Home | History | Annotate | Download | only in Hexagon
      1 //===--- HexagonGenInsert.cpp ---------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #define DEBUG_TYPE "hexinsert"
     11 
     12 #include "llvm/ADT/BitVector.h"
     13 #include "llvm/ADT/DenseMap.h"
     14 #include "llvm/ADT/PostOrderIterator.h"
     15 #include "llvm/CodeGen/MachineDominators.h"
     16 #include "llvm/CodeGen/MachineFunction.h"
     17 #include "llvm/CodeGen/MachineFunctionPass.h"
     18 #include "llvm/CodeGen/MachineInstrBuilder.h"
     19 #include "llvm/CodeGen/MachineRegisterInfo.h"
     20 #include "llvm/IR/Constants.h"
     21 #include "llvm/Pass.h"
     22 #include "llvm/PassRegistry.h"
     23 #include "llvm/Support/CommandLine.h"
     24 #include "llvm/Support/Debug.h"
     25 #include "llvm/Support/Timer.h"
     26 #include "llvm/Support/raw_ostream.h"
     27 #include "llvm/Target/TargetMachine.h"
     28 #include "llvm/Target/TargetRegisterInfo.h"
     29 
     30 #include "Hexagon.h"
     31 #include "HexagonRegisterInfo.h"
     32 #include "HexagonTargetMachine.h"
     33 #include "HexagonBitTracker.h"
     34 
     35 #include <vector>
     36 
     37 using namespace llvm;
     38 
     39 static cl::opt<unsigned> VRegIndexCutoff("insert-vreg-cutoff", cl::init(~0U),
     40   cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg# cutoff for insert generation."));
     41 // The distance cutoff is selected based on the precheckin-perf results:
     42 // cutoffs 20, 25, 35, and 40 are worse than 30.
     43 static cl::opt<unsigned> VRegDistCutoff("insert-dist-cutoff", cl::init(30U),
     44   cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg distance cutoff for insert "
     45   "generation."));
     46 
     47 static cl::opt<bool> OptTiming("insert-timing", cl::init(false), cl::Hidden,
     48   cl::ZeroOrMore, cl::desc("Enable timing of insert generation"));
     49 static cl::opt<bool> OptTimingDetail("insert-timing-detail", cl::init(false),
     50   cl::Hidden, cl::ZeroOrMore, cl::desc("Enable detailed timing of insert "
     51   "generation"));
     52 
     53 static cl::opt<bool> OptSelectAll0("insert-all0", cl::init(false), cl::Hidden,
     54   cl::ZeroOrMore);
     55 static cl::opt<bool> OptSelectHas0("insert-has0", cl::init(false), cl::Hidden,
     56   cl::ZeroOrMore);
     57 // Whether to construct constant values via "insert". Could eliminate constant
     58 // extenders, but often not practical.
     59 static cl::opt<bool> OptConst("insert-const", cl::init(false), cl::Hidden,
     60   cl::ZeroOrMore);
     61 
     62 namespace {
     63   // The preprocessor gets confused when the DEBUG macro is passed larger
     64   // chunks of code. Use this function to detect debugging.
     65   inline bool isDebug() {
     66 #ifndef NDEBUG
     67     return ::llvm::DebugFlag && ::llvm::isCurrentDebugType(DEBUG_TYPE);
     68 #else
     69     return false;
     70 #endif
     71   }
     72 }
     73 
     74 
     75 namespace {
     76   // Set of virtual registers, based on BitVector.
     77   struct RegisterSet : private BitVector {
     78     RegisterSet() = default;
     79     explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
     80 
     81     using BitVector::clear;
     82 
     83     unsigned find_first() const {
     84       int First = BitVector::find_first();
     85       if (First < 0)
     86         return 0;
     87       return x2v(First);
     88     }
     89 
     90     unsigned find_next(unsigned Prev) const {
     91       int Next = BitVector::find_next(v2x(Prev));
     92       if (Next < 0)
     93         return 0;
     94       return x2v(Next);
     95     }
     96 
     97     RegisterSet &insert(unsigned R) {
     98       unsigned Idx = v2x(R);
     99       ensure(Idx);
    100       return static_cast<RegisterSet&>(BitVector::set(Idx));
    101     }
    102     RegisterSet &remove(unsigned R) {
    103       unsigned Idx = v2x(R);
    104       if (Idx >= size())
    105         return *this;
    106       return static_cast<RegisterSet&>(BitVector::reset(Idx));
    107     }
    108 
    109     RegisterSet &insert(const RegisterSet &Rs) {
    110       return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
    111     }
    112     RegisterSet &remove(const RegisterSet &Rs) {
    113       return static_cast<RegisterSet&>(BitVector::reset(Rs));
    114     }
    115 
    116     reference operator[](unsigned R) {
    117       unsigned Idx = v2x(R);
    118       ensure(Idx);
    119       return BitVector::operator[](Idx);
    120     }
    121     bool operator[](unsigned R) const {
    122       unsigned Idx = v2x(R);
    123       assert(Idx < size());
    124       return BitVector::operator[](Idx);
    125     }
    126     bool has(unsigned R) const {
    127       unsigned Idx = v2x(R);
    128       if (Idx >= size())
    129         return false;
    130       return BitVector::test(Idx);
    131     }
    132 
    133     bool empty() const {
    134       return !BitVector::any();
    135     }
    136     bool includes(const RegisterSet &Rs) const {
    137       // A.BitVector::test(B)  <=>  A-B != {}
    138       return !Rs.BitVector::test(*this);
    139     }
    140     bool intersects(const RegisterSet &Rs) const {
    141       return BitVector::anyCommon(Rs);
    142     }
    143 
    144   private:
    145     void ensure(unsigned Idx) {
    146       if (size() <= Idx)
    147         resize(std::max(Idx+1, 32U));
    148     }
    149     static inline unsigned v2x(unsigned v) {
    150       return TargetRegisterInfo::virtReg2Index(v);
    151     }
    152     static inline unsigned x2v(unsigned x) {
    153       return TargetRegisterInfo::index2VirtReg(x);
    154     }
    155   };
    156 
    157 
    158   struct PrintRegSet {
    159     PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
    160       : RS(S), TRI(RI) {}
    161     friend raw_ostream &operator<< (raw_ostream &OS,
    162           const PrintRegSet &P);
    163   private:
    164     const RegisterSet &RS;
    165     const TargetRegisterInfo *TRI;
    166   };
    167 
    168   raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
    169     OS << '{';
    170     for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
    171       OS << ' ' << PrintReg(R, P.TRI);
    172     OS << " }";
    173     return OS;
    174   }
    175 }
    176 
    177 
    178 namespace {
    179   // A convenience class to associate unsigned numbers (such as virtual
    180   // registers) with unsigned numbers.
    181   struct UnsignedMap : public DenseMap<unsigned,unsigned> {
    182     UnsignedMap() : BaseType() {}
    183   private:
    184     typedef DenseMap<unsigned,unsigned> BaseType;
    185   };
    186 
    187   // A utility to establish an ordering between virtual registers:
    188   // VRegA < VRegB  <=>  RegisterOrdering[VRegA] < RegisterOrdering[VRegB]
    189   // This is meant as a cache for the ordering of virtual registers defined
    190   // by a potentially expensive comparison function, or obtained by a proce-
    191   // dure that should not be repeated each time two registers are compared.
    192   struct RegisterOrdering : public UnsignedMap {
    193     RegisterOrdering() : UnsignedMap() {}
    194     unsigned operator[](unsigned VR) const {
    195       const_iterator F = find(VR);
    196       assert(F != end());
    197       return F->second;
    198     }
    199     // Add operator(), so that objects of this class can be used as
    200     // comparators in std::sort et al.
    201     bool operator() (unsigned VR1, unsigned VR2) const {
    202       return operator[](VR1) < operator[](VR2);
    203     }
    204   };
    205 }
    206 
    207 
    208 namespace {
    209   // Ordering of bit values. This class does not have operator[], but
    210   // is supplies a comparison operator() for use in std:: algorithms.
    211   // The order is as follows:
    212   // - 0 < 1 < ref
    213   // - ref1 < ref2, if ord(ref1.Reg) < ord(ref2.Reg),
    214   //   or ord(ref1.Reg) == ord(ref2.Reg), and ref1.Pos < ref2.Pos.
    215   struct BitValueOrdering {
    216     BitValueOrdering(const RegisterOrdering &RB) : BaseOrd(RB) {}
    217     bool operator() (const BitTracker::BitValue &V1,
    218           const BitTracker::BitValue &V2) const;
    219     const RegisterOrdering &BaseOrd;
    220   };
    221 }
    222 
    223 
    224 bool BitValueOrdering::operator() (const BitTracker::BitValue &V1,
    225       const BitTracker::BitValue &V2) const {
    226   if (V1 == V2)
    227     return false;
    228   // V1==0 => true, V2==0 => false
    229   if (V1.is(0) || V2.is(0))
    230     return V1.is(0);
    231   // Neither of V1,V2 is 0, and V1!=V2.
    232   // V2==1 => false, V1==1 => true
    233   if (V2.is(1) || V1.is(1))
    234     return !V2.is(1);
    235   // Both V1,V2 are refs.
    236   unsigned Ind1 = BaseOrd[V1.RefI.Reg], Ind2 = BaseOrd[V2.RefI.Reg];
    237   if (Ind1 != Ind2)
    238     return Ind1 < Ind2;
    239   // If V1.Pos==V2.Pos
    240   assert(V1.RefI.Pos != V2.RefI.Pos && "Bit values should be different");
    241   return V1.RefI.Pos < V2.RefI.Pos;
    242 }
    243 
    244 
    245 namespace {
    246   // Cache for the BitTracker's cell map. Map lookup has a logarithmic
    247   // complexity, this class will memoize the lookup results to reduce
    248   // the access time for repeated lookups of the same cell.
    249   struct CellMapShadow {
    250     CellMapShadow(const BitTracker &T) : BT(T) {}
    251     const BitTracker::RegisterCell &lookup(unsigned VR) {
    252       unsigned RInd = TargetRegisterInfo::virtReg2Index(VR);
    253       // Grow the vector to at least 32 elements.
    254       if (RInd >= CVect.size())
    255         CVect.resize(std::max(RInd+16, 32U), 0);
    256       const BitTracker::RegisterCell *CP = CVect[RInd];
    257       if (CP == 0)
    258         CP = CVect[RInd] = &BT.lookup(VR);
    259       return *CP;
    260     }
    261 
    262     const BitTracker &BT;
    263 
    264   private:
    265     typedef std::vector<const BitTracker::RegisterCell*> CellVectType;
    266     CellVectType CVect;
    267   };
    268 }
    269 
    270 
    271 namespace {
    272   // Comparator class for lexicographic ordering of virtual registers
    273   // according to the corresponding BitTracker::RegisterCell objects.
    274   struct RegisterCellLexCompare {
    275     RegisterCellLexCompare(const BitValueOrdering &BO, CellMapShadow &M)
    276       : BitOrd(BO), CM(M) {}
    277     bool operator() (unsigned VR1, unsigned VR2) const;
    278   private:
    279     const BitValueOrdering &BitOrd;
    280     CellMapShadow &CM;
    281   };
    282 
    283   // Comparator class for lexicographic ordering of virtual registers
    284   // according to the specified bits of the corresponding BitTracker::
    285   // RegisterCell objects.
    286   // Specifically, this class will be used to compare bit B of a register
    287   // cell for a selected virtual register R with bit N of any register
    288   // other than R.
    289   struct RegisterCellBitCompareSel {
    290     RegisterCellBitCompareSel(unsigned R, unsigned B, unsigned N,
    291           const BitValueOrdering &BO, CellMapShadow &M)
    292       : SelR(R), SelB(B), BitN(N), BitOrd(BO), CM(M) {}
    293     bool operator() (unsigned VR1, unsigned VR2) const;
    294   private:
    295     const unsigned SelR, SelB;
    296     const unsigned BitN;
    297     const BitValueOrdering &BitOrd;
    298     CellMapShadow &CM;
    299   };
    300 }
    301 
    302 
    303 bool RegisterCellLexCompare::operator() (unsigned VR1, unsigned VR2) const {
    304   // Ordering of registers, made up from two given orderings:
    305   // - the ordering of the register numbers, and
    306   // - the ordering of register cells.
    307   // Def. R1 < R2 if:
    308   // - cell(R1) < cell(R2), or
    309   // - cell(R1) == cell(R2), and index(R1) < index(R2).
    310   //
    311   // For register cells, the ordering is lexicographic, with index 0 being
    312   // the most significant.
    313   if (VR1 == VR2)
    314     return false;
    315 
    316   const BitTracker::RegisterCell &RC1 = CM.lookup(VR1), &RC2 = CM.lookup(VR2);
    317   uint16_t W1 = RC1.width(), W2 = RC2.width();
    318   for (uint16_t i = 0, w = std::min(W1, W2); i < w; ++i) {
    319     const BitTracker::BitValue &V1 = RC1[i], &V2 = RC2[i];
    320     if (V1 != V2)
    321       return BitOrd(V1, V2);
    322   }
    323   // Cells are equal up until the common length.
    324   if (W1 != W2)
    325     return W1 < W2;
    326 
    327   return BitOrd.BaseOrd[VR1] < BitOrd.BaseOrd[VR2];
    328 }
    329 
    330 
    331 bool RegisterCellBitCompareSel::operator() (unsigned VR1, unsigned VR2) const {
    332   if (VR1 == VR2)
    333     return false;
    334   const BitTracker::RegisterCell &RC1 = CM.lookup(VR1);
    335   const BitTracker::RegisterCell &RC2 = CM.lookup(VR2);
    336   uint16_t W1 = RC1.width(), W2 = RC2.width();
    337   uint16_t Bit1 = (VR1 == SelR) ? SelB : BitN;
    338   uint16_t Bit2 = (VR2 == SelR) ? SelB : BitN;
    339   // If Bit1 exceeds the width of VR1, then:
    340   // - return false, if at the same time Bit2 exceeds VR2, or
    341   // - return true, otherwise.
    342   // (I.e. "a bit value that does not exist is less than any bit value
    343   // that does exist".)
    344   if (W1 <= Bit1)
    345     return Bit2 < W2;
    346   // If Bit1 is within VR1, but Bit2 is not within VR2, return false.
    347   if (W2 <= Bit2)
    348     return false;
    349 
    350   const BitTracker::BitValue &V1 = RC1[Bit1], V2 = RC2[Bit2];
    351   if (V1 != V2)
    352     return BitOrd(V1, V2);
    353   return false;
    354 }
    355 
    356 
    357 namespace {
    358   class OrderedRegisterList {
    359     typedef std::vector<unsigned> ListType;
    360   public:
    361     OrderedRegisterList(const RegisterOrdering &RO) : Ord(RO) {}
    362     void insert(unsigned VR);
    363     void remove(unsigned VR);
    364     unsigned operator[](unsigned Idx) const {
    365       assert(Idx < Seq.size());
    366       return Seq[Idx];
    367     }
    368     unsigned size() const {
    369       return Seq.size();
    370     }
    371 
    372     typedef ListType::iterator iterator;
    373     typedef ListType::const_iterator const_iterator;
    374     iterator begin() { return Seq.begin(); }
    375     iterator end() { return Seq.end(); }
    376     const_iterator begin() const { return Seq.begin(); }
    377     const_iterator end() const { return Seq.end(); }
    378 
    379     // Convenience function to convert an iterator to the corresponding index.
    380     unsigned idx(iterator It) const { return It-begin(); }
    381   private:
    382     ListType Seq;
    383     const RegisterOrdering &Ord;
    384   };
    385 
    386 
    387   struct PrintORL {
    388     PrintORL(const OrderedRegisterList &L, const TargetRegisterInfo *RI)
    389       : RL(L), TRI(RI) {}
    390     friend raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P);
    391   private:
    392     const OrderedRegisterList &RL;
    393     const TargetRegisterInfo *TRI;
    394   };
    395 
    396   raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P) {
    397     OS << '(';
    398     OrderedRegisterList::const_iterator B = P.RL.begin(), E = P.RL.end();
    399     for (OrderedRegisterList::const_iterator I = B; I != E; ++I) {
    400       if (I != B)
    401         OS << ", ";
    402       OS << PrintReg(*I, P.TRI);
    403     }
    404     OS << ')';
    405     return OS;
    406   }
    407 }
    408 
    409 
    410 void OrderedRegisterList::insert(unsigned VR) {
    411   iterator L = std::lower_bound(Seq.begin(), Seq.end(), VR, Ord);
    412   if (L == Seq.end())
    413     Seq.push_back(VR);
    414   else
    415     Seq.insert(L, VR);
    416 }
    417 
    418 
    419 void OrderedRegisterList::remove(unsigned VR) {
    420   iterator L = std::lower_bound(Seq.begin(), Seq.end(), VR, Ord);
    421   assert(L != Seq.end());
    422   Seq.erase(L);
    423 }
    424 
    425 
    426 namespace {
    427   // A record of the insert form. The fields correspond to the operands
    428   // of the "insert" instruction:
    429   // ... = insert(SrcR, InsR, #Wdh, #Off)
    430   struct IFRecord {
    431     IFRecord(unsigned SR = 0, unsigned IR = 0, uint16_t W = 0, uint16_t O = 0)
    432       : SrcR(SR), InsR(IR), Wdh(W), Off(O) {}
    433     unsigned SrcR, InsR;
    434     uint16_t Wdh, Off;
    435   };
    436 
    437   struct PrintIFR {
    438     PrintIFR(const IFRecord &R, const TargetRegisterInfo *RI)
    439       : IFR(R), TRI(RI) {}
    440   private:
    441     const IFRecord &IFR;
    442     const TargetRegisterInfo *TRI;
    443     friend raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P);
    444   };
    445 
    446   raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P) {
    447     unsigned SrcR = P.IFR.SrcR, InsR = P.IFR.InsR;
    448     OS << '(' << PrintReg(SrcR, P.TRI) << ',' << PrintReg(InsR, P.TRI)
    449        << ",#" << P.IFR.Wdh << ",#" << P.IFR.Off << ')';
    450     return OS;
    451   }
    452 
    453   typedef std::pair<IFRecord,RegisterSet> IFRecordWithRegSet;
    454 }
    455 
    456 
    457 namespace llvm {
    458   void initializeHexagonGenInsertPass(PassRegistry&);
    459   FunctionPass *createHexagonGenInsert();
    460 }
    461 
    462 
    463 namespace {
    464   class HexagonGenInsert : public MachineFunctionPass {
    465   public:
    466     static char ID;
    467     HexagonGenInsert() : MachineFunctionPass(ID), HII(0), HRI(0) {
    468       initializeHexagonGenInsertPass(*PassRegistry::getPassRegistry());
    469     }
    470     virtual const char *getPassName() const {
    471       return "Hexagon generate \"insert\" instructions";
    472     }
    473     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    474       AU.addRequired<MachineDominatorTree>();
    475       AU.addPreserved<MachineDominatorTree>();
    476       MachineFunctionPass::getAnalysisUsage(AU);
    477     }
    478     virtual bool runOnMachineFunction(MachineFunction &MF);
    479 
    480   private:
    481     typedef DenseMap<std::pair<unsigned,unsigned>,unsigned> PairMapType;
    482 
    483     void buildOrderingMF(RegisterOrdering &RO) const;
    484     void buildOrderingBT(RegisterOrdering &RB, RegisterOrdering &RO) const;
    485     bool isIntClass(const TargetRegisterClass *RC) const;
    486     bool isConstant(unsigned VR) const;
    487     bool isSmallConstant(unsigned VR) const;
    488     bool isValidInsertForm(unsigned DstR, unsigned SrcR, unsigned InsR,
    489           uint16_t L, uint16_t S) const;
    490     bool findSelfReference(unsigned VR) const;
    491     bool findNonSelfReference(unsigned VR) const;
    492     void getInstrDefs(const MachineInstr *MI, RegisterSet &Defs) const;
    493     void getInstrUses(const MachineInstr *MI, RegisterSet &Uses) const;
    494     unsigned distance(const MachineBasicBlock *FromB,
    495           const MachineBasicBlock *ToB, const UnsignedMap &RPO,
    496           PairMapType &M) const;
    497     unsigned distance(MachineBasicBlock::const_iterator FromI,
    498           MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
    499           PairMapType &M) const;
    500     bool findRecordInsertForms(unsigned VR, OrderedRegisterList &AVs);
    501     void collectInBlock(MachineBasicBlock *B, OrderedRegisterList &AVs);
    502     void findRemovableRegisters(unsigned VR, IFRecord IF,
    503           RegisterSet &RMs) const;
    504     void computeRemovableRegisters();
    505 
    506     void pruneEmptyLists();
    507     void pruneCoveredSets(unsigned VR);
    508     void pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO, PairMapType &M);
    509     void pruneRegCopies(unsigned VR);
    510     void pruneCandidates();
    511     void selectCandidates();
    512     bool generateInserts();
    513 
    514     bool removeDeadCode(MachineDomTreeNode *N);
    515 
    516     // IFRecord coupled with a set of potentially removable registers:
    517     typedef std::vector<IFRecordWithRegSet> IFListType;
    518     typedef DenseMap<unsigned,IFListType> IFMapType;  // vreg -> IFListType
    519 
    520     void dump_map() const;
    521 
    522     const HexagonInstrInfo *HII;
    523     const HexagonRegisterInfo *HRI;
    524 
    525     MachineFunction *MFN;
    526     MachineRegisterInfo *MRI;
    527     MachineDominatorTree *MDT;
    528     CellMapShadow *CMS;
    529 
    530     RegisterOrdering BaseOrd;
    531     RegisterOrdering CellOrd;
    532     IFMapType IFMap;
    533   };
    534 
    535   char HexagonGenInsert::ID = 0;
    536 }
    537 
    538 
    539 void HexagonGenInsert::dump_map() const {
    540   typedef IFMapType::const_iterator iterator;
    541   for (iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
    542     dbgs() << "  " << PrintReg(I->first, HRI) << ":\n";
    543     const IFListType &LL = I->second;
    544     for (unsigned i = 0, n = LL.size(); i < n; ++i)
    545       dbgs() << "    " << PrintIFR(LL[i].first, HRI) << ", "
    546              << PrintRegSet(LL[i].second, HRI) << '\n';
    547   }
    548 }
    549 
    550 
    551 void HexagonGenInsert::buildOrderingMF(RegisterOrdering &RO) const {
    552   unsigned Index = 0;
    553   typedef MachineFunction::const_iterator mf_iterator;
    554   for (mf_iterator A = MFN->begin(), Z = MFN->end(); A != Z; ++A) {
    555     const MachineBasicBlock &B = *A;
    556     if (!CMS->BT.reached(&B))
    557       continue;
    558     typedef MachineBasicBlock::const_iterator mb_iterator;
    559     for (mb_iterator I = B.begin(), E = B.end(); I != E; ++I) {
    560       const MachineInstr *MI = &*I;
    561       for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
    562         const MachineOperand &MO = MI->getOperand(i);
    563         if (MO.isReg() && MO.isDef()) {
    564           unsigned R = MO.getReg();
    565           assert(MO.getSubReg() == 0 && "Unexpected subregister in definition");
    566           if (TargetRegisterInfo::isVirtualRegister(R))
    567             RO.insert(std::make_pair(R, Index++));
    568         }
    569       }
    570     }
    571   }
    572   // Since some virtual registers may have had their def and uses eliminated,
    573   // they are no longer referenced in the code, and so they will not appear
    574   // in the map.
    575 }
    576 
    577 
    578 void HexagonGenInsert::buildOrderingBT(RegisterOrdering &RB,
    579       RegisterOrdering &RO) const {
    580   // Create a vector of all virtual registers (collect them from the base
    581   // ordering RB), and then sort it using the RegisterCell comparator.
    582   BitValueOrdering BVO(RB);
    583   RegisterCellLexCompare LexCmp(BVO, *CMS);
    584   typedef std::vector<unsigned> SortableVectorType;
    585   SortableVectorType VRs;
    586   for (RegisterOrdering::iterator I = RB.begin(), E = RB.end(); I != E; ++I)
    587     VRs.push_back(I->first);
    588   std::sort(VRs.begin(), VRs.end(), LexCmp);
    589   // Transfer the results to the outgoing register ordering.
    590   for (unsigned i = 0, n = VRs.size(); i < n; ++i)
    591     RO.insert(std::make_pair(VRs[i], i));
    592 }
    593 
    594 
    595 inline bool HexagonGenInsert::isIntClass(const TargetRegisterClass *RC) const {
    596   return RC == &Hexagon::IntRegsRegClass || RC == &Hexagon::DoubleRegsRegClass;
    597 }
    598 
    599 
    600 bool HexagonGenInsert::isConstant(unsigned VR) const {
    601   const BitTracker::RegisterCell &RC = CMS->lookup(VR);
    602   uint16_t W = RC.width();
    603   for (uint16_t i = 0; i < W; ++i) {
    604     const BitTracker::BitValue &BV = RC[i];
    605     if (BV.is(0) || BV.is(1))
    606       continue;
    607     return false;
    608   }
    609   return true;
    610 }
    611 
    612 
    613 bool HexagonGenInsert::isSmallConstant(unsigned VR) const {
    614   const BitTracker::RegisterCell &RC = CMS->lookup(VR);
    615   uint16_t W = RC.width();
    616   if (W > 64)
    617     return false;
    618   uint64_t V = 0, B = 1;
    619   for (uint16_t i = 0; i < W; ++i) {
    620     const BitTracker::BitValue &BV = RC[i];
    621     if (BV.is(1))
    622       V |= B;
    623     else if (!BV.is(0))
    624       return false;
    625     B <<= 1;
    626   }
    627 
    628   // For 32-bit registers, consider: Rd = #s16.
    629   if (W == 32)
    630     return isInt<16>(V);
    631 
    632   // For 64-bit registers, it's Rdd = #s8 or Rdd = combine(#s8,#s8)
    633   return isInt<8>(Lo_32(V)) && isInt<8>(Hi_32(V));
    634 }
    635 
    636 
    637 bool HexagonGenInsert::isValidInsertForm(unsigned DstR, unsigned SrcR,
    638       unsigned InsR, uint16_t L, uint16_t S) const {
    639   const TargetRegisterClass *DstRC = MRI->getRegClass(DstR);
    640   const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcR);
    641   const TargetRegisterClass *InsRC = MRI->getRegClass(InsR);
    642   // Only integet (32-/64-bit) register classes.
    643   if (!isIntClass(DstRC) || !isIntClass(SrcRC) || !isIntClass(InsRC))
    644     return false;
    645   // The "source" register must be of the same class as DstR.
    646   if (DstRC != SrcRC)
    647     return false;
    648   if (DstRC == InsRC)
    649     return true;
    650   // A 64-bit register can only be generated from other 64-bit registers.
    651   if (DstRC == &Hexagon::DoubleRegsRegClass)
    652     return false;
    653   // Otherwise, the L and S cannot span 32-bit word boundary.
    654   if (S < 32 && S+L > 32)
    655     return false;
    656   return true;
    657 }
    658 
    659 
    660 bool HexagonGenInsert::findSelfReference(unsigned VR) const {
    661   const BitTracker::RegisterCell &RC = CMS->lookup(VR);
    662   for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
    663     const BitTracker::BitValue &V = RC[i];
    664     if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == VR)
    665       return true;
    666   }
    667   return false;
    668 }
    669 
    670 
    671 bool HexagonGenInsert::findNonSelfReference(unsigned VR) const {
    672   BitTracker::RegisterCell RC = CMS->lookup(VR);
    673   for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
    674     const BitTracker::BitValue &V = RC[i];
    675     if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != VR)
    676       return true;
    677   }
    678   return false;
    679 }
    680 
    681 
    682 void HexagonGenInsert::getInstrDefs(const MachineInstr *MI,
    683       RegisterSet &Defs) const {
    684   for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
    685     const MachineOperand &MO = MI->getOperand(i);
    686     if (!MO.isReg() || !MO.isDef())
    687       continue;
    688     unsigned R = MO.getReg();
    689     if (!TargetRegisterInfo::isVirtualRegister(R))
    690       continue;
    691     Defs.insert(R);
    692   }
    693 }
    694 
    695 
    696 void HexagonGenInsert::getInstrUses(const MachineInstr *MI,
    697       RegisterSet &Uses) const {
    698   for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
    699     const MachineOperand &MO = MI->getOperand(i);
    700     if (!MO.isReg() || !MO.isUse())
    701       continue;
    702     unsigned R = MO.getReg();
    703     if (!TargetRegisterInfo::isVirtualRegister(R))
    704       continue;
    705     Uses.insert(R);
    706   }
    707 }
    708 
    709 
    710 unsigned HexagonGenInsert::distance(const MachineBasicBlock *FromB,
    711       const MachineBasicBlock *ToB, const UnsignedMap &RPO,
    712       PairMapType &M) const {
    713   // Forward distance from the end of a block to the beginning of it does
    714   // not make sense. This function should not be called with FromB == ToB.
    715   assert(FromB != ToB);
    716 
    717   unsigned FromN = FromB->getNumber(), ToN = ToB->getNumber();
    718   // If we have already computed it, return the cached result.
    719   PairMapType::iterator F = M.find(std::make_pair(FromN, ToN));
    720   if (F != M.end())
    721     return F->second;
    722   unsigned ToRPO = RPO.lookup(ToN);
    723 
    724   unsigned MaxD = 0;
    725   typedef MachineBasicBlock::const_pred_iterator pred_iterator;
    726   for (pred_iterator I = ToB->pred_begin(), E = ToB->pred_end(); I != E; ++I) {
    727     const MachineBasicBlock *PB = *I;
    728     // Skip back edges. Also, if FromB is a predecessor of ToB, the distance
    729     // along that path will be 0, and we don't need to do any calculations
    730     // on it.
    731     if (PB == FromB || RPO.lookup(PB->getNumber()) >= ToRPO)
    732       continue;
    733     unsigned D = PB->size() + distance(FromB, PB, RPO, M);
    734     if (D > MaxD)
    735       MaxD = D;
    736   }
    737 
    738   // Memoize the result for later lookup.
    739   M.insert(std::make_pair(std::make_pair(FromN, ToN), MaxD));
    740   return MaxD;
    741 }
    742 
    743 
    744 unsigned HexagonGenInsert::distance(MachineBasicBlock::const_iterator FromI,
    745       MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
    746       PairMapType &M) const {
    747   const MachineBasicBlock *FB = FromI->getParent(), *TB = ToI->getParent();
    748   if (FB == TB)
    749     return std::distance(FromI, ToI);
    750   unsigned D1 = std::distance(TB->begin(), ToI);
    751   unsigned D2 = distance(FB, TB, RPO, M);
    752   unsigned D3 = std::distance(FromI, FB->end());
    753   return D1+D2+D3;
    754 }
    755 
    756 
    757 bool HexagonGenInsert::findRecordInsertForms(unsigned VR,
    758       OrderedRegisterList &AVs) {
    759   if (isDebug()) {
    760     dbgs() << LLVM_FUNCTION_NAME << ": " << PrintReg(VR, HRI)
    761            << "  AVs: " << PrintORL(AVs, HRI) << "\n";
    762   }
    763   if (AVs.size() == 0)
    764     return false;
    765 
    766   typedef OrderedRegisterList::iterator iterator;
    767   BitValueOrdering BVO(BaseOrd);
    768   const BitTracker::RegisterCell &RC = CMS->lookup(VR);
    769   uint16_t W = RC.width();
    770 
    771   typedef std::pair<unsigned,uint16_t> RSRecord;  // (reg,shift)
    772   typedef std::vector<RSRecord> RSListType;
    773   // Have a map, with key being the matching prefix length, and the value
    774   // being the list of pairs (R,S), where R's prefix matches VR at S.
    775   // (DenseMap<uint16_t,RSListType> fails to instantiate.)
    776   typedef DenseMap<unsigned,RSListType> LRSMapType;
    777   LRSMapType LM;
    778 
    779   // Conceptually, rotate the cell RC right (i.e. towards the LSB) by S,
    780   // and find matching prefixes from AVs with the rotated RC. Such a prefix
    781   // would match a string of bits (of length L) in RC starting at S.
    782   for (uint16_t S = 0; S < W; ++S) {
    783     iterator B = AVs.begin(), E = AVs.end();
    784     // The registers in AVs are ordered according to the lexical order of
    785     // the corresponding register cells. This means that the range of regis-
    786     // ters in AVs that match a prefix of length L+1 will be contained in
    787     // the range that matches a prefix of length L. This means that we can
    788     // keep narrowing the search space as the prefix length goes up. This
    789     // helps reduce the overall complexity of the search.
    790     uint16_t L;
    791     for (L = 0; L < W-S; ++L) {
    792       // Compare against VR's bits starting at S, which emulates rotation
    793       // of VR by S.
    794       RegisterCellBitCompareSel RCB(VR, S+L, L, BVO, *CMS);
    795       iterator NewB = std::lower_bound(B, E, VR, RCB);
    796       iterator NewE = std::upper_bound(NewB, E, VR, RCB);
    797       // For the registers that are eliminated from the next range, L is
    798       // the longest prefix matching VR at position S (their prefixes
    799       // differ from VR at S+L). If L>0, record this information for later
    800       // use.
    801       if (L > 0) {
    802         for (iterator I = B; I != NewB; ++I)
    803           LM[L].push_back(std::make_pair(*I, S));
    804         for (iterator I = NewE; I != E; ++I)
    805           LM[L].push_back(std::make_pair(*I, S));
    806       }
    807       B = NewB, E = NewE;
    808       if (B == E)
    809         break;
    810     }
    811     // Record the final register range. If this range is non-empty, then
    812     // L=W-S.
    813     assert(B == E || L == W-S);
    814     if (B != E) {
    815       for (iterator I = B; I != E; ++I)
    816         LM[L].push_back(std::make_pair(*I, S));
    817       // If B!=E, then we found a range of registers whose prefixes cover the
    818       // rest of VR from position S. There is no need to further advance S.
    819       break;
    820     }
    821   }
    822 
    823   if (isDebug()) {
    824     dbgs() << "Prefixes matching register " << PrintReg(VR, HRI) << "\n";
    825     for (LRSMapType::iterator I = LM.begin(), E = LM.end(); I != E; ++I) {
    826       dbgs() << "  L=" << I->first << ':';
    827       const RSListType &LL = I->second;
    828       for (unsigned i = 0, n = LL.size(); i < n; ++i)
    829         dbgs() << " (" << PrintReg(LL[i].first, HRI) << ",@"
    830                << LL[i].second << ')';
    831       dbgs() << '\n';
    832     }
    833   }
    834 
    835 
    836   bool Recorded = false;
    837 
    838   for (iterator I = AVs.begin(), E = AVs.end(); I != E; ++I) {
    839     unsigned SrcR = *I;
    840     int FDi = -1, LDi = -1;   // First/last different bit.
    841     const BitTracker::RegisterCell &AC = CMS->lookup(SrcR);
    842     uint16_t AW = AC.width();
    843     for (uint16_t i = 0, w = std::min(W, AW); i < w; ++i) {
    844       if (RC[i] == AC[i])
    845         continue;
    846       if (FDi == -1)
    847         FDi = i;
    848       LDi = i;
    849     }
    850     if (FDi == -1)
    851       continue;  // TODO (future): Record identical registers.
    852     // Look for a register whose prefix could patch the range [FD..LD]
    853     // where VR and SrcR differ.
    854     uint16_t FD = FDi, LD = LDi;  // Switch to unsigned type.
    855     uint16_t MinL = LD-FD+1;
    856     for (uint16_t L = MinL; L < W; ++L) {
    857       LRSMapType::iterator F = LM.find(L);
    858       if (F == LM.end())
    859         continue;
    860       RSListType &LL = F->second;
    861       for (unsigned i = 0, n = LL.size(); i < n; ++i) {
    862         uint16_t S = LL[i].second;
    863         // MinL is the minimum length of the prefix. Any length above MinL
    864         // allows some flexibility as to where the prefix can start:
    865         // given the extra length EL=L-MinL, the prefix must start between
    866         // max(0,FD-EL) and FD.
    867         if (S > FD)   // Starts too late.
    868           continue;
    869         uint16_t EL = L-MinL;
    870         uint16_t LowS = (EL < FD) ? FD-EL : 0;
    871         if (S < LowS) // Starts too early.
    872           continue;
    873         unsigned InsR = LL[i].first;
    874         if (!isValidInsertForm(VR, SrcR, InsR, L, S))
    875           continue;
    876         if (isDebug()) {
    877           dbgs() << PrintReg(VR, HRI) << " = insert(" << PrintReg(SrcR, HRI)
    878                  << ',' << PrintReg(InsR, HRI) << ",#" << L << ",#"
    879                  << S << ")\n";
    880         }
    881         IFRecordWithRegSet RR(IFRecord(SrcR, InsR, L, S), RegisterSet());
    882         IFMap[VR].push_back(RR);
    883         Recorded = true;
    884       }
    885     }
    886   }
    887 
    888   return Recorded;
    889 }
    890 
    891 
    892 void HexagonGenInsert::collectInBlock(MachineBasicBlock *B,
    893       OrderedRegisterList &AVs) {
    894   if (isDebug())
    895     dbgs() << "visiting block BB#" << B->getNumber() << "\n";
    896 
    897   // First, check if this block is reachable at all. If not, the bit tracker
    898   // will not have any information about registers in it.
    899   if (!CMS->BT.reached(B))
    900     return;
    901 
    902   bool DoConst = OptConst;
    903   // Keep a separate set of registers defined in this block, so that we
    904   // can remove them from the list of available registers once all DT
    905   // successors have been processed.
    906   RegisterSet BlockDefs, InsDefs;
    907   for (MachineBasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I) {
    908     MachineInstr *MI = &*I;
    909     InsDefs.clear();
    910     getInstrDefs(MI, InsDefs);
    911     // Leave those alone. They are more transparent than "insert".
    912     bool Skip = MI->isCopy() || MI->isRegSequence();
    913 
    914     if (!Skip) {
    915       // Visit all defined registers, and attempt to find the corresponding
    916       // "insert" representations.
    917       for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR)) {
    918         // Do not collect registers that are known to be compile-time cons-
    919         // tants, unless requested.
    920         if (!DoConst && isConstant(VR))
    921           continue;
    922         // If VR's cell contains a reference to VR, then VR cannot be defined
    923         // via "insert". If VR is a constant that can be generated in a single
    924         // instruction (without constant extenders), generating it via insert
    925         // makes no sense.
    926         if (findSelfReference(VR) || isSmallConstant(VR))
    927           continue;
    928 
    929         findRecordInsertForms(VR, AVs);
    930       }
    931     }
    932 
    933     // Insert the defined registers into the list of available registers
    934     // after they have been processed.
    935     for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR))
    936       AVs.insert(VR);
    937     BlockDefs.insert(InsDefs);
    938   }
    939 
    940   MachineDomTreeNode *N = MDT->getNode(B);
    941   typedef GraphTraits<MachineDomTreeNode*> GTN;
    942   typedef GTN::ChildIteratorType ChildIter;
    943   for (ChildIter I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I) {
    944     MachineBasicBlock *SB = (*I)->getBlock();
    945     collectInBlock(SB, AVs);
    946   }
    947 
    948   for (unsigned VR = BlockDefs.find_first(); VR; VR = BlockDefs.find_next(VR))
    949     AVs.remove(VR);
    950 }
    951 
    952 
    953 void HexagonGenInsert::findRemovableRegisters(unsigned VR, IFRecord IF,
    954       RegisterSet &RMs) const {
    955   // For a given register VR and a insert form, find the registers that are
    956   // used by the current definition of VR, and which would no longer be
    957   // needed for it after the definition of VR is replaced with the insert
    958   // form. These are the registers that could potentially become dead.
    959   RegisterSet Regs[2];
    960 
    961   unsigned S = 0;  // Register set selector.
    962   Regs[S].insert(VR);
    963 
    964   while (!Regs[S].empty()) {
    965     // Breadth-first search.
    966     unsigned OtherS = 1-S;
    967     Regs[OtherS].clear();
    968     for (unsigned R = Regs[S].find_first(); R; R = Regs[S].find_next(R)) {
    969       Regs[S].remove(R);
    970       if (R == IF.SrcR || R == IF.InsR)
    971         continue;
    972       // Check if a given register has bits that are references to any other
    973       // registers. This is to detect situations where the instruction that
    974       // defines register R takes register Q as an operand, but R itself does
    975       // not contain any bits from Q. Loads are examples of how this could
    976       // happen:
    977       //   R = load Q
    978       // In this case (assuming we do not have any knowledge about the loaded
    979       // value), we must not treat R as a "conveyance" of the bits from Q.
    980       // (The information in BT about R's bits would have them as constants,
    981       // in case of zero-extending loads, or refs to R.)
    982       if (!findNonSelfReference(R))
    983         continue;
    984       RMs.insert(R);
    985       const MachineInstr *DefI = MRI->getVRegDef(R);
    986       assert(DefI);
    987       // Do not iterate past PHI nodes to avoid infinite loops. This can
    988       // make the final set a bit less accurate, but the removable register
    989       // sets are an approximation anyway.
    990       if (DefI->isPHI())
    991         continue;
    992       getInstrUses(DefI, Regs[OtherS]);
    993     }
    994     S = OtherS;
    995   }
    996   // The register VR is added to the list as a side-effect of the algorithm,
    997   // but it is not "potentially removable". A potentially removable register
    998   // is one that may become unused (dead) after conversion to the insert form
    999   // IF, and obviously VR (or its replacement) will not become dead by apply-
   1000   // ing IF.
   1001   RMs.remove(VR);
   1002 }
   1003 
   1004 
   1005 void HexagonGenInsert::computeRemovableRegisters() {
   1006   for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
   1007     IFListType &LL = I->second;
   1008     for (unsigned i = 0, n = LL.size(); i < n; ++i)
   1009       findRemovableRegisters(I->first, LL[i].first, LL[i].second);
   1010   }
   1011 }
   1012 
   1013 
   1014 void HexagonGenInsert::pruneEmptyLists() {
   1015   // Remove all entries from the map, where the register has no insert forms
   1016   // associated with it.
   1017   typedef SmallVector<IFMapType::iterator,16> IterListType;
   1018   IterListType Prune;
   1019   for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
   1020     if (I->second.size() == 0)
   1021       Prune.push_back(I);
   1022   }
   1023   for (unsigned i = 0, n = Prune.size(); i < n; ++i)
   1024     IFMap.erase(Prune[i]);
   1025 }
   1026 
   1027 
   1028 void HexagonGenInsert::pruneCoveredSets(unsigned VR) {
   1029   IFMapType::iterator F = IFMap.find(VR);
   1030   assert(F != IFMap.end());
   1031   IFListType &LL = F->second;
   1032 
   1033   // First, examine the IF candidates for register VR whose removable-regis-
   1034   // ter sets are empty. This means that a given candidate will not help eli-
   1035   // minate any registers, but since "insert" is not a constant-extendable
   1036   // instruction, using such a candidate may reduce code size if the defini-
   1037   // tion of VR is constant-extended.
   1038   // If there exists a candidate with a non-empty set, the ones with empty
   1039   // sets will not be used and can be removed.
   1040   MachineInstr *DefVR = MRI->getVRegDef(VR);
   1041   bool DefEx = HII->isConstExtended(DefVR);
   1042   bool HasNE = false;
   1043   for (unsigned i = 0, n = LL.size(); i < n; ++i) {
   1044     if (LL[i].second.empty())
   1045       continue;
   1046     HasNE = true;
   1047     break;
   1048   }
   1049   if (!DefEx || HasNE) {
   1050     // The definition of VR is not constant-extended, or there is a candidate
   1051     // with a non-empty set. Remove all candidates with empty sets.
   1052     auto IsEmpty = [] (const IFRecordWithRegSet &IR) -> bool {
   1053       return IR.second.empty();
   1054     };
   1055     auto End = std::remove_if(LL.begin(), LL.end(), IsEmpty);
   1056     if (End != LL.end())
   1057       LL.erase(End, LL.end());
   1058   } else {
   1059     // The definition of VR is constant-extended, and all candidates have
   1060     // empty removable-register sets. Pick the maximum candidate, and remove
   1061     // all others. The "maximum" does not have any special meaning here, it
   1062     // is only so that the candidate that will remain on the list is selec-
   1063     // ted deterministically.
   1064     IFRecord MaxIF = LL[0].first;
   1065     for (unsigned i = 1, n = LL.size(); i < n; ++i) {
   1066       // If LL[MaxI] < LL[i], then MaxI = i.
   1067       const IFRecord &IF = LL[i].first;
   1068       unsigned M0 = BaseOrd[MaxIF.SrcR], M1 = BaseOrd[MaxIF.InsR];
   1069       unsigned R0 = BaseOrd[IF.SrcR], R1 = BaseOrd[IF.InsR];
   1070       if (M0 > R0)
   1071         continue;
   1072       if (M0 == R0) {
   1073         if (M1 > R1)
   1074           continue;
   1075         if (M1 == R1) {
   1076           if (MaxIF.Wdh > IF.Wdh)
   1077             continue;
   1078           if (MaxIF.Wdh == IF.Wdh && MaxIF.Off >= IF.Off)
   1079             continue;
   1080         }
   1081       }
   1082       // MaxIF < IF.
   1083       MaxIF = IF;
   1084     }
   1085     // Remove everything except the maximum candidate. All register sets
   1086     // are empty, so no need to preserve anything.
   1087     LL.clear();
   1088     LL.push_back(std::make_pair(MaxIF, RegisterSet()));
   1089   }
   1090 
   1091   // Now, remove those whose sets of potentially removable registers are
   1092   // contained in another IF candidate for VR. For example, given these
   1093   // candidates for vreg45,
   1094   //   %vreg45:
   1095   //     (%vreg44,%vreg41,#9,#8), { %vreg42 }
   1096   //     (%vreg43,%vreg41,#9,#8), { %vreg42 %vreg44 }
   1097   // remove the first one, since it is contained in the second one.
   1098   for (unsigned i = 0, n = LL.size(); i < n; ) {
   1099     const RegisterSet &RMi = LL[i].second;
   1100     unsigned j = 0;
   1101     while (j < n) {
   1102       if (j != i && LL[j].second.includes(RMi))
   1103         break;
   1104       j++;
   1105     }
   1106     if (j == n) {   // RMi not contained in anything else.
   1107       i++;
   1108       continue;
   1109     }
   1110     LL.erase(LL.begin()+i);
   1111     n = LL.size();
   1112   }
   1113 }
   1114 
   1115 
   1116 void HexagonGenInsert::pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO,
   1117       PairMapType &M) {
   1118   IFMapType::iterator F = IFMap.find(VR);
   1119   assert(F != IFMap.end());
   1120   IFListType &LL = F->second;
   1121   unsigned Cutoff = VRegDistCutoff;
   1122   const MachineInstr *DefV = MRI->getVRegDef(VR);
   1123 
   1124   for (unsigned i = LL.size(); i > 0; --i) {
   1125     unsigned SR = LL[i-1].first.SrcR, IR = LL[i-1].first.InsR;
   1126     const MachineInstr *DefS = MRI->getVRegDef(SR);
   1127     const MachineInstr *DefI = MRI->getVRegDef(IR);
   1128     unsigned DSV = distance(DefS, DefV, RPO, M);
   1129     if (DSV < Cutoff) {
   1130       unsigned DIV = distance(DefI, DefV, RPO, M);
   1131       if (DIV < Cutoff)
   1132         continue;
   1133     }
   1134     LL.erase(LL.begin()+(i-1));
   1135   }
   1136 }
   1137 
   1138 
   1139 void HexagonGenInsert::pruneRegCopies(unsigned VR) {
   1140   IFMapType::iterator F = IFMap.find(VR);
   1141   assert(F != IFMap.end());
   1142   IFListType &LL = F->second;
   1143 
   1144   auto IsCopy = [] (const IFRecordWithRegSet &IR) -> bool {
   1145     return IR.first.Wdh == 32 && (IR.first.Off == 0 || IR.first.Off == 32);
   1146   };
   1147   auto End = std::remove_if(LL.begin(), LL.end(), IsCopy);
   1148   if (End != LL.end())
   1149     LL.erase(End, LL.end());
   1150 }
   1151 
   1152 
   1153 void HexagonGenInsert::pruneCandidates() {
   1154   // Remove candidates that are not beneficial, regardless of the final
   1155   // selection method.
   1156   // First, remove candidates whose potentially removable set is a subset
   1157   // of another candidate's set.
   1158   for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
   1159     pruneCoveredSets(I->first);
   1160 
   1161   UnsignedMap RPO;
   1162   typedef ReversePostOrderTraversal<const MachineFunction*> RPOTType;
   1163   RPOTType RPOT(MFN);
   1164   unsigned RPON = 0;
   1165   for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I)
   1166     RPO[(*I)->getNumber()] = RPON++;
   1167 
   1168   PairMapType Memo; // Memoization map for distance calculation.
   1169   // Remove candidates that would use registers defined too far away.
   1170   for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
   1171     pruneUsesTooFar(I->first, RPO, Memo);
   1172 
   1173   pruneEmptyLists();
   1174 
   1175   for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
   1176     pruneRegCopies(I->first);
   1177 }
   1178 
   1179 
   1180 namespace {
   1181   // Class for comparing IF candidates for registers that have multiple of
   1182   // them. The smaller the candidate, according to this ordering, the better.
   1183   // First, compare the number of zeros in the associated potentially remova-
   1184   // ble register sets. "Zero" indicates that the register is very likely to
   1185   // become dead after this transformation.
   1186   // Second, compare "averages", i.e. use-count per size. The lower wins.
   1187   // After that, it does not really matter which one is smaller. Resolve
   1188   // the tie in some deterministic way.
   1189   struct IFOrdering {
   1190     IFOrdering(const UnsignedMap &UC, const RegisterOrdering &BO)
   1191       : UseC(UC), BaseOrd(BO) {}
   1192     bool operator() (const IFRecordWithRegSet &A,
   1193           const IFRecordWithRegSet &B) const;
   1194   private:
   1195     void stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
   1196           unsigned &Sum) const;
   1197     const UnsignedMap &UseC;
   1198     const RegisterOrdering &BaseOrd;
   1199   };
   1200 }
   1201 
   1202 
   1203 bool IFOrdering::operator() (const IFRecordWithRegSet &A,
   1204       const IFRecordWithRegSet &B) const {
   1205   unsigned SizeA = 0, ZeroA = 0, SumA = 0;
   1206   unsigned SizeB = 0, ZeroB = 0, SumB = 0;
   1207   stats(A.second, SizeA, ZeroA, SumA);
   1208   stats(B.second, SizeB, ZeroB, SumB);
   1209 
   1210   // We will pick the minimum element. The more zeros, the better.
   1211   if (ZeroA != ZeroB)
   1212     return ZeroA > ZeroB;
   1213   // Compare SumA/SizeA with SumB/SizeB, lower is better.
   1214   uint64_t AvgA = SumA*SizeB, AvgB = SumB*SizeA;
   1215   if (AvgA != AvgB)
   1216     return AvgA < AvgB;
   1217 
   1218   // The sets compare identical so far. Resort to comparing the IF records.
   1219   // The actual values don't matter, this is only for determinism.
   1220   unsigned OSA = BaseOrd[A.first.SrcR], OSB = BaseOrd[B.first.SrcR];
   1221   if (OSA != OSB)
   1222     return OSA < OSB;
   1223   unsigned OIA = BaseOrd[A.first.InsR], OIB = BaseOrd[B.first.InsR];
   1224   if (OIA != OIB)
   1225     return OIA < OIB;
   1226   if (A.first.Wdh != B.first.Wdh)
   1227     return A.first.Wdh < B.first.Wdh;
   1228   return A.first.Off < B.first.Off;
   1229 }
   1230 
   1231 
   1232 void IFOrdering::stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
   1233       unsigned &Sum) const {
   1234   for (unsigned R = Rs.find_first(); R; R = Rs.find_next(R)) {
   1235     UnsignedMap::const_iterator F = UseC.find(R);
   1236     assert(F != UseC.end());
   1237     unsigned UC = F->second;
   1238     if (UC == 0)
   1239       Zero++;
   1240     Sum += UC;
   1241     Size++;
   1242   }
   1243 }
   1244 
   1245 
   1246 void HexagonGenInsert::selectCandidates() {
   1247   // Some registers may have multiple valid candidates. Pick the best one
   1248   // (or decide not to use any).
   1249 
   1250   // Compute the "removability" measure of R:
   1251   // For each potentially removable register R, record the number of regis-
   1252   // ters with IF candidates, where R appears in at least one set.
   1253   RegisterSet AllRMs;
   1254   UnsignedMap UseC, RemC;
   1255   IFMapType::iterator End = IFMap.end();
   1256 
   1257   for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
   1258     const IFListType &LL = I->second;
   1259     RegisterSet TT;
   1260     for (unsigned i = 0, n = LL.size(); i < n; ++i)
   1261       TT.insert(LL[i].second);
   1262     for (unsigned R = TT.find_first(); R; R = TT.find_next(R))
   1263       RemC[R]++;
   1264     AllRMs.insert(TT);
   1265   }
   1266 
   1267   for (unsigned R = AllRMs.find_first(); R; R = AllRMs.find_next(R)) {
   1268     typedef MachineRegisterInfo::use_nodbg_iterator use_iterator;
   1269     typedef SmallSet<const MachineInstr*,16> InstrSet;
   1270     InstrSet UIs;
   1271     // Count as the number of instructions in which R is used, not the
   1272     // number of operands.
   1273     use_iterator E = MRI->use_nodbg_end();
   1274     for (use_iterator I = MRI->use_nodbg_begin(R); I != E; ++I)
   1275       UIs.insert(I->getParent());
   1276     unsigned C = UIs.size();
   1277     // Calculate a measure, which is the number of instructions using R,
   1278     // minus the "removability" count computed earlier.
   1279     unsigned D = RemC[R];
   1280     UseC[R] = (C > D) ? C-D : 0;  // doz
   1281   }
   1282 
   1283 
   1284   bool SelectAll0 = OptSelectAll0, SelectHas0 = OptSelectHas0;
   1285   if (!SelectAll0 && !SelectHas0)
   1286     SelectAll0 = true;
   1287 
   1288   // The smaller the number UseC for a given register R, the "less used"
   1289   // R is aside from the opportunities for removal offered by generating
   1290   // "insert" instructions.
   1291   // Iterate over the IF map, and for those registers that have multiple
   1292   // candidates, pick the minimum one according to IFOrdering.
   1293   IFOrdering IFO(UseC, BaseOrd);
   1294   for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
   1295     IFListType &LL = I->second;
   1296     if (LL.empty())
   1297       continue;
   1298     // Get the minimum element, remember it and clear the list. If the
   1299     // element found is adequate, we will put it back on the list, other-
   1300     // wise the list will remain empty, and the entry for this register
   1301     // will be removed (i.e. this register will not be replaced by insert).
   1302     IFListType::iterator MinI = std::min_element(LL.begin(), LL.end(), IFO);
   1303     assert(MinI != LL.end());
   1304     IFRecordWithRegSet M = *MinI;
   1305     LL.clear();
   1306 
   1307     // We want to make sure that this replacement will have a chance to be
   1308     // beneficial, and that means that we want to have indication that some
   1309     // register will be removed. The most likely registers to be eliminated
   1310     // are the use operands in the definition of I->first. Accept/reject a
   1311     // candidate based on how many of its uses it can potentially eliminate.
   1312 
   1313     RegisterSet Us;
   1314     const MachineInstr *DefI = MRI->getVRegDef(I->first);
   1315     getInstrUses(DefI, Us);
   1316     bool Accept = false;
   1317 
   1318     if (SelectAll0) {
   1319       bool All0 = true;
   1320       for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
   1321         if (UseC[R] == 0)
   1322           continue;
   1323         All0 = false;
   1324         break;
   1325       }
   1326       Accept = All0;
   1327     } else if (SelectHas0) {
   1328       bool Has0 = false;
   1329       for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
   1330         if (UseC[R] != 0)
   1331           continue;
   1332         Has0 = true;
   1333         break;
   1334       }
   1335       Accept = Has0;
   1336     }
   1337     if (Accept)
   1338       LL.push_back(M);
   1339   }
   1340 
   1341   // Remove candidates that add uses of removable registers, unless the
   1342   // removable registers are among replacement candidates.
   1343   // Recompute the removable registers, since some candidates may have
   1344   // been eliminated.
   1345   AllRMs.clear();
   1346   for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
   1347     const IFListType &LL = I->second;
   1348     if (LL.size() > 0)
   1349       AllRMs.insert(LL[0].second);
   1350   }
   1351   for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
   1352     IFListType &LL = I->second;
   1353     if (LL.size() == 0)
   1354       continue;
   1355     unsigned SR = LL[0].first.SrcR, IR = LL[0].first.InsR;
   1356     if (AllRMs[SR] || AllRMs[IR])
   1357       LL.clear();
   1358   }
   1359 
   1360   pruneEmptyLists();
   1361 }
   1362 
   1363 
   1364 bool HexagonGenInsert::generateInserts() {
   1365   // Create a new register for each one from IFMap, and store them in the
   1366   // map.
   1367   UnsignedMap RegMap;
   1368   for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
   1369     unsigned VR = I->first;
   1370     const TargetRegisterClass *RC = MRI->getRegClass(VR);
   1371     unsigned NewVR = MRI->createVirtualRegister(RC);
   1372     RegMap[VR] = NewVR;
   1373   }
   1374 
   1375   // We can generate the "insert" instructions using potentially stale re-
   1376   // gisters: SrcR and InsR for a given VR may be among other registers that
   1377   // are also replaced. This is fine, we will do the mass "rauw" a bit later.
   1378   for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
   1379     MachineInstr *MI = MRI->getVRegDef(I->first);
   1380     MachineBasicBlock &B = *MI->getParent();
   1381     DebugLoc DL = MI->getDebugLoc();
   1382     unsigned NewR = RegMap[I->first];
   1383     bool R32 = MRI->getRegClass(NewR) == &Hexagon::IntRegsRegClass;
   1384     const MCInstrDesc &D = R32 ? HII->get(Hexagon::S2_insert)
   1385                                : HII->get(Hexagon::S2_insertp);
   1386     IFRecord IF = I->second[0].first;
   1387     unsigned Wdh = IF.Wdh, Off = IF.Off;
   1388     unsigned InsS = 0;
   1389     if (R32 && MRI->getRegClass(IF.InsR) == &Hexagon::DoubleRegsRegClass) {
   1390       InsS = Hexagon::subreg_loreg;
   1391       if (Off >= 32) {
   1392         InsS = Hexagon::subreg_hireg;
   1393         Off -= 32;
   1394       }
   1395     }
   1396     // Advance to the proper location for inserting instructions. This could
   1397     // be B.end().
   1398     MachineBasicBlock::iterator At = MI;
   1399     if (MI->isPHI())
   1400       At = B.getFirstNonPHI();
   1401 
   1402     BuildMI(B, At, DL, D, NewR)
   1403       .addReg(IF.SrcR)
   1404       .addReg(IF.InsR, 0, InsS)
   1405       .addImm(Wdh)
   1406       .addImm(Off);
   1407 
   1408     MRI->clearKillFlags(IF.SrcR);
   1409     MRI->clearKillFlags(IF.InsR);
   1410   }
   1411 
   1412   for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
   1413     MachineInstr *DefI = MRI->getVRegDef(I->first);
   1414     MRI->replaceRegWith(I->first, RegMap[I->first]);
   1415     DefI->eraseFromParent();
   1416   }
   1417 
   1418   return true;
   1419 }
   1420 
   1421 
   1422 bool HexagonGenInsert::removeDeadCode(MachineDomTreeNode *N) {
   1423   bool Changed = false;
   1424   typedef GraphTraits<MachineDomTreeNode*> GTN;
   1425   for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I)
   1426     Changed |= removeDeadCode(*I);
   1427 
   1428   MachineBasicBlock *B = N->getBlock();
   1429   std::vector<MachineInstr*> Instrs;
   1430   for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
   1431     Instrs.push_back(&*I);
   1432 
   1433   for (auto I = Instrs.begin(), E = Instrs.end(); I != E; ++I) {
   1434     MachineInstr *MI = *I;
   1435     unsigned Opc = MI->getOpcode();
   1436     // Do not touch lifetime markers. This is why the target-independent DCE
   1437     // cannot be used.
   1438     if (Opc == TargetOpcode::LIFETIME_START ||
   1439         Opc == TargetOpcode::LIFETIME_END)
   1440       continue;
   1441     bool Store = false;
   1442     if (MI->isInlineAsm() || !MI->isSafeToMove(nullptr, Store))
   1443       continue;
   1444 
   1445     bool AllDead = true;
   1446     SmallVector<unsigned,2> Regs;
   1447     for (ConstMIOperands Op(*MI); Op.isValid(); ++Op) {
   1448       if (!Op->isReg() || !Op->isDef())
   1449         continue;
   1450       unsigned R = Op->getReg();
   1451       if (!TargetRegisterInfo::isVirtualRegister(R) ||
   1452           !MRI->use_nodbg_empty(R)) {
   1453         AllDead = false;
   1454         break;
   1455       }
   1456       Regs.push_back(R);
   1457     }
   1458     if (!AllDead)
   1459       continue;
   1460 
   1461     B->erase(MI);
   1462     for (unsigned I = 0, N = Regs.size(); I != N; ++I)
   1463       MRI->markUsesInDebugValueAsUndef(Regs[I]);
   1464     Changed = true;
   1465   }
   1466 
   1467   return Changed;
   1468 }
   1469 
   1470 
   1471 bool HexagonGenInsert::runOnMachineFunction(MachineFunction &MF) {
   1472   if (skipFunction(*MF.getFunction()))
   1473     return false;
   1474 
   1475   bool Timing = OptTiming, TimingDetail = Timing && OptTimingDetail;
   1476   bool Changed = false;
   1477   TimerGroup __G("hexinsert");
   1478   NamedRegionTimer __T("hexinsert", Timing && !TimingDetail);
   1479 
   1480   // Sanity check: one, but not both.
   1481   assert(!OptSelectAll0 || !OptSelectHas0);
   1482 
   1483   IFMap.clear();
   1484   BaseOrd.clear();
   1485   CellOrd.clear();
   1486 
   1487   const auto &ST = MF.getSubtarget<HexagonSubtarget>();
   1488   HII = ST.getInstrInfo();
   1489   HRI = ST.getRegisterInfo();
   1490   MFN = &MF;
   1491   MRI = &MF.getRegInfo();
   1492   MDT = &getAnalysis<MachineDominatorTree>();
   1493 
   1494   // Clean up before any further processing, so that dead code does not
   1495   // get used in a newly generated "insert" instruction. Have a custom
   1496   // version of DCE that preserves lifetime markers. Without it, merging
   1497   // of stack objects can fail to recognize and merge disjoint objects
   1498   // leading to unnecessary stack growth.
   1499   Changed = removeDeadCode(MDT->getRootNode());
   1500 
   1501   const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
   1502   BitTracker BTLoc(HE, MF);
   1503   BTLoc.trace(isDebug());
   1504   BTLoc.run();
   1505   CellMapShadow MS(BTLoc);
   1506   CMS = &MS;
   1507 
   1508   buildOrderingMF(BaseOrd);
   1509   buildOrderingBT(BaseOrd, CellOrd);
   1510 
   1511   if (isDebug()) {
   1512     dbgs() << "Cell ordering:\n";
   1513     for (RegisterOrdering::iterator I = CellOrd.begin(), E = CellOrd.end();
   1514         I != E; ++I) {
   1515       unsigned VR = I->first, Pos = I->second;
   1516       dbgs() << PrintReg(VR, HRI) << " -> " << Pos << "\n";
   1517     }
   1518   }
   1519 
   1520   // Collect candidates for conversion into the insert forms.
   1521   MachineBasicBlock *RootB = MDT->getRoot();
   1522   OrderedRegisterList AvailR(CellOrd);
   1523 
   1524   {
   1525     NamedRegionTimer _T("collection", "hexinsert", TimingDetail);
   1526     collectInBlock(RootB, AvailR);
   1527     // Complete the information gathered in IFMap.
   1528     computeRemovableRegisters();
   1529   }
   1530 
   1531   if (isDebug()) {
   1532     dbgs() << "Candidates after collection:\n";
   1533     dump_map();
   1534   }
   1535 
   1536   if (IFMap.empty())
   1537     return Changed;
   1538 
   1539   {
   1540     NamedRegionTimer _T("pruning", "hexinsert", TimingDetail);
   1541     pruneCandidates();
   1542   }
   1543 
   1544   if (isDebug()) {
   1545     dbgs() << "Candidates after pruning:\n";
   1546     dump_map();
   1547   }
   1548 
   1549   if (IFMap.empty())
   1550     return Changed;
   1551 
   1552   {
   1553     NamedRegionTimer _T("selection", "hexinsert", TimingDetail);
   1554     selectCandidates();
   1555   }
   1556 
   1557   if (isDebug()) {
   1558     dbgs() << "Candidates after selection:\n";
   1559     dump_map();
   1560   }
   1561 
   1562   // Filter out vregs beyond the cutoff.
   1563   if (VRegIndexCutoff.getPosition()) {
   1564     unsigned Cutoff = VRegIndexCutoff;
   1565     typedef SmallVector<IFMapType::iterator,16> IterListType;
   1566     IterListType Out;
   1567     for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
   1568       unsigned Idx = TargetRegisterInfo::virtReg2Index(I->first);
   1569       if (Idx >= Cutoff)
   1570         Out.push_back(I);
   1571     }
   1572     for (unsigned i = 0, n = Out.size(); i < n; ++i)
   1573       IFMap.erase(Out[i]);
   1574   }
   1575   if (IFMap.empty())
   1576     return Changed;
   1577 
   1578   {
   1579     NamedRegionTimer _T("generation", "hexinsert", TimingDetail);
   1580     generateInserts();
   1581   }
   1582 
   1583   return true;
   1584 }
   1585 
   1586 
   1587 FunctionPass *llvm::createHexagonGenInsert() {
   1588   return new HexagonGenInsert();
   1589 }
   1590 
   1591 
   1592 //===----------------------------------------------------------------------===//
   1593 //                         Public Constructor Functions
   1594 //===----------------------------------------------------------------------===//
   1595 
   1596 INITIALIZE_PASS_BEGIN(HexagonGenInsert, "hexinsert",
   1597   "Hexagon generate \"insert\" instructions", false, false)
   1598 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
   1599 INITIALIZE_PASS_END(HexagonGenInsert, "hexinsert",
   1600   "Hexagon generate \"insert\" instructions", false, false)
   1601