Home | History | Annotate | Download | only in SelectionDAG
      1 //===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements the ScheduleDAG class, which is a base class used by
     11 // scheduling implementation classes.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "ScheduleDAGSDNodes.h"
     16 #include "InstrEmitter.h"
     17 #include "SDNodeDbgValue.h"
     18 #include "llvm/ADT/DenseMap.h"
     19 #include "llvm/ADT/SmallPtrSet.h"
     20 #include "llvm/ADT/SmallSet.h"
     21 #include "llvm/ADT/SmallVector.h"
     22 #include "llvm/ADT/Statistic.h"
     23 #include "llvm/CodeGen/MachineInstrBuilder.h"
     24 #include "llvm/CodeGen/MachineRegisterInfo.h"
     25 #include "llvm/CodeGen/SelectionDAG.h"
     26 #include "llvm/MC/MCInstrItineraries.h"
     27 #include "llvm/Support/CommandLine.h"
     28 #include "llvm/Support/Debug.h"
     29 #include "llvm/Support/raw_ostream.h"
     30 #include "llvm/Target/TargetInstrInfo.h"
     31 #include "llvm/Target/TargetLowering.h"
     32 #include "llvm/Target/TargetRegisterInfo.h"
     33 #include "llvm/Target/TargetSubtargetInfo.h"
     34 using namespace llvm;
     35 
     36 #define DEBUG_TYPE "pre-RA-sched"
     37 
     38 STATISTIC(LoadsClustered, "Number of loads clustered together");
     39 
     40 // This allows the latency-based scheduler to notice high latency instructions
     41 // without a target itinerary. The choice of number here has more to do with
     42 // balancing scheduler heuristics than with the actual machine latency.
     43 static cl::opt<int> HighLatencyCycles(
     44   "sched-high-latency-cycles", cl::Hidden, cl::init(10),
     45   cl::desc("Roughly estimate the number of cycles that 'long latency'"
     46            "instructions take for targets with no itinerary"));
     47 
     48 ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
     49     : ScheduleDAG(mf), BB(nullptr), DAG(nullptr),
     50       InstrItins(mf.getSubtarget().getInstrItineraryData()) {}
     51 
     52 /// Run - perform scheduling.
     53 ///
     54 void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb) {
     55   BB = bb;
     56   DAG = dag;
     57 
     58   // Clear the scheduler's SUnit DAG.
     59   ScheduleDAG::clearDAG();
     60   Sequence.clear();
     61 
     62   // Invoke the target's selection of scheduler.
     63   Schedule();
     64 }
     65 
     66 /// NewSUnit - Creates a new SUnit and return a ptr to it.
     67 ///
     68 SUnit *ScheduleDAGSDNodes::newSUnit(SDNode *N) {
     69 #ifndef NDEBUG
     70   const SUnit *Addr = nullptr;
     71   if (!SUnits.empty())
     72     Addr = &SUnits[0];
     73 #endif
     74   SUnits.emplace_back(N, (unsigned)SUnits.size());
     75   assert((Addr == nullptr || Addr == &SUnits[0]) &&
     76          "SUnits std::vector reallocated on the fly!");
     77   SUnits.back().OrigNode = &SUnits.back();
     78   SUnit *SU = &SUnits.back();
     79   const TargetLowering &TLI = DAG->getTargetLoweringInfo();
     80   if (!N ||
     81       (N->isMachineOpcode() &&
     82        N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF))
     83     SU->SchedulingPref = Sched::None;
     84   else
     85     SU->SchedulingPref = TLI.getSchedulingPreference(N);
     86   return SU;
     87 }
     88 
     89 SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
     90   SUnit *SU = newSUnit(Old->getNode());
     91   SU->OrigNode = Old->OrigNode;
     92   SU->Latency = Old->Latency;
     93   SU->isVRegCycle = Old->isVRegCycle;
     94   SU->isCall = Old->isCall;
     95   SU->isCallOp = Old->isCallOp;
     96   SU->isTwoAddress = Old->isTwoAddress;
     97   SU->isCommutable = Old->isCommutable;
     98   SU->hasPhysRegDefs = Old->hasPhysRegDefs;
     99   SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
    100   SU->isScheduleHigh = Old->isScheduleHigh;
    101   SU->isScheduleLow = Old->isScheduleLow;
    102   SU->SchedulingPref = Old->SchedulingPref;
    103   Old->isCloned = true;
    104   return SU;
    105 }
    106 
    107 /// CheckForPhysRegDependency - Check if the dependency between def and use of
    108 /// a specified operand is a physical register dependency. If so, returns the
    109 /// register and the cost of copying the register.
    110 static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
    111                                       const TargetRegisterInfo *TRI,
    112                                       const TargetInstrInfo *TII,
    113                                       unsigned &PhysReg, int &Cost) {
    114   if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
    115     return;
    116 
    117   unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
    118   if (TargetRegisterInfo::isVirtualRegister(Reg))
    119     return;
    120 
    121   unsigned ResNo = User->getOperand(2).getResNo();
    122   if (Def->getOpcode() == ISD::CopyFromReg &&
    123       cast<RegisterSDNode>(Def->getOperand(1))->getReg() == Reg) {
    124     PhysReg = Reg;
    125   } else if (Def->isMachineOpcode()) {
    126     const MCInstrDesc &II = TII->get(Def->getMachineOpcode());
    127     if (ResNo >= II.getNumDefs() &&
    128         II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg)
    129       PhysReg = Reg;
    130   }
    131 
    132   if (PhysReg != 0) {
    133     const TargetRegisterClass *RC =
    134         TRI->getMinimalPhysRegClass(Reg, Def->getSimpleValueType(ResNo));
    135     Cost = RC->getCopyCost();
    136   }
    137 }
    138 
    139 // Helper for AddGlue to clone node operands.
    140 static void CloneNodeWithValues(SDNode *N, SelectionDAG *DAG, ArrayRef<EVT> VTs,
    141                                 SDValue ExtraOper = SDValue()) {
    142   SmallVector<SDValue, 8> Ops(N->op_begin(), N->op_end());
    143   if (ExtraOper.getNode())
    144     Ops.push_back(ExtraOper);
    145 
    146   SDVTList VTList = DAG->getVTList(VTs);
    147   MachineSDNode::mmo_iterator Begin = nullptr, End = nullptr;
    148   MachineSDNode *MN = dyn_cast<MachineSDNode>(N);
    149 
    150   // Store memory references.
    151   if (MN) {
    152     Begin = MN->memoperands_begin();
    153     End = MN->memoperands_end();
    154   }
    155 
    156   DAG->MorphNodeTo(N, N->getOpcode(), VTList, Ops);
    157 
    158   // Reset the memory references
    159   if (MN)
    160     MN->setMemRefs(Begin, End);
    161 }
    162 
    163 static bool AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) {
    164   SDNode *GlueDestNode = Glue.getNode();
    165 
    166   // Don't add glue from a node to itself.
    167   if (GlueDestNode == N) return false;
    168 
    169   // Don't add a glue operand to something that already uses glue.
    170   if (GlueDestNode &&
    171       N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
    172     return false;
    173   }
    174   // Don't add glue to something that already has a glue value.
    175   if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return false;
    176 
    177   SmallVector<EVT, 4> VTs(N->value_begin(), N->value_end());
    178   if (AddGlue)
    179     VTs.push_back(MVT::Glue);
    180 
    181   CloneNodeWithValues(N, DAG, VTs, Glue);
    182 
    183   return true;
    184 }
    185 
    186 // Cleanup after unsuccessful AddGlue. Use the standard method of morphing the
    187 // node even though simply shrinking the value list is sufficient.
    188 static void RemoveUnusedGlue(SDNode *N, SelectionDAG *DAG) {
    189   assert((N->getValueType(N->getNumValues() - 1) == MVT::Glue &&
    190           !N->hasAnyUseOfValue(N->getNumValues() - 1)) &&
    191          "expected an unused glue value");
    192 
    193   CloneNodeWithValues(N, DAG,
    194                       makeArrayRef(N->value_begin(), N->getNumValues() - 1));
    195 }
    196 
    197 /// ClusterNeighboringLoads - Force nearby loads together by "gluing" them.
    198 /// This function finds loads of the same base and different offsets. If the
    199 /// offsets are not far apart (target specific), it add MVT::Glue inputs and
    200 /// outputs to ensure they are scheduled together and in order. This
    201 /// optimization may benefit some targets by improving cache locality.
    202 void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
    203   SDNode *Chain = nullptr;
    204   unsigned NumOps = Node->getNumOperands();
    205   if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
    206     Chain = Node->getOperand(NumOps-1).getNode();
    207   if (!Chain)
    208     return;
    209 
    210   // Look for other loads of the same chain. Find loads that are loading from
    211   // the same base pointer and different offsets.
    212   SmallPtrSet<SDNode*, 16> Visited;
    213   SmallVector<int64_t, 4> Offsets;
    214   DenseMap<long long, SDNode*> O2SMap;  // Map from offset to SDNode.
    215   bool Cluster = false;
    216   SDNode *Base = Node;
    217   // This algorithm requires a reasonably low use count before finding a match
    218   // to avoid uselessly blowing up compile time in large blocks.
    219   unsigned UseCount = 0;
    220   for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
    221        I != E && UseCount < 100; ++I, ++UseCount) {
    222     SDNode *User = *I;
    223     if (User == Node || !Visited.insert(User).second)
    224       continue;
    225     int64_t Offset1, Offset2;
    226     if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
    227         Offset1 == Offset2)
    228       // FIXME: Should be ok if they addresses are identical. But earlier
    229       // optimizations really should have eliminated one of the loads.
    230       continue;
    231     if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
    232       Offsets.push_back(Offset1);
    233     O2SMap.insert(std::make_pair(Offset2, User));
    234     Offsets.push_back(Offset2);
    235     if (Offset2 < Offset1)
    236       Base = User;
    237     Cluster = true;
    238     // Reset UseCount to allow more matches.
    239     UseCount = 0;
    240   }
    241 
    242   if (!Cluster)
    243     return;
    244 
    245   // Sort them in increasing order.
    246   std::sort(Offsets.begin(), Offsets.end());
    247 
    248   // Check if the loads are close enough.
    249   SmallVector<SDNode*, 4> Loads;
    250   unsigned NumLoads = 0;
    251   int64_t BaseOff = Offsets[0];
    252   SDNode *BaseLoad = O2SMap[BaseOff];
    253   Loads.push_back(BaseLoad);
    254   for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
    255     int64_t Offset = Offsets[i];
    256     SDNode *Load = O2SMap[Offset];
    257     if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
    258       break; // Stop right here. Ignore loads that are further away.
    259     Loads.push_back(Load);
    260     ++NumLoads;
    261   }
    262 
    263   if (NumLoads == 0)
    264     return;
    265 
    266   // Cluster loads by adding MVT::Glue outputs and inputs. This also
    267   // ensure they are scheduled in order of increasing addresses.
    268   SDNode *Lead = Loads[0];
    269   SDValue InGlue = SDValue(nullptr, 0);
    270   if (AddGlue(Lead, InGlue, true, DAG))
    271     InGlue = SDValue(Lead, Lead->getNumValues() - 1);
    272   for (unsigned I = 1, E = Loads.size(); I != E; ++I) {
    273     bool OutGlue = I < E - 1;
    274     SDNode *Load = Loads[I];
    275 
    276     // If AddGlue fails, we could leave an unsused glue value. This should not
    277     // cause any
    278     if (AddGlue(Load, InGlue, OutGlue, DAG)) {
    279       if (OutGlue)
    280         InGlue = SDValue(Load, Load->getNumValues() - 1);
    281 
    282       ++LoadsClustered;
    283     }
    284     else if (!OutGlue && InGlue.getNode())
    285       RemoveUnusedGlue(InGlue.getNode(), DAG);
    286   }
    287 }
    288 
    289 /// ClusterNodes - Cluster certain nodes which should be scheduled together.
    290 ///
    291 void ScheduleDAGSDNodes::ClusterNodes() {
    292   for (SDNode &NI : DAG->allnodes()) {
    293     SDNode *Node = &NI;
    294     if (!Node || !Node->isMachineOpcode())
    295       continue;
    296 
    297     unsigned Opc = Node->getMachineOpcode();
    298     const MCInstrDesc &MCID = TII->get(Opc);
    299     if (MCID.mayLoad())
    300       // Cluster loads from "near" addresses into combined SUnits.
    301       ClusterNeighboringLoads(Node);
    302   }
    303 }
    304 
    305 void ScheduleDAGSDNodes::BuildSchedUnits() {
    306   // During scheduling, the NodeId field of SDNode is used to map SDNodes
    307   // to their associated SUnits by holding SUnits table indices. A value
    308   // of -1 means the SDNode does not yet have an associated SUnit.
    309   unsigned NumNodes = 0;
    310   for (SDNode &NI : DAG->allnodes()) {
    311     NI.setNodeId(-1);
    312     ++NumNodes;
    313   }
    314 
    315   // Reserve entries in the vector for each of the SUnits we are creating.  This
    316   // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
    317   // invalidated.
    318   // FIXME: Multiply by 2 because we may clone nodes during scheduling.
    319   // This is a temporary workaround.
    320   SUnits.reserve(NumNodes * 2);
    321 
    322   // Add all nodes in depth first order.
    323   SmallVector<SDNode*, 64> Worklist;
    324   SmallPtrSet<SDNode*, 32> Visited;
    325   Worklist.push_back(DAG->getRoot().getNode());
    326   Visited.insert(DAG->getRoot().getNode());
    327 
    328   SmallVector<SUnit*, 8> CallSUnits;
    329   while (!Worklist.empty()) {
    330     SDNode *NI = Worklist.pop_back_val();
    331 
    332     // Add all operands to the worklist unless they've already been added.
    333     for (const SDValue &Op : NI->op_values())
    334       if (Visited.insert(Op.getNode()).second)
    335         Worklist.push_back(Op.getNode());
    336 
    337     if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate.
    338       continue;
    339 
    340     // If this node has already been processed, stop now.
    341     if (NI->getNodeId() != -1) continue;
    342 
    343     SUnit *NodeSUnit = newSUnit(NI);
    344 
    345     // See if anything is glued to this node, if so, add them to glued
    346     // nodes.  Nodes can have at most one glue input and one glue output.  Glue
    347     // is required to be the last operand and result of a node.
    348 
    349     // Scan up to find glued preds.
    350     SDNode *N = NI;
    351     while (N->getNumOperands() &&
    352            N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
    353       N = N->getOperand(N->getNumOperands()-1).getNode();
    354       assert(N->getNodeId() == -1 && "Node already inserted!");
    355       N->setNodeId(NodeSUnit->NodeNum);
    356       if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
    357         NodeSUnit->isCall = true;
    358     }
    359 
    360     // Scan down to find any glued succs.
    361     N = NI;
    362     while (N->getValueType(N->getNumValues()-1) == MVT::Glue) {
    363       SDValue GlueVal(N, N->getNumValues()-1);
    364 
    365       // There are either zero or one users of the Glue result.
    366       bool HasGlueUse = false;
    367       for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
    368            UI != E; ++UI)
    369         if (GlueVal.isOperandOf(*UI)) {
    370           HasGlueUse = true;
    371           assert(N->getNodeId() == -1 && "Node already inserted!");
    372           N->setNodeId(NodeSUnit->NodeNum);
    373           N = *UI;
    374           if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
    375             NodeSUnit->isCall = true;
    376           break;
    377         }
    378       if (!HasGlueUse) break;
    379     }
    380 
    381     if (NodeSUnit->isCall)
    382       CallSUnits.push_back(NodeSUnit);
    383 
    384     // Schedule zero-latency TokenFactor below any nodes that may increase the
    385     // schedule height. Otherwise, ancestors of the TokenFactor may appear to
    386     // have false stalls.
    387     if (NI->getOpcode() == ISD::TokenFactor)
    388       NodeSUnit->isScheduleLow = true;
    389 
    390     // If there are glue operands involved, N is now the bottom-most node
    391     // of the sequence of nodes that are glued together.
    392     // Update the SUnit.
    393     NodeSUnit->setNode(N);
    394     assert(N->getNodeId() == -1 && "Node already inserted!");
    395     N->setNodeId(NodeSUnit->NodeNum);
    396 
    397     // Compute NumRegDefsLeft. This must be done before AddSchedEdges.
    398     InitNumRegDefsLeft(NodeSUnit);
    399 
    400     // Assign the Latency field of NodeSUnit using target-provided information.
    401     computeLatency(NodeSUnit);
    402   }
    403 
    404   // Find all call operands.
    405   while (!CallSUnits.empty()) {
    406     SUnit *SU = CallSUnits.pop_back_val();
    407     for (const SDNode *SUNode = SU->getNode(); SUNode;
    408          SUNode = SUNode->getGluedNode()) {
    409       if (SUNode->getOpcode() != ISD::CopyToReg)
    410         continue;
    411       SDNode *SrcN = SUNode->getOperand(2).getNode();
    412       if (isPassiveNode(SrcN)) continue;   // Not scheduled.
    413       SUnit *SrcSU = &SUnits[SrcN->getNodeId()];
    414       SrcSU->isCallOp = true;
    415     }
    416   }
    417 }
    418 
    419 void ScheduleDAGSDNodes::AddSchedEdges() {
    420   const TargetSubtargetInfo &ST = MF.getSubtarget();
    421 
    422   // Check to see if the scheduler cares about latencies.
    423   bool UnitLatencies = forceUnitLatencies();
    424 
    425   // Pass 2: add the preds, succs, etc.
    426   for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
    427     SUnit *SU = &SUnits[su];
    428     SDNode *MainNode = SU->getNode();
    429 
    430     if (MainNode->isMachineOpcode()) {
    431       unsigned Opc = MainNode->getMachineOpcode();
    432       const MCInstrDesc &MCID = TII->get(Opc);
    433       for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
    434         if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
    435           SU->isTwoAddress = true;
    436           break;
    437         }
    438       }
    439       if (MCID.isCommutable())
    440         SU->isCommutable = true;
    441     }
    442 
    443     // Find all predecessors and successors of the group.
    444     for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) {
    445       if (N->isMachineOpcode() &&
    446           TII->get(N->getMachineOpcode()).getImplicitDefs()) {
    447         SU->hasPhysRegClobbers = true;
    448         unsigned NumUsed = InstrEmitter::CountResults(N);
    449         while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
    450           --NumUsed;    // Skip over unused values at the end.
    451         if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
    452           SU->hasPhysRegDefs = true;
    453       }
    454 
    455       for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    456         SDNode *OpN = N->getOperand(i).getNode();
    457         if (isPassiveNode(OpN)) continue;   // Not scheduled.
    458         SUnit *OpSU = &SUnits[OpN->getNodeId()];
    459         assert(OpSU && "Node has no SUnit!");
    460         if (OpSU == SU) continue;           // In the same group.
    461 
    462         EVT OpVT = N->getOperand(i).getValueType();
    463         assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!");
    464         bool isChain = OpVT == MVT::Other;
    465 
    466         unsigned PhysReg = 0;
    467         int Cost = 1;
    468         // Determine if this is a physical register dependency.
    469         CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
    470         assert((PhysReg == 0 || !isChain) &&
    471                "Chain dependence via physreg data?");
    472         // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
    473         // emits a copy from the physical register to a virtual register unless
    474         // it requires a cross class copy (cost < 0). That means we are only
    475         // treating "expensive to copy" register dependency as physical register
    476         // dependency. This may change in the future though.
    477         if (Cost >= 0 && !StressSched)
    478           PhysReg = 0;
    479 
    480         // If this is a ctrl dep, latency is 1.
    481         unsigned OpLatency = isChain ? 1 : OpSU->Latency;
    482         // Special-case TokenFactor chains as zero-latency.
    483         if(isChain && OpN->getOpcode() == ISD::TokenFactor)
    484           OpLatency = 0;
    485 
    486         SDep Dep = isChain ? SDep(OpSU, SDep::Barrier)
    487           : SDep(OpSU, SDep::Data, PhysReg);
    488         Dep.setLatency(OpLatency);
    489         if (!isChain && !UnitLatencies) {
    490           computeOperandLatency(OpN, N, i, Dep);
    491           ST.adjustSchedDependency(OpSU, SU, Dep);
    492         }
    493 
    494         if (!SU->addPred(Dep) && !Dep.isCtrl() && OpSU->NumRegDefsLeft > 1) {
    495           // Multiple register uses are combined in the same SUnit. For example,
    496           // we could have a set of glued nodes with all their defs consumed by
    497           // another set of glued nodes. Register pressure tracking sees this as
    498           // a single use, so to keep pressure balanced we reduce the defs.
    499           //
    500           // We can't tell (without more book-keeping) if this results from
    501           // glued nodes or duplicate operands. As long as we don't reduce
    502           // NumRegDefsLeft to zero, we handle the common cases well.
    503           --OpSU->NumRegDefsLeft;
    504         }
    505       }
    506     }
    507   }
    508 }
    509 
    510 /// BuildSchedGraph - Build the SUnit graph from the selection dag that we
    511 /// are input.  This SUnit graph is similar to the SelectionDAG, but
    512 /// excludes nodes that aren't interesting to scheduling, and represents
    513 /// glued together nodes with a single SUnit.
    514 void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) {
    515   // Cluster certain nodes which should be scheduled together.
    516   ClusterNodes();
    517   // Populate the SUnits array.
    518   BuildSchedUnits();
    519   // Compute all the scheduling dependencies between nodes.
    520   AddSchedEdges();
    521 }
    522 
    523 // Initialize NumNodeDefs for the current Node's opcode.
    524 void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() {
    525   // Check for phys reg copy.
    526   if (!Node)
    527     return;
    528 
    529   if (!Node->isMachineOpcode()) {
    530     if (Node->getOpcode() == ISD::CopyFromReg)
    531       NodeNumDefs = 1;
    532     else
    533       NodeNumDefs = 0;
    534     return;
    535   }
    536   unsigned POpc = Node->getMachineOpcode();
    537   if (POpc == TargetOpcode::IMPLICIT_DEF) {
    538     // No register need be allocated for this.
    539     NodeNumDefs = 0;
    540     return;
    541   }
    542   if (POpc == TargetOpcode::PATCHPOINT &&
    543       Node->getValueType(0) == MVT::Other) {
    544     // PATCHPOINT is defined to have one result, but it might really have none
    545     // if we're not using CallingConv::AnyReg. Don't mistake the chain for a
    546     // real definition.
    547     NodeNumDefs = 0;
    548     return;
    549   }
    550   unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs();
    551   // Some instructions define regs that are not represented in the selection DAG
    552   // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues.
    553   NodeNumDefs = std::min(Node->getNumValues(), NRegDefs);
    554   DefIdx = 0;
    555 }
    556 
    557 // Construct a RegDefIter for this SUnit and find the first valid value.
    558 ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU,
    559                                            const ScheduleDAGSDNodes *SD)
    560   : SchedDAG(SD), Node(SU->getNode()), DefIdx(0), NodeNumDefs(0) {
    561   InitNodeNumDefs();
    562   Advance();
    563 }
    564 
    565 // Advance to the next valid value defined by the SUnit.
    566 void ScheduleDAGSDNodes::RegDefIter::Advance() {
    567   for (;Node;) { // Visit all glued nodes.
    568     for (;DefIdx < NodeNumDefs; ++DefIdx) {
    569       if (!Node->hasAnyUseOfValue(DefIdx))
    570         continue;
    571       ValueType = Node->getSimpleValueType(DefIdx);
    572       ++DefIdx;
    573       return; // Found a normal regdef.
    574     }
    575     Node = Node->getGluedNode();
    576     if (!Node) {
    577       return; // No values left to visit.
    578     }
    579     InitNodeNumDefs();
    580   }
    581 }
    582 
    583 void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) {
    584   assert(SU->NumRegDefsLeft == 0 && "expect a new node");
    585   for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) {
    586     assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected");
    587     ++SU->NumRegDefsLeft;
    588   }
    589 }
    590 
    591 void ScheduleDAGSDNodes::computeLatency(SUnit *SU) {
    592   SDNode *N = SU->getNode();
    593 
    594   // TokenFactor operands are considered zero latency, and some schedulers
    595   // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero
    596   // whenever node latency is nonzero.
    597   if (N && N->getOpcode() == ISD::TokenFactor) {
    598     SU->Latency = 0;
    599     return;
    600   }
    601 
    602   // Check to see if the scheduler cares about latencies.
    603   if (forceUnitLatencies()) {
    604     SU->Latency = 1;
    605     return;
    606   }
    607 
    608   if (!InstrItins || InstrItins->isEmpty()) {
    609     if (N && N->isMachineOpcode() &&
    610         TII->isHighLatencyDef(N->getMachineOpcode()))
    611       SU->Latency = HighLatencyCycles;
    612     else
    613       SU->Latency = 1;
    614     return;
    615   }
    616 
    617   // Compute the latency for the node.  We use the sum of the latencies for
    618   // all nodes glued together into this SUnit.
    619   SU->Latency = 0;
    620   for (SDNode *N = SU->getNode(); N; N = N->getGluedNode())
    621     if (N->isMachineOpcode())
    622       SU->Latency += TII->getInstrLatency(InstrItins, N);
    623 }
    624 
    625 void ScheduleDAGSDNodes::computeOperandLatency(SDNode *Def, SDNode *Use,
    626                                                unsigned OpIdx, SDep& dep) const{
    627   // Check to see if the scheduler cares about latencies.
    628   if (forceUnitLatencies())
    629     return;
    630 
    631   if (dep.getKind() != SDep::Data)
    632     return;
    633 
    634   unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
    635   if (Use->isMachineOpcode())
    636     // Adjust the use operand index by num of defs.
    637     OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs();
    638   int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx);
    639   if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg &&
    640       !BB->succ_empty()) {
    641     unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
    642     if (TargetRegisterInfo::isVirtualRegister(Reg))
    643       // This copy is a liveout value. It is likely coalesced, so reduce the
    644       // latency so not to penalize the def.
    645       // FIXME: need target specific adjustment here?
    646       Latency = (Latency > 1) ? Latency - 1 : 1;
    647   }
    648   if (Latency >= 0)
    649     dep.setLatency(Latency);
    650 }
    651 
    652 void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const {
    653 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    654   if (!SU->getNode()) {
    655     dbgs() << "PHYS REG COPY\n";
    656     return;
    657   }
    658 
    659   SU->getNode()->dump(DAG);
    660   dbgs() << "\n";
    661   SmallVector<SDNode *, 4> GluedNodes;
    662   for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
    663     GluedNodes.push_back(N);
    664   while (!GluedNodes.empty()) {
    665     dbgs() << "    ";
    666     GluedNodes.back()->dump(DAG);
    667     dbgs() << "\n";
    668     GluedNodes.pop_back();
    669   }
    670 #endif
    671 }
    672 
    673 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    674 void ScheduleDAGSDNodes::dumpSchedule() const {
    675   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
    676     if (SUnit *SU = Sequence[i])
    677       SU->dump(this);
    678     else
    679       dbgs() << "**** NOOP ****\n";
    680   }
    681 }
    682 #endif
    683 
    684 #ifndef NDEBUG
    685 /// VerifyScheduledSequence - Verify that all SUnits were scheduled and that
    686 /// their state is consistent with the nodes listed in Sequence.
    687 ///
    688 void ScheduleDAGSDNodes::VerifyScheduledSequence(bool isBottomUp) {
    689   unsigned ScheduledNodes = ScheduleDAG::VerifyScheduledDAG(isBottomUp);
    690   unsigned Noops = 0;
    691   for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
    692     if (!Sequence[i])
    693       ++Noops;
    694   assert(Sequence.size() - Noops == ScheduledNodes &&
    695          "The number of nodes scheduled doesn't match the expected number!");
    696 }
    697 #endif // NDEBUG
    698 
    699 /// ProcessSDDbgValues - Process SDDbgValues associated with this node.
    700 static void
    701 ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
    702                    SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders,
    703                    DenseMap<SDValue, unsigned> &VRBaseMap, unsigned Order) {
    704   if (!N->getHasDebugValue())
    705     return;
    706 
    707   // Opportunistically insert immediate dbg_value uses, i.e. those with source
    708   // order number right after the N.
    709   MachineBasicBlock *BB = Emitter.getBlock();
    710   MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
    711   ArrayRef<SDDbgValue*> DVs = DAG->GetDbgValues(N);
    712   for (unsigned i = 0, e = DVs.size(); i != e; ++i) {
    713     if (DVs[i]->isInvalidated())
    714       continue;
    715     unsigned DVOrder = DVs[i]->getOrder();
    716     if (!Order || DVOrder == ++Order) {
    717       MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], VRBaseMap);
    718       if (DbgMI) {
    719         Orders.push_back(std::make_pair(DVOrder, DbgMI));
    720         BB->insert(InsertPos, DbgMI);
    721       }
    722       DVs[i]->setIsInvalidated();
    723     }
    724   }
    725 }
    726 
    727 // ProcessSourceNode - Process nodes with source order numbers. These are added
    728 // to a vector which EmitSchedule uses to determine how to insert dbg_value
    729 // instructions in the right order.
    730 static void
    731 ProcessSourceNode(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
    732                   DenseMap<SDValue, unsigned> &VRBaseMap,
    733                   SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders,
    734                   SmallSet<unsigned, 8> &Seen) {
    735   unsigned Order = N->getIROrder();
    736   if (!Order || !Seen.insert(Order).second) {
    737     // Process any valid SDDbgValues even if node does not have any order
    738     // assigned.
    739     ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0);
    740     return;
    741   }
    742 
    743   MachineBasicBlock *BB = Emitter.getBlock();
    744   if (Emitter.getInsertPos() == BB->begin() || BB->back().isPHI() ||
    745       // Fast-isel may have inserted some instructions, in which case the
    746       // BB->back().isPHI() test will not fire when we want it to.
    747       std::prev(Emitter.getInsertPos())->isPHI()) {
    748     // Did not insert any instruction.
    749     Orders.push_back(std::make_pair(Order, (MachineInstr*)nullptr));
    750     return;
    751   }
    752 
    753   Orders.push_back(std::make_pair(Order, &*std::prev(Emitter.getInsertPos())));
    754   ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order);
    755 }
    756 
    757 void ScheduleDAGSDNodes::
    758 EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, unsigned> &VRBaseMap,
    759                 MachineBasicBlock::iterator InsertPos) {
    760   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    761        I != E; ++I) {
    762     if (I->isCtrl()) continue;  // ignore chain preds
    763     if (I->getSUnit()->CopyDstRC) {
    764       // Copy to physical register.
    765       DenseMap<SUnit*, unsigned>::iterator VRI = VRBaseMap.find(I->getSUnit());
    766       assert(VRI != VRBaseMap.end() && "Node emitted out of order - late");
    767       // Find the destination physical register.
    768       unsigned Reg = 0;
    769       for (SUnit::const_succ_iterator II = SU->Succs.begin(),
    770              EE = SU->Succs.end(); II != EE; ++II) {
    771         if (II->isCtrl()) continue;  // ignore chain preds
    772         if (II->getReg()) {
    773           Reg = II->getReg();
    774           break;
    775         }
    776       }
    777       BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), Reg)
    778         .addReg(VRI->second);
    779     } else {
    780       // Copy from physical register.
    781       assert(I->getReg() && "Unknown physical register!");
    782       unsigned VRBase = MRI.createVirtualRegister(SU->CopyDstRC);
    783       bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase)).second;
    784       (void)isNew; // Silence compiler warning.
    785       assert(isNew && "Node emitted out of order - early");
    786       BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), VRBase)
    787         .addReg(I->getReg());
    788     }
    789     break;
    790   }
    791 }
    792 
    793 /// EmitSchedule - Emit the machine code in scheduled order. Return the new
    794 /// InsertPos and MachineBasicBlock that contains this insertion
    795 /// point. ScheduleDAGSDNodes holds a BB pointer for convenience, but this does
    796 /// not necessarily refer to returned BB. The emitter may split blocks.
    797 MachineBasicBlock *ScheduleDAGSDNodes::
    798 EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
    799   InstrEmitter Emitter(BB, InsertPos);
    800   DenseMap<SDValue, unsigned> VRBaseMap;
    801   DenseMap<SUnit*, unsigned> CopyVRBaseMap;
    802   SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
    803   SmallSet<unsigned, 8> Seen;
    804   bool HasDbg = DAG->hasDebugValues();
    805 
    806   // If this is the first BB, emit byval parameter dbg_value's.
    807   if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
    808     SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
    809     SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
    810     for (; PDI != PDE; ++PDI) {
    811       MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
    812       if (DbgMI)
    813         BB->insert(InsertPos, DbgMI);
    814     }
    815   }
    816 
    817   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
    818     SUnit *SU = Sequence[i];
    819     if (!SU) {
    820       // Null SUnit* is a noop.
    821       TII->insertNoop(*Emitter.getBlock(), InsertPos);
    822       continue;
    823     }
    824 
    825     // For pre-regalloc scheduling, create instructions corresponding to the
    826     // SDNode and any glued SDNodes and append them to the block.
    827     if (!SU->getNode()) {
    828       // Emit a copy.
    829       EmitPhysRegCopy(SU, CopyVRBaseMap, InsertPos);
    830       continue;
    831     }
    832 
    833     SmallVector<SDNode *, 4> GluedNodes;
    834     for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
    835       GluedNodes.push_back(N);
    836     while (!GluedNodes.empty()) {
    837       SDNode *N = GluedNodes.back();
    838       Emitter.EmitNode(GluedNodes.back(), SU->OrigNode != SU, SU->isCloned,
    839                        VRBaseMap);
    840       // Remember the source order of the inserted instruction.
    841       if (HasDbg)
    842         ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen);
    843       GluedNodes.pop_back();
    844     }
    845     Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned,
    846                      VRBaseMap);
    847     // Remember the source order of the inserted instruction.
    848     if (HasDbg)
    849       ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders,
    850                         Seen);
    851   }
    852 
    853   // Insert all the dbg_values which have not already been inserted in source
    854   // order sequence.
    855   if (HasDbg) {
    856     MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI();
    857 
    858     // Sort the source order instructions and use the order to insert debug
    859     // values.
    860     std::sort(Orders.begin(), Orders.end(), less_first());
    861 
    862     SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
    863     SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
    864     // Now emit the rest according to source order.
    865     unsigned LastOrder = 0;
    866     for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
    867       unsigned Order = Orders[i].first;
    868       MachineInstr *MI = Orders[i].second;
    869       // Insert all SDDbgValue's whose order(s) are before "Order".
    870       if (!MI)
    871         continue;
    872       for (; DI != DE &&
    873              (*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) {
    874         if ((*DI)->isInvalidated())
    875           continue;
    876         MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
    877         if (DbgMI) {
    878           if (!LastOrder)
    879             // Insert to start of the BB (after PHIs).
    880             BB->insert(BBBegin, DbgMI);
    881           else {
    882             // Insert at the instruction, which may be in a different
    883             // block, if the block was split by a custom inserter.
    884             MachineBasicBlock::iterator Pos = MI;
    885             MI->getParent()->insert(Pos, DbgMI);
    886           }
    887         }
    888       }
    889       LastOrder = Order;
    890     }
    891     // Add trailing DbgValue's before the terminator. FIXME: May want to add
    892     // some of them before one or more conditional branches?
    893     SmallVector<MachineInstr*, 8> DbgMIs;
    894     while (DI != DE) {
    895       if (!(*DI)->isInvalidated())
    896         if (MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap))
    897           DbgMIs.push_back(DbgMI);
    898       ++DI;
    899     }
    900 
    901     MachineBasicBlock *InsertBB = Emitter.getBlock();
    902     MachineBasicBlock::iterator Pos = InsertBB->getFirstTerminator();
    903     InsertBB->insert(Pos, DbgMIs.begin(), DbgMIs.end());
    904   }
    905 
    906   InsertPos = Emitter.getInsertPos();
    907   return Emitter.getBlock();
    908 }
    909 
    910 /// Return the basic block label.
    911 std::string ScheduleDAGSDNodes::getDAGName() const {
    912   return "sunit-dag." + BB->getFullName();
    913 }
    914