Home | History | Annotate | Download | only in libGLESv2
      1 // Copyright 2016 The SwiftShader Authors. All Rights Reserved.
      2 //
      3 // Licensed under the Apache License, Version 2.0 (the "License");
      4 // you may not use this file except in compliance with the License.
      5 // You may obtain a copy of the License at
      6 //
      7 //    http://www.apache.org/licenses/LICENSE-2.0
      8 //
      9 // Unless required by applicable law or agreed to in writing, software
     10 // distributed under the License is distributed on an "AS IS" BASIS,
     11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     12 // See the License for the specific language governing permissions and
     13 // limitations under the License.
     14 
     15 // Program.cpp: Implements the Program class. Implements GL program objects
     16 // and related functionality. [OpenGL ES 2.0.24] section 2.10.3 page 28.
     17 
     18 #include "Program.h"
     19 
     20 #include "main.h"
     21 #include "Buffer.h"
     22 #include "Shader.h"
     23 #include "TransformFeedback.h"
     24 #include "utilities.h"
     25 #include "common/debug.h"
     26 #include "Shader/PixelShader.hpp"
     27 #include "Shader/VertexShader.hpp"
     28 
     29 #include <algorithm>
     30 #include <string>
     31 #include <stdlib.h>
     32 
     33 namespace es2
     34 {
     35 	unsigned int Program::currentSerial = 1;
     36 
     37 	std::string str(int i)
     38 	{
     39 		char buffer[20];
     40 		sprintf(buffer, "%d", i);
     41 		return buffer;
     42 	}
     43 
     44 	Uniform::BlockInfo::BlockInfo(const glsl::Uniform& uniform, int blockIndex)
     45 	{
     46 		if(blockIndex >= 0)
     47 		{
     48 			index = blockIndex;
     49 			offset = uniform.blockInfo.offset;
     50 			arrayStride = uniform.blockInfo.arrayStride;
     51 			matrixStride = uniform.blockInfo.matrixStride;
     52 			isRowMajorMatrix = uniform.blockInfo.isRowMajorMatrix;
     53 		}
     54 		else
     55 		{
     56 			index = -1;
     57 			offset = -1;
     58 			arrayStride = -1;
     59 			matrixStride = -1;
     60 			isRowMajorMatrix = false;
     61 		}
     62 	}
     63 
     64 	Uniform::Uniform(const glsl::Uniform &uniform, const BlockInfo &blockInfo)
     65 	 : type(uniform.type), precision(uniform.precision), name(uniform.name),
     66 	   arraySize(uniform.arraySize), blockInfo(blockInfo), fields(uniform.fields)
     67 	{
     68 		if((blockInfo.index == -1) && uniform.fields.empty())
     69 		{
     70 			size_t bytes = UniformTypeSize(type) * size();
     71 			data = new unsigned char[bytes];
     72 			memset(data, 0, bytes);
     73 		}
     74 		else
     75 		{
     76 			data = nullptr;
     77 		}
     78 		dirty = true;
     79 
     80 		psRegisterIndex = -1;
     81 		vsRegisterIndex = -1;
     82 	}
     83 
     84 	Uniform::~Uniform()
     85 	{
     86 		delete[] data;
     87 	}
     88 
     89 	bool Uniform::isArray() const
     90 	{
     91 		return arraySize >= 1;
     92 	}
     93 
     94 	int Uniform::size() const
     95 	{
     96 		return arraySize > 0 ? arraySize : 1;
     97 	}
     98 
     99 	int Uniform::registerCount() const
    100 	{
    101 		return size() * VariableRegisterCount(type);
    102 	}
    103 
    104 	UniformBlock::UniformBlock(const std::string &name, unsigned int elementIndex, unsigned int dataSize, std::vector<unsigned int> memberUniformIndexes) :
    105 		name(name), elementIndex(elementIndex), dataSize(dataSize), memberUniformIndexes(memberUniformIndexes), psRegisterIndex(GL_INVALID_INDEX), vsRegisterIndex(GL_INVALID_INDEX)
    106 	{
    107 	}
    108 
    109 	void UniformBlock::setRegisterIndex(GLenum shader, unsigned int registerIndex)
    110 	{
    111 		switch(shader)
    112 		{
    113 		case GL_VERTEX_SHADER:
    114 			vsRegisterIndex = registerIndex;
    115 			break;
    116 		case GL_FRAGMENT_SHADER:
    117 			psRegisterIndex = registerIndex;
    118 			break;
    119 		default:
    120 			UNREACHABLE(shader);
    121 		}
    122 	}
    123 
    124 	bool UniformBlock::isArrayElement() const
    125 	{
    126 		return elementIndex != GL_INVALID_INDEX;
    127 	}
    128 
    129 	bool UniformBlock::isReferencedByVertexShader() const
    130 	{
    131 		return vsRegisterIndex != GL_INVALID_INDEX;
    132 	}
    133 
    134 	bool UniformBlock::isReferencedByFragmentShader() const
    135 	{
    136 		return psRegisterIndex != GL_INVALID_INDEX;
    137 	}
    138 
    139 	UniformLocation::UniformLocation(const std::string &name, unsigned int element, unsigned int index) : name(name), element(element), index(index)
    140 	{
    141 	}
    142 
    143 	LinkedVarying::LinkedVarying()
    144 	{
    145 	}
    146 
    147 	LinkedVarying::LinkedVarying(const std::string &name, GLenum type, GLsizei size, int reg, int col)
    148 	 : name(name), type(type), size(size), reg(reg), col(col)
    149 	{
    150 	}
    151 
    152 	Program::Program(ResourceManager *manager, GLuint handle) : serial(issueSerial()), resourceManager(manager), handle(handle)
    153 	{
    154 		fragmentShader = 0;
    155 		vertexShader = 0;
    156 		pixelBinary = 0;
    157 		vertexBinary = 0;
    158 
    159 		transformFeedbackBufferMode = GL_INTERLEAVED_ATTRIBS;
    160 		totalLinkedVaryingsComponents = 0;
    161 
    162 		infoLog = 0;
    163 		validated = false;
    164 
    165 		resetUniformBlockBindings();
    166 		unlink();
    167 
    168 		orphaned = false;
    169 		retrievableBinary = false;
    170 		referenceCount = 0;
    171 	}
    172 
    173 	Program::~Program()
    174 	{
    175 		unlink();
    176 
    177 		if(vertexShader)
    178 		{
    179 			vertexShader->release();
    180 		}
    181 
    182 		if(fragmentShader)
    183 		{
    184 			fragmentShader->release();
    185 		}
    186 	}
    187 
    188 	bool Program::attachShader(Shader *shader)
    189 	{
    190 		if(shader->getType() == GL_VERTEX_SHADER)
    191 		{
    192 			if(vertexShader)
    193 			{
    194 				return false;
    195 			}
    196 
    197 			vertexShader = (VertexShader*)shader;
    198 			vertexShader->addRef();
    199 		}
    200 		else if(shader->getType() == GL_FRAGMENT_SHADER)
    201 		{
    202 			if(fragmentShader)
    203 			{
    204 				return false;
    205 			}
    206 
    207 			fragmentShader = (FragmentShader*)shader;
    208 			fragmentShader->addRef();
    209 		}
    210 		else UNREACHABLE(shader->getType());
    211 
    212 		return true;
    213 	}
    214 
    215 	bool Program::detachShader(Shader *shader)
    216 	{
    217 		if(shader->getType() == GL_VERTEX_SHADER)
    218 		{
    219 			if(vertexShader != shader)
    220 			{
    221 				return false;
    222 			}
    223 
    224 			vertexShader->release();
    225 			vertexShader = 0;
    226 		}
    227 		else if(shader->getType() == GL_FRAGMENT_SHADER)
    228 		{
    229 			if(fragmentShader != shader)
    230 			{
    231 				return false;
    232 			}
    233 
    234 			fragmentShader->release();
    235 			fragmentShader = 0;
    236 		}
    237 		else UNREACHABLE(shader->getType());
    238 
    239 		return true;
    240 	}
    241 
    242 	int Program::getAttachedShadersCount() const
    243 	{
    244 		return (vertexShader ? 1 : 0) + (fragmentShader ? 1 : 0);
    245 	}
    246 
    247 	sw::PixelShader *Program::getPixelShader()
    248 	{
    249 		return pixelBinary;
    250 	}
    251 
    252 	sw::VertexShader *Program::getVertexShader()
    253 	{
    254 		return vertexBinary;
    255 	}
    256 
    257 	GLint Program::getFragDataLocation(const GLchar *name)
    258 	{
    259 		if(name && linked)
    260 		{
    261 			std::string baseName(name);
    262 			unsigned int subscript = GL_INVALID_INDEX;
    263 			baseName = ParseUniformName(baseName, &subscript);
    264 			for(auto const &varying : fragmentShader->varyings)
    265 			{
    266 				if(varying.qualifier == EvqFragmentOut)
    267 				{
    268 					if(varying.name == baseName)
    269 					{
    270 						ASSERT(varying.registerIndex >= 0);
    271 
    272 						if(subscript == GL_INVALID_INDEX)   // No subscript
    273 						{
    274 							return varying.registerIndex;
    275 						}
    276 
    277 						int rowCount = VariableRowCount(varying.type);
    278 						int colCount = VariableColumnCount(varying.type);
    279 
    280 						return varying.registerIndex + (rowCount > 1 ? colCount * subscript : subscript);
    281 					}
    282 				}
    283 			}
    284 		}
    285 
    286 		return -1;
    287 	}
    288 
    289 	void Program::bindAttributeLocation(GLuint index, const char *name)
    290 	{
    291 		attributeBinding[name] = index;
    292 	}
    293 
    294 	GLint Program::getAttributeLocation(const char *name)
    295 	{
    296 		if(name)
    297 		{
    298 			std::string strName(name);
    299 			for(auto const &it : linkedAttribute)
    300 			{
    301 				if(it.name == strName)
    302 				{
    303 					return getAttributeBinding(it);
    304 				}
    305 			}
    306 		}
    307 
    308 		return -1;
    309 	}
    310 
    311 	int Program::getAttributeStream(int attributeIndex)
    312 	{
    313 		ASSERT(attributeIndex >= 0 && attributeIndex < MAX_VERTEX_ATTRIBS);
    314 
    315 		return attributeStream[attributeIndex];
    316 	}
    317 
    318 	// Returns the index of the texture image unit (0-19) corresponding to a sampler index (0-15 for the pixel shader and 0-3 for the vertex shader)
    319 	GLint Program::getSamplerMapping(sw::SamplerType type, unsigned int samplerIndex)
    320 	{
    321 		GLint logicalTextureUnit = -1;
    322 
    323 		switch(type)
    324 		{
    325 		case sw::SAMPLER_PIXEL:
    326 			ASSERT(samplerIndex < sizeof(samplersPS) / sizeof(samplersPS[0]));
    327 
    328 			if(samplersPS[samplerIndex].active)
    329 			{
    330 				logicalTextureUnit = samplersPS[samplerIndex].logicalTextureUnit;
    331 			}
    332 			break;
    333 		case sw::SAMPLER_VERTEX:
    334 			ASSERT(samplerIndex < sizeof(samplersVS) / sizeof(samplersVS[0]));
    335 
    336 			if(samplersVS[samplerIndex].active)
    337 			{
    338 				logicalTextureUnit = samplersVS[samplerIndex].logicalTextureUnit;
    339 			}
    340 			break;
    341 		default: UNREACHABLE(type);
    342 		}
    343 
    344 		if(logicalTextureUnit < MAX_COMBINED_TEXTURE_IMAGE_UNITS)
    345 		{
    346 			return logicalTextureUnit;
    347 		}
    348 
    349 		return -1;
    350 	}
    351 
    352 	// Returns the texture type for a given sampler type and index (0-15 for the pixel shader and 0-3 for the vertex shader)
    353 	TextureType Program::getSamplerTextureType(sw::SamplerType type, unsigned int samplerIndex)
    354 	{
    355 		switch(type)
    356 		{
    357 		case sw::SAMPLER_PIXEL:
    358 			ASSERT(samplerIndex < sizeof(samplersPS)/sizeof(samplersPS[0]));
    359 			ASSERT(samplersPS[samplerIndex].active);
    360 			return samplersPS[samplerIndex].textureType;
    361 		case sw::SAMPLER_VERTEX:
    362 			ASSERT(samplerIndex < sizeof(samplersVS)/sizeof(samplersVS[0]));
    363 			ASSERT(samplersVS[samplerIndex].active);
    364 			return samplersVS[samplerIndex].textureType;
    365 		default: UNREACHABLE(type);
    366 		}
    367 
    368 		return TEXTURE_2D;
    369 	}
    370 
    371 	bool Program::isUniformDefined(const std::string &name) const
    372 	{
    373 		unsigned int subscript = GL_INVALID_INDEX;
    374 		std::string baseName = es2::ParseUniformName(name, &subscript);
    375 
    376 		size_t numUniforms = uniformIndex.size();
    377 		for(size_t location = 0; location < numUniforms; location++)
    378 		{
    379 			const unsigned int index = uniformIndex[location].index;
    380 			if((uniformIndex[location].name == baseName) && ((index == GL_INVALID_INDEX) ||
    381 			   ((uniforms[index]->isArray() && uniformIndex[location].element == subscript) ||
    382 			    (subscript == GL_INVALID_INDEX))))
    383 			{
    384 				return true;
    385 			}
    386 		}
    387 
    388 		return false;
    389 	}
    390 
    391 	GLint Program::getUniformLocation(const std::string &name) const
    392 	{
    393 		unsigned int subscript = GL_INVALID_INDEX;
    394 		std::string baseName = es2::ParseUniformName(name, &subscript);
    395 
    396 		size_t numUniforms = uniformIndex.size();
    397 		for(size_t location = 0; location < numUniforms; location++)
    398 		{
    399 			const unsigned int index = uniformIndex[location].index;
    400 			if((index != GL_INVALID_INDEX) && (uniformIndex[location].name == baseName) &&
    401 			   ((uniforms[index]->isArray() && uniformIndex[location].element == subscript) ||
    402 			    (subscript == GL_INVALID_INDEX)))
    403 			{
    404 				return (GLint)location;
    405 			}
    406 		}
    407 
    408 		return -1;
    409 	}
    410 
    411 	GLuint Program::getUniformIndex(const std::string &name) const
    412 	{
    413 		unsigned int subscript = GL_INVALID_INDEX;
    414 		std::string baseName = es2::ParseUniformName(name, &subscript);
    415 
    416 		// The app is not allowed to specify array indices other than 0 for arrays of basic types
    417 		if(subscript != 0 && subscript != GL_INVALID_INDEX)
    418 		{
    419 			return GL_INVALID_INDEX;
    420 		}
    421 
    422 		size_t numUniforms = uniforms.size();
    423 		for(GLuint index = 0; index < numUniforms; index++)
    424 		{
    425 			if(uniforms[index]->name == baseName)
    426 			{
    427 				if(uniforms[index]->isArray() || subscript == GL_INVALID_INDEX)
    428 				{
    429 					return index;
    430 				}
    431 			}
    432 		}
    433 
    434 		return GL_INVALID_INDEX;
    435 	}
    436 
    437 	void Program::getActiveUniformBlockiv(GLuint uniformBlockIndex, GLenum pname, GLint *params) const
    438 	{
    439 		ASSERT(uniformBlockIndex < getActiveUniformBlockCount());
    440 
    441 		const UniformBlock &uniformBlock = *uniformBlocks[uniformBlockIndex];
    442 
    443 		switch(pname)
    444 		{
    445 		case GL_UNIFORM_BLOCK_DATA_SIZE:
    446 			*params = static_cast<GLint>(uniformBlock.dataSize);
    447 			break;
    448 		case GL_UNIFORM_BLOCK_NAME_LENGTH:
    449 			*params = static_cast<GLint>(uniformBlock.name.size() + 1 + (uniformBlock.isArrayElement() ? 3 : 0));
    450 			break;
    451 		case GL_UNIFORM_BLOCK_ACTIVE_UNIFORMS:
    452 			*params = static_cast<GLint>(uniformBlock.memberUniformIndexes.size());
    453 			break;
    454 		case GL_UNIFORM_BLOCK_ACTIVE_UNIFORM_INDICES:
    455 			{
    456 				for(unsigned int blockMemberIndex = 0; blockMemberIndex < uniformBlock.memberUniformIndexes.size(); blockMemberIndex++)
    457 				{
    458 					params[blockMemberIndex] = static_cast<GLint>(uniformBlock.memberUniformIndexes[blockMemberIndex]);
    459 				}
    460 			}
    461 			break;
    462 		case GL_UNIFORM_BLOCK_REFERENCED_BY_VERTEX_SHADER:
    463 			*params = static_cast<GLint>(uniformBlock.isReferencedByVertexShader());
    464 			break;
    465 		case GL_UNIFORM_BLOCK_REFERENCED_BY_FRAGMENT_SHADER:
    466 			*params = static_cast<GLint>(uniformBlock.isReferencedByFragmentShader());
    467 			break;
    468 		default: UNREACHABLE(pname);
    469 		}
    470 	}
    471 
    472 	GLuint Program::getUniformBlockIndex(const std::string &name) const
    473 	{
    474 		unsigned int subscript = GL_INVALID_INDEX;
    475 		std::string baseName = es2::ParseUniformName(name, &subscript);
    476 
    477 		size_t numUniformBlocks = getActiveUniformBlockCount();
    478 		for(GLuint blockIndex = 0; blockIndex < numUniformBlocks; blockIndex++)
    479 		{
    480 			const UniformBlock &uniformBlock = *uniformBlocks[blockIndex];
    481 			if(uniformBlock.name == baseName)
    482 			{
    483 				const bool arrayElementZero = (subscript == GL_INVALID_INDEX && uniformBlock.elementIndex == 0);
    484 				if(subscript == uniformBlock.elementIndex || arrayElementZero)
    485 				{
    486 					return blockIndex;
    487 				}
    488 			}
    489 		}
    490 
    491 		return GL_INVALID_INDEX;
    492 	}
    493 
    494 	void Program::bindUniformBlock(GLuint uniformBlockIndex, GLuint uniformBlockBinding)
    495 	{
    496 		if(uniformBlockIndex >= getActiveUniformBlockCount())
    497 		{
    498 			return error(GL_INVALID_VALUE);
    499 		}
    500 
    501 		uniformBlockBindings[uniformBlockIndex] = uniformBlockBinding;
    502 	}
    503 
    504 	GLuint Program::getUniformBlockBinding(GLuint uniformBlockIndex) const
    505 	{
    506 		if(uniformBlockIndex >= getActiveUniformBlockCount())
    507 		{
    508 			return error(GL_INVALID_VALUE, GL_INVALID_INDEX);
    509 		}
    510 		return uniformBlockBindings[uniformBlockIndex];
    511 	}
    512 
    513 	void Program::resetUniformBlockBindings()
    514 	{
    515 		for(unsigned int blockId = 0; blockId < MAX_UNIFORM_BUFFER_BINDINGS; blockId++)
    516 		{
    517 			uniformBlockBindings[blockId] = 0;
    518 		}
    519 	}
    520 
    521 	bool Program::setUniformfv(GLint location, GLsizei count, const GLfloat *v, int numElements)
    522 	{
    523 		ASSERT(numElements >= 1 && numElements <= 4);
    524 
    525 		static GLenum floatType[] = { GL_FLOAT, GL_FLOAT_VEC2, GL_FLOAT_VEC3, GL_FLOAT_VEC4 };
    526 		static GLenum boolType[] = { GL_BOOL, GL_BOOL_VEC2, GL_BOOL_VEC3, GL_BOOL_VEC4 };
    527 
    528 		if(location < 0 || location >= (int)uniformIndex.size() || (uniformIndex[location].index == GL_INVALID_INDEX))
    529 		{
    530 			return false;
    531 		}
    532 
    533 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
    534 		targetUniform->dirty = true;
    535 
    536 		int size = targetUniform->size();
    537 
    538 		if(size == 1 && count > 1)
    539 		{
    540 			return false;   // Attempting to write an array to a non-array uniform is an INVALID_OPERATION
    541 		}
    542 
    543 		count = std::min(size - (int)uniformIndex[location].element, count);
    544 
    545 		int index = numElements - 1;
    546 		if(targetUniform->type == floatType[index])
    547 		{
    548 			memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLfloat)* numElements,
    549 				   v, numElements * sizeof(GLfloat) * count);
    550 		}
    551 		else if(targetUniform->type == boolType[index])
    552 		{
    553 			GLboolean *boolParams = (GLboolean*)targetUniform->data + uniformIndex[location].element * numElements;
    554 
    555 			for(int i = 0; i < count * numElements; i++)
    556 			{
    557 				boolParams[i] = (v[i] == 0.0f) ? GL_FALSE : GL_TRUE;
    558 			}
    559 		}
    560 		else
    561 		{
    562 			return false;
    563 		}
    564 
    565 		return true;
    566 	}
    567 
    568 	bool Program::setUniform1fv(GLint location, GLsizei count, const GLfloat* v)
    569 	{
    570 		return setUniformfv(location, count, v, 1);
    571 	}
    572 
    573 	bool Program::setUniform2fv(GLint location, GLsizei count, const GLfloat *v)
    574 	{
    575 		return setUniformfv(location, count, v, 2);
    576 	}
    577 
    578 	bool Program::setUniform3fv(GLint location, GLsizei count, const GLfloat *v)
    579 	{
    580 		return setUniformfv(location, count, v, 3);
    581 	}
    582 
    583 	bool Program::setUniform4fv(GLint location, GLsizei count, const GLfloat *v)
    584 	{
    585 		return setUniformfv(location, count, v, 4);
    586 	}
    587 
    588 	bool Program::setUniformMatrixfv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value, GLenum type)
    589 	{
    590 		int numElements;
    591 		switch(type)
    592 		{
    593 		case GL_FLOAT_MAT2:
    594 			numElements = 4;
    595 			break;
    596 		case GL_FLOAT_MAT2x3:
    597 		case GL_FLOAT_MAT3x2:
    598 			numElements = 6;
    599 			break;
    600 		case GL_FLOAT_MAT2x4:
    601 		case GL_FLOAT_MAT4x2:
    602 			numElements = 8;
    603 			break;
    604 		case GL_FLOAT_MAT3:
    605 			numElements = 9;
    606 			break;
    607 		case GL_FLOAT_MAT3x4:
    608 		case GL_FLOAT_MAT4x3:
    609 			numElements = 12;
    610 			break;
    611 		case GL_FLOAT_MAT4:
    612 			numElements = 16;
    613 			break;
    614 		default:
    615 			return false;
    616 		}
    617 
    618 		if(location < 0 || location >= (int)uniformIndex.size() || (uniformIndex[location].index == GL_INVALID_INDEX))
    619 		{
    620 			return false;
    621 		}
    622 
    623 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
    624 		targetUniform->dirty = true;
    625 
    626 		if(targetUniform->type != type)
    627 		{
    628 			return false;
    629 		}
    630 
    631 		int size = targetUniform->size();
    632 
    633 		if(size == 1 && count > 1)
    634 		{
    635 			return false;   // Attempting to write an array to a non-array uniform is an INVALID_OPERATION
    636 		}
    637 
    638 		count = std::min(size - (int)uniformIndex[location].element, count);
    639 
    640 		GLfloat* dst = reinterpret_cast<GLfloat*>(targetUniform->data + uniformIndex[location].element * sizeof(GLfloat) * numElements);
    641 
    642 		if(transpose == GL_FALSE)
    643 		{
    644 			memcpy(dst, value, numElements * sizeof(GLfloat) * count);
    645 		}
    646 		else
    647 		{
    648 			const int rowSize = VariableRowCount(type);
    649 			const int colSize = VariableColumnCount(type);
    650 			for(int n = 0; n < count; ++n)
    651 			{
    652 				for(int i = 0; i < colSize; ++i)
    653 				{
    654 					for(int j = 0; j < rowSize; ++j)
    655 					{
    656 						dst[i * rowSize + j] = value[j * colSize + i];
    657 					}
    658 				}
    659 				dst += numElements;
    660 				value += numElements;
    661 			}
    662 		}
    663 
    664 
    665 		return true;
    666 	}
    667 
    668 	bool Program::setUniformMatrix2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
    669 	{
    670 		return setUniformMatrixfv(location, count, transpose, value, GL_FLOAT_MAT2);
    671 	}
    672 
    673 	bool Program::setUniformMatrix2x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
    674 	{
    675 		return setUniformMatrixfv(location, count, transpose, value, GL_FLOAT_MAT2x3);
    676 	}
    677 
    678 	bool Program::setUniformMatrix2x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
    679 	{
    680 		return setUniformMatrixfv(location, count, transpose, value, GL_FLOAT_MAT2x4);
    681 	}
    682 
    683 	bool Program::setUniformMatrix3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
    684 	{
    685 		return setUniformMatrixfv(location, count, transpose, value, GL_FLOAT_MAT3);
    686 	}
    687 
    688 	bool Program::setUniformMatrix3x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
    689 	{
    690 		return setUniformMatrixfv(location, count, transpose, value, GL_FLOAT_MAT3x2);
    691 	}
    692 
    693 	bool Program::setUniformMatrix3x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
    694 	{
    695 		return setUniformMatrixfv(location, count, transpose, value, GL_FLOAT_MAT3x4);
    696 	}
    697 
    698 	bool Program::setUniformMatrix4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
    699 	{
    700 		return setUniformMatrixfv(location, count, transpose, value, GL_FLOAT_MAT4);
    701 	}
    702 
    703 	bool Program::setUniformMatrix4x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
    704 	{
    705 		return setUniformMatrixfv(location, count, transpose, value, GL_FLOAT_MAT4x2);
    706 	}
    707 
    708 	bool Program::setUniformMatrix4x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
    709 	{
    710 		return setUniformMatrixfv(location, count, transpose, value, GL_FLOAT_MAT4x3);
    711 	}
    712 
    713 	bool Program::setUniform1iv(GLint location, GLsizei count, const GLint *v)
    714 	{
    715 		if(location < 0 || location >= (int)uniformIndex.size() || (uniformIndex[location].index == GL_INVALID_INDEX))
    716 		{
    717 			return false;
    718 		}
    719 
    720 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
    721 		targetUniform->dirty = true;
    722 
    723 		int size = targetUniform->size();
    724 
    725 		if(size == 1 && count > 1)
    726 		{
    727 			return false;   // Attempting to write an array to a non-array uniform is an INVALID_OPERATION
    728 		}
    729 
    730 		count = std::min(size - (int)uniformIndex[location].element, count);
    731 
    732 		if(targetUniform->type == GL_INT || IsSamplerUniform(targetUniform->type))
    733 		{
    734 			memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLint),
    735 				   v, sizeof(GLint) * count);
    736 		}
    737 		else if(targetUniform->type == GL_BOOL)
    738 		{
    739 			GLboolean *boolParams = new GLboolean[count];
    740 
    741 			for(int i = 0; i < count; i++)
    742 			{
    743 				if(v[i] == 0)
    744 				{
    745 					boolParams[i] = GL_FALSE;
    746 				}
    747 				else
    748 				{
    749 					boolParams[i] = GL_TRUE;
    750 				}
    751 			}
    752 
    753 			memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLboolean),
    754 				   boolParams, sizeof(GLboolean) * count);
    755 
    756 			delete[] boolParams;
    757 		}
    758 		else
    759 		{
    760 			return false;
    761 		}
    762 
    763 		return true;
    764 	}
    765 
    766 	bool Program::setUniformiv(GLint location, GLsizei count, const GLint *v, int numElements)
    767 	{
    768 		static GLenum intType[] = { GL_INT, GL_INT_VEC2, GL_INT_VEC3, GL_INT_VEC4 };
    769 		static GLenum boolType[] = { GL_BOOL, GL_BOOL_VEC2, GL_BOOL_VEC3, GL_BOOL_VEC4 };
    770 
    771 		if(location < 0 || location >= (int)uniformIndex.size() || (uniformIndex[location].index == GL_INVALID_INDEX))
    772 		{
    773 			return false;
    774 		}
    775 
    776 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
    777 		targetUniform->dirty = true;
    778 
    779 		int size = targetUniform->size();
    780 
    781 		if(size == 1 && count > 1)
    782 		{
    783 			return false;   // Attempting to write an array to a non-array uniform is an INVALID_OPERATION
    784 		}
    785 
    786 		count = std::min(size - (int)uniformIndex[location].element, count);
    787 
    788 		int index = numElements - 1;
    789 		if(targetUniform->type == intType[index])
    790 		{
    791 			memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLint)* numElements,
    792 				   v, numElements * sizeof(GLint)* count);
    793 		}
    794 		else if(targetUniform->type == boolType[index])
    795 		{
    796 			GLboolean *boolParams = new GLboolean[count * numElements];
    797 
    798 			for(int i = 0; i < count * numElements; i++)
    799 			{
    800 				boolParams[i] = (v[i] == 0) ? GL_FALSE : GL_TRUE;
    801 			}
    802 
    803 			memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLboolean)* numElements,
    804 				   boolParams, numElements * sizeof(GLboolean)* count);
    805 
    806 			delete[] boolParams;
    807 		}
    808 		else
    809 		{
    810 			return false;
    811 		}
    812 
    813 		return true;
    814 	}
    815 
    816 	bool Program::setUniform2iv(GLint location, GLsizei count, const GLint *v)
    817 	{
    818 		return setUniformiv(location, count, v, 2);
    819 	}
    820 
    821 	bool Program::setUniform3iv(GLint location, GLsizei count, const GLint *v)
    822 	{
    823 		return setUniformiv(location, count, v, 3);
    824 	}
    825 
    826 	bool Program::setUniform4iv(GLint location, GLsizei count, const GLint *v)
    827 	{
    828 		return setUniformiv(location, count, v, 4);
    829 	}
    830 
    831 	bool Program::setUniform1uiv(GLint location, GLsizei count, const GLuint *v)
    832 	{
    833 		if(location < 0 || location >= (int)uniformIndex.size() || (uniformIndex[location].index == GL_INVALID_INDEX))
    834 		{
    835 			return false;
    836 		}
    837 
    838 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
    839 		targetUniform->dirty = true;
    840 
    841 		int size = targetUniform->size();
    842 
    843 		if(size == 1 && count > 1)
    844 		{
    845 			return false;   // Attempting to write an array to a non-array uniform is an INVALID_OPERATION
    846 		}
    847 
    848 		count = std::min(size - (int)uniformIndex[location].element, count);
    849 
    850 		if(targetUniform->type == GL_UNSIGNED_INT)
    851 		{
    852 			memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLuint),
    853 				   v, sizeof(GLuint)* count);
    854 		}
    855 		else if(targetUniform->type == GL_BOOL)
    856 		{
    857 			GLboolean *boolParams = new GLboolean[count];
    858 
    859 			for(int i = 0; i < count; i++)
    860 			{
    861 				if(v[i] == 0)
    862 				{
    863 					boolParams[i] = GL_FALSE;
    864 				}
    865 				else
    866 				{
    867 					boolParams[i] = GL_TRUE;
    868 				}
    869 			}
    870 
    871 			memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLboolean),
    872 				   boolParams, sizeof(GLboolean)* count);
    873 
    874 			delete[] boolParams;
    875 		}
    876 		else
    877 		{
    878 			return false;
    879 		}
    880 
    881 		return true;
    882 	}
    883 
    884 	bool Program::setUniformuiv(GLint location, GLsizei count, const GLuint *v, int numElements)
    885 	{
    886 		static GLenum uintType[] = { GL_UNSIGNED_INT, GL_UNSIGNED_INT_VEC2, GL_UNSIGNED_INT_VEC3, GL_UNSIGNED_INT_VEC4 };
    887 		static GLenum boolType[] = { GL_BOOL, GL_BOOL_VEC2, GL_BOOL_VEC3, GL_BOOL_VEC4 };
    888 
    889 		if(location < 0 || location >= (int)uniformIndex.size() || (uniformIndex[location].index == GL_INVALID_INDEX))
    890 		{
    891 			return false;
    892 		}
    893 
    894 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
    895 		targetUniform->dirty = true;
    896 
    897 		int size = targetUniform->size();
    898 
    899 		if(size == 1 && count > 1)
    900 		{
    901 			return false;   // Attempting to write an array to a non-array uniform is an INVALID_OPERATION
    902 		}
    903 
    904 		count = std::min(size - (int)uniformIndex[location].element, count);
    905 
    906 		int index = numElements - 1;
    907 		if(targetUniform->type == uintType[index])
    908 		{
    909 			memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLuint)* numElements,
    910 				   v, numElements * sizeof(GLuint)* count);
    911 		}
    912 		else if(targetUniform->type == boolType[index])
    913 		{
    914 			GLboolean *boolParams = new GLboolean[count * numElements];
    915 
    916 			for(int i = 0; i < count * numElements; i++)
    917 			{
    918 				boolParams[i] = (v[i] == 0) ? GL_FALSE : GL_TRUE;
    919 			}
    920 
    921 			memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLboolean)* numElements,
    922 				   boolParams, numElements * sizeof(GLboolean)* count);
    923 
    924 			delete[] boolParams;
    925 		}
    926 		else
    927 		{
    928 			return false;
    929 		}
    930 
    931 		return true;
    932 	}
    933 
    934 	bool Program::setUniform2uiv(GLint location, GLsizei count, const GLuint *v)
    935 	{
    936 		return setUniformuiv(location, count, v, 2);
    937 	}
    938 
    939 	bool Program::setUniform3uiv(GLint location, GLsizei count, const GLuint *v)
    940 	{
    941 		return setUniformuiv(location, count, v, 3);
    942 	}
    943 
    944 	bool Program::setUniform4uiv(GLint location, GLsizei count, const GLuint *v)
    945 	{
    946 		return setUniformuiv(location, count, v, 4);
    947 	}
    948 
    949 	bool Program::getUniformfv(GLint location, GLsizei *bufSize, GLfloat *params)
    950 	{
    951 		if(location < 0 || location >= (int)uniformIndex.size() || (uniformIndex[location].index == GL_INVALID_INDEX))
    952 		{
    953 			return false;
    954 		}
    955 
    956 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
    957 		unsigned int count = UniformComponentCount(targetUniform->type);
    958 
    959 		// Sized query - ensure the provided buffer is large enough
    960 		if(bufSize && static_cast<unsigned int>(*bufSize) < count * sizeof(GLfloat))
    961 		{
    962 			return false;
    963 		}
    964 
    965 		switch(UniformComponentType(targetUniform->type))
    966 		{
    967 		case GL_BOOL:
    968 			{
    969 				GLboolean *boolParams = (GLboolean*)targetUniform->data + uniformIndex[location].element * count;
    970 
    971 				for(unsigned int i = 0; i < count; i++)
    972 				{
    973 					params[i] = (boolParams[i] == GL_FALSE) ? 0.0f : 1.0f;
    974 				}
    975 			}
    976 			break;
    977 		case GL_FLOAT:
    978 			memcpy(params, targetUniform->data + uniformIndex[location].element * count * sizeof(GLfloat),
    979 				   count * sizeof(GLfloat));
    980 			break;
    981 		case GL_INT:
    982 			{
    983 				GLint *intParams = (GLint*)targetUniform->data + uniformIndex[location].element * count;
    984 
    985 				for(unsigned int i = 0; i < count; i++)
    986 				{
    987 					params[i] = (float)intParams[i];
    988 				}
    989 			}
    990 			break;
    991 		case GL_UNSIGNED_INT:
    992 			{
    993 				GLuint *uintParams = (GLuint*)targetUniform->data + uniformIndex[location].element * count;
    994 
    995 				for(unsigned int i = 0; i < count; i++)
    996 				{
    997 					params[i] = (float)uintParams[i];
    998 				}
    999 			}
   1000 			break;
   1001 		default: UNREACHABLE(targetUniform->type);
   1002 		}
   1003 
   1004 		return true;
   1005 	}
   1006 
   1007 	bool Program::getUniformiv(GLint location, GLsizei *bufSize, GLint *params)
   1008 	{
   1009 		if(location < 0 || location >= (int)uniformIndex.size() || (uniformIndex[location].index == GL_INVALID_INDEX))
   1010 		{
   1011 			return false;
   1012 		}
   1013 
   1014 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
   1015 		unsigned int count = UniformComponentCount(targetUniform->type);
   1016 
   1017 		// Sized query - ensure the provided buffer is large enough
   1018 		if(bufSize && static_cast<unsigned int>(*bufSize) < count * sizeof(GLint))
   1019 		{
   1020 			return false;
   1021 		}
   1022 
   1023 		switch(UniformComponentType(targetUniform->type))
   1024 		{
   1025 		case GL_BOOL:
   1026 			{
   1027 				GLboolean *boolParams = targetUniform->data + uniformIndex[location].element * count;
   1028 
   1029 				for(unsigned int i = 0; i < count; i++)
   1030 				{
   1031 					params[i] = (GLint)boolParams[i];
   1032 				}
   1033 			}
   1034 			break;
   1035 		case GL_FLOAT:
   1036 			{
   1037 				GLfloat *floatParams = (GLfloat*)targetUniform->data + uniformIndex[location].element * count;
   1038 
   1039 				for(unsigned int i = 0; i < count; i++)
   1040 				{
   1041 					params[i] = (GLint)floatParams[i];
   1042 				}
   1043 			}
   1044 			break;
   1045 		case GL_INT:
   1046 		case GL_UNSIGNED_INT:
   1047 			memcpy(params, targetUniform->data + uniformIndex[location].element * count * sizeof(GLint),
   1048 				   count * sizeof(GLint));
   1049 			break;
   1050 		default: UNREACHABLE(targetUniform->type);
   1051 		}
   1052 
   1053 		return true;
   1054 	}
   1055 
   1056 	bool Program::getUniformuiv(GLint location, GLsizei *bufSize, GLuint *params)
   1057 	{
   1058 		if(location < 0 || location >= (int)uniformIndex.size() || (uniformIndex[location].index == GL_INVALID_INDEX))
   1059 		{
   1060 			return false;
   1061 		}
   1062 
   1063 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
   1064 		unsigned int count = UniformComponentCount(targetUniform->type);
   1065 
   1066 		// Sized query - ensure the provided buffer is large enough
   1067 		if(bufSize && static_cast<unsigned int>(*bufSize) < count * sizeof(GLuint))
   1068 		{
   1069 			return false;
   1070 		}
   1071 
   1072 		switch(UniformComponentType(targetUniform->type))
   1073 		{
   1074 		case GL_BOOL:
   1075 		{
   1076 			GLboolean *boolParams = targetUniform->data + uniformIndex[location].element * count;
   1077 
   1078 			for(unsigned int i = 0; i < count; i++)
   1079 			{
   1080 				params[i] = (GLuint)boolParams[i];
   1081 			}
   1082 		}
   1083 			break;
   1084 		case GL_FLOAT:
   1085 		{
   1086 			GLfloat *floatParams = (GLfloat*)targetUniform->data + uniformIndex[location].element * count;
   1087 
   1088 			for(unsigned int i = 0; i < count; i++)
   1089 			{
   1090 				params[i] = (GLuint)floatParams[i];
   1091 			}
   1092 		}
   1093 			break;
   1094 		case GL_INT:
   1095 		case GL_UNSIGNED_INT:
   1096 			memcpy(params, targetUniform->data + uniformIndex[location].element * count * sizeof(GLuint),
   1097 				   count * sizeof(GLuint));
   1098 			break;
   1099 		default: UNREACHABLE(targetUniform->type);
   1100 		}
   1101 
   1102 		return true;
   1103 	}
   1104 
   1105 	void Program::dirtyAllUniforms()
   1106 	{
   1107 		size_t numUniforms = uniforms.size();
   1108 		for(size_t index = 0; index < numUniforms; index++)
   1109 		{
   1110 			uniforms[index]->dirty = true;
   1111 		}
   1112 	}
   1113 
   1114 	// Applies all the uniforms set for this program object to the device
   1115 	void Program::applyUniforms(Device *device)
   1116 	{
   1117 		GLint numUniforms = static_cast<GLint>(uniformIndex.size());
   1118 		for(GLint location = 0; location < numUniforms; location++)
   1119 		{
   1120 			if((uniformIndex[location].element != 0) || (uniformIndex[location].index == GL_INVALID_INDEX))
   1121 			{
   1122 				continue;
   1123 			}
   1124 
   1125 			Uniform *targetUniform = uniforms[uniformIndex[location].index];
   1126 
   1127 			if(targetUniform->dirty && (targetUniform->blockInfo.index == -1))
   1128 			{
   1129 				GLsizei size = targetUniform->size();
   1130 				GLfloat *f = (GLfloat*)targetUniform->data;
   1131 				GLint *i = (GLint*)targetUniform->data;
   1132 				GLuint *ui = (GLuint*)targetUniform->data;
   1133 				GLboolean *b = (GLboolean*)targetUniform->data;
   1134 
   1135 				switch(targetUniform->type)
   1136 				{
   1137 				case GL_BOOL:       applyUniform1bv(device, location, size, b);       break;
   1138 				case GL_BOOL_VEC2:  applyUniform2bv(device, location, size, b);       break;
   1139 				case GL_BOOL_VEC3:  applyUniform3bv(device, location, size, b);       break;
   1140 				case GL_BOOL_VEC4:  applyUniform4bv(device, location, size, b);       break;
   1141 				case GL_FLOAT:      applyUniform1fv(device, location, size, f);       break;
   1142 				case GL_FLOAT_VEC2: applyUniform2fv(device, location, size, f);       break;
   1143 				case GL_FLOAT_VEC3: applyUniform3fv(device, location, size, f);       break;
   1144 				case GL_FLOAT_VEC4: applyUniform4fv(device, location, size, f);       break;
   1145 				case GL_FLOAT_MAT2:   applyUniformMatrix2fv(device, location, size, f);   break;
   1146 				case GL_FLOAT_MAT2x3: applyUniformMatrix2x3fv(device, location, size, f); break;
   1147 				case GL_FLOAT_MAT2x4: applyUniformMatrix2x4fv(device, location, size, f); break;
   1148 				case GL_FLOAT_MAT3x2: applyUniformMatrix3x2fv(device, location, size, f); break;
   1149 				case GL_FLOAT_MAT3:   applyUniformMatrix3fv(device, location, size, f);   break;
   1150 				case GL_FLOAT_MAT3x4: applyUniformMatrix3x4fv(device, location, size, f); break;
   1151 				case GL_FLOAT_MAT4x2: applyUniformMatrix4x2fv(device, location, size, f); break;
   1152 				case GL_FLOAT_MAT4x3: applyUniformMatrix4x3fv(device, location, size, f); break;
   1153 				case GL_FLOAT_MAT4:   applyUniformMatrix4fv(device, location, size, f);   break;
   1154 				case GL_SAMPLER_2D:
   1155 				case GL_SAMPLER_CUBE:
   1156 				case GL_SAMPLER_2D_RECT_ARB:
   1157 				case GL_SAMPLER_EXTERNAL_OES:
   1158 				case GL_SAMPLER_3D_OES:
   1159 				case GL_SAMPLER_2D_ARRAY:
   1160 				case GL_SAMPLER_2D_SHADOW:
   1161 				case GL_SAMPLER_CUBE_SHADOW:
   1162 				case GL_SAMPLER_2D_ARRAY_SHADOW:
   1163 				case GL_INT_SAMPLER_2D:
   1164 				case GL_UNSIGNED_INT_SAMPLER_2D:
   1165 				case GL_INT_SAMPLER_CUBE:
   1166 				case GL_UNSIGNED_INT_SAMPLER_CUBE:
   1167 				case GL_INT_SAMPLER_3D:
   1168 				case GL_UNSIGNED_INT_SAMPLER_3D:
   1169 				case GL_INT_SAMPLER_2D_ARRAY:
   1170 				case GL_UNSIGNED_INT_SAMPLER_2D_ARRAY:
   1171 				case GL_INT:        applyUniform1iv(device, location, size, i);       break;
   1172 				case GL_INT_VEC2:   applyUniform2iv(device, location, size, i);       break;
   1173 				case GL_INT_VEC3:   applyUniform3iv(device, location, size, i);       break;
   1174 				case GL_INT_VEC4:   applyUniform4iv(device, location, size, i);       break;
   1175 				case GL_UNSIGNED_INT:      applyUniform1uiv(device, location, size, ui); break;
   1176 				case GL_UNSIGNED_INT_VEC2: applyUniform2uiv(device, location, size, ui); break;
   1177 				case GL_UNSIGNED_INT_VEC3: applyUniform3uiv(device, location, size, ui); break;
   1178 				case GL_UNSIGNED_INT_VEC4: applyUniform4uiv(device, location, size, ui); break;
   1179 				default:
   1180 					UNREACHABLE(targetUniform->type);
   1181 				}
   1182 
   1183 				targetUniform->dirty = false;
   1184 			}
   1185 		}
   1186 	}
   1187 
   1188 	void Program::applyUniformBuffers(Device *device, BufferBinding* uniformBuffers)
   1189 	{
   1190 		GLint vertexUniformBuffers[MAX_UNIFORM_BUFFER_BINDINGS];
   1191 		GLint fragmentUniformBuffers[MAX_UNIFORM_BUFFER_BINDINGS];
   1192 
   1193 		for(unsigned int bufferBindingIndex = 0; bufferBindingIndex < MAX_UNIFORM_BUFFER_BINDINGS; bufferBindingIndex++)
   1194 		{
   1195 			vertexUniformBuffers[bufferBindingIndex] = -1;
   1196 		}
   1197 
   1198 		for(unsigned int bufferBindingIndex = 0; bufferBindingIndex < MAX_UNIFORM_BUFFER_BINDINGS; bufferBindingIndex++)
   1199 		{
   1200 			fragmentUniformBuffers[bufferBindingIndex] = -1;
   1201 		}
   1202 
   1203 		int vertexUniformBufferIndex = 0;
   1204 		int fragmentUniformBufferIndex = 0;
   1205 		for(unsigned int uniformBlockIndex = 0; uniformBlockIndex < uniformBlocks.size(); uniformBlockIndex++)
   1206 		{
   1207 			UniformBlock &uniformBlock = *uniformBlocks[uniformBlockIndex];
   1208 
   1209 			// Unnecessary to apply an unreferenced standard or shared UBO
   1210 			if(!uniformBlock.isReferencedByVertexShader() && !uniformBlock.isReferencedByFragmentShader())
   1211 			{
   1212 				continue;
   1213 			}
   1214 
   1215 			GLuint blockBinding = uniformBlockBindings[uniformBlockIndex];
   1216 
   1217 			if(uniformBlock.isReferencedByVertexShader())
   1218 			{
   1219 				vertexUniformBuffers[vertexUniformBufferIndex++] = blockBinding;
   1220 			}
   1221 
   1222 			if(uniformBlock.isReferencedByFragmentShader())
   1223 			{
   1224 				fragmentUniformBuffers[fragmentUniformBufferIndex++] = blockBinding;
   1225 			}
   1226 		}
   1227 
   1228 		for(unsigned int bufferBindingIndex = 0; bufferBindingIndex < MAX_UNIFORM_BUFFER_BINDINGS; bufferBindingIndex++)
   1229 		{
   1230 			int index = vertexUniformBuffers[bufferBindingIndex];
   1231 			Buffer* vsBuffer = (index != -1) ? (Buffer*)uniformBuffers[index].get() : nullptr;
   1232 			device->VertexProcessor::setUniformBuffer(bufferBindingIndex,
   1233 				vsBuffer ? vsBuffer->getResource() : nullptr, (index != -1) ? uniformBuffers[index].getOffset() : 0);
   1234 			index = fragmentUniformBuffers[bufferBindingIndex];
   1235 			Buffer* psBuffer = (index != -1) ? (Buffer*)uniformBuffers[index].get() : nullptr;
   1236 			device->PixelProcessor::setUniformBuffer(bufferBindingIndex,
   1237 				psBuffer ? psBuffer->getResource() : nullptr, (index != -1) ? uniformBuffers[index].getOffset() : 0);
   1238 		}
   1239 	}
   1240 
   1241 	void Program::applyTransformFeedback(Device *device, TransformFeedback* transformFeedback)
   1242 	{
   1243 		// Make sure the flags will fit in a 64 bit unsigned int variable
   1244 		ASSERT(sw::max<int>(MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS, sw::MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS) <= 64);
   1245 
   1246 		BufferBinding* transformFeedbackBuffers = (transformFeedback && transformFeedback->isActive() && !transformFeedback->isPaused()) ? transformFeedback->getBuffers() : nullptr;
   1247 
   1248 		uint64_t enableTransformFeedback = 0;
   1249 		if(!transformFeedbackBuffers)
   1250 		{
   1251 			for(unsigned int index = 0; index < sw::MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS; ++index)
   1252 			{
   1253 				device->VertexProcessor::setTransformFeedbackBuffer(index, nullptr, 0, 0, 0, 0, 0);
   1254 			}
   1255 			device->VertexProcessor::enableTransformFeedback(enableTransformFeedback);
   1256 			return;
   1257 		}
   1258 
   1259 		unsigned int maxVaryings = static_cast<unsigned int>(transformFeedbackLinkedVaryings.size());
   1260 		switch(transformFeedbackBufferMode)
   1261 		{
   1262 		case GL_SEPARATE_ATTRIBS:
   1263 		{
   1264 			maxVaryings = sw::min(maxVaryings, (unsigned int)MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS);
   1265 			// Attribs go to separate buffers
   1266 			for(unsigned int index = 0; index < maxVaryings; ++index)
   1267 			{
   1268 				int size = transformFeedbackLinkedVaryings[index].size;
   1269 				int rowCount = VariableRowCount(transformFeedbackLinkedVaryings[index].type);
   1270 				int colCount = VariableColumnCount(transformFeedbackLinkedVaryings[index].type);
   1271 				int nbRegs = rowCount > 1 ? colCount * size : size;
   1272 				int nbComponentsPerReg = rowCount > 1 ? rowCount : colCount;
   1273 				int componentStride = rowCount * colCount * size;
   1274 				int baseOffset = transformFeedback->vertexOffset() * componentStride * sizeof(float);
   1275 				device->VertexProcessor::setTransformFeedbackBuffer(index,
   1276 					transformFeedbackBuffers[index].get()->getResource(),
   1277 					transformFeedbackBuffers[index].getOffset() + baseOffset,
   1278 					transformFeedbackLinkedVaryings[index].reg * 4 + transformFeedbackLinkedVaryings[index].col,
   1279 					nbRegs, nbComponentsPerReg, componentStride);
   1280 				enableTransformFeedback |= 1ULL << index;
   1281 			}
   1282 		}
   1283 			break;
   1284 		case GL_INTERLEAVED_ATTRIBS:
   1285 		{
   1286 			// OpenGL ES 3.0.4 spec, section 2.15.2:
   1287 			// In INTERLEAVED_ATTRIBS mode, the values of one or more output variables
   1288 			// written by a vertex shader are written, interleaved, into the buffer object
   1289 			// bound to the first transform feedback binding point (index = 0).
   1290 			sw::Resource* resource = transformFeedbackBuffers[0].get()->getResource();
   1291 			int componentStride = static_cast<int>(totalLinkedVaryingsComponents);
   1292 			int baseOffset = transformFeedbackBuffers[0].getOffset() + (transformFeedback->vertexOffset() * componentStride * sizeof(float));
   1293 			maxVaryings = sw::min(maxVaryings, (unsigned int)sw::MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS);
   1294 			int totalComponents = 0;
   1295 			for(unsigned int index = 0; index < maxVaryings; ++index)
   1296 			{
   1297 				int size = transformFeedbackLinkedVaryings[index].size;
   1298 				int rowCount = VariableRowCount(transformFeedbackLinkedVaryings[index].type);
   1299 				int colCount = VariableColumnCount(transformFeedbackLinkedVaryings[index].type);
   1300 				int nbRegs = rowCount > 1 ? colCount * size : size;
   1301 				int nbComponentsPerReg = rowCount > 1 ? rowCount : colCount;
   1302 				device->VertexProcessor::setTransformFeedbackBuffer(index, resource,
   1303 					baseOffset + (totalComponents * sizeof(float)),
   1304 					transformFeedbackLinkedVaryings[index].reg * 4 + transformFeedbackLinkedVaryings[index].col,
   1305 					nbRegs, nbComponentsPerReg, componentStride);
   1306 				totalComponents += rowCount * colCount * size;
   1307 				enableTransformFeedback |= 1ULL << index;
   1308 			}
   1309 		}
   1310 			break;
   1311 		default:
   1312 			UNREACHABLE(transformFeedbackBufferMode);
   1313 			break;
   1314 		}
   1315 
   1316 		// Unset all other transform feedback buffers
   1317 		for(unsigned int index = maxVaryings; index < sw::MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS; ++index)
   1318 		{
   1319 			device->VertexProcessor::setTransformFeedbackBuffer(index, nullptr, 0, 0, 0, 0, 0);
   1320 		}
   1321 
   1322 		device->VertexProcessor::enableTransformFeedback(enableTransformFeedback);
   1323 	}
   1324 
   1325 	bool Program::linkVaryings()
   1326 	{
   1327 		glsl::VaryingList &psVaryings = fragmentShader->varyings;
   1328 		glsl::VaryingList &vsVaryings = vertexShader->varyings;
   1329 
   1330 		for(auto const &input : psVaryings)
   1331 		{
   1332 			bool matched = false;
   1333 
   1334 			for(auto const &output : vsVaryings)
   1335 			{
   1336 				if(output.name == input.name)
   1337 				{
   1338 					if(output.type != input.type || output.size() != input.size())
   1339 					{
   1340 						appendToInfoLog("Type of vertex varying %s does not match that of the fragment varying", output.name.c_str());
   1341 
   1342 						return false;
   1343 					}
   1344 
   1345 					if((output.qualifier == EvqFlatOut) ^ (input.qualifier == EvqFlatIn))
   1346 					{
   1347 						appendToInfoLog("Interpolation qualifiers for %s differ between vertex and fragment shaders", output.name.c_str());
   1348 
   1349 						return false;
   1350 					}
   1351 
   1352 					if(!areMatchingFields(input.fields, output.fields, input.name))
   1353 					{
   1354 						return false;
   1355 					}
   1356 
   1357 					matched = true;
   1358 					break;
   1359 				}
   1360 			}
   1361 
   1362 			if(!matched)
   1363 			{
   1364 				// If a fragment varying is declared but not statically used, it's not an error to not have a matching vertex varying.
   1365 				if(input.registerIndex >= 0)
   1366 				{
   1367 					appendToInfoLog("Fragment varying %s does not match any vertex varying", input.name.c_str());
   1368 
   1369 					return false;
   1370 				}
   1371 			}
   1372 		}
   1373 
   1374 		for(auto const &output : vsVaryings)
   1375 		{
   1376 			bool matched = false;
   1377 
   1378 			for(auto const &input : psVaryings)
   1379 			{
   1380 				if(output.name == input.name)
   1381 				{
   1382 					int in = input.registerIndex;
   1383 					int out = output.registerIndex;
   1384 					int components = VariableRegisterSize(output.type);
   1385 					int registers = VariableRegisterCount(output.type) * output.size();
   1386 
   1387 					if(in < 0)  // Fragment varying declared but not used
   1388 					{
   1389 						continue;
   1390 					}
   1391 
   1392 					if(in + registers >= MAX_VARYING_VECTORS)
   1393 					{
   1394 						appendToInfoLog("Too many varyings");
   1395 						return false;
   1396 					}
   1397 
   1398 					if(out >= 0)
   1399 					{
   1400 						if(out + registers >= MAX_VARYING_VECTORS)
   1401 						{
   1402 							appendToInfoLog("Too many varyings");
   1403 							return false;
   1404 						}
   1405 
   1406 						for(int i = 0; i < registers; i++)
   1407 						{
   1408 							vertexBinary->setOutput(out + i, components, sw::Shader::Semantic(sw::Shader::USAGE_COLOR, in + i, pixelBinary->getInput(in + i, 0).flat));
   1409 						}
   1410 					}
   1411 					else   // Vertex varying is declared but not written to
   1412 					{
   1413 						for(int i = 0; i < registers; i++)
   1414 						{
   1415 							pixelBinary->setInput(in + i, components, sw::Shader::Semantic());
   1416 						}
   1417 					}
   1418 
   1419 					matched = true;
   1420 					break;
   1421 				}
   1422 			}
   1423 
   1424 			if(!matched)
   1425 			{
   1426 				// For openGL ES 3.0, we need to still add the vertex shader outputs for unmatched varyings, for transform feedback.
   1427 				for(const std::string &indexedTfVaryingName : transformFeedbackVaryings)
   1428 				{
   1429 					std::string tfVaryingName = es2::ParseUniformName(indexedTfVaryingName, nullptr);
   1430 
   1431 					if(tfVaryingName == output.name)
   1432 					{
   1433 						int out = output.registerIndex;
   1434 						int components = VariableRegisterSize(output.type);
   1435 						int registers = VariableRegisterCount(output.type) * output.size();
   1436 
   1437 						if(out >= 0)
   1438 						{
   1439 							if(out + registers >= MAX_VARYING_VECTORS)
   1440 							{
   1441 								appendToInfoLog("Too many varyings");
   1442 								return false;
   1443 							}
   1444 
   1445 							for(int i = 0; i < registers; i++)
   1446 							{
   1447 								vertexBinary->setOutput(out + i, components, sw::Shader::Semantic(sw::Shader::USAGE_COLOR));
   1448 							}
   1449 						}
   1450 						break;
   1451 					}
   1452 				}
   1453 			}
   1454 		}
   1455 
   1456 		return true;
   1457 	}
   1458 
   1459 	bool Program::linkTransformFeedback()
   1460 	{
   1461 		size_t totalComponents = 0;
   1462 		totalLinkedVaryingsComponents = 0;
   1463 
   1464 		std::set<std::string> uniqueNames;
   1465 
   1466 		for(const std::string &indexedTfVaryingName : transformFeedbackVaryings)
   1467 		{
   1468 			unsigned int subscript = GL_INVALID_INDEX;
   1469 			std::string tfVaryingName = es2::ParseUniformName(indexedTfVaryingName, &subscript);
   1470 			bool hasSubscript = (subscript != GL_INVALID_INDEX);
   1471 
   1472 			if(tfVaryingName.find('[') != std::string::npos)
   1473 			{
   1474 				appendToInfoLog("Capture of array sub-elements is undefined and not supported.");
   1475 				return false;
   1476 			}
   1477 
   1478 			bool found = false;
   1479 			for(const glsl::Varying varying : vertexShader->varyings)
   1480 			{
   1481 				if(tfVaryingName == varying.name)
   1482 				{
   1483 					if(uniqueNames.count(indexedTfVaryingName) > 0)
   1484 					{
   1485 						appendToInfoLog("Two transform feedback varyings specify the same output variable (%s)", indexedTfVaryingName.c_str());
   1486 						return false;
   1487 					}
   1488 					uniqueNames.insert(indexedTfVaryingName);
   1489 
   1490 					if(hasSubscript && ((static_cast<int>(subscript)) >= varying.size()))
   1491 					{
   1492 						appendToInfoLog("Specified transform feedback varying index out of bounds (%s)", indexedTfVaryingName.c_str());
   1493 						return false;
   1494 					}
   1495 
   1496 					int size = hasSubscript ? 1 : varying.size();
   1497 
   1498 					int rowCount = VariableRowCount(varying.type);
   1499 					int colCount = VariableColumnCount(varying.type);
   1500 					int componentCount = rowCount * colCount * size;
   1501 					if(transformFeedbackBufferMode == GL_SEPARATE_ATTRIBS &&
   1502 					   componentCount > sw::MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS)
   1503 					{
   1504 						appendToInfoLog("Transform feedback varying's %s components (%d) exceed the maximum separate components (%d).",
   1505 						                varying.name.c_str(), componentCount, sw::MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS);
   1506 						return false;
   1507 					}
   1508 
   1509 					totalComponents += componentCount;
   1510 
   1511 					int reg = varying.registerIndex;
   1512 					if(hasSubscript)
   1513 					{
   1514 						reg += rowCount > 1 ? colCount * subscript : subscript;
   1515 					}
   1516 					int col = varying.column;
   1517 					if(tfVaryingName == "gl_PointSize")
   1518 					{
   1519 						// Point size is stored in the y element of the vector, not the x element
   1520 						col = 1; // FIXME: varying.col could already contain this information
   1521 					}
   1522 					transformFeedbackLinkedVaryings.push_back(LinkedVarying(varying.name, varying.type, size, reg, col));
   1523 
   1524 					found = true;
   1525 					break;
   1526 				}
   1527 			}
   1528 
   1529 			if(!found)
   1530 			{
   1531 				appendToInfoLog("Transform feedback varying %s does not exist in the vertex shader.", tfVaryingName.c_str());
   1532 				return false;
   1533 			}
   1534 		}
   1535 
   1536 		if(transformFeedbackBufferMode == GL_INTERLEAVED_ATTRIBS &&
   1537 		   totalComponents > sw::MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS)
   1538 		{
   1539 			appendToInfoLog("Transform feedback varying total components (%d) exceed the maximum separate components (%d).",
   1540 			                totalComponents, sw::MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS);
   1541 			return false;
   1542 		}
   1543 
   1544 		totalLinkedVaryingsComponents = totalComponents;
   1545 
   1546 		return true;
   1547 	}
   1548 
   1549 	// Links the code of the vertex and pixel shader by matching up their varyings,
   1550 	// compiling them into binaries, determining the attribute mappings, and collecting
   1551 	// a list of uniforms
   1552 	void Program::link()
   1553 	{
   1554 		unlink();
   1555 
   1556 		resetUniformBlockBindings();
   1557 
   1558 		if(!fragmentShader || !fragmentShader->isCompiled())
   1559 		{
   1560 			return;
   1561 		}
   1562 
   1563 		if(!vertexShader || !vertexShader->isCompiled())
   1564 		{
   1565 			return;
   1566 		}
   1567 
   1568 		vertexBinary = new sw::VertexShader(vertexShader->getVertexShader());
   1569 		pixelBinary = new sw::PixelShader(fragmentShader->getPixelShader());
   1570 
   1571 		if(!linkVaryings())
   1572 		{
   1573 			return;
   1574 		}
   1575 
   1576 		if(!linkAttributes())
   1577 		{
   1578 			return;
   1579 		}
   1580 
   1581 		// Link uniform blocks before uniforms to make it easy to assign block indices to fields
   1582 		if(!linkUniformBlocks(vertexShader, fragmentShader))
   1583 		{
   1584 			return;
   1585 		}
   1586 
   1587 		if(!linkUniforms(fragmentShader))
   1588 		{
   1589 			return;
   1590 		}
   1591 
   1592 		if(!linkUniforms(vertexShader))
   1593 		{
   1594 			return;
   1595 		}
   1596 
   1597 		if(!linkTransformFeedback())
   1598 		{
   1599 			return;
   1600 		}
   1601 
   1602 		linked = true;   // Success
   1603 	}
   1604 
   1605 	// Determines the mapping between GL attributes and vertex stream usage indices
   1606 	bool Program::linkAttributes()
   1607 	{
   1608 		unsigned int usedLocations = 0;
   1609 
   1610 		// Link attributes that have a binding location
   1611 		for(auto const &attribute : vertexShader->activeAttributes)
   1612 		{
   1613 			int location = (attributeBinding.find(attribute.name) != attributeBinding.end()) ? attributeBinding[attribute.name] : -1;
   1614 
   1615 			if(location != -1)   // Set by glBindAttribLocation
   1616 			{
   1617 				int rows = VariableRegisterCount(attribute.type);
   1618 
   1619 				if(rows + location > MAX_VERTEX_ATTRIBS)
   1620 				{
   1621 					appendToInfoLog("Active attribute (%s) at location %d is too big to fit", attribute.name.c_str(), location);
   1622 					return false;
   1623 				}
   1624 
   1625 				// In GLSL 3.00, attribute aliasing produces a link error
   1626 				// In GLSL 1.00, attribute aliasing is allowed
   1627 				if(vertexShader->getShaderVersion() >= 300)
   1628 				{
   1629 					for(auto const &it : linkedAttribute)
   1630 					{
   1631 						int itLocStart = getAttributeBinding(it);
   1632 						ASSERT(itLocStart >= 0);
   1633 						int itLocEnd = itLocStart + VariableRegisterCount(it.type);
   1634 						for(int i = 0; i < rows; i++)
   1635 						{
   1636 							int loc = location + i;
   1637 							if((loc >= itLocStart) && (loc < itLocEnd))
   1638 							{
   1639 								appendToInfoLog("Attribute '%s' aliases attribute '%s' at location %d", attribute.name.c_str(), it.name.c_str(), location);
   1640 								return false;
   1641 							}
   1642 						}
   1643 					}
   1644 				}
   1645 
   1646 				linkedAttributeLocation[attribute.name] = location;
   1647 				linkedAttribute.push_back(attribute);
   1648 				for(int i = 0; i < rows; i++)
   1649 				{
   1650 					usedLocations |= 1 << (location + i);
   1651 				}
   1652 			}
   1653 		}
   1654 
   1655 		// Link attributes that don't have a binding location
   1656 		for(auto const &attribute : vertexShader->activeAttributes)
   1657 		{
   1658 			int location = (attributeBinding.find(attribute.name) != attributeBinding.end()) ? attributeBinding[attribute.name] : -1;
   1659 
   1660 			if(location == -1)   // Not set by glBindAttribLocation
   1661 			{
   1662 				int rows = VariableRegisterCount(attribute.type);
   1663 				int availableIndex = AllocateFirstFreeBits(&usedLocations, rows, MAX_VERTEX_ATTRIBS);
   1664 
   1665 				if(availableIndex == -1 || availableIndex + rows > MAX_VERTEX_ATTRIBS)
   1666 				{
   1667 					appendToInfoLog("Too many active attributes (%s)", attribute.name.c_str());
   1668 					return false;   // Fail to link
   1669 				}
   1670 
   1671 				linkedAttributeLocation[attribute.name] = availableIndex;
   1672 				linkedAttribute.push_back(attribute);
   1673 			}
   1674 		}
   1675 
   1676 		for(auto const &it : linkedAttribute)
   1677 		{
   1678 			int location = getAttributeBinding(it);
   1679 			ASSERT(location >= 0);
   1680 			int index = vertexShader->getSemanticIndex(it.name);
   1681 			int rows = std::max(VariableRegisterCount(it.type), 1);
   1682 
   1683 			for(int r = 0; r < rows; r++)
   1684 			{
   1685 				attributeStream[r + location] = index++;
   1686 			}
   1687 		}
   1688 
   1689 		return true;
   1690 	}
   1691 
   1692 	int Program::getAttributeBinding(const glsl::Attribute &attribute)
   1693 	{
   1694 		if(attribute.location != -1)
   1695 		{
   1696 			return attribute.location;
   1697 		}
   1698 
   1699 		std::map<std::string, GLuint>::const_iterator it = linkedAttributeLocation.find(attribute.name);
   1700 		if(it != linkedAttributeLocation.end())
   1701 		{
   1702 			return it->second;
   1703 		}
   1704 
   1705 		return -1;
   1706 	}
   1707 
   1708 	bool Program::linkUniforms(const Shader *shader)
   1709 	{
   1710 		for(const auto &uniform : shader->activeUniforms)
   1711 		{
   1712 			unsigned int blockIndex = GL_INVALID_INDEX;
   1713 			if(uniform.blockId >= 0)
   1714 			{
   1715 				const glsl::ActiveUniformBlocks &activeUniformBlocks = shader->activeUniformBlocks;
   1716 				ASSERT(static_cast<size_t>(uniform.blockId) < activeUniformBlocks.size());
   1717 				blockIndex = getUniformBlockIndex(activeUniformBlocks[uniform.blockId].name);
   1718 				ASSERT(blockIndex != GL_INVALID_INDEX);
   1719 			}
   1720 			if(!defineUniform(shader->getType(), uniform, Uniform::BlockInfo(uniform, blockIndex)))
   1721 			{
   1722 				return false;
   1723 			}
   1724 		}
   1725 
   1726 		for(const auto &uniformStruct : shader->activeUniformStructs)
   1727 		{
   1728 			if(!validateUniformStruct(shader->getType(), uniformStruct))
   1729 			{
   1730 				return false;
   1731 			}
   1732 		}
   1733 
   1734 		return true;
   1735 	}
   1736 
   1737 	bool Program::defineUniform(GLenum shader, const glsl::Uniform &glslUniform, const Uniform::BlockInfo& blockInfo)
   1738 	{
   1739 		if(IsSamplerUniform(glslUniform.type))
   1740 	    {
   1741 			int index = glslUniform.registerIndex;
   1742 
   1743 			do
   1744 			{
   1745 				if(shader == GL_VERTEX_SHADER)
   1746 				{
   1747 					if(index < MAX_VERTEX_TEXTURE_IMAGE_UNITS)
   1748 					{
   1749 						samplersVS[index].active = true;
   1750 
   1751 						switch(glslUniform.type)
   1752 						{
   1753 						default:                      UNREACHABLE(glslUniform.type);
   1754 						case GL_INT_SAMPLER_2D:
   1755 						case GL_UNSIGNED_INT_SAMPLER_2D:
   1756 						case GL_SAMPLER_2D_SHADOW:
   1757 						case GL_SAMPLER_2D:           samplersVS[index].textureType = TEXTURE_2D;       break;
   1758 						case GL_INT_SAMPLER_CUBE:
   1759 						case GL_UNSIGNED_INT_SAMPLER_CUBE:
   1760 						case GL_SAMPLER_CUBE_SHADOW:
   1761 						case GL_SAMPLER_CUBE:         samplersVS[index].textureType = TEXTURE_CUBE;     break;
   1762 						case GL_INT_SAMPLER_3D:
   1763 						case GL_UNSIGNED_INT_SAMPLER_3D:
   1764 						case GL_SAMPLER_3D_OES:       samplersVS[index].textureType = TEXTURE_3D;       break;
   1765 						case GL_SAMPLER_2D_RECT_ARB:  samplersVS[index].textureType = TEXTURE_2D_RECT;  break;
   1766 						case GL_SAMPLER_EXTERNAL_OES: samplersVS[index].textureType = TEXTURE_EXTERNAL; break;
   1767 						case GL_INT_SAMPLER_2D_ARRAY:
   1768 						case GL_UNSIGNED_INT_SAMPLER_2D_ARRAY:
   1769 						case GL_SAMPLER_2D_ARRAY_SHADOW:
   1770 						case GL_SAMPLER_2D_ARRAY:     samplersVS[index].textureType = TEXTURE_2D_ARRAY; break;
   1771 						}
   1772 
   1773 						samplersVS[index].logicalTextureUnit = 0;
   1774 					}
   1775 					else
   1776 					{
   1777 					   appendToInfoLog("Vertex shader sampler count exceeds MAX_VERTEX_TEXTURE_IMAGE_UNITS (%d).", MAX_VERTEX_TEXTURE_IMAGE_UNITS);
   1778 					   return false;
   1779 					}
   1780 				}
   1781 				else if(shader == GL_FRAGMENT_SHADER)
   1782 				{
   1783 					if(index < MAX_TEXTURE_IMAGE_UNITS)
   1784 					{
   1785 						samplersPS[index].active = true;
   1786 
   1787 						switch(glslUniform.type)
   1788 						{
   1789 						default:                      UNREACHABLE(glslUniform.type);
   1790 						case GL_INT_SAMPLER_2D:
   1791 						case GL_UNSIGNED_INT_SAMPLER_2D:
   1792 						case GL_SAMPLER_2D_SHADOW:
   1793 						case GL_SAMPLER_2D:           samplersPS[index].textureType = TEXTURE_2D;       break;
   1794 						case GL_INT_SAMPLER_CUBE:
   1795 						case GL_UNSIGNED_INT_SAMPLER_CUBE:
   1796 						case GL_SAMPLER_CUBE_SHADOW:
   1797 						case GL_SAMPLER_CUBE:         samplersPS[index].textureType = TEXTURE_CUBE;     break;
   1798 						case GL_INT_SAMPLER_3D:
   1799 						case GL_UNSIGNED_INT_SAMPLER_3D:
   1800 						case GL_SAMPLER_3D_OES:       samplersPS[index].textureType = TEXTURE_3D;       break;
   1801 						case GL_SAMPLER_2D_RECT_ARB:  samplersPS[index].textureType = TEXTURE_2D_RECT;  break;
   1802 						case GL_SAMPLER_EXTERNAL_OES: samplersPS[index].textureType = TEXTURE_EXTERNAL; break;
   1803 						case GL_INT_SAMPLER_2D_ARRAY:
   1804 						case GL_UNSIGNED_INT_SAMPLER_2D_ARRAY:
   1805 						case GL_SAMPLER_2D_ARRAY_SHADOW:
   1806 						case GL_SAMPLER_2D_ARRAY:     samplersPS[index].textureType = TEXTURE_2D_ARRAY; break;
   1807 						}
   1808 
   1809 						samplersPS[index].logicalTextureUnit = 0;
   1810 					}
   1811 					else
   1812 					{
   1813 						appendToInfoLog("Pixel shader sampler count exceeds MAX_TEXTURE_IMAGE_UNITS (%d).", MAX_TEXTURE_IMAGE_UNITS);
   1814 						return false;
   1815 					}
   1816 				}
   1817 				else UNREACHABLE(shader);
   1818 
   1819 				index++;
   1820 			}
   1821 			while(index < glslUniform.registerIndex + static_cast<int>(glslUniform.arraySize));
   1822 	    }
   1823 
   1824 		Uniform *uniform = 0;
   1825 		GLint location = getUniformLocation(glslUniform.name);
   1826 
   1827 		if(location >= 0)   // Previously defined, types must match
   1828 		{
   1829 			uniform = uniforms[uniformIndex[location].index];
   1830 
   1831 			if(uniform->type != glslUniform.type)
   1832 			{
   1833 				appendToInfoLog("Types for uniform %s do not match between the vertex and fragment shader", uniform->name.c_str());
   1834 				return false;
   1835 			}
   1836 
   1837 			if(uniform->precision != glslUniform.precision)
   1838 			{
   1839 				appendToInfoLog("Precisions for uniform %s do not match between the vertex and fragment shader", uniform->name.c_str());
   1840 				return false;
   1841 			}
   1842 
   1843 			if(!areMatchingFields(uniform->fields, glslUniform.fields, uniform->name))
   1844 			{
   1845 				return false;
   1846 			}
   1847 		}
   1848 		else
   1849 		{
   1850 			uniform = new Uniform(glslUniform, blockInfo);
   1851 		}
   1852 
   1853 		if(!uniform)
   1854 		{
   1855 			return false;
   1856 		}
   1857 
   1858 		if(shader == GL_VERTEX_SHADER)
   1859 		{
   1860 			uniform->vsRegisterIndex = glslUniform.registerIndex;
   1861 		}
   1862 		else if(shader == GL_FRAGMENT_SHADER)
   1863 		{
   1864 			uniform->psRegisterIndex = glslUniform.registerIndex;
   1865 		}
   1866 		else UNREACHABLE(shader);
   1867 
   1868 		if(!isUniformDefined(glslUniform.name))
   1869 		{
   1870 			uniforms.push_back(uniform);
   1871 			unsigned int index = (blockInfo.index == -1) ? static_cast<unsigned int>(uniforms.size() - 1) : GL_INVALID_INDEX;
   1872 
   1873 			for(int i = 0; i < uniform->size(); i++)
   1874 			{
   1875 				uniformIndex.push_back(UniformLocation(glslUniform.name, i, index));
   1876 			}
   1877 		}
   1878 
   1879 		if(shader == GL_VERTEX_SHADER)
   1880 		{
   1881 			if(glslUniform.registerIndex + uniform->registerCount() > MAX_VERTEX_UNIFORM_VECTORS)
   1882 			{
   1883 				appendToInfoLog("Vertex shader active uniforms exceed GL_MAX_VERTEX_UNIFORM_VECTORS (%d)", MAX_VERTEX_UNIFORM_VECTORS);
   1884 				return false;
   1885 			}
   1886 		}
   1887 		else if(shader == GL_FRAGMENT_SHADER)
   1888 		{
   1889 			if(glslUniform.registerIndex + uniform->registerCount() > MAX_FRAGMENT_UNIFORM_VECTORS)
   1890 			{
   1891 				appendToInfoLog("Fragment shader active uniforms exceed GL_MAX_FRAGMENT_UNIFORM_VECTORS (%d)", MAX_FRAGMENT_UNIFORM_VECTORS);
   1892 				return false;
   1893 			}
   1894 		}
   1895 		else UNREACHABLE(shader);
   1896 
   1897 		return true;
   1898 	}
   1899 
   1900 	bool Program::validateUniformStruct(GLenum shader, const glsl::Uniform &newUniformStruct)
   1901 	{
   1902 		for(const auto &uniformStruct : uniformStructs)
   1903 		{
   1904 			if(uniformStruct.name == newUniformStruct.name)
   1905 			{
   1906 				return areMatchingFields(uniformStruct.fields, newUniformStruct.fields, newUniformStruct.name);
   1907 			}
   1908 		}
   1909 
   1910 		uniformStructs.push_back(Uniform(newUniformStruct, Uniform::BlockInfo(newUniformStruct, -1)));
   1911 
   1912 		return true;
   1913 	}
   1914 
   1915 	bool Program::areMatchingUniformBlocks(const glsl::UniformBlock &block1, const glsl::UniformBlock &block2, const Shader *shader1, const Shader *shader2)
   1916 	{
   1917 		// validate blocks for the same member types
   1918 		if(block1.fields.size() != block2.fields.size())
   1919 		{
   1920 			appendToInfoLog("Types for interface block '%s' differ between vertex and fragment shaders", block1.name.c_str());
   1921 			return false;
   1922 		}
   1923 		if(block1.arraySize != block2.arraySize)
   1924 		{
   1925 			appendToInfoLog("Array sizes differ for interface block '%s' between vertex and fragment shaders", block1.name.c_str());
   1926 			return false;
   1927 		}
   1928 		if(block1.layout != block2.layout || block1.isRowMajorLayout != block2.isRowMajorLayout)
   1929 		{
   1930 			appendToInfoLog("Layout qualifiers differ for interface block '%s' between vertex and fragment shaders", block1.name.c_str());
   1931 			return false;
   1932 		}
   1933 		const size_t numBlockMembers = block1.fields.size();
   1934 		for(size_t blockMemberIndex = 0; blockMemberIndex < numBlockMembers; blockMemberIndex++)
   1935 		{
   1936 			const glsl::Uniform& member1 = shader1->activeUniforms[block1.fields[blockMemberIndex]];
   1937 			const glsl::Uniform& member2 = shader2->activeUniforms[block2.fields[blockMemberIndex]];
   1938 			if(member1.name != member2.name)
   1939 			{
   1940 				appendToInfoLog("Name mismatch for field %d of interface block '%s': (in vertex: '%s', in fragment: '%s')",
   1941 				                blockMemberIndex, block1.name.c_str(), member1.name.c_str(), member2.name.c_str());
   1942 				return false;
   1943 			}
   1944 			if(member1.arraySize != member2.arraySize)
   1945 			{
   1946 				appendToInfoLog("Array sizes for %s differ between vertex and fragment shaders", member1.name.c_str());
   1947 				return false;
   1948 			}
   1949 			if(member1.precision != member2.precision)
   1950 			{
   1951 				appendToInfoLog("Precisions for %s differ between vertex and fragment shaders", member1.name.c_str());
   1952 				return false;
   1953 			}
   1954 			if(member1.type != member2.type)
   1955 			{
   1956 				appendToInfoLog("Types for %s differ between vertex and fragment shaders", member1.name.c_str());
   1957 				return false;
   1958 			}
   1959 			if(member1.blockInfo.isRowMajorMatrix != member2.blockInfo.isRowMajorMatrix)
   1960 			{
   1961 				appendToInfoLog("Matrix packings for %s differ between vertex and fragment shaders", member1.name.c_str());
   1962 				return false;
   1963 			}
   1964 		}
   1965 		return true;
   1966 	}
   1967 
   1968 	bool Program::areMatchingFields(const std::vector<glsl::ShaderVariable>& fields1, const std::vector<glsl::ShaderVariable>& fields2, const std::string& name)
   1969 	{
   1970 		if(fields1.size() != fields2.size())
   1971 		{
   1972 			appendToInfoLog("Structure lengths for %s differ between vertex and fragment shaders", name.c_str());
   1973 			return false;
   1974 		}
   1975 
   1976 		for(size_t i = 0; i < fields1.size(); ++i)
   1977 		{
   1978 			if(fields1[i].name != fields2[i].name)
   1979 			{
   1980 				appendToInfoLog("Name mismatch for field '%d' of %s: ('%s', '%s')",
   1981 				                i, name.c_str(), fields1[i].name.c_str(), fields2[i].name.c_str());
   1982 				return false;
   1983 			}
   1984 			if(fields1[i].type != fields2[i].type)
   1985 			{
   1986 				appendToInfoLog("Type for %s.%s differ between vertex and fragment shaders", name.c_str(), fields1[i].name.c_str());
   1987 				return false;
   1988 			}
   1989 			if(fields1[i].arraySize != fields2[i].arraySize)
   1990 			{
   1991 				appendToInfoLog("Array size for %s.%s differ between vertex and fragment shaders", name.c_str(), fields1[i].name.c_str());
   1992 				return false;
   1993 			}
   1994 			if(!areMatchingFields(fields1[i].fields, fields2[i].fields, fields1[i].name))
   1995 			{
   1996 				return false;
   1997 			}
   1998 		}
   1999 
   2000 		return true;
   2001 	}
   2002 
   2003 	bool Program::linkUniformBlocks(const Shader *vertexShader, const Shader *fragmentShader)
   2004 	{
   2005 		const glsl::ActiveUniformBlocks &vertexUniformBlocks = vertexShader->activeUniformBlocks;
   2006 		const glsl::ActiveUniformBlocks &fragmentUniformBlocks = fragmentShader->activeUniformBlocks;
   2007 		// Check that interface blocks defined in the vertex and fragment shaders are identical
   2008 		typedef std::map<std::string, const glsl::UniformBlock*> UniformBlockMap;
   2009 		UniformBlockMap linkedUniformBlocks;
   2010 		for(unsigned int blockIndex = 0; blockIndex < vertexUniformBlocks.size(); blockIndex++)
   2011 		{
   2012 			const glsl::UniformBlock &vertexUniformBlock = vertexUniformBlocks[blockIndex];
   2013 			linkedUniformBlocks[vertexUniformBlock.name] = &vertexUniformBlock;
   2014 		}
   2015 		for(unsigned int blockIndex = 0; blockIndex < fragmentUniformBlocks.size(); blockIndex++)
   2016 		{
   2017 			const glsl::UniformBlock &fragmentUniformBlock = fragmentUniformBlocks[blockIndex];
   2018 			UniformBlockMap::const_iterator entry = linkedUniformBlocks.find(fragmentUniformBlock.name);
   2019 			if(entry != linkedUniformBlocks.end())
   2020 			{
   2021 				const glsl::UniformBlock &vertexUniformBlock = *entry->second;
   2022 				if(!areMatchingUniformBlocks(vertexUniformBlock, fragmentUniformBlock, vertexShader, fragmentShader))
   2023 				{
   2024 					return false;
   2025 				}
   2026 			}
   2027 		}
   2028 		for(unsigned int blockIndex = 0; blockIndex < vertexUniformBlocks.size(); blockIndex++)
   2029 		{
   2030 			const glsl::UniformBlock &uniformBlock = vertexUniformBlocks[blockIndex];
   2031 			if(!defineUniformBlock(vertexShader, uniformBlock))
   2032 			{
   2033 				return false;
   2034 			}
   2035 		}
   2036 		for(unsigned int blockIndex = 0; blockIndex < fragmentUniformBlocks.size(); blockIndex++)
   2037 		{
   2038 			const glsl::UniformBlock &uniformBlock = fragmentUniformBlocks[blockIndex];
   2039 			if(!defineUniformBlock(fragmentShader, uniformBlock))
   2040 			{
   2041 				return false;
   2042 			}
   2043 		}
   2044 		return true;
   2045 	}
   2046 
   2047 	bool Program::defineUniformBlock(const Shader *shader, const glsl::UniformBlock &block)
   2048 	{
   2049 		GLuint blockIndex = getUniformBlockIndex(block.name);
   2050 
   2051 		if(blockIndex == GL_INVALID_INDEX)
   2052 		{
   2053 			const std::vector<int>& fields = block.fields;
   2054 			std::vector<unsigned int> memberUniformIndexes;
   2055 			for(size_t i = 0; i < fields.size(); ++i)
   2056 			{
   2057 				memberUniformIndexes.push_back(fields[i]);
   2058 			}
   2059 
   2060 			if(block.arraySize > 0)
   2061 			{
   2062 				int regIndex = block.registerIndex;
   2063 				int regInc = block.dataSize / (glsl::BlockLayoutEncoder::BytesPerComponent * glsl::BlockLayoutEncoder::ComponentsPerRegister);
   2064 				for(unsigned int i = 0; i < block.arraySize; ++i, regIndex += regInc)
   2065 				{
   2066 					uniformBlocks.push_back(new UniformBlock(block.name, i, block.dataSize, memberUniformIndexes));
   2067 					uniformBlocks[uniformBlocks.size() - 1]->setRegisterIndex(shader->getType(), regIndex);
   2068 				}
   2069 			}
   2070 			else
   2071 			{
   2072 				uniformBlocks.push_back(new UniformBlock(block.name, GL_INVALID_INDEX, block.dataSize, memberUniformIndexes));
   2073 				uniformBlocks[uniformBlocks.size() - 1]->setRegisterIndex(shader->getType(), block.registerIndex);
   2074 			}
   2075 		}
   2076 		else
   2077 		{
   2078 			int regIndex = block.registerIndex;
   2079 			int regInc = block.dataSize / (glsl::BlockLayoutEncoder::BytesPerComponent * glsl::BlockLayoutEncoder::ComponentsPerRegister);
   2080 			int nbBlocks = (block.arraySize > 0) ? block.arraySize : 1;
   2081 			for(int i = 0; i < nbBlocks; ++i, regIndex += regInc)
   2082 			{
   2083 				uniformBlocks[blockIndex + i]->setRegisterIndex(shader->getType(), regIndex);
   2084 			}
   2085 		}
   2086 
   2087 		return true;
   2088 	}
   2089 
   2090 	bool Program::applyUniform(Device *device, GLint location, float* data)
   2091 	{
   2092 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
   2093 
   2094 		if(targetUniform->psRegisterIndex != -1)
   2095 		{
   2096 			device->setPixelShaderConstantF(targetUniform->psRegisterIndex, data, targetUniform->registerCount());
   2097 		}
   2098 
   2099 		if(targetUniform->vsRegisterIndex != -1)
   2100 		{
   2101 			device->setVertexShaderConstantF(targetUniform->vsRegisterIndex, data, targetUniform->registerCount());
   2102 		}
   2103 
   2104 		return true;
   2105 	}
   2106 
   2107 	bool Program::applyUniform1bv(Device *device, GLint location, GLsizei count, const GLboolean *v)
   2108 	{
   2109 		int vector[MAX_UNIFORM_VECTORS][4];
   2110 
   2111 		for(int i = 0; i < count; i++)
   2112 		{
   2113 			vector[i][0] = (v[0] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF);
   2114 			vector[i][1] = 0;
   2115 			vector[i][2] = 0;
   2116 			vector[i][3] = 0;
   2117 
   2118 			v += 1;
   2119 		}
   2120 
   2121 		return applyUniform(device, location, (float*)vector);
   2122 	}
   2123 
   2124 	bool Program::applyUniform2bv(Device *device, GLint location, GLsizei count, const GLboolean *v)
   2125 	{
   2126 		int vector[MAX_UNIFORM_VECTORS][4];
   2127 
   2128 		for(int i = 0; i < count; i++)
   2129 		{
   2130 			vector[i][0] = (v[0] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF);
   2131 			vector[i][1] = (v[1] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF);
   2132 			vector[i][2] = 0;
   2133 			vector[i][3] = 0;
   2134 
   2135 			v += 2;
   2136 		}
   2137 
   2138 		return applyUniform(device, location, (float*)vector);
   2139 	}
   2140 
   2141 	bool Program::applyUniform3bv(Device *device, GLint location, GLsizei count, const GLboolean *v)
   2142 	{
   2143 		int vector[MAX_UNIFORM_VECTORS][4];
   2144 
   2145 		for(int i = 0; i < count; i++)
   2146 		{
   2147 			vector[i][0] = (v[0] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF);
   2148 			vector[i][1] = (v[1] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF);
   2149 			vector[i][2] = (v[2] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF);
   2150 			vector[i][3] = 0;
   2151 
   2152 			v += 3;
   2153 		}
   2154 
   2155 		return applyUniform(device, location, (float*)vector);
   2156 	}
   2157 
   2158 	bool Program::applyUniform4bv(Device *device, GLint location, GLsizei count, const GLboolean *v)
   2159 	{
   2160 		int vector[MAX_UNIFORM_VECTORS][4];
   2161 
   2162 		for(int i = 0; i < count; i++)
   2163 		{
   2164 			vector[i][0] = (v[0] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF);
   2165 			vector[i][1] = (v[1] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF);
   2166 			vector[i][2] = (v[2] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF);
   2167 			vector[i][3] = (v[3] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF);
   2168 
   2169 			v += 4;
   2170 		}
   2171 
   2172 		return applyUniform(device, location, (float*)vector);
   2173 	}
   2174 
   2175 	bool Program::applyUniform1fv(Device *device, GLint location, GLsizei count, const GLfloat *v)
   2176 	{
   2177 		float vector[MAX_UNIFORM_VECTORS][4];
   2178 
   2179 		for(int i = 0; i < count; i++)
   2180 		{
   2181 			vector[i][0] = v[0];
   2182 			vector[i][1] = 0;
   2183 			vector[i][2] = 0;
   2184 			vector[i][3] = 0;
   2185 
   2186 			v += 1;
   2187 		}
   2188 
   2189 		return applyUniform(device, location, (float*)vector);
   2190 	}
   2191 
   2192 	bool Program::applyUniform2fv(Device *device, GLint location, GLsizei count, const GLfloat *v)
   2193 	{
   2194 		float vector[MAX_UNIFORM_VECTORS][4];
   2195 
   2196 		for(int i = 0; i < count; i++)
   2197 		{
   2198 			vector[i][0] = v[0];
   2199 			vector[i][1] = v[1];
   2200 			vector[i][2] = 0;
   2201 			vector[i][3] = 0;
   2202 
   2203 			v += 2;
   2204 		}
   2205 
   2206 		return applyUniform(device, location, (float*)vector);
   2207 	}
   2208 
   2209 	bool Program::applyUniform3fv(Device *device, GLint location, GLsizei count, const GLfloat *v)
   2210 	{
   2211 		float vector[MAX_UNIFORM_VECTORS][4];
   2212 
   2213 		for(int i = 0; i < count; i++)
   2214 		{
   2215 			vector[i][0] = v[0];
   2216 			vector[i][1] = v[1];
   2217 			vector[i][2] = v[2];
   2218 			vector[i][3] = 0;
   2219 
   2220 			v += 3;
   2221 		}
   2222 
   2223 		return applyUniform(device, location, (float*)vector);
   2224 	}
   2225 
   2226 	bool Program::applyUniform4fv(Device *device, GLint location, GLsizei count, const GLfloat *v)
   2227 	{
   2228 		return applyUniform(device, location, (float*)v);
   2229 	}
   2230 
   2231 	bool Program::applyUniformMatrix2fv(Device *device, GLint location, GLsizei count, const GLfloat *value)
   2232 	{
   2233 		float matrix[(MAX_UNIFORM_VECTORS + 1) / 2][2][4];
   2234 
   2235 		for(int i = 0; i < count; i++)
   2236 		{
   2237 			matrix[i][0][0] = value[0];	matrix[i][0][1] = value[1];	matrix[i][0][2] = 0; matrix[i][0][3] = 0;
   2238 			matrix[i][1][0] = value[2];	matrix[i][1][1] = value[3];	matrix[i][1][2] = 0; matrix[i][1][3] = 0;
   2239 
   2240 			value += 4;
   2241 		}
   2242 
   2243 		return applyUniform(device, location, (float*)matrix);
   2244 	}
   2245 
   2246 	bool Program::applyUniformMatrix2x3fv(Device *device, GLint location, GLsizei count, const GLfloat *value)
   2247 	{
   2248 		float matrix[(MAX_UNIFORM_VECTORS + 1) / 2][2][4];
   2249 
   2250 		for(int i = 0; i < count; i++)
   2251 		{
   2252 			matrix[i][0][0] = value[0];	matrix[i][0][1] = value[1];	matrix[i][0][2] = value[2]; matrix[i][0][3] = 0;
   2253 			matrix[i][1][0] = value[3];	matrix[i][1][1] = value[4];	matrix[i][1][2] = value[5]; matrix[i][1][3] = 0;
   2254 
   2255 			value += 6;
   2256 		}
   2257 
   2258 		return applyUniform(device, location, (float*)matrix);
   2259 	}
   2260 
   2261 	bool Program::applyUniformMatrix2x4fv(Device *device, GLint location, GLsizei count, const GLfloat *value)
   2262 	{
   2263 		float matrix[(MAX_UNIFORM_VECTORS + 1) / 2][2][4];
   2264 
   2265 		for(int i = 0; i < count; i++)
   2266 		{
   2267 			matrix[i][0][0] = value[0];	matrix[i][0][1] = value[1];	matrix[i][0][2] = value[2]; matrix[i][0][3] = value[3];
   2268 			matrix[i][1][0] = value[4];	matrix[i][1][1] = value[5];	matrix[i][1][2] = value[6]; matrix[i][1][3] = value[7];
   2269 
   2270 			value += 8;
   2271 		}
   2272 
   2273 		return applyUniform(device, location, (float*)matrix);
   2274 	}
   2275 
   2276 	bool Program::applyUniformMatrix3fv(Device *device, GLint location, GLsizei count, const GLfloat *value)
   2277 	{
   2278 		float matrix[(MAX_UNIFORM_VECTORS + 2) / 3][3][4];
   2279 
   2280 		for(int i = 0; i < count; i++)
   2281 		{
   2282 			matrix[i][0][0] = value[0];	matrix[i][0][1] = value[1];	matrix[i][0][2] = value[2];	matrix[i][0][3] = 0;
   2283 			matrix[i][1][0] = value[3];	matrix[i][1][1] = value[4];	matrix[i][1][2] = value[5];	matrix[i][1][3] = 0;
   2284 			matrix[i][2][0] = value[6];	matrix[i][2][1] = value[7];	matrix[i][2][2] = value[8];	matrix[i][2][3] = 0;
   2285 
   2286 			value += 9;
   2287 		}
   2288 
   2289 		return applyUniform(device, location, (float*)matrix);
   2290 	}
   2291 
   2292 	bool Program::applyUniformMatrix3x2fv(Device *device, GLint location, GLsizei count, const GLfloat *value)
   2293 	{
   2294 		float matrix[(MAX_UNIFORM_VECTORS + 2) / 3][3][4];
   2295 
   2296 		for(int i = 0; i < count; i++)
   2297 		{
   2298 			matrix[i][0][0] = value[0];	matrix[i][0][1] = value[1];	matrix[i][0][2] = 0; matrix[i][0][3] = 0;
   2299 			matrix[i][1][0] = value[2];	matrix[i][1][1] = value[3];	matrix[i][1][2] = 0; matrix[i][1][3] = 0;
   2300 			matrix[i][2][0] = value[4];	matrix[i][2][1] = value[5];	matrix[i][2][2] = 0; matrix[i][2][3] = 0;
   2301 
   2302 			value += 6;
   2303 		}
   2304 
   2305 		return applyUniform(device, location, (float*)matrix);
   2306 	}
   2307 
   2308 	bool Program::applyUniformMatrix3x4fv(Device *device, GLint location, GLsizei count, const GLfloat *value)
   2309 	{
   2310 		float matrix[(MAX_UNIFORM_VECTORS + 2) / 3][3][4];
   2311 
   2312 		for(int i = 0; i < count; i++)
   2313 		{
   2314 			matrix[i][0][0] = value[0];	matrix[i][0][1] = value[1];	matrix[i][0][2] = value[2]; 	matrix[i][0][3] = value[3];
   2315 			matrix[i][1][0] = value[4];	matrix[i][1][1] = value[5];	matrix[i][1][2] = value[6]; 	matrix[i][1][3] = value[7];
   2316 			matrix[i][2][0] = value[8];	matrix[i][2][1] = value[9];	matrix[i][2][2] = value[10];	matrix[i][2][3] = value[11];
   2317 
   2318 			value += 12;
   2319 		}
   2320 
   2321 		return applyUniform(device, location, (float*)matrix);
   2322 	}
   2323 
   2324 	bool Program::applyUniformMatrix4fv(Device *device, GLint location, GLsizei count, const GLfloat *value)
   2325 	{
   2326 		return applyUniform(device, location, (float*)value);
   2327 	}
   2328 
   2329 	bool Program::applyUniformMatrix4x2fv(Device *device, GLint location, GLsizei count, const GLfloat *value)
   2330 	{
   2331 		float matrix[(MAX_UNIFORM_VECTORS + 3) / 4][4][4];
   2332 
   2333 		for(int i = 0; i < count; i++)
   2334 		{
   2335 			matrix[i][0][0] = value[0];	matrix[i][0][1] = value[1];	matrix[i][0][2] = 0; matrix[i][0][3] = 0;
   2336 			matrix[i][1][0] = value[2];	matrix[i][1][1] = value[3];	matrix[i][1][2] = 0; matrix[i][1][3] = 0;
   2337 			matrix[i][2][0] = value[4];	matrix[i][2][1] = value[5];	matrix[i][2][2] = 0; matrix[i][2][3] = 0;
   2338 			matrix[i][3][0] = value[6];	matrix[i][3][1] = value[7];	matrix[i][3][2] = 0; matrix[i][3][3] = 0;
   2339 
   2340 			value += 8;
   2341 		}
   2342 
   2343 		return applyUniform(device, location, (float*)matrix);
   2344 	}
   2345 
   2346 	bool Program::applyUniformMatrix4x3fv(Device *device, GLint location, GLsizei count, const GLfloat *value)
   2347 	{
   2348 		float matrix[(MAX_UNIFORM_VECTORS + 3) / 4][4][4];
   2349 
   2350 		for(int i = 0; i < count; i++)
   2351 		{
   2352 			matrix[i][0][0] = value[0];	matrix[i][0][1] = value[1];  matrix[i][0][2] = value[2];  matrix[i][0][3] = 0;
   2353 			matrix[i][1][0] = value[3];	matrix[i][1][1] = value[4];  matrix[i][1][2] = value[5];  matrix[i][1][3] = 0;
   2354 			matrix[i][2][0] = value[6];	matrix[i][2][1] = value[7];  matrix[i][2][2] = value[8];  matrix[i][2][3] = 0;
   2355 			matrix[i][3][0] = value[9];	matrix[i][3][1] = value[10]; matrix[i][3][2] = value[11]; matrix[i][3][3] = 0;
   2356 
   2357 			value += 12;
   2358 		}
   2359 
   2360 		return applyUniform(device, location, (float*)matrix);
   2361 	}
   2362 
   2363 	bool Program::applyUniform1iv(Device *device, GLint location, GLsizei count, const GLint *v)
   2364 	{
   2365 		GLint vector[MAX_UNIFORM_VECTORS][4];
   2366 
   2367 		for(int i = 0; i < count; i++)
   2368 		{
   2369 			vector[i][0] = v[i];
   2370 			vector[i][1] = 0;
   2371 			vector[i][2] = 0;
   2372 			vector[i][3] = 0;
   2373 		}
   2374 
   2375 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
   2376 		if(IsSamplerUniform(targetUniform->type))
   2377 		{
   2378 			if(targetUniform->psRegisterIndex != -1)
   2379 			{
   2380 				for(int i = 0; i < count; i++)
   2381 				{
   2382 					unsigned int samplerIndex = targetUniform->psRegisterIndex + i;
   2383 
   2384 					if(samplerIndex < MAX_TEXTURE_IMAGE_UNITS)
   2385 					{
   2386 						ASSERT(samplersPS[samplerIndex].active);
   2387 						samplersPS[samplerIndex].logicalTextureUnit = v[i];
   2388 					}
   2389 				}
   2390 			}
   2391 
   2392 			if(targetUniform->vsRegisterIndex != -1)
   2393 			{
   2394 				for(int i = 0; i < count; i++)
   2395 				{
   2396 					unsigned int samplerIndex = targetUniform->vsRegisterIndex + i;
   2397 
   2398 					if(samplerIndex < MAX_VERTEX_TEXTURE_IMAGE_UNITS)
   2399 					{
   2400 						ASSERT(samplersVS[samplerIndex].active);
   2401 						samplersVS[samplerIndex].logicalTextureUnit = v[i];
   2402 					}
   2403 				}
   2404 			}
   2405 		}
   2406 		else
   2407 		{
   2408 			return applyUniform(device, location, (float*)vector);
   2409 		}
   2410 
   2411 		return true;
   2412 	}
   2413 
   2414 	bool Program::applyUniform2iv(Device *device, GLint location, GLsizei count, const GLint *v)
   2415 	{
   2416 		GLint vector[MAX_UNIFORM_VECTORS][4];
   2417 
   2418 		for(int i = 0; i < count; i++)
   2419 		{
   2420 			vector[i][0] = v[0];
   2421 			vector[i][1] = v[1];
   2422 			vector[i][2] = 0;
   2423 			vector[i][3] = 0;
   2424 
   2425 			v += 2;
   2426 		}
   2427 
   2428 		return applyUniform(device, location, (float*)vector);
   2429 	}
   2430 
   2431 	bool Program::applyUniform3iv(Device *device, GLint location, GLsizei count, const GLint *v)
   2432 	{
   2433 		GLint vector[MAX_UNIFORM_VECTORS][4];
   2434 
   2435 		for(int i = 0; i < count; i++)
   2436 		{
   2437 			vector[i][0] = v[0];
   2438 			vector[i][1] = v[1];
   2439 			vector[i][2] = v[2];
   2440 			vector[i][3] = 0;
   2441 
   2442 			v += 3;
   2443 		}
   2444 
   2445 		return applyUniform(device, location, (float*)vector);
   2446 	}
   2447 
   2448 	bool Program::applyUniform4iv(Device *device, GLint location, GLsizei count, const GLint *v)
   2449 	{
   2450 		GLint vector[MAX_UNIFORM_VECTORS][4];
   2451 
   2452 		for(int i = 0; i < count; i++)
   2453 		{
   2454 			vector[i][0] = v[0];
   2455 			vector[i][1] = v[1];
   2456 			vector[i][2] = v[2];
   2457 			vector[i][3] = v[3];
   2458 
   2459 			v += 4;
   2460 		}
   2461 
   2462 		return applyUniform(device, location, (float*)vector);
   2463 	}
   2464 
   2465 	bool Program::applyUniform1uiv(Device *device, GLint location, GLsizei count, const GLuint *v)
   2466 	{
   2467 		GLuint vector[MAX_UNIFORM_VECTORS][4];
   2468 
   2469 		for(int i = 0; i < count; i++)
   2470 		{
   2471 			vector[i][0] = v[i];
   2472 			vector[i][1] = 0;
   2473 			vector[i][2] = 0;
   2474 			vector[i][3] = 0;
   2475 		}
   2476 
   2477 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
   2478 		if(IsSamplerUniform(targetUniform->type))
   2479 		{
   2480 			if(targetUniform->psRegisterIndex != -1)
   2481 			{
   2482 				for(int i = 0; i < count; i++)
   2483 				{
   2484 					unsigned int samplerIndex = targetUniform->psRegisterIndex + i;
   2485 
   2486 					if(samplerIndex < MAX_TEXTURE_IMAGE_UNITS)
   2487 					{
   2488 						ASSERT(samplersPS[samplerIndex].active);
   2489 						samplersPS[samplerIndex].logicalTextureUnit = v[i];
   2490 					}
   2491 				}
   2492 			}
   2493 
   2494 			if(targetUniform->vsRegisterIndex != -1)
   2495 			{
   2496 				for(int i = 0; i < count; i++)
   2497 				{
   2498 					unsigned int samplerIndex = targetUniform->vsRegisterIndex + i;
   2499 
   2500 					if(samplerIndex < MAX_VERTEX_TEXTURE_IMAGE_UNITS)
   2501 					{
   2502 						ASSERT(samplersVS[samplerIndex].active);
   2503 						samplersVS[samplerIndex].logicalTextureUnit = v[i];
   2504 					}
   2505 				}
   2506 			}
   2507 		}
   2508 		else
   2509 		{
   2510 			return applyUniform(device, location, (float*)vector);
   2511 		}
   2512 
   2513 		return true;
   2514 	}
   2515 
   2516 	bool Program::applyUniform2uiv(Device *device, GLint location, GLsizei count, const GLuint *v)
   2517 	{
   2518 		GLuint vector[MAX_UNIFORM_VECTORS][4];
   2519 
   2520 		for(int i = 0; i < count; i++)
   2521 		{
   2522 			vector[i][0] = v[0];
   2523 			vector[i][1] = v[1];
   2524 			vector[i][2] = 0;
   2525 			vector[i][3] = 0;
   2526 
   2527 			v += 2;
   2528 		}
   2529 
   2530 		return applyUniform(device, location, (float*)vector);
   2531 	}
   2532 
   2533 	bool Program::applyUniform3uiv(Device *device, GLint location, GLsizei count, const GLuint *v)
   2534 	{
   2535 		GLuint vector[MAX_UNIFORM_VECTORS][4];
   2536 
   2537 		for(int i = 0; i < count; i++)
   2538 		{
   2539 			vector[i][0] = v[0];
   2540 			vector[i][1] = v[1];
   2541 			vector[i][2] = v[2];
   2542 			vector[i][3] = 0;
   2543 
   2544 			v += 3;
   2545 		}
   2546 
   2547 		return applyUniform(device, location, (float*)vector);
   2548 	}
   2549 
   2550 	bool Program::applyUniform4uiv(Device *device, GLint location, GLsizei count, const GLuint *v)
   2551 	{
   2552 		GLuint vector[MAX_UNIFORM_VECTORS][4];
   2553 
   2554 		for(int i = 0; i < count; i++)
   2555 		{
   2556 			vector[i][0] = v[0];
   2557 			vector[i][1] = v[1];
   2558 			vector[i][2] = v[2];
   2559 			vector[i][3] = v[3];
   2560 
   2561 			v += 4;
   2562 		}
   2563 
   2564 		return applyUniform(device, location, (float*)vector);
   2565 	}
   2566 
   2567 	void Program::appendToInfoLog(const char *format, ...)
   2568 	{
   2569 		if(!format)
   2570 		{
   2571 			return;
   2572 		}
   2573 
   2574 		char info[1024];
   2575 
   2576 		va_list vararg;
   2577 		va_start(vararg, format);
   2578 		vsnprintf(info, sizeof(info), format, vararg);
   2579 		va_end(vararg);
   2580 
   2581 		size_t infoLength = strlen(info);
   2582 
   2583 		if(!infoLog)
   2584 		{
   2585 			infoLog = new char[infoLength + 2];
   2586 			strcpy(infoLog, info);
   2587 			strcpy(infoLog + infoLength, "\n");
   2588 		}
   2589 		else
   2590 		{
   2591 			size_t logLength = strlen(infoLog);
   2592 			char *newLog = new char[logLength + infoLength + 2];
   2593 			strcpy(newLog, infoLog);
   2594 			strcpy(newLog + logLength, info);
   2595 			strcpy(newLog + logLength + infoLength, "\n");
   2596 
   2597 			delete[] infoLog;
   2598 			infoLog = newLog;
   2599 		}
   2600 	}
   2601 
   2602 	void Program::resetInfoLog()
   2603 	{
   2604 		if(infoLog)
   2605 		{
   2606 			delete[] infoLog;
   2607 			infoLog = 0;
   2608 		}
   2609 	}
   2610 
   2611 	// Returns the program object to an unlinked state, before re-linking, or at destruction
   2612 	void Program::unlink()
   2613 	{
   2614 		delete vertexBinary;
   2615 		vertexBinary = 0;
   2616 		delete pixelBinary;
   2617 		pixelBinary = 0;
   2618 
   2619 		linkedAttribute.clear();
   2620 		linkedAttributeLocation.clear();
   2621 
   2622 		for(int index = 0; index < MAX_VERTEX_ATTRIBS; index++)
   2623 		{
   2624 			attributeStream[index] = -1;
   2625 		}
   2626 
   2627 		for(int index = 0; index < MAX_TEXTURE_IMAGE_UNITS; index++)
   2628 		{
   2629 			samplersPS[index].active = false;
   2630 		}
   2631 
   2632 		for(int index = 0; index < MAX_VERTEX_TEXTURE_IMAGE_UNITS; index++)
   2633 		{
   2634 			samplersVS[index].active = false;
   2635 		}
   2636 
   2637 		while(!uniforms.empty())
   2638 		{
   2639 			delete uniforms.back();
   2640 			uniforms.pop_back();
   2641 		}
   2642 
   2643 		while(!uniformBlocks.empty())
   2644 		{
   2645 			delete uniformBlocks.back();
   2646 			uniformBlocks.pop_back();
   2647 		}
   2648 
   2649 		uniformIndex.clear();
   2650 		transformFeedbackLinkedVaryings.clear();
   2651 
   2652 		delete[] infoLog;
   2653 		infoLog = 0;
   2654 
   2655 		linked = false;
   2656 	}
   2657 
   2658 	bool Program::isLinked() const
   2659 	{
   2660 		return linked;
   2661 	}
   2662 
   2663 	bool Program::isValidated() const
   2664 	{
   2665 		return validated;
   2666 	}
   2667 
   2668 	GLint Program::getBinaryLength() const
   2669 	{
   2670 		UNIMPLEMENTED();
   2671 		return 0;
   2672 	}
   2673 
   2674 	void Program::release()
   2675 	{
   2676 		referenceCount--;
   2677 
   2678 		if(referenceCount == 0 && orphaned)
   2679 		{
   2680 			resourceManager->deleteProgram(handle);
   2681 		}
   2682 	}
   2683 
   2684 	void Program::addRef()
   2685 	{
   2686 		referenceCount++;
   2687 	}
   2688 
   2689 	unsigned int Program::getRefCount() const
   2690 	{
   2691 		return referenceCount;
   2692 	}
   2693 
   2694 	unsigned int Program::getSerial() const
   2695 	{
   2696 		return serial;
   2697 	}
   2698 
   2699 	unsigned int Program::issueSerial()
   2700 	{
   2701 		return currentSerial++;
   2702 	}
   2703 
   2704 	size_t Program::getInfoLogLength() const
   2705 	{
   2706 		if(!infoLog)
   2707 		{
   2708 			return 0;
   2709 		}
   2710 		else
   2711 		{
   2712 		   return strlen(infoLog) + 1;
   2713 		}
   2714 	}
   2715 
   2716 	void Program::getInfoLog(GLsizei bufSize, GLsizei *length, char *buffer)
   2717 	{
   2718 		int index = 0;
   2719 
   2720 		if(bufSize > 0)
   2721 		{
   2722 			if(infoLog)
   2723 			{
   2724 				index = std::min(bufSize - 1, (int)strlen(infoLog));
   2725 				memcpy(buffer, infoLog, index);
   2726 			}
   2727 
   2728 			buffer[index] = '\0';
   2729 		}
   2730 
   2731 		if(length)
   2732 		{
   2733 			*length = index;
   2734 		}
   2735 	}
   2736 
   2737 	void Program::getAttachedShaders(GLsizei maxCount, GLsizei *count, GLuint *shaders)
   2738 	{
   2739 		int total = 0;
   2740 
   2741 		if(vertexShader && (total < maxCount))
   2742 		{
   2743 			shaders[total++] = vertexShader->getName();
   2744 		}
   2745 
   2746 		if(fragmentShader && (total < maxCount))
   2747 		{
   2748 			shaders[total++] = fragmentShader->getName();
   2749 		}
   2750 
   2751 		if(count)
   2752 		{
   2753 			*count = total;
   2754 		}
   2755 	}
   2756 
   2757 	void Program::getActiveAttribute(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) const
   2758 	{
   2759 		ASSERT(index < linkedAttribute.size());
   2760 
   2761 		std::vector<glsl::Attribute>::const_iterator it = linkedAttribute.begin() + index;
   2762 
   2763 		if(bufsize > 0)
   2764 		{
   2765 			const char *string = it->name.c_str();
   2766 
   2767 			strncpy(name, string, bufsize);
   2768 			name[bufsize - 1] = '\0';
   2769 
   2770 			if(length)
   2771 			{
   2772 				*length = static_cast<GLsizei>(strlen(name));
   2773 			}
   2774 		}
   2775 
   2776 		*size = 1;   // Always a single 'type' instance
   2777 
   2778 		*type = it->type;
   2779 	}
   2780 
   2781 	size_t Program::getActiveAttributeCount() const
   2782 	{
   2783 		return linkedAttribute.size();
   2784 	}
   2785 
   2786 	GLint Program::getActiveAttributeMaxLength() const
   2787 	{
   2788 		int maxLength = 0;
   2789 
   2790 		std::vector<glsl::Attribute>::const_iterator it = linkedAttribute.begin();
   2791 		std::vector<glsl::Attribute>::const_iterator itEnd = linkedAttribute.end();
   2792 		for(; it != itEnd; ++it)
   2793 		{
   2794 			maxLength = std::max((int)(it->name.length() + 1), maxLength);
   2795 		}
   2796 
   2797 		return maxLength;
   2798 	}
   2799 
   2800 	void Program::getActiveUniform(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) const
   2801 	{
   2802 		if(bufsize > 0)
   2803 		{
   2804 			std::string string = uniforms[index]->name;
   2805 
   2806 			if(uniforms[index]->isArray())
   2807 			{
   2808 				string += "[0]";
   2809 			}
   2810 
   2811 			strncpy(name, string.c_str(), bufsize);
   2812 			name[bufsize - 1] = '\0';
   2813 
   2814 			if(length)
   2815 			{
   2816 				*length = static_cast<GLsizei>(strlen(name));
   2817 			}
   2818 		}
   2819 
   2820 		*size = uniforms[index]->size();
   2821 
   2822 		*type = uniforms[index]->type;
   2823 	}
   2824 
   2825 	size_t Program::getActiveUniformCount() const
   2826 	{
   2827 		return uniforms.size();
   2828 	}
   2829 
   2830 	GLint Program::getActiveUniformMaxLength() const
   2831 	{
   2832 		int maxLength = 0;
   2833 
   2834 		size_t numUniforms = uniforms.size();
   2835 		for(size_t uniformIndex = 0; uniformIndex < numUniforms; uniformIndex++)
   2836 		{
   2837 			if(!uniforms[uniformIndex]->name.empty())
   2838 			{
   2839 				int length = (int)(uniforms[uniformIndex]->name.length() + 1);
   2840 				if(uniforms[uniformIndex]->isArray())
   2841 				{
   2842 					length += 3;  // Counting in "[0]".
   2843 				}
   2844 				maxLength = std::max(length, maxLength);
   2845 			}
   2846 		}
   2847 
   2848 		return maxLength;
   2849 	}
   2850 
   2851 	GLint Program::getActiveUniformi(GLuint index, GLenum pname) const
   2852 	{
   2853 		const Uniform& uniform = *uniforms[index];
   2854 		switch(pname)
   2855 		{
   2856 		case GL_UNIFORM_TYPE:         return static_cast<GLint>(uniform.type);
   2857 		case GL_UNIFORM_SIZE:         return static_cast<GLint>(uniform.size());
   2858 		case GL_UNIFORM_NAME_LENGTH:  return static_cast<GLint>(uniform.name.size() + 1 + (uniform.isArray() ? 3 : 0));
   2859 		case GL_UNIFORM_BLOCK_INDEX:  return uniform.blockInfo.index;
   2860 		case GL_UNIFORM_OFFSET:       return uniform.blockInfo.offset;
   2861 		case GL_UNIFORM_ARRAY_STRIDE: return uniform.blockInfo.arrayStride;
   2862 		case GL_UNIFORM_MATRIX_STRIDE: return uniform.blockInfo.matrixStride;
   2863 		case GL_UNIFORM_IS_ROW_MAJOR: return static_cast<GLint>(uniform.blockInfo.isRowMajorMatrix);
   2864 		default:
   2865 			UNREACHABLE(pname);
   2866 			break;
   2867 		}
   2868 		return 0;
   2869 	}
   2870 
   2871 	void Program::getActiveUniformBlockName(GLuint index, GLsizei bufSize, GLsizei *length, GLchar *name) const
   2872 	{
   2873 		if(index >= getActiveUniformBlockCount())
   2874 		{
   2875 			return error(GL_INVALID_VALUE);
   2876 		}
   2877 
   2878 		const UniformBlock &uniformBlock = *uniformBlocks[index];
   2879 
   2880 		if(bufSize > 0)
   2881 		{
   2882 			std::string string = uniformBlock.name;
   2883 
   2884 			if(uniformBlock.isArrayElement())
   2885 			{
   2886 				std::ostringstream elementIndex;
   2887 				elementIndex << uniformBlock.elementIndex;
   2888 				string += "[" + elementIndex.str()  + "]";
   2889 			}
   2890 
   2891 			strncpy(name, string.c_str(), bufSize);
   2892 			name[bufSize - 1] = '\0';
   2893 
   2894 			if(length)
   2895 			{
   2896 				*length = static_cast<GLsizei>(strlen(name));
   2897 			}
   2898 		}
   2899 	}
   2900 
   2901 	size_t Program::getActiveUniformBlockCount() const
   2902 	{
   2903 		return uniformBlocks.size();
   2904 	}
   2905 
   2906 	GLint Program::getActiveUniformBlockMaxLength() const
   2907 	{
   2908 		GLint maxLength = 0;
   2909 
   2910 		if(isLinked())
   2911 		{
   2912 			size_t numUniformBlocks = getActiveUniformBlockCount();
   2913 			for(size_t uniformBlockIndex = 0; uniformBlockIndex < numUniformBlocks; uniformBlockIndex++)
   2914 			{
   2915 				const UniformBlock &uniformBlock = *uniformBlocks[uniformBlockIndex];
   2916 				if(!uniformBlock.name.empty())
   2917 				{
   2918 					GLint length = static_cast<GLint>(uniformBlock.name.length() + 1);
   2919 
   2920 					// Counting in "[0]".
   2921 					const GLint arrayLength = (uniformBlock.isArrayElement() ? 3 : 0);
   2922 
   2923 					maxLength = std::max(length + arrayLength, maxLength);
   2924 				}
   2925 			}
   2926 		}
   2927 
   2928 		return maxLength;
   2929 	}
   2930 
   2931 	void Program::setTransformFeedbackVaryings(GLsizei count, const GLchar *const *varyings, GLenum bufferMode)
   2932 	{
   2933 		transformFeedbackVaryings.resize(count);
   2934 		for(GLsizei i = 0; i < count; i++)
   2935 		{
   2936 			transformFeedbackVaryings[i] = varyings[i];
   2937 		}
   2938 
   2939 		transformFeedbackBufferMode = bufferMode;
   2940 	}
   2941 
   2942 	void Program::getTransformFeedbackVarying(GLuint index, GLsizei bufSize, GLsizei *length, GLsizei *size, GLenum *type, GLchar *name) const
   2943 	{
   2944 		if(linked)
   2945 		{
   2946 			ASSERT(index < transformFeedbackLinkedVaryings.size());
   2947 			const LinkedVarying &varying = transformFeedbackLinkedVaryings[index];
   2948 			GLsizei lastNameIdx = std::min(bufSize - 1, static_cast<GLsizei>(varying.name.length()));
   2949 			if(length)
   2950 			{
   2951 				*length = lastNameIdx;
   2952 			}
   2953 			if(size)
   2954 			{
   2955 				*size = varying.size;
   2956 			}
   2957 			if(type)
   2958 			{
   2959 				*type = varying.type;
   2960 			}
   2961 			if(name)
   2962 			{
   2963 				memcpy(name, varying.name.c_str(), lastNameIdx);
   2964 				name[lastNameIdx] = '\0';
   2965 			}
   2966 		}
   2967 	}
   2968 
   2969 	GLsizei Program::getTransformFeedbackVaryingCount() const
   2970 	{
   2971 		if(linked)
   2972 		{
   2973 			return static_cast<GLsizei>(transformFeedbackLinkedVaryings.size());
   2974 		}
   2975 		else
   2976 		{
   2977 			return 0;
   2978 		}
   2979 	}
   2980 
   2981 	GLsizei Program::getTransformFeedbackVaryingMaxLength() const
   2982 	{
   2983 		if(linked)
   2984 		{
   2985 			GLsizei maxSize = 0;
   2986 			for(size_t i = 0; i < transformFeedbackLinkedVaryings.size(); i++)
   2987 			{
   2988 				const LinkedVarying &varying = transformFeedbackLinkedVaryings[i];
   2989 				maxSize = std::max(maxSize, static_cast<GLsizei>(varying.name.length() + 1));
   2990 			}
   2991 
   2992 			return maxSize;
   2993 		}
   2994 		else
   2995 		{
   2996 			return 0;
   2997 		}
   2998 	}
   2999 
   3000 	GLenum Program::getTransformFeedbackBufferMode() const
   3001 	{
   3002 		return transformFeedbackBufferMode;
   3003 	}
   3004 
   3005 	void Program::flagForDeletion()
   3006 	{
   3007 		orphaned = true;
   3008 	}
   3009 
   3010 	bool Program::isFlaggedForDeletion() const
   3011 	{
   3012 		return orphaned;
   3013 	}
   3014 
   3015 	void Program::validate(Device* device)
   3016 	{
   3017 		resetInfoLog();
   3018 
   3019 		if(!isLinked())
   3020 		{
   3021 			appendToInfoLog("Program has not been successfully linked.");
   3022 			validated = false;
   3023 		}
   3024 		else
   3025 		{
   3026 			applyUniforms(device);
   3027 			if(!validateSamplers(true))
   3028 			{
   3029 				validated = false;
   3030 			}
   3031 			else
   3032 			{
   3033 				validated = true;
   3034 			}
   3035 		}
   3036 	}
   3037 
   3038 	bool Program::validateSamplers(bool logErrors)
   3039 	{
   3040 		// if any two active samplers in a program are of different types, but refer to the same
   3041 		// texture image unit, and this is the current program, then ValidateProgram will fail, and
   3042 		// DrawArrays and DrawElements will issue the INVALID_OPERATION error.
   3043 
   3044 		TextureType textureUnitType[MAX_COMBINED_TEXTURE_IMAGE_UNITS];
   3045 
   3046 		for(unsigned int i = 0; i < MAX_COMBINED_TEXTURE_IMAGE_UNITS; i++)
   3047 		{
   3048 			textureUnitType[i] = TEXTURE_UNKNOWN;
   3049 		}
   3050 
   3051 		for(unsigned int i = 0; i < MAX_TEXTURE_IMAGE_UNITS; i++)
   3052 		{
   3053 			if(samplersPS[i].active)
   3054 			{
   3055 				unsigned int unit = samplersPS[i].logicalTextureUnit;
   3056 
   3057 				if(unit >= MAX_COMBINED_TEXTURE_IMAGE_UNITS)
   3058 				{
   3059 					if(logErrors)
   3060 					{
   3061 						appendToInfoLog("Sampler uniform (%d) exceeds MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, MAX_COMBINED_TEXTURE_IMAGE_UNITS);
   3062 					}
   3063 
   3064 					return false;
   3065 				}
   3066 
   3067 				if(textureUnitType[unit] != TEXTURE_UNKNOWN)
   3068 				{
   3069 					if(samplersPS[i].textureType != textureUnitType[unit])
   3070 					{
   3071 						if(logErrors)
   3072 						{
   3073 							appendToInfoLog("Samplers of conflicting types refer to the same texture image unit (%d).", unit);
   3074 						}
   3075 
   3076 						return false;
   3077 					}
   3078 				}
   3079 				else
   3080 				{
   3081 					textureUnitType[unit] = samplersPS[i].textureType;
   3082 				}
   3083 			}
   3084 		}
   3085 
   3086 		for(unsigned int i = 0; i < MAX_VERTEX_TEXTURE_IMAGE_UNITS; i++)
   3087 		{
   3088 			if(samplersVS[i].active)
   3089 			{
   3090 				unsigned int unit = samplersVS[i].logicalTextureUnit;
   3091 
   3092 				if(unit >= MAX_COMBINED_TEXTURE_IMAGE_UNITS)
   3093 				{
   3094 					if(logErrors)
   3095 					{
   3096 						appendToInfoLog("Sampler uniform (%d) exceeds MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, MAX_COMBINED_TEXTURE_IMAGE_UNITS);
   3097 					}
   3098 
   3099 					return false;
   3100 				}
   3101 
   3102 				if(textureUnitType[unit] != TEXTURE_UNKNOWN)
   3103 				{
   3104 					if(samplersVS[i].textureType != textureUnitType[unit])
   3105 					{
   3106 						if(logErrors)
   3107 						{
   3108 							appendToInfoLog("Samplers of conflicting types refer to the same texture image unit (%d).", unit);
   3109 						}
   3110 
   3111 						return false;
   3112 					}
   3113 				}
   3114 				else
   3115 				{
   3116 					textureUnitType[unit] = samplersVS[i].textureType;
   3117 				}
   3118 			}
   3119 		}
   3120 
   3121 		return true;
   3122 	}
   3123 }
   3124