Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineCompares.cpp --------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visitICmp and visitFCmp functions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombineInternal.h"
     15 #include "llvm/ADT/APSInt.h"
     16 #include "llvm/ADT/Statistic.h"
     17 #include "llvm/Analysis/ConstantFolding.h"
     18 #include "llvm/Analysis/InstructionSimplify.h"
     19 #include "llvm/Analysis/MemoryBuiltins.h"
     20 #include "llvm/IR/ConstantRange.h"
     21 #include "llvm/IR/DataLayout.h"
     22 #include "llvm/IR/GetElementPtrTypeIterator.h"
     23 #include "llvm/IR/IntrinsicInst.h"
     24 #include "llvm/IR/PatternMatch.h"
     25 #include "llvm/Support/CommandLine.h"
     26 #include "llvm/Support/Debug.h"
     27 #include "llvm/Analysis/TargetLibraryInfo.h"
     28 
     29 using namespace llvm;
     30 using namespace PatternMatch;
     31 
     32 #define DEBUG_TYPE "instcombine"
     33 
     34 // How many times is a select replaced by one of its operands?
     35 STATISTIC(NumSel, "Number of select opts");
     36 
     37 // Initialization Routines
     38 
     39 static ConstantInt *getOne(Constant *C) {
     40   return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
     41 }
     42 
     43 static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
     44   return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
     45 }
     46 
     47 static bool HasAddOverflow(ConstantInt *Result,
     48                            ConstantInt *In1, ConstantInt *In2,
     49                            bool IsSigned) {
     50   if (!IsSigned)
     51     return Result->getValue().ult(In1->getValue());
     52 
     53   if (In2->isNegative())
     54     return Result->getValue().sgt(In1->getValue());
     55   return Result->getValue().slt(In1->getValue());
     56 }
     57 
     58 /// AddWithOverflow - Compute Result = In1+In2, returning true if the result
     59 /// overflowed for this type.
     60 static bool AddWithOverflow(Constant *&Result, Constant *In1,
     61                             Constant *In2, bool IsSigned = false) {
     62   Result = ConstantExpr::getAdd(In1, In2);
     63 
     64   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
     65     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
     66       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
     67       if (HasAddOverflow(ExtractElement(Result, Idx),
     68                          ExtractElement(In1, Idx),
     69                          ExtractElement(In2, Idx),
     70                          IsSigned))
     71         return true;
     72     }
     73     return false;
     74   }
     75 
     76   return HasAddOverflow(cast<ConstantInt>(Result),
     77                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
     78                         IsSigned);
     79 }
     80 
     81 static bool HasSubOverflow(ConstantInt *Result,
     82                            ConstantInt *In1, ConstantInt *In2,
     83                            bool IsSigned) {
     84   if (!IsSigned)
     85     return Result->getValue().ugt(In1->getValue());
     86 
     87   if (In2->isNegative())
     88     return Result->getValue().slt(In1->getValue());
     89 
     90   return Result->getValue().sgt(In1->getValue());
     91 }
     92 
     93 /// SubWithOverflow - Compute Result = In1-In2, returning true if the result
     94 /// overflowed for this type.
     95 static bool SubWithOverflow(Constant *&Result, Constant *In1,
     96                             Constant *In2, bool IsSigned = false) {
     97   Result = ConstantExpr::getSub(In1, In2);
     98 
     99   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
    100     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
    101       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
    102       if (HasSubOverflow(ExtractElement(Result, Idx),
    103                          ExtractElement(In1, Idx),
    104                          ExtractElement(In2, Idx),
    105                          IsSigned))
    106         return true;
    107     }
    108     return false;
    109   }
    110 
    111   return HasSubOverflow(cast<ConstantInt>(Result),
    112                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
    113                         IsSigned);
    114 }
    115 
    116 /// isSignBitCheck - Given an exploded icmp instruction, return true if the
    117 /// comparison only checks the sign bit.  If it only checks the sign bit, set
    118 /// TrueIfSigned if the result of the comparison is true when the input value is
    119 /// signed.
    120 static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
    121                            bool &TrueIfSigned) {
    122   switch (pred) {
    123   case ICmpInst::ICMP_SLT:   // True if LHS s< 0
    124     TrueIfSigned = true;
    125     return RHS->isZero();
    126   case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
    127     TrueIfSigned = true;
    128     return RHS->isAllOnesValue();
    129   case ICmpInst::ICMP_SGT:   // True if LHS s> -1
    130     TrueIfSigned = false;
    131     return RHS->isAllOnesValue();
    132   case ICmpInst::ICMP_UGT:
    133     // True if LHS u> RHS and RHS == high-bit-mask - 1
    134     TrueIfSigned = true;
    135     return RHS->isMaxValue(true);
    136   case ICmpInst::ICMP_UGE:
    137     // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
    138     TrueIfSigned = true;
    139     return RHS->getValue().isSignBit();
    140   default:
    141     return false;
    142   }
    143 }
    144 
    145 /// Returns true if the exploded icmp can be expressed as a signed comparison
    146 /// to zero and updates the predicate accordingly.
    147 /// The signedness of the comparison is preserved.
    148 static bool isSignTest(ICmpInst::Predicate &pred, const ConstantInt *RHS) {
    149   if (!ICmpInst::isSigned(pred))
    150     return false;
    151 
    152   if (RHS->isZero())
    153     return ICmpInst::isRelational(pred);
    154 
    155   if (RHS->isOne()) {
    156     if (pred == ICmpInst::ICMP_SLT) {
    157       pred = ICmpInst::ICMP_SLE;
    158       return true;
    159     }
    160   } else if (RHS->isAllOnesValue()) {
    161     if (pred == ICmpInst::ICMP_SGT) {
    162       pred = ICmpInst::ICMP_SGE;
    163       return true;
    164     }
    165   }
    166 
    167   return false;
    168 }
    169 
    170 // isHighOnes - Return true if the constant is of the form 1+0+.
    171 // This is the same as lowones(~X).
    172 static bool isHighOnes(const ConstantInt *CI) {
    173   return (~CI->getValue() + 1).isPowerOf2();
    174 }
    175 
    176 /// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
    177 /// set of known zero and one bits, compute the maximum and minimum values that
    178 /// could have the specified known zero and known one bits, returning them in
    179 /// min/max.
    180 static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
    181                                                    const APInt& KnownOne,
    182                                                    APInt& Min, APInt& Max) {
    183   assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
    184          KnownZero.getBitWidth() == Min.getBitWidth() &&
    185          KnownZero.getBitWidth() == Max.getBitWidth() &&
    186          "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
    187   APInt UnknownBits = ~(KnownZero|KnownOne);
    188 
    189   // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
    190   // bit if it is unknown.
    191   Min = KnownOne;
    192   Max = KnownOne|UnknownBits;
    193 
    194   if (UnknownBits.isNegative()) { // Sign bit is unknown
    195     Min.setBit(Min.getBitWidth()-1);
    196     Max.clearBit(Max.getBitWidth()-1);
    197   }
    198 }
    199 
    200 // ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
    201 // a set of known zero and one bits, compute the maximum and minimum values that
    202 // could have the specified known zero and known one bits, returning them in
    203 // min/max.
    204 static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
    205                                                      const APInt &KnownOne,
    206                                                      APInt &Min, APInt &Max) {
    207   assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
    208          KnownZero.getBitWidth() == Min.getBitWidth() &&
    209          KnownZero.getBitWidth() == Max.getBitWidth() &&
    210          "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
    211   APInt UnknownBits = ~(KnownZero|KnownOne);
    212 
    213   // The minimum value is when the unknown bits are all zeros.
    214   Min = KnownOne;
    215   // The maximum value is when the unknown bits are all ones.
    216   Max = KnownOne|UnknownBits;
    217 }
    218 
    219 /// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
    220 ///   cmp pred (load (gep GV, ...)), cmpcst
    221 /// where GV is a global variable with a constant initializer.  Try to simplify
    222 /// this into some simple computation that does not need the load.  For example
    223 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
    224 ///
    225 /// If AndCst is non-null, then the loaded value is masked with that constant
    226 /// before doing the comparison.  This handles cases like "A[i]&4 == 0".
    227 Instruction *InstCombiner::
    228 FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
    229                              CmpInst &ICI, ConstantInt *AndCst) {
    230   Constant *Init = GV->getInitializer();
    231   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
    232     return nullptr;
    233 
    234   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
    235   if (ArrayElementCount > 1024) return nullptr; // Don't blow up on huge arrays.
    236 
    237   // There are many forms of this optimization we can handle, for now, just do
    238   // the simple index into a single-dimensional array.
    239   //
    240   // Require: GEP GV, 0, i {{, constant indices}}
    241   if (GEP->getNumOperands() < 3 ||
    242       !isa<ConstantInt>(GEP->getOperand(1)) ||
    243       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
    244       isa<Constant>(GEP->getOperand(2)))
    245     return nullptr;
    246 
    247   // Check that indices after the variable are constants and in-range for the
    248   // type they index.  Collect the indices.  This is typically for arrays of
    249   // structs.
    250   SmallVector<unsigned, 4> LaterIndices;
    251 
    252   Type *EltTy = Init->getType()->getArrayElementType();
    253   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
    254     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
    255     if (!Idx) return nullptr;  // Variable index.
    256 
    257     uint64_t IdxVal = Idx->getZExtValue();
    258     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
    259 
    260     if (StructType *STy = dyn_cast<StructType>(EltTy))
    261       EltTy = STy->getElementType(IdxVal);
    262     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
    263       if (IdxVal >= ATy->getNumElements()) return nullptr;
    264       EltTy = ATy->getElementType();
    265     } else {
    266       return nullptr; // Unknown type.
    267     }
    268 
    269     LaterIndices.push_back(IdxVal);
    270   }
    271 
    272   enum { Overdefined = -3, Undefined = -2 };
    273 
    274   // Variables for our state machines.
    275 
    276   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
    277   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
    278   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
    279   // undefined, otherwise set to the first true element.  SecondTrueElement is
    280   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
    281   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
    282 
    283   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
    284   // form "i != 47 & i != 87".  Same state transitions as for true elements.
    285   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
    286 
    287   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
    288   /// define a state machine that triggers for ranges of values that the index
    289   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
    290   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
    291   /// index in the range (inclusive).  We use -2 for undefined here because we
    292   /// use relative comparisons and don't want 0-1 to match -1.
    293   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
    294 
    295   // MagicBitvector - This is a magic bitvector where we set a bit if the
    296   // comparison is true for element 'i'.  If there are 64 elements or less in
    297   // the array, this will fully represent all the comparison results.
    298   uint64_t MagicBitvector = 0;
    299 
    300   // Scan the array and see if one of our patterns matches.
    301   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
    302   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
    303     Constant *Elt = Init->getAggregateElement(i);
    304     if (!Elt) return nullptr;
    305 
    306     // If this is indexing an array of structures, get the structure element.
    307     if (!LaterIndices.empty())
    308       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
    309 
    310     // If the element is masked, handle it.
    311     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
    312 
    313     // Find out if the comparison would be true or false for the i'th element.
    314     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
    315                                                   CompareRHS, DL, TLI);
    316     // If the result is undef for this element, ignore it.
    317     if (isa<UndefValue>(C)) {
    318       // Extend range state machines to cover this element in case there is an
    319       // undef in the middle of the range.
    320       if (TrueRangeEnd == (int)i-1)
    321         TrueRangeEnd = i;
    322       if (FalseRangeEnd == (int)i-1)
    323         FalseRangeEnd = i;
    324       continue;
    325     }
    326 
    327     // If we can't compute the result for any of the elements, we have to give
    328     // up evaluating the entire conditional.
    329     if (!isa<ConstantInt>(C)) return nullptr;
    330 
    331     // Otherwise, we know if the comparison is true or false for this element,
    332     // update our state machines.
    333     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
    334 
    335     // State machine for single/double/range index comparison.
    336     if (IsTrueForElt) {
    337       // Update the TrueElement state machine.
    338       if (FirstTrueElement == Undefined)
    339         FirstTrueElement = TrueRangeEnd = i;  // First true element.
    340       else {
    341         // Update double-compare state machine.
    342         if (SecondTrueElement == Undefined)
    343           SecondTrueElement = i;
    344         else
    345           SecondTrueElement = Overdefined;
    346 
    347         // Update range state machine.
    348         if (TrueRangeEnd == (int)i-1)
    349           TrueRangeEnd = i;
    350         else
    351           TrueRangeEnd = Overdefined;
    352       }
    353     } else {
    354       // Update the FalseElement state machine.
    355       if (FirstFalseElement == Undefined)
    356         FirstFalseElement = FalseRangeEnd = i; // First false element.
    357       else {
    358         // Update double-compare state machine.
    359         if (SecondFalseElement == Undefined)
    360           SecondFalseElement = i;
    361         else
    362           SecondFalseElement = Overdefined;
    363 
    364         // Update range state machine.
    365         if (FalseRangeEnd == (int)i-1)
    366           FalseRangeEnd = i;
    367         else
    368           FalseRangeEnd = Overdefined;
    369       }
    370     }
    371 
    372     // If this element is in range, update our magic bitvector.
    373     if (i < 64 && IsTrueForElt)
    374       MagicBitvector |= 1ULL << i;
    375 
    376     // If all of our states become overdefined, bail out early.  Since the
    377     // predicate is expensive, only check it every 8 elements.  This is only
    378     // really useful for really huge arrays.
    379     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
    380         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
    381         FalseRangeEnd == Overdefined)
    382       return nullptr;
    383   }
    384 
    385   // Now that we've scanned the entire array, emit our new comparison(s).  We
    386   // order the state machines in complexity of the generated code.
    387   Value *Idx = GEP->getOperand(2);
    388 
    389   // If the index is larger than the pointer size of the target, truncate the
    390   // index down like the GEP would do implicitly.  We don't have to do this for
    391   // an inbounds GEP because the index can't be out of range.
    392   if (!GEP->isInBounds()) {
    393     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
    394     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
    395     if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
    396       Idx = Builder->CreateTrunc(Idx, IntPtrTy);
    397   }
    398 
    399   // If the comparison is only true for one or two elements, emit direct
    400   // comparisons.
    401   if (SecondTrueElement != Overdefined) {
    402     // None true -> false.
    403     if (FirstTrueElement == Undefined)
    404       return ReplaceInstUsesWith(ICI, Builder->getFalse());
    405 
    406     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
    407 
    408     // True for one element -> 'i == 47'.
    409     if (SecondTrueElement == Undefined)
    410       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
    411 
    412     // True for two elements -> 'i == 47 | i == 72'.
    413     Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
    414     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
    415     Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
    416     return BinaryOperator::CreateOr(C1, C2);
    417   }
    418 
    419   // If the comparison is only false for one or two elements, emit direct
    420   // comparisons.
    421   if (SecondFalseElement != Overdefined) {
    422     // None false -> true.
    423     if (FirstFalseElement == Undefined)
    424       return ReplaceInstUsesWith(ICI, Builder->getTrue());
    425 
    426     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
    427 
    428     // False for one element -> 'i != 47'.
    429     if (SecondFalseElement == Undefined)
    430       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
    431 
    432     // False for two elements -> 'i != 47 & i != 72'.
    433     Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
    434     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
    435     Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
    436     return BinaryOperator::CreateAnd(C1, C2);
    437   }
    438 
    439   // If the comparison can be replaced with a range comparison for the elements
    440   // where it is true, emit the range check.
    441   if (TrueRangeEnd != Overdefined) {
    442     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
    443 
    444     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
    445     if (FirstTrueElement) {
    446       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
    447       Idx = Builder->CreateAdd(Idx, Offs);
    448     }
    449 
    450     Value *End = ConstantInt::get(Idx->getType(),
    451                                   TrueRangeEnd-FirstTrueElement+1);
    452     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
    453   }
    454 
    455   // False range check.
    456   if (FalseRangeEnd != Overdefined) {
    457     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
    458     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
    459     if (FirstFalseElement) {
    460       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
    461       Idx = Builder->CreateAdd(Idx, Offs);
    462     }
    463 
    464     Value *End = ConstantInt::get(Idx->getType(),
    465                                   FalseRangeEnd-FirstFalseElement);
    466     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
    467   }
    468 
    469   // If a magic bitvector captures the entire comparison state
    470   // of this load, replace it with computation that does:
    471   //   ((magic_cst >> i) & 1) != 0
    472   {
    473     Type *Ty = nullptr;
    474 
    475     // Look for an appropriate type:
    476     // - The type of Idx if the magic fits
    477     // - The smallest fitting legal type if we have a DataLayout
    478     // - Default to i32
    479     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
    480       Ty = Idx->getType();
    481     else
    482       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
    483 
    484     if (Ty) {
    485       Value *V = Builder->CreateIntCast(Idx, Ty, false);
    486       V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
    487       V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
    488       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
    489     }
    490   }
    491 
    492   return nullptr;
    493 }
    494 
    495 /// EvaluateGEPOffsetExpression - Return a value that can be used to compare
    496 /// the *offset* implied by a GEP to zero.  For example, if we have &A[i], we
    497 /// want to return 'i' for "icmp ne i, 0".  Note that, in general, indices can
    498 /// be complex, and scales are involved.  The above expression would also be
    499 /// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
    500 /// This later form is less amenable to optimization though, and we are allowed
    501 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
    502 ///
    503 /// If we can't emit an optimized form for this expression, this returns null.
    504 ///
    505 static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
    506                                           const DataLayout &DL) {
    507   gep_type_iterator GTI = gep_type_begin(GEP);
    508 
    509   // Check to see if this gep only has a single variable index.  If so, and if
    510   // any constant indices are a multiple of its scale, then we can compute this
    511   // in terms of the scale of the variable index.  For example, if the GEP
    512   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
    513   // because the expression will cross zero at the same point.
    514   unsigned i, e = GEP->getNumOperands();
    515   int64_t Offset = 0;
    516   for (i = 1; i != e; ++i, ++GTI) {
    517     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
    518       // Compute the aggregate offset of constant indices.
    519       if (CI->isZero()) continue;
    520 
    521       // Handle a struct index, which adds its field offset to the pointer.
    522       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    523         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
    524       } else {
    525         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
    526         Offset += Size*CI->getSExtValue();
    527       }
    528     } else {
    529       // Found our variable index.
    530       break;
    531     }
    532   }
    533 
    534   // If there are no variable indices, we must have a constant offset, just
    535   // evaluate it the general way.
    536   if (i == e) return nullptr;
    537 
    538   Value *VariableIdx = GEP->getOperand(i);
    539   // Determine the scale factor of the variable element.  For example, this is
    540   // 4 if the variable index is into an array of i32.
    541   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
    542 
    543   // Verify that there are no other variable indices.  If so, emit the hard way.
    544   for (++i, ++GTI; i != e; ++i, ++GTI) {
    545     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
    546     if (!CI) return nullptr;
    547 
    548     // Compute the aggregate offset of constant indices.
    549     if (CI->isZero()) continue;
    550 
    551     // Handle a struct index, which adds its field offset to the pointer.
    552     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    553       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
    554     } else {
    555       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
    556       Offset += Size*CI->getSExtValue();
    557     }
    558   }
    559 
    560   // Okay, we know we have a single variable index, which must be a
    561   // pointer/array/vector index.  If there is no offset, life is simple, return
    562   // the index.
    563   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
    564   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
    565   if (Offset == 0) {
    566     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
    567     // we don't need to bother extending: the extension won't affect where the
    568     // computation crosses zero.
    569     if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
    570       VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
    571     }
    572     return VariableIdx;
    573   }
    574 
    575   // Otherwise, there is an index.  The computation we will do will be modulo
    576   // the pointer size, so get it.
    577   uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
    578 
    579   Offset &= PtrSizeMask;
    580   VariableScale &= PtrSizeMask;
    581 
    582   // To do this transformation, any constant index must be a multiple of the
    583   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
    584   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
    585   // multiple of the variable scale.
    586   int64_t NewOffs = Offset / (int64_t)VariableScale;
    587   if (Offset != NewOffs*(int64_t)VariableScale)
    588     return nullptr;
    589 
    590   // Okay, we can do this evaluation.  Start by converting the index to intptr.
    591   if (VariableIdx->getType() != IntPtrTy)
    592     VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
    593                                             true /*Signed*/);
    594   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
    595   return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
    596 }
    597 
    598 /// FoldGEPICmp - Fold comparisons between a GEP instruction and something
    599 /// else.  At this point we know that the GEP is on the LHS of the comparison.
    600 Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
    601                                        ICmpInst::Predicate Cond,
    602                                        Instruction &I) {
    603   // Don't transform signed compares of GEPs into index compares. Even if the
    604   // GEP is inbounds, the final add of the base pointer can have signed overflow
    605   // and would change the result of the icmp.
    606   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
    607   // the maximum signed value for the pointer type.
    608   if (ICmpInst::isSigned(Cond))
    609     return nullptr;
    610 
    611   // Look through bitcasts and addrspacecasts. We do not however want to remove
    612   // 0 GEPs.
    613   if (!isa<GetElementPtrInst>(RHS))
    614     RHS = RHS->stripPointerCasts();
    615 
    616   Value *PtrBase = GEPLHS->getOperand(0);
    617   if (PtrBase == RHS && GEPLHS->isInBounds()) {
    618     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
    619     // This transformation (ignoring the base and scales) is valid because we
    620     // know pointers can't overflow since the gep is inbounds.  See if we can
    621     // output an optimized form.
    622     Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this, DL);
    623 
    624     // If not, synthesize the offset the hard way.
    625     if (!Offset)
    626       Offset = EmitGEPOffset(GEPLHS);
    627     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
    628                         Constant::getNullValue(Offset->getType()));
    629   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
    630     // If the base pointers are different, but the indices are the same, just
    631     // compare the base pointer.
    632     if (PtrBase != GEPRHS->getOperand(0)) {
    633       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
    634       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
    635                         GEPRHS->getOperand(0)->getType();
    636       if (IndicesTheSame)
    637         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
    638           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
    639             IndicesTheSame = false;
    640             break;
    641           }
    642 
    643       // If all indices are the same, just compare the base pointers.
    644       if (IndicesTheSame)
    645         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
    646 
    647       // If we're comparing GEPs with two base pointers that only differ in type
    648       // and both GEPs have only constant indices or just one use, then fold
    649       // the compare with the adjusted indices.
    650       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
    651           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
    652           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
    653           PtrBase->stripPointerCasts() ==
    654               GEPRHS->getOperand(0)->stripPointerCasts()) {
    655         Value *LOffset = EmitGEPOffset(GEPLHS);
    656         Value *ROffset = EmitGEPOffset(GEPRHS);
    657 
    658         // If we looked through an addrspacecast between different sized address
    659         // spaces, the LHS and RHS pointers are different sized
    660         // integers. Truncate to the smaller one.
    661         Type *LHSIndexTy = LOffset->getType();
    662         Type *RHSIndexTy = ROffset->getType();
    663         if (LHSIndexTy != RHSIndexTy) {
    664           if (LHSIndexTy->getPrimitiveSizeInBits() <
    665               RHSIndexTy->getPrimitiveSizeInBits()) {
    666             ROffset = Builder->CreateTrunc(ROffset, LHSIndexTy);
    667           } else
    668             LOffset = Builder->CreateTrunc(LOffset, RHSIndexTy);
    669         }
    670 
    671         Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond),
    672                                          LOffset, ROffset);
    673         return ReplaceInstUsesWith(I, Cmp);
    674       }
    675 
    676       // Otherwise, the base pointers are different and the indices are
    677       // different, bail out.
    678       return nullptr;
    679     }
    680 
    681     // If one of the GEPs has all zero indices, recurse.
    682     if (GEPLHS->hasAllZeroIndices())
    683       return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
    684                          ICmpInst::getSwappedPredicate(Cond), I);
    685 
    686     // If the other GEP has all zero indices, recurse.
    687     if (GEPRHS->hasAllZeroIndices())
    688       return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
    689 
    690     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
    691     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
    692       // If the GEPs only differ by one index, compare it.
    693       unsigned NumDifferences = 0;  // Keep track of # differences.
    694       unsigned DiffOperand = 0;     // The operand that differs.
    695       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
    696         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
    697           if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
    698                    GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
    699             // Irreconcilable differences.
    700             NumDifferences = 2;
    701             break;
    702           } else {
    703             if (NumDifferences++) break;
    704             DiffOperand = i;
    705           }
    706         }
    707 
    708       if (NumDifferences == 0)   // SAME GEP?
    709         return ReplaceInstUsesWith(I, // No comparison is needed here.
    710                              Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond)));
    711 
    712       else if (NumDifferences == 1 && GEPsInBounds) {
    713         Value *LHSV = GEPLHS->getOperand(DiffOperand);
    714         Value *RHSV = GEPRHS->getOperand(DiffOperand);
    715         // Make sure we do a signed comparison here.
    716         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
    717       }
    718     }
    719 
    720     // Only lower this if the icmp is the only user of the GEP or if we expect
    721     // the result to fold to a constant!
    722     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
    723         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
    724       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
    725       Value *L = EmitGEPOffset(GEPLHS);
    726       Value *R = EmitGEPOffset(GEPRHS);
    727       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
    728     }
    729   }
    730   return nullptr;
    731 }
    732 
    733 Instruction *InstCombiner::FoldAllocaCmp(ICmpInst &ICI, AllocaInst *Alloca,
    734                                          Value *Other) {
    735   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
    736 
    737   // It would be tempting to fold away comparisons between allocas and any
    738   // pointer not based on that alloca (e.g. an argument). However, even
    739   // though such pointers cannot alias, they can still compare equal.
    740   //
    741   // But LLVM doesn't specify where allocas get their memory, so if the alloca
    742   // doesn't escape we can argue that it's impossible to guess its value, and we
    743   // can therefore act as if any such guesses are wrong.
    744   //
    745   // The code below checks that the alloca doesn't escape, and that it's only
    746   // used in a comparison once (the current instruction). The
    747   // single-comparison-use condition ensures that we're trivially folding all
    748   // comparisons against the alloca consistently, and avoids the risk of
    749   // erroneously folding a comparison of the pointer with itself.
    750 
    751   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
    752 
    753   SmallVector<Use *, 32> Worklist;
    754   for (Use &U : Alloca->uses()) {
    755     if (Worklist.size() >= MaxIter)
    756       return nullptr;
    757     Worklist.push_back(&U);
    758   }
    759 
    760   unsigned NumCmps = 0;
    761   while (!Worklist.empty()) {
    762     assert(Worklist.size() <= MaxIter);
    763     Use *U = Worklist.pop_back_val();
    764     Value *V = U->getUser();
    765     --MaxIter;
    766 
    767     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
    768         isa<SelectInst>(V)) {
    769       // Track the uses.
    770     } else if (isa<LoadInst>(V)) {
    771       // Loading from the pointer doesn't escape it.
    772       continue;
    773     } else if (auto *SI = dyn_cast<StoreInst>(V)) {
    774       // Storing *to* the pointer is fine, but storing the pointer escapes it.
    775       if (SI->getValueOperand() == U->get())
    776         return nullptr;
    777       continue;
    778     } else if (isa<ICmpInst>(V)) {
    779       if (NumCmps++)
    780         return nullptr; // Found more than one cmp.
    781       continue;
    782     } else if (auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
    783       switch (Intrin->getIntrinsicID()) {
    784         // These intrinsics don't escape or compare the pointer. Memset is safe
    785         // because we don't allow ptrtoint. Memcpy and memmove are safe because
    786         // we don't allow stores, so src cannot point to V.
    787         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
    788         case Intrinsic::dbg_declare: case Intrinsic::dbg_value:
    789         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
    790           continue;
    791         default:
    792           return nullptr;
    793       }
    794     } else {
    795       return nullptr;
    796     }
    797     for (Use &U : V->uses()) {
    798       if (Worklist.size() >= MaxIter)
    799         return nullptr;
    800       Worklist.push_back(&U);
    801     }
    802   }
    803 
    804   Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
    805   return ReplaceInstUsesWith(
    806       ICI,
    807       ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
    808 }
    809 
    810 /// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
    811 Instruction *InstCombiner::FoldICmpAddOpCst(Instruction &ICI,
    812                                             Value *X, ConstantInt *CI,
    813                                             ICmpInst::Predicate Pred) {
    814   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
    815   // so the values can never be equal.  Similarly for all other "or equals"
    816   // operators.
    817 
    818   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
    819   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
    820   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
    821   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
    822     Value *R =
    823       ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
    824     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
    825   }
    826 
    827   // (X+1) >u X        --> X <u (0-1)        --> X != 255
    828   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
    829   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
    830   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
    831     return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
    832 
    833   unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
    834   ConstantInt *SMax = ConstantInt::get(X->getContext(),
    835                                        APInt::getSignedMaxValue(BitWidth));
    836 
    837   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
    838   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
    839   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
    840   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
    841   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
    842   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
    843   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
    844     return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
    845 
    846   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
    847   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
    848   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
    849   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
    850   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
    851   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
    852 
    853   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
    854   Constant *C = Builder->getInt(CI->getValue()-1);
    855   return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
    856 }
    857 
    858 /// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
    859 /// and CmpRHS are both known to be integer constants.
    860 Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
    861                                           ConstantInt *DivRHS) {
    862   ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
    863   const APInt &CmpRHSV = CmpRHS->getValue();
    864 
    865   // FIXME: If the operand types don't match the type of the divide
    866   // then don't attempt this transform. The code below doesn't have the
    867   // logic to deal with a signed divide and an unsigned compare (and
    868   // vice versa). This is because (x /s C1) <s C2  produces different
    869   // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
    870   // (x /u C1) <u C2.  Simply casting the operands and result won't
    871   // work. :(  The if statement below tests that condition and bails
    872   // if it finds it.
    873   bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
    874   if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
    875     return nullptr;
    876   if (DivRHS->isZero())
    877     return nullptr; // The ProdOV computation fails on divide by zero.
    878   if (DivIsSigned && DivRHS->isAllOnesValue())
    879     return nullptr; // The overflow computation also screws up here
    880   if (DivRHS->isOne()) {
    881     // This eliminates some funny cases with INT_MIN.
    882     ICI.setOperand(0, DivI->getOperand(0));   // X/1 == X.
    883     return &ICI;
    884   }
    885 
    886   // Compute Prod = CI * DivRHS. We are essentially solving an equation
    887   // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
    888   // C2 (CI). By solving for X we can turn this into a range check
    889   // instead of computing a divide.
    890   Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
    891 
    892   // Determine if the product overflows by seeing if the product is
    893   // not equal to the divide. Make sure we do the same kind of divide
    894   // as in the LHS instruction that we're folding.
    895   bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
    896                  ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
    897 
    898   // Get the ICmp opcode
    899   ICmpInst::Predicate Pred = ICI.getPredicate();
    900 
    901   /// If the division is known to be exact, then there is no remainder from the
    902   /// divide, so the covered range size is unit, otherwise it is the divisor.
    903   ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
    904 
    905   // Figure out the interval that is being checked.  For example, a comparison
    906   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
    907   // Compute this interval based on the constants involved and the signedness of
    908   // the compare/divide.  This computes a half-open interval, keeping track of
    909   // whether either value in the interval overflows.  After analysis each
    910   // overflow variable is set to 0 if it's corresponding bound variable is valid
    911   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
    912   int LoOverflow = 0, HiOverflow = 0;
    913   Constant *LoBound = nullptr, *HiBound = nullptr;
    914 
    915   if (!DivIsSigned) {  // udiv
    916     // e.g. X/5 op 3  --> [15, 20)
    917     LoBound = Prod;
    918     HiOverflow = LoOverflow = ProdOV;
    919     if (!HiOverflow) {
    920       // If this is not an exact divide, then many values in the range collapse
    921       // to the same result value.
    922       HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
    923     }
    924   } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
    925     if (CmpRHSV == 0) {       // (X / pos) op 0
    926       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
    927       LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
    928       HiBound = RangeSize;
    929     } else if (CmpRHSV.isStrictlyPositive()) {   // (X / pos) op pos
    930       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
    931       HiOverflow = LoOverflow = ProdOV;
    932       if (!HiOverflow)
    933         HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
    934     } else {                       // (X / pos) op neg
    935       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
    936       HiBound = AddOne(Prod);
    937       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
    938       if (!LoOverflow) {
    939         ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
    940         LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
    941       }
    942     }
    943   } else if (DivRHS->isNegative()) { // Divisor is < 0.
    944     if (DivI->isExact())
    945       RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
    946     if (CmpRHSV == 0) {       // (X / neg) op 0
    947       // e.g. X/-5 op 0  --> [-4, 5)
    948       LoBound = AddOne(RangeSize);
    949       HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
    950       if (HiBound == DivRHS) {     // -INTMIN = INTMIN
    951         HiOverflow = 1;            // [INTMIN+1, overflow)
    952         HiBound = nullptr;         // e.g. X/INTMIN = 0 --> X > INTMIN
    953       }
    954     } else if (CmpRHSV.isStrictlyPositive()) {   // (X / neg) op pos
    955       // e.g. X/-5 op 3  --> [-19, -14)
    956       HiBound = AddOne(Prod);
    957       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
    958       if (!LoOverflow)
    959         LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
    960     } else {                       // (X / neg) op neg
    961       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
    962       LoOverflow = HiOverflow = ProdOV;
    963       if (!HiOverflow)
    964         HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
    965     }
    966 
    967     // Dividing by a negative swaps the condition.  LT <-> GT
    968     Pred = ICmpInst::getSwappedPredicate(Pred);
    969   }
    970 
    971   Value *X = DivI->getOperand(0);
    972   switch (Pred) {
    973   default: llvm_unreachable("Unhandled icmp opcode!");
    974   case ICmpInst::ICMP_EQ:
    975     if (LoOverflow && HiOverflow)
    976       return ReplaceInstUsesWith(ICI, Builder->getFalse());
    977     if (HiOverflow)
    978       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
    979                           ICmpInst::ICMP_UGE, X, LoBound);
    980     if (LoOverflow)
    981       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
    982                           ICmpInst::ICMP_ULT, X, HiBound);
    983     return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
    984                                                     DivIsSigned, true));
    985   case ICmpInst::ICMP_NE:
    986     if (LoOverflow && HiOverflow)
    987       return ReplaceInstUsesWith(ICI, Builder->getTrue());
    988     if (HiOverflow)
    989       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
    990                           ICmpInst::ICMP_ULT, X, LoBound);
    991     if (LoOverflow)
    992       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
    993                           ICmpInst::ICMP_UGE, X, HiBound);
    994     return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
    995                                                     DivIsSigned, false));
    996   case ICmpInst::ICMP_ULT:
    997   case ICmpInst::ICMP_SLT:
    998     if (LoOverflow == +1)   // Low bound is greater than input range.
    999       return ReplaceInstUsesWith(ICI, Builder->getTrue());
   1000     if (LoOverflow == -1)   // Low bound is less than input range.
   1001       return ReplaceInstUsesWith(ICI, Builder->getFalse());
   1002     return new ICmpInst(Pred, X, LoBound);
   1003   case ICmpInst::ICMP_UGT:
   1004   case ICmpInst::ICMP_SGT:
   1005     if (HiOverflow == +1)       // High bound greater than input range.
   1006       return ReplaceInstUsesWith(ICI, Builder->getFalse());
   1007     if (HiOverflow == -1)       // High bound less than input range.
   1008       return ReplaceInstUsesWith(ICI, Builder->getTrue());
   1009     if (Pred == ICmpInst::ICMP_UGT)
   1010       return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
   1011     return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
   1012   }
   1013 }
   1014 
   1015 /// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
   1016 Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
   1017                                           ConstantInt *ShAmt) {
   1018   const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
   1019 
   1020   // Check that the shift amount is in range.  If not, don't perform
   1021   // undefined shifts.  When the shift is visited it will be
   1022   // simplified.
   1023   uint32_t TypeBits = CmpRHSV.getBitWidth();
   1024   uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
   1025   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
   1026     return nullptr;
   1027 
   1028   if (!ICI.isEquality()) {
   1029     // If we have an unsigned comparison and an ashr, we can't simplify this.
   1030     // Similarly for signed comparisons with lshr.
   1031     if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
   1032       return nullptr;
   1033 
   1034     // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
   1035     // by a power of 2.  Since we already have logic to simplify these,
   1036     // transform to div and then simplify the resultant comparison.
   1037     if (Shr->getOpcode() == Instruction::AShr &&
   1038         (!Shr->isExact() || ShAmtVal == TypeBits - 1))
   1039       return nullptr;
   1040 
   1041     // Revisit the shift (to delete it).
   1042     Worklist.Add(Shr);
   1043 
   1044     Constant *DivCst =
   1045       ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
   1046 
   1047     Value *Tmp =
   1048       Shr->getOpcode() == Instruction::AShr ?
   1049       Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
   1050       Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
   1051 
   1052     ICI.setOperand(0, Tmp);
   1053 
   1054     // If the builder folded the binop, just return it.
   1055     BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
   1056     if (!TheDiv)
   1057       return &ICI;
   1058 
   1059     // Otherwise, fold this div/compare.
   1060     assert(TheDiv->getOpcode() == Instruction::SDiv ||
   1061            TheDiv->getOpcode() == Instruction::UDiv);
   1062 
   1063     Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
   1064     assert(Res && "This div/cst should have folded!");
   1065     return Res;
   1066   }
   1067 
   1068   // If we are comparing against bits always shifted out, the
   1069   // comparison cannot succeed.
   1070   APInt Comp = CmpRHSV << ShAmtVal;
   1071   ConstantInt *ShiftedCmpRHS = Builder->getInt(Comp);
   1072   if (Shr->getOpcode() == Instruction::LShr)
   1073     Comp = Comp.lshr(ShAmtVal);
   1074   else
   1075     Comp = Comp.ashr(ShAmtVal);
   1076 
   1077   if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
   1078     bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
   1079     Constant *Cst = Builder->getInt1(IsICMP_NE);
   1080     return ReplaceInstUsesWith(ICI, Cst);
   1081   }
   1082 
   1083   // Otherwise, check to see if the bits shifted out are known to be zero.
   1084   // If so, we can compare against the unshifted value:
   1085   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
   1086   if (Shr->hasOneUse() && Shr->isExact())
   1087     return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
   1088 
   1089   if (Shr->hasOneUse()) {
   1090     // Otherwise strength reduce the shift into an and.
   1091     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
   1092     Constant *Mask = Builder->getInt(Val);
   1093 
   1094     Value *And = Builder->CreateAnd(Shr->getOperand(0),
   1095                                     Mask, Shr->getName()+".mask");
   1096     return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
   1097   }
   1098   return nullptr;
   1099 }
   1100 
   1101 /// FoldICmpCstShrCst - Handle "(icmp eq/ne (ashr/lshr const2, A), const1)" ->
   1102 /// (icmp eq/ne A, Log2(const2/const1)) ->
   1103 /// (icmp eq/ne A, Log2(const2) - Log2(const1)).
   1104 Instruction *InstCombiner::FoldICmpCstShrCst(ICmpInst &I, Value *Op, Value *A,
   1105                                              ConstantInt *CI1,
   1106                                              ConstantInt *CI2) {
   1107   assert(I.isEquality() && "Cannot fold icmp gt/lt");
   1108 
   1109   auto getConstant = [&I, this](bool IsTrue) {
   1110     if (I.getPredicate() == I.ICMP_NE)
   1111       IsTrue = !IsTrue;
   1112     return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue));
   1113   };
   1114 
   1115   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
   1116     if (I.getPredicate() == I.ICMP_NE)
   1117       Pred = CmpInst::getInversePredicate(Pred);
   1118     return new ICmpInst(Pred, LHS, RHS);
   1119   };
   1120 
   1121   APInt AP1 = CI1->getValue();
   1122   APInt AP2 = CI2->getValue();
   1123 
   1124   // Don't bother doing any work for cases which InstSimplify handles.
   1125   if (AP2 == 0)
   1126     return nullptr;
   1127   bool IsAShr = isa<AShrOperator>(Op);
   1128   if (IsAShr) {
   1129     if (AP2.isAllOnesValue())
   1130       return nullptr;
   1131     if (AP2.isNegative() != AP1.isNegative())
   1132       return nullptr;
   1133     if (AP2.sgt(AP1))
   1134       return nullptr;
   1135   }
   1136 
   1137   if (!AP1)
   1138     // 'A' must be large enough to shift out the highest set bit.
   1139     return getICmp(I.ICMP_UGT, A,
   1140                    ConstantInt::get(A->getType(), AP2.logBase2()));
   1141 
   1142   if (AP1 == AP2)
   1143     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
   1144 
   1145   int Shift;
   1146   if (IsAShr && AP1.isNegative())
   1147     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
   1148   else
   1149     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
   1150 
   1151   if (Shift > 0) {
   1152     if (IsAShr && AP1 == AP2.ashr(Shift)) {
   1153       // There are multiple solutions if we are comparing against -1 and the LHS
   1154       // of the ashr is not a power of two.
   1155       if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
   1156         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
   1157       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
   1158     } else if (AP1 == AP2.lshr(Shift)) {
   1159       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
   1160     }
   1161   }
   1162   // Shifting const2 will never be equal to const1.
   1163   return getConstant(false);
   1164 }
   1165 
   1166 /// FoldICmpCstShlCst - Handle "(icmp eq/ne (shl const2, A), const1)" ->
   1167 /// (icmp eq/ne A, TrailingZeros(const1) - TrailingZeros(const2)).
   1168 Instruction *InstCombiner::FoldICmpCstShlCst(ICmpInst &I, Value *Op, Value *A,
   1169                                              ConstantInt *CI1,
   1170                                              ConstantInt *CI2) {
   1171   assert(I.isEquality() && "Cannot fold icmp gt/lt");
   1172 
   1173   auto getConstant = [&I, this](bool IsTrue) {
   1174     if (I.getPredicate() == I.ICMP_NE)
   1175       IsTrue = !IsTrue;
   1176     return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue));
   1177   };
   1178 
   1179   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
   1180     if (I.getPredicate() == I.ICMP_NE)
   1181       Pred = CmpInst::getInversePredicate(Pred);
   1182     return new ICmpInst(Pred, LHS, RHS);
   1183   };
   1184 
   1185   APInt AP1 = CI1->getValue();
   1186   APInt AP2 = CI2->getValue();
   1187 
   1188   // Don't bother doing any work for cases which InstSimplify handles.
   1189   if (AP2 == 0)
   1190     return nullptr;
   1191 
   1192   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
   1193 
   1194   if (!AP1 && AP2TrailingZeros != 0)
   1195     return getICmp(I.ICMP_UGE, A,
   1196                    ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
   1197 
   1198   if (AP1 == AP2)
   1199     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
   1200 
   1201   // Get the distance between the lowest bits that are set.
   1202   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
   1203 
   1204   if (Shift > 0 && AP2.shl(Shift) == AP1)
   1205     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
   1206 
   1207   // Shifting const2 will never be equal to const1.
   1208   return getConstant(false);
   1209 }
   1210 
   1211 /// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
   1212 ///
   1213 Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
   1214                                                           Instruction *LHSI,
   1215                                                           ConstantInt *RHS) {
   1216   const APInt &RHSV = RHS->getValue();
   1217 
   1218   switch (LHSI->getOpcode()) {
   1219   case Instruction::Trunc:
   1220     if (RHS->isOne() && RHSV.getBitWidth() > 1) {
   1221       // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
   1222       Value *V = nullptr;
   1223       if (ICI.getPredicate() == ICmpInst::ICMP_SLT &&
   1224           match(LHSI->getOperand(0), m_Signum(m_Value(V))))
   1225         return new ICmpInst(ICmpInst::ICMP_SLT, V,
   1226                             ConstantInt::get(V->getType(), 1));
   1227     }
   1228     if (ICI.isEquality() && LHSI->hasOneUse()) {
   1229       // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
   1230       // of the high bits truncated out of x are known.
   1231       unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
   1232              SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
   1233       APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
   1234       computeKnownBits(LHSI->getOperand(0), KnownZero, KnownOne, 0, &ICI);
   1235 
   1236       // If all the high bits are known, we can do this xform.
   1237       if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
   1238         // Pull in the high bits from known-ones set.
   1239         APInt NewRHS = RHS->getValue().zext(SrcBits);
   1240         NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits-DstBits);
   1241         return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
   1242                             Builder->getInt(NewRHS));
   1243       }
   1244     }
   1245     break;
   1246 
   1247   case Instruction::Xor:         // (icmp pred (xor X, XorCst), CI)
   1248     if (ConstantInt *XorCst = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
   1249       // If this is a comparison that tests the signbit (X < 0) or (x > -1),
   1250       // fold the xor.
   1251       if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
   1252           (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
   1253         Value *CompareVal = LHSI->getOperand(0);
   1254 
   1255         // If the sign bit of the XorCst is not set, there is no change to
   1256         // the operation, just stop using the Xor.
   1257         if (!XorCst->isNegative()) {
   1258           ICI.setOperand(0, CompareVal);
   1259           Worklist.Add(LHSI);
   1260           return &ICI;
   1261         }
   1262 
   1263         // Was the old condition true if the operand is positive?
   1264         bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
   1265 
   1266         // If so, the new one isn't.
   1267         isTrueIfPositive ^= true;
   1268 
   1269         if (isTrueIfPositive)
   1270           return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
   1271                               SubOne(RHS));
   1272         else
   1273           return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
   1274                               AddOne(RHS));
   1275       }
   1276 
   1277       if (LHSI->hasOneUse()) {
   1278         // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
   1279         if (!ICI.isEquality() && XorCst->getValue().isSignBit()) {
   1280           const APInt &SignBit = XorCst->getValue();
   1281           ICmpInst::Predicate Pred = ICI.isSigned()
   1282                                          ? ICI.getUnsignedPredicate()
   1283                                          : ICI.getSignedPredicate();
   1284           return new ICmpInst(Pred, LHSI->getOperand(0),
   1285                               Builder->getInt(RHSV ^ SignBit));
   1286         }
   1287 
   1288         // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
   1289         if (!ICI.isEquality() && XorCst->isMaxValue(true)) {
   1290           const APInt &NotSignBit = XorCst->getValue();
   1291           ICmpInst::Predicate Pred = ICI.isSigned()
   1292                                          ? ICI.getUnsignedPredicate()
   1293                                          : ICI.getSignedPredicate();
   1294           Pred = ICI.getSwappedPredicate(Pred);
   1295           return new ICmpInst(Pred, LHSI->getOperand(0),
   1296                               Builder->getInt(RHSV ^ NotSignBit));
   1297         }
   1298       }
   1299 
   1300       // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C)
   1301       //   iff -C is a power of 2
   1302       if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
   1303           XorCst->getValue() == ~RHSV && (RHSV + 1).isPowerOf2())
   1304         return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), XorCst);
   1305 
   1306       // (icmp ult (xor X, C), -C) -> (icmp uge X, C)
   1307       //   iff -C is a power of 2
   1308       if (ICI.getPredicate() == ICmpInst::ICMP_ULT &&
   1309           XorCst->getValue() == -RHSV && RHSV.isPowerOf2())
   1310         return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), XorCst);
   1311     }
   1312     break;
   1313   case Instruction::And:         // (icmp pred (and X, AndCst), RHS)
   1314     if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
   1315         LHSI->getOperand(0)->hasOneUse()) {
   1316       ConstantInt *AndCst = cast<ConstantInt>(LHSI->getOperand(1));
   1317 
   1318       // If the LHS is an AND of a truncating cast, we can widen the
   1319       // and/compare to be the input width without changing the value
   1320       // produced, eliminating a cast.
   1321       if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
   1322         // We can do this transformation if either the AND constant does not
   1323         // have its sign bit set or if it is an equality comparison.
   1324         // Extending a relational comparison when we're checking the sign
   1325         // bit would not work.
   1326         if (ICI.isEquality() ||
   1327             (!AndCst->isNegative() && RHSV.isNonNegative())) {
   1328           Value *NewAnd =
   1329             Builder->CreateAnd(Cast->getOperand(0),
   1330                                ConstantExpr::getZExt(AndCst, Cast->getSrcTy()));
   1331           NewAnd->takeName(LHSI);
   1332           return new ICmpInst(ICI.getPredicate(), NewAnd,
   1333                               ConstantExpr::getZExt(RHS, Cast->getSrcTy()));
   1334         }
   1335       }
   1336 
   1337       // If the LHS is an AND of a zext, and we have an equality compare, we can
   1338       // shrink the and/compare to the smaller type, eliminating the cast.
   1339       if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) {
   1340         IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
   1341         // Make sure we don't compare the upper bits, SimplifyDemandedBits
   1342         // should fold the icmp to true/false in that case.
   1343         if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) {
   1344           Value *NewAnd =
   1345             Builder->CreateAnd(Cast->getOperand(0),
   1346                                ConstantExpr::getTrunc(AndCst, Ty));
   1347           NewAnd->takeName(LHSI);
   1348           return new ICmpInst(ICI.getPredicate(), NewAnd,
   1349                               ConstantExpr::getTrunc(RHS, Ty));
   1350         }
   1351       }
   1352 
   1353       // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
   1354       // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
   1355       // happens a LOT in code produced by the C front-end, for bitfield
   1356       // access.
   1357       BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
   1358       if (Shift && !Shift->isShift())
   1359         Shift = nullptr;
   1360 
   1361       ConstantInt *ShAmt;
   1362       ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : nullptr;
   1363 
   1364       // This seemingly simple opportunity to fold away a shift turns out to
   1365       // be rather complicated. See PR17827
   1366       // ( http://llvm.org/bugs/show_bug.cgi?id=17827 ) for details.
   1367       if (ShAmt) {
   1368         bool CanFold = false;
   1369         unsigned ShiftOpcode = Shift->getOpcode();
   1370         if (ShiftOpcode == Instruction::AShr) {
   1371           // There may be some constraints that make this possible,
   1372           // but nothing simple has been discovered yet.
   1373           CanFold = false;
   1374         } else if (ShiftOpcode == Instruction::Shl) {
   1375           // For a left shift, we can fold if the comparison is not signed.
   1376           // We can also fold a signed comparison if the mask value and
   1377           // comparison value are not negative. These constraints may not be
   1378           // obvious, but we can prove that they are correct using an SMT
   1379           // solver.
   1380           if (!ICI.isSigned() || (!AndCst->isNegative() && !RHS->isNegative()))
   1381             CanFold = true;
   1382         } else if (ShiftOpcode == Instruction::LShr) {
   1383           // For a logical right shift, we can fold if the comparison is not
   1384           // signed. We can also fold a signed comparison if the shifted mask
   1385           // value and the shifted comparison value are not negative.
   1386           // These constraints may not be obvious, but we can prove that they
   1387           // are correct using an SMT solver.
   1388           if (!ICI.isSigned())
   1389             CanFold = true;
   1390           else {
   1391             ConstantInt *ShiftedAndCst =
   1392               cast<ConstantInt>(ConstantExpr::getShl(AndCst, ShAmt));
   1393             ConstantInt *ShiftedRHSCst =
   1394               cast<ConstantInt>(ConstantExpr::getShl(RHS, ShAmt));
   1395 
   1396             if (!ShiftedAndCst->isNegative() && !ShiftedRHSCst->isNegative())
   1397               CanFold = true;
   1398           }
   1399         }
   1400 
   1401         if (CanFold) {
   1402           Constant *NewCst;
   1403           if (ShiftOpcode == Instruction::Shl)
   1404             NewCst = ConstantExpr::getLShr(RHS, ShAmt);
   1405           else
   1406             NewCst = ConstantExpr::getShl(RHS, ShAmt);
   1407 
   1408           // Check to see if we are shifting out any of the bits being
   1409           // compared.
   1410           if (ConstantExpr::get(ShiftOpcode, NewCst, ShAmt) != RHS) {
   1411             // If we shifted bits out, the fold is not going to work out.
   1412             // As a special case, check to see if this means that the
   1413             // result is always true or false now.
   1414             if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
   1415               return ReplaceInstUsesWith(ICI, Builder->getFalse());
   1416             if (ICI.getPredicate() == ICmpInst::ICMP_NE)
   1417               return ReplaceInstUsesWith(ICI, Builder->getTrue());
   1418           } else {
   1419             ICI.setOperand(1, NewCst);
   1420             Constant *NewAndCst;
   1421             if (ShiftOpcode == Instruction::Shl)
   1422               NewAndCst = ConstantExpr::getLShr(AndCst, ShAmt);
   1423             else
   1424               NewAndCst = ConstantExpr::getShl(AndCst, ShAmt);
   1425             LHSI->setOperand(1, NewAndCst);
   1426             LHSI->setOperand(0, Shift->getOperand(0));
   1427             Worklist.Add(Shift); // Shift is dead.
   1428             return &ICI;
   1429           }
   1430         }
   1431       }
   1432 
   1433       // Turn ((X >> Y) & C) == 0  into  (X & (C << Y)) == 0.  The later is
   1434       // preferable because it allows the C<<Y expression to be hoisted out
   1435       // of a loop if Y is invariant and X is not.
   1436       if (Shift && Shift->hasOneUse() && RHSV == 0 &&
   1437           ICI.isEquality() && !Shift->isArithmeticShift() &&
   1438           !isa<Constant>(Shift->getOperand(0))) {
   1439         // Compute C << Y.
   1440         Value *NS;
   1441         if (Shift->getOpcode() == Instruction::LShr) {
   1442           NS = Builder->CreateShl(AndCst, Shift->getOperand(1));
   1443         } else {
   1444           // Insert a logical shift.
   1445           NS = Builder->CreateLShr(AndCst, Shift->getOperand(1));
   1446         }
   1447 
   1448         // Compute X & (C << Y).
   1449         Value *NewAnd =
   1450           Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
   1451 
   1452         ICI.setOperand(0, NewAnd);
   1453         return &ICI;
   1454       }
   1455 
   1456       // (icmp pred (and (or (lshr X, Y), X), 1), 0) -->
   1457       //    (icmp pred (and X, (or (shl 1, Y), 1), 0))
   1458       //
   1459       // iff pred isn't signed
   1460       {
   1461         Value *X, *Y, *LShr;
   1462         if (!ICI.isSigned() && RHSV == 0) {
   1463           if (match(LHSI->getOperand(1), m_One())) {
   1464             Constant *One = cast<Constant>(LHSI->getOperand(1));
   1465             Value *Or = LHSI->getOperand(0);
   1466             if (match(Or, m_Or(m_Value(LShr), m_Value(X))) &&
   1467                 match(LShr, m_LShr(m_Specific(X), m_Value(Y)))) {
   1468               unsigned UsesRemoved = 0;
   1469               if (LHSI->hasOneUse())
   1470                 ++UsesRemoved;
   1471               if (Or->hasOneUse())
   1472                 ++UsesRemoved;
   1473               if (LShr->hasOneUse())
   1474                 ++UsesRemoved;
   1475               Value *NewOr = nullptr;
   1476               // Compute X & ((1 << Y) | 1)
   1477               if (auto *C = dyn_cast<Constant>(Y)) {
   1478                 if (UsesRemoved >= 1)
   1479                   NewOr =
   1480                       ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
   1481               } else {
   1482                 if (UsesRemoved >= 3)
   1483                   NewOr = Builder->CreateOr(Builder->CreateShl(One, Y,
   1484                                                                LShr->getName(),
   1485                                                                /*HasNUW=*/true),
   1486                                             One, Or->getName());
   1487               }
   1488               if (NewOr) {
   1489                 Value *NewAnd = Builder->CreateAnd(X, NewOr, LHSI->getName());
   1490                 ICI.setOperand(0, NewAnd);
   1491                 return &ICI;
   1492               }
   1493             }
   1494           }
   1495         }
   1496       }
   1497 
   1498       // Replace ((X & AndCst) > RHSV) with ((X & AndCst) != 0), if any
   1499       // bit set in (X & AndCst) will produce a result greater than RHSV.
   1500       if (ICI.getPredicate() == ICmpInst::ICMP_UGT) {
   1501         unsigned NTZ = AndCst->getValue().countTrailingZeros();
   1502         if ((NTZ < AndCst->getBitWidth()) &&
   1503             APInt::getOneBitSet(AndCst->getBitWidth(), NTZ).ugt(RHSV))
   1504           return new ICmpInst(ICmpInst::ICMP_NE, LHSI,
   1505                               Constant::getNullValue(RHS->getType()));
   1506       }
   1507     }
   1508 
   1509     // Try to optimize things like "A[i]&42 == 0" to index computations.
   1510     if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
   1511       if (GetElementPtrInst *GEP =
   1512           dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
   1513         if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
   1514           if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
   1515               !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
   1516             ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
   1517             if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
   1518               return Res;
   1519           }
   1520     }
   1521 
   1522     // X & -C == -C -> X >  u ~C
   1523     // X & -C != -C -> X <= u ~C
   1524     //   iff C is a power of 2
   1525     if (ICI.isEquality() && RHS == LHSI->getOperand(1) && (-RHSV).isPowerOf2())
   1526       return new ICmpInst(
   1527           ICI.getPredicate() == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_UGT
   1528                                                   : ICmpInst::ICMP_ULE,
   1529           LHSI->getOperand(0), SubOne(RHS));
   1530 
   1531     // (icmp eq (and %A, C), 0) -> (icmp sgt (trunc %A), -1)
   1532     //   iff C is a power of 2
   1533     if (ICI.isEquality() && LHSI->hasOneUse() && match(RHS, m_Zero())) {
   1534       if (auto *CI = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
   1535         const APInt &AI = CI->getValue();
   1536         int32_t ExactLogBase2 = AI.exactLogBase2();
   1537         if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
   1538           Type *NTy = IntegerType::get(ICI.getContext(), ExactLogBase2 + 1);
   1539           Value *Trunc = Builder->CreateTrunc(LHSI->getOperand(0), NTy);
   1540           return new ICmpInst(ICI.getPredicate() == ICmpInst::ICMP_EQ
   1541                                   ? ICmpInst::ICMP_SGE
   1542                                   : ICmpInst::ICMP_SLT,
   1543                               Trunc, Constant::getNullValue(NTy));
   1544         }
   1545       }
   1546     }
   1547     break;
   1548 
   1549   case Instruction::Or: {
   1550     if (RHS->isOne()) {
   1551       // icmp slt signum(V) 1 --> icmp slt V, 1
   1552       Value *V = nullptr;
   1553       if (ICI.getPredicate() == ICmpInst::ICMP_SLT &&
   1554           match(LHSI, m_Signum(m_Value(V))))
   1555         return new ICmpInst(ICmpInst::ICMP_SLT, V,
   1556                             ConstantInt::get(V->getType(), 1));
   1557     }
   1558 
   1559     if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
   1560       break;
   1561     Value *P, *Q;
   1562     if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
   1563       // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
   1564       // -> and (icmp eq P, null), (icmp eq Q, null).
   1565       Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
   1566                                         Constant::getNullValue(P->getType()));
   1567       Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
   1568                                         Constant::getNullValue(Q->getType()));
   1569       Instruction *Op;
   1570       if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
   1571         Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
   1572       else
   1573         Op = BinaryOperator::CreateOr(ICIP, ICIQ);
   1574       return Op;
   1575     }
   1576     break;
   1577   }
   1578 
   1579   case Instruction::Mul: {       // (icmp pred (mul X, Val), CI)
   1580     ConstantInt *Val = dyn_cast<ConstantInt>(LHSI->getOperand(1));
   1581     if (!Val) break;
   1582 
   1583     // If this is a signed comparison to 0 and the mul is sign preserving,
   1584     // use the mul LHS operand instead.
   1585     ICmpInst::Predicate pred = ICI.getPredicate();
   1586     if (isSignTest(pred, RHS) && !Val->isZero() &&
   1587         cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
   1588       return new ICmpInst(Val->isNegative() ?
   1589                           ICmpInst::getSwappedPredicate(pred) : pred,
   1590                           LHSI->getOperand(0),
   1591                           Constant::getNullValue(RHS->getType()));
   1592 
   1593     break;
   1594   }
   1595 
   1596   case Instruction::Shl: {       // (icmp pred (shl X, ShAmt), CI)
   1597     uint32_t TypeBits = RHSV.getBitWidth();
   1598     ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
   1599     if (!ShAmt) {
   1600       Value *X;
   1601       // (1 << X) pred P2 -> X pred Log2(P2)
   1602       if (match(LHSI, m_Shl(m_One(), m_Value(X)))) {
   1603         bool RHSVIsPowerOf2 = RHSV.isPowerOf2();
   1604         ICmpInst::Predicate Pred = ICI.getPredicate();
   1605         if (ICI.isUnsigned()) {
   1606           if (!RHSVIsPowerOf2) {
   1607             // (1 << X) <  30 -> X <= 4
   1608             // (1 << X) <= 30 -> X <= 4
   1609             // (1 << X) >= 30 -> X >  4
   1610             // (1 << X) >  30 -> X >  4
   1611             if (Pred == ICmpInst::ICMP_ULT)
   1612               Pred = ICmpInst::ICMP_ULE;
   1613             else if (Pred == ICmpInst::ICMP_UGE)
   1614               Pred = ICmpInst::ICMP_UGT;
   1615           }
   1616           unsigned RHSLog2 = RHSV.logBase2();
   1617 
   1618           // (1 << X) >= 2147483648 -> X >= 31 -> X == 31
   1619           // (1 << X) <  2147483648 -> X <  31 -> X != 31
   1620           if (RHSLog2 == TypeBits-1) {
   1621             if (Pred == ICmpInst::ICMP_UGE)
   1622               Pred = ICmpInst::ICMP_EQ;
   1623             else if (Pred == ICmpInst::ICMP_ULT)
   1624               Pred = ICmpInst::ICMP_NE;
   1625           }
   1626 
   1627           return new ICmpInst(Pred, X,
   1628                               ConstantInt::get(RHS->getType(), RHSLog2));
   1629         } else if (ICI.isSigned()) {
   1630           if (RHSV.isAllOnesValue()) {
   1631             // (1 << X) <= -1 -> X == 31
   1632             if (Pred == ICmpInst::ICMP_SLE)
   1633               return new ICmpInst(ICmpInst::ICMP_EQ, X,
   1634                                   ConstantInt::get(RHS->getType(), TypeBits-1));
   1635 
   1636             // (1 << X) >  -1 -> X != 31
   1637             if (Pred == ICmpInst::ICMP_SGT)
   1638               return new ICmpInst(ICmpInst::ICMP_NE, X,
   1639                                   ConstantInt::get(RHS->getType(), TypeBits-1));
   1640           } else if (!RHSV) {
   1641             // (1 << X) <  0 -> X == 31
   1642             // (1 << X) <= 0 -> X == 31
   1643             if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
   1644               return new ICmpInst(ICmpInst::ICMP_EQ, X,
   1645                                   ConstantInt::get(RHS->getType(), TypeBits-1));
   1646 
   1647             // (1 << X) >= 0 -> X != 31
   1648             // (1 << X) >  0 -> X != 31
   1649             if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
   1650               return new ICmpInst(ICmpInst::ICMP_NE, X,
   1651                                   ConstantInt::get(RHS->getType(), TypeBits-1));
   1652           }
   1653         } else if (ICI.isEquality()) {
   1654           if (RHSVIsPowerOf2)
   1655             return new ICmpInst(
   1656                 Pred, X, ConstantInt::get(RHS->getType(), RHSV.logBase2()));
   1657         }
   1658       }
   1659       break;
   1660     }
   1661 
   1662     // Check that the shift amount is in range.  If not, don't perform
   1663     // undefined shifts.  When the shift is visited it will be
   1664     // simplified.
   1665     if (ShAmt->uge(TypeBits))
   1666       break;
   1667 
   1668     if (ICI.isEquality()) {
   1669       // If we are comparing against bits always shifted out, the
   1670       // comparison cannot succeed.
   1671       Constant *Comp =
   1672         ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
   1673                                                                  ShAmt);
   1674       if (Comp != RHS) {// Comparing against a bit that we know is zero.
   1675         bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
   1676         Constant *Cst = Builder->getInt1(IsICMP_NE);
   1677         return ReplaceInstUsesWith(ICI, Cst);
   1678       }
   1679 
   1680       // If the shift is NUW, then it is just shifting out zeros, no need for an
   1681       // AND.
   1682       if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
   1683         return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
   1684                             ConstantExpr::getLShr(RHS, ShAmt));
   1685 
   1686       // If the shift is NSW and we compare to 0, then it is just shifting out
   1687       // sign bits, no need for an AND either.
   1688       if (cast<BinaryOperator>(LHSI)->hasNoSignedWrap() && RHSV == 0)
   1689         return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
   1690                             ConstantExpr::getLShr(RHS, ShAmt));
   1691 
   1692       if (LHSI->hasOneUse()) {
   1693         // Otherwise strength reduce the shift into an and.
   1694         uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
   1695         Constant *Mask = Builder->getInt(APInt::getLowBitsSet(TypeBits,
   1696                                                           TypeBits - ShAmtVal));
   1697 
   1698         Value *And =
   1699           Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
   1700         return new ICmpInst(ICI.getPredicate(), And,
   1701                             ConstantExpr::getLShr(RHS, ShAmt));
   1702       }
   1703     }
   1704 
   1705     // If this is a signed comparison to 0 and the shift is sign preserving,
   1706     // use the shift LHS operand instead.
   1707     ICmpInst::Predicate pred = ICI.getPredicate();
   1708     if (isSignTest(pred, RHS) &&
   1709         cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
   1710       return new ICmpInst(pred,
   1711                           LHSI->getOperand(0),
   1712                           Constant::getNullValue(RHS->getType()));
   1713 
   1714     // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
   1715     bool TrueIfSigned = false;
   1716     if (LHSI->hasOneUse() &&
   1717         isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
   1718       // (X << 31) <s 0  --> (X&1) != 0
   1719       Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
   1720                                         APInt::getOneBitSet(TypeBits,
   1721                                             TypeBits-ShAmt->getZExtValue()-1));
   1722       Value *And =
   1723         Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
   1724       return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
   1725                           And, Constant::getNullValue(And->getType()));
   1726     }
   1727 
   1728     // Transform (icmp pred iM (shl iM %v, N), CI)
   1729     // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (CI>>N))
   1730     // Transform the shl to a trunc if (trunc (CI>>N)) has no loss and M-N.
   1731     // This enables to get rid of the shift in favor of a trunc which can be
   1732     // free on the target. It has the additional benefit of comparing to a
   1733     // smaller constant, which will be target friendly.
   1734     unsigned Amt = ShAmt->getLimitedValue(TypeBits-1);
   1735     if (LHSI->hasOneUse() &&
   1736         Amt != 0 && RHSV.countTrailingZeros() >= Amt) {
   1737       Type *NTy = IntegerType::get(ICI.getContext(), TypeBits - Amt);
   1738       Constant *NCI = ConstantExpr::getTrunc(
   1739                         ConstantExpr::getAShr(RHS,
   1740                           ConstantInt::get(RHS->getType(), Amt)),
   1741                         NTy);
   1742       return new ICmpInst(ICI.getPredicate(),
   1743                           Builder->CreateTrunc(LHSI->getOperand(0), NTy),
   1744                           NCI);
   1745     }
   1746 
   1747     break;
   1748   }
   1749 
   1750   case Instruction::LShr:         // (icmp pred (shr X, ShAmt), CI)
   1751   case Instruction::AShr: {
   1752     // Handle equality comparisons of shift-by-constant.
   1753     BinaryOperator *BO = cast<BinaryOperator>(LHSI);
   1754     if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
   1755       if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt))
   1756         return Res;
   1757     }
   1758 
   1759     // Handle exact shr's.
   1760     if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) {
   1761       if (RHSV.isMinValue())
   1762         return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS);
   1763     }
   1764     break;
   1765   }
   1766 
   1767   case Instruction::SDiv:
   1768   case Instruction::UDiv:
   1769     // Fold: icmp pred ([us]div X, C1), C2 -> range test
   1770     // Fold this div into the comparison, producing a range check.
   1771     // Determine, based on the divide type, what the range is being
   1772     // checked.  If there is an overflow on the low or high side, remember
   1773     // it, otherwise compute the range [low, hi) bounding the new value.
   1774     // See: InsertRangeTest above for the kinds of replacements possible.
   1775     if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
   1776       if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
   1777                                           DivRHS))
   1778         return R;
   1779     break;
   1780 
   1781   case Instruction::Sub: {
   1782     ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(0));
   1783     if (!LHSC) break;
   1784     const APInt &LHSV = LHSC->getValue();
   1785 
   1786     // C1-X <u C2 -> (X|(C2-1)) == C1
   1787     //   iff C1 & (C2-1) == C2-1
   1788     //       C2 is a power of 2
   1789     if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
   1790         RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == (RHSV - 1))
   1791       return new ICmpInst(ICmpInst::ICMP_EQ,
   1792                           Builder->CreateOr(LHSI->getOperand(1), RHSV - 1),
   1793                           LHSC);
   1794 
   1795     // C1-X >u C2 -> (X|C2) != C1
   1796     //   iff C1 & C2 == C2
   1797     //       C2+1 is a power of 2
   1798     if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
   1799         (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == RHSV)
   1800       return new ICmpInst(ICmpInst::ICMP_NE,
   1801                           Builder->CreateOr(LHSI->getOperand(1), RHSV), LHSC);
   1802     break;
   1803   }
   1804 
   1805   case Instruction::Add:
   1806     // Fold: icmp pred (add X, C1), C2
   1807     if (!ICI.isEquality()) {
   1808       ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
   1809       if (!LHSC) break;
   1810       const APInt &LHSV = LHSC->getValue();
   1811 
   1812       ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
   1813                             .subtract(LHSV);
   1814 
   1815       if (ICI.isSigned()) {
   1816         if (CR.getLower().isSignBit()) {
   1817           return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
   1818                               Builder->getInt(CR.getUpper()));
   1819         } else if (CR.getUpper().isSignBit()) {
   1820           return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
   1821                               Builder->getInt(CR.getLower()));
   1822         }
   1823       } else {
   1824         if (CR.getLower().isMinValue()) {
   1825           return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
   1826                               Builder->getInt(CR.getUpper()));
   1827         } else if (CR.getUpper().isMinValue()) {
   1828           return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
   1829                               Builder->getInt(CR.getLower()));
   1830         }
   1831       }
   1832 
   1833       // X-C1 <u C2 -> (X & -C2) == C1
   1834       //   iff C1 & (C2-1) == 0
   1835       //       C2 is a power of 2
   1836       if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
   1837           RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == 0)
   1838         return new ICmpInst(ICmpInst::ICMP_EQ,
   1839                             Builder->CreateAnd(LHSI->getOperand(0), -RHSV),
   1840                             ConstantExpr::getNeg(LHSC));
   1841 
   1842       // X-C1 >u C2 -> (X & ~C2) != C1
   1843       //   iff C1 & C2 == 0
   1844       //       C2+1 is a power of 2
   1845       if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
   1846           (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == 0)
   1847         return new ICmpInst(ICmpInst::ICMP_NE,
   1848                             Builder->CreateAnd(LHSI->getOperand(0), ~RHSV),
   1849                             ConstantExpr::getNeg(LHSC));
   1850     }
   1851     break;
   1852   }
   1853 
   1854   // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
   1855   if (ICI.isEquality()) {
   1856     bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
   1857 
   1858     // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
   1859     // the second operand is a constant, simplify a bit.
   1860     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
   1861       switch (BO->getOpcode()) {
   1862       case Instruction::SRem:
   1863         // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
   1864         if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
   1865           const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
   1866           if (V.sgt(1) && V.isPowerOf2()) {
   1867             Value *NewRem =
   1868               Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
   1869                                   BO->getName());
   1870             return new ICmpInst(ICI.getPredicate(), NewRem,
   1871                                 Constant::getNullValue(BO->getType()));
   1872           }
   1873         }
   1874         break;
   1875       case Instruction::Add:
   1876         // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
   1877         if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   1878           if (BO->hasOneUse())
   1879             return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1880                                 ConstantExpr::getSub(RHS, BOp1C));
   1881         } else if (RHSV == 0) {
   1882           // Replace ((add A, B) != 0) with (A != -B) if A or B is
   1883           // efficiently invertible, or if the add has just this one use.
   1884           Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
   1885 
   1886           if (Value *NegVal = dyn_castNegVal(BOp1))
   1887             return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
   1888           if (Value *NegVal = dyn_castNegVal(BOp0))
   1889             return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
   1890           if (BO->hasOneUse()) {
   1891             Value *Neg = Builder->CreateNeg(BOp1);
   1892             Neg->takeName(BO);
   1893             return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
   1894           }
   1895         }
   1896         break;
   1897       case Instruction::Xor:
   1898         // For the xor case, we can xor two constants together, eliminating
   1899         // the explicit xor.
   1900         if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
   1901           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1902                               ConstantExpr::getXor(RHS, BOC));
   1903         } else if (RHSV == 0) {
   1904           // Replace ((xor A, B) != 0) with (A != B)
   1905           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1906                               BO->getOperand(1));
   1907         }
   1908         break;
   1909       case Instruction::Sub:
   1910         // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
   1911         if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
   1912           if (BO->hasOneUse())
   1913             return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
   1914                                 ConstantExpr::getSub(BOp0C, RHS));
   1915         } else if (RHSV == 0) {
   1916           // Replace ((sub A, B) != 0) with (A != B)
   1917           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1918                               BO->getOperand(1));
   1919         }
   1920         break;
   1921       case Instruction::Or:
   1922         // If bits are being or'd in that are not present in the constant we
   1923         // are comparing against, then the comparison could never succeed!
   1924         if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   1925           Constant *NotCI = ConstantExpr::getNot(RHS);
   1926           if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
   1927             return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
   1928         }
   1929         break;
   1930 
   1931       case Instruction::And:
   1932         if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   1933           // If bits are being compared against that are and'd out, then the
   1934           // comparison can never succeed!
   1935           if ((RHSV & ~BOC->getValue()) != 0)
   1936             return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
   1937 
   1938           // If we have ((X & C) == C), turn it into ((X & C) != 0).
   1939           if (RHS == BOC && RHSV.isPowerOf2())
   1940             return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
   1941                                 ICmpInst::ICMP_NE, LHSI,
   1942                                 Constant::getNullValue(RHS->getType()));
   1943 
   1944           // Don't perform the following transforms if the AND has multiple uses
   1945           if (!BO->hasOneUse())
   1946             break;
   1947 
   1948           // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
   1949           if (BOC->getValue().isSignBit()) {
   1950             Value *X = BO->getOperand(0);
   1951             Constant *Zero = Constant::getNullValue(X->getType());
   1952             ICmpInst::Predicate pred = isICMP_NE ?
   1953               ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
   1954             return new ICmpInst(pred, X, Zero);
   1955           }
   1956 
   1957           // ((X & ~7) == 0) --> X < 8
   1958           if (RHSV == 0 && isHighOnes(BOC)) {
   1959             Value *X = BO->getOperand(0);
   1960             Constant *NegX = ConstantExpr::getNeg(BOC);
   1961             ICmpInst::Predicate pred = isICMP_NE ?
   1962               ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
   1963             return new ICmpInst(pred, X, NegX);
   1964           }
   1965         }
   1966         break;
   1967       case Instruction::Mul:
   1968         if (RHSV == 0 && BO->hasNoSignedWrap()) {
   1969           if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   1970             // The trivial case (mul X, 0) is handled by InstSimplify
   1971             // General case : (mul X, C) != 0 iff X != 0
   1972             //                (mul X, C) == 0 iff X == 0
   1973             if (!BOC->isZero())
   1974               return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1975                                   Constant::getNullValue(RHS->getType()));
   1976           }
   1977         }
   1978         break;
   1979       default: break;
   1980       }
   1981     } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
   1982       // Handle icmp {eq|ne} <intrinsic>, intcst.
   1983       switch (II->getIntrinsicID()) {
   1984       case Intrinsic::bswap:
   1985         Worklist.Add(II);
   1986         ICI.setOperand(0, II->getArgOperand(0));
   1987         ICI.setOperand(1, Builder->getInt(RHSV.byteSwap()));
   1988         return &ICI;
   1989       case Intrinsic::ctlz:
   1990       case Intrinsic::cttz:
   1991         // ctz(A) == bitwidth(a)  ->  A == 0 and likewise for !=
   1992         if (RHSV == RHS->getType()->getBitWidth()) {
   1993           Worklist.Add(II);
   1994           ICI.setOperand(0, II->getArgOperand(0));
   1995           ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
   1996           return &ICI;
   1997         }
   1998         break;
   1999       case Intrinsic::ctpop:
   2000         // popcount(A) == 0  ->  A == 0 and likewise for !=
   2001         if (RHS->isZero()) {
   2002           Worklist.Add(II);
   2003           ICI.setOperand(0, II->getArgOperand(0));
   2004           ICI.setOperand(1, RHS);
   2005           return &ICI;
   2006         }
   2007         break;
   2008       default:
   2009         break;
   2010       }
   2011     }
   2012   }
   2013   return nullptr;
   2014 }
   2015 
   2016 /// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
   2017 /// We only handle extending casts so far.
   2018 ///
   2019 Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
   2020   const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
   2021   Value *LHSCIOp        = LHSCI->getOperand(0);
   2022   Type *SrcTy     = LHSCIOp->getType();
   2023   Type *DestTy    = LHSCI->getType();
   2024   Value *RHSCIOp;
   2025 
   2026   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
   2027   // integer type is the same size as the pointer type.
   2028   if (LHSCI->getOpcode() == Instruction::PtrToInt &&
   2029       DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) {
   2030     Value *RHSOp = nullptr;
   2031     if (PtrToIntOperator *RHSC = dyn_cast<PtrToIntOperator>(ICI.getOperand(1))) {
   2032       Value *RHSCIOp = RHSC->getOperand(0);
   2033       if (RHSCIOp->getType()->getPointerAddressSpace() ==
   2034           LHSCIOp->getType()->getPointerAddressSpace()) {
   2035         RHSOp = RHSC->getOperand(0);
   2036         // If the pointer types don't match, insert a bitcast.
   2037         if (LHSCIOp->getType() != RHSOp->getType())
   2038           RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
   2039       }
   2040     } else if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1)))
   2041       RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
   2042 
   2043     if (RHSOp)
   2044       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
   2045   }
   2046 
   2047   // The code below only handles extension cast instructions, so far.
   2048   // Enforce this.
   2049   if (LHSCI->getOpcode() != Instruction::ZExt &&
   2050       LHSCI->getOpcode() != Instruction::SExt)
   2051     return nullptr;
   2052 
   2053   bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
   2054   bool isSignedCmp = ICI.isSigned();
   2055 
   2056   if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
   2057     // Not an extension from the same type?
   2058     RHSCIOp = CI->getOperand(0);
   2059     if (RHSCIOp->getType() != LHSCIOp->getType())
   2060       return nullptr;
   2061 
   2062     // If the signedness of the two casts doesn't agree (i.e. one is a sext
   2063     // and the other is a zext), then we can't handle this.
   2064     if (CI->getOpcode() != LHSCI->getOpcode())
   2065       return nullptr;
   2066 
   2067     // Deal with equality cases early.
   2068     if (ICI.isEquality())
   2069       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
   2070 
   2071     // A signed comparison of sign extended values simplifies into a
   2072     // signed comparison.
   2073     if (isSignedCmp && isSignedExt)
   2074       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
   2075 
   2076     // The other three cases all fold into an unsigned comparison.
   2077     return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
   2078   }
   2079 
   2080   // If we aren't dealing with a constant on the RHS, exit early
   2081   ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
   2082   if (!CI)
   2083     return nullptr;
   2084 
   2085   // Compute the constant that would happen if we truncated to SrcTy then
   2086   // reextended to DestTy.
   2087   Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
   2088   Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
   2089                                                 Res1, DestTy);
   2090 
   2091   // If the re-extended constant didn't change...
   2092   if (Res2 == CI) {
   2093     // Deal with equality cases early.
   2094     if (ICI.isEquality())
   2095       return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
   2096 
   2097     // A signed comparison of sign extended values simplifies into a
   2098     // signed comparison.
   2099     if (isSignedExt && isSignedCmp)
   2100       return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
   2101 
   2102     // The other three cases all fold into an unsigned comparison.
   2103     return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
   2104   }
   2105 
   2106   // The re-extended constant changed so the constant cannot be represented
   2107   // in the shorter type. Consequently, we cannot emit a simple comparison.
   2108   // All the cases that fold to true or false will have already been handled
   2109   // by SimplifyICmpInst, so only deal with the tricky case.
   2110 
   2111   if (isSignedCmp || !isSignedExt)
   2112     return nullptr;
   2113 
   2114   // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
   2115   // should have been folded away previously and not enter in here.
   2116 
   2117   // We're performing an unsigned comp with a sign extended value.
   2118   // This is true if the input is >= 0. [aka >s -1]
   2119   Constant *NegOne = Constant::getAllOnesValue(SrcTy);
   2120   Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
   2121 
   2122   // Finally, return the value computed.
   2123   if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
   2124     return ReplaceInstUsesWith(ICI, Result);
   2125 
   2126   assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
   2127   return BinaryOperator::CreateNot(Result);
   2128 }
   2129 
   2130 /// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
   2131 ///   I = icmp ugt (add (add A, B), CI2), CI1
   2132 /// If this is of the form:
   2133 ///   sum = a + b
   2134 ///   if (sum+128 >u 255)
   2135 /// Then replace it with llvm.sadd.with.overflow.i8.
   2136 ///
   2137 static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
   2138                                           ConstantInt *CI2, ConstantInt *CI1,
   2139                                           InstCombiner &IC) {
   2140   // The transformation we're trying to do here is to transform this into an
   2141   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
   2142   // with a narrower add, and discard the add-with-constant that is part of the
   2143   // range check (if we can't eliminate it, this isn't profitable).
   2144 
   2145   // In order to eliminate the add-with-constant, the compare can be its only
   2146   // use.
   2147   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
   2148   if (!AddWithCst->hasOneUse()) return nullptr;
   2149 
   2150   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
   2151   if (!CI2->getValue().isPowerOf2()) return nullptr;
   2152   unsigned NewWidth = CI2->getValue().countTrailingZeros();
   2153   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return nullptr;
   2154 
   2155   // The width of the new add formed is 1 more than the bias.
   2156   ++NewWidth;
   2157 
   2158   // Check to see that CI1 is an all-ones value with NewWidth bits.
   2159   if (CI1->getBitWidth() == NewWidth ||
   2160       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
   2161     return nullptr;
   2162 
   2163   // This is only really a signed overflow check if the inputs have been
   2164   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
   2165   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
   2166   unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
   2167   if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
   2168       IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
   2169     return nullptr;
   2170 
   2171   // In order to replace the original add with a narrower
   2172   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
   2173   // and truncates that discard the high bits of the add.  Verify that this is
   2174   // the case.
   2175   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
   2176   for (User *U : OrigAdd->users()) {
   2177     if (U == AddWithCst) continue;
   2178 
   2179     // Only accept truncates for now.  We would really like a nice recursive
   2180     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
   2181     // chain to see which bits of a value are actually demanded.  If the
   2182     // original add had another add which was then immediately truncated, we
   2183     // could still do the transformation.
   2184     TruncInst *TI = dyn_cast<TruncInst>(U);
   2185     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
   2186       return nullptr;
   2187   }
   2188 
   2189   // If the pattern matches, truncate the inputs to the narrower type and
   2190   // use the sadd_with_overflow intrinsic to efficiently compute both the
   2191   // result and the overflow bit.
   2192   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
   2193   Value *F = Intrinsic::getDeclaration(I.getModule(),
   2194                                        Intrinsic::sadd_with_overflow, NewType);
   2195 
   2196   InstCombiner::BuilderTy *Builder = IC.Builder;
   2197 
   2198   // Put the new code above the original add, in case there are any uses of the
   2199   // add between the add and the compare.
   2200   Builder->SetInsertPoint(OrigAdd);
   2201 
   2202   Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
   2203   Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
   2204   CallInst *Call = Builder->CreateCall(F, {TruncA, TruncB}, "sadd");
   2205   Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
   2206   Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
   2207 
   2208   // The inner add was the result of the narrow add, zero extended to the
   2209   // wider type.  Replace it with the result computed by the intrinsic.
   2210   IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
   2211 
   2212   // The original icmp gets replaced with the overflow value.
   2213   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
   2214 }
   2215 
   2216 bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS,
   2217                                          Value *RHS, Instruction &OrigI,
   2218                                          Value *&Result, Constant *&Overflow) {
   2219   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
   2220     std::swap(LHS, RHS);
   2221 
   2222   auto SetResult = [&](Value *OpResult, Constant *OverflowVal, bool ReuseName) {
   2223     Result = OpResult;
   2224     Overflow = OverflowVal;
   2225     if (ReuseName)
   2226       Result->takeName(&OrigI);
   2227     return true;
   2228   };
   2229 
   2230   // If the overflow check was an add followed by a compare, the insertion point
   2231   // may be pointing to the compare.  We want to insert the new instructions
   2232   // before the add in case there are uses of the add between the add and the
   2233   // compare.
   2234   Builder->SetInsertPoint(&OrigI);
   2235 
   2236   switch (OCF) {
   2237   case OCF_INVALID:
   2238     llvm_unreachable("bad overflow check kind!");
   2239 
   2240   case OCF_UNSIGNED_ADD: {
   2241     OverflowResult OR = computeOverflowForUnsignedAdd(LHS, RHS, &OrigI);
   2242     if (OR == OverflowResult::NeverOverflows)
   2243       return SetResult(Builder->CreateNUWAdd(LHS, RHS), Builder->getFalse(),
   2244                        true);
   2245 
   2246     if (OR == OverflowResult::AlwaysOverflows)
   2247       return SetResult(Builder->CreateAdd(LHS, RHS), Builder->getTrue(), true);
   2248   }
   2249   // FALL THROUGH uadd into sadd
   2250   case OCF_SIGNED_ADD: {
   2251     // X + 0 -> {X, false}
   2252     if (match(RHS, m_Zero()))
   2253       return SetResult(LHS, Builder->getFalse(), false);
   2254 
   2255     // We can strength reduce this signed add into a regular add if we can prove
   2256     // that it will never overflow.
   2257     if (OCF == OCF_SIGNED_ADD)
   2258       if (WillNotOverflowSignedAdd(LHS, RHS, OrigI))
   2259         return SetResult(Builder->CreateNSWAdd(LHS, RHS), Builder->getFalse(),
   2260                          true);
   2261     break;
   2262   }
   2263 
   2264   case OCF_UNSIGNED_SUB:
   2265   case OCF_SIGNED_SUB: {
   2266     // X - 0 -> {X, false}
   2267     if (match(RHS, m_Zero()))
   2268       return SetResult(LHS, Builder->getFalse(), false);
   2269 
   2270     if (OCF == OCF_SIGNED_SUB) {
   2271       if (WillNotOverflowSignedSub(LHS, RHS, OrigI))
   2272         return SetResult(Builder->CreateNSWSub(LHS, RHS), Builder->getFalse(),
   2273                          true);
   2274     } else {
   2275       if (WillNotOverflowUnsignedSub(LHS, RHS, OrigI))
   2276         return SetResult(Builder->CreateNUWSub(LHS, RHS), Builder->getFalse(),
   2277                          true);
   2278     }
   2279     break;
   2280   }
   2281 
   2282   case OCF_UNSIGNED_MUL: {
   2283     OverflowResult OR = computeOverflowForUnsignedMul(LHS, RHS, &OrigI);
   2284     if (OR == OverflowResult::NeverOverflows)
   2285       return SetResult(Builder->CreateNUWMul(LHS, RHS), Builder->getFalse(),
   2286                        true);
   2287     if (OR == OverflowResult::AlwaysOverflows)
   2288       return SetResult(Builder->CreateMul(LHS, RHS), Builder->getTrue(), true);
   2289   } // FALL THROUGH
   2290   case OCF_SIGNED_MUL:
   2291     // X * undef -> undef
   2292     if (isa<UndefValue>(RHS))
   2293       return SetResult(RHS, UndefValue::get(Builder->getInt1Ty()), false);
   2294 
   2295     // X * 0 -> {0, false}
   2296     if (match(RHS, m_Zero()))
   2297       return SetResult(RHS, Builder->getFalse(), false);
   2298 
   2299     // X * 1 -> {X, false}
   2300     if (match(RHS, m_One()))
   2301       return SetResult(LHS, Builder->getFalse(), false);
   2302 
   2303     if (OCF == OCF_SIGNED_MUL)
   2304       if (WillNotOverflowSignedMul(LHS, RHS, OrigI))
   2305         return SetResult(Builder->CreateNSWMul(LHS, RHS), Builder->getFalse(),
   2306                          true);
   2307     break;
   2308   }
   2309 
   2310   return false;
   2311 }
   2312 
   2313 /// \brief Recognize and process idiom involving test for multiplication
   2314 /// overflow.
   2315 ///
   2316 /// The caller has matched a pattern of the form:
   2317 ///   I = cmp u (mul(zext A, zext B), V
   2318 /// The function checks if this is a test for overflow and if so replaces
   2319 /// multiplication with call to 'mul.with.overflow' intrinsic.
   2320 ///
   2321 /// \param I Compare instruction.
   2322 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
   2323 ///               the compare instruction.  Must be of integer type.
   2324 /// \param OtherVal The other argument of compare instruction.
   2325 /// \returns Instruction which must replace the compare instruction, NULL if no
   2326 ///          replacement required.
   2327 static Instruction *ProcessUMulZExtIdiom(ICmpInst &I, Value *MulVal,
   2328                                          Value *OtherVal, InstCombiner &IC) {
   2329   // Don't bother doing this transformation for pointers, don't do it for
   2330   // vectors.
   2331   if (!isa<IntegerType>(MulVal->getType()))
   2332     return nullptr;
   2333 
   2334   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
   2335   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
   2336   auto *MulInstr = dyn_cast<Instruction>(MulVal);
   2337   if (!MulInstr)
   2338     return nullptr;
   2339   assert(MulInstr->getOpcode() == Instruction::Mul);
   2340 
   2341   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
   2342        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
   2343   assert(LHS->getOpcode() == Instruction::ZExt);
   2344   assert(RHS->getOpcode() == Instruction::ZExt);
   2345   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
   2346 
   2347   // Calculate type and width of the result produced by mul.with.overflow.
   2348   Type *TyA = A->getType(), *TyB = B->getType();
   2349   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
   2350            WidthB = TyB->getPrimitiveSizeInBits();
   2351   unsigned MulWidth;
   2352   Type *MulType;
   2353   if (WidthB > WidthA) {
   2354     MulWidth = WidthB;
   2355     MulType = TyB;
   2356   } else {
   2357     MulWidth = WidthA;
   2358     MulType = TyA;
   2359   }
   2360 
   2361   // In order to replace the original mul with a narrower mul.with.overflow,
   2362   // all uses must ignore upper bits of the product.  The number of used low
   2363   // bits must be not greater than the width of mul.with.overflow.
   2364   if (MulVal->hasNUsesOrMore(2))
   2365     for (User *U : MulVal->users()) {
   2366       if (U == &I)
   2367         continue;
   2368       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
   2369         // Check if truncation ignores bits above MulWidth.
   2370         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
   2371         if (TruncWidth > MulWidth)
   2372           return nullptr;
   2373       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
   2374         // Check if AND ignores bits above MulWidth.
   2375         if (BO->getOpcode() != Instruction::And)
   2376           return nullptr;
   2377         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   2378           const APInt &CVal = CI->getValue();
   2379           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
   2380             return nullptr;
   2381         }
   2382       } else {
   2383         // Other uses prohibit this transformation.
   2384         return nullptr;
   2385       }
   2386     }
   2387 
   2388   // Recognize patterns
   2389   switch (I.getPredicate()) {
   2390   case ICmpInst::ICMP_EQ:
   2391   case ICmpInst::ICMP_NE:
   2392     // Recognize pattern:
   2393     //   mulval = mul(zext A, zext B)
   2394     //   cmp eq/neq mulval, zext trunc mulval
   2395     if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal))
   2396       if (Zext->hasOneUse()) {
   2397         Value *ZextArg = Zext->getOperand(0);
   2398         if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg))
   2399           if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth)
   2400             break; //Recognized
   2401       }
   2402 
   2403     // Recognize pattern:
   2404     //   mulval = mul(zext A, zext B)
   2405     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
   2406     ConstantInt *CI;
   2407     Value *ValToMask;
   2408     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
   2409       if (ValToMask != MulVal)
   2410         return nullptr;
   2411       const APInt &CVal = CI->getValue() + 1;
   2412       if (CVal.isPowerOf2()) {
   2413         unsigned MaskWidth = CVal.logBase2();
   2414         if (MaskWidth == MulWidth)
   2415           break; // Recognized
   2416       }
   2417     }
   2418     return nullptr;
   2419 
   2420   case ICmpInst::ICMP_UGT:
   2421     // Recognize pattern:
   2422     //   mulval = mul(zext A, zext B)
   2423     //   cmp ugt mulval, max
   2424     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
   2425       APInt MaxVal = APInt::getMaxValue(MulWidth);
   2426       MaxVal = MaxVal.zext(CI->getBitWidth());
   2427       if (MaxVal.eq(CI->getValue()))
   2428         break; // Recognized
   2429     }
   2430     return nullptr;
   2431 
   2432   case ICmpInst::ICMP_UGE:
   2433     // Recognize pattern:
   2434     //   mulval = mul(zext A, zext B)
   2435     //   cmp uge mulval, max+1
   2436     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
   2437       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
   2438       if (MaxVal.eq(CI->getValue()))
   2439         break; // Recognized
   2440     }
   2441     return nullptr;
   2442 
   2443   case ICmpInst::ICMP_ULE:
   2444     // Recognize pattern:
   2445     //   mulval = mul(zext A, zext B)
   2446     //   cmp ule mulval, max
   2447     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
   2448       APInt MaxVal = APInt::getMaxValue(MulWidth);
   2449       MaxVal = MaxVal.zext(CI->getBitWidth());
   2450       if (MaxVal.eq(CI->getValue()))
   2451         break; // Recognized
   2452     }
   2453     return nullptr;
   2454 
   2455   case ICmpInst::ICMP_ULT:
   2456     // Recognize pattern:
   2457     //   mulval = mul(zext A, zext B)
   2458     //   cmp ule mulval, max + 1
   2459     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
   2460       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
   2461       if (MaxVal.eq(CI->getValue()))
   2462         break; // Recognized
   2463     }
   2464     return nullptr;
   2465 
   2466   default:
   2467     return nullptr;
   2468   }
   2469 
   2470   InstCombiner::BuilderTy *Builder = IC.Builder;
   2471   Builder->SetInsertPoint(MulInstr);
   2472 
   2473   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
   2474   Value *MulA = A, *MulB = B;
   2475   if (WidthA < MulWidth)
   2476     MulA = Builder->CreateZExt(A, MulType);
   2477   if (WidthB < MulWidth)
   2478     MulB = Builder->CreateZExt(B, MulType);
   2479   Value *F = Intrinsic::getDeclaration(I.getModule(),
   2480                                        Intrinsic::umul_with_overflow, MulType);
   2481   CallInst *Call = Builder->CreateCall(F, {MulA, MulB}, "umul");
   2482   IC.Worklist.Add(MulInstr);
   2483 
   2484   // If there are uses of mul result other than the comparison, we know that
   2485   // they are truncation or binary AND. Change them to use result of
   2486   // mul.with.overflow and adjust properly mask/size.
   2487   if (MulVal->hasNUsesOrMore(2)) {
   2488     Value *Mul = Builder->CreateExtractValue(Call, 0, "umul.value");
   2489     for (User *U : MulVal->users()) {
   2490       if (U == &I || U == OtherVal)
   2491         continue;
   2492       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
   2493         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
   2494           IC.ReplaceInstUsesWith(*TI, Mul);
   2495         else
   2496           TI->setOperand(0, Mul);
   2497       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
   2498         assert(BO->getOpcode() == Instruction::And);
   2499         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
   2500         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
   2501         APInt ShortMask = CI->getValue().trunc(MulWidth);
   2502         Value *ShortAnd = Builder->CreateAnd(Mul, ShortMask);
   2503         Instruction *Zext =
   2504             cast<Instruction>(Builder->CreateZExt(ShortAnd, BO->getType()));
   2505         IC.Worklist.Add(Zext);
   2506         IC.ReplaceInstUsesWith(*BO, Zext);
   2507       } else {
   2508         llvm_unreachable("Unexpected Binary operation");
   2509       }
   2510       IC.Worklist.Add(cast<Instruction>(U));
   2511     }
   2512   }
   2513   if (isa<Instruction>(OtherVal))
   2514     IC.Worklist.Add(cast<Instruction>(OtherVal));
   2515 
   2516   // The original icmp gets replaced with the overflow value, maybe inverted
   2517   // depending on predicate.
   2518   bool Inverse = false;
   2519   switch (I.getPredicate()) {
   2520   case ICmpInst::ICMP_NE:
   2521     break;
   2522   case ICmpInst::ICMP_EQ:
   2523     Inverse = true;
   2524     break;
   2525   case ICmpInst::ICMP_UGT:
   2526   case ICmpInst::ICMP_UGE:
   2527     if (I.getOperand(0) == MulVal)
   2528       break;
   2529     Inverse = true;
   2530     break;
   2531   case ICmpInst::ICMP_ULT:
   2532   case ICmpInst::ICMP_ULE:
   2533     if (I.getOperand(1) == MulVal)
   2534       break;
   2535     Inverse = true;
   2536     break;
   2537   default:
   2538     llvm_unreachable("Unexpected predicate");
   2539   }
   2540   if (Inverse) {
   2541     Value *Res = Builder->CreateExtractValue(Call, 1);
   2542     return BinaryOperator::CreateNot(Res);
   2543   }
   2544 
   2545   return ExtractValueInst::Create(Call, 1);
   2546 }
   2547 
   2548 // DemandedBitsLHSMask - When performing a comparison against a constant,
   2549 // it is possible that not all the bits in the LHS are demanded.  This helper
   2550 // method computes the mask that IS demanded.
   2551 static APInt DemandedBitsLHSMask(ICmpInst &I,
   2552                                  unsigned BitWidth, bool isSignCheck) {
   2553   if (isSignCheck)
   2554     return APInt::getSignBit(BitWidth);
   2555 
   2556   ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
   2557   if (!CI) return APInt::getAllOnesValue(BitWidth);
   2558   const APInt &RHS = CI->getValue();
   2559 
   2560   switch (I.getPredicate()) {
   2561   // For a UGT comparison, we don't care about any bits that
   2562   // correspond to the trailing ones of the comparand.  The value of these
   2563   // bits doesn't impact the outcome of the comparison, because any value
   2564   // greater than the RHS must differ in a bit higher than these due to carry.
   2565   case ICmpInst::ICMP_UGT: {
   2566     unsigned trailingOnes = RHS.countTrailingOnes();
   2567     APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
   2568     return ~lowBitsSet;
   2569   }
   2570 
   2571   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
   2572   // Any value less than the RHS must differ in a higher bit because of carries.
   2573   case ICmpInst::ICMP_ULT: {
   2574     unsigned trailingZeros = RHS.countTrailingZeros();
   2575     APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
   2576     return ~lowBitsSet;
   2577   }
   2578 
   2579   default:
   2580     return APInt::getAllOnesValue(BitWidth);
   2581   }
   2582 }
   2583 
   2584 /// \brief Check if the order of \p Op0 and \p Op1 as operand in an ICmpInst
   2585 /// should be swapped.
   2586 /// The decision is based on how many times these two operands are reused
   2587 /// as subtract operands and their positions in those instructions.
   2588 /// The rational is that several architectures use the same instruction for
   2589 /// both subtract and cmp, thus it is better if the order of those operands
   2590 /// match.
   2591 /// \return true if Op0 and Op1 should be swapped.
   2592 static bool swapMayExposeCSEOpportunities(const Value * Op0,
   2593                                           const Value * Op1) {
   2594   // Filter out pointer value as those cannot appears directly in subtract.
   2595   // FIXME: we may want to go through inttoptrs or bitcasts.
   2596   if (Op0->getType()->isPointerTy())
   2597     return false;
   2598   // Count every uses of both Op0 and Op1 in a subtract.
   2599   // Each time Op0 is the first operand, count -1: swapping is bad, the
   2600   // subtract has already the same layout as the compare.
   2601   // Each time Op0 is the second operand, count +1: swapping is good, the
   2602   // subtract has a different layout as the compare.
   2603   // At the end, if the benefit is greater than 0, Op0 should come second to
   2604   // expose more CSE opportunities.
   2605   int GlobalSwapBenefits = 0;
   2606   for (const User *U : Op0->users()) {
   2607     const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(U);
   2608     if (!BinOp || BinOp->getOpcode() != Instruction::Sub)
   2609       continue;
   2610     // If Op0 is the first argument, this is not beneficial to swap the
   2611     // arguments.
   2612     int LocalSwapBenefits = -1;
   2613     unsigned Op1Idx = 1;
   2614     if (BinOp->getOperand(Op1Idx) == Op0) {
   2615       Op1Idx = 0;
   2616       LocalSwapBenefits = 1;
   2617     }
   2618     if (BinOp->getOperand(Op1Idx) != Op1)
   2619       continue;
   2620     GlobalSwapBenefits += LocalSwapBenefits;
   2621   }
   2622   return GlobalSwapBenefits > 0;
   2623 }
   2624 
   2625 /// \brief Check that one use is in the same block as the definition and all
   2626 /// other uses are in blocks dominated by a given block
   2627 ///
   2628 /// \param DI Definition
   2629 /// \param UI Use
   2630 /// \param DB Block that must dominate all uses of \p DI outside
   2631 ///           the parent block
   2632 /// \return true when \p UI is the only use of \p DI in the parent block
   2633 /// and all other uses of \p DI are in blocks dominated by \p DB.
   2634 ///
   2635 bool InstCombiner::dominatesAllUses(const Instruction *DI,
   2636                                     const Instruction *UI,
   2637                                     const BasicBlock *DB) const {
   2638   assert(DI && UI && "Instruction not defined\n");
   2639   // ignore incomplete definitions
   2640   if (!DI->getParent())
   2641     return false;
   2642   // DI and UI must be in the same block
   2643   if (DI->getParent() != UI->getParent())
   2644     return false;
   2645   // Protect from self-referencing blocks
   2646   if (DI->getParent() == DB)
   2647     return false;
   2648   // DominatorTree available?
   2649   if (!DT)
   2650     return false;
   2651   for (const User *U : DI->users()) {
   2652     auto *Usr = cast<Instruction>(U);
   2653     if (Usr != UI && !DT->dominates(DB, Usr->getParent()))
   2654       return false;
   2655   }
   2656   return true;
   2657 }
   2658 
   2659 ///
   2660 /// true when the instruction sequence within a block is select-cmp-br.
   2661 ///
   2662 static bool isChainSelectCmpBranch(const SelectInst *SI) {
   2663   const BasicBlock *BB = SI->getParent();
   2664   if (!BB)
   2665     return false;
   2666   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
   2667   if (!BI || BI->getNumSuccessors() != 2)
   2668     return false;
   2669   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
   2670   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
   2671     return false;
   2672   return true;
   2673 }
   2674 
   2675 ///
   2676 /// \brief True when a select result is replaced by one of its operands
   2677 /// in select-icmp sequence. This will eventually result in the elimination
   2678 /// of the select.
   2679 ///
   2680 /// \param SI    Select instruction
   2681 /// \param Icmp  Compare instruction
   2682 /// \param SIOpd Operand that replaces the select
   2683 ///
   2684 /// Notes:
   2685 /// - The replacement is global and requires dominator information
   2686 /// - The caller is responsible for the actual replacement
   2687 ///
   2688 /// Example:
   2689 ///
   2690 /// entry:
   2691 ///  %4 = select i1 %3, %C* %0, %C* null
   2692 ///  %5 = icmp eq %C* %4, null
   2693 ///  br i1 %5, label %9, label %7
   2694 ///  ...
   2695 ///  ; <label>:7                                       ; preds = %entry
   2696 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
   2697 ///  ...
   2698 ///
   2699 /// can be transformed to
   2700 ///
   2701 ///  %5 = icmp eq %C* %0, null
   2702 ///  %6 = select i1 %3, i1 %5, i1 true
   2703 ///  br i1 %6, label %9, label %7
   2704 ///  ...
   2705 ///  ; <label>:7                                       ; preds = %entry
   2706 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
   2707 ///
   2708 /// Similar when the first operand of the select is a constant or/and
   2709 /// the compare is for not equal rather than equal.
   2710 ///
   2711 /// NOTE: The function is only called when the select and compare constants
   2712 /// are equal, the optimization can work only for EQ predicates. This is not a
   2713 /// major restriction since a NE compare should be 'normalized' to an equal
   2714 /// compare, which usually happens in the combiner and test case
   2715 /// select-cmp-br.ll
   2716 /// checks for it.
   2717 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
   2718                                              const ICmpInst *Icmp,
   2719                                              const unsigned SIOpd) {
   2720   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
   2721   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
   2722     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
   2723     // The check for the unique predecessor is not the best that can be
   2724     // done. But it protects efficiently against cases like  when SI's
   2725     // home block has two successors, Succ and Succ1, and Succ1 predecessor
   2726     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
   2727     // replaced can be reached on either path. So the uniqueness check
   2728     // guarantees that the path all uses of SI (outside SI's parent) are on
   2729     // is disjoint from all other paths out of SI. But that information
   2730     // is more expensive to compute, and the trade-off here is in favor
   2731     // of compile-time.
   2732     if (Succ->getUniquePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
   2733       NumSel++;
   2734       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
   2735       return true;
   2736     }
   2737   }
   2738   return false;
   2739 }
   2740 
   2741 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
   2742   bool Changed = false;
   2743   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   2744   unsigned Op0Cplxity = getComplexity(Op0);
   2745   unsigned Op1Cplxity = getComplexity(Op1);
   2746 
   2747   /// Orders the operands of the compare so that they are listed from most
   2748   /// complex to least complex.  This puts constants before unary operators,
   2749   /// before binary operators.
   2750   if (Op0Cplxity < Op1Cplxity ||
   2751         (Op0Cplxity == Op1Cplxity &&
   2752          swapMayExposeCSEOpportunities(Op0, Op1))) {
   2753     I.swapOperands();
   2754     std::swap(Op0, Op1);
   2755     Changed = true;
   2756   }
   2757 
   2758   if (Value *V =
   2759           SimplifyICmpInst(I.getPredicate(), Op0, Op1, DL, TLI, DT, AC, &I))
   2760     return ReplaceInstUsesWith(I, V);
   2761 
   2762   // comparing -val or val with non-zero is the same as just comparing val
   2763   // ie, abs(val) != 0 -> val != 0
   2764   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero()))
   2765   {
   2766     Value *Cond, *SelectTrue, *SelectFalse;
   2767     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
   2768                             m_Value(SelectFalse)))) {
   2769       if (Value *V = dyn_castNegVal(SelectTrue)) {
   2770         if (V == SelectFalse)
   2771           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
   2772       }
   2773       else if (Value *V = dyn_castNegVal(SelectFalse)) {
   2774         if (V == SelectTrue)
   2775           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
   2776       }
   2777     }
   2778   }
   2779 
   2780   Type *Ty = Op0->getType();
   2781 
   2782   // icmp's with boolean values can always be turned into bitwise operations
   2783   if (Ty->isIntegerTy(1)) {
   2784     switch (I.getPredicate()) {
   2785     default: llvm_unreachable("Invalid icmp instruction!");
   2786     case ICmpInst::ICMP_EQ: {               // icmp eq i1 A, B -> ~(A^B)
   2787       Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
   2788       return BinaryOperator::CreateNot(Xor);
   2789     }
   2790     case ICmpInst::ICMP_NE:                  // icmp eq i1 A, B -> A^B
   2791       return BinaryOperator::CreateXor(Op0, Op1);
   2792 
   2793     case ICmpInst::ICMP_UGT:
   2794       std::swap(Op0, Op1);                   // Change icmp ugt -> icmp ult
   2795       // FALL THROUGH
   2796     case ICmpInst::ICMP_ULT:{               // icmp ult i1 A, B -> ~A & B
   2797       Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
   2798       return BinaryOperator::CreateAnd(Not, Op1);
   2799     }
   2800     case ICmpInst::ICMP_SGT:
   2801       std::swap(Op0, Op1);                   // Change icmp sgt -> icmp slt
   2802       // FALL THROUGH
   2803     case ICmpInst::ICMP_SLT: {               // icmp slt i1 A, B -> A & ~B
   2804       Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
   2805       return BinaryOperator::CreateAnd(Not, Op0);
   2806     }
   2807     case ICmpInst::ICMP_UGE:
   2808       std::swap(Op0, Op1);                   // Change icmp uge -> icmp ule
   2809       // FALL THROUGH
   2810     case ICmpInst::ICMP_ULE: {               //  icmp ule i1 A, B -> ~A | B
   2811       Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
   2812       return BinaryOperator::CreateOr(Not, Op1);
   2813     }
   2814     case ICmpInst::ICMP_SGE:
   2815       std::swap(Op0, Op1);                   // Change icmp sge -> icmp sle
   2816       // FALL THROUGH
   2817     case ICmpInst::ICMP_SLE: {               //  icmp sle i1 A, B -> A | ~B
   2818       Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
   2819       return BinaryOperator::CreateOr(Not, Op0);
   2820     }
   2821     }
   2822   }
   2823 
   2824   unsigned BitWidth = 0;
   2825   if (Ty->isIntOrIntVectorTy())
   2826     BitWidth = Ty->getScalarSizeInBits();
   2827   else // Get pointer size.
   2828     BitWidth = DL.getTypeSizeInBits(Ty->getScalarType());
   2829 
   2830   bool isSignBit = false;
   2831 
   2832   // See if we are doing a comparison with a constant.
   2833   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2834     Value *A = nullptr, *B = nullptr;
   2835 
   2836     // Match the following pattern, which is a common idiom when writing
   2837     // overflow-safe integer arithmetic function.  The source performs an
   2838     // addition in wider type, and explicitly checks for overflow using
   2839     // comparisons against INT_MIN and INT_MAX.  Simplify this by using the
   2840     // sadd_with_overflow intrinsic.
   2841     //
   2842     // TODO: This could probably be generalized to handle other overflow-safe
   2843     // operations if we worked out the formulas to compute the appropriate
   2844     // magic constants.
   2845     //
   2846     // sum = a + b
   2847     // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
   2848     {
   2849     ConstantInt *CI2;    // I = icmp ugt (add (add A, B), CI2), CI
   2850     if (I.getPredicate() == ICmpInst::ICMP_UGT &&
   2851         match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
   2852       if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
   2853         return Res;
   2854     }
   2855 
   2856     // The following transforms are only 'worth it' if the only user of the
   2857     // subtraction is the icmp.
   2858     if (Op0->hasOneUse()) {
   2859       // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
   2860       if (I.isEquality() && CI->isZero() &&
   2861           match(Op0, m_Sub(m_Value(A), m_Value(B))))
   2862         return new ICmpInst(I.getPredicate(), A, B);
   2863 
   2864       // (icmp sgt (sub nsw A B), -1) -> (icmp sge A, B)
   2865       if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isAllOnesValue() &&
   2866           match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
   2867         return new ICmpInst(ICmpInst::ICMP_SGE, A, B);
   2868 
   2869       // (icmp sgt (sub nsw A B), 0) -> (icmp sgt A, B)
   2870       if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isZero() &&
   2871           match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
   2872         return new ICmpInst(ICmpInst::ICMP_SGT, A, B);
   2873 
   2874       // (icmp slt (sub nsw A B), 0) -> (icmp slt A, B)
   2875       if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isZero() &&
   2876           match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
   2877         return new ICmpInst(ICmpInst::ICMP_SLT, A, B);
   2878 
   2879       // (icmp slt (sub nsw A B), 1) -> (icmp sle A, B)
   2880       if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isOne() &&
   2881           match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
   2882         return new ICmpInst(ICmpInst::ICMP_SLE, A, B);
   2883     }
   2884 
   2885     // If we have an icmp le or icmp ge instruction, turn it into the
   2886     // appropriate icmp lt or icmp gt instruction.  This allows us to rely on
   2887     // them being folded in the code below.  The SimplifyICmpInst code has
   2888     // already handled the edge cases for us, so we just assert on them.
   2889     switch (I.getPredicate()) {
   2890     default: break;
   2891     case ICmpInst::ICMP_ULE:
   2892       assert(!CI->isMaxValue(false));                 // A <=u MAX -> TRUE
   2893       return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
   2894                           Builder->getInt(CI->getValue()+1));
   2895     case ICmpInst::ICMP_SLE:
   2896       assert(!CI->isMaxValue(true));                  // A <=s MAX -> TRUE
   2897       return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
   2898                           Builder->getInt(CI->getValue()+1));
   2899     case ICmpInst::ICMP_UGE:
   2900       assert(!CI->isMinValue(false));                 // A >=u MIN -> TRUE
   2901       return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
   2902                           Builder->getInt(CI->getValue()-1));
   2903     case ICmpInst::ICMP_SGE:
   2904       assert(!CI->isMinValue(true));                  // A >=s MIN -> TRUE
   2905       return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
   2906                           Builder->getInt(CI->getValue()-1));
   2907     }
   2908 
   2909     if (I.isEquality()) {
   2910       ConstantInt *CI2;
   2911       if (match(Op0, m_AShr(m_ConstantInt(CI2), m_Value(A))) ||
   2912           match(Op0, m_LShr(m_ConstantInt(CI2), m_Value(A)))) {
   2913         // (icmp eq/ne (ashr/lshr const2, A), const1)
   2914         if (Instruction *Inst = FoldICmpCstShrCst(I, Op0, A, CI, CI2))
   2915           return Inst;
   2916       }
   2917       if (match(Op0, m_Shl(m_ConstantInt(CI2), m_Value(A)))) {
   2918         // (icmp eq/ne (shl const2, A), const1)
   2919         if (Instruction *Inst = FoldICmpCstShlCst(I, Op0, A, CI, CI2))
   2920           return Inst;
   2921       }
   2922     }
   2923 
   2924     // If this comparison is a normal comparison, it demands all
   2925     // bits, if it is a sign bit comparison, it only demands the sign bit.
   2926     bool UnusedBit;
   2927     isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
   2928   }
   2929 
   2930   // See if we can fold the comparison based on range information we can get
   2931   // by checking whether bits are known to be zero or one in the input.
   2932   if (BitWidth != 0) {
   2933     APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
   2934     APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
   2935 
   2936     if (SimplifyDemandedBits(I.getOperandUse(0),
   2937                              DemandedBitsLHSMask(I, BitWidth, isSignBit),
   2938                              Op0KnownZero, Op0KnownOne, 0))
   2939       return &I;
   2940     if (SimplifyDemandedBits(I.getOperandUse(1),
   2941                              APInt::getAllOnesValue(BitWidth), Op1KnownZero,
   2942                              Op1KnownOne, 0))
   2943       return &I;
   2944 
   2945     // Given the known and unknown bits, compute a range that the LHS could be
   2946     // in.  Compute the Min, Max and RHS values based on the known bits. For the
   2947     // EQ and NE we use unsigned values.
   2948     APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
   2949     APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
   2950     if (I.isSigned()) {
   2951       ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
   2952                                              Op0Min, Op0Max);
   2953       ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
   2954                                              Op1Min, Op1Max);
   2955     } else {
   2956       ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
   2957                                                Op0Min, Op0Max);
   2958       ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
   2959                                                Op1Min, Op1Max);
   2960     }
   2961 
   2962     // If Min and Max are known to be the same, then SimplifyDemandedBits
   2963     // figured out that the LHS is a constant.  Just constant fold this now so
   2964     // that code below can assume that Min != Max.
   2965     if (!isa<Constant>(Op0) && Op0Min == Op0Max)
   2966       return new ICmpInst(I.getPredicate(),
   2967                           ConstantInt::get(Op0->getType(), Op0Min), Op1);
   2968     if (!isa<Constant>(Op1) && Op1Min == Op1Max)
   2969       return new ICmpInst(I.getPredicate(), Op0,
   2970                           ConstantInt::get(Op1->getType(), Op1Min));
   2971 
   2972     // Based on the range information we know about the LHS, see if we can
   2973     // simplify this comparison.  For example, (x&4) < 8 is always true.
   2974     switch (I.getPredicate()) {
   2975     default: llvm_unreachable("Unknown icmp opcode!");
   2976     case ICmpInst::ICMP_EQ: {
   2977       if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
   2978         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2979 
   2980       // If all bits are known zero except for one, then we know at most one
   2981       // bit is set.   If the comparison is against zero, then this is a check
   2982       // to see if *that* bit is set.
   2983       APInt Op0KnownZeroInverted = ~Op0KnownZero;
   2984       if (~Op1KnownZero == 0) {
   2985         // If the LHS is an AND with the same constant, look through it.
   2986         Value *LHS = nullptr;
   2987         ConstantInt *LHSC = nullptr;
   2988         if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
   2989             LHSC->getValue() != Op0KnownZeroInverted)
   2990           LHS = Op0;
   2991 
   2992         // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
   2993         // then turn "((1 << x)&8) == 0" into "x != 3".
   2994         // or turn "((1 << x)&7) == 0" into "x > 2".
   2995         Value *X = nullptr;
   2996         if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
   2997           APInt ValToCheck = Op0KnownZeroInverted;
   2998           if (ValToCheck.isPowerOf2()) {
   2999             unsigned CmpVal = ValToCheck.countTrailingZeros();
   3000             return new ICmpInst(ICmpInst::ICMP_NE, X,
   3001                                 ConstantInt::get(X->getType(), CmpVal));
   3002           } else if ((++ValToCheck).isPowerOf2()) {
   3003             unsigned CmpVal = ValToCheck.countTrailingZeros() - 1;
   3004             return new ICmpInst(ICmpInst::ICMP_UGT, X,
   3005                                 ConstantInt::get(X->getType(), CmpVal));
   3006           }
   3007         }
   3008 
   3009         // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
   3010         // then turn "((8 >>u x)&1) == 0" into "x != 3".
   3011         const APInt *CI;
   3012         if (Op0KnownZeroInverted == 1 &&
   3013             match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
   3014           return new ICmpInst(ICmpInst::ICMP_NE, X,
   3015                               ConstantInt::get(X->getType(),
   3016                                                CI->countTrailingZeros()));
   3017       }
   3018       break;
   3019     }
   3020     case ICmpInst::ICMP_NE: {
   3021       if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
   3022         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   3023 
   3024       // If all bits are known zero except for one, then we know at most one
   3025       // bit is set.   If the comparison is against zero, then this is a check
   3026       // to see if *that* bit is set.
   3027       APInt Op0KnownZeroInverted = ~Op0KnownZero;
   3028       if (~Op1KnownZero == 0) {
   3029         // If the LHS is an AND with the same constant, look through it.
   3030         Value *LHS = nullptr;
   3031         ConstantInt *LHSC = nullptr;
   3032         if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
   3033             LHSC->getValue() != Op0KnownZeroInverted)
   3034           LHS = Op0;
   3035 
   3036         // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
   3037         // then turn "((1 << x)&8) != 0" into "x == 3".
   3038         // or turn "((1 << x)&7) != 0" into "x < 3".
   3039         Value *X = nullptr;
   3040         if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
   3041           APInt ValToCheck = Op0KnownZeroInverted;
   3042           if (ValToCheck.isPowerOf2()) {
   3043             unsigned CmpVal = ValToCheck.countTrailingZeros();
   3044             return new ICmpInst(ICmpInst::ICMP_EQ, X,
   3045                                 ConstantInt::get(X->getType(), CmpVal));
   3046           } else if ((++ValToCheck).isPowerOf2()) {
   3047             unsigned CmpVal = ValToCheck.countTrailingZeros();
   3048             return new ICmpInst(ICmpInst::ICMP_ULT, X,
   3049                                 ConstantInt::get(X->getType(), CmpVal));
   3050           }
   3051         }
   3052 
   3053         // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
   3054         // then turn "((8 >>u x)&1) != 0" into "x == 3".
   3055         const APInt *CI;
   3056         if (Op0KnownZeroInverted == 1 &&
   3057             match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
   3058           return new ICmpInst(ICmpInst::ICMP_EQ, X,
   3059                               ConstantInt::get(X->getType(),
   3060                                                CI->countTrailingZeros()));
   3061       }
   3062       break;
   3063     }
   3064     case ICmpInst::ICMP_ULT:
   3065       if (Op0Max.ult(Op1Min))          // A <u B -> true if max(A) < min(B)
   3066         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   3067       if (Op0Min.uge(Op1Max))          // A <u B -> false if min(A) >= max(B)
   3068         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   3069       if (Op1Min == Op0Max)            // A <u B -> A != B if max(A) == min(B)
   3070         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   3071       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   3072         if (Op1Max == Op0Min+1)        // A <u C -> A == C-1 if min(A)+1 == C
   3073           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   3074                               Builder->getInt(CI->getValue()-1));
   3075 
   3076         // (x <u 2147483648) -> (x >s -1)  -> true if sign bit clear
   3077         if (CI->isMinValue(true))
   3078           return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
   3079                            Constant::getAllOnesValue(Op0->getType()));
   3080       }
   3081       break;
   3082     case ICmpInst::ICMP_UGT:
   3083       if (Op0Min.ugt(Op1Max))          // A >u B -> true if min(A) > max(B)
   3084         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   3085       if (Op0Max.ule(Op1Min))          // A >u B -> false if max(A) <= max(B)
   3086         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   3087 
   3088       if (Op1Max == Op0Min)            // A >u B -> A != B if min(A) == max(B)
   3089         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   3090       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   3091         if (Op1Min == Op0Max-1)        // A >u C -> A == C+1 if max(a)-1 == C
   3092           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   3093                               Builder->getInt(CI->getValue()+1));
   3094 
   3095         // (x >u 2147483647) -> (x <s 0)  -> true if sign bit set
   3096         if (CI->isMaxValue(true))
   3097           return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
   3098                               Constant::getNullValue(Op0->getType()));
   3099       }
   3100       break;
   3101     case ICmpInst::ICMP_SLT:
   3102       if (Op0Max.slt(Op1Min))          // A <s B -> true if max(A) < min(C)
   3103         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   3104       if (Op0Min.sge(Op1Max))          // A <s B -> false if min(A) >= max(C)
   3105         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   3106       if (Op1Min == Op0Max)            // A <s B -> A != B if max(A) == min(B)
   3107         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   3108       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   3109         if (Op1Max == Op0Min+1)        // A <s C -> A == C-1 if min(A)+1 == C
   3110           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   3111                               Builder->getInt(CI->getValue()-1));
   3112       }
   3113       break;
   3114     case ICmpInst::ICMP_SGT:
   3115       if (Op0Min.sgt(Op1Max))          // A >s B -> true if min(A) > max(B)
   3116         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   3117       if (Op0Max.sle(Op1Min))          // A >s B -> false if max(A) <= min(B)
   3118         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   3119 
   3120       if (Op1Max == Op0Min)            // A >s B -> A != B if min(A) == max(B)
   3121         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   3122       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   3123         if (Op1Min == Op0Max-1)        // A >s C -> A == C+1 if max(A)-1 == C
   3124           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   3125                               Builder->getInt(CI->getValue()+1));
   3126       }
   3127       break;
   3128     case ICmpInst::ICMP_SGE:
   3129       assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
   3130       if (Op0Min.sge(Op1Max))          // A >=s B -> true if min(A) >= max(B)
   3131         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   3132       if (Op0Max.slt(Op1Min))          // A >=s B -> false if max(A) < min(B)
   3133         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   3134       break;
   3135     case ICmpInst::ICMP_SLE:
   3136       assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
   3137       if (Op0Max.sle(Op1Min))          // A <=s B -> true if max(A) <= min(B)
   3138         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   3139       if (Op0Min.sgt(Op1Max))          // A <=s B -> false if min(A) > max(B)
   3140         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   3141       break;
   3142     case ICmpInst::ICMP_UGE:
   3143       assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
   3144       if (Op0Min.uge(Op1Max))          // A >=u B -> true if min(A) >= max(B)
   3145         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   3146       if (Op0Max.ult(Op1Min))          // A >=u B -> false if max(A) < min(B)
   3147         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   3148       break;
   3149     case ICmpInst::ICMP_ULE:
   3150       assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
   3151       if (Op0Max.ule(Op1Min))          // A <=u B -> true if max(A) <= min(B)
   3152         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   3153       if (Op0Min.ugt(Op1Max))          // A <=u B -> false if min(A) > max(B)
   3154         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   3155       break;
   3156     }
   3157 
   3158     // Turn a signed comparison into an unsigned one if both operands
   3159     // are known to have the same sign.
   3160     if (I.isSigned() &&
   3161         ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
   3162          (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
   3163       return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
   3164   }
   3165 
   3166   // Test if the ICmpInst instruction is used exclusively by a select as
   3167   // part of a minimum or maximum operation. If so, refrain from doing
   3168   // any other folding. This helps out other analyses which understand
   3169   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
   3170   // and CodeGen. And in this case, at least one of the comparison
   3171   // operands has at least one user besides the compare (the select),
   3172   // which would often largely negate the benefit of folding anyway.
   3173   if (I.hasOneUse())
   3174     if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
   3175       if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
   3176           (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
   3177         return nullptr;
   3178 
   3179   // See if we are doing a comparison between a constant and an instruction that
   3180   // can be folded into the comparison.
   3181   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   3182     // Since the RHS is a ConstantInt (CI), if the left hand side is an
   3183     // instruction, see if that instruction also has constants so that the
   3184     // instruction can be folded into the icmp
   3185     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
   3186       if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
   3187         return Res;
   3188   }
   3189 
   3190   // Handle icmp with constant (but not simple integer constant) RHS
   3191   if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
   3192     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
   3193       switch (LHSI->getOpcode()) {
   3194       case Instruction::GetElementPtr:
   3195           // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
   3196         if (RHSC->isNullValue() &&
   3197             cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
   3198           return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
   3199                   Constant::getNullValue(LHSI->getOperand(0)->getType()));
   3200         break;
   3201       case Instruction::PHI:
   3202         // Only fold icmp into the PHI if the phi and icmp are in the same
   3203         // block.  If in the same block, we're encouraging jump threading.  If
   3204         // not, we are just pessimizing the code by making an i1 phi.
   3205         if (LHSI->getParent() == I.getParent())
   3206           if (Instruction *NV = FoldOpIntoPhi(I))
   3207             return NV;
   3208         break;
   3209       case Instruction::Select: {
   3210         // If either operand of the select is a constant, we can fold the
   3211         // comparison into the select arms, which will cause one to be
   3212         // constant folded and the select turned into a bitwise or.
   3213         Value *Op1 = nullptr, *Op2 = nullptr;
   3214         ConstantInt *CI = nullptr;
   3215         if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
   3216           Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
   3217           CI = dyn_cast<ConstantInt>(Op1);
   3218         }
   3219         if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
   3220           Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
   3221           CI = dyn_cast<ConstantInt>(Op2);
   3222         }
   3223 
   3224         // We only want to perform this transformation if it will not lead to
   3225         // additional code. This is true if either both sides of the select
   3226         // fold to a constant (in which case the icmp is replaced with a select
   3227         // which will usually simplify) or this is the only user of the
   3228         // select (in which case we are trading a select+icmp for a simpler
   3229         // select+icmp) or all uses of the select can be replaced based on
   3230         // dominance information ("Global cases").
   3231         bool Transform = false;
   3232         if (Op1 && Op2)
   3233           Transform = true;
   3234         else if (Op1 || Op2) {
   3235           // Local case
   3236           if (LHSI->hasOneUse())
   3237             Transform = true;
   3238           // Global cases
   3239           else if (CI && !CI->isZero())
   3240             // When Op1 is constant try replacing select with second operand.
   3241             // Otherwise Op2 is constant and try replacing select with first
   3242             // operand.
   3243             Transform = replacedSelectWithOperand(cast<SelectInst>(LHSI), &I,
   3244                                                   Op1 ? 2 : 1);
   3245         }
   3246         if (Transform) {
   3247           if (!Op1)
   3248             Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
   3249                                       RHSC, I.getName());
   3250           if (!Op2)
   3251             Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
   3252                                       RHSC, I.getName());
   3253           return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
   3254         }
   3255         break;
   3256       }
   3257       case Instruction::IntToPtr:
   3258         // icmp pred inttoptr(X), null -> icmp pred X, 0
   3259         if (RHSC->isNullValue() &&
   3260             DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
   3261           return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
   3262                         Constant::getNullValue(LHSI->getOperand(0)->getType()));
   3263         break;
   3264 
   3265       case Instruction::Load:
   3266         // Try to optimize things like "A[i] > 4" to index computations.
   3267         if (GetElementPtrInst *GEP =
   3268               dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
   3269           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
   3270             if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
   3271                 !cast<LoadInst>(LHSI)->isVolatile())
   3272               if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
   3273                 return Res;
   3274         }
   3275         break;
   3276       }
   3277   }
   3278 
   3279   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
   3280   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
   3281     if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
   3282       return NI;
   3283   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
   3284     if (Instruction *NI = FoldGEPICmp(GEP, Op0,
   3285                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
   3286       return NI;
   3287 
   3288   // Try to optimize equality comparisons against alloca-based pointers.
   3289   if (Op0->getType()->isPointerTy() && I.isEquality()) {
   3290     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
   3291     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL)))
   3292       if (Instruction *New = FoldAllocaCmp(I, Alloca, Op1))
   3293         return New;
   3294     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL)))
   3295       if (Instruction *New = FoldAllocaCmp(I, Alloca, Op0))
   3296         return New;
   3297   }
   3298 
   3299   // Test to see if the operands of the icmp are casted versions of other
   3300   // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
   3301   // now.
   3302   if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
   3303     if (Op0->getType()->isPointerTy() &&
   3304         (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
   3305       // We keep moving the cast from the left operand over to the right
   3306       // operand, where it can often be eliminated completely.
   3307       Op0 = CI->getOperand(0);
   3308 
   3309       // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
   3310       // so eliminate it as well.
   3311       if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
   3312         Op1 = CI2->getOperand(0);
   3313 
   3314       // If Op1 is a constant, we can fold the cast into the constant.
   3315       if (Op0->getType() != Op1->getType()) {
   3316         if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
   3317           Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
   3318         } else {
   3319           // Otherwise, cast the RHS right before the icmp
   3320           Op1 = Builder->CreateBitCast(Op1, Op0->getType());
   3321         }
   3322       }
   3323       return new ICmpInst(I.getPredicate(), Op0, Op1);
   3324     }
   3325   }
   3326 
   3327   if (isa<CastInst>(Op0)) {
   3328     // Handle the special case of: icmp (cast bool to X), <cst>
   3329     // This comes up when you have code like
   3330     //   int X = A < B;
   3331     //   if (X) ...
   3332     // For generality, we handle any zero-extension of any operand comparison
   3333     // with a constant or another cast from the same type.
   3334     if (isa<Constant>(Op1) || isa<CastInst>(Op1))
   3335       if (Instruction *R = visitICmpInstWithCastAndCast(I))
   3336         return R;
   3337   }
   3338 
   3339   // Special logic for binary operators.
   3340   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
   3341   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
   3342   if (BO0 || BO1) {
   3343     CmpInst::Predicate Pred = I.getPredicate();
   3344     bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
   3345     if (BO0 && isa<OverflowingBinaryOperator>(BO0))
   3346       NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
   3347         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
   3348         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
   3349     if (BO1 && isa<OverflowingBinaryOperator>(BO1))
   3350       NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
   3351         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
   3352         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
   3353 
   3354     // Analyze the case when either Op0 or Op1 is an add instruction.
   3355     // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
   3356     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
   3357     if (BO0 && BO0->getOpcode() == Instruction::Add)
   3358       A = BO0->getOperand(0), B = BO0->getOperand(1);
   3359     if (BO1 && BO1->getOpcode() == Instruction::Add)
   3360       C = BO1->getOperand(0), D = BO1->getOperand(1);
   3361 
   3362     // icmp (X+cst) < 0 --> X < -cst
   3363     if (NoOp0WrapProblem && ICmpInst::isSigned(Pred) && match(Op1, m_Zero()))
   3364       if (ConstantInt *RHSC = dyn_cast_or_null<ConstantInt>(B))
   3365         if (!RHSC->isMinValue(/*isSigned=*/true))
   3366           return new ICmpInst(Pred, A, ConstantExpr::getNeg(RHSC));
   3367 
   3368     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
   3369     if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
   3370       return new ICmpInst(Pred, A == Op1 ? B : A,
   3371                           Constant::getNullValue(Op1->getType()));
   3372 
   3373     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
   3374     if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
   3375       return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
   3376                           C == Op0 ? D : C);
   3377 
   3378     // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
   3379     if (A && C && (A == C || A == D || B == C || B == D) &&
   3380         NoOp0WrapProblem && NoOp1WrapProblem &&
   3381         // Try not to increase register pressure.
   3382         BO0->hasOneUse() && BO1->hasOneUse()) {
   3383       // Determine Y and Z in the form icmp (X+Y), (X+Z).
   3384       Value *Y, *Z;
   3385       if (A == C) {
   3386         // C + B == C + D  ->  B == D
   3387         Y = B;
   3388         Z = D;
   3389       } else if (A == D) {
   3390         // D + B == C + D  ->  B == C
   3391         Y = B;
   3392         Z = C;
   3393       } else if (B == C) {
   3394         // A + C == C + D  ->  A == D
   3395         Y = A;
   3396         Z = D;
   3397       } else {
   3398         assert(B == D);
   3399         // A + D == C + D  ->  A == C
   3400         Y = A;
   3401         Z = C;
   3402       }
   3403       return new ICmpInst(Pred, Y, Z);
   3404     }
   3405 
   3406     // icmp slt (X + -1), Y -> icmp sle X, Y
   3407     if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
   3408         match(B, m_AllOnes()))
   3409       return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
   3410 
   3411     // icmp sge (X + -1), Y -> icmp sgt X, Y
   3412     if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
   3413         match(B, m_AllOnes()))
   3414       return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
   3415 
   3416     // icmp sle (X + 1), Y -> icmp slt X, Y
   3417     if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE &&
   3418         match(B, m_One()))
   3419       return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
   3420 
   3421     // icmp sgt (X + 1), Y -> icmp sge X, Y
   3422     if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT &&
   3423         match(B, m_One()))
   3424       return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
   3425 
   3426     // icmp sgt X, (Y + -1) -> icmp sge X, Y
   3427     if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
   3428         match(D, m_AllOnes()))
   3429       return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
   3430 
   3431     // icmp sle X, (Y + -1) -> icmp slt X, Y
   3432     if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
   3433         match(D, m_AllOnes()))
   3434       return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
   3435 
   3436     // icmp sge X, (Y + 1) -> icmp sgt X, Y
   3437     if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE &&
   3438         match(D, m_One()))
   3439       return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
   3440 
   3441     // icmp slt X, (Y + 1) -> icmp sle X, Y
   3442     if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT &&
   3443         match(D, m_One()))
   3444       return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
   3445 
   3446     // if C1 has greater magnitude than C2:
   3447     //  icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
   3448     //  s.t. C3 = C1 - C2
   3449     //
   3450     // if C2 has greater magnitude than C1:
   3451     //  icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
   3452     //  s.t. C3 = C2 - C1
   3453     if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
   3454         (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
   3455       if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
   3456         if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
   3457           const APInt &AP1 = C1->getValue();
   3458           const APInt &AP2 = C2->getValue();
   3459           if (AP1.isNegative() == AP2.isNegative()) {
   3460             APInt AP1Abs = C1->getValue().abs();
   3461             APInt AP2Abs = C2->getValue().abs();
   3462             if (AP1Abs.uge(AP2Abs)) {
   3463               ConstantInt *C3 = Builder->getInt(AP1 - AP2);
   3464               Value *NewAdd = Builder->CreateNSWAdd(A, C3);
   3465               return new ICmpInst(Pred, NewAdd, C);
   3466             } else {
   3467               ConstantInt *C3 = Builder->getInt(AP2 - AP1);
   3468               Value *NewAdd = Builder->CreateNSWAdd(C, C3);
   3469               return new ICmpInst(Pred, A, NewAdd);
   3470             }
   3471           }
   3472         }
   3473 
   3474 
   3475     // Analyze the case when either Op0 or Op1 is a sub instruction.
   3476     // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
   3477     A = nullptr; B = nullptr; C = nullptr; D = nullptr;
   3478     if (BO0 && BO0->getOpcode() == Instruction::Sub)
   3479       A = BO0->getOperand(0), B = BO0->getOperand(1);
   3480     if (BO1 && BO1->getOpcode() == Instruction::Sub)
   3481       C = BO1->getOperand(0), D = BO1->getOperand(1);
   3482 
   3483     // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
   3484     if (A == Op1 && NoOp0WrapProblem)
   3485       return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
   3486 
   3487     // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
   3488     if (C == Op0 && NoOp1WrapProblem)
   3489       return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
   3490 
   3491     // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
   3492     if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
   3493         // Try not to increase register pressure.
   3494         BO0->hasOneUse() && BO1->hasOneUse())
   3495       return new ICmpInst(Pred, A, C);
   3496 
   3497     // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
   3498     if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
   3499         // Try not to increase register pressure.
   3500         BO0->hasOneUse() && BO1->hasOneUse())
   3501       return new ICmpInst(Pred, D, B);
   3502 
   3503     // icmp (0-X) < cst --> x > -cst
   3504     if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
   3505       Value *X;
   3506       if (match(BO0, m_Neg(m_Value(X))))
   3507         if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
   3508           if (!RHSC->isMinValue(/*isSigned=*/true))
   3509             return new ICmpInst(I.getSwappedPredicate(), X,
   3510                                 ConstantExpr::getNeg(RHSC));
   3511     }
   3512 
   3513     BinaryOperator *SRem = nullptr;
   3514     // icmp (srem X, Y), Y
   3515     if (BO0 && BO0->getOpcode() == Instruction::SRem &&
   3516         Op1 == BO0->getOperand(1))
   3517       SRem = BO0;
   3518     // icmp Y, (srem X, Y)
   3519     else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
   3520              Op0 == BO1->getOperand(1))
   3521       SRem = BO1;
   3522     if (SRem) {
   3523       // We don't check hasOneUse to avoid increasing register pressure because
   3524       // the value we use is the same value this instruction was already using.
   3525       switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
   3526         default: break;
   3527         case ICmpInst::ICMP_EQ:
   3528           return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   3529         case ICmpInst::ICMP_NE:
   3530           return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   3531         case ICmpInst::ICMP_SGT:
   3532         case ICmpInst::ICMP_SGE:
   3533           return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
   3534                               Constant::getAllOnesValue(SRem->getType()));
   3535         case ICmpInst::ICMP_SLT:
   3536         case ICmpInst::ICMP_SLE:
   3537           return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
   3538                               Constant::getNullValue(SRem->getType()));
   3539       }
   3540     }
   3541 
   3542     if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
   3543         BO0->hasOneUse() && BO1->hasOneUse() &&
   3544         BO0->getOperand(1) == BO1->getOperand(1)) {
   3545       switch (BO0->getOpcode()) {
   3546       default: break;
   3547       case Instruction::Add:
   3548       case Instruction::Sub:
   3549       case Instruction::Xor:
   3550         if (I.isEquality())    // a+x icmp eq/ne b+x --> a icmp b
   3551           return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
   3552                               BO1->getOperand(0));
   3553         // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
   3554         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
   3555           if (CI->getValue().isSignBit()) {
   3556             ICmpInst::Predicate Pred = I.isSigned()
   3557                                            ? I.getUnsignedPredicate()
   3558                                            : I.getSignedPredicate();
   3559             return new ICmpInst(Pred, BO0->getOperand(0),
   3560                                 BO1->getOperand(0));
   3561           }
   3562 
   3563           if (CI->isMaxValue(true)) {
   3564             ICmpInst::Predicate Pred = I.isSigned()
   3565                                            ? I.getUnsignedPredicate()
   3566                                            : I.getSignedPredicate();
   3567             Pred = I.getSwappedPredicate(Pred);
   3568             return new ICmpInst(Pred, BO0->getOperand(0),
   3569                                 BO1->getOperand(0));
   3570           }
   3571         }
   3572         break;
   3573       case Instruction::Mul:
   3574         if (!I.isEquality())
   3575           break;
   3576 
   3577         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
   3578           // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
   3579           // Mask = -1 >> count-trailing-zeros(Cst).
   3580           if (!CI->isZero() && !CI->isOne()) {
   3581             const APInt &AP = CI->getValue();
   3582             ConstantInt *Mask = ConstantInt::get(I.getContext(),
   3583                                     APInt::getLowBitsSet(AP.getBitWidth(),
   3584                                                          AP.getBitWidth() -
   3585                                                     AP.countTrailingZeros()));
   3586             Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
   3587             Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
   3588             return new ICmpInst(I.getPredicate(), And1, And2);
   3589           }
   3590         }
   3591         break;
   3592       case Instruction::UDiv:
   3593       case Instruction::LShr:
   3594         if (I.isSigned())
   3595           break;
   3596         // fall-through
   3597       case Instruction::SDiv:
   3598       case Instruction::AShr:
   3599         if (!BO0->isExact() || !BO1->isExact())
   3600           break;
   3601         return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
   3602                             BO1->getOperand(0));
   3603       case Instruction::Shl: {
   3604         bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
   3605         bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
   3606         if (!NUW && !NSW)
   3607           break;
   3608         if (!NSW && I.isSigned())
   3609           break;
   3610         return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
   3611                             BO1->getOperand(0));
   3612       }
   3613       }
   3614     }
   3615 
   3616     if (BO0) {
   3617       // Transform  A & (L - 1) `ult` L --> L != 0
   3618       auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
   3619       auto BitwiseAnd =
   3620           m_CombineOr(m_And(m_Value(), LSubOne), m_And(LSubOne, m_Value()));
   3621 
   3622       if (match(BO0, BitwiseAnd) && I.getPredicate() == ICmpInst::ICMP_ULT) {
   3623         auto *Zero = Constant::getNullValue(BO0->getType());
   3624         return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
   3625       }
   3626     }
   3627   }
   3628 
   3629   { Value *A, *B;
   3630     // Transform (A & ~B) == 0 --> (A & B) != 0
   3631     // and       (A & ~B) != 0 --> (A & B) == 0
   3632     // if A is a power of 2.
   3633     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
   3634         match(Op1, m_Zero()) &&
   3635         isKnownToBeAPowerOfTwo(A, DL, false, 0, AC, &I, DT) && I.isEquality())
   3636       return new ICmpInst(I.getInversePredicate(),
   3637                           Builder->CreateAnd(A, B),
   3638                           Op1);
   3639 
   3640     // ~x < ~y --> y < x
   3641     // ~x < cst --> ~cst < x
   3642     if (match(Op0, m_Not(m_Value(A)))) {
   3643       if (match(Op1, m_Not(m_Value(B))))
   3644         return new ICmpInst(I.getPredicate(), B, A);
   3645       if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
   3646         return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
   3647     }
   3648 
   3649     Instruction *AddI = nullptr;
   3650     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
   3651                                      m_Instruction(AddI))) &&
   3652         isa<IntegerType>(A->getType())) {
   3653       Value *Result;
   3654       Constant *Overflow;
   3655       if (OptimizeOverflowCheck(OCF_UNSIGNED_ADD, A, B, *AddI, Result,
   3656                                 Overflow)) {
   3657         ReplaceInstUsesWith(*AddI, Result);
   3658         return ReplaceInstUsesWith(I, Overflow);
   3659       }
   3660     }
   3661 
   3662     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
   3663     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
   3664       if (Instruction *R = ProcessUMulZExtIdiom(I, Op0, Op1, *this))
   3665         return R;
   3666     }
   3667     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
   3668       if (Instruction *R = ProcessUMulZExtIdiom(I, Op1, Op0, *this))
   3669         return R;
   3670     }
   3671   }
   3672 
   3673   if (I.isEquality()) {
   3674     Value *A, *B, *C, *D;
   3675 
   3676     if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
   3677       if (A == Op1 || B == Op1) {    // (A^B) == A  ->  B == 0
   3678         Value *OtherVal = A == Op1 ? B : A;
   3679         return new ICmpInst(I.getPredicate(), OtherVal,
   3680                             Constant::getNullValue(A->getType()));
   3681       }
   3682 
   3683       if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
   3684         // A^c1 == C^c2 --> A == C^(c1^c2)
   3685         ConstantInt *C1, *C2;
   3686         if (match(B, m_ConstantInt(C1)) &&
   3687             match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
   3688           Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue());
   3689           Value *Xor = Builder->CreateXor(C, NC);
   3690           return new ICmpInst(I.getPredicate(), A, Xor);
   3691         }
   3692 
   3693         // A^B == A^D -> B == D
   3694         if (A == C) return new ICmpInst(I.getPredicate(), B, D);
   3695         if (A == D) return new ICmpInst(I.getPredicate(), B, C);
   3696         if (B == C) return new ICmpInst(I.getPredicate(), A, D);
   3697         if (B == D) return new ICmpInst(I.getPredicate(), A, C);
   3698       }
   3699     }
   3700 
   3701     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
   3702         (A == Op0 || B == Op0)) {
   3703       // A == (A^B)  ->  B == 0
   3704       Value *OtherVal = A == Op0 ? B : A;
   3705       return new ICmpInst(I.getPredicate(), OtherVal,
   3706                           Constant::getNullValue(A->getType()));
   3707     }
   3708 
   3709     // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
   3710     if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
   3711         match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
   3712       Value *X = nullptr, *Y = nullptr, *Z = nullptr;
   3713 
   3714       if (A == C) {
   3715         X = B; Y = D; Z = A;
   3716       } else if (A == D) {
   3717         X = B; Y = C; Z = A;
   3718       } else if (B == C) {
   3719         X = A; Y = D; Z = B;
   3720       } else if (B == D) {
   3721         X = A; Y = C; Z = B;
   3722       }
   3723 
   3724       if (X) {   // Build (X^Y) & Z
   3725         Op1 = Builder->CreateXor(X, Y);
   3726         Op1 = Builder->CreateAnd(Op1, Z);
   3727         I.setOperand(0, Op1);
   3728         I.setOperand(1, Constant::getNullValue(Op1->getType()));
   3729         return &I;
   3730       }
   3731     }
   3732 
   3733     // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
   3734     // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
   3735     ConstantInt *Cst1;
   3736     if ((Op0->hasOneUse() &&
   3737          match(Op0, m_ZExt(m_Value(A))) &&
   3738          match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
   3739         (Op1->hasOneUse() &&
   3740          match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
   3741          match(Op1, m_ZExt(m_Value(A))))) {
   3742       APInt Pow2 = Cst1->getValue() + 1;
   3743       if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
   3744           Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
   3745         return new ICmpInst(I.getPredicate(), A,
   3746                             Builder->CreateTrunc(B, A->getType()));
   3747     }
   3748 
   3749     // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
   3750     // For lshr and ashr pairs.
   3751     if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
   3752          match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
   3753         (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
   3754          match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
   3755       unsigned TypeBits = Cst1->getBitWidth();
   3756       unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
   3757       if (ShAmt < TypeBits && ShAmt != 0) {
   3758         ICmpInst::Predicate Pred = I.getPredicate() == ICmpInst::ICMP_NE
   3759                                        ? ICmpInst::ICMP_UGE
   3760                                        : ICmpInst::ICMP_ULT;
   3761         Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
   3762         APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
   3763         return new ICmpInst(Pred, Xor, Builder->getInt(CmpVal));
   3764       }
   3765     }
   3766 
   3767     // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
   3768     if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
   3769         match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
   3770       unsigned TypeBits = Cst1->getBitWidth();
   3771       unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
   3772       if (ShAmt < TypeBits && ShAmt != 0) {
   3773         Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
   3774         APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
   3775         Value *And = Builder->CreateAnd(Xor, Builder->getInt(AndVal),
   3776                                         I.getName() + ".mask");
   3777         return new ICmpInst(I.getPredicate(), And,
   3778                             Constant::getNullValue(Cst1->getType()));
   3779       }
   3780     }
   3781 
   3782     // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
   3783     // "icmp (and X, mask), cst"
   3784     uint64_t ShAmt = 0;
   3785     if (Op0->hasOneUse() &&
   3786         match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A),
   3787                                            m_ConstantInt(ShAmt))))) &&
   3788         match(Op1, m_ConstantInt(Cst1)) &&
   3789         // Only do this when A has multiple uses.  This is most important to do
   3790         // when it exposes other optimizations.
   3791         !A->hasOneUse()) {
   3792       unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
   3793 
   3794       if (ShAmt < ASize) {
   3795         APInt MaskV =
   3796           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
   3797         MaskV <<= ShAmt;
   3798 
   3799         APInt CmpV = Cst1->getValue().zext(ASize);
   3800         CmpV <<= ShAmt;
   3801 
   3802         Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
   3803         return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
   3804       }
   3805     }
   3806   }
   3807 
   3808   // The 'cmpxchg' instruction returns an aggregate containing the old value and
   3809   // an i1 which indicates whether or not we successfully did the swap.
   3810   //
   3811   // Replace comparisons between the old value and the expected value with the
   3812   // indicator that 'cmpxchg' returns.
   3813   //
   3814   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
   3815   // spuriously fail.  In those cases, the old value may equal the expected
   3816   // value but it is possible for the swap to not occur.
   3817   if (I.getPredicate() == ICmpInst::ICMP_EQ)
   3818     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
   3819       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
   3820         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
   3821             !ACXI->isWeak())
   3822           return ExtractValueInst::Create(ACXI, 1);
   3823 
   3824   {
   3825     Value *X; ConstantInt *Cst;
   3826     // icmp X+Cst, X
   3827     if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
   3828       return FoldICmpAddOpCst(I, X, Cst, I.getPredicate());
   3829 
   3830     // icmp X, X+Cst
   3831     if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
   3832       return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate());
   3833   }
   3834   return Changed ? &I : nullptr;
   3835 }
   3836 
   3837 /// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
   3838 Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
   3839                                                 Instruction *LHSI,
   3840                                                 Constant *RHSC) {
   3841   if (!isa<ConstantFP>(RHSC)) return nullptr;
   3842   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
   3843 
   3844   // Get the width of the mantissa.  We don't want to hack on conversions that
   3845   // might lose information from the integer, e.g. "i64 -> float"
   3846   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
   3847   if (MantissaWidth == -1) return nullptr;  // Unknown.
   3848 
   3849   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
   3850 
   3851   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
   3852 
   3853   if (I.isEquality()) {
   3854     FCmpInst::Predicate P = I.getPredicate();
   3855     bool IsExact = false;
   3856     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
   3857     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
   3858 
   3859     // If the floating point constant isn't an integer value, we know if we will
   3860     // ever compare equal / not equal to it.
   3861     if (!IsExact) {
   3862       // TODO: Can never be -0.0 and other non-representable values
   3863       APFloat RHSRoundInt(RHS);
   3864       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
   3865       if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) {
   3866         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
   3867           return ReplaceInstUsesWith(I, Builder->getFalse());
   3868 
   3869         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
   3870         return ReplaceInstUsesWith(I, Builder->getTrue());
   3871       }
   3872     }
   3873 
   3874     // TODO: If the constant is exactly representable, is it always OK to do
   3875     // equality compares as integer?
   3876   }
   3877 
   3878   // Check to see that the input is converted from an integer type that is small
   3879   // enough that preserves all bits.  TODO: check here for "known" sign bits.
   3880   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
   3881   unsigned InputSize = IntTy->getScalarSizeInBits();
   3882 
   3883   // Following test does NOT adjust InputSize downwards for signed inputs,
   3884   // because the most negative value still requires all the mantissa bits
   3885   // to distinguish it from one less than that value.
   3886   if ((int)InputSize > MantissaWidth) {
   3887     // Conversion would lose accuracy. Check if loss can impact comparison.
   3888     int Exp = ilogb(RHS);
   3889     if (Exp == APFloat::IEK_Inf) {
   3890       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
   3891       if (MaxExponent < (int)InputSize - !LHSUnsigned)
   3892         // Conversion could create infinity.
   3893         return nullptr;
   3894     } else {
   3895       // Note that if RHS is zero or NaN, then Exp is negative
   3896       // and first condition is trivially false.
   3897       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
   3898         // Conversion could affect comparison.
   3899         return nullptr;
   3900     }
   3901   }
   3902 
   3903   // Otherwise, we can potentially simplify the comparison.  We know that it
   3904   // will always come through as an integer value and we know the constant is
   3905   // not a NAN (it would have been previously simplified).
   3906   assert(!RHS.isNaN() && "NaN comparison not already folded!");
   3907 
   3908   ICmpInst::Predicate Pred;
   3909   switch (I.getPredicate()) {
   3910   default: llvm_unreachable("Unexpected predicate!");
   3911   case FCmpInst::FCMP_UEQ:
   3912   case FCmpInst::FCMP_OEQ:
   3913     Pred = ICmpInst::ICMP_EQ;
   3914     break;
   3915   case FCmpInst::FCMP_UGT:
   3916   case FCmpInst::FCMP_OGT:
   3917     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
   3918     break;
   3919   case FCmpInst::FCMP_UGE:
   3920   case FCmpInst::FCMP_OGE:
   3921     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
   3922     break;
   3923   case FCmpInst::FCMP_ULT:
   3924   case FCmpInst::FCMP_OLT:
   3925     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
   3926     break;
   3927   case FCmpInst::FCMP_ULE:
   3928   case FCmpInst::FCMP_OLE:
   3929     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
   3930     break;
   3931   case FCmpInst::FCMP_UNE:
   3932   case FCmpInst::FCMP_ONE:
   3933     Pred = ICmpInst::ICMP_NE;
   3934     break;
   3935   case FCmpInst::FCMP_ORD:
   3936     return ReplaceInstUsesWith(I, Builder->getTrue());
   3937   case FCmpInst::FCMP_UNO:
   3938     return ReplaceInstUsesWith(I, Builder->getFalse());
   3939   }
   3940 
   3941   // Now we know that the APFloat is a normal number, zero or inf.
   3942 
   3943   // See if the FP constant is too large for the integer.  For example,
   3944   // comparing an i8 to 300.0.
   3945   unsigned IntWidth = IntTy->getScalarSizeInBits();
   3946 
   3947   if (!LHSUnsigned) {
   3948     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
   3949     // and large values.
   3950     APFloat SMax(RHS.getSemantics());
   3951     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
   3952                           APFloat::rmNearestTiesToEven);
   3953     if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
   3954       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
   3955           Pred == ICmpInst::ICMP_SLE)
   3956         return ReplaceInstUsesWith(I, Builder->getTrue());
   3957       return ReplaceInstUsesWith(I, Builder->getFalse());
   3958     }
   3959   } else {
   3960     // If the RHS value is > UnsignedMax, fold the comparison. This handles
   3961     // +INF and large values.
   3962     APFloat UMax(RHS.getSemantics());
   3963     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
   3964                           APFloat::rmNearestTiesToEven);
   3965     if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
   3966       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
   3967           Pred == ICmpInst::ICMP_ULE)
   3968         return ReplaceInstUsesWith(I, Builder->getTrue());
   3969       return ReplaceInstUsesWith(I, Builder->getFalse());
   3970     }
   3971   }
   3972 
   3973   if (!LHSUnsigned) {
   3974     // See if the RHS value is < SignedMin.
   3975     APFloat SMin(RHS.getSemantics());
   3976     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
   3977                           APFloat::rmNearestTiesToEven);
   3978     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
   3979       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
   3980           Pred == ICmpInst::ICMP_SGE)
   3981         return ReplaceInstUsesWith(I, Builder->getTrue());
   3982       return ReplaceInstUsesWith(I, Builder->getFalse());
   3983     }
   3984   } else {
   3985     // See if the RHS value is < UnsignedMin.
   3986     APFloat SMin(RHS.getSemantics());
   3987     SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
   3988                           APFloat::rmNearestTiesToEven);
   3989     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
   3990       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
   3991           Pred == ICmpInst::ICMP_UGE)
   3992         return ReplaceInstUsesWith(I, Builder->getTrue());
   3993       return ReplaceInstUsesWith(I, Builder->getFalse());
   3994     }
   3995   }
   3996 
   3997   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
   3998   // [0, UMAX], but it may still be fractional.  See if it is fractional by
   3999   // casting the FP value to the integer value and back, checking for equality.
   4000   // Don't do this for zero, because -0.0 is not fractional.
   4001   Constant *RHSInt = LHSUnsigned
   4002     ? ConstantExpr::getFPToUI(RHSC, IntTy)
   4003     : ConstantExpr::getFPToSI(RHSC, IntTy);
   4004   if (!RHS.isZero()) {
   4005     bool Equal = LHSUnsigned
   4006       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
   4007       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
   4008     if (!Equal) {
   4009       // If we had a comparison against a fractional value, we have to adjust
   4010       // the compare predicate and sometimes the value.  RHSC is rounded towards
   4011       // zero at this point.
   4012       switch (Pred) {
   4013       default: llvm_unreachable("Unexpected integer comparison!");
   4014       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
   4015         return ReplaceInstUsesWith(I, Builder->getTrue());
   4016       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
   4017         return ReplaceInstUsesWith(I, Builder->getFalse());
   4018       case ICmpInst::ICMP_ULE:
   4019         // (float)int <= 4.4   --> int <= 4
   4020         // (float)int <= -4.4  --> false
   4021         if (RHS.isNegative())
   4022           return ReplaceInstUsesWith(I, Builder->getFalse());
   4023         break;
   4024       case ICmpInst::ICMP_SLE:
   4025         // (float)int <= 4.4   --> int <= 4
   4026         // (float)int <= -4.4  --> int < -4
   4027         if (RHS.isNegative())
   4028           Pred = ICmpInst::ICMP_SLT;
   4029         break;
   4030       case ICmpInst::ICMP_ULT:
   4031         // (float)int < -4.4   --> false
   4032         // (float)int < 4.4    --> int <= 4
   4033         if (RHS.isNegative())
   4034           return ReplaceInstUsesWith(I, Builder->getFalse());
   4035         Pred = ICmpInst::ICMP_ULE;
   4036         break;
   4037       case ICmpInst::ICMP_SLT:
   4038         // (float)int < -4.4   --> int < -4
   4039         // (float)int < 4.4    --> int <= 4
   4040         if (!RHS.isNegative())
   4041           Pred = ICmpInst::ICMP_SLE;
   4042         break;
   4043       case ICmpInst::ICMP_UGT:
   4044         // (float)int > 4.4    --> int > 4
   4045         // (float)int > -4.4   --> true
   4046         if (RHS.isNegative())
   4047           return ReplaceInstUsesWith(I, Builder->getTrue());
   4048         break;
   4049       case ICmpInst::ICMP_SGT:
   4050         // (float)int > 4.4    --> int > 4
   4051         // (float)int > -4.4   --> int >= -4
   4052         if (RHS.isNegative())
   4053           Pred = ICmpInst::ICMP_SGE;
   4054         break;
   4055       case ICmpInst::ICMP_UGE:
   4056         // (float)int >= -4.4   --> true
   4057         // (float)int >= 4.4    --> int > 4
   4058         if (RHS.isNegative())
   4059           return ReplaceInstUsesWith(I, Builder->getTrue());
   4060         Pred = ICmpInst::ICMP_UGT;
   4061         break;
   4062       case ICmpInst::ICMP_SGE:
   4063         // (float)int >= -4.4   --> int >= -4
   4064         // (float)int >= 4.4    --> int > 4
   4065         if (!RHS.isNegative())
   4066           Pred = ICmpInst::ICMP_SGT;
   4067         break;
   4068       }
   4069     }
   4070   }
   4071 
   4072   // Lower this FP comparison into an appropriate integer version of the
   4073   // comparison.
   4074   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
   4075 }
   4076 
   4077 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
   4078   bool Changed = false;
   4079 
   4080   /// Orders the operands of the compare so that they are listed from most
   4081   /// complex to least complex.  This puts constants before unary operators,
   4082   /// before binary operators.
   4083   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
   4084     I.swapOperands();
   4085     Changed = true;
   4086   }
   4087 
   4088   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   4089 
   4090   if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1,
   4091                                   I.getFastMathFlags(), DL, TLI, DT, AC, &I))
   4092     return ReplaceInstUsesWith(I, V);
   4093 
   4094   // Simplify 'fcmp pred X, X'
   4095   if (Op0 == Op1) {
   4096     switch (I.getPredicate()) {
   4097     default: llvm_unreachable("Unknown predicate!");
   4098     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
   4099     case FCmpInst::FCMP_ULT:    // True if unordered or less than
   4100     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
   4101     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
   4102       // Canonicalize these to be 'fcmp uno %X, 0.0'.
   4103       I.setPredicate(FCmpInst::FCMP_UNO);
   4104       I.setOperand(1, Constant::getNullValue(Op0->getType()));
   4105       return &I;
   4106 
   4107     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
   4108     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
   4109     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
   4110     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
   4111       // Canonicalize these to be 'fcmp ord %X, 0.0'.
   4112       I.setPredicate(FCmpInst::FCMP_ORD);
   4113       I.setOperand(1, Constant::getNullValue(Op0->getType()));
   4114       return &I;
   4115     }
   4116   }
   4117 
   4118   // Test if the FCmpInst instruction is used exclusively by a select as
   4119   // part of a minimum or maximum operation. If so, refrain from doing
   4120   // any other folding. This helps out other analyses which understand
   4121   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
   4122   // and CodeGen. And in this case, at least one of the comparison
   4123   // operands has at least one user besides the compare (the select),
   4124   // which would often largely negate the benefit of folding anyway.
   4125   if (I.hasOneUse())
   4126     if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
   4127       if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
   4128           (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
   4129         return nullptr;
   4130 
   4131   // Handle fcmp with constant RHS
   4132   if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
   4133     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
   4134       switch (LHSI->getOpcode()) {
   4135       case Instruction::FPExt: {
   4136         // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
   4137         FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
   4138         ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
   4139         if (!RHSF)
   4140           break;
   4141 
   4142         const fltSemantics *Sem;
   4143         // FIXME: This shouldn't be here.
   4144         if (LHSExt->getSrcTy()->isHalfTy())
   4145           Sem = &APFloat::IEEEhalf;
   4146         else if (LHSExt->getSrcTy()->isFloatTy())
   4147           Sem = &APFloat::IEEEsingle;
   4148         else if (LHSExt->getSrcTy()->isDoubleTy())
   4149           Sem = &APFloat::IEEEdouble;
   4150         else if (LHSExt->getSrcTy()->isFP128Ty())
   4151           Sem = &APFloat::IEEEquad;
   4152         else if (LHSExt->getSrcTy()->isX86_FP80Ty())
   4153           Sem = &APFloat::x87DoubleExtended;
   4154         else if (LHSExt->getSrcTy()->isPPC_FP128Ty())
   4155           Sem = &APFloat::PPCDoubleDouble;
   4156         else
   4157           break;
   4158 
   4159         bool Lossy;
   4160         APFloat F = RHSF->getValueAPF();
   4161         F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
   4162 
   4163         // Avoid lossy conversions and denormals. Zero is a special case
   4164         // that's OK to convert.
   4165         APFloat Fabs = F;
   4166         Fabs.clearSign();
   4167         if (!Lossy &&
   4168             ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
   4169                  APFloat::cmpLessThan) || Fabs.isZero()))
   4170 
   4171           return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
   4172                               ConstantFP::get(RHSC->getContext(), F));
   4173         break;
   4174       }
   4175       case Instruction::PHI:
   4176         // Only fold fcmp into the PHI if the phi and fcmp are in the same
   4177         // block.  If in the same block, we're encouraging jump threading.  If
   4178         // not, we are just pessimizing the code by making an i1 phi.
   4179         if (LHSI->getParent() == I.getParent())
   4180           if (Instruction *NV = FoldOpIntoPhi(I))
   4181             return NV;
   4182         break;
   4183       case Instruction::SIToFP:
   4184       case Instruction::UIToFP:
   4185         if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
   4186           return NV;
   4187         break;
   4188       case Instruction::FSub: {
   4189         // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
   4190         Value *Op;
   4191         if (match(LHSI, m_FNeg(m_Value(Op))))
   4192           return new FCmpInst(I.getSwappedPredicate(), Op,
   4193                               ConstantExpr::getFNeg(RHSC));
   4194         break;
   4195       }
   4196       case Instruction::Load:
   4197         if (GetElementPtrInst *GEP =
   4198             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
   4199           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
   4200             if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
   4201                 !cast<LoadInst>(LHSI)->isVolatile())
   4202               if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
   4203                 return Res;
   4204         }
   4205         break;
   4206       case Instruction::Call: {
   4207         if (!RHSC->isNullValue())
   4208           break;
   4209 
   4210         CallInst *CI = cast<CallInst>(LHSI);
   4211         const Function *F = CI->getCalledFunction();
   4212         if (!F)
   4213           break;
   4214 
   4215         // Various optimization for fabs compared with zero.
   4216         LibFunc::Func Func;
   4217         if (F->getIntrinsicID() == Intrinsic::fabs ||
   4218             (TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
   4219              (Func == LibFunc::fabs || Func == LibFunc::fabsf ||
   4220               Func == LibFunc::fabsl))) {
   4221           switch (I.getPredicate()) {
   4222           default:
   4223             break;
   4224             // fabs(x) < 0 --> false
   4225           case FCmpInst::FCMP_OLT:
   4226             return ReplaceInstUsesWith(I, Builder->getFalse());
   4227             // fabs(x) > 0 --> x != 0
   4228           case FCmpInst::FCMP_OGT:
   4229             return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0), RHSC);
   4230             // fabs(x) <= 0 --> x == 0
   4231           case FCmpInst::FCMP_OLE:
   4232             return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0), RHSC);
   4233             // fabs(x) >= 0 --> !isnan(x)
   4234           case FCmpInst::FCMP_OGE:
   4235             return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0), RHSC);
   4236             // fabs(x) == 0 --> x == 0
   4237             // fabs(x) != 0 --> x != 0
   4238           case FCmpInst::FCMP_OEQ:
   4239           case FCmpInst::FCMP_UEQ:
   4240           case FCmpInst::FCMP_ONE:
   4241           case FCmpInst::FCMP_UNE:
   4242             return new FCmpInst(I.getPredicate(), CI->getArgOperand(0), RHSC);
   4243           }
   4244         }
   4245       }
   4246       }
   4247   }
   4248 
   4249   // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
   4250   Value *X, *Y;
   4251   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
   4252     return new FCmpInst(I.getSwappedPredicate(), X, Y);
   4253 
   4254   // fcmp (fpext x), (fpext y) -> fcmp x, y
   4255   if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
   4256     if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
   4257       if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
   4258         return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
   4259                             RHSExt->getOperand(0));
   4260 
   4261   return Changed ? &I : nullptr;
   4262 }
   4263