Home | History | Annotate | Download | only in i965
      1 /*
      2  * Copyright 2006 VMware, Inc.
      3  * All Rights Reserved.
      4  *
      5  * Permission is hereby granted, free of charge, to any person obtaining a
      6  * copy of this software and associated documentation files (the
      7  * "Software"), to deal in the Software without restriction, including
      8  * without limitation the rights to use, copy, modify, merge, publish,
      9  * distribute, sublicense, and/or sell copies of the Software, and to
     10  * permit persons to whom the Software is furnished to do so, subject to
     11  * the following conditions:
     12  *
     13  * The above copyright notice and this permission notice (including the
     14  * next paragraph) shall be included in all copies or substantial portions
     15  * of the Software.
     16  *
     17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
     18  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     19  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
     20  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
     21  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
     22  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
     23  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
     24  */
     25 
     26 #include <GL/gl.h>
     27 #include <GL/internal/dri_interface.h>
     28 
     29 #include "intel_batchbuffer.h"
     30 #include "intel_mipmap_tree.h"
     31 #include "intel_resolve_map.h"
     32 #include "intel_tex.h"
     33 #include "intel_blit.h"
     34 #include "intel_fbo.h"
     35 
     36 #include "brw_blorp.h"
     37 #include "brw_context.h"
     38 #include "brw_state.h"
     39 
     40 #include "main/enums.h"
     41 #include "main/fbobject.h"
     42 #include "main/formats.h"
     43 #include "main/glformats.h"
     44 #include "main/texcompress_etc.h"
     45 #include "main/teximage.h"
     46 #include "main/streaming-load-memcpy.h"
     47 #include "x86/common_x86_asm.h"
     48 
     49 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
     50 
     51 static void *intel_miptree_map_raw(struct brw_context *brw,
     52                                    struct intel_mipmap_tree *mt);
     53 
     54 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
     55 
     56 static bool
     57 intel_miptree_alloc_mcs(struct brw_context *brw,
     58                         struct intel_mipmap_tree *mt,
     59                         GLuint num_samples);
     60 
     61 /**
     62  * Determine which MSAA layout should be used by the MSAA surface being
     63  * created, based on the chip generation and the surface type.
     64  */
     65 static enum intel_msaa_layout
     66 compute_msaa_layout(struct brw_context *brw, mesa_format format,
     67                     enum intel_aux_disable aux_disable)
     68 {
     69    /* Prior to Gen7, all MSAA surfaces used IMS layout. */
     70    if (brw->gen < 7)
     71       return INTEL_MSAA_LAYOUT_IMS;
     72 
     73    /* In Gen7, IMS layout is only used for depth and stencil buffers. */
     74    switch (_mesa_get_format_base_format(format)) {
     75    case GL_DEPTH_COMPONENT:
     76    case GL_STENCIL_INDEX:
     77    case GL_DEPTH_STENCIL:
     78       return INTEL_MSAA_LAYOUT_IMS;
     79    default:
     80       /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
     81        *
     82        *   This field must be set to 0 for all SINT MSRTs when all RT channels
     83        *   are not written
     84        *
     85        * In practice this means that we have to disable MCS for all signed
     86        * integer MSAA buffers.  The alternative, to disable MCS only when one
     87        * of the render target channels is disabled, is impractical because it
     88        * would require converting between CMS and UMS MSAA layouts on the fly,
     89        * which is expensive.
     90        */
     91       if (brw->gen == 7 && _mesa_get_format_datatype(format) == GL_INT) {
     92          return INTEL_MSAA_LAYOUT_UMS;
     93       } else if (aux_disable & INTEL_AUX_DISABLE_MCS) {
     94          /* We can't use the CMS layout because it uses an aux buffer, the MCS
     95           * buffer. So fallback to UMS, which is identical to CMS without the
     96           * MCS. */
     97          return INTEL_MSAA_LAYOUT_UMS;
     98       } else {
     99          return INTEL_MSAA_LAYOUT_CMS;
    100       }
    101    }
    102 }
    103 
    104 bool
    105 intel_tiling_supports_non_msrt_mcs(const struct brw_context *brw,
    106                                    unsigned tiling)
    107 {
    108    /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
    109     * Target(s)", beneath the "Fast Color Clear" bullet (p326):
    110     *
    111     *     - Support is limited to tiled render targets.
    112     *
    113     * Gen9 changes the restriction to Y-tile only.
    114     */
    115    if (brw->gen >= 9)
    116       return tiling == I915_TILING_Y;
    117    else if (brw->gen >= 7)
    118       return tiling != I915_TILING_NONE;
    119    else
    120       return false;
    121 }
    122 
    123 /**
    124  * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
    125  * can be used. This doesn't (and should not) inspect any of the properties of
    126  * the miptree's BO.
    127  *
    128  * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
    129  * beneath the "Fast Color Clear" bullet (p326):
    130  *
    131  *     - Support is for non-mip-mapped and non-array surface types only.
    132  *
    133  * And then later, on p327:
    134  *
    135  *     - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
    136  *       64bpp, and 128bpp.
    137  *
    138  * From the Skylake documentation, it is made clear that X-tiling is no longer
    139  * supported:
    140  *
    141  *     - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
    142  *     non-MSRTs only.
    143  */
    144 bool
    145 intel_miptree_supports_non_msrt_fast_clear(struct brw_context *brw,
    146                                            const struct intel_mipmap_tree *mt)
    147 {
    148    /* MCS support does not exist prior to Gen7 */
    149    if (brw->gen < 7)
    150       return false;
    151 
    152    if (mt->aux_disable & INTEL_AUX_DISABLE_MCS)
    153       return false;
    154 
    155    /* This function applies only to non-multisampled render targets. */
    156    if (mt->num_samples > 1)
    157       return false;
    158 
    159    /* MCS is only supported for color buffers */
    160    switch (_mesa_get_format_base_format(mt->format)) {
    161    case GL_DEPTH_COMPONENT:
    162    case GL_DEPTH_STENCIL:
    163    case GL_STENCIL_INDEX:
    164       return false;
    165    }
    166 
    167    if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
    168       return false;
    169 
    170    const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
    171    const bool arrayed = mt->physical_depth0 != 1;
    172 
    173    if (arrayed) {
    174        /* Multisample surfaces with the CMS layout are not layered surfaces,
    175         * yet still have physical_depth0 > 1. Assert that we don't
    176         * accidentally reject a multisampled surface here. We should have
    177         * rejected it earlier by explicitly checking the sample count.
    178         */
    179       assert(mt->num_samples <= 1);
    180    }
    181 
    182    /* Handle the hardware restrictions...
    183     *
    184     * All GENs have the following restriction: "MCS buffer for non-MSRT is
    185     * supported only for RT formats 32bpp, 64bpp, and 128bpp."
    186     *
    187     * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
    188     * Non-MultiSampler Render Target Restrictions) Support is for
    189     * non-mip-mapped and non-array surface types only.
    190     *
    191     * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
    192     * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
    193     * surfaces are supported with MCS buffer layout with these alignments in
    194     * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
    195     *
    196     * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
    197     * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
    198     * surfaces are supported with MCS buffer layout with these alignments in
    199     * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
    200     */
    201    if (brw->gen < 8 && (mip_mapped || arrayed))
    202       return false;
    203 
    204    /* There's no point in using an MCS buffer if the surface isn't in a
    205     * renderable format.
    206     */
    207    if (!brw->format_supported_as_render_target[mt->format])
    208       return false;
    209 
    210    if (brw->gen >= 9) {
    211       mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
    212       const uint32_t brw_format = brw_format_for_mesa_format(linear_format);
    213       return isl_format_supports_lossless_compression(&brw->screen->devinfo,
    214                                                       brw_format);
    215    } else
    216       return true;
    217 }
    218 
    219 /* On Gen9 support for color buffer compression was extended to single
    220  * sampled surfaces. This is a helper considering both auxiliary buffer
    221  * type and number of samples telling if the given miptree represents
    222  * the new single sampled case - also called lossless compression.
    223  */
    224 bool
    225 intel_miptree_is_lossless_compressed(const struct brw_context *brw,
    226                                      const struct intel_mipmap_tree *mt)
    227 {
    228    /* Only available from Gen9 onwards. */
    229    if (brw->gen < 9)
    230       return false;
    231 
    232    /* Compression always requires auxiliary buffer. */
    233    if (!mt->mcs_buf)
    234       return false;
    235 
    236    /* Single sample compression is represented re-using msaa compression
    237     * layout type: "Compressed Multisampled Surfaces".
    238     */
    239    if (mt->msaa_layout != INTEL_MSAA_LAYOUT_CMS)
    240       return false;
    241 
    242    /* And finally distinguish between msaa and single sample case. */
    243    return mt->num_samples <= 1;
    244 }
    245 
    246 bool
    247 intel_miptree_supports_lossless_compressed(struct brw_context *brw,
    248                                            const struct intel_mipmap_tree *mt)
    249 {
    250    /* For now compression is only enabled for integer formats even though
    251     * there exist supported floating point formats also. This is a heuristic
    252     * decision based on current public benchmarks. In none of the cases these
    253     * formats provided any improvement but a few cases were seen to regress.
    254     * Hence these are left to to be enabled in the future when they are known
    255     * to improve things.
    256     */
    257    if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
    258       return false;
    259 
    260    /* Fast clear mechanism and lossless compression go hand in hand. */
    261    if (!intel_miptree_supports_non_msrt_fast_clear(brw, mt))
    262       return false;
    263 
    264    /* Fast clear can be also used to clear srgb surfaces by using equivalent
    265     * linear format. This trick, however, can't be extended to be used with
    266     * lossless compression and therefore a check is needed to see if the format
    267     * really is linear.
    268     */
    269    return _mesa_get_srgb_format_linear(mt->format) == mt->format;
    270 }
    271 
    272 /**
    273  * Determine depth format corresponding to a depth+stencil format,
    274  * for separate stencil.
    275  */
    276 mesa_format
    277 intel_depth_format_for_depthstencil_format(mesa_format format) {
    278    switch (format) {
    279    case MESA_FORMAT_Z24_UNORM_S8_UINT:
    280       return MESA_FORMAT_Z24_UNORM_X8_UINT;
    281    case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
    282       return MESA_FORMAT_Z_FLOAT32;
    283    default:
    284       return format;
    285    }
    286 }
    287 
    288 
    289 /**
    290  * @param for_bo Indicates that the caller is
    291  *        intel_miptree_create_for_bo(). If true, then do not create
    292  *        \c stencil_mt.
    293  */
    294 static struct intel_mipmap_tree *
    295 intel_miptree_create_layout(struct brw_context *brw,
    296                             GLenum target,
    297                             mesa_format format,
    298                             GLuint first_level,
    299                             GLuint last_level,
    300                             GLuint width0,
    301                             GLuint height0,
    302                             GLuint depth0,
    303                             GLuint num_samples,
    304                             uint32_t layout_flags)
    305 {
    306    struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
    307    if (!mt)
    308       return NULL;
    309 
    310    DBG("%s target %s format %s level %d..%d slices %d <-- %p\n", __func__,
    311        _mesa_enum_to_string(target),
    312        _mesa_get_format_name(format),
    313        first_level, last_level, depth0, mt);
    314 
    315    if (target == GL_TEXTURE_1D_ARRAY)
    316       assert(height0 == 1);
    317 
    318    mt->target = target;
    319    mt->format = format;
    320    mt->first_level = first_level;
    321    mt->last_level = last_level;
    322    mt->logical_width0 = width0;
    323    mt->logical_height0 = height0;
    324    mt->logical_depth0 = depth0;
    325    mt->aux_disable = (layout_flags & MIPTREE_LAYOUT_DISABLE_AUX) != 0 ?
    326       INTEL_AUX_DISABLE_ALL : INTEL_AUX_DISABLE_NONE;
    327    mt->aux_disable |= INTEL_AUX_DISABLE_CCS;
    328    mt->is_scanout = (layout_flags & MIPTREE_LAYOUT_FOR_SCANOUT) != 0;
    329    exec_list_make_empty(&mt->hiz_map);
    330    exec_list_make_empty(&mt->color_resolve_map);
    331    mt->cpp = _mesa_get_format_bytes(format);
    332    mt->num_samples = num_samples;
    333    mt->compressed = _mesa_is_format_compressed(format);
    334    mt->msaa_layout = INTEL_MSAA_LAYOUT_NONE;
    335    mt->refcount = 1;
    336 
    337    int depth_multiply = 1;
    338    if (num_samples > 1) {
    339       /* Adjust width/height/depth for MSAA */
    340       mt->msaa_layout = compute_msaa_layout(brw, format, mt->aux_disable);
    341       if (mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS) {
    342          /* From the Ivybridge PRM, Volume 1, Part 1, page 108:
    343           * "If the surface is multisampled and it is a depth or stencil
    344           *  surface or Multisampled Surface StorageFormat in SURFACE_STATE is
    345           *  MSFMT_DEPTH_STENCIL, WL and HL must be adjusted as follows before
    346           *  proceeding:
    347           *
    348           *  +----------------------------------------------------------------+
    349           *  | Num Multisamples |        W_l =         |        H_l =         |
    350           *  +----------------------------------------------------------------+
    351           *  |         2        | ceiling(W_l / 2) * 4 | H_l (no adjustment)  |
    352           *  |         4        | ceiling(W_l / 2) * 4 | ceiling(H_l / 2) * 4 |
    353           *  |         8        | ceiling(W_l / 2) * 8 | ceiling(H_l / 2) * 4 |
    354           *  |        16        | ceiling(W_l / 2) * 8 | ceiling(H_l / 2) * 8 |
    355           *  +----------------------------------------------------------------+
    356           * "
    357           *
    358           * Note that MSFMT_DEPTH_STENCIL just means the IMS (interleaved)
    359           * format rather than UMS/CMS (array slices).  The Sandybridge PRM,
    360           * Volume 1, Part 1, Page 111 has the same formula for 4x MSAA.
    361           *
    362           * Another more complicated explanation for these adjustments comes
    363           * from the Sandybridge PRM, volume 4, part 1, page 31:
    364           *
    365           *     "Any of the other messages (sample*, LOD, load4) used with a
    366           *      (4x) multisampled surface will in-effect sample a surface with
    367           *      double the height and width as that indicated in the surface
    368           *      state. Each pixel position on the original-sized surface is
    369           *      replaced with a 2x2 of samples with the following arrangement:
    370           *
    371           *         sample 0 sample 2
    372           *         sample 1 sample 3"
    373           *
    374           * Thus, when sampling from a multisampled texture, it behaves as
    375           * though the layout in memory for (x,y,sample) is:
    376           *
    377           *      (0,0,0) (0,0,2)   (1,0,0) (1,0,2)
    378           *      (0,0,1) (0,0,3)   (1,0,1) (1,0,3)
    379           *
    380           *      (0,1,0) (0,1,2)   (1,1,0) (1,1,2)
    381           *      (0,1,1) (0,1,3)   (1,1,1) (1,1,3)
    382           *
    383           * However, the actual layout of multisampled data in memory is:
    384           *
    385           *      (0,0,0) (1,0,0)   (0,0,1) (1,0,1)
    386           *      (0,1,0) (1,1,0)   (0,1,1) (1,1,1)
    387           *
    388           *      (0,0,2) (1,0,2)   (0,0,3) (1,0,3)
    389           *      (0,1,2) (1,1,2)   (0,1,3) (1,1,3)
    390           *
    391           * This pattern repeats for each 2x2 pixel block.
    392           *
    393           * As a result, when calculating the size of our 4-sample buffer for
    394           * an odd width or height, we have to align before scaling up because
    395           * sample 3 is in that bottom right 2x2 block.
    396           */
    397          switch (num_samples) {
    398          case 2:
    399             assert(brw->gen >= 8);
    400             width0 = ALIGN(width0, 2) * 2;
    401             height0 = ALIGN(height0, 2);
    402             break;
    403          case 4:
    404             width0 = ALIGN(width0, 2) * 2;
    405             height0 = ALIGN(height0, 2) * 2;
    406             break;
    407          case 8:
    408             width0 = ALIGN(width0, 2) * 4;
    409             height0 = ALIGN(height0, 2) * 2;
    410             break;
    411          case 16:
    412             width0 = ALIGN(width0, 2) * 4;
    413             height0 = ALIGN(height0, 2) * 4;
    414             break;
    415          default:
    416             /* num_samples should already have been quantized to 0, 1, 2, 4, 8
    417              * or 16.
    418              */
    419             unreachable("not reached");
    420          }
    421       } else {
    422          /* Non-interleaved */
    423          depth_multiply = num_samples;
    424          depth0 *= depth_multiply;
    425       }
    426    }
    427 
    428    /* Set array_layout to ALL_SLICES_AT_EACH_LOD when array_spacing_lod0 can
    429     * be used. array_spacing_lod0 is only used for non-IMS MSAA surfaces on
    430     * Gen 7 and 8. On Gen 8 and 9 this layout is not available but it is still
    431     * used on Gen8 to make it pick a qpitch value which doesn't include space
    432     * for the mipmaps. On Gen9 this is not necessary because it will
    433     * automatically pick a packed qpitch value whenever mt->first_level ==
    434     * mt->last_level.
    435     * TODO: can we use it elsewhere?
    436     * TODO: also disable this on Gen8 and pick the qpitch value like Gen9
    437     */
    438    if (brw->gen >= 9) {
    439       mt->array_layout = ALL_LOD_IN_EACH_SLICE;
    440    } else {
    441       switch (mt->msaa_layout) {
    442       case INTEL_MSAA_LAYOUT_NONE:
    443       case INTEL_MSAA_LAYOUT_IMS:
    444          mt->array_layout = ALL_LOD_IN_EACH_SLICE;
    445          break;
    446       case INTEL_MSAA_LAYOUT_UMS:
    447       case INTEL_MSAA_LAYOUT_CMS:
    448          mt->array_layout = ALL_SLICES_AT_EACH_LOD;
    449          break;
    450       }
    451    }
    452 
    453    if (target == GL_TEXTURE_CUBE_MAP)
    454       assert(depth0 == 6 * depth_multiply);
    455 
    456    mt->physical_width0 = width0;
    457    mt->physical_height0 = height0;
    458    mt->physical_depth0 = depth0;
    459 
    460    if (!(layout_flags & MIPTREE_LAYOUT_FOR_BO) &&
    461        _mesa_get_format_base_format(format) == GL_DEPTH_STENCIL &&
    462        (brw->must_use_separate_stencil ||
    463 	(brw->has_separate_stencil &&
    464          intel_miptree_wants_hiz_buffer(brw, mt)))) {
    465       uint32_t stencil_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD;
    466       if (brw->gen == 6) {
    467          stencil_flags |= MIPTREE_LAYOUT_FORCE_ALL_SLICE_AT_LOD |
    468                           MIPTREE_LAYOUT_TILING_ANY;
    469       }
    470 
    471       mt->stencil_mt = intel_miptree_create(brw,
    472                                             mt->target,
    473                                             MESA_FORMAT_S_UINT8,
    474                                             mt->first_level,
    475                                             mt->last_level,
    476                                             mt->logical_width0,
    477                                             mt->logical_height0,
    478                                             mt->logical_depth0,
    479                                             num_samples,
    480                                             stencil_flags);
    481 
    482       if (!mt->stencil_mt) {
    483 	 intel_miptree_release(&mt);
    484 	 return NULL;
    485       }
    486       mt->stencil_mt->r8stencil_needs_update = true;
    487 
    488       /* Fix up the Z miptree format for how we're splitting out separate
    489        * stencil.  Gen7 expects there to be no stencil bits in its depth buffer.
    490        */
    491       mt->format = intel_depth_format_for_depthstencil_format(mt->format);
    492       mt->cpp = 4;
    493 
    494       if (format == mt->format) {
    495          _mesa_problem(NULL, "Unknown format %s in separate stencil mt\n",
    496                        _mesa_get_format_name(mt->format));
    497       }
    498    }
    499 
    500    if (layout_flags & MIPTREE_LAYOUT_FORCE_ALL_SLICE_AT_LOD)
    501       mt->array_layout = ALL_SLICES_AT_EACH_LOD;
    502 
    503    /*
    504     * Obey HALIGN_16 constraints for Gen8 and Gen9 buffers which are
    505     * multisampled or have an AUX buffer attached to it.
    506     *
    507     * GEN  |    MSRT        | AUX_CCS_* or AUX_MCS
    508     *  -------------------------------------------
    509     *  9   |  HALIGN_16     |    HALIGN_16
    510     *  8   |  HALIGN_ANY    |    HALIGN_16
    511     *  7   |      ?         |        ?
    512     *  6   |      ?         |        ?
    513     */
    514    if (intel_miptree_supports_non_msrt_fast_clear(brw, mt)) {
    515       if (brw->gen >= 9 || (brw->gen == 8 && num_samples <= 1))
    516          layout_flags |= MIPTREE_LAYOUT_FORCE_HALIGN16;
    517    } else if (brw->gen >= 9 && num_samples > 1) {
    518       layout_flags |= MIPTREE_LAYOUT_FORCE_HALIGN16;
    519    } else {
    520       const UNUSED bool is_lossless_compressed_aux =
    521          brw->gen >= 9 && num_samples == 1 &&
    522          mt->format == MESA_FORMAT_R_UINT32;
    523 
    524       /* For now, nothing else has this requirement */
    525       assert(is_lossless_compressed_aux ||
    526              (layout_flags & MIPTREE_LAYOUT_FORCE_HALIGN16) == 0);
    527    }
    528 
    529    brw_miptree_layout(brw, mt, layout_flags);
    530 
    531    if (mt->aux_disable & INTEL_AUX_DISABLE_MCS)
    532       assert(mt->msaa_layout != INTEL_MSAA_LAYOUT_CMS);
    533 
    534    return mt;
    535 }
    536 
    537 
    538 /**
    539  * Choose an appropriate uncompressed format for a requested
    540  * compressed format, if unsupported.
    541  */
    542 mesa_format
    543 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
    544 {
    545    /* No need to lower ETC formats on these platforms,
    546     * they are supported natively.
    547     */
    548    if (brw->gen >= 8 || brw->is_baytrail)
    549       return format;
    550 
    551    switch (format) {
    552    case MESA_FORMAT_ETC1_RGB8:
    553       return MESA_FORMAT_R8G8B8X8_UNORM;
    554    case MESA_FORMAT_ETC2_RGB8:
    555       return MESA_FORMAT_R8G8B8X8_UNORM;
    556    case MESA_FORMAT_ETC2_SRGB8:
    557    case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
    558    case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
    559       return MESA_FORMAT_B8G8R8A8_SRGB;
    560    case MESA_FORMAT_ETC2_RGBA8_EAC:
    561    case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
    562       return MESA_FORMAT_R8G8B8A8_UNORM;
    563    case MESA_FORMAT_ETC2_R11_EAC:
    564       return MESA_FORMAT_R_UNORM16;
    565    case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
    566       return MESA_FORMAT_R_SNORM16;
    567    case MESA_FORMAT_ETC2_RG11_EAC:
    568       return MESA_FORMAT_R16G16_UNORM;
    569    case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
    570       return MESA_FORMAT_R16G16_SNORM;
    571    default:
    572       /* Non ETC1 / ETC2 format */
    573       return format;
    574    }
    575 }
    576 
    577 /* This function computes Yf/Ys tiled bo size, alignment and pitch. */
    578 static unsigned long
    579 intel_get_yf_ys_bo_size(struct intel_mipmap_tree *mt, unsigned *alignment,
    580                         unsigned long *pitch)
    581 {
    582    uint32_t tile_width, tile_height;
    583    unsigned long stride, size, aligned_y;
    584 
    585    assert(mt->tr_mode != INTEL_MIPTREE_TRMODE_NONE);
    586    intel_get_tile_dims(mt->tiling, mt->tr_mode, mt->cpp,
    587                        &tile_width, &tile_height);
    588 
    589    aligned_y = ALIGN(mt->total_height, tile_height);
    590    stride = mt->total_width * mt->cpp;
    591    stride = ALIGN(stride, tile_width);
    592    size = stride * aligned_y;
    593 
    594    if (mt->tr_mode == INTEL_MIPTREE_TRMODE_YF) {
    595       assert(size % 4096 == 0);
    596       *alignment = 4096;
    597    } else {
    598       assert(size % (64 * 1024) == 0);
    599       *alignment = 64 * 1024;
    600    }
    601    *pitch = stride;
    602    return size;
    603 }
    604 
    605 static struct intel_mipmap_tree *
    606 miptree_create(struct brw_context *brw,
    607                GLenum target,
    608                mesa_format format,
    609                GLuint first_level,
    610                GLuint last_level,
    611                GLuint width0,
    612                GLuint height0,
    613                GLuint depth0,
    614                GLuint num_samples,
    615                uint32_t layout_flags)
    616 {
    617    struct intel_mipmap_tree *mt;
    618    mesa_format tex_format = format;
    619    mesa_format etc_format = MESA_FORMAT_NONE;
    620    uint32_t alloc_flags = 0;
    621 
    622    format = intel_lower_compressed_format(brw, format);
    623 
    624    etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
    625 
    626    assert((layout_flags & MIPTREE_LAYOUT_FOR_BO) == 0);
    627    mt = intel_miptree_create_layout(brw, target, format,
    628                                     first_level, last_level, width0,
    629                                     height0, depth0, num_samples,
    630                                     layout_flags);
    631    /*
    632     * pitch == 0 || height == 0  indicates the null texture
    633     */
    634    if (!mt || !mt->total_width || !mt->total_height) {
    635       intel_miptree_release(&mt);
    636       return NULL;
    637    }
    638 
    639    if (mt->tiling == (I915_TILING_Y | I915_TILING_X))
    640       mt->tiling = I915_TILING_Y;
    641 
    642    if (layout_flags & MIPTREE_LAYOUT_ACCELERATED_UPLOAD)
    643       alloc_flags |= BO_ALLOC_FOR_RENDER;
    644 
    645    unsigned long pitch;
    646    mt->etc_format = etc_format;
    647 
    648    if (mt->tr_mode != INTEL_MIPTREE_TRMODE_NONE) {
    649       unsigned alignment = 0;
    650       unsigned long size;
    651       size = intel_get_yf_ys_bo_size(mt, &alignment, &pitch);
    652       assert(size);
    653       mt->bo = drm_intel_bo_alloc_for_render(brw->bufmgr, "miptree",
    654                                              size, alignment);
    655    } else {
    656       if (format == MESA_FORMAT_S_UINT8) {
    657          /* Align to size of W tile, 64x64. */
    658          mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree",
    659                                            ALIGN(mt->total_width, 64),
    660                                            ALIGN(mt->total_height, 64),
    661                                            mt->cpp, &mt->tiling, &pitch,
    662                                            alloc_flags);
    663       } else {
    664          mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree",
    665                                            mt->total_width, mt->total_height,
    666                                            mt->cpp, &mt->tiling, &pitch,
    667                                            alloc_flags);
    668       }
    669    }
    670 
    671    mt->pitch = pitch;
    672 
    673    return mt;
    674 }
    675 
    676 struct intel_mipmap_tree *
    677 intel_miptree_create(struct brw_context *brw,
    678                      GLenum target,
    679                      mesa_format format,
    680                      GLuint first_level,
    681                      GLuint last_level,
    682                      GLuint width0,
    683                      GLuint height0,
    684                      GLuint depth0,
    685                      GLuint num_samples,
    686                      uint32_t layout_flags)
    687 {
    688    struct intel_mipmap_tree *mt = miptree_create(
    689                                      brw, target, format,
    690                                      first_level, last_level,
    691                                      width0, height0, depth0, num_samples,
    692                                      layout_flags);
    693 
    694    /* If the BO is too large to fit in the aperture, we need to use the
    695     * BLT engine to support it.  Prior to Sandybridge, the BLT paths can't
    696     * handle Y-tiling, so we need to fall back to X.
    697     */
    698    if (brw->gen < 6 && mt->bo->size >= brw->max_gtt_map_object_size &&
    699        mt->tiling == I915_TILING_Y) {
    700       unsigned long pitch = mt->pitch;
    701       const uint32_t alloc_flags =
    702          (layout_flags & MIPTREE_LAYOUT_ACCELERATED_UPLOAD) ?
    703          BO_ALLOC_FOR_RENDER : 0;
    704       perf_debug("%dx%d miptree larger than aperture; falling back to X-tiled\n",
    705                  mt->total_width, mt->total_height);
    706 
    707       mt->tiling = I915_TILING_X;
    708       drm_intel_bo_unreference(mt->bo);
    709       mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree",
    710                                   mt->total_width, mt->total_height, mt->cpp,
    711                                   &mt->tiling, &pitch, alloc_flags);
    712       mt->pitch = pitch;
    713    }
    714 
    715    mt->offset = 0;
    716 
    717    if (!mt->bo) {
    718        intel_miptree_release(&mt);
    719        return NULL;
    720    }
    721 
    722 
    723    if (mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) {
    724       assert(mt->num_samples > 1);
    725       if (!intel_miptree_alloc_mcs(brw, mt, num_samples)) {
    726          intel_miptree_release(&mt);
    727          return NULL;
    728       }
    729    }
    730 
    731    /* If this miptree is capable of supporting fast color clears, set
    732     * fast_clear_state appropriately to ensure that fast clears will occur.
    733     * Allocation of the MCS miptree will be deferred until the first fast
    734     * clear actually occurs or when compressed single sampled buffer is
    735     * written by the GPU for the first time.
    736     */
    737    if (intel_tiling_supports_non_msrt_mcs(brw, mt->tiling) &&
    738        intel_miptree_supports_non_msrt_fast_clear(brw, mt)) {
    739       mt->aux_disable &= ~INTEL_AUX_DISABLE_CCS;
    740       assert(brw->gen < 8 || mt->halign == 16 || num_samples <= 1);
    741 
    742       /* On Gen9+ clients are not currently capable of consuming compressed
    743        * single-sampled buffers. Disabling compression allows us to skip
    744        * resolves.
    745        */
    746       const bool lossless_compression_disabled = INTEL_DEBUG & DEBUG_NO_RBC;
    747       const bool is_lossless_compressed =
    748          unlikely(!lossless_compression_disabled) &&
    749          brw->gen >= 9 && !mt->is_scanout &&
    750          intel_miptree_supports_lossless_compressed(brw, mt);
    751 
    752       if (is_lossless_compressed) {
    753          intel_miptree_alloc_non_msrt_mcs(brw, mt, is_lossless_compressed);
    754       }
    755    }
    756 
    757    return mt;
    758 }
    759 
    760 struct intel_mipmap_tree *
    761 intel_miptree_create_for_bo(struct brw_context *brw,
    762                             drm_intel_bo *bo,
    763                             mesa_format format,
    764                             uint32_t offset,
    765                             uint32_t width,
    766                             uint32_t height,
    767                             uint32_t depth,
    768                             int pitch,
    769                             uint32_t layout_flags)
    770 {
    771    struct intel_mipmap_tree *mt;
    772    uint32_t tiling, swizzle;
    773    GLenum target;
    774 
    775    drm_intel_bo_get_tiling(bo, &tiling, &swizzle);
    776 
    777    /* Nothing will be able to use this miptree with the BO if the offset isn't
    778     * aligned.
    779     */
    780    if (tiling != I915_TILING_NONE)
    781       assert(offset % 4096 == 0);
    782 
    783    /* miptrees can't handle negative pitch.  If you need flipping of images,
    784     * that's outside of the scope of the mt.
    785     */
    786    assert(pitch >= 0);
    787 
    788    target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
    789 
    790    /* The BO already has a tiling format and we shouldn't confuse the lower
    791     * layers by making it try to find a tiling format again.
    792     */
    793    assert((layout_flags & MIPTREE_LAYOUT_TILING_ANY) == 0);
    794    assert((layout_flags & MIPTREE_LAYOUT_TILING_NONE) == 0);
    795 
    796    layout_flags |= MIPTREE_LAYOUT_FOR_BO;
    797    mt = intel_miptree_create_layout(brw, target, format,
    798                                     0, 0,
    799                                     width, height, depth, 0,
    800                                     layout_flags);
    801    if (!mt)
    802       return NULL;
    803 
    804    drm_intel_bo_reference(bo);
    805    mt->bo = bo;
    806    mt->pitch = pitch;
    807    mt->offset = offset;
    808    mt->tiling = tiling;
    809 
    810    return mt;
    811 }
    812 
    813 /**
    814  * For a singlesample renderbuffer, this simply wraps the given BO with a
    815  * miptree.
    816  *
    817  * For a multisample renderbuffer, this wraps the window system's
    818  * (singlesample) BO with a singlesample miptree attached to the
    819  * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
    820  * that will contain the actual rendering (which is lazily resolved to
    821  * irb->singlesample_mt).
    822  */
    823 void
    824 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
    825                                          struct intel_renderbuffer *irb,
    826                                          drm_intel_bo *bo,
    827                                          uint32_t width, uint32_t height,
    828                                          uint32_t pitch)
    829 {
    830    struct intel_mipmap_tree *singlesample_mt = NULL;
    831    struct intel_mipmap_tree *multisample_mt = NULL;
    832    struct gl_renderbuffer *rb = &irb->Base.Base;
    833    mesa_format format = rb->Format;
    834    int num_samples = rb->NumSamples;
    835 
    836    /* Only the front and back buffers, which are color buffers, are allocated
    837     * through the image loader.
    838     */
    839    assert(_mesa_get_format_base_format(format) == GL_RGB ||
    840           _mesa_get_format_base_format(format) == GL_RGBA);
    841 
    842    singlesample_mt = intel_miptree_create_for_bo(intel,
    843                                                  bo,
    844                                                  format,
    845                                                  0,
    846                                                  width,
    847                                                  height,
    848                                                  1,
    849                                                  pitch,
    850                                                  MIPTREE_LAYOUT_FOR_SCANOUT);
    851    if (!singlesample_mt)
    852       goto fail;
    853 
    854    /* If this miptree is capable of supporting fast color clears, set
    855     * mcs_state appropriately to ensure that fast clears will occur.
    856     * Allocation of the MCS miptree will be deferred until the first fast
    857     * clear actually occurs.
    858     */
    859    if (intel_tiling_supports_non_msrt_mcs(intel, singlesample_mt->tiling) &&
    860        intel_miptree_supports_non_msrt_fast_clear(intel, singlesample_mt)) {
    861       singlesample_mt->aux_disable &= ~INTEL_AUX_DISABLE_CCS;
    862    }
    863 
    864    if (num_samples == 0) {
    865       intel_miptree_release(&irb->mt);
    866       irb->mt = singlesample_mt;
    867 
    868       assert(!irb->singlesample_mt);
    869    } else {
    870       intel_miptree_release(&irb->singlesample_mt);
    871       irb->singlesample_mt = singlesample_mt;
    872 
    873       if (!irb->mt ||
    874           irb->mt->logical_width0 != width ||
    875           irb->mt->logical_height0 != height) {
    876          multisample_mt = intel_miptree_create_for_renderbuffer(intel,
    877                                                                 format,
    878                                                                 width,
    879                                                                 height,
    880                                                                 num_samples);
    881          if (!multisample_mt)
    882             goto fail;
    883 
    884          irb->need_downsample = false;
    885          intel_miptree_release(&irb->mt);
    886          irb->mt = multisample_mt;
    887       }
    888    }
    889    return;
    890 
    891 fail:
    892    intel_miptree_release(&irb->singlesample_mt);
    893    intel_miptree_release(&irb->mt);
    894    return;
    895 }
    896 
    897 struct intel_mipmap_tree*
    898 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
    899                                       mesa_format format,
    900                                       uint32_t width,
    901                                       uint32_t height,
    902                                       uint32_t num_samples)
    903 {
    904    struct intel_mipmap_tree *mt;
    905    uint32_t depth = 1;
    906    bool ok;
    907    GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
    908    const uint32_t layout_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD |
    909                                  MIPTREE_LAYOUT_TILING_ANY |
    910                                  MIPTREE_LAYOUT_FOR_SCANOUT;
    911 
    912    mt = intel_miptree_create(brw, target, format, 0, 0,
    913                              width, height, depth, num_samples,
    914                              layout_flags);
    915    if (!mt)
    916       goto fail;
    917 
    918    if (intel_miptree_wants_hiz_buffer(brw, mt)) {
    919       ok = intel_miptree_alloc_hiz(brw, mt);
    920       if (!ok)
    921          goto fail;
    922    }
    923 
    924    return mt;
    925 
    926 fail:
    927    intel_miptree_release(&mt);
    928    return NULL;
    929 }
    930 
    931 void
    932 intel_miptree_reference(struct intel_mipmap_tree **dst,
    933                         struct intel_mipmap_tree *src)
    934 {
    935    if (*dst == src)
    936       return;
    937 
    938    intel_miptree_release(dst);
    939 
    940    if (src) {
    941       src->refcount++;
    942       DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
    943    }
    944 
    945    *dst = src;
    946 }
    947 
    948 static void
    949 intel_miptree_hiz_buffer_free(struct intel_miptree_hiz_buffer *hiz_buf)
    950 {
    951    if (hiz_buf == NULL)
    952       return;
    953 
    954    if (hiz_buf->mt)
    955       intel_miptree_release(&hiz_buf->mt);
    956    else
    957       drm_intel_bo_unreference(hiz_buf->aux_base.bo);
    958 
    959    free(hiz_buf);
    960 }
    961 
    962 void
    963 intel_miptree_release(struct intel_mipmap_tree **mt)
    964 {
    965    if (!*mt)
    966       return;
    967 
    968    DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
    969    if (--(*mt)->refcount <= 0) {
    970       GLuint i;
    971 
    972       DBG("%s deleting %p\n", __func__, *mt);
    973 
    974       drm_intel_bo_unreference((*mt)->bo);
    975       intel_miptree_release(&(*mt)->stencil_mt);
    976       intel_miptree_release(&(*mt)->r8stencil_mt);
    977       intel_miptree_hiz_buffer_free((*mt)->hiz_buf);
    978       if ((*mt)->mcs_buf) {
    979          drm_intel_bo_unreference((*mt)->mcs_buf->bo);
    980          free((*mt)->mcs_buf);
    981       }
    982       intel_resolve_map_clear(&(*mt)->hiz_map);
    983       intel_resolve_map_clear(&(*mt)->color_resolve_map);
    984 
    985       intel_miptree_release(&(*mt)->plane[0]);
    986       intel_miptree_release(&(*mt)->plane[1]);
    987 
    988       for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
    989 	 free((*mt)->level[i].slice);
    990       }
    991 
    992       free(*mt);
    993    }
    994    *mt = NULL;
    995 }
    996 
    997 
    998 void
    999 intel_get_image_dims(struct gl_texture_image *image,
   1000                      int *width, int *height, int *depth)
   1001 {
   1002    switch (image->TexObject->Target) {
   1003    case GL_TEXTURE_1D_ARRAY:
   1004       /* For a 1D Array texture the OpenGL API will treat the image height as
   1005        * the number of array slices. For Intel hardware, we treat the 1D array
   1006        * as a 2D Array with a height of 1. So, here we want to swap image
   1007        * height and depth.
   1008        */
   1009       assert(image->Depth == 1);
   1010       *width = image->Width;
   1011       *height = 1;
   1012       *depth = image->Height;
   1013       break;
   1014    case GL_TEXTURE_CUBE_MAP:
   1015       /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
   1016        * though we really have 6 slices.
   1017        */
   1018       assert(image->Depth == 1);
   1019       *width = image->Width;
   1020       *height = image->Height;
   1021       *depth = 6;
   1022       break;
   1023    default:
   1024       *width = image->Width;
   1025       *height = image->Height;
   1026       *depth = image->Depth;
   1027       break;
   1028    }
   1029 }
   1030 
   1031 /**
   1032  * Can the image be pulled into a unified mipmap tree?  This mirrors
   1033  * the completeness test in a lot of ways.
   1034  *
   1035  * Not sure whether I want to pass gl_texture_image here.
   1036  */
   1037 bool
   1038 intel_miptree_match_image(struct intel_mipmap_tree *mt,
   1039                           struct gl_texture_image *image)
   1040 {
   1041    struct intel_texture_image *intelImage = intel_texture_image(image);
   1042    GLuint level = intelImage->base.Base.Level;
   1043    int width, height, depth;
   1044 
   1045    /* glTexImage* choose the texture object based on the target passed in, and
   1046     * objects can't change targets over their lifetimes, so this should be
   1047     * true.
   1048     */
   1049    assert(image->TexObject->Target == mt->target);
   1050 
   1051    mesa_format mt_format = mt->format;
   1052    if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
   1053       mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
   1054    if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
   1055       mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
   1056    if (mt->etc_format != MESA_FORMAT_NONE)
   1057       mt_format = mt->etc_format;
   1058 
   1059    if (image->TexFormat != mt_format)
   1060       return false;
   1061 
   1062    intel_get_image_dims(image, &width, &height, &depth);
   1063 
   1064    if (mt->target == GL_TEXTURE_CUBE_MAP)
   1065       depth = 6;
   1066 
   1067    int level_depth = mt->level[level].depth;
   1068    if (mt->num_samples > 1) {
   1069       switch (mt->msaa_layout) {
   1070       case INTEL_MSAA_LAYOUT_NONE:
   1071       case INTEL_MSAA_LAYOUT_IMS:
   1072          break;
   1073       case INTEL_MSAA_LAYOUT_UMS:
   1074       case INTEL_MSAA_LAYOUT_CMS:
   1075          level_depth /= mt->num_samples;
   1076          break;
   1077       }
   1078    }
   1079 
   1080    /* Test image dimensions against the base level image adjusted for
   1081     * minification.  This will also catch images not present in the
   1082     * tree, changed targets, etc.
   1083     */
   1084    if (width != minify(mt->logical_width0, level - mt->first_level) ||
   1085        height != minify(mt->logical_height0, level - mt->first_level) ||
   1086        depth != level_depth) {
   1087       return false;
   1088    }
   1089 
   1090    if (image->NumSamples != mt->num_samples)
   1091       return false;
   1092 
   1093    return true;
   1094 }
   1095 
   1096 
   1097 void
   1098 intel_miptree_set_level_info(struct intel_mipmap_tree *mt,
   1099 			     GLuint level,
   1100 			     GLuint x, GLuint y, GLuint d)
   1101 {
   1102    mt->level[level].depth = d;
   1103    mt->level[level].level_x = x;
   1104    mt->level[level].level_y = y;
   1105 
   1106    DBG("%s level %d, depth %d, offset %d,%d\n", __func__,
   1107        level, d, x, y);
   1108 
   1109    assert(mt->level[level].slice == NULL);
   1110 
   1111    mt->level[level].slice = calloc(d, sizeof(*mt->level[0].slice));
   1112    mt->level[level].slice[0].x_offset = mt->level[level].level_x;
   1113    mt->level[level].slice[0].y_offset = mt->level[level].level_y;
   1114 }
   1115 
   1116 
   1117 void
   1118 intel_miptree_set_image_offset(struct intel_mipmap_tree *mt,
   1119 			       GLuint level, GLuint img,
   1120 			       GLuint x, GLuint y)
   1121 {
   1122    if (img == 0 && level == 0)
   1123       assert(x == 0 && y == 0);
   1124 
   1125    assert(img < mt->level[level].depth);
   1126 
   1127    mt->level[level].slice[img].x_offset = mt->level[level].level_x + x;
   1128    mt->level[level].slice[img].y_offset = mt->level[level].level_y + y;
   1129 
   1130    DBG("%s level %d img %d pos %d,%d\n",
   1131        __func__, level, img,
   1132        mt->level[level].slice[img].x_offset,
   1133        mt->level[level].slice[img].y_offset);
   1134 }
   1135 
   1136 void
   1137 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
   1138 			       GLuint level, GLuint slice,
   1139 			       GLuint *x, GLuint *y)
   1140 {
   1141    assert(slice < mt->level[level].depth);
   1142 
   1143    *x = mt->level[level].slice[slice].x_offset;
   1144    *y = mt->level[level].slice[slice].y_offset;
   1145 }
   1146 
   1147 
   1148 /**
   1149  * This function computes the tile_w (in bytes) and tile_h (in rows) of
   1150  * different tiling patterns. If the BO is untiled, tile_w is set to cpp
   1151  * and tile_h is set to 1.
   1152  */
   1153 void
   1154 intel_get_tile_dims(uint32_t tiling, uint32_t tr_mode, uint32_t cpp,
   1155                     uint32_t *tile_w, uint32_t *tile_h)
   1156 {
   1157    if (tr_mode == INTEL_MIPTREE_TRMODE_NONE) {
   1158       switch (tiling) {
   1159       case I915_TILING_X:
   1160          *tile_w = 512;
   1161          *tile_h = 8;
   1162          break;
   1163       case I915_TILING_Y:
   1164          *tile_w = 128;
   1165          *tile_h = 32;
   1166          break;
   1167       case I915_TILING_NONE:
   1168          *tile_w = cpp;
   1169          *tile_h = 1;
   1170          break;
   1171       default:
   1172          unreachable("not reached");
   1173       }
   1174    } else {
   1175       uint32_t aspect_ratio = 1;
   1176       assert(_mesa_is_pow_two(cpp));
   1177 
   1178       switch (cpp) {
   1179       case 1:
   1180          *tile_h = 64;
   1181          break;
   1182       case 2:
   1183       case 4:
   1184          *tile_h = 32;
   1185          break;
   1186       case 8:
   1187       case 16:
   1188          *tile_h = 16;
   1189          break;
   1190       default:
   1191          unreachable("not reached");
   1192       }
   1193 
   1194       if (cpp == 2 || cpp == 8)
   1195          aspect_ratio = 2;
   1196 
   1197       if (tr_mode == INTEL_MIPTREE_TRMODE_YS)
   1198          *tile_h *= 4;
   1199 
   1200       *tile_w = *tile_h * aspect_ratio * cpp;
   1201    }
   1202 }
   1203 
   1204 
   1205 /**
   1206  * This function computes masks that may be used to select the bits of the X
   1207  * and Y coordinates that indicate the offset within a tile.  If the BO is
   1208  * untiled, the masks are set to 0.
   1209  */
   1210 void
   1211 intel_get_tile_masks(uint32_t tiling, uint32_t tr_mode, uint32_t cpp,
   1212                      uint32_t *mask_x, uint32_t *mask_y)
   1213 {
   1214    uint32_t tile_w_bytes, tile_h;
   1215 
   1216    intel_get_tile_dims(tiling, tr_mode, cpp, &tile_w_bytes, &tile_h);
   1217 
   1218    *mask_x = tile_w_bytes / cpp - 1;
   1219    *mask_y = tile_h - 1;
   1220 }
   1221 
   1222 /**
   1223  * Compute the offset (in bytes) from the start of the BO to the given x
   1224  * and y coordinate.  For tiled BOs, caller must ensure that x and y are
   1225  * multiples of the tile size.
   1226  */
   1227 uint32_t
   1228 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
   1229                                  uint32_t x, uint32_t y)
   1230 {
   1231    int cpp = mt->cpp;
   1232    uint32_t pitch = mt->pitch;
   1233    uint32_t tiling = mt->tiling;
   1234 
   1235    switch (tiling) {
   1236    default:
   1237       unreachable("not reached");
   1238    case I915_TILING_NONE:
   1239       return y * pitch + x * cpp;
   1240    case I915_TILING_X:
   1241       assert((x % (512 / cpp)) == 0);
   1242       assert((y % 8) == 0);
   1243       return y * pitch + x / (512 / cpp) * 4096;
   1244    case I915_TILING_Y:
   1245       assert((x % (128 / cpp)) == 0);
   1246       assert((y % 32) == 0);
   1247       return y * pitch + x / (128 / cpp) * 4096;
   1248    }
   1249 }
   1250 
   1251 /**
   1252  * Rendering with tiled buffers requires that the base address of the buffer
   1253  * be aligned to a page boundary.  For renderbuffers, and sometimes with
   1254  * textures, we may want the surface to point at a texture image level that
   1255  * isn't at a page boundary.
   1256  *
   1257  * This function returns an appropriately-aligned base offset
   1258  * according to the tiling restrictions, plus any required x/y offset
   1259  * from there.
   1260  */
   1261 uint32_t
   1262 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
   1263                                GLuint level, GLuint slice,
   1264                                uint32_t *tile_x,
   1265                                uint32_t *tile_y)
   1266 {
   1267    uint32_t x, y;
   1268    uint32_t mask_x, mask_y;
   1269 
   1270    intel_get_tile_masks(mt->tiling, mt->tr_mode, mt->cpp, &mask_x, &mask_y);
   1271    intel_miptree_get_image_offset(mt, level, slice, &x, &y);
   1272 
   1273    *tile_x = x & mask_x;
   1274    *tile_y = y & mask_y;
   1275 
   1276    return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
   1277 }
   1278 
   1279 static void
   1280 intel_miptree_copy_slice_sw(struct brw_context *brw,
   1281                             struct intel_mipmap_tree *dst_mt,
   1282                             struct intel_mipmap_tree *src_mt,
   1283                             int level,
   1284                             int slice,
   1285                             int width,
   1286                             int height)
   1287 {
   1288    void *src, *dst;
   1289    ptrdiff_t src_stride, dst_stride;
   1290    int cpp = dst_mt->cpp;
   1291 
   1292    intel_miptree_map(brw, src_mt,
   1293                      level, slice,
   1294                      0, 0,
   1295                      width, height,
   1296                      GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
   1297                      &src, &src_stride);
   1298 
   1299    intel_miptree_map(brw, dst_mt,
   1300                      level, slice,
   1301                      0, 0,
   1302                      width, height,
   1303                      GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
   1304                      BRW_MAP_DIRECT_BIT,
   1305                      &dst, &dst_stride);
   1306 
   1307    DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
   1308        _mesa_get_format_name(src_mt->format),
   1309        src_mt, src, src_stride,
   1310        _mesa_get_format_name(dst_mt->format),
   1311        dst_mt, dst, dst_stride,
   1312        width, height);
   1313 
   1314    int row_size = cpp * width;
   1315    if (src_stride == row_size &&
   1316        dst_stride == row_size) {
   1317       memcpy(dst, src, row_size * height);
   1318    } else {
   1319       for (int i = 0; i < height; i++) {
   1320          memcpy(dst, src, row_size);
   1321          dst += dst_stride;
   1322          src += src_stride;
   1323       }
   1324    }
   1325 
   1326    intel_miptree_unmap(brw, dst_mt, level, slice);
   1327    intel_miptree_unmap(brw, src_mt, level, slice);
   1328 
   1329    /* Don't forget to copy the stencil data over, too.  We could have skipped
   1330     * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
   1331     * shuffling the two data sources in/out of temporary storage instead of
   1332     * the direct mapping we get this way.
   1333     */
   1334    if (dst_mt->stencil_mt) {
   1335       assert(src_mt->stencil_mt);
   1336       intel_miptree_copy_slice_sw(brw, dst_mt->stencil_mt, src_mt->stencil_mt,
   1337                                   level, slice, width, height);
   1338    }
   1339 }
   1340 
   1341 static void
   1342 intel_miptree_copy_slice(struct brw_context *brw,
   1343 			 struct intel_mipmap_tree *dst_mt,
   1344 			 struct intel_mipmap_tree *src_mt,
   1345 			 int level,
   1346 			 int face,
   1347 			 int depth)
   1348 
   1349 {
   1350    mesa_format format = src_mt->format;
   1351    uint32_t width = minify(src_mt->physical_width0, level - src_mt->first_level);
   1352    uint32_t height = minify(src_mt->physical_height0, level - src_mt->first_level);
   1353    int slice;
   1354 
   1355    if (face > 0)
   1356       slice = face;
   1357    else
   1358       slice = depth;
   1359 
   1360    assert(depth < src_mt->level[level].depth);
   1361    assert(src_mt->format == dst_mt->format);
   1362 
   1363    if (dst_mt->compressed) {
   1364       unsigned int i, j;
   1365       _mesa_get_format_block_size(dst_mt->format, &i, &j);
   1366       height = ALIGN_NPOT(height, j) / j;
   1367       width = ALIGN_NPOT(width, i) / i;
   1368    }
   1369 
   1370    /* If it's a packed depth/stencil buffer with separate stencil, the blit
   1371     * below won't apply since we can't do the depth's Y tiling or the
   1372     * stencil's W tiling in the blitter.
   1373     */
   1374    if (src_mt->stencil_mt) {
   1375       intel_miptree_copy_slice_sw(brw,
   1376                                   dst_mt, src_mt,
   1377                                   level, slice,
   1378                                   width, height);
   1379       return;
   1380    }
   1381 
   1382    uint32_t dst_x, dst_y, src_x, src_y;
   1383    intel_miptree_get_image_offset(dst_mt, level, slice, &dst_x, &dst_y);
   1384    intel_miptree_get_image_offset(src_mt, level, slice, &src_x, &src_y);
   1385 
   1386    DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
   1387        _mesa_get_format_name(src_mt->format),
   1388        src_mt, src_x, src_y, src_mt->pitch,
   1389        _mesa_get_format_name(dst_mt->format),
   1390        dst_mt, dst_x, dst_y, dst_mt->pitch,
   1391        width, height);
   1392 
   1393    if (!intel_miptree_blit(brw,
   1394                            src_mt, level, slice, 0, 0, false,
   1395                            dst_mt, level, slice, 0, 0, false,
   1396                            width, height, GL_COPY)) {
   1397       perf_debug("miptree validate blit for %s failed\n",
   1398                  _mesa_get_format_name(format));
   1399 
   1400       intel_miptree_copy_slice_sw(brw, dst_mt, src_mt, level, slice,
   1401                                   width, height);
   1402    }
   1403 }
   1404 
   1405 /**
   1406  * Copies the image's current data to the given miptree, and associates that
   1407  * miptree with the image.
   1408  *
   1409  * If \c invalidate is true, then the actual image data does not need to be
   1410  * copied, but the image still needs to be associated to the new miptree (this
   1411  * is set to true if we're about to clear the image).
   1412  */
   1413 void
   1414 intel_miptree_copy_teximage(struct brw_context *brw,
   1415 			    struct intel_texture_image *intelImage,
   1416 			    struct intel_mipmap_tree *dst_mt,
   1417                             bool invalidate)
   1418 {
   1419    struct intel_mipmap_tree *src_mt = intelImage->mt;
   1420    struct intel_texture_object *intel_obj =
   1421       intel_texture_object(intelImage->base.Base.TexObject);
   1422    int level = intelImage->base.Base.Level;
   1423    int face = intelImage->base.Base.Face;
   1424 
   1425    GLuint depth;
   1426    if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY)
   1427       depth = intelImage->base.Base.Height;
   1428    else
   1429       depth = intelImage->base.Base.Depth;
   1430 
   1431    if (!invalidate) {
   1432       for (int slice = 0; slice < depth; slice++) {
   1433          intel_miptree_copy_slice(brw, dst_mt, src_mt, level, face, slice);
   1434       }
   1435    }
   1436 
   1437    intel_miptree_reference(&intelImage->mt, dst_mt);
   1438    intel_obj->needs_validate = true;
   1439 }
   1440 
   1441 static void
   1442 intel_miptree_init_mcs(struct brw_context *brw,
   1443                        struct intel_mipmap_tree *mt,
   1444                        int init_value)
   1445 {
   1446    assert(mt->mcs_buf != NULL);
   1447 
   1448    /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
   1449     *
   1450     *     When MCS buffer is enabled and bound to MSRT, it is required that it
   1451     *     is cleared prior to any rendering.
   1452     *
   1453     * Since we don't use the MCS buffer for any purpose other than rendering,
   1454     * it makes sense to just clear it immediately upon allocation.
   1455     *
   1456     * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
   1457     */
   1458    const int ret = brw_bo_map_gtt(brw, mt->mcs_buf->bo, "miptree");
   1459    if (unlikely(ret)) {
   1460       fprintf(stderr, "Failed to map mcs buffer into GTT\n");
   1461       drm_intel_bo_unreference(mt->mcs_buf->bo);
   1462       free(mt->mcs_buf);
   1463       return;
   1464    }
   1465    void *data = mt->mcs_buf->bo->virtual;
   1466    memset(data, init_value, mt->mcs_buf->size);
   1467    drm_intel_bo_unmap(mt->mcs_buf->bo);
   1468 }
   1469 
   1470 static struct intel_miptree_aux_buffer *
   1471 intel_mcs_miptree_buf_create(struct brw_context *brw,
   1472                              struct intel_mipmap_tree *mt,
   1473                              mesa_format format,
   1474                              unsigned mcs_width,
   1475                              unsigned mcs_height,
   1476                              uint32_t layout_flags)
   1477 {
   1478    struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
   1479    struct intel_mipmap_tree *temp_mt;
   1480 
   1481    if (!buf)
   1482       return NULL;
   1483 
   1484    /* From the Ivy Bridge PRM, Vol4 Part1 p76, "MCS Base Address":
   1485     *
   1486     *     "The MCS surface must be stored as Tile Y."
   1487     */
   1488    layout_flags |= MIPTREE_LAYOUT_TILING_Y;
   1489    temp_mt = miptree_create(brw,
   1490                             mt->target,
   1491                             format,
   1492                             mt->first_level,
   1493                             mt->last_level,
   1494                             mcs_width,
   1495                             mcs_height,
   1496                             mt->logical_depth0,
   1497                             0 /* num_samples */,
   1498                             layout_flags);
   1499    if (!temp_mt) {
   1500       free(buf);
   1501       return NULL;
   1502    }
   1503 
   1504    buf->bo = temp_mt->bo;
   1505    buf->offset = temp_mt->offset;
   1506    buf->size = temp_mt->total_height * temp_mt->pitch;
   1507    buf->pitch = temp_mt->pitch;
   1508    buf->qpitch = temp_mt->qpitch;
   1509 
   1510    /* Just hang on to the BO which backs the AUX buffer; the rest of the miptree
   1511     * structure should go away. We use miptree create simply as a means to make
   1512     * sure all the constraints for the buffer are satisfied.
   1513     */
   1514    drm_intel_bo_reference(temp_mt->bo);
   1515    intel_miptree_release(&temp_mt);
   1516 
   1517    return buf;
   1518 }
   1519 
   1520 static bool
   1521 intel_miptree_alloc_mcs(struct brw_context *brw,
   1522                         struct intel_mipmap_tree *mt,
   1523                         GLuint num_samples)
   1524 {
   1525    assert(brw->gen >= 7); /* MCS only used on Gen7+ */
   1526    assert(mt->mcs_buf == NULL);
   1527    assert((mt->aux_disable & INTEL_AUX_DISABLE_MCS) == 0);
   1528 
   1529    /* Choose the correct format for the MCS buffer.  All that really matters
   1530     * is that we allocate the right buffer size, since we'll always be
   1531     * accessing this miptree using MCS-specific hardware mechanisms, which
   1532     * infer the correct format based on num_samples.
   1533     */
   1534    mesa_format format;
   1535    switch (num_samples) {
   1536    case 2:
   1537    case 4:
   1538       /* 8 bits/pixel are required for MCS data when using 4x MSAA (2 bits for
   1539        * each sample).
   1540        */
   1541       format = MESA_FORMAT_R_UNORM8;
   1542       break;
   1543    case 8:
   1544       /* 32 bits/pixel are required for MCS data when using 8x MSAA (3 bits
   1545        * for each sample, plus 8 padding bits).
   1546        */
   1547       format = MESA_FORMAT_R_UINT32;
   1548       break;
   1549    case 16:
   1550       /* 64 bits/pixel are required for MCS data when using 16x MSAA (4 bits
   1551        * for each sample).
   1552        */
   1553       format = MESA_FORMAT_RG_UINT32;
   1554       break;
   1555    default:
   1556       unreachable("Unrecognized sample count in intel_miptree_alloc_mcs");
   1557    };
   1558 
   1559    mt->mcs_buf =
   1560       intel_mcs_miptree_buf_create(brw, mt,
   1561                                    format,
   1562                                    mt->logical_width0,
   1563                                    mt->logical_height0,
   1564                                    MIPTREE_LAYOUT_ACCELERATED_UPLOAD);
   1565    if (!mt->mcs_buf)
   1566       return false;
   1567 
   1568    intel_miptree_init_mcs(brw, mt, 0xFF);
   1569 
   1570    /* Multisampled miptrees are only supported for single level. */
   1571    assert(mt->first_level == 0);
   1572    intel_miptree_set_fast_clear_state(brw, mt, mt->first_level, 0,
   1573                                       mt->logical_depth0,
   1574                                       INTEL_FAST_CLEAR_STATE_CLEAR);
   1575 
   1576    return true;
   1577 }
   1578 
   1579 
   1580 bool
   1581 intel_miptree_alloc_non_msrt_mcs(struct brw_context *brw,
   1582                                  struct intel_mipmap_tree *mt,
   1583                                  bool is_lossless_compressed)
   1584 {
   1585    assert(mt->mcs_buf == NULL);
   1586    assert(!(mt->aux_disable & (INTEL_AUX_DISABLE_MCS | INTEL_AUX_DISABLE_CCS)));
   1587 
   1588    struct isl_surf temp_main_surf;
   1589    struct isl_surf temp_ccs_surf;
   1590 
   1591    /* Create first an ISL presentation for the main color surface and let ISL
   1592     * calculate equivalent CCS surface against it.
   1593     */
   1594    intel_miptree_get_isl_surf(brw, mt, &temp_main_surf);
   1595    if (!isl_surf_get_ccs_surf(&brw->isl_dev, &temp_main_surf, &temp_ccs_surf))
   1596       return false;
   1597 
   1598    assert(temp_ccs_surf.size &&
   1599           (temp_ccs_surf.size % temp_ccs_surf.row_pitch == 0));
   1600 
   1601    struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
   1602    if (!buf)
   1603       return false;
   1604 
   1605    buf->size = temp_ccs_surf.size;
   1606    buf->pitch = temp_ccs_surf.row_pitch;
   1607    buf->qpitch = isl_surf_get_array_pitch_sa_rows(&temp_ccs_surf);
   1608 
   1609    /* In case of compression mcs buffer needs to be initialised requiring the
   1610     * buffer to be immediately mapped to cpu space for writing. Therefore do
   1611     * not use the gpu access flag which can cause an unnecessary delay if the
   1612     * backing pages happened to be just used by the GPU.
   1613     */
   1614    const uint32_t alloc_flags =
   1615       is_lossless_compressed ? 0 : BO_ALLOC_FOR_RENDER;
   1616    uint32_t tiling = I915_TILING_Y;
   1617    unsigned long pitch;
   1618 
   1619    /* ISL has stricter set of alignment rules then the drm allocator.
   1620     * Therefore one can pass the ISL dimensions in terms of bytes instead of
   1621     * trying to recalculate based on different format block sizes.
   1622     */
   1623    buf->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "ccs-miptree",
   1624                                       buf->pitch, buf->size / buf->pitch,
   1625                                       1, &tiling, &pitch, alloc_flags);
   1626    if (buf->bo) {
   1627       assert(pitch == buf->pitch);
   1628       assert(tiling == I915_TILING_Y);
   1629    } else {
   1630       free(buf);
   1631       return false;
   1632    }
   1633 
   1634    mt->mcs_buf = buf;
   1635 
   1636    /* From Gen9 onwards single-sampled (non-msrt) auxiliary buffers are
   1637     * used for lossless compression which requires similar initialisation
   1638     * as multi-sample compression.
   1639     */
   1640    if (is_lossless_compressed) {
   1641       /* Hardware sets the auxiliary buffer to all zeroes when it does full
   1642        * resolve. Initialize it accordingly in case the first renderer is
   1643        * cpu (or other none compression aware party).
   1644        *
   1645        * This is also explicitly stated in the spec (MCS Buffer for Render
   1646        * Target(s)):
   1647        *   "If Software wants to enable Color Compression without Fast clear,
   1648        *    Software needs to initialize MCS with zeros."
   1649        */
   1650       intel_miptree_init_mcs(brw, mt, 0);
   1651       mt->msaa_layout = INTEL_MSAA_LAYOUT_CMS;
   1652    }
   1653 
   1654    return true;
   1655 }
   1656 
   1657 /**
   1658  * Helper for intel_miptree_alloc_hiz() that sets
   1659  * \c mt->level[level].has_hiz. Return true if and only if
   1660  * \c has_hiz was set.
   1661  */
   1662 static bool
   1663 intel_miptree_level_enable_hiz(struct brw_context *brw,
   1664                                struct intel_mipmap_tree *mt,
   1665                                uint32_t level)
   1666 {
   1667    assert(mt->hiz_buf);
   1668 
   1669    if (brw->gen >= 8 || brw->is_haswell) {
   1670       uint32_t width = minify(mt->physical_width0, level);
   1671       uint32_t height = minify(mt->physical_height0, level);
   1672 
   1673       /* Disable HiZ for LOD > 0 unless the width is 8 aligned
   1674        * and the height is 4 aligned. This allows our HiZ support
   1675        * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
   1676        * we can grow the width & height to allow the HiZ op to
   1677        * force the proper size alignments.
   1678        */
   1679       if (level > 0 && ((width & 7) || (height & 3))) {
   1680          DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
   1681          return false;
   1682       }
   1683    }
   1684 
   1685    DBG("mt %p level %d: HiZ enabled\n", mt, level);
   1686    mt->level[level].has_hiz = true;
   1687    return true;
   1688 }
   1689 
   1690 
   1691 /**
   1692  * Helper for intel_miptree_alloc_hiz() that determines the required hiz
   1693  * buffer dimensions and allocates a bo for the hiz buffer.
   1694  */
   1695 static struct intel_miptree_hiz_buffer *
   1696 intel_gen7_hiz_buf_create(struct brw_context *brw,
   1697                           struct intel_mipmap_tree *mt)
   1698 {
   1699    unsigned z_width = mt->logical_width0;
   1700    unsigned z_height = mt->logical_height0;
   1701    const unsigned z_depth = MAX2(mt->logical_depth0, 1);
   1702    unsigned hz_width, hz_height;
   1703    struct intel_miptree_hiz_buffer *buf = calloc(sizeof(*buf), 1);
   1704 
   1705    if (!buf)
   1706       return NULL;
   1707 
   1708    /* Gen7 PRM Volume 2, Part 1, 11.5.3 "Hierarchical Depth Buffer" documents
   1709     * adjustments required for Z_Height and Z_Width based on multisampling.
   1710     */
   1711    switch (mt->num_samples) {
   1712    case 0:
   1713    case 1:
   1714       break;
   1715    case 2:
   1716    case 4:
   1717       z_width *= 2;
   1718       z_height *= 2;
   1719       break;
   1720    case 8:
   1721       z_width *= 4;
   1722       z_height *= 2;
   1723       break;
   1724    default:
   1725       unreachable("unsupported sample count");
   1726    }
   1727 
   1728    const unsigned vertical_align = 8; /* 'j' in the docs */
   1729    const unsigned H0 = z_height;
   1730    const unsigned h0 = ALIGN(H0, vertical_align);
   1731    const unsigned h1 = ALIGN(minify(H0, 1), vertical_align);
   1732    const unsigned Z0 = z_depth;
   1733 
   1734    /* HZ_Width (bytes) = ceiling(Z_Width / 16) * 16 */
   1735    hz_width = ALIGN(z_width, 16);
   1736 
   1737    if (mt->target == GL_TEXTURE_3D) {
   1738       unsigned H_i = H0;
   1739       unsigned Z_i = Z0;
   1740       hz_height = 0;
   1741       for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
   1742          unsigned h_i = ALIGN(H_i, vertical_align);
   1743          /* sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
   1744          hz_height += h_i * Z_i;
   1745          H_i = minify(H_i, 1);
   1746          Z_i = minify(Z_i, 1);
   1747       }
   1748       /* HZ_Height =
   1749        *    (1/2) * sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i)))
   1750        */
   1751       hz_height = DIV_ROUND_UP(hz_height, 2);
   1752    } else {
   1753       const unsigned hz_qpitch = h0 + h1 + (12 * vertical_align);
   1754       /* HZ_Height (rows) = Ceiling ( ( Q_pitch * Z_depth/2) /8 ) * 8 */
   1755       hz_height = DIV_ROUND_UP(hz_qpitch * Z0, 2 * 8) * 8;
   1756    }
   1757 
   1758    unsigned long pitch;
   1759    uint32_t tiling = I915_TILING_Y;
   1760    buf->aux_base.bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "hiz",
   1761                                                hz_width, hz_height, 1,
   1762                                                &tiling, &pitch,
   1763                                                BO_ALLOC_FOR_RENDER);
   1764    if (!buf->aux_base.bo) {
   1765       free(buf);
   1766       return NULL;
   1767    } else if (tiling != I915_TILING_Y) {
   1768       drm_intel_bo_unreference(buf->aux_base.bo);
   1769       free(buf);
   1770       return NULL;
   1771    }
   1772 
   1773    buf->aux_base.size = hz_width * hz_height;
   1774    buf->aux_base.pitch = pitch;
   1775 
   1776    return buf;
   1777 }
   1778 
   1779 
   1780 /**
   1781  * Helper for intel_miptree_alloc_hiz() that determines the required hiz
   1782  * buffer dimensions and allocates a bo for the hiz buffer.
   1783  */
   1784 static struct intel_miptree_hiz_buffer *
   1785 intel_gen8_hiz_buf_create(struct brw_context *brw,
   1786                           struct intel_mipmap_tree *mt)
   1787 {
   1788    unsigned z_width = mt->logical_width0;
   1789    unsigned z_height = mt->logical_height0;
   1790    const unsigned z_depth = MAX2(mt->logical_depth0, 1);
   1791    unsigned hz_width, hz_height;
   1792    struct intel_miptree_hiz_buffer *buf = calloc(sizeof(*buf), 1);
   1793 
   1794    if (!buf)
   1795       return NULL;
   1796 
   1797    /* Gen7 PRM Volume 2, Part 1, 11.5.3 "Hierarchical Depth Buffer" documents
   1798     * adjustments required for Z_Height and Z_Width based on multisampling.
   1799     */
   1800    if (brw->gen < 9) {
   1801       switch (mt->num_samples) {
   1802       case 0:
   1803       case 1:
   1804          break;
   1805       case 2:
   1806       case 4:
   1807          z_width *= 2;
   1808          z_height *= 2;
   1809          break;
   1810       case 8:
   1811          z_width *= 4;
   1812          z_height *= 2;
   1813          break;
   1814       default:
   1815          unreachable("unsupported sample count");
   1816       }
   1817    }
   1818 
   1819    const unsigned vertical_align = 8; /* 'j' in the docs */
   1820    const unsigned H0 = z_height;
   1821    const unsigned h0 = ALIGN(H0, vertical_align);
   1822    const unsigned h1 = ALIGN(minify(H0, 1), vertical_align);
   1823    const unsigned Z0 = z_depth;
   1824 
   1825    /* HZ_Width (bytes) = ceiling(Z_Width / 16) * 16 */
   1826    hz_width = ALIGN(z_width, 16);
   1827 
   1828    unsigned H_i = H0;
   1829    unsigned Z_i = Z0;
   1830    unsigned sum_h_i = 0;
   1831    unsigned hz_height_3d_sum = 0;
   1832    for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
   1833       unsigned i = level - mt->first_level;
   1834       unsigned h_i = ALIGN(H_i, vertical_align);
   1835       /* sum(i=2 to m; h_i) */
   1836       if (i >= 2) {
   1837          sum_h_i += h_i;
   1838       }
   1839       /* sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
   1840       hz_height_3d_sum += h_i * Z_i;
   1841       H_i = minify(H_i, 1);
   1842       Z_i = minify(Z_i, 1);
   1843    }
   1844    /* HZ_QPitch = h0 + max(h1, sum(i=2 to m; h_i)) */
   1845    buf->aux_base.qpitch = h0 + MAX2(h1, sum_h_i);
   1846 
   1847    if (mt->target == GL_TEXTURE_3D) {
   1848       /* (1/2) * sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
   1849       hz_height = DIV_ROUND_UP(hz_height_3d_sum, 2);
   1850    } else {
   1851       /* HZ_Height (rows) = ceiling( (HZ_QPitch/2)/8) *8 * Z_Depth */
   1852       hz_height = DIV_ROUND_UP(buf->aux_base.qpitch, 2 * 8) * 8 * Z0;
   1853    }
   1854 
   1855    unsigned long pitch;
   1856    uint32_t tiling = I915_TILING_Y;
   1857    buf->aux_base.bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "hiz",
   1858                                                hz_width, hz_height, 1,
   1859                                                &tiling, &pitch,
   1860                                                BO_ALLOC_FOR_RENDER);
   1861    if (!buf->aux_base.bo) {
   1862       free(buf);
   1863       return NULL;
   1864    } else if (tiling != I915_TILING_Y) {
   1865       drm_intel_bo_unreference(buf->aux_base.bo);
   1866       free(buf);
   1867       return NULL;
   1868    }
   1869 
   1870    buf->aux_base.size = hz_width * hz_height;
   1871    buf->aux_base.pitch = pitch;
   1872 
   1873    return buf;
   1874 }
   1875 
   1876 
   1877 static struct intel_miptree_hiz_buffer *
   1878 intel_hiz_miptree_buf_create(struct brw_context *brw,
   1879                              struct intel_mipmap_tree *mt)
   1880 {
   1881    struct intel_miptree_hiz_buffer *buf = calloc(sizeof(*buf), 1);
   1882    uint32_t layout_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD;
   1883 
   1884    if (brw->gen == 6)
   1885       layout_flags |= MIPTREE_LAYOUT_FORCE_ALL_SLICE_AT_LOD;
   1886 
   1887    if (!buf)
   1888       return NULL;
   1889 
   1890    layout_flags |= MIPTREE_LAYOUT_TILING_ANY;
   1891    buf->mt = intel_miptree_create(brw,
   1892                                   mt->target,
   1893                                   mt->format,
   1894                                   mt->first_level,
   1895                                   mt->last_level,
   1896                                   mt->logical_width0,
   1897                                   mt->logical_height0,
   1898                                   mt->logical_depth0,
   1899                                   mt->num_samples,
   1900                                   layout_flags);
   1901    if (!buf->mt) {
   1902       free(buf);
   1903       return NULL;
   1904    }
   1905 
   1906    buf->aux_base.bo = buf->mt->bo;
   1907    buf->aux_base.size = buf->mt->total_height * buf->mt->pitch;
   1908    buf->aux_base.pitch = buf->mt->pitch;
   1909    buf->aux_base.qpitch = buf->mt->qpitch;
   1910 
   1911    return buf;
   1912 }
   1913 
   1914 bool
   1915 intel_miptree_wants_hiz_buffer(struct brw_context *brw,
   1916                                struct intel_mipmap_tree *mt)
   1917 {
   1918    if (!brw->has_hiz)
   1919       return false;
   1920 
   1921    if (mt->hiz_buf != NULL)
   1922       return false;
   1923 
   1924    if (mt->aux_disable & INTEL_AUX_DISABLE_HIZ)
   1925       return false;
   1926 
   1927    switch (mt->format) {
   1928    case MESA_FORMAT_Z_FLOAT32:
   1929    case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
   1930    case MESA_FORMAT_Z24_UNORM_X8_UINT:
   1931    case MESA_FORMAT_Z24_UNORM_S8_UINT:
   1932    case MESA_FORMAT_Z_UNORM16:
   1933       return true;
   1934    default:
   1935       return false;
   1936    }
   1937 }
   1938 
   1939 bool
   1940 intel_miptree_alloc_hiz(struct brw_context *brw,
   1941 			struct intel_mipmap_tree *mt)
   1942 {
   1943    assert(mt->hiz_buf == NULL);
   1944    assert((mt->aux_disable & INTEL_AUX_DISABLE_HIZ) == 0);
   1945 
   1946    if (brw->gen == 7) {
   1947       mt->hiz_buf = intel_gen7_hiz_buf_create(brw, mt);
   1948    } else if (brw->gen >= 8) {
   1949       mt->hiz_buf = intel_gen8_hiz_buf_create(brw, mt);
   1950    } else {
   1951       mt->hiz_buf = intel_hiz_miptree_buf_create(brw, mt);
   1952    }
   1953 
   1954    if (!mt->hiz_buf)
   1955       return false;
   1956 
   1957    /* Mark that all slices need a HiZ resolve. */
   1958    for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
   1959       if (!intel_miptree_level_enable_hiz(brw, mt, level))
   1960          continue;
   1961 
   1962       for (unsigned layer = 0; layer < mt->level[level].depth; ++layer) {
   1963          struct intel_resolve_map *m = malloc(sizeof(struct intel_resolve_map));
   1964          exec_node_init(&m->link);
   1965          m->level = level;
   1966          m->layer = layer;
   1967          m->need = BLORP_HIZ_OP_HIZ_RESOLVE;
   1968 
   1969          exec_list_push_tail(&mt->hiz_map, &m->link);
   1970       }
   1971    }
   1972 
   1973    return true;
   1974 }
   1975 
   1976 /**
   1977  * Can the miptree sample using the hiz buffer?
   1978  */
   1979 bool
   1980 intel_miptree_sample_with_hiz(struct brw_context *brw,
   1981                               struct intel_mipmap_tree *mt)
   1982 {
   1983    /* It's unclear how well supported sampling from the hiz buffer is on GEN8,
   1984     * so keep things conservative for now and never enable it unless we're SKL+.
   1985     */
   1986    if (brw->gen < 9) {
   1987       return false;
   1988    }
   1989 
   1990    if (!mt->hiz_buf) {
   1991       return false;
   1992    }
   1993 
   1994    /* It seems the hardware won't fallback to the depth buffer if some of the
   1995     * mipmap levels aren't available in the HiZ buffer. So we need all levels
   1996     * of the texture to be HiZ enabled.
   1997     */
   1998    for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
   1999       if (!intel_miptree_level_has_hiz(mt, level))
   2000          return false;
   2001    }
   2002 
   2003    /* If compressed multisampling is enabled, then we use it for the auxiliary
   2004     * buffer instead.
   2005     *
   2006     * From the BDW PRM (Volume 2d: Command Reference: Structures
   2007     *                   RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
   2008     *
   2009     *  "If this field is set to AUX_HIZ, Number of Multisamples must be
   2010     *   MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
   2011     *
   2012     * There is no such blurb for 1D textures, but there is sufficient evidence
   2013     * that this is broken on SKL+.
   2014     */
   2015    return (mt->num_samples <= 1 &&
   2016            mt->target != GL_TEXTURE_3D &&
   2017            mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
   2018 }
   2019 
   2020 /**
   2021  * Does the miptree slice have hiz enabled?
   2022  */
   2023 bool
   2024 intel_miptree_level_has_hiz(struct intel_mipmap_tree *mt, uint32_t level)
   2025 {
   2026    intel_miptree_check_level_layer(mt, level, 0);
   2027    return mt->level[level].has_hiz;
   2028 }
   2029 
   2030 void
   2031 intel_miptree_slice_set_needs_hiz_resolve(struct intel_mipmap_tree *mt,
   2032 					  uint32_t level,
   2033 					  uint32_t layer)
   2034 {
   2035    if (!intel_miptree_level_has_hiz(mt, level))
   2036       return;
   2037 
   2038    intel_resolve_map_set(&mt->hiz_map,
   2039 			 level, layer, BLORP_HIZ_OP_HIZ_RESOLVE);
   2040 }
   2041 
   2042 
   2043 void
   2044 intel_miptree_slice_set_needs_depth_resolve(struct intel_mipmap_tree *mt,
   2045                                             uint32_t level,
   2046                                             uint32_t layer)
   2047 {
   2048    if (!intel_miptree_level_has_hiz(mt, level))
   2049       return;
   2050 
   2051    intel_resolve_map_set(&mt->hiz_map,
   2052 			 level, layer, BLORP_HIZ_OP_DEPTH_RESOLVE);
   2053 }
   2054 
   2055 void
   2056 intel_miptree_set_all_slices_need_depth_resolve(struct intel_mipmap_tree *mt,
   2057                                                 uint32_t level)
   2058 {
   2059    uint32_t layer;
   2060    uint32_t end_layer = mt->level[level].depth;
   2061 
   2062    for (layer = 0; layer < end_layer; layer++) {
   2063       intel_miptree_slice_set_needs_depth_resolve(mt, level, layer);
   2064    }
   2065 }
   2066 
   2067 static bool
   2068 intel_miptree_slice_resolve(struct brw_context *brw,
   2069 			    struct intel_mipmap_tree *mt,
   2070 			    uint32_t level,
   2071 			    uint32_t layer,
   2072 			    enum blorp_hiz_op need)
   2073 {
   2074    intel_miptree_check_level_layer(mt, level, layer);
   2075 
   2076    struct intel_resolve_map *item =
   2077 	 intel_resolve_map_get(&mt->hiz_map, level, layer);
   2078 
   2079    if (!item || item->need != need)
   2080       return false;
   2081 
   2082    intel_hiz_exec(brw, mt, level, layer, need);
   2083    intel_resolve_map_remove(item);
   2084    return true;
   2085 }
   2086 
   2087 bool
   2088 intel_miptree_slice_resolve_hiz(struct brw_context *brw,
   2089 				struct intel_mipmap_tree *mt,
   2090 				uint32_t level,
   2091 				uint32_t layer)
   2092 {
   2093    return intel_miptree_slice_resolve(brw, mt, level, layer,
   2094 				      BLORP_HIZ_OP_HIZ_RESOLVE);
   2095 }
   2096 
   2097 bool
   2098 intel_miptree_slice_resolve_depth(struct brw_context *brw,
   2099 				  struct intel_mipmap_tree *mt,
   2100 				  uint32_t level,
   2101 				  uint32_t layer)
   2102 {
   2103    return intel_miptree_slice_resolve(brw, mt, level, layer,
   2104 				      BLORP_HIZ_OP_DEPTH_RESOLVE);
   2105 }
   2106 
   2107 static bool
   2108 intel_miptree_all_slices_resolve(struct brw_context *brw,
   2109 				 struct intel_mipmap_tree *mt,
   2110 				 enum blorp_hiz_op need)
   2111 {
   2112    bool did_resolve = false;
   2113 
   2114    foreach_list_typed_safe(struct intel_resolve_map, map, link, &mt->hiz_map) {
   2115       if (map->need != need)
   2116 	 continue;
   2117 
   2118       intel_hiz_exec(brw, mt, map->level, map->layer, need);
   2119       intel_resolve_map_remove(map);
   2120       did_resolve = true;
   2121    }
   2122 
   2123    return did_resolve;
   2124 }
   2125 
   2126 bool
   2127 intel_miptree_all_slices_resolve_hiz(struct brw_context *brw,
   2128 				     struct intel_mipmap_tree *mt)
   2129 {
   2130    return intel_miptree_all_slices_resolve(brw, mt,
   2131 					   BLORP_HIZ_OP_HIZ_RESOLVE);
   2132 }
   2133 
   2134 bool
   2135 intel_miptree_all_slices_resolve_depth(struct brw_context *brw,
   2136 				       struct intel_mipmap_tree *mt)
   2137 {
   2138    return intel_miptree_all_slices_resolve(brw, mt,
   2139 					   BLORP_HIZ_OP_DEPTH_RESOLVE);
   2140 }
   2141 
   2142 enum intel_fast_clear_state
   2143 intel_miptree_get_fast_clear_state(const struct intel_mipmap_tree *mt,
   2144                                    unsigned level, unsigned layer)
   2145 {
   2146    intel_miptree_check_level_layer(mt, level, layer);
   2147 
   2148    const struct intel_resolve_map *item =
   2149       intel_resolve_map_const_get(&mt->color_resolve_map, level, layer);
   2150 
   2151    if (!item)
   2152       return INTEL_FAST_CLEAR_STATE_RESOLVED;
   2153 
   2154    return item->fast_clear_state;
   2155 }
   2156 
   2157 static void
   2158 intel_miptree_check_color_resolve(const struct brw_context *brw,
   2159                                   const struct intel_mipmap_tree *mt,
   2160                                   unsigned level, unsigned layer)
   2161 {
   2162 
   2163    if ((mt->aux_disable & INTEL_AUX_DISABLE_CCS) || !mt->mcs_buf)
   2164       return;
   2165 
   2166    /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
   2167    assert(brw->gen >= 8 ||
   2168           (level == 0 && mt->first_level == 0 && mt->last_level == 0));
   2169 
   2170    /* Compression of arrayed msaa surfaces is supported. */
   2171    if (mt->num_samples > 1)
   2172       return;
   2173 
   2174    /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
   2175    assert(brw->gen >= 8 || (layer == 0 && mt->logical_depth0 == 1));
   2176 
   2177    (void)level;
   2178    (void)layer;
   2179 }
   2180 
   2181 void
   2182 intel_miptree_set_fast_clear_state(const struct brw_context *brw,
   2183                                    struct intel_mipmap_tree *mt,
   2184                                    unsigned level,
   2185                                    unsigned first_layer,
   2186                                    unsigned num_layers,
   2187                                    enum intel_fast_clear_state new_state)
   2188 {
   2189    /* Setting the state to resolved means removing the item from the list
   2190     * altogether.
   2191     */
   2192    assert(new_state != INTEL_FAST_CLEAR_STATE_RESOLVED);
   2193 
   2194    intel_miptree_check_color_resolve(brw, mt, level, first_layer);
   2195 
   2196    assert(first_layer + num_layers <= mt->physical_depth0);
   2197 
   2198    for (unsigned i = 0; i < num_layers; i++)
   2199       intel_resolve_map_set(&mt->color_resolve_map, level,
   2200                             first_layer + i, new_state);
   2201 }
   2202 
   2203 bool
   2204 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
   2205                                    unsigned start_level, unsigned num_levels,
   2206                                    unsigned start_layer, unsigned num_layers)
   2207 {
   2208    return intel_resolve_map_find_any(&mt->color_resolve_map,
   2209                                      start_level, num_levels,
   2210                                      start_layer, num_layers) != NULL;
   2211 }
   2212 
   2213 void
   2214 intel_miptree_used_for_rendering(const struct brw_context *brw,
   2215                                  struct intel_mipmap_tree *mt, unsigned level,
   2216                                  unsigned start_layer, unsigned num_layers)
   2217 {
   2218    const bool is_lossless_compressed =
   2219       intel_miptree_is_lossless_compressed(brw, mt);
   2220 
   2221    for (unsigned i = 0; i < num_layers; ++i) {
   2222       const enum intel_fast_clear_state fast_clear_state =
   2223          intel_miptree_get_fast_clear_state(mt, level, start_layer + i);
   2224 
   2225       /* If the buffer was previously in fast clear state, change it to
   2226        * unresolved state, since it won't be guaranteed to be clear after
   2227        * rendering occurs.
   2228        */
   2229       if (is_lossless_compressed ||
   2230           fast_clear_state == INTEL_FAST_CLEAR_STATE_CLEAR) {
   2231          intel_miptree_set_fast_clear_state(
   2232             brw, mt, level, start_layer + i, 1,
   2233             INTEL_FAST_CLEAR_STATE_UNRESOLVED);
   2234       }
   2235    }
   2236 }
   2237 
   2238 static bool
   2239 intel_miptree_needs_color_resolve(const struct brw_context *brw,
   2240                                   const struct intel_mipmap_tree *mt,
   2241                                   int flags)
   2242 {
   2243    if (mt->aux_disable & INTEL_AUX_DISABLE_CCS)
   2244       return false;
   2245 
   2246    const bool is_lossless_compressed =
   2247       intel_miptree_is_lossless_compressed(brw, mt);
   2248 
   2249    /* From gen9 onwards there is new compression scheme for single sampled
   2250     * surfaces called "lossless compressed". These don't need to be always
   2251     * resolved.
   2252     */
   2253    if ((flags & INTEL_MIPTREE_IGNORE_CCS_E) && is_lossless_compressed)
   2254       return false;
   2255 
   2256    /* Fast color clear resolves only make sense for non-MSAA buffers. */
   2257    if (mt->msaa_layout != INTEL_MSAA_LAYOUT_NONE && !is_lossless_compressed)
   2258       return false;
   2259 
   2260    return true;
   2261 }
   2262 
   2263 bool
   2264 intel_miptree_resolve_color(struct brw_context *brw,
   2265                             struct intel_mipmap_tree *mt, unsigned level,
   2266                             unsigned start_layer, unsigned num_layers,
   2267                             int flags)
   2268 {
   2269    intel_miptree_check_color_resolve(brw, mt, level, start_layer);
   2270 
   2271    if (!intel_miptree_needs_color_resolve(brw, mt, flags))
   2272       return false;
   2273 
   2274    /* Arrayed fast clear is only supported for gen8+. */
   2275    assert(brw->gen >= 8 || num_layers == 1);
   2276 
   2277    bool resolved = false;
   2278    for (unsigned i = 0; i < num_layers; ++i) {
   2279       intel_miptree_check_level_layer(mt, level, start_layer + i);
   2280 
   2281       struct intel_resolve_map *item =
   2282          intel_resolve_map_get(&mt->color_resolve_map, level,
   2283                                start_layer + i);
   2284 
   2285       if (item) {
   2286          assert(item->fast_clear_state != INTEL_FAST_CLEAR_STATE_RESOLVED);
   2287 
   2288          brw_blorp_resolve_color(brw, mt, level, start_layer);
   2289          intel_resolve_map_remove(item);
   2290          resolved = true;
   2291       }
   2292    }
   2293 
   2294    return resolved;
   2295 }
   2296 
   2297 void
   2298 intel_miptree_all_slices_resolve_color(struct brw_context *brw,
   2299                                        struct intel_mipmap_tree *mt,
   2300                                        int flags)
   2301 {
   2302    if (!intel_miptree_needs_color_resolve(brw, mt, flags))
   2303       return;
   2304 
   2305    foreach_list_typed_safe(struct intel_resolve_map, map, link,
   2306                            &mt->color_resolve_map) {
   2307       assert(map->fast_clear_state != INTEL_FAST_CLEAR_STATE_RESOLVED);
   2308 
   2309       brw_blorp_resolve_color(brw, mt, map->level, map->layer);
   2310       intel_resolve_map_remove(map);
   2311    }
   2312 }
   2313 
   2314 /**
   2315  * Make it possible to share the BO backing the given miptree with another
   2316  * process or another miptree.
   2317  *
   2318  * Fast color clears are unsafe with shared buffers, so we need to resolve and
   2319  * then discard the MCS buffer, if present.  We also set the no_ccs flag to
   2320  * ensure that no MCS buffer gets allocated in the future.
   2321  *
   2322  * HiZ is similarly unsafe with shared buffers.
   2323  */
   2324 void
   2325 intel_miptree_make_shareable(struct brw_context *brw,
   2326                              struct intel_mipmap_tree *mt)
   2327 {
   2328    /* MCS buffers are also used for multisample buffers, but we can't resolve
   2329     * away a multisample MCS buffer because it's an integral part of how the
   2330     * pixel data is stored.  Fortunately this code path should never be
   2331     * reached for multisample buffers.
   2332     */
   2333    assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE || mt->num_samples <= 1);
   2334 
   2335    if (mt->mcs_buf) {
   2336       intel_miptree_all_slices_resolve_color(brw, mt, 0);
   2337       mt->aux_disable |= (INTEL_AUX_DISABLE_CCS | INTEL_AUX_DISABLE_MCS);
   2338       drm_intel_bo_unreference(mt->mcs_buf->bo);
   2339       free(mt->mcs_buf);
   2340       mt->mcs_buf = NULL;
   2341    }
   2342 
   2343    if (mt->hiz_buf) {
   2344       mt->aux_disable |= INTEL_AUX_DISABLE_HIZ;
   2345       intel_miptree_all_slices_resolve_depth(brw, mt);
   2346       intel_miptree_hiz_buffer_free(mt->hiz_buf);
   2347       mt->hiz_buf = NULL;
   2348    }
   2349 }
   2350 
   2351 
   2352 /**
   2353  * \brief Get pointer offset into stencil buffer.
   2354  *
   2355  * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
   2356  * must decode the tile's layout in software.
   2357  *
   2358  * See
   2359  *   - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
   2360  *     Format.
   2361  *   - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
   2362  *
   2363  * Even though the returned offset is always positive, the return type is
   2364  * signed due to
   2365  *    commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
   2366  *    mesa: Fix return type of  _mesa_get_format_bytes() (#37351)
   2367  */
   2368 static intptr_t
   2369 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
   2370 {
   2371    uint32_t tile_size = 4096;
   2372    uint32_t tile_width = 64;
   2373    uint32_t tile_height = 64;
   2374    uint32_t row_size = 64 * stride;
   2375 
   2376    uint32_t tile_x = x / tile_width;
   2377    uint32_t tile_y = y / tile_height;
   2378 
   2379    /* The byte's address relative to the tile's base addres. */
   2380    uint32_t byte_x = x % tile_width;
   2381    uint32_t byte_y = y % tile_height;
   2382 
   2383    uintptr_t u = tile_y * row_size
   2384                + tile_x * tile_size
   2385                + 512 * (byte_x / 8)
   2386                +  64 * (byte_y / 8)
   2387                +  32 * ((byte_y / 4) % 2)
   2388                +  16 * ((byte_x / 4) % 2)
   2389                +   8 * ((byte_y / 2) % 2)
   2390                +   4 * ((byte_x / 2) % 2)
   2391                +   2 * (byte_y % 2)
   2392                +   1 * (byte_x % 2);
   2393 
   2394    if (swizzled) {
   2395       /* adjust for bit6 swizzling */
   2396       if (((byte_x / 8) % 2) == 1) {
   2397 	 if (((byte_y / 8) % 2) == 0) {
   2398 	    u += 64;
   2399 	 } else {
   2400 	    u -= 64;
   2401 	 }
   2402       }
   2403    }
   2404 
   2405    return u;
   2406 }
   2407 
   2408 void
   2409 intel_miptree_updownsample(struct brw_context *brw,
   2410                            struct intel_mipmap_tree *src,
   2411                            struct intel_mipmap_tree *dst)
   2412 {
   2413    brw_blorp_blit_miptrees(brw,
   2414                            src, 0 /* level */, 0 /* layer */,
   2415                            src->format, SWIZZLE_XYZW,
   2416                            dst, 0 /* level */, 0 /* layer */, dst->format,
   2417                            0, 0,
   2418                            src->logical_width0, src->logical_height0,
   2419                            0, 0,
   2420                            dst->logical_width0, dst->logical_height0,
   2421                            GL_NEAREST, false, false /*mirror x, y*/,
   2422                            false, false);
   2423 
   2424    if (src->stencil_mt) {
   2425       brw_blorp_blit_miptrees(brw,
   2426                               src->stencil_mt, 0 /* level */, 0 /* layer */,
   2427                               src->stencil_mt->format, SWIZZLE_XYZW,
   2428                               dst->stencil_mt, 0 /* level */, 0 /* layer */,
   2429                               dst->stencil_mt->format,
   2430                               0, 0,
   2431                               src->logical_width0, src->logical_height0,
   2432                               0, 0,
   2433                               dst->logical_width0, dst->logical_height0,
   2434                               GL_NEAREST, false, false /*mirror x, y*/,
   2435                               false, false /* decode/encode srgb */);
   2436    }
   2437 }
   2438 
   2439 void
   2440 intel_update_r8stencil(struct brw_context *brw,
   2441                        struct intel_mipmap_tree *mt)
   2442 {
   2443    assert(brw->gen >= 7);
   2444    struct intel_mipmap_tree *src =
   2445       mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
   2446    if (!src || brw->gen >= 8 || !src->r8stencil_needs_update)
   2447       return;
   2448 
   2449    if (!mt->r8stencil_mt) {
   2450       const uint32_t r8stencil_flags =
   2451          MIPTREE_LAYOUT_ACCELERATED_UPLOAD | MIPTREE_LAYOUT_TILING_Y |
   2452          MIPTREE_LAYOUT_DISABLE_AUX;
   2453       assert(brw->gen > 6); /* Handle MIPTREE_LAYOUT_FORCE_ALL_SLICE_AT_LOD */
   2454       mt->r8stencil_mt = intel_miptree_create(brw,
   2455                                               src->target,
   2456                                               MESA_FORMAT_R_UINT8,
   2457                                               src->first_level,
   2458                                               src->last_level,
   2459                                               src->logical_width0,
   2460                                               src->logical_height0,
   2461                                               src->logical_depth0,
   2462                                               src->num_samples,
   2463                                               r8stencil_flags);
   2464       assert(mt->r8stencil_mt);
   2465    }
   2466 
   2467    struct intel_mipmap_tree *dst = mt->r8stencil_mt;
   2468 
   2469    for (int level = src->first_level; level <= src->last_level; level++) {
   2470       const unsigned depth = src->level[level].depth;
   2471       const int layers_per_blit =
   2472          (dst->msaa_layout == INTEL_MSAA_LAYOUT_UMS ||
   2473           dst->msaa_layout == INTEL_MSAA_LAYOUT_CMS) ?
   2474          dst->num_samples : 1;
   2475 
   2476       for (unsigned layer = 0; layer < depth; layer++) {
   2477          brw_blorp_blit_miptrees(brw,
   2478                                  src, level, layer,
   2479                                  src->format, SWIZZLE_X,
   2480                                  dst, level, layers_per_blit * layer,
   2481                                  MESA_FORMAT_R_UNORM8,
   2482                                  0, 0,
   2483                                  minify(src->logical_width0, level),
   2484                                  minify(src->logical_height0, level),
   2485                                  0, 0,
   2486                                  minify(dst->logical_width0, level),
   2487                                  minify(dst->logical_height0, level),
   2488                                  GL_NEAREST, false, false /*mirror x, y*/,
   2489                                  false, false /* decode/encode srgb */);
   2490       }
   2491    }
   2492 
   2493    brw_render_cache_set_check_flush(brw, dst->bo);
   2494    src->r8stencil_needs_update = false;
   2495 }
   2496 
   2497 static void *
   2498 intel_miptree_map_raw(struct brw_context *brw, struct intel_mipmap_tree *mt)
   2499 {
   2500    /* CPU accesses to color buffers don't understand fast color clears, so
   2501     * resolve any pending fast color clears before we map.
   2502     */
   2503    intel_miptree_all_slices_resolve_color(brw, mt, 0);
   2504 
   2505    drm_intel_bo *bo = mt->bo;
   2506 
   2507    if (drm_intel_bo_references(brw->batch.bo, bo))
   2508       intel_batchbuffer_flush(brw);
   2509 
   2510    if (mt->tiling != I915_TILING_NONE)
   2511       brw_bo_map_gtt(brw, bo, "miptree");
   2512    else
   2513       brw_bo_map(brw, bo, true, "miptree");
   2514 
   2515    return bo->virtual;
   2516 }
   2517 
   2518 static void
   2519 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
   2520 {
   2521    drm_intel_bo_unmap(mt->bo);
   2522 }
   2523 
   2524 static void
   2525 intel_miptree_map_gtt(struct brw_context *brw,
   2526 		      struct intel_mipmap_tree *mt,
   2527 		      struct intel_miptree_map *map,
   2528 		      unsigned int level, unsigned int slice)
   2529 {
   2530    unsigned int bw, bh;
   2531    void *base;
   2532    unsigned int image_x, image_y;
   2533    intptr_t x = map->x;
   2534    intptr_t y = map->y;
   2535 
   2536    /* For compressed formats, the stride is the number of bytes per
   2537     * row of blocks.  intel_miptree_get_image_offset() already does
   2538     * the divide.
   2539     */
   2540    _mesa_get_format_block_size(mt->format, &bw, &bh);
   2541    assert(y % bh == 0);
   2542    assert(x % bw == 0);
   2543    y /= bh;
   2544    x /= bw;
   2545 
   2546    base = intel_miptree_map_raw(brw, mt) + mt->offset;
   2547 
   2548    if (base == NULL)
   2549       map->ptr = NULL;
   2550    else {
   2551       /* Note that in the case of cube maps, the caller must have passed the
   2552        * slice number referencing the face.
   2553       */
   2554       intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
   2555       x += image_x;
   2556       y += image_y;
   2557 
   2558       map->stride = mt->pitch;
   2559       map->ptr = base + y * map->stride + x * mt->cpp;
   2560    }
   2561 
   2562    DBG("%s: %d,%d %dx%d from mt %p (%s) "
   2563        "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
   2564        map->x, map->y, map->w, map->h,
   2565        mt, _mesa_get_format_name(mt->format),
   2566        x, y, map->ptr, map->stride);
   2567 }
   2568 
   2569 static void
   2570 intel_miptree_unmap_gtt(struct intel_mipmap_tree *mt)
   2571 {
   2572    intel_miptree_unmap_raw(mt);
   2573 }
   2574 
   2575 static void
   2576 intel_miptree_map_blit(struct brw_context *brw,
   2577 		       struct intel_mipmap_tree *mt,
   2578 		       struct intel_miptree_map *map,
   2579 		       unsigned int level, unsigned int slice)
   2580 {
   2581    map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
   2582                                          /* first_level */ 0,
   2583                                          /* last_level */ 0,
   2584                                          map->w, map->h, 1,
   2585                                          /* samples */ 0,
   2586                                          MIPTREE_LAYOUT_TILING_NONE);
   2587 
   2588    if (!map->linear_mt) {
   2589       fprintf(stderr, "Failed to allocate blit temporary\n");
   2590       goto fail;
   2591    }
   2592    map->stride = map->linear_mt->pitch;
   2593 
   2594    /* One of either READ_BIT or WRITE_BIT or both is set.  READ_BIT implies no
   2595     * INVALIDATE_RANGE_BIT.  WRITE_BIT needs the original values read in unless
   2596     * invalidate is set, since we'll be writing the whole rectangle from our
   2597     * temporary buffer back out.
   2598     */
   2599    if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
   2600       if (!intel_miptree_copy(brw,
   2601                               mt, level, slice, map->x, map->y,
   2602                               map->linear_mt, 0, 0, 0, 0,
   2603                               map->w, map->h)) {
   2604          fprintf(stderr, "Failed to blit\n");
   2605          goto fail;
   2606       }
   2607    }
   2608 
   2609    map->ptr = intel_miptree_map_raw(brw, map->linear_mt);
   2610 
   2611    DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
   2612        map->x, map->y, map->w, map->h,
   2613        mt, _mesa_get_format_name(mt->format),
   2614        level, slice, map->ptr, map->stride);
   2615 
   2616    return;
   2617 
   2618 fail:
   2619    intel_miptree_release(&map->linear_mt);
   2620    map->ptr = NULL;
   2621    map->stride = 0;
   2622 }
   2623 
   2624 static void
   2625 intel_miptree_unmap_blit(struct brw_context *brw,
   2626 			 struct intel_mipmap_tree *mt,
   2627 			 struct intel_miptree_map *map,
   2628 			 unsigned int level,
   2629 			 unsigned int slice)
   2630 {
   2631    struct gl_context *ctx = &brw->ctx;
   2632 
   2633    intel_miptree_unmap_raw(map->linear_mt);
   2634 
   2635    if (map->mode & GL_MAP_WRITE_BIT) {
   2636       bool ok = intel_miptree_copy(brw,
   2637                                    map->linear_mt, 0, 0, 0, 0,
   2638                                    mt, level, slice, map->x, map->y,
   2639                                    map->w, map->h);
   2640       WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
   2641    }
   2642 
   2643    intel_miptree_release(&map->linear_mt);
   2644 }
   2645 
   2646 /**
   2647  * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
   2648  */
   2649 #if defined(USE_SSE41)
   2650 static void
   2651 intel_miptree_map_movntdqa(struct brw_context *brw,
   2652                            struct intel_mipmap_tree *mt,
   2653                            struct intel_miptree_map *map,
   2654                            unsigned int level, unsigned int slice)
   2655 {
   2656    assert(map->mode & GL_MAP_READ_BIT);
   2657    assert(!(map->mode & GL_MAP_WRITE_BIT));
   2658 
   2659    DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
   2660        map->x, map->y, map->w, map->h,
   2661        mt, _mesa_get_format_name(mt->format),
   2662        level, slice, map->ptr, map->stride);
   2663 
   2664    /* Map the original image */
   2665    uint32_t image_x;
   2666    uint32_t image_y;
   2667    intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
   2668    image_x += map->x;
   2669    image_y += map->y;
   2670 
   2671    void *src = intel_miptree_map_raw(brw, mt);
   2672    if (!src)
   2673       return;
   2674 
   2675    src += mt->offset;
   2676 
   2677    src += image_y * mt->pitch;
   2678    src += image_x * mt->cpp;
   2679 
   2680    /* Due to the pixel offsets for the particular image being mapped, our
   2681     * src pointer may not be 16-byte aligned.  However, if the pitch is
   2682     * divisible by 16, then the amount by which it's misaligned will remain
   2683     * consistent from row to row.
   2684     */
   2685    assert((mt->pitch % 16) == 0);
   2686    const int misalignment = ((uintptr_t) src) & 15;
   2687 
   2688    /* Create an untiled temporary buffer for the mapping. */
   2689    const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
   2690 
   2691    map->stride = ALIGN(misalignment + width_bytes, 16);
   2692 
   2693    map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
   2694    /* Offset the destination so it has the same misalignment as src. */
   2695    map->ptr = map->buffer + misalignment;
   2696 
   2697    assert((((uintptr_t) map->ptr) & 15) == misalignment);
   2698 
   2699    for (uint32_t y = 0; y < map->h; y++) {
   2700       void *dst_ptr = map->ptr + y * map->stride;
   2701       void *src_ptr = src + y * mt->pitch;
   2702 
   2703       _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
   2704    }
   2705 
   2706    intel_miptree_unmap_raw(mt);
   2707 }
   2708 
   2709 static void
   2710 intel_miptree_unmap_movntdqa(struct brw_context *brw,
   2711                              struct intel_mipmap_tree *mt,
   2712                              struct intel_miptree_map *map,
   2713                              unsigned int level,
   2714                              unsigned int slice)
   2715 {
   2716    _mesa_align_free(map->buffer);
   2717    map->buffer = NULL;
   2718    map->ptr = NULL;
   2719 }
   2720 #endif
   2721 
   2722 static void
   2723 intel_miptree_map_s8(struct brw_context *brw,
   2724 		     struct intel_mipmap_tree *mt,
   2725 		     struct intel_miptree_map *map,
   2726 		     unsigned int level, unsigned int slice)
   2727 {
   2728    map->stride = map->w;
   2729    map->buffer = map->ptr = malloc(map->stride * map->h);
   2730    if (!map->buffer)
   2731       return;
   2732 
   2733    /* One of either READ_BIT or WRITE_BIT or both is set.  READ_BIT implies no
   2734     * INVALIDATE_RANGE_BIT.  WRITE_BIT needs the original values read in unless
   2735     * invalidate is set, since we'll be writing the whole rectangle from our
   2736     * temporary buffer back out.
   2737     */
   2738    if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
   2739       uint8_t *untiled_s8_map = map->ptr;
   2740       uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
   2741       unsigned int image_x, image_y;
   2742 
   2743       intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
   2744 
   2745       for (uint32_t y = 0; y < map->h; y++) {
   2746 	 for (uint32_t x = 0; x < map->w; x++) {
   2747 	    ptrdiff_t offset = intel_offset_S8(mt->pitch,
   2748 	                                       x + image_x + map->x,
   2749 	                                       y + image_y + map->y,
   2750 					       brw->has_swizzling);
   2751 	    untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
   2752 	 }
   2753       }
   2754 
   2755       intel_miptree_unmap_raw(mt);
   2756 
   2757       DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
   2758 	  map->x, map->y, map->w, map->h,
   2759 	  mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
   2760    } else {
   2761       DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
   2762 	  map->x, map->y, map->w, map->h,
   2763 	  mt, map->ptr, map->stride);
   2764    }
   2765 }
   2766 
   2767 static void
   2768 intel_miptree_unmap_s8(struct brw_context *brw,
   2769 		       struct intel_mipmap_tree *mt,
   2770 		       struct intel_miptree_map *map,
   2771 		       unsigned int level,
   2772 		       unsigned int slice)
   2773 {
   2774    if (map->mode & GL_MAP_WRITE_BIT) {
   2775       unsigned int image_x, image_y;
   2776       uint8_t *untiled_s8_map = map->ptr;
   2777       uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
   2778 
   2779       intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
   2780 
   2781       for (uint32_t y = 0; y < map->h; y++) {
   2782 	 for (uint32_t x = 0; x < map->w; x++) {
   2783 	    ptrdiff_t offset = intel_offset_S8(mt->pitch,
   2784 	                                       image_x + x + map->x,
   2785 	                                       image_y + y + map->y,
   2786 					       brw->has_swizzling);
   2787 	    tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
   2788 	 }
   2789       }
   2790 
   2791       intel_miptree_unmap_raw(mt);
   2792    }
   2793 
   2794    free(map->buffer);
   2795 }
   2796 
   2797 static void
   2798 intel_miptree_map_etc(struct brw_context *brw,
   2799                       struct intel_mipmap_tree *mt,
   2800                       struct intel_miptree_map *map,
   2801                       unsigned int level,
   2802                       unsigned int slice)
   2803 {
   2804    assert(mt->etc_format != MESA_FORMAT_NONE);
   2805    if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
   2806       assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
   2807    }
   2808 
   2809    assert(map->mode & GL_MAP_WRITE_BIT);
   2810    assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
   2811 
   2812    map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
   2813    map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
   2814                                                 map->w, map->h, 1));
   2815    map->ptr = map->buffer;
   2816 }
   2817 
   2818 static void
   2819 intel_miptree_unmap_etc(struct brw_context *brw,
   2820                         struct intel_mipmap_tree *mt,
   2821                         struct intel_miptree_map *map,
   2822                         unsigned int level,
   2823                         unsigned int slice)
   2824 {
   2825    uint32_t image_x;
   2826    uint32_t image_y;
   2827    intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
   2828 
   2829    image_x += map->x;
   2830    image_y += map->y;
   2831 
   2832    uint8_t *dst = intel_miptree_map_raw(brw, mt)
   2833                 + image_y * mt->pitch
   2834                 + image_x * mt->cpp;
   2835 
   2836    if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
   2837       _mesa_etc1_unpack_rgba8888(dst, mt->pitch,
   2838                                  map->ptr, map->stride,
   2839                                  map->w, map->h);
   2840    else
   2841       _mesa_unpack_etc2_format(dst, mt->pitch,
   2842                                map->ptr, map->stride,
   2843                                map->w, map->h, mt->etc_format);
   2844 
   2845    intel_miptree_unmap_raw(mt);
   2846    free(map->buffer);
   2847 }
   2848 
   2849 /**
   2850  * Mapping function for packed depth/stencil miptrees backed by real separate
   2851  * miptrees for depth and stencil.
   2852  *
   2853  * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
   2854  * separate from the depth buffer.  Yet at the GL API level, we have to expose
   2855  * packed depth/stencil textures and FBO attachments, and Mesa core expects to
   2856  * be able to map that memory for texture storage and glReadPixels-type
   2857  * operations.  We give Mesa core that access by mallocing a temporary and
   2858  * copying the data between the actual backing store and the temporary.
   2859  */
   2860 static void
   2861 intel_miptree_map_depthstencil(struct brw_context *brw,
   2862 			       struct intel_mipmap_tree *mt,
   2863 			       struct intel_miptree_map *map,
   2864 			       unsigned int level, unsigned int slice)
   2865 {
   2866    struct intel_mipmap_tree *z_mt = mt;
   2867    struct intel_mipmap_tree *s_mt = mt->stencil_mt;
   2868    bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
   2869    int packed_bpp = map_z32f_x24s8 ? 8 : 4;
   2870 
   2871    map->stride = map->w * packed_bpp;
   2872    map->buffer = map->ptr = malloc(map->stride * map->h);
   2873    if (!map->buffer)
   2874       return;
   2875 
   2876    /* One of either READ_BIT or WRITE_BIT or both is set.  READ_BIT implies no
   2877     * INVALIDATE_RANGE_BIT.  WRITE_BIT needs the original values read in unless
   2878     * invalidate is set, since we'll be writing the whole rectangle from our
   2879     * temporary buffer back out.
   2880     */
   2881    if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
   2882       uint32_t *packed_map = map->ptr;
   2883       uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
   2884       uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
   2885       unsigned int s_image_x, s_image_y;
   2886       unsigned int z_image_x, z_image_y;
   2887 
   2888       intel_miptree_get_image_offset(s_mt, level, slice,
   2889 				     &s_image_x, &s_image_y);
   2890       intel_miptree_get_image_offset(z_mt, level, slice,
   2891 				     &z_image_x, &z_image_y);
   2892 
   2893       for (uint32_t y = 0; y < map->h; y++) {
   2894 	 for (uint32_t x = 0; x < map->w; x++) {
   2895 	    int map_x = map->x + x, map_y = map->y + y;
   2896 	    ptrdiff_t s_offset = intel_offset_S8(s_mt->pitch,
   2897 						 map_x + s_image_x,
   2898 						 map_y + s_image_y,
   2899 						 brw->has_swizzling);
   2900 	    ptrdiff_t z_offset = ((map_y + z_image_y) *
   2901                                   (z_mt->pitch / 4) +
   2902 				  (map_x + z_image_x));
   2903 	    uint8_t s = s_map[s_offset];
   2904 	    uint32_t z = z_map[z_offset];
   2905 
   2906 	    if (map_z32f_x24s8) {
   2907 	       packed_map[(y * map->w + x) * 2 + 0] = z;
   2908 	       packed_map[(y * map->w + x) * 2 + 1] = s;
   2909 	    } else {
   2910 	       packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
   2911 	    }
   2912 	 }
   2913       }
   2914 
   2915       intel_miptree_unmap_raw(s_mt);
   2916       intel_miptree_unmap_raw(z_mt);
   2917 
   2918       DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
   2919 	  __func__,
   2920 	  map->x, map->y, map->w, map->h,
   2921 	  z_mt, map->x + z_image_x, map->y + z_image_y,
   2922 	  s_mt, map->x + s_image_x, map->y + s_image_y,
   2923 	  map->ptr, map->stride);
   2924    } else {
   2925       DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
   2926 	  map->x, map->y, map->w, map->h,
   2927 	  mt, map->ptr, map->stride);
   2928    }
   2929 }
   2930 
   2931 static void
   2932 intel_miptree_unmap_depthstencil(struct brw_context *brw,
   2933 				 struct intel_mipmap_tree *mt,
   2934 				 struct intel_miptree_map *map,
   2935 				 unsigned int level,
   2936 				 unsigned int slice)
   2937 {
   2938    struct intel_mipmap_tree *z_mt = mt;
   2939    struct intel_mipmap_tree *s_mt = mt->stencil_mt;
   2940    bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
   2941 
   2942    if (map->mode & GL_MAP_WRITE_BIT) {
   2943       uint32_t *packed_map = map->ptr;
   2944       uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
   2945       uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
   2946       unsigned int s_image_x, s_image_y;
   2947       unsigned int z_image_x, z_image_y;
   2948 
   2949       intel_miptree_get_image_offset(s_mt, level, slice,
   2950 				     &s_image_x, &s_image_y);
   2951       intel_miptree_get_image_offset(z_mt, level, slice,
   2952 				     &z_image_x, &z_image_y);
   2953 
   2954       for (uint32_t y = 0; y < map->h; y++) {
   2955 	 for (uint32_t x = 0; x < map->w; x++) {
   2956 	    ptrdiff_t s_offset = intel_offset_S8(s_mt->pitch,
   2957 						 x + s_image_x + map->x,
   2958 						 y + s_image_y + map->y,
   2959 						 brw->has_swizzling);
   2960 	    ptrdiff_t z_offset = ((y + z_image_y + map->y) *
   2961                                   (z_mt->pitch / 4) +
   2962 				  (x + z_image_x + map->x));
   2963 
   2964 	    if (map_z32f_x24s8) {
   2965 	       z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
   2966 	       s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
   2967 	    } else {
   2968 	       uint32_t packed = packed_map[y * map->w + x];
   2969 	       s_map[s_offset] = packed >> 24;
   2970 	       z_map[z_offset] = packed;
   2971 	    }
   2972 	 }
   2973       }
   2974 
   2975       intel_miptree_unmap_raw(s_mt);
   2976       intel_miptree_unmap_raw(z_mt);
   2977 
   2978       DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
   2979 	  __func__,
   2980 	  map->x, map->y, map->w, map->h,
   2981 	  z_mt, _mesa_get_format_name(z_mt->format),
   2982 	  map->x + z_image_x, map->y + z_image_y,
   2983 	  s_mt, map->x + s_image_x, map->y + s_image_y,
   2984 	  map->ptr, map->stride);
   2985    }
   2986 
   2987    free(map->buffer);
   2988 }
   2989 
   2990 /**
   2991  * Create and attach a map to the miptree at (level, slice). Return the
   2992  * attached map.
   2993  */
   2994 static struct intel_miptree_map*
   2995 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
   2996                          unsigned int level,
   2997                          unsigned int slice,
   2998                          unsigned int x,
   2999                          unsigned int y,
   3000                          unsigned int w,
   3001                          unsigned int h,
   3002                          GLbitfield mode)
   3003 {
   3004    struct intel_miptree_map *map = calloc(1, sizeof(*map));
   3005 
   3006    if (!map)
   3007       return NULL;
   3008 
   3009    assert(mt->level[level].slice[slice].map == NULL);
   3010    mt->level[level].slice[slice].map = map;
   3011 
   3012    map->mode = mode;
   3013    map->x = x;
   3014    map->y = y;
   3015    map->w = w;
   3016    map->h = h;
   3017 
   3018    return map;
   3019 }
   3020 
   3021 /**
   3022  * Release the map at (level, slice).
   3023  */
   3024 static void
   3025 intel_miptree_release_map(struct intel_mipmap_tree *mt,
   3026                          unsigned int level,
   3027                          unsigned int slice)
   3028 {
   3029    struct intel_miptree_map **map;
   3030 
   3031    map = &mt->level[level].slice[slice].map;
   3032    free(*map);
   3033    *map = NULL;
   3034 }
   3035 
   3036 static bool
   3037 can_blit_slice(struct intel_mipmap_tree *mt,
   3038                unsigned int level, unsigned int slice)
   3039 {
   3040    /* See intel_miptree_blit() for details on the 32k pitch limit. */
   3041    if (mt->pitch >= 32768)
   3042       return false;
   3043 
   3044    return true;
   3045 }
   3046 
   3047 static bool
   3048 use_intel_mipree_map_blit(struct brw_context *brw,
   3049                           struct intel_mipmap_tree *mt,
   3050                           GLbitfield mode,
   3051                           unsigned int level,
   3052                           unsigned int slice)
   3053 {
   3054    if (brw->has_llc &&
   3055       /* It's probably not worth swapping to the blit ring because of
   3056        * all the overhead involved. But, we must use blitter for the
   3057        * surfaces with INTEL_MIPTREE_TRMODE_{YF,YS}.
   3058        */
   3059        (!(mode & GL_MAP_WRITE_BIT) ||
   3060         mt->tr_mode != INTEL_MIPTREE_TRMODE_NONE) &&
   3061        !mt->compressed &&
   3062        (mt->tiling == I915_TILING_X ||
   3063         /* Prior to Sandybridge, the blitter can't handle Y tiling */
   3064         (brw->gen >= 6 && mt->tiling == I915_TILING_Y) ||
   3065         /* Fast copy blit on skl+ supports all tiling formats. */
   3066         brw->gen >= 9) &&
   3067        can_blit_slice(mt, level, slice))
   3068       return true;
   3069 
   3070    if (mt->tiling != I915_TILING_NONE &&
   3071        mt->bo->size >= brw->max_gtt_map_object_size) {
   3072       assert(can_blit_slice(mt, level, slice));
   3073       return true;
   3074    }
   3075 
   3076    return false;
   3077 }
   3078 
   3079 /**
   3080  * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
   3081  * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
   3082  * arithmetic overflow.
   3083  *
   3084  * If you call this function and use \a out_stride, then you're doing pointer
   3085  * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
   3086  * bugs.  The caller must still take care to avoid 32-bit overflow errors in
   3087  * all arithmetic expressions that contain buffer offsets and pixel sizes,
   3088  * which usually have type uint32_t or GLuint.
   3089  */
   3090 void
   3091 intel_miptree_map(struct brw_context *brw,
   3092                   struct intel_mipmap_tree *mt,
   3093                   unsigned int level,
   3094                   unsigned int slice,
   3095                   unsigned int x,
   3096                   unsigned int y,
   3097                   unsigned int w,
   3098                   unsigned int h,
   3099                   GLbitfield mode,
   3100                   void **out_ptr,
   3101                   ptrdiff_t *out_stride)
   3102 {
   3103    struct intel_miptree_map *map;
   3104 
   3105    assert(mt->num_samples <= 1);
   3106 
   3107    map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
   3108    if (!map){
   3109       *out_ptr = NULL;
   3110       *out_stride = 0;
   3111       return;
   3112    }
   3113 
   3114    intel_miptree_slice_resolve_depth(brw, mt, level, slice);
   3115    if (map->mode & GL_MAP_WRITE_BIT) {
   3116       intel_miptree_slice_set_needs_hiz_resolve(mt, level, slice);
   3117    }
   3118 
   3119    if (mt->format == MESA_FORMAT_S_UINT8) {
   3120       intel_miptree_map_s8(brw, mt, map, level, slice);
   3121    } else if (mt->etc_format != MESA_FORMAT_NONE &&
   3122               !(mode & BRW_MAP_DIRECT_BIT)) {
   3123       intel_miptree_map_etc(brw, mt, map, level, slice);
   3124    } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
   3125       intel_miptree_map_depthstencil(brw, mt, map, level, slice);
   3126    } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
   3127       intel_miptree_map_blit(brw, mt, map, level, slice);
   3128 #if defined(USE_SSE41)
   3129    } else if (!(mode & GL_MAP_WRITE_BIT) &&
   3130               !mt->compressed && cpu_has_sse4_1 &&
   3131               (mt->pitch % 16 == 0)) {
   3132       intel_miptree_map_movntdqa(brw, mt, map, level, slice);
   3133 #endif
   3134    } else {
   3135       /* intel_miptree_map_gtt() doesn't support surfaces with Yf/Ys tiling. */
   3136       assert(mt->tr_mode == INTEL_MIPTREE_TRMODE_NONE);
   3137       intel_miptree_map_gtt(brw, mt, map, level, slice);
   3138    }
   3139 
   3140    *out_ptr = map->ptr;
   3141    *out_stride = map->stride;
   3142 
   3143    if (map->ptr == NULL)
   3144       intel_miptree_release_map(mt, level, slice);
   3145 }
   3146 
   3147 void
   3148 intel_miptree_unmap(struct brw_context *brw,
   3149                     struct intel_mipmap_tree *mt,
   3150                     unsigned int level,
   3151                     unsigned int slice)
   3152 {
   3153    struct intel_miptree_map *map = mt->level[level].slice[slice].map;
   3154 
   3155    assert(mt->num_samples <= 1);
   3156 
   3157    if (!map)
   3158       return;
   3159 
   3160    DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
   3161        mt, _mesa_get_format_name(mt->format), level, slice);
   3162 
   3163    if (mt->format == MESA_FORMAT_S_UINT8) {
   3164       intel_miptree_unmap_s8(brw, mt, map, level, slice);
   3165    } else if (mt->etc_format != MESA_FORMAT_NONE &&
   3166               !(map->mode & BRW_MAP_DIRECT_BIT)) {
   3167       intel_miptree_unmap_etc(brw, mt, map, level, slice);
   3168    } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
   3169       intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
   3170    } else if (map->linear_mt) {
   3171       intel_miptree_unmap_blit(brw, mt, map, level, slice);
   3172 #if defined(USE_SSE41)
   3173    } else if (map->buffer && cpu_has_sse4_1) {
   3174       intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
   3175 #endif
   3176    } else {
   3177       intel_miptree_unmap_gtt(mt);
   3178    }
   3179 
   3180    intel_miptree_release_map(mt, level, slice);
   3181 }
   3182 
   3183 enum isl_surf_dim
   3184 get_isl_surf_dim(GLenum target)
   3185 {
   3186    switch (target) {
   3187    case GL_TEXTURE_1D:
   3188    case GL_TEXTURE_1D_ARRAY:
   3189       return ISL_SURF_DIM_1D;
   3190 
   3191    case GL_TEXTURE_2D:
   3192    case GL_TEXTURE_2D_ARRAY:
   3193    case GL_TEXTURE_RECTANGLE:
   3194    case GL_TEXTURE_CUBE_MAP:
   3195    case GL_TEXTURE_CUBE_MAP_ARRAY:
   3196    case GL_TEXTURE_2D_MULTISAMPLE:
   3197    case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
   3198    case GL_TEXTURE_EXTERNAL_OES:
   3199       return ISL_SURF_DIM_2D;
   3200 
   3201    case GL_TEXTURE_3D:
   3202       return ISL_SURF_DIM_3D;
   3203    }
   3204 
   3205    unreachable("Invalid texture target");
   3206 }
   3207 
   3208 enum isl_dim_layout
   3209 get_isl_dim_layout(const struct gen_device_info *devinfo, uint32_t tiling,
   3210                    GLenum target)
   3211 {
   3212    switch (target) {
   3213    case GL_TEXTURE_1D:
   3214    case GL_TEXTURE_1D_ARRAY:
   3215       return (devinfo->gen >= 9 && tiling == I915_TILING_NONE ?
   3216               ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
   3217 
   3218    case GL_TEXTURE_2D:
   3219    case GL_TEXTURE_2D_ARRAY:
   3220    case GL_TEXTURE_RECTANGLE:
   3221    case GL_TEXTURE_2D_MULTISAMPLE:
   3222    case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
   3223    case GL_TEXTURE_EXTERNAL_OES:
   3224       return ISL_DIM_LAYOUT_GEN4_2D;
   3225 
   3226    case GL_TEXTURE_CUBE_MAP:
   3227    case GL_TEXTURE_CUBE_MAP_ARRAY:
   3228       return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
   3229               ISL_DIM_LAYOUT_GEN4_2D);
   3230 
   3231    case GL_TEXTURE_3D:
   3232       return (devinfo->gen >= 9 ?
   3233               ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
   3234    }
   3235 
   3236    unreachable("Invalid texture target");
   3237 }
   3238 
   3239 enum isl_tiling
   3240 intel_miptree_get_isl_tiling(const struct intel_mipmap_tree *mt)
   3241 {
   3242    if (mt->format == MESA_FORMAT_S_UINT8) {
   3243       return ISL_TILING_W;
   3244    } else {
   3245       switch (mt->tiling) {
   3246       case I915_TILING_NONE:
   3247          return ISL_TILING_LINEAR;
   3248       case I915_TILING_X:
   3249          return ISL_TILING_X;
   3250       case I915_TILING_Y:
   3251          switch (mt->tr_mode) {
   3252          case INTEL_MIPTREE_TRMODE_NONE:
   3253             return ISL_TILING_Y0;
   3254          case INTEL_MIPTREE_TRMODE_YF:
   3255             return ISL_TILING_Yf;
   3256          case INTEL_MIPTREE_TRMODE_YS:
   3257             return ISL_TILING_Ys;
   3258          default:
   3259             unreachable("Invalid tiled resource mode");
   3260          }
   3261       default:
   3262          unreachable("Invalid tiling mode");
   3263       }
   3264    }
   3265 }
   3266 
   3267 void
   3268 intel_miptree_get_isl_surf(struct brw_context *brw,
   3269                            const struct intel_mipmap_tree *mt,
   3270                            struct isl_surf *surf)
   3271 {
   3272    surf->dim = get_isl_surf_dim(mt->target);
   3273    surf->dim_layout = get_isl_dim_layout(&brw->screen->devinfo,
   3274                                          mt->tiling, mt->target);
   3275 
   3276    if (mt->num_samples > 1) {
   3277       switch (mt->msaa_layout) {
   3278       case INTEL_MSAA_LAYOUT_IMS:
   3279          surf->msaa_layout = ISL_MSAA_LAYOUT_INTERLEAVED;
   3280          break;
   3281       case INTEL_MSAA_LAYOUT_UMS:
   3282       case INTEL_MSAA_LAYOUT_CMS:
   3283          surf->msaa_layout = ISL_MSAA_LAYOUT_ARRAY;
   3284          break;
   3285       default:
   3286          unreachable("Invalid MSAA layout");
   3287       }
   3288    } else {
   3289       surf->msaa_layout = ISL_MSAA_LAYOUT_NONE;
   3290    }
   3291 
   3292    surf->tiling = intel_miptree_get_isl_tiling(mt);
   3293 
   3294    if (mt->format == MESA_FORMAT_S_UINT8) {
   3295       /* The ISL definition of row_pitch matches the surface state pitch field
   3296        * a bit better than intel_mipmap_tree.  In particular, ISL incorporates
   3297        * the factor of 2 for W-tiling in row_pitch.
   3298        */
   3299       surf->row_pitch = 2 * mt->pitch;
   3300    } else {
   3301       surf->row_pitch = mt->pitch;
   3302    }
   3303 
   3304    surf->format = translate_tex_format(brw, mt->format, false);
   3305 
   3306    if (brw->gen >= 9) {
   3307       if (surf->dim == ISL_SURF_DIM_1D && surf->tiling == ISL_TILING_LINEAR) {
   3308          /* For gen9 1-D surfaces, intel_mipmap_tree has a bogus alignment. */
   3309          surf->image_alignment_el = isl_extent3d(64, 1, 1);
   3310       } else {
   3311          /* On gen9+, intel_mipmap_tree stores the horizontal and vertical
   3312           * alignment in terms of surface elements like we want.
   3313           */
   3314          surf->image_alignment_el = isl_extent3d(mt->halign, mt->valign, 1);
   3315       }
   3316    } else {
   3317       /* On earlier gens it's stored in pixels. */
   3318       unsigned bw, bh;
   3319       _mesa_get_format_block_size(mt->format, &bw, &bh);
   3320       surf->image_alignment_el =
   3321          isl_extent3d(mt->halign / bw, mt->valign / bh, 1);
   3322    }
   3323 
   3324    surf->logical_level0_px.width = mt->logical_width0;
   3325    surf->logical_level0_px.height = mt->logical_height0;
   3326    if (surf->dim == ISL_SURF_DIM_3D) {
   3327       surf->logical_level0_px.depth = mt->logical_depth0;
   3328       surf->logical_level0_px.array_len = 1;
   3329    } else {
   3330       surf->logical_level0_px.depth = 1;
   3331       surf->logical_level0_px.array_len = mt->logical_depth0;
   3332    }
   3333 
   3334    surf->phys_level0_sa.width = mt->physical_width0;
   3335    surf->phys_level0_sa.height = mt->physical_height0;
   3336    if (surf->dim == ISL_SURF_DIM_3D) {
   3337       surf->phys_level0_sa.depth = mt->physical_depth0;
   3338       surf->phys_level0_sa.array_len = 1;
   3339    } else {
   3340       surf->phys_level0_sa.depth = 1;
   3341       surf->phys_level0_sa.array_len = mt->physical_depth0;
   3342    }
   3343 
   3344    surf->levels = mt->last_level + 1;
   3345    surf->samples = MAX2(mt->num_samples, 1);
   3346 
   3347    surf->size = 0; /* TODO */
   3348    surf->alignment = 0; /* TODO */
   3349 
   3350    switch (surf->dim_layout) {
   3351    case ISL_DIM_LAYOUT_GEN4_2D:
   3352    case ISL_DIM_LAYOUT_GEN4_3D:
   3353       if (brw->gen >= 9) {
   3354          surf->array_pitch_el_rows = mt->qpitch;
   3355       } else {
   3356          unsigned bw, bh;
   3357          _mesa_get_format_block_size(mt->format, &bw, &bh);
   3358          assert(mt->qpitch % bh == 0);
   3359          surf->array_pitch_el_rows = mt->qpitch / bh;
   3360       }
   3361       break;
   3362    case ISL_DIM_LAYOUT_GEN9_1D:
   3363       surf->array_pitch_el_rows = 1;
   3364       break;
   3365    }
   3366 
   3367    switch (mt->array_layout) {
   3368    case ALL_LOD_IN_EACH_SLICE:
   3369       surf->array_pitch_span = ISL_ARRAY_PITCH_SPAN_FULL;
   3370       break;
   3371    case ALL_SLICES_AT_EACH_LOD:
   3372       surf->array_pitch_span = ISL_ARRAY_PITCH_SPAN_COMPACT;
   3373       break;
   3374    default:
   3375       unreachable("Invalid array layout");
   3376    }
   3377 
   3378    GLenum base_format = _mesa_get_format_base_format(mt->format);
   3379    switch (base_format) {
   3380    case GL_DEPTH_COMPONENT:
   3381       surf->usage = ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT;
   3382       break;
   3383    case GL_STENCIL_INDEX:
   3384       surf->usage = ISL_SURF_USAGE_STENCIL_BIT;
   3385       if (brw->gen >= 8)
   3386          surf->usage |= ISL_SURF_USAGE_TEXTURE_BIT;
   3387       break;
   3388    case GL_DEPTH_STENCIL:
   3389       /* In this case we only texture from the depth part */
   3390       surf->usage = ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_STENCIL_BIT |
   3391                     ISL_SURF_USAGE_TEXTURE_BIT;
   3392       break;
   3393    default:
   3394       surf->usage = ISL_SURF_USAGE_TEXTURE_BIT;
   3395       if (brw->format_supported_as_render_target[mt->format])
   3396          surf->usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
   3397       break;
   3398    }
   3399 
   3400    if (_mesa_is_cube_map_texture(mt->target))
   3401       surf->usage |= ISL_SURF_USAGE_CUBE_BIT;
   3402 }
   3403 
   3404 /* WARNING: THE SURFACE CREATED BY THIS FUNCTION IS NOT COMPLETE AND CANNOT BE
   3405  * USED FOR ANY REAL CALCULATIONS.  THE ONLY VALID USE OF SUCH A SURFACE IS TO
   3406  * PASS IT INTO isl_surf_fill_state.
   3407  */
   3408 void
   3409 intel_miptree_get_aux_isl_surf(struct brw_context *brw,
   3410                                const struct intel_mipmap_tree *mt,
   3411                                struct isl_surf *surf,
   3412                                enum isl_aux_usage *usage)
   3413 {
   3414    uint32_t aux_pitch, aux_qpitch;
   3415    if (mt->mcs_buf) {
   3416       aux_pitch = mt->mcs_buf->pitch;
   3417       aux_qpitch = mt->mcs_buf->qpitch;
   3418 
   3419       if (mt->num_samples > 1) {
   3420          assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS);
   3421          *usage = ISL_AUX_USAGE_MCS;
   3422       } else if (intel_miptree_is_lossless_compressed(brw, mt)) {
   3423          assert(brw->gen >= 9);
   3424          *usage = ISL_AUX_USAGE_CCS_E;
   3425       } else if ((mt->aux_disable & INTEL_AUX_DISABLE_CCS) == 0) {
   3426          *usage = ISL_AUX_USAGE_CCS_D;
   3427       } else {
   3428          unreachable("Invalid MCS miptree");
   3429       }
   3430    } else if (mt->hiz_buf) {
   3431       if (mt->hiz_buf->mt) {
   3432          aux_pitch = mt->hiz_buf->mt->pitch;
   3433          aux_qpitch = mt->hiz_buf->mt->qpitch;
   3434       } else {
   3435          aux_pitch = mt->hiz_buf->aux_base.pitch;
   3436          aux_qpitch = mt->hiz_buf->aux_base.qpitch;
   3437       }
   3438 
   3439       *usage = ISL_AUX_USAGE_HIZ;
   3440    } else {
   3441       *usage = ISL_AUX_USAGE_NONE;
   3442       return;
   3443    }
   3444 
   3445    /* Start with a copy of the original surface. */
   3446    intel_miptree_get_isl_surf(brw, mt, surf);
   3447 
   3448    /* Figure out the format and tiling of the auxiliary surface */
   3449    switch (*usage) {
   3450    case ISL_AUX_USAGE_NONE:
   3451       unreachable("Invalid auxiliary usage");
   3452 
   3453    case ISL_AUX_USAGE_HIZ:
   3454       isl_surf_get_hiz_surf(&brw->isl_dev, surf, surf);
   3455       break;
   3456 
   3457    case ISL_AUX_USAGE_MCS:
   3458       /*
   3459        * From the SKL PRM:
   3460        *    "When Auxiliary Surface Mode is set to AUX_CCS_D or AUX_CCS_E,
   3461        *    HALIGN 16 must be used."
   3462        */
   3463       if (brw->gen >= 9)
   3464          assert(mt->halign == 16);
   3465 
   3466       isl_surf_get_mcs_surf(&brw->isl_dev, surf, surf);
   3467       break;
   3468 
   3469    case ISL_AUX_USAGE_CCS_D:
   3470    case ISL_AUX_USAGE_CCS_E:
   3471       /*
   3472        * From the BDW PRM, Volume 2d, page 260 (RENDER_SURFACE_STATE):
   3473        *
   3474        *    "When MCS is enabled for non-MSRT, HALIGN_16 must be used"
   3475        *
   3476        * From the hardware spec for GEN9:
   3477        *
   3478        *    "When Auxiliary Surface Mode is set to AUX_CCS_D or AUX_CCS_E,
   3479        *    HALIGN 16 must be used."
   3480        */
   3481       assert(mt->num_samples <= 1);
   3482       if (brw->gen >= 8)
   3483          assert(mt->halign == 16);
   3484 
   3485       isl_surf_get_ccs_surf(&brw->isl_dev, surf, surf);
   3486       break;
   3487    }
   3488 
   3489    /* We want the pitch of the actual aux buffer. */
   3490    surf->row_pitch = aux_pitch;
   3491 
   3492    /* Auxiliary surfaces in ISL have compressed formats and array_pitch_el_rows
   3493     * is in elements.  This doesn't match intel_mipmap_tree::qpitch which is
   3494     * in elements of the primary color surface so we have to divide by the
   3495     * compression block height.
   3496     */
   3497    surf->array_pitch_el_rows =
   3498       aux_qpitch / isl_format_get_layout(surf->format)->bh;
   3499 }
   3500 
   3501 union isl_color_value
   3502 intel_miptree_get_isl_clear_color(struct brw_context *brw,
   3503                                   const struct intel_mipmap_tree *mt)
   3504 {
   3505    union isl_color_value clear_color;
   3506 
   3507    if (_mesa_get_format_base_format(mt->format) == GL_DEPTH_COMPONENT) {
   3508       clear_color.i32[0] = mt->depth_clear_value;
   3509       clear_color.i32[1] = 0;
   3510       clear_color.i32[2] = 0;
   3511       clear_color.i32[3] = 0;
   3512    } else if (brw->gen >= 9) {
   3513       clear_color.i32[0] = mt->gen9_fast_clear_color.i[0];
   3514       clear_color.i32[1] = mt->gen9_fast_clear_color.i[1];
   3515       clear_color.i32[2] = mt->gen9_fast_clear_color.i[2];
   3516       clear_color.i32[3] = mt->gen9_fast_clear_color.i[3];
   3517    } else if (_mesa_is_format_integer(mt->format)) {
   3518       clear_color.i32[0] = (mt->fast_clear_color_value & (1u << 31)) != 0;
   3519       clear_color.i32[1] = (mt->fast_clear_color_value & (1u << 30)) != 0;
   3520       clear_color.i32[2] = (mt->fast_clear_color_value & (1u << 29)) != 0;
   3521       clear_color.i32[3] = (mt->fast_clear_color_value & (1u << 28)) != 0;
   3522    } else {
   3523       clear_color.f32[0] = (mt->fast_clear_color_value & (1u << 31)) != 0;
   3524       clear_color.f32[1] = (mt->fast_clear_color_value & (1u << 30)) != 0;
   3525       clear_color.f32[2] = (mt->fast_clear_color_value & (1u << 29)) != 0;
   3526       clear_color.f32[3] = (mt->fast_clear_color_value & (1u << 28)) != 0;
   3527    }
   3528 
   3529    return clear_color;
   3530 }
   3531