if (!Attr)
   4839       return;
   4840 
   4841     const char *Kind;
   4842     switch (Attr->getInterrupt()) {
   4843     case ARMInterruptAttr::Generic: Kind = ""; break;
   4844     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
   4845     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
   4846     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
   4847     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
   4848     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
   4849     }
   4850 
   4851     llvm::Function *Fn = cast<llvm::Function>(GV);
   4852 
   4853     Fn->addFnAttr("interrupt", Kind);
   4854 
   4855     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
   4856     if (ABI == ARMABIInfo::APCS)
   4857       return;
   4858 
   4859     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
   4860     // however this is not necessarily true on taking any interrupt. Instruct
   4861     // the backend to perform a realignment as part of the function prologue.
   4862     llvm::AttrBuilder B;
   4863     B.addStackAlignmentAttr(8);
   4864     Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
   4865                       llvm::AttributeSet::get(CGM.getLLVMContext(),
   4866                                               llvm::AttributeSet::FunctionIndex,
   4867                                               B));
   4868   }
   4869 };
   4870 
   4871 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
   4872   void addStackProbeSizeTargetAttribute(const Decl *D, llvm::GlobalValue *GV,
   4873                                         CodeGen::CodeGenModule &CGM) const;
   4874 
   4875 public:
   4876   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
   4877       : ARMTargetCodeGenInfo(CGT, K) {}
   4878 
   4879   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
   4880                            CodeGen::CodeGenModule &CGM) const override;
   4881 };
   4882 
   4883 void WindowsARMTargetCodeGenInfo::addStackProbeSizeTargetAttribute(
   4884     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
   4885   if (!isa<FunctionDecl>(D))
   4886     return;
   4887   if (CGM.getCodeGenOpts().StackProbeSize == 4096)
   4888     return;
   4889 
   4890   llvm::Function *F = cast<llvm::Function>(GV);
   4891   F->addFnAttr("stack-probe-size",
   4892                llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
   4893 }
   4894 
   4895 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
   4896     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
   4897   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
   4898   addStackProbeSizeTargetAttribute(D, GV, CGM);
   4899 }
   4900 }
   4901 
   4902 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
   4903   if (!getCXXABI().classifyReturnType(FI))
   4904     FI.getReturnInfo() =
   4905         classifyReturnType(FI.getReturnType(), FI.isVariadic());
   4906 
   4907   for (auto &I : FI.arguments())
   4908     I.info = classifyArgumentType(I.type, FI.isVariadic());
   4909 
   4910   // Always honor user-specified calling convention.
   4911   if (FI.getCallingConvention() != llvm::CallingConv::C)
   4912     return;
   4913 
   4914   llvm::CallingConv::ID cc = getRuntimeCC();
   4915   if (cc != llvm::CallingConv::C)
   4916     FI.setEffectiveCallingConvention(cc);
   4917 }
   4918 
   4919 /// Return the default calling convention that LLVM will use.
   4920 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
   4921   // The default calling convention that LLVM will infer.
   4922   if (isEABIHF() || getTarget().getTriple().isWatchOS())
   4923     return llvm::CallingConv::ARM_AAPCS_VFP;
   4924   else if (isEABI())
   4925     return llvm::CallingConv::ARM_AAPCS;
   4926   else
   4927     return llvm::CallingConv::ARM_APCS;
   4928 }
   4929 
   4930 /// Return the calling convention that our ABI would like us to use
   4931 /// as the C calling convention.
   4932 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
   4933   switch (getABIKind()) {
   4934   case APCS: return llvm::CallingConv::ARM_APCS;
   4935   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
   4936   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
   4937   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
   4938   }
   4939   llvm_unreachable("bad ABI kind");
   4940 }
   4941 
   4942 void ARMABIInfo::setCCs() {
   4943   assert(getRuntimeCC() == llvm::CallingConv::C);
   4944 
   4945   // Don't muddy up the IR with a ton of explicit annotations if
   4946   // they'd just match what LLVM will infer from the triple.
   4947   llvm::CallingConv::ID abiCC = getABIDefaultCC();
   4948   if (abiCC != getLLVMDefaultCC())
   4949     RuntimeCC = abiCC;
   4950 
   4951   // AAPCS apparently requires runtime support functions to be soft-float, but
   4952   // that's almost certainly for historic reasons (Thumb1 not supporting VFP
   4953   // most likely). It's more convenient for AAPCS16_VFP to be hard-float.
   4954   switch (getABIKind()) {
   4955   case APCS:
   4956   case AAPCS16_VFP:
   4957     if (abiCC != getLLVMDefaultCC())
   4958       BuiltinCC = abiCC;
   4959     break;
   4960   case AAPCS:
   4961   case AAPCS_VFP:
   4962     BuiltinCC = llvm::CallingConv::ARM_AAPCS;
   4963     break;
   4964   }
   4965 }
   4966 
   4967 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
   4968                                             bool isVariadic) const {
   4969   // 6.1.2.1 The following argument types are VFP CPRCs:
   4970   //   A single-precision floating-point type (including promoted
   4971   //   half-precision types); A double-precision floating-point type;
   4972   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
   4973   //   with a Base Type of a single- or double-precision floating-point type,
   4974   //   64-bit containerized vectors or 128-bit containerized vectors with one
   4975   //   to four Elements.
   4976   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
   4977 
   4978   Ty = useFirstFieldIfTransparentUnion(Ty);
   4979 
   4980   // Handle illegal vector types here.
   4981   if (isIllegalVectorType(Ty)) {
   4982     uint64_t Size = getContext().getTypeSize(Ty);
   4983     if (Size <= 32) {
   4984       llvm::Type *ResType =
   4985           llvm::Type::getInt32Ty(getVMContext());
   4986       return ABIArgInfo::getDirect(ResType);
   4987     }
   4988     if (Size == 64) {
   4989       llvm::Type *ResType = llvm::VectorType::get(
   4990           llvm::Type::getInt32Ty(getVMContext()), 2);
   4991       return ABIArgInfo::getDirect(ResType);
   4992     }
   4993     if (Size == 128) {
   4994       llvm::Type *ResType = llvm::VectorType::get(
   4995           llvm::Type::getInt32Ty(getVMContext()), 4);
   4996       return ABIArgInfo::getDirect(ResType);
   4997     }
   4998     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
   4999   }
   5000 
   5001   // __fp16 gets passed as if it were an int or float, but with the top 16 bits
   5002   // unspecified. This is not done for OpenCL as it handles the half type
   5003   // natively, and does not need to interwork with AAPCS code.
   5004   if (Ty->isHalfType() && !getContext().getLangOpts().HalfArgsAndReturns) {
   5005     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
   5006       llvm::Type::getFloatTy(getVMContext()) :
   5007       llvm::Type::getInt32Ty(getVMContext());
   5008     return ABIArgInfo::getDirect(ResType);
   5009   }
   5010 
   5011   if (!isAggregateTypeForABI(Ty)) {
   5012     // Treat an enum type as its underlying type.
   5013     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
   5014       Ty = EnumTy->getDecl()->getIntegerType();
   5015     }
   5016 
   5017     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend()
   5018                                           : ABIArgInfo::getDirect());
   5019   }
   5020 
   5021   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
   5022     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
   5023   }
   5024 
   5025   // Ignore empty records.
   5026   if (isEmptyRecord(getContext(), Ty, true))
   5027     return ABIArgInfo::getIgnore();
   5028 
   5029   if (IsEffectivelyAAPCS_VFP) {
   5030     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
   5031     // into VFP registers.
   5032     const Type *Base = nullptr;
   5033     uint64_t Members = 0;
   5034     if (isHomogeneousAggregate(Ty, Base, Members)) {
   5035       assert(Base && "Base class should be set for homogeneous aggregate");
   5036       // Base can be a floating-point or a vector.
   5037       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
   5038     }
   5039   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
   5040     // WatchOS does have homogeneous aggregates. Note that we intentionally use
   5041     // this convention even for a variadic function: the backend will use GPRs
   5042     // if needed.
   5043     const Type *Base = nullptr;
   5044     uint64_t Members = 0;
   5045     if (isHomogeneousAggregate(Ty, Base, Members)) {
   5046       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
   5047       llvm::Type *Ty =
   5048         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
   5049       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
   5050     }
   5051   }
   5052 
   5053   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
   5054       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
   5055     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
   5056     // bigger than 128-bits, they get placed in space allocated by the caller,
   5057     // and a pointer is passed.
   5058     return ABIArgInfo::getIndirect(
   5059         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
   5060   }
   5061 
   5062   // Support byval for ARM.
   5063   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
   5064   // most 8-byte. We realign the indirect argument if type alignment is bigger
   5065   // than ABI alignment.
   5066   uint64_t ABIAlign = 4;
   5067   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
   5068   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
   5069        getABIKind() == ARMABIInfo::AAPCS)
   5070     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
   5071 
   5072   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
   5073     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
   5074     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
   5075                                    /*ByVal=*/true,
   5076                                    /*Realign=*/TyAlign > ABIAlign);
   5077   }
   5078 
   5079   if (getContext().getLangOpts().Renderscript) {
   5080     return coerceToIntArray(Ty, getContext(), getVMContext());
   5081   }
   5082 
   5083   // Otherwise, pass by coercing to a structure of the appropriate size.
   5084   llvm::Type* ElemTy;
   5085   unsigned SizeRegs;
   5086   // FIXME: Try to match the types of the arguments more accurately where
   5087   // we can.
   5088   if (getContext().getTypeAlign(Ty) <= 32) {
   5089     ElemTy = llvm::Type::getInt32Ty(getVMContext());
   5090     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
   5091   } else {
   5092     ElemTy = llvm::Type::getInt64Ty(getVMContext());
   5093     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
   5094   }
   5095 
   5096   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
   5097 }
   5098 
   5099 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
   5100                               llvm::LLVMContext &VMContext) {
   5101   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
   5102   // is called integer-like if its size is less than or equal to one word, and
   5103   // the offset of each of its addressable sub-fields is zero.
   5104 
   5105   uint64_t Size = Context.getTypeSize(Ty);
   5106 
   5107   // Check that the type fits in a word.
   5108   if (Size > 32)
   5109     return false;
   5110 
   5111   // FIXME: Handle vector types!
   5112   if (Ty->isVectorType())
   5113     return false;
   5114 
   5115   // Float types are never treated as "integer like".
   5116   if (Ty->isRealFloatingType())
   5117     return false;
   5118 
   5119   // If this is a builtin or pointer type then it is ok.
   5120   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
   5121     return true;
   5122 
   5123   // Small complex integer types are "integer like".
   5124   if (const ComplexType *CT = Ty->getAs<ComplexType>())
   5125     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
   5126 
   5127   // Single element and zero sized arrays should be allowed, by the definition
   5128   // above, but they are not.
   5129 
   5130   // Otherwise, it must be a record type.
   5131   const RecordType *RT = Ty->getAs<RecordType>();
   5132   if (!RT) return false;
   5133 
   5134   // Ignore records with flexible arrays.
   5135   const RecordDecl *RD = RT->getDecl();
   5136   if (RD->hasFlexibleArrayMember())
   5137     return false;
   5138 
   5139   // Check that all sub-fields are at offset 0, and are themselves "integer
   5140   // like".
   5141   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
   5142 
   5143   bool HadField = false;
   5144   unsigned idx = 0;
   5145   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
   5146        i != e; ++i, ++idx) {
   5147     const FieldDecl *FD = *i;
   5148 
   5149     // Bit-fields are not addressable, we only need to verify they are "integer
   5150     // like". We still have to disallow a subsequent non-bitfield, for example:
   5151     //   struct { int : 0; int x }
   5152     // is non-integer like according to gcc.
   5153     if (FD->isBitField()) {
   5154       if (!RD->isUnion())
   5155         HadField = true;
   5156 
   5157       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
   5158         return false;
   5159 
   5160       continue;
   5161     }
   5162 
   5163     // Check if this field is at offset 0.
   5164     if (Layout.getFieldOffset(idx) != 0)
   5165       return false;
   5166 
   5167     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
   5168       return false;
   5169 
   5170     // Only allow at most one field in a structure. This doesn't match the
   5171     // wording above, but follows gcc in situations with a field following an
   5172     // empty structure.
   5173     if (!RD->isUnion()) {
   5174       if (HadField)
   5175         return false;
   5176 
   5177       HadField = true;
   5178     }
   5179   }
   5180 
   5181   return true;
   5182 }
   5183 
   5184 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
   5185                                           bool isVariadic) const {
   5186   bool IsEffectivelyAAPCS_VFP =
   5187       (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic;
   5188 
   5189   if (RetTy->isVoidType())
   5190     return ABIArgInfo::getIgnore();
   5191 
   5192   // Large vector types should be returned via memory.
   5193   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
   5194     return getNaturalAlignIndirect(RetTy);
   5195   }
   5196 
   5197   // __fp16 gets returned as if it were an int or float, but with the top 16
   5198   // bits unspecified. This is not done for OpenCL as it handles the half type
   5199   // natively, and does not need to interwork with AAPCS code.
   5200   if (RetTy->isHalfType() && !getContext().getLangOpts().HalfArgsAndReturns) {
   5201     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
   5202       llvm::Type::getFloatTy(getVMContext()) :
   5203       llvm::Type::getInt32Ty(getVMContext());
   5204     return ABIArgInfo::getDirect(ResType);
   5205   }
   5206 
   5207   if (!isAggregateTypeForABI(RetTy)) {
   5208     // Treat an enum type as its underlying type.
   5209     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
   5210       RetTy = EnumTy->getDecl()->getIntegerType();
   5211 
   5212     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend()
   5213                                             : ABIArgInfo::getDirect();
   5214   }
   5215 
   5216   // Are we following APCS?
   5217   if (getABIKind() == APCS) {
   5218     if (isEmptyRecord(getContext(), RetTy, false))
   5219       return ABIArgInfo::getIgnore();
   5220 
   5221     // Complex types are all returned as packed integers.
   5222     //
   5223     // FIXME: Consider using 2 x vector types if the back end handles them
   5224     // correctly.
   5225     if (RetTy->isAnyComplexType())
   5226       return ABIArgInfo::getDirect(llvm::IntegerType::get(
   5227           getVMContext(), getContext().getTypeSize(RetTy)));
   5228 
   5229     // Integer like structures are returned in r0.
   5230     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
   5231       // Return in the smallest viable integer type.
   5232       uint64_t Size = getContext().getTypeSize(RetTy);
   5233       if (Size <= 8)
   5234         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
   5235       if (Size <= 16)
   5236         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
   5237       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
   5238     }
   5239 
   5240     // Otherwise return in memory.
   5241     return getNaturalAlignIndirect(RetTy);
   5242   }
   5243 
   5244   // Otherwise this is an AAPCS variant.
   5245 
   5246   if (isEmptyRecord(getContext(), RetTy, true))
   5247     return ABIArgInfo::getIgnore();
   5248 
   5249   // Check for homogeneous aggregates with AAPCS-VFP.
   5250   if (IsEffectivelyAAPCS_VFP) {
   5251     const Type *Base = nullptr;
   5252     uint64_t Members = 0;
   5253     if (isHomogeneousAggregate(RetTy, Base, Members)) {
   5254       assert(Base && "Base class should be set for homogeneous aggregate");
   5255       // Homogeneous Aggregates are returned directly.
   5256       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
   5257     }
   5258   }
   5259 
   5260   // Aggregates <= 4 bytes are returned in r0; other aggregates
   5261   // are returned indirectly.
   5262   uint64_t Size = getContext().getTypeSize(RetTy);
   5263   if (Size <= 32) {
   5264     if (getContext().getLangOpts().Renderscript) {
   5265       return coerceToIntArray(RetTy, getContext(), getVMContext());
   5266     }
   5267     if (getDataLayout().isBigEndian())
   5268       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
   5269       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
   5270 
   5271     // Return in the smallest viable integer type.
   5272     if (Size <= 8)
   5273       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
   5274     if (Size <= 16)
   5275       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
   5276     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
   5277   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
   5278     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
   5279     llvm::Type *CoerceTy =
   5280         llvm::ArrayType::get(Int32Ty, llvm::RoundUpToAlignment(Size, 32) / 32);
   5281     return ABIArgInfo::getDirect(CoerceTy);
   5282   }
   5283 
   5284   return getNaturalAlignIndirect(RetTy);
   5285 }
   5286 
   5287 /// isIllegalVector - check whether Ty is an illegal vector type.
   5288 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
   5289   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
   5290     if (isAndroid()) {
   5291       // Android shipped using Clang 3.1, which supported a slightly different
   5292       // vector ABI. The primary differences were that 3-element vector types
   5293       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
   5294       // accepts that legacy behavior for Android only.
   5295       // Check whether VT is legal.
   5296       unsigned NumElements = VT->getNumElements();
   5297       // NumElements should be power of 2 or equal to 3.
   5298       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
   5299         return true;
   5300     } else {
   5301       // Check whether VT is legal.
   5302       unsigned NumElements = VT->getNumElements();
   5303       uint64_t Size = getContext().getTypeSize(VT);
   5304       // NumElements should be power of 2.
   5305       if (!llvm::isPowerOf2_32(NumElements))
   5306         return true;
   5307       // Size should be greater than 32 bits.
   5308       return Size <= 32;
   5309     }
   5310   }
   5311   return false;
   5312 }
   5313 
   5314 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
   5315   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
   5316   // double, or 64-bit or 128-bit vectors.
   5317   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
   5318     if (BT->getKind() == BuiltinType::Float ||
   5319         BT->getKind() == BuiltinType::Double ||
   5320         BT->getKind() == BuiltinType::LongDouble)
   5321       return true;
   5322   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
   5323     unsigned VecSize = getContext().getTypeSize(VT);
   5324     if (VecSize == 64 || VecSize == 128)
   5325       return true;
   5326   }
   5327   return false;
   5328 }
   5329 
   5330 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
   5331                                                    uint64_t Members) const {
   5332   return Members <= 4;
   5333 }
   5334 
   5335 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   5336                               QualType Ty) const {
   5337   CharUnits SlotSize = CharUnits::fromQuantity(4);
   5338 
   5339   // Empty records are ignored for parameter passing purposes.
   5340   if (isEmptyRecord(getContext(), Ty, true)) {
   5341     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
   5342     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
   5343     return Addr;
   5344   }
   5345 
   5346   auto TyInfo = getContext().getTypeInfoInChars(Ty);
   5347   CharUnits TyAlignForABI = TyInfo.second;
   5348 
   5349   // Use indirect if size of the illegal vector is bigger than 16 bytes.
   5350   bool IsIndirect = false;
   5351   const Type *Base = nullptr;
   5352   uint64_t Members = 0;
   5353   if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
   5354     IsIndirect = true;
   5355 
   5356   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
   5357   // allocated by the caller.
   5358   } else if (TyInfo.first > CharUnits::fromQuantity(16) &&
   5359              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
   5360              !isHomogeneousAggregate(Ty, Base, Members)) {
   5361     IsIndirect = true;
   5362 
   5363   // Otherwise, bound the type's ABI alignment.
   5364   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
   5365   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
   5366   // Our callers should be prepared to handle an under-aligned address.
   5367   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
   5368              getABIKind() == ARMABIInfo::AAPCS) {
   5369     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
   5370     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
   5371   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
   5372     // ARMv7k allows type alignment up to 16 bytes.
   5373     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
   5374     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
   5375   } else {
   5376     TyAlignForABI = CharUnits::fromQuantity(4);
   5377   }
   5378   TyInfo.second = TyAlignForABI;
   5379 
   5380   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
   5381                           SlotSize, /*AllowHigherAlign*/ true);
   5382 }
   5383 
   5384 //===----------------------------------------------------------------------===//
   5385 // NVPTX ABI Implementation
   5386 //===----------------------------------------------------------------------===//
   5387 
   5388 namespace {
   5389 
   5390 class NVPTXABIInfo : public ABIInfo {
   5391 public:
   5392   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
   5393 
   5394   ABIArgInfo classifyReturnType(QualType RetTy) const;
   5395   ABIArgInfo classifyArgumentType(QualType Ty) const;
   5396 
   5397   void computeInfo(CGFunctionInfo &FI) const override;
   5398   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   5399                     QualType Ty) const override;
   5400 };
   5401 
   5402 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
   5403 public:
   5404   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
   5405     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
   5406 
   5407   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
   5408                            CodeGen::CodeGenModule &M) const override;
   5409 private:
   5410   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
   5411   // resulting MDNode to the nvvm.annotations MDNode.
   5412   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
   5413 };
   5414 
   5415 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
   5416   if (RetTy->isVoidType())
   5417     return ABIArgInfo::getIgnore();
   5418 
   5419   // note: this is different from default ABI
   5420   if (!RetTy->isScalarType())
   5421     return ABIArgInfo::getDirect();
   5422 
   5423   // Treat an enum type as its underlying type.
   5424   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
   5425     RetTy = EnumTy->getDecl()->getIntegerType();
   5426 
   5427   return (RetTy->isPromotableIntegerType() ?
   5428           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   5429 }
   5430 
   5431 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
   5432   // Treat an enum type as its underlying type.
   5433   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
   5434     Ty = EnumTy->getDecl()->getIntegerType();
   5435 
   5436   // Return aggregates type as indirect by value
   5437   if (isAggregateTypeForABI(Ty))
   5438     return getNaturalAlignIndirect(Ty, /* byval */ true);
   5439 
   5440   return (Ty->isPromotableIntegerType() ?
   5441           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   5442 }
   5443 
   5444 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
   5445   if (!getCXXABI().classifyReturnType(FI))
   5446     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
   5447   for (auto &I : FI.arguments())
   5448     I.info = classifyArgumentType(I.type);
   5449 
   5450   // Always honor user-specified calling convention.
   5451   if (FI.getCallingConvention() != llvm::CallingConv::C)
   5452     return;
   5453 
   5454   FI.setEffectiveCallingConvention(getRuntimeCC());
   5455 }
   5456 
   5457 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   5458                                 QualType Ty) const {
   5459   llvm_unreachable("NVPTX does not support varargs");
   5460 }
   5461 
   5462 void NVPTXTargetCodeGenInfo::
   5463 setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
   5464                     CodeGen::CodeGenModule &M) const{
   5465   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
   5466   if (!FD) return;
   5467 
   5468   llvm::Function *F = cast<llvm::Function>(GV);
   5469 
   5470   // Perform special handling in OpenCL mode
   5471   if (M.getLangOpts().OpenCL) {
   5472     // Use OpenCL function attributes to check for kernel functions
   5473     // By default, all functions are device functions
   5474     if (FD->hasAttr<OpenCLKernelAttr>()) {
   5475       // OpenCL __kernel functions get kernel metadata
   5476       // Create !{<func-ref>, metadata !"kernel", i32 1} node
   5477       addNVVMMetadata(F, "kernel", 1);
   5478       // And kernel functions are not subject to inlining
   5479       F->addFnAttr(llvm::Attribute::NoInline);
   5480     }
   5481   }
   5482 
   5483   // Perform special handling in CUDA mode.
   5484   if (M.getLangOpts().CUDA) {
   5485     // CUDA __global__ functions get a kernel metadata entry.  Since
   5486     // __global__ functions cannot be called from the device, we do not
   5487     // need to set the noinline attribute.
   5488     if (FD->hasAttr<CUDAGlobalAttr>()) {
   5489       // Create !{<func-ref>, metadata !"kernel", i32 1} node
   5490       addNVVMMetadata(F, "kernel", 1);
   5491     }
   5492     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
   5493       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
   5494       llvm::APSInt MaxThreads(32);
   5495       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
   5496       if (MaxThreads > 0)
   5497         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
   5498 
   5499       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
   5500       // not specified in __launch_bounds__ or if the user specified a 0 value,
   5501       // we don't have to add a PTX directive.
   5502       if (Attr->getMinBlocks()) {
   5503         llvm::APSInt MinBlocks(32);
   5504         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
   5505         if (MinBlocks > 0)
   5506           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
   5507           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
   5508       }
   5509     }
   5510   }
   5511 }
   5512 
   5513 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
   5514                                              int Operand) {
   5515   llvm::Module *M = F->getParent();
   5516   llvm::LLVMContext &Ctx = M->getContext();
   5517 
   5518   // Get "nvvm.annotations" metadata node
   5519   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
   5520 
   5521   llvm::Metadata *MDVals[] = {
   5522       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
   5523       llvm::ConstantAsMetadata::get(
   5524           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
   5525   // Append metadata to nvvm.annotations
   5526   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
   5527 }
   5528 }
   5529 
   5530 //===----------------------------------------------------------------------===//
   5531 // SystemZ ABI Implementation
   5532 //===----------------------------------------------------------------------===//
   5533 
   5534 namespace {
   5535 
   5536 class SystemZABIInfo : public ABIInfo {
   5537   bool HasVector;
   5538 
   5539 public:
   5540   SystemZABIInfo(CodeGenTypes &CGT, bool HV)
   5541     : ABIInfo(CGT), HasVector(HV) {}
   5542 
   5543   bool isPromotableIntegerType(QualType Ty) const;
   5544   bool isCompoundType(QualType Ty) const;
   5545   bool isVectorArgumentType(QualType Ty) const;
   5546   bool isFPArgumentType(QualType Ty) const;
   5547   QualType GetSingleElementType(QualType Ty) const;
   5548 
   5549   ABIArgInfo classifyReturnType(QualType RetTy) const;
   5550   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
   5551 
   5552   void computeInfo(CGFunctionInfo &FI) const override {
   5553     if (!getCXXABI().classifyReturnType(FI))
   5554       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
   5555     for (auto &I : FI.arguments())
   5556       I.info = classifyArgumentType(I.type);
   5557   }
   5558 
   5559   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   5560                     QualType Ty) const override;
   5561 };
   5562 
   5563 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
   5564 public:
   5565   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
   5566     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
   5567 };
   5568 
   5569 }
   5570 
   5571 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
   5572   // Treat an enum type as its underlying type.
   5573   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
   5574     Ty = EnumTy->getDecl()->getIntegerType();
   5575 
   5576   // Promotable integer types are required to be promoted by the ABI.
   5577   if (Ty->isPromotableIntegerType())
   5578     return true;
   5579 
   5580   // 32-bit values must also be promoted.
   5581   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
   5582     switch (BT->getKind()) {
   5583     case BuiltinType::Int:
   5584     case BuiltinType::UInt:
   5585       return true;
   5586     default:
   5587       return false;
   5588     }
   5589   return false;
   5590 }
   5591 
   5592 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
   5593   return (Ty->isAnyComplexType() ||
   5594           Ty->isVectorType() ||
   5595           isAggregateTypeForABI(Ty));
   5596 }
   5597 
   5598 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
   5599   return (HasVector &&
   5600           Ty->isVectorType() &&
   5601           getContext().getTypeSize(Ty) <= 128);
   5602 }
   5603 
   5604 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
   5605   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
   5606     switch (BT->getKind()) {
   5607     case BuiltinType::Float:
   5608     case BuiltinType::Double:
   5609       return true;
   5610     default:
   5611       return false;
   5612     }
   5613 
   5614   return false;
   5615 }
   5616 
   5617 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
   5618   if (const RecordType *RT = Ty->getAsStructureType()) {
   5619     const RecordDecl *RD = RT->getDecl();
   5620     QualType Found;
   5621 
   5622     // If this is a C++ record, check the bases first.
   5623     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
   5624       for (const auto &I : CXXRD->bases()) {
   5625         QualType Base = I.getType();
   5626 
   5627         // Empty bases don't affect things either way.
   5628         if (isEmptyRecord(getContext(), Base, true))
   5629           continue;
   5630 
   5631         if (!Found.isNull())
   5632           return Ty;
   5633         Found = GetSingleElementType(Base);
   5634       }
   5635 
   5636     // Check the fields.
   5637     for (const auto *FD : RD->fields()) {
   5638       // For compatibility with GCC, ignore empty bitfields in C++ mode.
   5639       // Unlike isSingleElementStruct(), empty structure and array fields
   5640       // do count.  So do anonymous bitfields that aren't zero-sized.
   5641       if (getContext().getLangOpts().CPlusPlus &&
   5642           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
   5643         continue;
   5644 
   5645       // Unlike isSingleElementStruct(), arrays do not count.
   5646       // Nested structures still do though.
   5647       if (!Found.isNull())
   5648         return Ty;
   5649       Found = GetSingleElementType(FD->getType());
   5650     }
   5651 
   5652     // Unlike isSingleElementStruct(), trailing padding is allowed.
   5653     // An 8-byte aligned struct s { float f; } is passed as a double.
   5654     if (!Found.isNull())
   5655       return Found;
   5656   }
   5657 
   5658   return Ty;
   5659 }
   5660 
   5661 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   5662                                   QualType Ty) const {
   5663   // Assume that va_list type is correct; should be pointer to LLVM type:
   5664   // struct {
   5665   //   i64 __gpr;
   5666   //   i64 __fpr;
   5667   //   i8 *__overflow_arg_area;
   5668   //   i8 *__reg_save_area;
   5669   // };
   5670 
   5671   // Every non-vector argument occupies 8 bytes and is passed by preference
   5672   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
   5673   // always passed on the stack.
   5674   Ty = getContext().getCanonicalType(Ty);
   5675   auto TyInfo = getContext().getTypeInfoInChars(Ty);
   5676   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
   5677   llvm::Type *DirectTy = ArgTy;
   5678   ABIArgInfo AI = classifyArgumentType(Ty);
   5679   bool IsIndirect = AI.isIndirect();
   5680   bool InFPRs = false;
   5681   bool IsVector = false;
   5682   CharUnits UnpaddedSize;
   5683   CharUnits DirectAlign;
   5684   if (IsIndirect) {
   5685     DirectTy = llvm::PointerType::getUnqual(DirectTy);
   5686     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
   5687   } else {
   5688     if (AI.getCoerceToType())
   5689       ArgTy = AI.getCoerceToType();
   5690     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
   5691     IsVector = ArgTy->isVectorTy();
   5692     UnpaddedSize = TyInfo.first;
   5693     DirectAlign = TyInfo.second;
   5694   }
   5695   CharUnits PaddedSize = CharUnits::fromQuantity(8);
   5696   if (IsVector && UnpaddedSize > PaddedSize)
   5697     PaddedSize = CharUnits::fromQuantity(16);
   5698   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
   5699 
   5700   CharUnits Padding = (PaddedSize - UnpaddedSize);
   5701 
   5702   llvm::Type *IndexTy = CGF.Int64Ty;
   5703   llvm::Value *PaddedSizeV =
   5704     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
   5705 
   5706   if (IsVector) {
   5707     // Work out the address of a vector argument on the stack.
   5708     // Vector arguments are always passed in the high bits of a
   5709     // single (8 byte) or double (16 byte) stack slot.
   5710     Address OverflowArgAreaPtr =
   5711       CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16),
   5712                                   "overflow_arg_area_ptr");
   5713     Address OverflowArgArea =
   5714       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
   5715               TyInfo.second);
   5716     Address MemAddr =
   5717       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
   5718 
   5719     // Update overflow_arg_area_ptr pointer
   5720     llvm::Value *NewOverflowArgArea =
   5721       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
   5722                             "overflow_arg_area");
   5723     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
   5724 
   5725     return MemAddr;
   5726   }
   5727 
   5728   assert(PaddedSize.getQuantity() == 8);
   5729 
   5730   unsigned MaxRegs, RegCountField, RegSaveIndex;
   5731   CharUnits RegPadding;
   5732   if (InFPRs) {
   5733     MaxRegs = 4; // Maximum of 4 FPR arguments
   5734     RegCountField = 1; // __fpr
   5735     RegSaveIndex = 16; // save offset for f0
   5736     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
   5737   } else {
   5738     MaxRegs = 5; // Maximum of 5 GPR arguments
   5739     RegCountField = 0; // __gpr
   5740     RegSaveIndex = 2; // save offset for r2
   5741     RegPadding = Padding; // values are passed in the low bits of a GPR
   5742   }
   5743 
   5744   Address RegCountPtr = CGF.Builder.CreateStructGEP(
   5745       VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8),
   5746       "reg_count_ptr");
   5747   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
   5748   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
   5749   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
   5750                                                  "fits_in_regs");
   5751 
   5752   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
   5753   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
   5754   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
   5755   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
   5756 
   5757   // Emit code to load the value if it was passed in registers.
   5758   CGF.EmitBlock(InRegBlock);
   5759 
   5760   // Work out the address of an argument register.
   5761   llvm::Value *ScaledRegCount =
   5762     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
   5763   llvm::Value *RegBase =
   5764     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
   5765                                       + RegPadding.getQuantity());
   5766   llvm::Value *RegOffset =
   5767     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
   5768   Address RegSaveAreaPtr =
   5769       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
   5770                                   "reg_save_area_ptr");
   5771   llvm::Value *RegSaveArea =
   5772     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
   5773   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
   5774                                            "raw_reg_addr"),
   5775                      PaddedSize);
   5776   Address RegAddr =
   5777     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
   5778 
   5779   // Update the register count
   5780   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
   5781   llvm::Value *NewRegCount =
   5782     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
   5783   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
   5784   CGF.EmitBranch(ContBlock);
   5785 
   5786   // Emit code to load the value if it was passed in memory.
   5787   CGF.EmitBlock(InMemBlock);
   5788 
   5789   // Work out the address of a stack argument.
   5790   Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(
   5791       VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr");
   5792   Address OverflowArgArea =
   5793     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
   5794             PaddedSize);
   5795   Address RawMemAddr =
   5796     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
   5797   Address MemAddr =
   5798     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
   5799 
   5800   // Update overflow_arg_area_ptr pointer
   5801   llvm::Value *NewOverflowArgArea =
   5802     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
   5803                           "overflow_arg_area");
   5804   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
   5805   CGF.EmitBranch(ContBlock);
   5806 
   5807   // Return the appropriate result.
   5808   CGF.EmitBlock(ContBlock);
   5809   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
   5810                                  MemAddr, InMemBlock, "va_arg.addr");
   5811 
   5812   if (IsIndirect)
   5813     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
   5814                       TyInfo.second);
   5815 
   5816   return ResAddr;
   5817 }
   5818 
   5819 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
   5820   if (RetTy->isVoidType())
   5821     return ABIArgInfo::getIgnore();
   5822   if (isVectorArgumentType(RetTy))
   5823     return ABIArgInfo::getDirect();
   5824   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
   5825     return getNaturalAlignIndirect(RetTy);
   5826   return (isPromotableIntegerType(RetTy) ?
   5827           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   5828 }
   5829 
   5830 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
   5831   // Handle the generic C++ ABI.
   5832   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
   5833     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
   5834 
   5835   // Integers and enums are extended to full register width.
   5836   if (isPromotableIntegerType(Ty))
   5837     return ABIArgInfo::getExtend();
   5838 
   5839   // Handle vector types and vector-like structure types.  Note that
   5840   // as opposed to float-like structure types, we do not allow any
   5841   // padding for vector-like structures, so verify the sizes match.
   5842   uint64_t Size = getContext().getTypeSize(Ty);
   5843   QualType SingleElementTy = GetSingleElementType(Ty);
   5844   if (isVectorArgumentType(SingleElementTy) &&
   5845       getContext().getTypeSize(SingleElementTy) == Size)
   5846     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
   5847 
   5848   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
   5849   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
   5850     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
   5851 
   5852   // Handle small structures.
   5853   if (const RecordType *RT = Ty->getAs<RecordType>()) {
   5854     // Structures with flexible arrays have variable length, so really
   5855     // fail the size test above.
   5856     const RecordDecl *RD = RT->getDecl();
   5857     if (RD->hasFlexibleArrayMember())
   5858       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
   5859 
   5860     // The structure is passed as an unextended integer, a float, or a double.
   5861     llvm::Type *PassTy;
   5862     if (isFPArgumentType(SingleElementTy)) {
   5863       assert(Size == 32 || Size == 64);
   5864       if (Size == 32)
   5865         PassTy = llvm::Type::getFloatTy(getVMContext());
   5866       else
   5867         PassTy = llvm::Type::getDoubleTy(getVMContext());
   5868     } else
   5869       PassTy = llvm::IntegerType::get(getVMContext(), Size);
   5870     return ABIArgInfo::getDirect(PassTy);
   5871   }
   5872 
   5873   // Non-structure compounds are passed indirectly.
   5874   if (isCompoundType(Ty))
   5875     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
   5876 
   5877   return ABIArgInfo::getDirect(nullptr);
   5878 }
   5879 
   5880 //===----------------------------------------------------------------------===//
   5881 // MSP430 ABI Implementation
   5882 //===----------------------------------------------------------------------===//
   5883 
   5884 namespace {
   5885 
   5886 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
   5887 public:
   5888   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
   5889     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
   5890   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
   5891                            CodeGen::CodeGenModule &M) const override;
   5892 };
   5893 
   5894 }
   5895 
   5896 void MSP430TargetCodeGenInfo::setTargetAttributes(const Decl *D,
   5897                                                   llvm::GlobalValue *GV,
   5898                                              CodeGen::CodeGenModule &M) const {
   5899   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
   5900     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
   5901       // Handle 'interrupt' attribute:
   5902       llvm::Function *F = cast<llvm::Function>(GV);
   5903 
   5904       // Step 1: Set ISR calling convention.
   5905       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
   5906 
   5907       // Step 2: Add attributes goodness.
   5908       F->addFnAttr(llvm::Attribute::NoInline);
   5909 
   5910       // Step 3: Emit ISR vector alias.
   5911       unsigned Num = attr->getNumber() / 2;
   5912       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
   5913                                 "__isr_" + Twine(Num), F);
   5914     }
   5915   }
   5916 }
   5917 
   5918 //===----------------------------------------------------------------------===//
   5919 // MIPS ABI Implementation.  This works for both little-endian and
   5920 // big-endian variants.
   5921 //===----------------------------------------------------------------------===//
   5922 
   5923 namespace {
   5924 class MipsABIInfo : public ABIInfo {
   5925   bool IsO32;
   5926   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
   5927   void CoerceToIntArgs(uint64_t TySize,
   5928                        SmallVectorImpl<llvm::Type *> &ArgList) const;
   5929   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
   5930   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
   5931   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
   5932 public:
   5933   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
   5934     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
   5935     StackAlignInBytes(IsO32 ? 8 : 16) {}
   5936 
   5937   ABIArgInfo classifyReturnType(QualType RetTy) const;
   5938   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
   5939   void computeInfo(CGFunctionInfo &FI) const override;
   5940   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   5941                     QualType Ty) const override;
   5942   bool shouldSignExtUnsignedType(QualType Ty) const override;
   5943 };
   5944 
   5945 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
   5946   unsigned SizeOfUnwindException;
   5947 public:
   5948   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
   5949     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
   5950       SizeOfUnwindException(IsO32 ? 24 : 32) {}
   5951 
   5952   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
   5953     return 29;
   5954   }
   5955 
   5956   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
   5957                            CodeGen::CodeGenModule &CGM) const override {
   5958     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
   5959     if (!FD) return;
   5960     llvm::Function *Fn = cast<llvm::Function>(GV);
   5961     if (FD->hasAttr<Mips16Attr>()) {
   5962       Fn->addFnAttr("mips16");
   5963     }
   5964     else if (FD->hasAttr<NoMips16Attr>()) {
   5965       Fn->addFnAttr("nomips16");
   5966     }
   5967 
   5968     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
   5969     if (!Attr)
   5970       return;
   5971 
   5972     const char *Kind;
   5973     switch (Attr->getInterrupt()) {
   5974     case MipsInterruptAttr::eic:     Kind = "eic"; break;
   5975     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
   5976     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
   5977     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
   5978     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
   5979     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
   5980     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
   5981     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
   5982     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
   5983     }
   5984 
   5985     Fn->addFnAttr("interrupt", Kind);
   5986 
   5987   }
   5988 
   5989   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
   5990                                llvm::Value *Address) const override;
   5991 
   5992   unsigned getSizeOfUnwindException() const override {
   5993     return SizeOfUnwindException;
   5994   }
   5995 };
   5996 }
   5997 
   5998 void MipsABIInfo::CoerceToIntArgs(
   5999     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
   6000   llvm::IntegerType *IntTy =
   6001     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
   6002 
   6003   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
   6004   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
   6005     ArgList.push_back(IntTy);
   6006 
   6007   // If necessary, add one more integer type to ArgList.
   6008   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
   6009 
   6010   if (R)
   6011     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
   6012 }
   6013 
   6014 // In N32/64, an aligned double precision floating point field is passed in
   6015 // a register.
   6016 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
   6017   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
   6018 
   6019   if (IsO32) {
   6020     CoerceToIntArgs(TySize, ArgList);
   6021     return llvm::StructType::get(getVMContext(), ArgList);
   6022   }
   6023 
   6024   if (Ty->isComplexType())
   6025     return CGT.ConvertType(Ty);
   6026 
   6027   const RecordType *RT = Ty->getAs<RecordType>();
   6028 
   6029   // Unions/vectors are passed in integer registers.
   6030   if (!RT || !RT->isStructureOrClassType()) {
   6031     CoerceToIntArgs(TySize, ArgList);
   6032     return llvm::StructType::get(getVMContext(), ArgList);
   6033   }
   6034 
   6035   const RecordDecl *RD = RT->getDecl();
   6036   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
   6037   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
   6038 
   6039   uint64_t LastOffset = 0;
   6040   unsigned idx = 0;
   6041   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
   6042 
   6043   // Iterate over fields in the struct/class and check if there are any aligned
   6044   // double fields.
   6045   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
   6046        i != e; ++i, ++idx) {
   6047     const QualType Ty = i->getType();
   6048     const BuiltinType *BT = Ty->getAs<BuiltinType>();
   6049 
   6050     if (!BT || BT->getKind() != BuiltinType::Double)
   6051       continue;
   6052 
   6053     uint64_t Offset = Layout.getFieldOffset(idx);
   6054     if (Offset % 64) // Ignore doubles that are not aligned.
   6055       continue;
   6056 
   6057     // Add ((Offset - LastOffset) / 64) args of type i64.
   6058     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
   6059       ArgList.push_back(I64);
   6060 
   6061     // Add double type.
   6062     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
   6063     LastOffset = Offset + 64;
   6064   }
   6065 
   6066   CoerceToIntArgs(TySize - LastOffset, IntArgList);
   6067   ArgList.append(IntArgList.begin(), IntArgList.end());
   6068 
   6069   return llvm::StructType::get(getVMContext(), ArgList);
   6070 }
   6071 
   6072 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
   6073                                         uint64_t Offset) const {
   6074   if (OrigOffset + MinABIStackAlignInBytes > Offset)
   6075     return nullptr;
   6076 
   6077   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
   6078 }
   6079 
   6080 ABIArgInfo
   6081 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
   6082   Ty = useFirstFieldIfTransparentUnion(Ty);
   6083 
   6084   uint64_t OrigOffset = Offset;
   6085   uint64_t TySize = getContext().getTypeSize(Ty);
   6086   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
   6087 
   6088   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
   6089                    (uint64_t)StackAlignInBytes);
   6090   unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align);
   6091   Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
   6092 
   6093   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
   6094     // Ignore empty aggregates.
   6095     if (TySize == 0)
   6096       return ABIArgInfo::getIgnore();
   6097 
   6098     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
   6099       Offset = OrigOffset + MinABIStackAlignInBytes;
   6100       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
   6101     }
   6102 
   6103     // If we have reached here, aggregates are passed directly by coercing to
   6104     // another structure type. Padding is inserted if the offset of the
   6105     // aggregate is unaligned.
   6106     ABIArgInfo ArgInfo =
   6107         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
   6108                               getPaddingType(OrigOffset, CurrOffset));
   6109     ArgInfo.setInReg(true);
   6110     return ArgInfo;
   6111   }
   6112 
   6113   // Treat an enum type as its underlying type.
   6114   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
   6115     Ty = EnumTy->getDecl()->getIntegerType();
   6116 
   6117   // All integral types are promoted to the GPR width.
   6118   if (Ty->isIntegralOrEnumerationType())
   6119     return ABIArgInfo::getExtend();
   6120 
   6121   return ABIArgInfo::getDirect(
   6122       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
   6123 }
   6124 
   6125 llvm::Type*
   6126 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
   6127   const RecordType *RT = RetTy->getAs<RecordType>();
   6128   SmallVector<llvm::Type*, 8> RTList;
   6129 
   6130   if (RT && RT->isStructureOrClassType()) {
   6131     const RecordDecl *RD = RT->getDecl();
   6132     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
   6133     unsigned FieldCnt = Layout.getFieldCount();
   6134 
   6135     // N32/64 returns struct/classes in floating point registers if the
   6136     // following conditions are met:
   6137     // 1. The size of the struct/class is no larger than 128-bit.
   6138     // 2. The struct/class has one or two fields all of which are floating
   6139     //    point types.
   6140     // 3. The offset of the first field is zero (this follows what gcc does).
   6141     //
   6142     // Any other composite results are returned in integer registers.
   6143     //
   6144     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
   6145       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
   6146       for (; b != e; ++b) {
   6147         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
   6148 
   6149         if (!BT || !BT->isFloatingPoint())
   6150           break;
   6151 
   6152         RTList.push_back(CGT.ConvertType(b->getType()));
   6153       }
   6154 
   6155       if (b == e)
   6156         return llvm::StructType::get(getVMContext(), RTList,
   6157                                      RD->hasAttr<PackedAttr>());
   6158 
   6159       RTList.clear();
   6160     }
   6161   }
   6162 
   6163   CoerceToIntArgs(Size, RTList);
   6164   return llvm::StructType::get(getVMContext(), RTList);
   6165 }
   6166 
   6167 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
   6168   uint64_t Size = getContext().getTypeSize(RetTy);
   6169 
   6170   if (RetTy->isVoidType())
   6171     return ABIArgInfo::getIgnore();
   6172 
   6173   // O32 doesn't treat zero-sized structs differently from other structs.
   6174   // However, N32/N64 ignores zero sized return values.
   6175   if (!IsO32 && Size == 0)
   6176     return ABIArgInfo::getIgnore();
   6177 
   6178   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
   6179     if (Size <= 128) {
   6180       if (RetTy->isAnyComplexType())
   6181         return ABIArgInfo::getDirect();
   6182 
   6183       // O32 returns integer vectors in registers and N32/N64 returns all small
   6184       // aggregates in registers.
   6185       if (!IsO32 ||
   6186           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
   6187         ABIArgInfo ArgInfo =
   6188             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
   6189         ArgInfo.setInReg(true);
   6190         return ArgInfo;
   6191       }
   6192     }
   6193 
   6194     return getNaturalAlignIndirect(RetTy);
   6195   }
   6196 
   6197   // Treat an enum type as its underlying type.
   6198   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
   6199     RetTy = EnumTy->getDecl()->getIntegerType();
   6200 
   6201   return (RetTy->isPromotableIntegerType() ?
   6202           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   6203 }
   6204 
   6205 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
   6206   ABIArgInfo &RetInfo = FI.getReturnInfo();
   6207   if (!getCXXABI().classifyReturnType(FI))
   6208     RetInfo = classifyReturnType(FI.getReturnType());
   6209 
   6210   // Check if a pointer to an aggregate is passed as a hidden argument.
   6211   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
   6212 
   6213   for (auto &I : FI.arguments())
   6214     I.info = classifyArgumentType(I.type, Offset);
   6215 }
   6216 
   6217 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   6218                                QualType OrigTy) const {
   6219   QualType Ty = OrigTy;
   6220 
   6221   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
   6222   // Pointers are also promoted in the same way but this only matters for N32.
   6223   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
   6224   unsigned PtrWidth = getTarget().getPointerWidth(0);
   6225   bool DidPromote = false;
   6226   if ((Ty->isIntegerType() &&
   6227           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
   6228       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
   6229     DidPromote = true;
   6230     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
   6231                                             Ty->isSignedIntegerType());
   6232   }
   6233 
   6234   auto TyInfo = getContext().getTypeInfoInChars(Ty);
   6235 
   6236   // The alignment of things in the argument area is never larger than
   6237   // StackAlignInBytes.
   6238   TyInfo.second =
   6239     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
   6240 
   6241   // MinABIStackAlignInBytes is the size of argument slots on the stack.
   6242   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
   6243 
   6244   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
   6245                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
   6246 
   6247 
   6248   // If there was a promotion, "unpromote" into a temporary.
   6249   // TODO: can we just use a pointer into a subset of the original slot?
   6250   if (DidPromote) {
   6251     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
   6252     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
   6253 
   6254     // Truncate down to the right width.
   6255     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
   6256                                                  : CGF.IntPtrTy);
   6257     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
   6258     if (OrigTy->isPointerType())
   6259       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
   6260 
   6261     CGF.Builder.CreateStore(V, Temp);
   6262     Addr = Temp;
   6263   }
   6264 
   6265   return Addr;
   6266 }
   6267 
   6268 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
   6269   int TySize = getContext().getTypeSize(Ty);
   6270 
   6271   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
   6272   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
   6273     return true;
   6274 
   6275   return false;
   6276 }
   6277 
   6278 bool
   6279 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
   6280                                                llvm::Value *Address) const {
   6281   // This information comes from gcc's implementation, which seems to
   6282   // as canonical as it gets.
   6283 
   6284   // Everything on MIPS is 4 bytes.  Double-precision FP registers
   6285   // are aliased to pairs of single-precision FP registers.
   6286   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
   6287 
   6288   // 0-31 are the general purpose registers, $0 - $31.
   6289   // 32-63 are the floating-point registers, $f0 - $f31.
   6290   // 64 and 65 are the multiply/divide registers, $hi and $lo.
   6291   // 66 is the (notional, I think) register for signal-handler return.
   6292   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
   6293 
   6294   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
   6295   // They are one bit wide and ignored here.
   6296 
   6297   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
   6298   // (coprocessor 1 is the FP unit)
   6299   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
   6300   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
   6301   // 176-181 are the DSP accumulator registers.
   6302   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
   6303   return false;
   6304 }
   6305 
   6306 //===----------------------------------------------------------------------===//
   6307 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
   6308 // Currently subclassed only to implement custom OpenCL C function attribute
   6309 // handling.
   6310 //===----------------------------------------------------------------------===//
   6311 
   6312 namespace {
   6313 
   6314 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
   6315 public:
   6316   TCETargetCodeGenInfo(CodeGenTypes &CGT)
   6317     : DefaultTargetCodeGenInfo(CGT) {}
   6318 
   6319   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
   6320                            CodeGen::CodeGenModule &M) const override;
   6321 };
   6322 
   6323 void TCETargetCodeGenInfo::setTargetAttributes(
   6324     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
   6325   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
   6326   if (!FD) return;
   6327 
   6328   llvm::Function *F = cast<llvm::Function>(GV);
   6329 
   6330   if (M.getLangOpts().OpenCL) {
   6331     if (FD->hasAttr<OpenCLKernelAttr>()) {
   6332       // OpenCL C Kernel functions are not subject to inlining
   6333       F->addFnAttr(llvm::Attribute::NoInline);
   6334       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
   6335       if (Attr) {
   6336         // Convert the reqd_work_group_size() attributes to metadata.
   6337         llvm::LLVMContext &Context = F->getContext();
   6338         llvm::NamedMDNode *OpenCLMetadata =
   6339             M.getModule().getOrInsertNamedMetadata(
   6340                 "opencl.kernel_wg_size_info");
   6341 
   6342         SmallVector<llvm::Metadata *, 5> Operands;
   6343         Operands.push_back(llvm::ConstantAsMetadata::get(F));
   6344 
   6345         Operands.push_back(
   6346             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
   6347                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
   6348         Operands.push_back(
   6349             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
   6350                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
   6351         Operands.push_back(
   6352             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
   6353                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
   6354 
   6355         // Add a boolean constant operand for "required" (true) or "hint"
   6356         // (false) for implementing the work_group_size_hint attr later.
   6357         // Currently always true as the hint is not yet implemented.
   6358         Operands.push_back(
   6359             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
   6360         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
   6361       }
   6362     }
   6363   }
   6364 }
   6365 
   6366 }
   6367 
   6368 //===----------------------------------------------------------------------===//
   6369 // Hexagon ABI Implementation
   6370 //===----------------------------------------------------------------------===//
   6371 
   6372 namespace {
   6373 
   6374 class HexagonABIInfo : public ABIInfo {
   6375 
   6376 
   6377 public:
   6378   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
   6379 
   6380 private:
   6381 
   6382   ABIArgInfo classifyReturnType(QualType RetTy) const;
   6383   ABIArgInfo classifyArgumentType(QualType RetTy) const;
   6384 
   6385   void computeInfo(CGFunctionInfo &FI) const override;
   6386 
   6387   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   6388                     QualType Ty) const override;
   6389 };
   6390 
   6391 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
   6392 public:
   6393   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
   6394     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
   6395 
   6396   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
   6397     return 29;
   6398   }
   6399 };
   6400 
   6401 }
   6402 
   6403 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
   6404   if (!getCXXABI().classifyReturnType(FI))
   6405     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
   6406   for (auto &I : FI.arguments())
   6407     I.info = classifyArgumentType(I.type);
   6408 }
   6409 
   6410 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
   6411   if (!isAggregateTypeForABI(Ty)) {
   6412     // Treat an enum type as its underlying type.
   6413     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
   6414       Ty = EnumTy->getDecl()->getIntegerType();
   6415 
   6416     return (Ty->isPromotableIntegerType() ?
   6417             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   6418   }
   6419 
   6420   // Ignore empty records.
   6421   if (isEmptyRecord(getContext(), Ty, true))
   6422     return ABIArgInfo::getIgnore();
   6423 
   6424   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
   6425     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
   6426 
   6427   uint64_t Size = getContext().getTypeSize(Ty);
   6428   if (Size > 64)
   6429     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
   6430     // Pass in the smallest viable integer type.
   6431   else if (Size > 32)
   6432       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
   6433   else if (Size > 16)
   6434       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
   6435   else if (Size > 8)
   6436       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
   6437   else
   6438       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
   6439 }
   6440 
   6441 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
   6442   if (RetTy->isVoidType())
   6443     return ABIArgInfo::getIgnore();
   6444 
   6445   // Large vector types should be returned via memory.
   6446   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
   6447     return getNaturalAlignIndirect(RetTy);
   6448 
   6449   if (!isAggregateTypeForABI(RetTy)) {
   6450     // Treat an enum type as its underlying type.
   6451     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
   6452       RetTy = EnumTy->getDecl()->getIntegerType();
   6453 
   6454     return (RetTy->isPromotableIntegerType() ?
   6455             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   6456   }
   6457 
   6458   if (isEmptyRecord(getContext(), RetTy, true))
   6459     return ABIArgInfo::getIgnore();
   6460 
   6461   // Aggregates <= 8 bytes are returned in r0; other aggregates
   6462   // are returned indirectly.
   6463   uint64_t Size = getContext().getTypeSize(RetTy);
   6464   if (Size <= 64) {
   6465     // Return in the smallest viable integer type.
   6466     if (Size <= 8)
   6467       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
   6468     if (Size <= 16)
   6469       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
   6470     if (Size <= 32)
   6471       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
   6472     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
   6473   }
   6474 
   6475   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
   6476 }
   6477 
   6478 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   6479                                   QualType Ty) const {
   6480   // FIXME: Someone needs to audit that this handle alignment correctly.
   6481   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
   6482                           getContext().getTypeInfoInChars(Ty),
   6483                           CharUnits::fromQuantity(4),
   6484                           /*AllowHigherAlign*/ true);
   6485 }
   6486 
   6487 //===----------------------------------------------------------------------===//
   6488 // AMDGPU ABI Implementation
   6489 //===----------------------------------------------------------------------===//
   6490 
   6491 namespace {
   6492 
   6493 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
   6494 public:
   6495   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
   6496     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
   6497   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
   6498                            CodeGen::CodeGenModule &M) const override;
   6499 };
   6500 
   6501 }
   6502 
   6503 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
   6504   const Decl *D,
   6505   llvm::GlobalValue *GV,
   6506   CodeGen::CodeGenModule &M) const {
   6507   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
   6508   if (!FD)
   6509     return;
   6510 
   6511   if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
   6512     llvm::Function *F = cast<llvm::Function>(GV);
   6513     uint32_t NumVGPR = Attr->getNumVGPR();
   6514     if (NumVGPR != 0)
   6515       F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR));
   6516   }
   6517 
   6518   if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
   6519     llvm::Function *F = cast<llvm::Function>(GV);
   6520     unsigned NumSGPR = Attr->getNumSGPR();
   6521     if (NumSGPR != 0)
   6522       F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR));
   6523   }
   6524 }
   6525 
   6526 
   6527 //===----------------------------------------------------------------------===//
   6528 // SPARC v9 ABI Implementation.
   6529 // Based on the SPARC Compliance Definition version 2.4.1.
   6530 //
   6531 // Function arguments a mapped to a nominal "parameter array" and promoted to
   6532 // registers depending on their type. Each argument occupies 8 or 16 bytes in
   6533 // the array, structs larger than 16 bytes are passed indirectly.
   6534 //
   6535 // One case requires special care:
   6536 //
   6537 //   struct mixed {
   6538 //     int i;
   6539 //     float f;
   6540 //   };
   6541 //
   6542 // When a struct mixed is passed by value, it only occupies 8 bytes in the
   6543 // parameter array, but the int is passed in an integer register, and the float
   6544 // is passed in a floating point register. This is represented as two arguments
   6545 // with the LLVM IR inreg attribute:
   6546 //
   6547 //   declare void f(i32 inreg %i, float inreg %f)
   6548 //
   6549 // The code generator will only allocate 4 bytes from the parameter array for
   6550 // the inreg arguments. All other arguments are allocated a multiple of 8
   6551 // bytes.
   6552 //
   6553 namespace {
   6554 class SparcV9ABIInfo : public ABIInfo {
   6555 public:
   6556   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
   6557 
   6558 private:
   6559   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
   6560   void computeInfo(CGFunctionInfo &FI) const override;
   6561   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   6562                     QualType Ty) const override;
   6563 
   6564   // Coercion type builder for structs passed in registers. The coercion type
   6565   // serves two purposes:
   6566   //
   6567   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
   6568   //    in registers.
   6569   // 2. Expose aligned floating point elements as first-level elements, so the
   6570   //    code generator knows to pass them in floating point registers.
   6571   //
   6572   // We also compute the InReg flag which indicates that the struct contains
   6573   // aligned 32-bit floats.
   6574   //
   6575   struct CoerceBuilder {
   6576     llvm::LLVMContext &Context;
   6577     const llvm::DataLayout &DL;
   6578     SmallVector<llvm::Type*, 8> Elems;
   6579     uint64_t Size;
   6580     bool InReg;
   6581 
   6582     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
   6583       : Context(c), DL(dl), Size(0), InReg(false) {}
   6584 
   6585     // Pad Elems with integers until Size is ToSize.
   6586     void pad(uint64_t ToSize) {
   6587       assert(ToSize >= Size && "Cannot remove elements");
   6588       if (ToSize == Size)
   6589         return;
   6590 
   6591       // Finish the current 64-bit word.
   6592       uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64);
   6593       if (Aligned > Size && Aligned <= ToSize) {
   6594         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
   6595         Size = Aligned;
   6596       }
   6597 
   6598       // Add whole 64-bit words.
   6599       while (Size + 64 <= ToSize) {
   6600         Elems.push_back(llvm::Type::getInt64Ty(Context));
   6601         Size += 64;
   6602       }
   6603 
   6604       // Final in-word padding.
   6605       if (Size < ToSize) {
   6606         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
   6607         Size = ToSize;
   6608       }
   6609     }
   6610 
   6611     // Add a floating point element at Offset.
   6612     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
   6613       // Unaligned floats are treated as integers.
   6614       if (Offset % Bits)
   6615         return;
   6616       // The InReg flag is only required if there are any floats < 64 bits.
   6617       if (Bits < 64)
   6618         InReg = true;
   6619       pad(Offset);
   6620       Elems.push_back(Ty);
   6621       Size = Offset + Bits;
   6622     }
   6623 
   6624     // Add a struct type to the coercion type, starting at Offset (in bits).
   6625     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
   6626       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
   6627       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
   6628         llvm::Type *ElemTy = StrTy->getElementType(i);
   6629         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
   6630         switch (ElemTy->getTypeID()) {
   6631         case llvm::Type::StructTyID:
   6632           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
   6633           break;
   6634         case llvm::Type::FloatTyID:
   6635           addFloat(ElemOffset, ElemTy, 32);
   6636           break;
   6637         case llvm::Type::DoubleTyID:
   6638           addFloat(ElemOffset, ElemTy, 64);
   6639           break;
   6640         case llvm::Type::FP128TyID:
   6641           addFloat(ElemOffset, ElemTy, 128);
   6642           break;
   6643         case llvm::Type::PointerTyID:
   6644           if (ElemOffset % 64 == 0) {
   6645             pad(ElemOffset);
   6646             Elems.push_back(ElemTy);
   6647             Size += 64;
   6648           }
   6649           break;
   6650         default:
   6651           break;
   6652         }
   6653       }
   6654     }
   6655 
   6656     // Check if Ty is a usable substitute for the coercion type.
   6657     bool isUsableType(llvm::StructType *Ty) const {
   6658       return llvm::makeArrayRef(Elems) == Ty->elements();
   6659     }
   6660 
   6661     // Get the coercion type as a literal struct type.
   6662     llvm::Type *getType() const {
   6663       if (Elems.size() == 1)
   6664         return Elems.front();
   6665       else
   6666         return llvm::StructType::get(Context, Elems);
   6667     }
   6668   };
   6669 };
   6670 } // end anonymous namespace
   6671 
   6672 ABIArgInfo
   6673 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
   6674   if (Ty->isVoidType())
   6675     return ABIArgInfo::getIgnore();
   6676 
   6677   uint64_t Size = getContext().getTypeSize(Ty);
   6678 
   6679   // Anything too big to fit in registers is passed with an explicit indirect
   6680   // pointer / sret pointer.
   6681   if (Size > SizeLimit)
   6682     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
   6683 
   6684   // Treat an enum type as its underlying type.
   6685   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
   6686     Ty = EnumTy->getDecl()->getIntegerType();
   6687 
   6688   // Integer types smaller than a register are extended.
   6689   if (Size < 64 && Ty->isIntegerType())
   6690     return ABIArgInfo::getExtend();
   6691 
   6692   // Other non-aggregates go in registers.
   6693   if (!isAggregateTypeForABI(Ty))
   6694     return ABIArgInfo::getDirect();
   6695 
   6696   // If a C++ object has either a non-trivial copy constructor or a non-trivial
   6697   // destructor, it is passed with an explicit indirect pointer / sret pointer.
   6698   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
   6699     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
   6700 
   6701   // This is a small aggregate type that should be passed in registers.
   6702   // Build a coercion type from the LLVM struct type.
   6703   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
   6704   if (!StrTy)
   6705     return ABIArgInfo::getDirect();
   6706 
   6707   CoerceBuilder CB(getVMContext(), getDataLayout());
   6708   CB.addStruct(0, StrTy);
   6709   CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64));
   6710 
   6711   // Try to use the original type for coercion.
   6712   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
   6713 
   6714   if (CB.InReg)
   6715     return ABIArgInfo::getDirectInReg(CoerceTy);
   6716   else
   6717     return ABIArgInfo::getDirect(CoerceTy);
   6718 }
   6719 
   6720 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   6721                                   QualType Ty) const {
   6722   ABIArgInfo AI = classifyType(Ty, 16 * 8);
   6723   llvm::Type *ArgTy = CGT.ConvertType(Ty);
   6724   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
   6725     AI.setCoerceToType(ArgTy);
   6726 
   6727   CharUnits SlotSize = CharUnits::fromQuantity(8);
   6728 
   6729   CGBuilderTy &Builder = CGF.Builder;
   6730   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
   6731   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
   6732 
   6733   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
   6734 
   6735   Address ArgAddr = Address::invalid();
   6736   CharUnits Stride;
   6737   switch (AI.getKind()) {
   6738   case ABIArgInfo::Expand:
   6739   case ABIArgInfo::InAlloca:
   6740     llvm_unreachable("Unsupported ABI kind for va_arg");
   6741 
   6742   case ABIArgInfo::Extend: {
   6743     Stride = SlotSize;
   6744     CharUnits Offset = SlotSize - TypeInfo.first;
   6745     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
   6746     break;
   6747   }
   6748 
   6749   case ABIArgInfo::Direct: {
   6750     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
   6751     Stride = CharUnits::fromQuantity(AllocSize).RoundUpToAlignment(SlotSize);
   6752     ArgAddr = Addr;
   6753     break;
   6754   }
   6755 
   6756   case ABIArgInfo::Indirect:
   6757     Stride = SlotSize;
   6758     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
   6759     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
   6760                       TypeInfo.second);
   6761     break;
   6762 
   6763   case ABIArgInfo::Ignore:
   6764     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
   6765   }
   6766 
   6767   // Update VAList.
   6768   llvm::Value *NextPtr =
   6769     Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next");
   6770   Builder.CreateStore(NextPtr, VAListAddr);
   6771 
   6772   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
   6773 }
   6774 
   6775 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
   6776   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
   6777   for (auto &I : FI.arguments())
   6778     I.info = classifyType(I.type, 16 * 8);
   6779 }
   6780 
   6781 namespace {
   6782 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
   6783 public:
   6784   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
   6785     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
   6786 
   6787   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
   6788     return 14;
   6789   }
   6790 
   6791   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
   6792                                llvm::Value *Address) const override;
   6793 };
   6794 } // end anonymous namespace
   6795 
   6796 bool
   6797 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
   6798                                                 llvm::Value *Address) const {
   6799   // This is calculated from the LLVM and GCC tables and verified
   6800   // against gcc output.  AFAIK all ABIs use the same encoding.
   6801 
   6802   CodeGen::CGBuilderTy &Builder = CGF.Builder;
   6803 
   6804   llvm::IntegerType *i8 = CGF.Int8Ty;
   6805   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
   6806   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
   6807 
   6808   // 0-31: the 8-byte general-purpose registers
   6809   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
   6810 
   6811   // 32-63: f0-31, the 4-byte floating-point registers
   6812   AssignToArrayRange(Builder, Address, Four8, 32, 63);
   6813 
   6814   //   Y   = 64
   6815   //   PSR = 65
   6816   //   WIM = 66
   6817   //   TBR = 67
   6818   //   PC  = 68
   6819   //   NPC = 69
   6820   //   FSR = 70
   6821   //   CSR = 71
   6822   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
   6823 
   6824   // 72-87: d0-15, the 8-byte floating-point registers
   6825   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
   6826 
   6827   return false;
   6828 }
   6829 
   6830 
   6831 //===----------------------------------------------------------------------===//
   6832 // XCore ABI Implementation
   6833 //===----------------------------------------------------------------------===//
   6834 
   6835 namespace {
   6836 
   6837 /// A SmallStringEnc instance is used to build up the TypeString by passing
   6838 /// it by reference between functions that append to it.
   6839 typedef llvm::SmallString<128> SmallStringEnc;
   6840 
   6841 /// TypeStringCache caches the meta encodings of Types.
   6842 ///
   6843 /// The reason for caching TypeStrings is two fold:
   6844 ///   1. To cache a type's encoding for later uses;
   6845 ///   2. As a means to break recursive member type inclusion.
   6846 ///
   6847 /// A cache Entry can have a Status of:
   6848 ///   NonRecursive:   The type encoding is not recursive;
   6849 ///   Recursive:      The type encoding is recursive;
   6850 ///   Incomplete:     An incomplete TypeString;
   6851 ///   IncompleteUsed: An incomplete TypeString that has been used in a
   6852 ///                   Recursive type encoding.
   6853 ///
   6854 /// A NonRecursive entry will have all of its sub-members expanded as fully
   6855 /// as possible. Whilst it may contain types which are recursive, the type
   6856 /// itself is not recursive and thus its encoding may be safely used whenever
   6857 /// the type is encountered.
   6858 ///
   6859 /// A Recursive entry will have all of its sub-members expanded as fully as
   6860 /// possible. The type itself is recursive and it may contain other types which
   6861 /// are recursive. The Recursive encoding must not be used during the expansion
   6862 /// of a recursive type's recursive branch. For simplicity the code uses
   6863 /// IncompleteCount to reject all usage of Recursive encodings for member types.
   6864 ///
   6865 /// An Incomplete entry is always a RecordType and only encodes its
   6866 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
   6867 /// are placed into the cache during type expansion as a means to identify and
   6868 /// handle recursive inclusion of types as sub-members. If there is recursion
   6869 /// the entry becomes IncompleteUsed.
   6870 ///
   6871 /// During the expansion of a RecordType's members:
   6872 ///
   6873 ///   If the cache contains a NonRecursive encoding for the member type, the
   6874 ///   cached encoding is used;
   6875 ///
   6876 ///   If the cache contains a Recursive encoding for the member type, the
   6877 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
   6878 ///
   6879 ///   If the member is a RecordType, an Incomplete encoding is placed into the
   6880 ///   cache to break potential recursive inclusion of itself as a sub-member;
   6881 ///
   6882 ///   Once a member RecordType has been expanded, its temporary incomplete
   6883 ///   entry is removed from the cache. If a Recursive encoding was swapped out
   6884 ///   it is swapped back in;
   6885 ///
   6886 ///   If an incomplete entry is used to expand a sub-member, the incomplete
   6887 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
   6888 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
   6889 ///
   6890 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
   6891 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
   6892 ///   Else the member is part of a recursive type and thus the recursion has
   6893 ///   been exited too soon for the encoding to be correct for the member.
   6894 ///
   6895 class TypeStringCache {
   6896   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
   6897   struct Entry {
   6898     std::string Str;     // The encoded TypeString for the type.
   6899     enum Status State;   // Information about the encoding in 'Str'.
   6900     std::string Swapped; // A temporary place holder for a Recursive encoding
   6901                          // during the expansion of RecordType's members.
   6902   };
   6903   std::map<const IdentifierInfo *, struct Entry> Map;
   6904   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
   6905   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
   6906 public:
   6907   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
   6908   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
   6909   bool removeIncomplete(const IdentifierInfo *ID);
   6910   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
   6911                      bool IsRecursive);
   6912   StringRef lookupStr(const IdentifierInfo *ID);
   6913 };
   6914 
   6915 /// TypeString encodings for enum & union fields must be order.
   6916 /// FieldEncoding is a helper for this ordering process.
   6917 class FieldEncoding {
   6918   bool HasName;
   6919   std::string Enc;
   6920 public:
   6921   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
   6922   StringRef str() {return Enc.c_str();}
   6923   bool operator<(const FieldEncoding &rhs) const {
   6924     if (HasName != rhs.HasName) return HasName;
   6925     return Enc < rhs.Enc;
   6926   }
   6927 };
   6928 
   6929 class XCoreABIInfo : public DefaultABIInfo {
   6930 public:
   6931   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
   6932   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   6933                     QualType Ty) const override;
   6934 };
   6935 
   6936 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
   6937   mutable TypeStringCache TSC;
   6938 public:
   6939   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
   6940     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
   6941   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
   6942                     CodeGen::CodeGenModule &M) const override;
   6943 };
   6944 
   6945 } // End anonymous namespace.
   6946 
   6947 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   6948                                 QualType Ty) const {
   6949   CGBuilderTy &Builder = CGF.Builder;
   6950 
   6951   // Get the VAList.
   6952   CharUnits SlotSize = CharUnits::fromQuantity(4);
   6953   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
   6954 
   6955   // Handle the argument.
   6956   ABIArgInfo AI = classifyArgumentType(Ty);
   6957   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
   6958   llvm::Type *ArgTy = CGT.ConvertType(Ty);
   6959   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
   6960     AI.setCoerceToType(ArgTy);
   6961   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
   6962 
   6963   Address Val = Address::invalid();
   6964   CharUnits ArgSize = CharUnits::Zero();
   6965   switch (AI.getKind()) {
   6966   case ABIArgInfo::Expand:
   6967   case ABIArgInfo::InAlloca:
   6968     llvm_unreachable("Unsupported ABI kind for va_arg");
   6969   case ABIArgInfo::Ignore:
   6970     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
   6971     ArgSize = CharUnits::Zero();
   6972     break;
   6973   case ABIArgInfo::Extend:
   6974   case ABIArgInfo::Direct:
   6975     Val = Builder.CreateBitCast(AP, ArgPtrTy);
   6976     ArgSize = CharUnits::fromQuantity(
   6977                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
   6978     ArgSize = ArgSize.RoundUpToAlignment(SlotSize);
   6979     break;
   6980   case ABIArgInfo::Indirect:
   6981     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
   6982     Val = Address(Builder.CreateLoad(Val), TypeAlign);
   6983     ArgSize = SlotSize;
   6984     break;
   6985   }
   6986 
   6987   // Increment the VAList.
   6988   if (!ArgSize.isZero()) {
   6989     llvm::Value *APN =
   6990       Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize);
   6991     Builder.CreateStore(APN, VAListAddr);
   6992   }
   6993 
   6994   return Val;
   6995 }
   6996 
   6997 /// During the expansion of a RecordType, an incomplete TypeString is placed
   6998 /// into the cache as a means to identify and break recursion.
   6999 /// If there is a Recursive encoding in the cache, it is swapped out and will
   7000 /// be reinserted by removeIncomplete().
   7001 /// All other types of encoding should have been used rather than arriving here.
   7002 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
   7003                                     std::string StubEnc) {
   7004   if (!ID)
   7005     return;
   7006   Entry &E = Map[ID];
   7007   assert( (E.Str.empty() || E.State == Recursive) &&
   7008          "Incorrectly use of addIncomplete");
   7009   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
   7010   E.Swapped.swap(E.Str); // swap out the Recursive
   7011   E.Str.swap(StubEnc);
   7012   E.State = Incomplete;
   7013   ++IncompleteCount;
   7014 }
   7015 
   7016 /// Once the RecordType has been expanded, the temporary incomplete TypeString
   7017 /// must be removed from the cache.
   7018 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
   7019 /// Returns true if the RecordType was defined recursively.
   7020 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
   7021   if (!ID)
   7022     return false;
   7023   auto I = Map.find(ID);
   7024   assert(I != Map.end() && "Entry not present");
   7025   Entry &E = I->second;
   7026   assert( (E.State == Incomplete ||
   7027            E.State == IncompleteUsed) &&
   7028          "Entry must be an incomplete type");
   7029   bool IsRecursive = false;
   7030   if (E.State == IncompleteUsed) {
   7031     // We made use of our Incomplete encoding, thus we are recursive.
   7032     IsRecursive = true;
   7033     --IncompleteUsedCount;
   7034   }
   7035   if (E.Swapped.empty())
   7036     Map.erase(I);
   7037   else {
   7038     // Swap the Recursive back.
   7039     E.Swapped.swap(E.Str);
   7040     E.Swapped.clear();
   7041     E.State = Recursive;
   7042   }
   7043   --IncompleteCount;
   7044   return IsRecursive;
   7045 }
   7046 
   7047 /// Add the encoded TypeString to the cache only if it is NonRecursive or
   7048 /// Recursive (viz: all sub-members were expanded as fully as possible).
   7049 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
   7050                                     bool IsRecursive) {
   7051   if (!ID || IncompleteUsedCount)
   7052     return; // No key or it is is an incomplete sub-type so don't add.
   7053   Entry &E = Map[ID];
   7054   if (IsRecursive && !E.Str.empty()) {
   7055     assert(E.State==Recursive && E.Str.size() == Str.size() &&
   7056            "This is not the same Recursive entry");
   7057     // The parent container was not recursive after all, so we could have used
   7058     // this Recursive sub-member entry after all, but we assumed the worse when
   7059     // we started viz: IncompleteCount!=0.
   7060     return;
   7061   }
   7062   assert(E.Str.empty() && "Entry already present");
   7063   E.Str = Str.str();
   7064   E.State = IsRecursive? Recursive : NonRecursive;
   7065 }
   7066 
   7067 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
   7068 /// are recursively expanding a type (IncompleteCount != 0) and the cached
   7069 /// encoding is Recursive, return an empty StringRef.
   7070 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
   7071   if (!ID)
   7072     return StringRef();   // We have no key.
   7073   auto I = Map.find(ID);
   7074   if (I == Map.end())
   7075     return StringRef();   // We have no encoding.
   7076   Entry &E = I->second;
   7077   if (E.State == Recursive && IncompleteCount)
   7078     return StringRef();   // We don't use Recursive encodings for member types.
   7079 
   7080   if (E.State == Incomplete) {
   7081     // The incomplete type is being used to break out of recursion.
   7082     E.State = IncompleteUsed;
   7083     ++IncompleteUsedCount;
   7084   }
   7085   return E.Str.c_str();
   7086 }
   7087 
   7088 /// The XCore ABI includes a type information section that communicates symbol
   7089 /// type information to the linker. The linker uses this information to verify
   7090 /// safety/correctness of things such as array bound and pointers et al.
   7091 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
   7092 /// This type information (TypeString) is emitted into meta data for all global
   7093 /// symbols: definitions, declarations, functions & variables.
   7094 ///
   7095 /// The TypeString carries type, qualifier, name, size & value details.
   7096 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
   7097 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
   7098 /// The output is tested by test/CodeGen/xcore-stringtype.c.
   7099 ///
   7100 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
   7101                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
   7102 
   7103 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
   7104 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
   7105                                           CodeGen::CodeGenModule &CGM) const {
   7106   SmallStringEnc Enc;
   7107   if (getTypeString(Enc, D, CGM, TSC)) {
   7108     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
   7109     llvm::SmallVector<llvm::Metadata *, 2> MDVals;
   7110     MDVals.push_back(llvm::ConstantAsMetadata::get(GV));
   7111     MDVals.push_back(llvm::MDString::get(Ctx, Enc.str()));
   7112     llvm::NamedMDNode *MD =
   7113       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
   7114     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
   7115   }
   7116 }
   7117 
   7118 static bool appendType(SmallStringEnc &Enc, QualType QType,
   7119                        const CodeGen::CodeGenModule &CGM,
   7120                        TypeStringCache &TSC);
   7121 
   7122 /// Helper function for appendRecordType().
   7123 /// Builds a SmallVector containing the encoded field types in declaration
   7124 /// order.
   7125 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
   7126                              const RecordDecl *RD,
   7127                              const CodeGen::CodeGenModule &CGM,
   7128                              TypeStringCache &TSC) {
   7129   for (const auto *Field : RD->fields()) {
   7130     SmallStringEnc Enc;
   7131     Enc += "m(";
   7132     Enc += Field->getName();
   7133     Enc += "){";
   7134     if (Field->isBitField()) {
   7135       Enc += "b(";
   7136       llvm::raw_svector_ostream OS(Enc);
   7137       OS << Field->getBitWidthValue(CGM.getContext());
   7138       Enc += ':';
   7139     }
   7140     if (!appendType(Enc, Field->getType(), CGM, TSC))
   7141       return false;
   7142     if (Field->isBitField())
   7143       Enc += ')';
   7144     Enc += '}';
   7145     FE.emplace_back(!Field->getName().empty(), Enc);
   7146   }
   7147   return true;
   7148 }
   7149 
   7150 /// Appends structure and union types to Enc and adds encoding to cache.
   7151 /// Recursively calls appendType (via extractFieldType) for each field.
   7152 /// Union types have their fields ordered according to the ABI.
   7153 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
   7154                              const CodeGen::CodeGenModule &CGM,
   7155                              TypeStringCache &TSC, const IdentifierInfo *ID) {
   7156   // Append the cached TypeString if we have one.
   7157   StringRef TypeString = TSC.lookupStr(ID);
   7158   if (!TypeString.empty()) {
   7159     Enc += TypeString;
   7160     return true;
   7161   }
   7162 
   7163   // Start to emit an incomplete TypeString.
   7164   size_t Start = Enc.size();
   7165   Enc += (RT->isUnionType()? 'u' : 's');
   7166   Enc += '(';
   7167   if (ID)
   7168     Enc += ID->getName();
   7169   Enc += "){";
   7170 
   7171   // We collect all encoded fields and order as necessary.
   7172   bool IsRecursive = false;
   7173   const RecordDecl *RD = RT->getDecl()->getDefinition();
   7174   if (RD && !RD->field_empty()) {
   7175     // An incomplete TypeString stub is placed in the cache for this RecordType
   7176     // so that recursive calls to this RecordType will use it whilst building a
   7177     // complete TypeString for this RecordType.
   7178     SmallVector<FieldEncoding, 16> FE;
   7179     std::string StubEnc(Enc.substr(Start).str());
   7180     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
   7181     TSC.addIncomplete(ID, std::move(StubEnc));
   7182     if (!extractFieldType(FE, RD, CGM, TSC)) {
   7183       (void) TSC.removeIncomplete(ID);
   7184       return false;
   7185     }
   7186     IsRecursive = TSC.removeIncomplete(ID);
   7187     // The ABI requires unions to be sorted but not structures.
   7188     // See FieldEncoding::operator< for sort algorithm.
   7189     if (RT->isUnionType())
   7190       std::sort(FE.begin(), FE.end());
   7191     // We can now complete the TypeString.
   7192     unsigned E = FE.size();
   7193     for (unsigned I = 0; I != E; ++I) {
   7194       if (I)
   7195         Enc += ',';
   7196       Enc += FE[I].str();
   7197     }
   7198   }
   7199   Enc += '}';
   7200   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
   7201   return true;
   7202 }
   7203 
   7204 /// Appends enum types to Enc and adds the encoding to the cache.
   7205 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
   7206                            TypeStringCache &TSC,
   7207                            const IdentifierInfo *ID) {
   7208   // Append the cached TypeString if we have one.
   7209   StringRef TypeString = TSC.lookupStr(ID);
   7210   if (!TypeString.empty()) {
   7211     Enc += TypeString;
   7212     return true;
   7213   }
   7214 
   7215   size_t Start = Enc.size();
   7216   Enc += "e(";
   7217   if (ID)
   7218     Enc += ID->getName();
   7219   Enc += "){";
   7220 
   7221   // We collect all encoded enumerations and order them alphanumerically.
   7222   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
   7223     SmallVector<FieldEncoding, 16> FE;
   7224     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
   7225          ++I) {
   7226       SmallStringEnc EnumEnc;
   7227       EnumEnc += "m(";
   7228       EnumEnc += I->getName();
   7229       EnumEnc += "){";
   7230       I->getInitVal().toString(EnumEnc);
   7231       EnumEnc += '}';
   7232       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
   7233     }
   7234     std::sort(FE.begin(), FE.end());
   7235     unsigned E = FE.size();
   7236     for (unsigned I = 0; I != E; ++I) {
   7237       if (I)
   7238         Enc += ',';
   7239       Enc += FE[I].str();
   7240     }
   7241   }
   7242   Enc += '}';
   7243   TSC.addIfComplete(ID, Enc.substr(Start), false);
   7244   return true;
   7245 }
   7246 
   7247 /// Appends type's qualifier to Enc.
   7248 /// This is done prior to appending the type's encoding.
   7249 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
   7250   // Qualifiers are emitted in alphabetical order.
   7251   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
   7252   int Lookup = 0;
   7253   if (QT.isConstQualified())
   7254     Lookup += 1<<0;
   7255   if (QT.isRestrictQualified())
   7256     Lookup += 1<<1;
   7257   if (QT.isVolatileQualified())
   7258     Lookup += 1<<2;
   7259   Enc += Table[Lookup];
   7260 }
   7261 
   7262 /// Appends built-in types to Enc.
   7263 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
   7264   const char *EncType;
   7265   switch (BT->getKind()) {
   7266     case BuiltinType::Void:
   7267       EncType = "0";
   7268       break;
   7269     case BuiltinType::Bool:
   7270       EncType = "b";
   7271       break;
   7272     case BuiltinType::Char_U:
   7273       EncType = "uc";
   7274       break;
   7275     case BuiltinType::UChar:
   7276       EncType = "uc";
   7277       break;
   7278     case BuiltinType::SChar:
   7279       EncType = "sc";
   7280       break;
   7281     case BuiltinType::UShort:
   7282       EncType = "us";
   7283       break;
   7284     case BuiltinType::Short:
   7285       EncType = "ss";
   7286       break;
   7287     case BuiltinType::UInt:
   7288       EncType = "ui";
   7289       break;
   7290     case BuiltinType::Int:
   7291       EncType = "si";
   7292       break;
   7293     case BuiltinType::ULong:
   7294       EncType = "ul";
   7295       break;
   7296     case BuiltinType::Long:
   7297       EncType = "sl";
   7298       break;
   7299     case BuiltinType::ULongLong:
   7300       EncType = "ull";
   7301       break;
   7302     case BuiltinType::LongLong:
   7303       EncType = "sll";
   7304       break;
   7305     case BuiltinType::Float:
   7306       EncType = "ft";
   7307       break;
   7308     case BuiltinType::Double:
   7309       EncType = "d";
   7310       break;
   7311     case BuiltinType::LongDouble:
   7312       EncType = "ld";
   7313       break;
   7314     default:
   7315       return false;
   7316   }
   7317   Enc += EncType;
   7318   return true;
   7319 }
   7320 
   7321 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
   7322 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
   7323                               const CodeGen::CodeGenModule &CGM,
   7324                               TypeStringCache &TSC) {
   7325   Enc += "p(";
   7326   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
   7327     return false;
   7328   Enc += ')';
   7329   return true;
   7330 }
   7331 
   7332 /// Appends array encoding to Enc before calling appendType for the element.
   7333 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
   7334                             const ArrayType *AT,
   7335                             const CodeGen::CodeGenModule &CGM,
   7336                             TypeStringCache &TSC, StringRef NoSizeEnc) {
   7337   if (AT->getSizeModifier() != ArrayType::Normal)
   7338     return false;
   7339   Enc += "a(";
   7340   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
   7341     CAT->getSize().toStringUnsigned(Enc);
   7342   else
   7343     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
   7344   Enc += ':';
   7345   // The Qualifiers should be attached to the type rather than the array.
   7346   appendQualifier(Enc, QT);
   7347   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
   7348     return false;
   7349   Enc += ')';
   7350   return true;
   7351 }
   7352 
   7353 /// Appends a function encoding to Enc, calling appendType for the return type
   7354 /// and the arguments.
   7355 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
   7356                              const CodeGen::CodeGenModule &CGM,
   7357                              TypeStringCache &TSC) {
   7358   Enc += "f{";
   7359   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
   7360     return false;
   7361   Enc += "}(";
   7362   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
   7363     // N.B. we are only interested in the adjusted param types.
   7364     auto I = FPT->param_type_begin();
   7365     auto E = FPT->param_type_end();
   7366     if (I != E) {
   7367       do {
   7368         if (!appendType(Enc, *I, CGM, TSC))
   7369           return false;
   7370         ++I;
   7371         if (I != E)
   7372           Enc += ',';
   7373       } while (I != E);
   7374       if (FPT->isVariadic())
   7375         Enc += ",va";
   7376     } else {
   7377       if (FPT->isVariadic())
   7378         Enc += "va";
   7379       else
   7380         Enc += '0';
   7381     }
   7382   }
   7383   Enc += ')';
   7384   return true;
   7385 }
   7386 
   7387 /// Handles the type's qualifier before dispatching a call to handle specific
   7388 /// type encodings.
   7389 static bool appendType(SmallStringEnc &Enc, QualType QType,
   7390                        const CodeGen::CodeGenModule &CGM,
   7391                        TypeStringCache &TSC) {
   7392 
   7393   QualType QT = QType.getCanonicalType();
   7394 
   7395   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
   7396     // The Qualifiers should be attached to the type rather than the array.
   7397     // Thus we don't call appendQualifier() here.
   7398     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
   7399 
   7400   appendQualifier(Enc, QT);
   7401 
   7402   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
   7403     return appendBuiltinType(Enc, BT);
   7404 
   7405   if (const PointerType *PT = QT->getAs<PointerType>())
   7406     return appendPointerType(Enc, PT, CGM, TSC);
   7407 
   7408   if (const EnumType *ET = QT->getAs<EnumType>())
   7409     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
   7410 
   7411   if (const RecordType *RT = QT->getAsStructureType())
   7412     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
   7413 
   7414   if (const RecordType *RT = QT->getAsUnionType())
   7415     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
   7416 
   7417   if (const FunctionType *FT = QT->getAs<FunctionType>())
   7418     return appendFunctionType(Enc, FT, CGM, TSC);
   7419 
   7420   return false;
   7421 }
   7422 
   7423 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
   7424                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
   7425   if (!D)
   7426     return false;
   7427 
   7428   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   7429     if (FD->getLanguageLinkage() != CLanguageLinkage)
   7430       return false;
   7431     return appendType(Enc, FD->getType(), CGM, TSC);
   7432   }
   7433 
   7434   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   7435     if (VD->getLanguageLinkage() != CLanguageLinkage)
   7436       return false;
   7437     QualType QT = VD->getType().getCanonicalType();
   7438     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
   7439       // Global ArrayTypes are given a size of '*' if the size is unknown.
   7440       // The Qualifiers should be attached to the type rather than the array.
   7441       // Thus we don't call appendQualifier() here.
   7442       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
   7443     }
   7444     return appendType(Enc, QT, CGM, TSC);
   7445   }
   7446   return false;
   7447 }
   7448 
   7449 
   7450 //===----------------------------------------------------------------------===//
   7451 // Driver code
   7452 //===----------------------------------------------------------------------===//
   7453 
   7454 const llvm::Triple &CodeGenModule::getTriple() const {
   7455   return getTarget().getTriple();
   7456 }
   7457 
   7458 bool CodeGenModule::supportsCOMDAT() const {
   7459   return !getTriple().isOSBinFormatMachO();
   7460 }
   7461 
   7462 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
   7463   if (TheTargetCodeGenInfo)
   7464     return *TheTargetCodeGenInfo;
   7465 
   7466   const llvm::Triple &Triple = getTarget().getTriple();
   7467   switch (Triple.getArch()) {
   7468   default:
   7469     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
   7470 
   7471   case llvm::Triple::le32:
   7472     return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
   7473   case llvm::Triple::mips:
   7474   case llvm::Triple::mipsel:
   7475     if (Triple.getOS() == llvm::Triple::NaCl)
   7476       return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
   7477     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
   7478 
   7479   case llvm::Triple::mips64:
   7480   case llvm::Triple::mips64el:
   7481     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
   7482 
   7483   case llvm::Triple::aarch64:
   7484   case llvm::Triple::aarch64_be: {
   7485     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
   7486     if (getTarget().getABI() == "darwinpcs")
   7487       Kind = AArch64ABIInfo::DarwinPCS;
   7488 
   7489     return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind));
   7490   }
   7491 
   7492   case llvm::Triple::wasm32:
   7493   case llvm::Triple::wasm64:
   7494     return *(TheTargetCodeGenInfo = new WebAssemblyTargetCodeGenInfo(Types));
   7495 
   7496   case llvm::Triple::arm:
   7497   case llvm::Triple::armeb:
   7498   case llvm::Triple::thumb:
   7499   case llvm::Triple::thumbeb:
   7500     {
   7501       if (Triple.getOS() == llvm::Triple::Win32) {
   7502         TheTargetCodeGenInfo =
   7503             new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP);
   7504         return *TheTargetCodeGenInfo;
   7505       }
   7506 
   7507       ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
   7508       StringRef ABIStr = getTarget().getABI();
   7509       if (ABIStr == "apcs-gnu")
   7510         Kind = ARMABIInfo::APCS;
   7511       else if (ABIStr == "aapcs16")
   7512         Kind = ARMABIInfo::AAPCS16_VFP;
   7513       else if (CodeGenOpts.FloatABI == "hard" ||
   7514                (CodeGenOpts.FloatABI != "soft" &&
   7515                 Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
   7516         Kind = ARMABIInfo::AAPCS_VFP;
   7517 
   7518       return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
   7519     }
   7520 
   7521   case llvm::Triple::ppc:
   7522     return *(TheTargetCodeGenInfo =
   7523              new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft"));
   7524   case llvm::Triple::ppc64:
   7525     if (Triple.isOSBinFormatELF()) {
   7526       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
   7527       if (getTarget().getABI() == "elfv2")
   7528         Kind = PPC64_SVR4_ABIInfo::ELFv2;
   7529       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
   7530 
   7531       return *(TheTargetCodeGenInfo =
   7532                new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
   7533     } else
   7534       return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
   7535   case llvm::Triple::ppc64le: {
   7536     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
   7537     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
   7538     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
   7539       Kind = PPC64_SVR4_ABIInfo::ELFv1;
   7540     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
   7541 
   7542     return *(TheTargetCodeGenInfo =
   7543              new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
   7544   }
   7545 
   7546   case llvm::Triple::nvptx:
   7547   case llvm::Triple::nvptx64:
   7548     return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
   7549 
   7550   case llvm::Triple::msp430:
   7551     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
   7552 
   7553   case llvm::Triple::systemz: {
   7554     bool HasVector = getTarget().getABI() == "vector";
   7555     return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types,
   7556                                                                  HasVector));
   7557   }
   7558 
   7559   case llvm::Triple::tce:
   7560     return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
   7561 
   7562   case llvm::Triple::x86: {
   7563     bool IsDarwinVectorABI = Triple.isOSDarwin();
   7564     bool RetSmallStructInRegABI =
   7565         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
   7566     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
   7567 
   7568     if (Triple.getOS() == llvm::Triple::Win32) {
   7569       return *(TheTargetCodeGenInfo = new WinX86_32TargetCodeGenInfo(
   7570                    Types, IsDarwinVectorABI, RetSmallStructInRegABI,
   7571                    IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
   7572     } else {
   7573       return *(TheTargetCodeGenInfo = new X86_32TargetCodeGenInfo(
   7574                    Types, IsDarwinVectorABI, RetSmallStructInRegABI,
   7575                    IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
   7576                    CodeGenOpts.FloatABI == "soft"));
   7577     }
   7578   }
   7579 
   7580   case llvm::Triple::x86_64: {
   7581     StringRef ABI = getTarget().getABI();
   7582     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 :
   7583                                ABI == "avx" ? X86AVXABILevel::AVX :
   7584                                X86AVXABILevel::None);
   7585 
   7586     switch (Triple.getOS()) {
   7587     case llvm::Triple::Win32:
   7588       return *(TheTargetCodeGenInfo =
   7589                    new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
   7590     case llvm::Triple::PS4:
   7591       return *(TheTargetCodeGenInfo =
   7592                    new PS4TargetCodeGenInfo(Types, AVXLevel));
   7593     default:
   7594       return *(TheTargetCodeGenInfo =
   7595                    new X86_64TargetCodeGenInfo(Types, AVXLevel));
   7596     }
   7597   }
   7598   case llvm::Triple::hexagon:
   7599     return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
   7600   case llvm::Triple::r600:
   7601     return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
   7602   case llvm::Triple::amdgcn:
   7603     return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
   7604   case llvm::Triple::sparcv9:
   7605     return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
   7606   case llvm::Triple::xcore:
   7607     return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types));
   7608   }
   7609 }
   7610