Home | History | Annotate | Download | only in i965
      1 /*
      2  * Copyright  2017 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21  * IN THE SOFTWARE.
     22  */
     23 
     24 #include <assert.h>
     25 
     26 #include "common/gen_device_info.h"
     27 #include "common/gen_sample_positions.h"
     28 #include "genxml/gen_macros.h"
     29 
     30 #include "main/bufferobj.h"
     31 #include "main/context.h"
     32 #include "main/enums.h"
     33 #include "main/macros.h"
     34 #include "main/state.h"
     35 
     36 #include "brw_context.h"
     37 #include "brw_draw.h"
     38 #include "brw_multisample_state.h"
     39 #include "brw_state.h"
     40 #include "brw_wm.h"
     41 #include "brw_util.h"
     42 
     43 #include "intel_batchbuffer.h"
     44 #include "intel_buffer_objects.h"
     45 #include "intel_fbo.h"
     46 
     47 #include "main/enums.h"
     48 #include "main/fbobject.h"
     49 #include "main/framebuffer.h"
     50 #include "main/glformats.h"
     51 #include "main/samplerobj.h"
     52 #include "main/shaderapi.h"
     53 #include "main/stencil.h"
     54 #include "main/transformfeedback.h"
     55 #include "main/varray.h"
     56 #include "main/viewport.h"
     57 #include "util/half_float.h"
     58 
     59 UNUSED static void *
     60 emit_dwords(struct brw_context *brw, unsigned n)
     61 {
     62    intel_batchbuffer_begin(brw, n, RENDER_RING);
     63    uint32_t *map = brw->batch.map_next;
     64    brw->batch.map_next += n;
     65    intel_batchbuffer_advance(brw);
     66    return map;
     67 }
     68 
     69 struct brw_address {
     70    struct brw_bo *bo;
     71    unsigned reloc_flags;
     72    uint32_t offset;
     73 };
     74 
     75 #define __gen_address_type struct brw_address
     76 #define __gen_user_data struct brw_context
     77 
     78 static uint64_t
     79 __gen_combine_address(struct brw_context *brw, void *location,
     80                       struct brw_address address, uint32_t delta)
     81 {
     82    struct intel_batchbuffer *batch = &brw->batch;
     83    uint32_t offset;
     84 
     85    if (address.bo == NULL) {
     86       return address.offset + delta;
     87    } else {
     88       if (GEN_GEN < 6 && brw_ptr_in_state_buffer(batch, location)) {
     89          offset = (char *) location - (char *) brw->batch.state.map;
     90          return brw_state_reloc(batch, offset, address.bo,
     91                                 address.offset + delta,
     92                                 address.reloc_flags);
     93       }
     94 
     95       assert(!brw_ptr_in_state_buffer(batch, location));
     96 
     97       offset = (char *) location - (char *) brw->batch.batch.map;
     98       return brw_batch_reloc(batch, offset, address.bo,
     99                              address.offset + delta,
    100                              address.reloc_flags);
    101    }
    102 }
    103 
    104 static struct brw_address
    105 rw_bo(struct brw_bo *bo, uint32_t offset)
    106 {
    107    return (struct brw_address) {
    108             .bo = bo,
    109             .offset = offset,
    110             .reloc_flags = RELOC_WRITE,
    111    };
    112 }
    113 
    114 static struct brw_address
    115 ro_bo(struct brw_bo *bo, uint32_t offset)
    116 {
    117    return (struct brw_address) {
    118             .bo = bo,
    119             .offset = offset,
    120    };
    121 }
    122 
    123 UNUSED static struct brw_address
    124 ggtt_bo(struct brw_bo *bo, uint32_t offset)
    125 {
    126    return (struct brw_address) {
    127             .bo = bo,
    128             .offset = offset,
    129             .reloc_flags = RELOC_WRITE | RELOC_NEEDS_GGTT,
    130    };
    131 }
    132 
    133 #if GEN_GEN == 4
    134 static struct brw_address
    135 KSP(struct brw_context *brw, uint32_t offset)
    136 {
    137    return ro_bo(brw->cache.bo, offset);
    138 }
    139 #else
    140 static uint32_t
    141 KSP(struct brw_context *brw, uint32_t offset)
    142 {
    143    return offset;
    144 }
    145 #endif
    146 
    147 #include "genxml/genX_pack.h"
    148 
    149 #define _brw_cmd_length(cmd) cmd ## _length
    150 #define _brw_cmd_length_bias(cmd) cmd ## _length_bias
    151 #define _brw_cmd_header(cmd) cmd ## _header
    152 #define _brw_cmd_pack(cmd) cmd ## _pack
    153 
    154 #define brw_batch_emit(brw, cmd, name)                  \
    155    for (struct cmd name = { _brw_cmd_header(cmd) },     \
    156         *_dst = emit_dwords(brw, _brw_cmd_length(cmd)); \
    157         __builtin_expect(_dst != NULL, 1);              \
    158         _brw_cmd_pack(cmd)(brw, (void *)_dst, &name),   \
    159         _dst = NULL)
    160 
    161 #define brw_batch_emitn(brw, cmd, n, ...) ({           \
    162       uint32_t *_dw = emit_dwords(brw, n);             \
    163       struct cmd template = {                          \
    164          _brw_cmd_header(cmd),                         \
    165          .DWordLength = n - _brw_cmd_length_bias(cmd), \
    166          __VA_ARGS__                                   \
    167       };                                               \
    168       _brw_cmd_pack(cmd)(brw, _dw, &template);         \
    169       _dw + 1; /* Array starts at dw[1] */             \
    170    })
    171 
    172 #define brw_state_emit(brw, cmd, align, offset, name)              \
    173    for (struct cmd name = {},                                      \
    174         *_dst = brw_state_batch(brw, _brw_cmd_length(cmd) * 4,     \
    175                                 align, offset);                    \
    176         __builtin_expect(_dst != NULL, 1);                         \
    177         _brw_cmd_pack(cmd)(brw, (void *)_dst, &name),              \
    178         _dst = NULL)
    179 
    180 /**
    181  * Polygon stipple packet
    182  */
    183 static void
    184 genX(upload_polygon_stipple)(struct brw_context *brw)
    185 {
    186    struct gl_context *ctx = &brw->ctx;
    187 
    188    /* _NEW_POLYGON */
    189    if (!ctx->Polygon.StippleFlag)
    190       return;
    191 
    192    brw_batch_emit(brw, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
    193       /* Polygon stipple is provided in OpenGL order, i.e. bottom
    194        * row first.  If we're rendering to a window (i.e. the
    195        * default frame buffer object, 0), then we need to invert
    196        * it to match our pixel layout.  But if we're rendering
    197        * to a FBO (i.e. any named frame buffer object), we *don't*
    198        * need to invert - we already match the layout.
    199        */
    200       if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
    201          for (unsigned i = 0; i < 32; i++)
    202             poly.PatternRow[i] = ctx->PolygonStipple[31 - i]; /* invert */
    203       } else {
    204          for (unsigned i = 0; i < 32; i++)
    205             poly.PatternRow[i] = ctx->PolygonStipple[i];
    206       }
    207    }
    208 }
    209 
    210 static const struct brw_tracked_state genX(polygon_stipple) = {
    211    .dirty = {
    212       .mesa = _NEW_POLYGON |
    213               _NEW_POLYGONSTIPPLE,
    214       .brw = BRW_NEW_CONTEXT,
    215    },
    216    .emit = genX(upload_polygon_stipple),
    217 };
    218 
    219 /**
    220  * Polygon stipple offset packet
    221  */
    222 static void
    223 genX(upload_polygon_stipple_offset)(struct brw_context *brw)
    224 {
    225    struct gl_context *ctx = &brw->ctx;
    226 
    227    /* _NEW_POLYGON */
    228    if (!ctx->Polygon.StippleFlag)
    229       return;
    230 
    231    brw_batch_emit(brw, GENX(3DSTATE_POLY_STIPPLE_OFFSET), poly) {
    232       /* _NEW_BUFFERS
    233        *
    234        * If we're drawing to a system window we have to invert the Y axis
    235        * in order to match the OpenGL pixel coordinate system, and our
    236        * offset must be matched to the window position.  If we're drawing
    237        * to a user-created FBO then our native pixel coordinate system
    238        * works just fine, and there's no window system to worry about.
    239        */
    240       if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
    241          poly.PolygonStippleYOffset =
    242             (32 - (_mesa_geometric_height(ctx->DrawBuffer) & 31)) & 31;
    243       }
    244    }
    245 }
    246 
    247 static const struct brw_tracked_state genX(polygon_stipple_offset) = {
    248    .dirty = {
    249       .mesa = _NEW_BUFFERS |
    250               _NEW_POLYGON,
    251       .brw = BRW_NEW_CONTEXT,
    252    },
    253    .emit = genX(upload_polygon_stipple_offset),
    254 };
    255 
    256 /**
    257  * Line stipple packet
    258  */
    259 static void
    260 genX(upload_line_stipple)(struct brw_context *brw)
    261 {
    262    struct gl_context *ctx = &brw->ctx;
    263 
    264    if (!ctx->Line.StippleFlag)
    265       return;
    266 
    267    brw_batch_emit(brw, GENX(3DSTATE_LINE_STIPPLE), line) {
    268       line.LineStipplePattern = ctx->Line.StipplePattern;
    269 
    270       line.LineStippleInverseRepeatCount = 1.0f / ctx->Line.StippleFactor;
    271       line.LineStippleRepeatCount = ctx->Line.StippleFactor;
    272    }
    273 }
    274 
    275 static const struct brw_tracked_state genX(line_stipple) = {
    276    .dirty = {
    277       .mesa = _NEW_LINE,
    278       .brw = BRW_NEW_CONTEXT,
    279    },
    280    .emit = genX(upload_line_stipple),
    281 };
    282 
    283 /* Constant single cliprect for framebuffer object or DRI2 drawing */
    284 static void
    285 genX(upload_drawing_rect)(struct brw_context *brw)
    286 {
    287    struct gl_context *ctx = &brw->ctx;
    288    const struct gl_framebuffer *fb = ctx->DrawBuffer;
    289    const unsigned int fb_width = _mesa_geometric_width(fb);
    290    const unsigned int fb_height = _mesa_geometric_height(fb);
    291 
    292    brw_batch_emit(brw, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
    293       rect.ClippedDrawingRectangleXMax = fb_width - 1;
    294       rect.ClippedDrawingRectangleYMax = fb_height - 1;
    295    }
    296 }
    297 
    298 static const struct brw_tracked_state genX(drawing_rect) = {
    299    .dirty = {
    300       .mesa = _NEW_BUFFERS,
    301       .brw = BRW_NEW_BLORP |
    302              BRW_NEW_CONTEXT,
    303    },
    304    .emit = genX(upload_drawing_rect),
    305 };
    306 
    307 static uint32_t *
    308 genX(emit_vertex_buffer_state)(struct brw_context *brw,
    309                                uint32_t *dw,
    310                                unsigned buffer_nr,
    311                                struct brw_bo *bo,
    312                                unsigned start_offset,
    313                                unsigned end_offset,
    314                                unsigned stride,
    315                                unsigned step_rate)
    316 {
    317    struct GENX(VERTEX_BUFFER_STATE) buf_state = {
    318       .VertexBufferIndex = buffer_nr,
    319       .BufferPitch = stride,
    320       .BufferStartingAddress = ro_bo(bo, start_offset),
    321 #if GEN_GEN >= 8
    322       .BufferSize = end_offset - start_offset,
    323 #endif
    324 
    325 #if GEN_GEN >= 7
    326       .AddressModifyEnable = true,
    327 #endif
    328 
    329 #if GEN_GEN < 8
    330       .BufferAccessType = step_rate ? INSTANCEDATA : VERTEXDATA,
    331       .InstanceDataStepRate = step_rate,
    332 #if GEN_GEN >= 5
    333       .EndAddress = ro_bo(bo, end_offset - 1),
    334 #endif
    335 #endif
    336 
    337 #if GEN_GEN == 10
    338       .VertexBufferMOCS = CNL_MOCS_WB,
    339 #elif GEN_GEN == 9
    340       .VertexBufferMOCS = SKL_MOCS_WB,
    341 #elif GEN_GEN == 8
    342       .VertexBufferMOCS = BDW_MOCS_WB,
    343 #elif GEN_GEN == 7
    344       .VertexBufferMOCS = GEN7_MOCS_L3,
    345 #endif
    346    };
    347 
    348    GENX(VERTEX_BUFFER_STATE_pack)(brw, dw, &buf_state);
    349    return dw + GENX(VERTEX_BUFFER_STATE_length);
    350 }
    351 
    352 UNUSED static bool
    353 is_passthru_format(uint32_t format)
    354 {
    355    switch (format) {
    356    case ISL_FORMAT_R64_PASSTHRU:
    357    case ISL_FORMAT_R64G64_PASSTHRU:
    358    case ISL_FORMAT_R64G64B64_PASSTHRU:
    359    case ISL_FORMAT_R64G64B64A64_PASSTHRU:
    360       return true;
    361    default:
    362       return false;
    363    }
    364 }
    365 
    366 UNUSED static int
    367 uploads_needed(uint32_t format,
    368 	       bool is_dual_slot)
    369 {
    370    if (!is_passthru_format(format))
    371       return 1;
    372 
    373    if (is_dual_slot)
    374       return 2;
    375 
    376    switch (format) {
    377    case ISL_FORMAT_R64_PASSTHRU:
    378    case ISL_FORMAT_R64G64_PASSTHRU:
    379       return 1;
    380    case ISL_FORMAT_R64G64B64_PASSTHRU:
    381    case ISL_FORMAT_R64G64B64A64_PASSTHRU:
    382       return 2;
    383    default:
    384       unreachable("not reached");
    385    }
    386 }
    387 
    388 /*
    389  * Returns the format that we are finally going to use when upload a vertex
    390  * element. It will only change if we are using *64*PASSTHRU formats, as for
    391  * gen < 8 they need to be splitted on two *32*FLOAT formats.
    392  *
    393  * @upload points in which upload we are. Valid values are [0,1]
    394  */
    395 static uint32_t
    396 downsize_format_if_needed(uint32_t format,
    397                           int upload)
    398 {
    399    assert(upload == 0 || upload == 1);
    400 
    401    if (!is_passthru_format(format))
    402       return format;
    403 
    404    /* ISL_FORMAT_R64_PASSTHRU and ISL_FORMAT_R64G64_PASSTHRU with an upload ==
    405     * 1 means that we have been forced to do 2 uploads for a size <= 2. This
    406     * happens with gen < 8 and dvec3 or dvec4 vertex shader input
    407     * variables. In those cases, we return ISL_FORMAT_R32_FLOAT as a way of
    408     * flagging that we want to fill with zeroes this second forced upload.
    409     */
    410    switch (format) {
    411    case ISL_FORMAT_R64_PASSTHRU:
    412       return !upload ? ISL_FORMAT_R32G32_FLOAT
    413                      : ISL_FORMAT_R32_FLOAT;
    414    case ISL_FORMAT_R64G64_PASSTHRU:
    415       return !upload ? ISL_FORMAT_R32G32B32A32_FLOAT
    416                      : ISL_FORMAT_R32_FLOAT;
    417    case ISL_FORMAT_R64G64B64_PASSTHRU:
    418       return !upload ? ISL_FORMAT_R32G32B32A32_FLOAT
    419                      : ISL_FORMAT_R32G32_FLOAT;
    420    case ISL_FORMAT_R64G64B64A64_PASSTHRU:
    421       return ISL_FORMAT_R32G32B32A32_FLOAT;
    422    default:
    423       unreachable("not reached");
    424    }
    425 }
    426 
    427 /*
    428  * Returns the number of componentes associated with a format that is used on
    429  * a 64 to 32 format split. See downsize_format()
    430  */
    431 static int
    432 upload_format_size(uint32_t upload_format)
    433 {
    434    switch (upload_format) {
    435    case ISL_FORMAT_R32_FLOAT:
    436 
    437       /* downsized_format has returned this one in order to flag that we are
    438        * performing a second upload which we want to have filled with
    439        * zeroes. This happens with gen < 8, a size <= 2, and dvec3 or dvec4
    440        * vertex shader input variables.
    441        */
    442 
    443       return 0;
    444    case ISL_FORMAT_R32G32_FLOAT:
    445       return 2;
    446    case ISL_FORMAT_R32G32B32A32_FLOAT:
    447       return 4;
    448    default:
    449       unreachable("not reached");
    450    }
    451 }
    452 
    453 static void
    454 genX(emit_vertices)(struct brw_context *brw)
    455 {
    456    const struct gen_device_info *devinfo = &brw->screen->devinfo;
    457    uint32_t *dw;
    458 
    459    brw_prepare_vertices(brw);
    460    brw_prepare_shader_draw_parameters(brw);
    461 
    462 #if GEN_GEN < 6
    463    brw_emit_query_begin(brw);
    464 #endif
    465 
    466    const struct brw_vs_prog_data *vs_prog_data =
    467       brw_vs_prog_data(brw->vs.base.prog_data);
    468 
    469 #if GEN_GEN >= 8
    470    struct gl_context *ctx = &brw->ctx;
    471    const bool uses_edge_flag = (ctx->Polygon.FrontMode != GL_FILL ||
    472                                 ctx->Polygon.BackMode != GL_FILL);
    473 
    474    if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid) {
    475       unsigned vue = brw->vb.nr_enabled;
    476 
    477       /* The element for the edge flags must always be last, so we have to
    478        * insert the SGVS before it in that case.
    479        */
    480       if (uses_edge_flag) {
    481          assert(vue > 0);
    482          vue--;
    483       }
    484 
    485       WARN_ONCE(vue >= 33,
    486                 "Trying to insert VID/IID past 33rd vertex element, "
    487                 "need to reorder the vertex attrbutes.");
    488 
    489       brw_batch_emit(brw, GENX(3DSTATE_VF_SGVS), vfs) {
    490          if (vs_prog_data->uses_vertexid) {
    491             vfs.VertexIDEnable = true;
    492             vfs.VertexIDComponentNumber = 2;
    493             vfs.VertexIDElementOffset = vue;
    494          }
    495 
    496          if (vs_prog_data->uses_instanceid) {
    497             vfs.InstanceIDEnable = true;
    498             vfs.InstanceIDComponentNumber = 3;
    499             vfs.InstanceIDElementOffset = vue;
    500          }
    501       }
    502 
    503       brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
    504          vfi.InstancingEnable = true;
    505          vfi.VertexElementIndex = vue;
    506       }
    507    } else {
    508       brw_batch_emit(brw, GENX(3DSTATE_VF_SGVS), vfs);
    509    }
    510 
    511    /* Normally we don't need an element for the SGVS attribute because the
    512     * 3DSTATE_VF_SGVS instruction lets you store the generated attribute in an
    513     * element that is past the list in 3DSTATE_VERTEX_ELEMENTS. However if
    514     * we're using draw parameters then we need an element for the those
    515     * values.  Additionally if there is an edge flag element then the SGVS
    516     * can't be inserted past that so we need a dummy element to ensure that
    517     * the edge flag is the last one.
    518     */
    519    const bool needs_sgvs_element = (vs_prog_data->uses_basevertex ||
    520                                     vs_prog_data->uses_baseinstance ||
    521                                     ((vs_prog_data->uses_instanceid ||
    522                                       vs_prog_data->uses_vertexid)
    523                                      && uses_edge_flag));
    524 #else
    525    const bool needs_sgvs_element = (vs_prog_data->uses_basevertex ||
    526                                     vs_prog_data->uses_baseinstance ||
    527                                     vs_prog_data->uses_instanceid ||
    528                                     vs_prog_data->uses_vertexid);
    529 #endif
    530    unsigned nr_elements =
    531       brw->vb.nr_enabled + needs_sgvs_element + vs_prog_data->uses_drawid;
    532 
    533 #if GEN_GEN < 8
    534    /* If any of the formats of vb.enabled needs more that one upload, we need
    535     * to add it to nr_elements
    536     */
    537    for (unsigned i = 0; i < brw->vb.nr_enabled; i++) {
    538       struct brw_vertex_element *input = brw->vb.enabled[i];
    539       uint32_t format = brw_get_vertex_surface_type(brw, input->glarray);
    540 
    541       if (uploads_needed(format, input->is_dual_slot) > 1)
    542          nr_elements++;
    543    }
    544 #endif
    545 
    546    /* If the VS doesn't read any inputs (calculating vertex position from
    547     * a state variable for some reason, for example), emit a single pad
    548     * VERTEX_ELEMENT struct and bail.
    549     *
    550     * The stale VB state stays in place, but they don't do anything unless
    551     * a VE loads from them.
    552     */
    553    if (nr_elements == 0) {
    554       dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_ELEMENTS),
    555                            1 + GENX(VERTEX_ELEMENT_STATE_length));
    556       struct GENX(VERTEX_ELEMENT_STATE) elem = {
    557          .Valid = true,
    558          .SourceElementFormat = (enum GENX(SURFACE_FORMAT)) ISL_FORMAT_R32G32B32A32_FLOAT,
    559          .Component0Control = VFCOMP_STORE_0,
    560          .Component1Control = VFCOMP_STORE_0,
    561          .Component2Control = VFCOMP_STORE_0,
    562          .Component3Control = VFCOMP_STORE_1_FP,
    563       };
    564       GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem);
    565       return;
    566    }
    567 
    568    /* Now emit 3DSTATE_VERTEX_BUFFERS and 3DSTATE_VERTEX_ELEMENTS packets. */
    569    const bool uses_draw_params =
    570       vs_prog_data->uses_basevertex ||
    571       vs_prog_data->uses_baseinstance;
    572    const unsigned nr_buffers = brw->vb.nr_buffers +
    573       uses_draw_params + vs_prog_data->uses_drawid;
    574 
    575    if (nr_buffers) {
    576       assert(nr_buffers <= (GEN_GEN >= 6 ? 33 : 17));
    577 
    578       dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_BUFFERS),
    579                            1 + GENX(VERTEX_BUFFER_STATE_length) * nr_buffers);
    580 
    581       for (unsigned i = 0; i < brw->vb.nr_buffers; i++) {
    582          const struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
    583          /* Prior to Haswell and Bay Trail we have to use 4-component formats
    584           * to fake 3-component ones.  In particular, we do this for
    585           * half-float and 8 and 16-bit integer formats.  This means that the
    586           * vertex element may poke over the end of the buffer by 2 bytes.
    587           */
    588          const unsigned padding =
    589             (GEN_GEN <= 7 && !GEN_IS_HASWELL && !devinfo->is_baytrail) * 2;
    590          const unsigned end = buffer->offset + buffer->size + padding;
    591          dw = genX(emit_vertex_buffer_state)(brw, dw, i, buffer->bo,
    592                                              buffer->offset,
    593                                              end,
    594                                              buffer->stride,
    595                                              buffer->step_rate);
    596       }
    597 
    598       if (uses_draw_params) {
    599          dw = genX(emit_vertex_buffer_state)(brw, dw, brw->vb.nr_buffers,
    600                                              brw->draw.draw_params_bo,
    601                                              brw->draw.draw_params_offset,
    602                                              brw->draw.draw_params_bo->size,
    603                                              0 /* stride */,
    604                                              0 /* step rate */);
    605       }
    606 
    607       if (vs_prog_data->uses_drawid) {
    608          dw = genX(emit_vertex_buffer_state)(brw, dw, brw->vb.nr_buffers + 1,
    609                                              brw->draw.draw_id_bo,
    610                                              brw->draw.draw_id_offset,
    611                                              brw->draw.draw_id_bo->size,
    612                                              0 /* stride */,
    613                                              0 /* step rate */);
    614       }
    615    }
    616 
    617    /* The hardware allows one more VERTEX_ELEMENTS than VERTEX_BUFFERS,
    618     * presumably for VertexID/InstanceID.
    619     */
    620 #if GEN_GEN >= 6
    621    assert(nr_elements <= 34);
    622    const struct brw_vertex_element *gen6_edgeflag_input = NULL;
    623 #else
    624    assert(nr_elements <= 18);
    625 #endif
    626 
    627    dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_ELEMENTS),
    628                         1 + GENX(VERTEX_ELEMENT_STATE_length) * nr_elements);
    629    unsigned i;
    630    for (i = 0; i < brw->vb.nr_enabled; i++) {
    631       const struct brw_vertex_element *input = brw->vb.enabled[i];
    632       uint32_t format = brw_get_vertex_surface_type(brw, input->glarray);
    633       uint32_t comp0 = VFCOMP_STORE_SRC;
    634       uint32_t comp1 = VFCOMP_STORE_SRC;
    635       uint32_t comp2 = VFCOMP_STORE_SRC;
    636       uint32_t comp3 = VFCOMP_STORE_SRC;
    637       const unsigned num_uploads = GEN_GEN < 8 ?
    638 	 uploads_needed(format, input->is_dual_slot) : 1;
    639 
    640 #if GEN_GEN >= 8
    641       /* From the BDW PRM, Volume 2d, page 588 (VERTEX_ELEMENT_STATE):
    642        * "Any SourceElementFormat of *64*_PASSTHRU cannot be used with an
    643        * element which has edge flag enabled."
    644        */
    645       assert(!(is_passthru_format(format) && uses_edge_flag));
    646 #endif
    647 
    648       /* The gen4 driver expects edgeflag to come in as a float, and passes
    649        * that float on to the tests in the clipper.  Mesa's current vertex
    650        * attribute value for EdgeFlag is stored as a float, which works out.
    651        * glEdgeFlagPointer, on the other hand, gives us an unnormalized
    652        * integer ubyte.  Just rewrite that to convert to a float.
    653        *
    654        * Gen6+ passes edgeflag as sideband along with the vertex, instead
    655        * of in the VUE.  We have to upload it sideband as the last vertex
    656        * element according to the B-Spec.
    657        */
    658 #if GEN_GEN >= 6
    659       if (input == &brw->vb.inputs[VERT_ATTRIB_EDGEFLAG]) {
    660          gen6_edgeflag_input = input;
    661          continue;
    662       }
    663 #endif
    664 
    665       for (unsigned c = 0; c < num_uploads; c++) {
    666          const uint32_t upload_format = GEN_GEN >= 8 ? format :
    667             downsize_format_if_needed(format, c);
    668          /* If we need more that one upload, the offset stride would be 128
    669           * bits (16 bytes), as for previous uploads we are using the full
    670           * entry. */
    671          const unsigned offset = input->offset + c * 16;
    672 
    673          const int size = (GEN_GEN < 8 && is_passthru_format(format)) ?
    674             upload_format_size(upload_format) : input->glarray->Size;
    675 
    676          switch (size) {
    677             case 0: comp0 = VFCOMP_STORE_0;
    678             case 1: comp1 = VFCOMP_STORE_0;
    679             case 2: comp2 = VFCOMP_STORE_0;
    680             case 3:
    681                if (GEN_GEN >= 8 && input->glarray->Doubles) {
    682                   comp3 = VFCOMP_STORE_0;
    683                } else if (input->glarray->Integer) {
    684                   comp3 = VFCOMP_STORE_1_INT;
    685                } else {
    686                   comp3 = VFCOMP_STORE_1_FP;
    687                }
    688 
    689                break;
    690          }
    691 
    692 #if GEN_GEN >= 8
    693          /* From the BDW PRM, Volume 2d, page 586 (VERTEX_ELEMENT_STATE):
    694           *
    695           *     "When SourceElementFormat is set to one of the *64*_PASSTHRU
    696           *     formats, 64-bit components are stored in the URB without any
    697           *     conversion. In this case, vertex elements must be written as 128
    698           *     or 256 bits, with VFCOMP_STORE_0 being used to pad the output as
    699           *     required. E.g., if R64_PASSTHRU is used to copy a 64-bit Red
    700           *     component into the URB, Component 1 must be specified as
    701           *     VFCOMP_STORE_0 (with Components 2,3 set to VFCOMP_NOSTORE) in
    702           *     order to output a 128-bit vertex element, or Components 1-3 must
    703           *     be specified as VFCOMP_STORE_0 in order to output a 256-bit vertex
    704           *     element. Likewise, use of R64G64B64_PASSTHRU requires Component 3
    705           *     to be specified as VFCOMP_STORE_0 in order to output a 256-bit
    706           *     vertex element."
    707           */
    708          if (input->glarray->Doubles && !input->is_dual_slot) {
    709             /* Store vertex elements which correspond to double and dvec2 vertex
    710              * shader inputs as 128-bit vertex elements, instead of 256-bits.
    711              */
    712             comp2 = VFCOMP_NOSTORE;
    713             comp3 = VFCOMP_NOSTORE;
    714          }
    715 #endif
    716 
    717          struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
    718             .VertexBufferIndex = input->buffer,
    719             .Valid = true,
    720             .SourceElementFormat = upload_format,
    721             .SourceElementOffset = offset,
    722             .Component0Control = comp0,
    723             .Component1Control = comp1,
    724             .Component2Control = comp2,
    725             .Component3Control = comp3,
    726 #if GEN_GEN < 5
    727             .DestinationElementOffset = i * 4,
    728 #endif
    729          };
    730 
    731          GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
    732          dw += GENX(VERTEX_ELEMENT_STATE_length);
    733       }
    734    }
    735 
    736    if (needs_sgvs_element) {
    737       struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
    738          .Valid = true,
    739          .Component0Control = VFCOMP_STORE_0,
    740          .Component1Control = VFCOMP_STORE_0,
    741          .Component2Control = VFCOMP_STORE_0,
    742          .Component3Control = VFCOMP_STORE_0,
    743 #if GEN_GEN < 5
    744          .DestinationElementOffset = i * 4,
    745 #endif
    746       };
    747 
    748 #if GEN_GEN >= 8
    749       if (vs_prog_data->uses_basevertex ||
    750           vs_prog_data->uses_baseinstance) {
    751          elem_state.VertexBufferIndex = brw->vb.nr_buffers;
    752          elem_state.SourceElementFormat = (enum GENX(SURFACE_FORMAT)) ISL_FORMAT_R32G32_UINT;
    753          elem_state.Component0Control = VFCOMP_STORE_SRC;
    754          elem_state.Component1Control = VFCOMP_STORE_SRC;
    755       }
    756 #else
    757       elem_state.VertexBufferIndex = brw->vb.nr_buffers;
    758       elem_state.SourceElementFormat = (enum GENX(SURFACE_FORMAT)) ISL_FORMAT_R32G32_UINT;
    759       if (vs_prog_data->uses_basevertex)
    760          elem_state.Component0Control = VFCOMP_STORE_SRC;
    761 
    762       if (vs_prog_data->uses_baseinstance)
    763          elem_state.Component1Control = VFCOMP_STORE_SRC;
    764 
    765       if (vs_prog_data->uses_vertexid)
    766          elem_state.Component2Control = VFCOMP_STORE_VID;
    767 
    768       if (vs_prog_data->uses_instanceid)
    769          elem_state.Component3Control = VFCOMP_STORE_IID;
    770 #endif
    771 
    772       GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
    773       dw += GENX(VERTEX_ELEMENT_STATE_length);
    774    }
    775 
    776    if (vs_prog_data->uses_drawid) {
    777       struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
    778          .Valid = true,
    779          .VertexBufferIndex = brw->vb.nr_buffers + 1,
    780          .SourceElementFormat = (enum GENX(SURFACE_FORMAT)) ISL_FORMAT_R32_UINT,
    781          .Component0Control = VFCOMP_STORE_SRC,
    782          .Component1Control = VFCOMP_STORE_0,
    783          .Component2Control = VFCOMP_STORE_0,
    784          .Component3Control = VFCOMP_STORE_0,
    785 #if GEN_GEN < 5
    786          .DestinationElementOffset = i * 4,
    787 #endif
    788       };
    789 
    790       GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
    791       dw += GENX(VERTEX_ELEMENT_STATE_length);
    792    }
    793 
    794 #if GEN_GEN >= 6
    795    if (gen6_edgeflag_input) {
    796       const uint32_t format =
    797          brw_get_vertex_surface_type(brw, gen6_edgeflag_input->glarray);
    798 
    799       struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
    800          .Valid = true,
    801          .VertexBufferIndex = gen6_edgeflag_input->buffer,
    802          .EdgeFlagEnable = true,
    803          .SourceElementFormat = format,
    804          .SourceElementOffset = gen6_edgeflag_input->offset,
    805          .Component0Control = VFCOMP_STORE_SRC,
    806          .Component1Control = VFCOMP_STORE_0,
    807          .Component2Control = VFCOMP_STORE_0,
    808          .Component3Control = VFCOMP_STORE_0,
    809       };
    810 
    811       GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
    812       dw += GENX(VERTEX_ELEMENT_STATE_length);
    813    }
    814 #endif
    815 
    816 #if GEN_GEN >= 8
    817    for (unsigned i = 0, j = 0; i < brw->vb.nr_enabled; i++) {
    818       const struct brw_vertex_element *input = brw->vb.enabled[i];
    819       const struct brw_vertex_buffer *buffer = &brw->vb.buffers[input->buffer];
    820       unsigned element_index;
    821 
    822       /* The edge flag element is reordered to be the last one in the code
    823        * above so we need to compensate for that in the element indices used
    824        * below.
    825        */
    826       if (input == gen6_edgeflag_input)
    827          element_index = nr_elements - 1;
    828       else
    829          element_index = j++;
    830 
    831       brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
    832          vfi.VertexElementIndex = element_index;
    833          vfi.InstancingEnable = buffer->step_rate != 0;
    834          vfi.InstanceDataStepRate = buffer->step_rate;
    835       }
    836    }
    837 
    838    if (vs_prog_data->uses_drawid) {
    839       const unsigned element = brw->vb.nr_enabled + needs_sgvs_element;
    840 
    841       brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
    842          vfi.VertexElementIndex = element;
    843       }
    844    }
    845 #endif
    846 }
    847 
    848 static const struct brw_tracked_state genX(vertices) = {
    849    .dirty = {
    850       .mesa = _NEW_POLYGON,
    851       .brw = BRW_NEW_BATCH |
    852              BRW_NEW_BLORP |
    853              BRW_NEW_VERTICES |
    854              BRW_NEW_VS_PROG_DATA,
    855    },
    856    .emit = genX(emit_vertices),
    857 };
    858 
    859 static void
    860 genX(emit_index_buffer)(struct brw_context *brw)
    861 {
    862    const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
    863 
    864    if (index_buffer == NULL)
    865       return;
    866 
    867    brw_batch_emit(brw, GENX(3DSTATE_INDEX_BUFFER), ib) {
    868 #if GEN_GEN < 8 && !GEN_IS_HASWELL
    869       ib.CutIndexEnable = brw->prim_restart.enable_cut_index;
    870 #endif
    871       ib.IndexFormat = brw_get_index_type(index_buffer->index_size);
    872       ib.BufferStartingAddress = ro_bo(brw->ib.bo, 0);
    873 #if GEN_GEN >= 8
    874       ib.IndexBufferMOCS = GEN_GEN >= 9 ? SKL_MOCS_WB : BDW_MOCS_WB;
    875       ib.BufferSize = brw->ib.size;
    876 #else
    877       ib.BufferEndingAddress = ro_bo(brw->ib.bo, brw->ib.size - 1);
    878 #endif
    879    }
    880 }
    881 
    882 static const struct brw_tracked_state genX(index_buffer) = {
    883    .dirty = {
    884       .mesa = 0,
    885       .brw = BRW_NEW_BATCH |
    886              BRW_NEW_BLORP |
    887              BRW_NEW_INDEX_BUFFER,
    888    },
    889    .emit = genX(emit_index_buffer),
    890 };
    891 
    892 #if GEN_IS_HASWELL || GEN_GEN >= 8
    893 static void
    894 genX(upload_cut_index)(struct brw_context *brw)
    895 {
    896    const struct gl_context *ctx = &brw->ctx;
    897 
    898    brw_batch_emit(brw, GENX(3DSTATE_VF), vf) {
    899       if (ctx->Array._PrimitiveRestart && brw->ib.ib) {
    900          vf.IndexedDrawCutIndexEnable = true;
    901          vf.CutIndex = _mesa_primitive_restart_index(ctx, brw->ib.index_size);
    902       }
    903    }
    904 }
    905 
    906 const struct brw_tracked_state genX(cut_index) = {
    907    .dirty = {
    908       .mesa  = _NEW_TRANSFORM,
    909       .brw   = BRW_NEW_INDEX_BUFFER,
    910    },
    911    .emit = genX(upload_cut_index),
    912 };
    913 #endif
    914 
    915 #if GEN_GEN >= 6
    916 /**
    917  * Determine the appropriate attribute override value to store into the
    918  * 3DSTATE_SF structure for a given fragment shader attribute.  The attribute
    919  * override value contains two pieces of information: the location of the
    920  * attribute in the VUE (relative to urb_entry_read_offset, see below), and a
    921  * flag indicating whether to "swizzle" the attribute based on the direction
    922  * the triangle is facing.
    923  *
    924  * If an attribute is "swizzled", then the given VUE location is used for
    925  * front-facing triangles, and the VUE location that immediately follows is
    926  * used for back-facing triangles.  We use this to implement the mapping from
    927  * gl_FrontColor/gl_BackColor to gl_Color.
    928  *
    929  * urb_entry_read_offset is the offset into the VUE at which the SF unit is
    930  * being instructed to begin reading attribute data.  It can be set to a
    931  * nonzero value to prevent the SF unit from wasting time reading elements of
    932  * the VUE that are not needed by the fragment shader.  It is measured in
    933  * 256-bit increments.
    934  */
    935 static void
    936 genX(get_attr_override)(struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr,
    937                         const struct brw_vue_map *vue_map,
    938                         int urb_entry_read_offset, int fs_attr,
    939                         bool two_side_color, uint32_t *max_source_attr)
    940 {
    941    /* Find the VUE slot for this attribute. */
    942    int slot = vue_map->varying_to_slot[fs_attr];
    943 
    944    /* Viewport and Layer are stored in the VUE header.  We need to override
    945     * them to zero if earlier stages didn't write them, as GL requires that
    946     * they read back as zero when not explicitly set.
    947     */
    948    if (fs_attr == VARYING_SLOT_VIEWPORT || fs_attr == VARYING_SLOT_LAYER) {
    949       attr->ComponentOverrideX = true;
    950       attr->ComponentOverrideW = true;
    951       attr->ConstantSource = CONST_0000;
    952 
    953       if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
    954          attr->ComponentOverrideY = true;
    955       if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
    956          attr->ComponentOverrideZ = true;
    957 
    958       return;
    959    }
    960 
    961    /* If there was only a back color written but not front, use back
    962     * as the color instead of undefined
    963     */
    964    if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
    965       slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
    966    if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
    967       slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
    968 
    969    if (slot == -1) {
    970       /* This attribute does not exist in the VUE--that means that the vertex
    971        * shader did not write to it.  This means that either:
    972        *
    973        * (a) This attribute is a texture coordinate, and it is going to be
    974        * replaced with point coordinates (as a consequence of a call to
    975        * glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)), so the
    976        * hardware will ignore whatever attribute override we supply.
    977        *
    978        * (b) This attribute is read by the fragment shader but not written by
    979        * the vertex shader, so its value is undefined.  Therefore the
    980        * attribute override we supply doesn't matter.
    981        *
    982        * (c) This attribute is gl_PrimitiveID, and it wasn't written by the
    983        * previous shader stage.
    984        *
    985        * Note that we don't have to worry about the cases where the attribute
    986        * is gl_PointCoord or is undergoing point sprite coordinate
    987        * replacement, because in those cases, this function isn't called.
    988        *
    989        * In case (c), we need to program the attribute overrides so that the
    990        * primitive ID will be stored in this slot.  In every other case, the
    991        * attribute override we supply doesn't matter.  So just go ahead and
    992        * program primitive ID in every case.
    993        */
    994       attr->ComponentOverrideW = true;
    995       attr->ComponentOverrideX = true;
    996       attr->ComponentOverrideY = true;
    997       attr->ComponentOverrideZ = true;
    998       attr->ConstantSource = PRIM_ID;
    999       return;
   1000    }
   1001 
   1002    /* Compute the location of the attribute relative to urb_entry_read_offset.
   1003     * Each increment of urb_entry_read_offset represents a 256-bit value, so
   1004     * it counts for two 128-bit VUE slots.
   1005     */
   1006    int source_attr = slot - 2 * urb_entry_read_offset;
   1007    assert(source_attr >= 0 && source_attr < 32);
   1008 
   1009    /* If we are doing two-sided color, and the VUE slot following this one
   1010     * represents a back-facing color, then we need to instruct the SF unit to
   1011     * do back-facing swizzling.
   1012     */
   1013    bool swizzling = two_side_color &&
   1014       ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
   1015         vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
   1016        (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
   1017         vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1));
   1018 
   1019    /* Update max_source_attr.  If swizzling, the SF will read this slot + 1. */
   1020    if (*max_source_attr < source_attr + swizzling)
   1021       *max_source_attr = source_attr + swizzling;
   1022 
   1023    attr->SourceAttribute = source_attr;
   1024    if (swizzling)
   1025       attr->SwizzleSelect = INPUTATTR_FACING;
   1026 }
   1027 
   1028 
   1029 static void
   1030 genX(calculate_attr_overrides)(const struct brw_context *brw,
   1031                                struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr_overrides,
   1032                                uint32_t *point_sprite_enables,
   1033                                uint32_t *urb_entry_read_length,
   1034                                uint32_t *urb_entry_read_offset)
   1035 {
   1036    const struct gl_context *ctx = &brw->ctx;
   1037 
   1038    /* _NEW_POINT */
   1039    const struct gl_point_attrib *point = &ctx->Point;
   1040 
   1041    /* BRW_NEW_FRAGMENT_PROGRAM */
   1042    const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
   1043 
   1044    /* BRW_NEW_FS_PROG_DATA */
   1045    const struct brw_wm_prog_data *wm_prog_data =
   1046       brw_wm_prog_data(brw->wm.base.prog_data);
   1047    uint32_t max_source_attr = 0;
   1048 
   1049    *point_sprite_enables = 0;
   1050 
   1051    int first_slot =
   1052       brw_compute_first_urb_slot_required(fp->info.inputs_read,
   1053                                           &brw->vue_map_geom_out);
   1054 
   1055    /* Each URB offset packs two varying slots */
   1056    assert(first_slot % 2 == 0);
   1057    *urb_entry_read_offset = first_slot / 2;
   1058 
   1059    /* From the Ivybridge PRM, Vol 2 Part 1, 3DSTATE_SBE,
   1060     * description of dw10 Point Sprite Texture Coordinate Enable:
   1061     *
   1062     * "This field must be programmed to zero when non-point primitives
   1063     * are rendered."
   1064     *
   1065     * The SandyBridge PRM doesn't explicitly say that point sprite enables
   1066     * must be programmed to zero when rendering non-point primitives, but
   1067     * the IvyBridge PRM does, and if we don't, we get garbage.
   1068     *
   1069     * This is not required on Haswell, as the hardware ignores this state
   1070     * when drawing non-points -- although we do still need to be careful to
   1071     * correctly set the attr overrides.
   1072     *
   1073     * _NEW_POLYGON
   1074     * BRW_NEW_PRIMITIVE | BRW_NEW_GS_PROG_DATA | BRW_NEW_TES_PROG_DATA
   1075     */
   1076    bool drawing_points = brw_is_drawing_points(brw);
   1077 
   1078    for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
   1079       int input_index = wm_prog_data->urb_setup[attr];
   1080 
   1081       if (input_index < 0)
   1082          continue;
   1083 
   1084       /* _NEW_POINT */
   1085       bool point_sprite = false;
   1086       if (drawing_points) {
   1087          if (point->PointSprite &&
   1088              (attr >= VARYING_SLOT_TEX0 && attr <= VARYING_SLOT_TEX7) &&
   1089              (point->CoordReplace & (1u << (attr - VARYING_SLOT_TEX0)))) {
   1090             point_sprite = true;
   1091          }
   1092 
   1093          if (attr == VARYING_SLOT_PNTC)
   1094             point_sprite = true;
   1095 
   1096          if (point_sprite)
   1097             *point_sprite_enables |= (1 << input_index);
   1098       }
   1099 
   1100       /* BRW_NEW_VUE_MAP_GEOM_OUT | _NEW_LIGHT | _NEW_PROGRAM */
   1101       struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attribute = { 0 };
   1102 
   1103       if (!point_sprite) {
   1104          genX(get_attr_override)(&attribute,
   1105                                  &brw->vue_map_geom_out,
   1106                                  *urb_entry_read_offset, attr,
   1107                                  _mesa_vertex_program_two_side_enabled(ctx),
   1108                                  &max_source_attr);
   1109       }
   1110 
   1111       /* The hardware can only do the overrides on 16 overrides at a
   1112        * time, and the other up to 16 have to be lined up so that the
   1113        * input index = the output index.  We'll need to do some
   1114        * tweaking to make sure that's the case.
   1115        */
   1116       if (input_index < 16)
   1117          attr_overrides[input_index] = attribute;
   1118       else
   1119          assert(attribute.SourceAttribute == input_index);
   1120    }
   1121 
   1122    /* From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
   1123     * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
   1124     *
   1125     * "This field should be set to the minimum length required to read the
   1126     *  maximum source attribute.  The maximum source attribute is indicated
   1127     *  by the maximum value of the enabled Attribute # Source Attribute if
   1128     *  Attribute Swizzle Enable is set, Number of Output Attributes-1 if
   1129     *  enable is not set.
   1130     *  read_length = ceiling((max_source_attr + 1) / 2)
   1131     *
   1132     *  [errata] Corruption/Hang possible if length programmed larger than
   1133     *  recommended"
   1134     *
   1135     * Similar text exists for Ivy Bridge.
   1136     */
   1137    *urb_entry_read_length = DIV_ROUND_UP(max_source_attr + 1, 2);
   1138 }
   1139 #endif
   1140 
   1141 /* ---------------------------------------------------------------------- */
   1142 
   1143 #if GEN_GEN >= 8
   1144 typedef struct GENX(3DSTATE_WM_DEPTH_STENCIL) DEPTH_STENCIL_GENXML;
   1145 #elif GEN_GEN >= 6
   1146 typedef struct GENX(DEPTH_STENCIL_STATE)      DEPTH_STENCIL_GENXML;
   1147 #else
   1148 typedef struct GENX(COLOR_CALC_STATE)         DEPTH_STENCIL_GENXML;
   1149 #endif
   1150 
   1151 static inline void
   1152 set_depth_stencil_bits(struct brw_context *brw, DEPTH_STENCIL_GENXML *ds)
   1153 {
   1154    struct gl_context *ctx = &brw->ctx;
   1155 
   1156    /* _NEW_BUFFERS */
   1157    struct intel_renderbuffer *depth_irb =
   1158       intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
   1159 
   1160    /* _NEW_DEPTH */
   1161    struct gl_depthbuffer_attrib *depth = &ctx->Depth;
   1162 
   1163    /* _NEW_STENCIL */
   1164    struct gl_stencil_attrib *stencil = &ctx->Stencil;
   1165    const int b = stencil->_BackFace;
   1166 
   1167    if (depth->Test && depth_irb) {
   1168       ds->DepthTestEnable = true;
   1169       ds->DepthBufferWriteEnable = brw_depth_writes_enabled(brw);
   1170       ds->DepthTestFunction = intel_translate_compare_func(depth->Func);
   1171    }
   1172 
   1173    if (brw->stencil_enabled) {
   1174       ds->StencilTestEnable = true;
   1175       ds->StencilWriteMask = stencil->WriteMask[0] & 0xff;
   1176       ds->StencilTestMask = stencil->ValueMask[0] & 0xff;
   1177 
   1178       ds->StencilTestFunction =
   1179          intel_translate_compare_func(stencil->Function[0]);
   1180       ds->StencilFailOp =
   1181          intel_translate_stencil_op(stencil->FailFunc[0]);
   1182       ds->StencilPassDepthPassOp =
   1183          intel_translate_stencil_op(stencil->ZPassFunc[0]);
   1184       ds->StencilPassDepthFailOp =
   1185          intel_translate_stencil_op(stencil->ZFailFunc[0]);
   1186 
   1187       ds->StencilBufferWriteEnable = brw->stencil_write_enabled;
   1188 
   1189       if (brw->stencil_two_sided) {
   1190          ds->DoubleSidedStencilEnable = true;
   1191          ds->BackfaceStencilWriteMask = stencil->WriteMask[b] & 0xff;
   1192          ds->BackfaceStencilTestMask = stencil->ValueMask[b] & 0xff;
   1193 
   1194          ds->BackfaceStencilTestFunction =
   1195             intel_translate_compare_func(stencil->Function[b]);
   1196          ds->BackfaceStencilFailOp =
   1197             intel_translate_stencil_op(stencil->FailFunc[b]);
   1198          ds->BackfaceStencilPassDepthPassOp =
   1199             intel_translate_stencil_op(stencil->ZPassFunc[b]);
   1200          ds->BackfaceStencilPassDepthFailOp =
   1201             intel_translate_stencil_op(stencil->ZFailFunc[b]);
   1202       }
   1203 
   1204 #if GEN_GEN <= 5 || GEN_GEN >= 9
   1205       ds->StencilReferenceValue = _mesa_get_stencil_ref(ctx, 0);
   1206       ds->BackfaceStencilReferenceValue = _mesa_get_stencil_ref(ctx, b);
   1207 #endif
   1208    }
   1209 }
   1210 
   1211 #if GEN_GEN >= 6
   1212 static void
   1213 genX(upload_depth_stencil_state)(struct brw_context *brw)
   1214 {
   1215 #if GEN_GEN >= 8
   1216    brw_batch_emit(brw, GENX(3DSTATE_WM_DEPTH_STENCIL), wmds) {
   1217       set_depth_stencil_bits(brw, &wmds);
   1218    }
   1219 #else
   1220    uint32_t ds_offset;
   1221    brw_state_emit(brw, GENX(DEPTH_STENCIL_STATE), 64, &ds_offset, ds) {
   1222       set_depth_stencil_bits(brw, &ds);
   1223    }
   1224 
   1225    /* Now upload a pointer to the indirect state */
   1226 #if GEN_GEN == 6
   1227    brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
   1228       ptr.PointertoDEPTH_STENCIL_STATE = ds_offset;
   1229       ptr.DEPTH_STENCIL_STATEChange = true;
   1230    }
   1231 #else
   1232    brw_batch_emit(brw, GENX(3DSTATE_DEPTH_STENCIL_STATE_POINTERS), ptr) {
   1233       ptr.PointertoDEPTH_STENCIL_STATE = ds_offset;
   1234    }
   1235 #endif
   1236 #endif
   1237 }
   1238 
   1239 static const struct brw_tracked_state genX(depth_stencil_state) = {
   1240    .dirty = {
   1241       .mesa = _NEW_BUFFERS |
   1242               _NEW_DEPTH |
   1243               _NEW_STENCIL,
   1244       .brw  = BRW_NEW_BLORP |
   1245               (GEN_GEN >= 8 ? BRW_NEW_CONTEXT
   1246                             : BRW_NEW_BATCH |
   1247                               BRW_NEW_STATE_BASE_ADDRESS),
   1248    },
   1249    .emit = genX(upload_depth_stencil_state),
   1250 };
   1251 #endif
   1252 
   1253 /* ---------------------------------------------------------------------- */
   1254 
   1255 #if GEN_GEN <= 5
   1256 
   1257 static void
   1258 genX(upload_clip_state)(struct brw_context *brw)
   1259 {
   1260    struct gl_context *ctx = &brw->ctx;
   1261 
   1262    ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
   1263    brw_state_emit(brw, GENX(CLIP_STATE), 32, &brw->clip.state_offset, clip) {
   1264       clip.KernelStartPointer = KSP(brw, brw->clip.prog_offset);
   1265       clip.GRFRegisterCount =
   1266          DIV_ROUND_UP(brw->clip.prog_data->total_grf, 16) - 1;
   1267       clip.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
   1268       clip.SingleProgramFlow = true;
   1269       clip.VertexURBEntryReadLength = brw->clip.prog_data->urb_read_length;
   1270       clip.ConstantURBEntryReadLength = brw->clip.prog_data->curb_read_length;
   1271 
   1272       /* BRW_NEW_PUSH_CONSTANT_ALLOCATION */
   1273       clip.ConstantURBEntryReadOffset = brw->curbe.clip_start * 2;
   1274       clip.DispatchGRFStartRegisterForURBData = 1;
   1275       clip.VertexURBEntryReadOffset = 0;
   1276 
   1277       /* BRW_NEW_URB_FENCE */
   1278       clip.NumberofURBEntries = brw->urb.nr_clip_entries;
   1279       clip.URBEntryAllocationSize = brw->urb.vsize - 1;
   1280 
   1281       if (brw->urb.nr_clip_entries >= 10) {
   1282          /* Half of the URB entries go to each thread, and it has to be an
   1283           * even number.
   1284           */
   1285          assert(brw->urb.nr_clip_entries % 2 == 0);
   1286 
   1287          /* Although up to 16 concurrent Clip threads are allowed on Ironlake,
   1288           * only 2 threads can output VUEs at a time.
   1289           */
   1290          clip.MaximumNumberofThreads = (GEN_GEN == 5 ? 16 : 2) - 1;
   1291       } else {
   1292          assert(brw->urb.nr_clip_entries >= 5);
   1293          clip.MaximumNumberofThreads = 1 - 1;
   1294       }
   1295 
   1296       clip.VertexPositionSpace = VPOS_NDCSPACE;
   1297       clip.UserClipFlagsMustClipEnable = true;
   1298       clip.GuardbandClipTestEnable = true;
   1299 
   1300       clip.ClipperViewportStatePointer =
   1301          ro_bo(brw->batch.state.bo, brw->clip.vp_offset);
   1302 
   1303       clip.ScreenSpaceViewportXMin = -1;
   1304       clip.ScreenSpaceViewportXMax = 1;
   1305       clip.ScreenSpaceViewportYMin = -1;
   1306       clip.ScreenSpaceViewportYMax = 1;
   1307 
   1308       clip.ViewportXYClipTestEnable = true;
   1309       clip.ViewportZClipTestEnable = !ctx->Transform.DepthClamp;
   1310 
   1311       /* _NEW_TRANSFORM */
   1312       if (GEN_GEN == 5 || GEN_IS_G4X) {
   1313          clip.UserClipDistanceClipTestEnableBitmask =
   1314             ctx->Transform.ClipPlanesEnabled;
   1315       } else {
   1316          /* Up to 6 actual clip flags, plus the 7th for the negative RHW
   1317           * workaround.
   1318           */
   1319          clip.UserClipDistanceClipTestEnableBitmask =
   1320             (ctx->Transform.ClipPlanesEnabled & 0x3f) | 0x40;
   1321       }
   1322 
   1323       if (ctx->Transform.ClipDepthMode == GL_ZERO_TO_ONE)
   1324          clip.APIMode = APIMODE_D3D;
   1325       else
   1326          clip.APIMode = APIMODE_OGL;
   1327 
   1328       clip.GuardbandClipTestEnable = true;
   1329 
   1330       clip.ClipMode = brw->clip.prog_data->clip_mode;
   1331 
   1332 #if GEN_IS_G4X
   1333       clip.NegativeWClipTestEnable = true;
   1334 #endif
   1335    }
   1336 }
   1337 
   1338 const struct brw_tracked_state genX(clip_state) = {
   1339    .dirty = {
   1340       .mesa  = _NEW_TRANSFORM |
   1341                _NEW_VIEWPORT,
   1342       .brw   = BRW_NEW_BATCH |
   1343                BRW_NEW_BLORP |
   1344                BRW_NEW_CLIP_PROG_DATA |
   1345                BRW_NEW_PUSH_CONSTANT_ALLOCATION |
   1346                BRW_NEW_PROGRAM_CACHE |
   1347                BRW_NEW_URB_FENCE,
   1348    },
   1349    .emit = genX(upload_clip_state),
   1350 };
   1351 
   1352 #else
   1353 
   1354 static void
   1355 genX(upload_clip_state)(struct brw_context *brw)
   1356 {
   1357    struct gl_context *ctx = &brw->ctx;
   1358 
   1359    /* _NEW_BUFFERS */
   1360    struct gl_framebuffer *fb = ctx->DrawBuffer;
   1361 
   1362    /* BRW_NEW_FS_PROG_DATA */
   1363    struct brw_wm_prog_data *wm_prog_data =
   1364       brw_wm_prog_data(brw->wm.base.prog_data);
   1365 
   1366    brw_batch_emit(brw, GENX(3DSTATE_CLIP), clip) {
   1367       clip.StatisticsEnable = !brw->meta_in_progress;
   1368 
   1369       if (wm_prog_data->barycentric_interp_modes &
   1370           BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
   1371          clip.NonPerspectiveBarycentricEnable = true;
   1372 
   1373 #if GEN_GEN >= 7
   1374       clip.EarlyCullEnable = true;
   1375 #endif
   1376 
   1377 #if GEN_GEN == 7
   1378       clip.FrontWinding = brw->polygon_front_bit == _mesa_is_user_fbo(fb);
   1379 
   1380       if (ctx->Polygon.CullFlag) {
   1381          switch (ctx->Polygon.CullFaceMode) {
   1382          case GL_FRONT:
   1383             clip.CullMode = CULLMODE_FRONT;
   1384             break;
   1385          case GL_BACK:
   1386             clip.CullMode = CULLMODE_BACK;
   1387             break;
   1388          case GL_FRONT_AND_BACK:
   1389             clip.CullMode = CULLMODE_BOTH;
   1390             break;
   1391          default:
   1392             unreachable("Should not get here: invalid CullFlag");
   1393          }
   1394       } else {
   1395          clip.CullMode = CULLMODE_NONE;
   1396       }
   1397 #endif
   1398 
   1399 #if GEN_GEN < 8
   1400       clip.UserClipDistanceCullTestEnableBitmask =
   1401          brw_vue_prog_data(brw->vs.base.prog_data)->cull_distance_mask;
   1402 
   1403       clip.ViewportZClipTestEnable = !ctx->Transform.DepthClamp;
   1404 #endif
   1405 
   1406       /* _NEW_LIGHT */
   1407       if (ctx->Light.ProvokingVertex == GL_FIRST_VERTEX_CONVENTION) {
   1408          clip.TriangleStripListProvokingVertexSelect = 0;
   1409          clip.TriangleFanProvokingVertexSelect = 1;
   1410          clip.LineStripListProvokingVertexSelect = 0;
   1411       } else {
   1412          clip.TriangleStripListProvokingVertexSelect = 2;
   1413          clip.TriangleFanProvokingVertexSelect = 2;
   1414          clip.LineStripListProvokingVertexSelect = 1;
   1415       }
   1416 
   1417       /* _NEW_TRANSFORM */
   1418       clip.UserClipDistanceClipTestEnableBitmask =
   1419          ctx->Transform.ClipPlanesEnabled;
   1420 
   1421 #if GEN_GEN >= 8
   1422       clip.ForceUserClipDistanceClipTestEnableBitmask = true;
   1423 #endif
   1424 
   1425       if (ctx->Transform.ClipDepthMode == GL_ZERO_TO_ONE)
   1426          clip.APIMode = APIMODE_D3D;
   1427       else
   1428          clip.APIMode = APIMODE_OGL;
   1429 
   1430       clip.GuardbandClipTestEnable = true;
   1431 
   1432       /* BRW_NEW_VIEWPORT_COUNT */
   1433       const unsigned viewport_count = brw->clip.viewport_count;
   1434 
   1435       if (ctx->RasterDiscard) {
   1436          clip.ClipMode = CLIPMODE_REJECT_ALL;
   1437 #if GEN_GEN == 6
   1438          perf_debug("Rasterizer discard is currently implemented via the "
   1439                     "clipper; having the GS not write primitives would "
   1440                     "likely be faster.\n");
   1441 #endif
   1442       } else {
   1443          clip.ClipMode = CLIPMODE_NORMAL;
   1444       }
   1445 
   1446       clip.ClipEnable = true;
   1447 
   1448       /* _NEW_POLYGON,
   1449        * BRW_NEW_GEOMETRY_PROGRAM | BRW_NEW_TES_PROG_DATA | BRW_NEW_PRIMITIVE
   1450        */
   1451       if (!brw_is_drawing_points(brw) && !brw_is_drawing_lines(brw))
   1452          clip.ViewportXYClipTestEnable = true;
   1453 
   1454       clip.MinimumPointWidth = 0.125;
   1455       clip.MaximumPointWidth = 255.875;
   1456       clip.MaximumVPIndex = viewport_count - 1;
   1457       if (_mesa_geometric_layers(fb) == 0)
   1458          clip.ForceZeroRTAIndexEnable = true;
   1459    }
   1460 }
   1461 
   1462 static const struct brw_tracked_state genX(clip_state) = {
   1463    .dirty = {
   1464       .mesa  = _NEW_BUFFERS |
   1465                _NEW_LIGHT |
   1466                _NEW_POLYGON |
   1467                _NEW_TRANSFORM,
   1468       .brw   = BRW_NEW_BLORP |
   1469                BRW_NEW_CONTEXT |
   1470                BRW_NEW_FS_PROG_DATA |
   1471                BRW_NEW_GS_PROG_DATA |
   1472                BRW_NEW_VS_PROG_DATA |
   1473                BRW_NEW_META_IN_PROGRESS |
   1474                BRW_NEW_PRIMITIVE |
   1475                BRW_NEW_RASTERIZER_DISCARD |
   1476                BRW_NEW_TES_PROG_DATA |
   1477                BRW_NEW_VIEWPORT_COUNT,
   1478    },
   1479    .emit = genX(upload_clip_state),
   1480 };
   1481 #endif
   1482 
   1483 /* ---------------------------------------------------------------------- */
   1484 
   1485 static void
   1486 genX(upload_sf)(struct brw_context *brw)
   1487 {
   1488    struct gl_context *ctx = &brw->ctx;
   1489    float point_size;
   1490 
   1491 #if GEN_GEN <= 7
   1492    /* _NEW_BUFFERS */
   1493    bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
   1494    UNUSED const bool multisampled_fbo =
   1495       _mesa_geometric_samples(ctx->DrawBuffer) > 1;
   1496 #endif
   1497 
   1498 #if GEN_GEN < 6
   1499    const struct brw_sf_prog_data *sf_prog_data = brw->sf.prog_data;
   1500 
   1501    ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
   1502 
   1503    brw_state_emit(brw, GENX(SF_STATE), 64, &brw->sf.state_offset, sf) {
   1504       sf.KernelStartPointer = KSP(brw, brw->sf.prog_offset);
   1505       sf.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
   1506       sf.GRFRegisterCount = DIV_ROUND_UP(sf_prog_data->total_grf, 16) - 1;
   1507       sf.DispatchGRFStartRegisterForURBData = 3;
   1508       sf.VertexURBEntryReadOffset = BRW_SF_URB_ENTRY_READ_OFFSET;
   1509       sf.VertexURBEntryReadLength = sf_prog_data->urb_read_length;
   1510       sf.NumberofURBEntries = brw->urb.nr_sf_entries;
   1511       sf.URBEntryAllocationSize = brw->urb.sfsize - 1;
   1512 
   1513       /* STATE_PREFETCH command description describes this state as being
   1514        * something loaded through the GPE (L2 ISC), so it's INSTRUCTION
   1515        * domain.
   1516        */
   1517       sf.SetupViewportStateOffset =
   1518          ro_bo(brw->batch.state.bo, brw->sf.vp_offset);
   1519 
   1520       sf.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
   1521 
   1522       /* sf.ConstantURBEntryReadLength = stage_prog_data->curb_read_length; */
   1523       /* sf.ConstantURBEntryReadOffset = brw->curbe.vs_start * 2; */
   1524 
   1525       sf.MaximumNumberofThreads =
   1526          MIN2(GEN_GEN == 5 ? 48 : 24, brw->urb.nr_sf_entries) - 1;
   1527 
   1528       sf.SpritePointEnable = ctx->Point.PointSprite;
   1529 
   1530       sf.DestinationOriginHorizontalBias = 0.5;
   1531       sf.DestinationOriginVerticalBias = 0.5;
   1532 #else
   1533    brw_batch_emit(brw, GENX(3DSTATE_SF), sf) {
   1534       sf.StatisticsEnable = true;
   1535 #endif
   1536       sf.ViewportTransformEnable = true;
   1537 
   1538 #if GEN_GEN == 7
   1539       /* _NEW_BUFFERS */
   1540       sf.DepthBufferSurfaceFormat = brw_depthbuffer_format(brw);
   1541 #endif
   1542 
   1543 #if GEN_GEN <= 7
   1544       /* _NEW_POLYGON */
   1545       sf.FrontWinding = brw->polygon_front_bit == render_to_fbo;
   1546 #if GEN_GEN >= 6
   1547       sf.GlobalDepthOffsetEnableSolid = ctx->Polygon.OffsetFill;
   1548       sf.GlobalDepthOffsetEnableWireframe = ctx->Polygon.OffsetLine;
   1549       sf.GlobalDepthOffsetEnablePoint = ctx->Polygon.OffsetPoint;
   1550 
   1551       switch (ctx->Polygon.FrontMode) {
   1552          case GL_FILL:
   1553             sf.FrontFaceFillMode = FILL_MODE_SOLID;
   1554             break;
   1555          case GL_LINE:
   1556             sf.FrontFaceFillMode = FILL_MODE_WIREFRAME;
   1557             break;
   1558          case GL_POINT:
   1559             sf.FrontFaceFillMode = FILL_MODE_POINT;
   1560             break;
   1561          default:
   1562             unreachable("not reached");
   1563       }
   1564 
   1565       switch (ctx->Polygon.BackMode) {
   1566          case GL_FILL:
   1567             sf.BackFaceFillMode = FILL_MODE_SOLID;
   1568             break;
   1569          case GL_LINE:
   1570             sf.BackFaceFillMode = FILL_MODE_WIREFRAME;
   1571             break;
   1572          case GL_POINT:
   1573             sf.BackFaceFillMode = FILL_MODE_POINT;
   1574             break;
   1575          default:
   1576             unreachable("not reached");
   1577       }
   1578 
   1579       if (multisampled_fbo && ctx->Multisample.Enabled)
   1580          sf.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
   1581 
   1582       sf.GlobalDepthOffsetConstant = ctx->Polygon.OffsetUnits * 2;
   1583       sf.GlobalDepthOffsetScale = ctx->Polygon.OffsetFactor;
   1584       sf.GlobalDepthOffsetClamp = ctx->Polygon.OffsetClamp;
   1585 #endif
   1586 
   1587       sf.ScissorRectangleEnable = true;
   1588 
   1589       if (ctx->Polygon.CullFlag) {
   1590          switch (ctx->Polygon.CullFaceMode) {
   1591             case GL_FRONT:
   1592                sf.CullMode = CULLMODE_FRONT;
   1593                break;
   1594             case GL_BACK:
   1595                sf.CullMode = CULLMODE_BACK;
   1596                break;
   1597             case GL_FRONT_AND_BACK:
   1598                sf.CullMode = CULLMODE_BOTH;
   1599                break;
   1600             default:
   1601                unreachable("not reached");
   1602          }
   1603       } else {
   1604          sf.CullMode = CULLMODE_NONE;
   1605       }
   1606 
   1607 #if GEN_IS_HASWELL
   1608       sf.LineStippleEnable = ctx->Line.StippleFlag;
   1609 #endif
   1610 
   1611 #endif
   1612 
   1613       /* _NEW_LINE */
   1614 #if GEN_GEN == 8
   1615       const struct gen_device_info *devinfo = &brw->screen->devinfo;
   1616 
   1617       if (devinfo->is_cherryview)
   1618          sf.CHVLineWidth = brw_get_line_width(brw);
   1619       else
   1620          sf.LineWidth = brw_get_line_width(brw);
   1621 #else
   1622       sf.LineWidth = brw_get_line_width(brw);
   1623 #endif
   1624 
   1625       if (ctx->Line.SmoothFlag) {
   1626          sf.LineEndCapAntialiasingRegionWidth = _10pixels;
   1627 #if GEN_GEN <= 7
   1628          sf.AntiAliasingEnable = true;
   1629 #endif
   1630       }
   1631 
   1632       /* _NEW_POINT - Clamp to ARB_point_parameters user limits */
   1633       point_size = CLAMP(ctx->Point.Size, ctx->Point.MinSize, ctx->Point.MaxSize);
   1634       /* Clamp to the hardware limits */
   1635       sf.PointWidth = CLAMP(point_size, 0.125f, 255.875f);
   1636 
   1637       /* _NEW_PROGRAM | _NEW_POINT, BRW_NEW_VUE_MAP_GEOM_OUT */
   1638       if (use_state_point_size(brw))
   1639          sf.PointWidthSource = State;
   1640 
   1641 #if GEN_GEN >= 8
   1642       /* _NEW_POINT | _NEW_MULTISAMPLE */
   1643       if ((ctx->Point.SmoothFlag || _mesa_is_multisample_enabled(ctx)) &&
   1644           !ctx->Point.PointSprite)
   1645          sf.SmoothPointEnable = true;
   1646 #endif
   1647 
   1648 #if GEN_GEN == 10
   1649       /* _NEW_BUFFERS
   1650        * Smooth Point Enable bit MUST not be set when NUM_MULTISAMPLES > 1.
   1651        */
   1652       const bool multisampled_fbo =
   1653          _mesa_geometric_samples(ctx->DrawBuffer) > 1;
   1654       if (multisampled_fbo)
   1655          sf.SmoothPointEnable = false;
   1656 #endif
   1657 
   1658 #if GEN_IS_G4X || GEN_GEN >= 5
   1659       sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
   1660 #endif
   1661 
   1662       /* _NEW_LIGHT */
   1663       if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION) {
   1664          sf.TriangleStripListProvokingVertexSelect = 2;
   1665          sf.TriangleFanProvokingVertexSelect = 2;
   1666          sf.LineStripListProvokingVertexSelect = 1;
   1667       } else {
   1668          sf.TriangleFanProvokingVertexSelect = 1;
   1669       }
   1670 
   1671 #if GEN_GEN == 6
   1672       /* BRW_NEW_FS_PROG_DATA */
   1673       const struct brw_wm_prog_data *wm_prog_data =
   1674          brw_wm_prog_data(brw->wm.base.prog_data);
   1675 
   1676       sf.AttributeSwizzleEnable = true;
   1677       sf.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
   1678 
   1679       /*
   1680        * Window coordinates in an FBO are inverted, which means point
   1681        * sprite origin must be inverted, too.
   1682        */
   1683       if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) != render_to_fbo) {
   1684          sf.PointSpriteTextureCoordinateOrigin = LOWERLEFT;
   1685       } else {
   1686          sf.PointSpriteTextureCoordinateOrigin = UPPERLEFT;
   1687       }
   1688 
   1689       /* BRW_NEW_VUE_MAP_GEOM_OUT | BRW_NEW_FRAGMENT_PROGRAM |
   1690        * _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM | BRW_NEW_FS_PROG_DATA
   1691        */
   1692       uint32_t urb_entry_read_length;
   1693       uint32_t urb_entry_read_offset;
   1694       uint32_t point_sprite_enables;
   1695       genX(calculate_attr_overrides)(brw, sf.Attribute, &point_sprite_enables,
   1696                                      &urb_entry_read_length,
   1697                                      &urb_entry_read_offset);
   1698       sf.VertexURBEntryReadLength = urb_entry_read_length;
   1699       sf.VertexURBEntryReadOffset = urb_entry_read_offset;
   1700       sf.PointSpriteTextureCoordinateEnable = point_sprite_enables;
   1701       sf.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
   1702 #endif
   1703    }
   1704 }
   1705 
   1706 static const struct brw_tracked_state genX(sf_state) = {
   1707    .dirty = {
   1708       .mesa  = _NEW_LIGHT |
   1709                _NEW_LINE |
   1710                _NEW_POINT |
   1711                _NEW_PROGRAM |
   1712                (GEN_GEN >= 6 ? _NEW_MULTISAMPLE : 0) |
   1713                (GEN_GEN <= 7 ? _NEW_BUFFERS | _NEW_POLYGON : 0) |
   1714                (GEN_GEN == 10 ? _NEW_BUFFERS : 0),
   1715       .brw   = BRW_NEW_BLORP |
   1716                BRW_NEW_VUE_MAP_GEOM_OUT |
   1717                (GEN_GEN <= 5 ? BRW_NEW_BATCH |
   1718                                BRW_NEW_PROGRAM_CACHE |
   1719                                BRW_NEW_SF_PROG_DATA |
   1720                                BRW_NEW_SF_VP |
   1721                                BRW_NEW_URB_FENCE
   1722                              : 0) |
   1723                (GEN_GEN >= 6 ? BRW_NEW_CONTEXT : 0) |
   1724                (GEN_GEN >= 6 && GEN_GEN <= 7 ?
   1725                                BRW_NEW_GS_PROG_DATA |
   1726                                BRW_NEW_PRIMITIVE |
   1727                                BRW_NEW_TES_PROG_DATA
   1728                              : 0) |
   1729                (GEN_GEN == 6 ? BRW_NEW_FS_PROG_DATA |
   1730                                BRW_NEW_FRAGMENT_PROGRAM
   1731                              : 0),
   1732    },
   1733    .emit = genX(upload_sf),
   1734 };
   1735 
   1736 /* ---------------------------------------------------------------------- */
   1737 
   1738 static bool
   1739 brw_color_buffer_write_enabled(struct brw_context *brw)
   1740 {
   1741    struct gl_context *ctx = &brw->ctx;
   1742    /* BRW_NEW_FRAGMENT_PROGRAM */
   1743    const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
   1744    unsigned i;
   1745 
   1746    /* _NEW_BUFFERS */
   1747    for (i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; i++) {
   1748       struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[i];
   1749       uint64_t outputs_written = fp->info.outputs_written;
   1750 
   1751       /* _NEW_COLOR */
   1752       if (rb && (outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR) ||
   1753                  outputs_written & BITFIELD64_BIT(FRAG_RESULT_DATA0 + i)) &&
   1754           (ctx->Color.ColorMask[i][0] ||
   1755            ctx->Color.ColorMask[i][1] ||
   1756            ctx->Color.ColorMask[i][2] ||
   1757            ctx->Color.ColorMask[i][3])) {
   1758          return true;
   1759       }
   1760    }
   1761 
   1762    return false;
   1763 }
   1764 
   1765 static void
   1766 genX(upload_wm)(struct brw_context *brw)
   1767 {
   1768    struct gl_context *ctx = &brw->ctx;
   1769 
   1770    /* BRW_NEW_FS_PROG_DATA */
   1771    const struct brw_wm_prog_data *wm_prog_data =
   1772       brw_wm_prog_data(brw->wm.base.prog_data);
   1773 
   1774    UNUSED bool writes_depth =
   1775       wm_prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF;
   1776    UNUSED struct brw_stage_state *stage_state = &brw->wm.base;
   1777    UNUSED const struct gen_device_info *devinfo = &brw->screen->devinfo;
   1778 
   1779 #if GEN_GEN == 6
   1780    /* We can't fold this into gen6_upload_wm_push_constants(), because
   1781     * according to the SNB PRM, vol 2 part 1 section 7.2.2
   1782     * (3DSTATE_CONSTANT_PS [DevSNB]):
   1783     *
   1784     *     "[DevSNB]: This packet must be followed by WM_STATE."
   1785     */
   1786    brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_PS), wmcp) {
   1787       if (wm_prog_data->base.nr_params != 0) {
   1788          wmcp.Buffer0Valid = true;
   1789          /* Pointer to the WM constant buffer.  Covered by the set of
   1790           * state flags from gen6_upload_wm_push_constants.
   1791           */
   1792          wmcp.PointertoPSConstantBuffer0 = stage_state->push_const_offset;
   1793          wmcp.PSConstantBuffer0ReadLength = stage_state->push_const_size - 1;
   1794       }
   1795    }
   1796 #endif
   1797 
   1798 #if GEN_GEN >= 6
   1799    brw_batch_emit(brw, GENX(3DSTATE_WM), wm) {
   1800       wm.LineAntialiasingRegionWidth = _10pixels;
   1801       wm.LineEndCapAntialiasingRegionWidth = _05pixels;
   1802 
   1803       wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
   1804       wm.BarycentricInterpolationMode = wm_prog_data->barycentric_interp_modes;
   1805 #else
   1806    ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
   1807    brw_state_emit(brw, GENX(WM_STATE), 64, &stage_state->state_offset, wm) {
   1808       if (wm_prog_data->dispatch_8 && wm_prog_data->dispatch_16) {
   1809          /* These two fields should be the same pre-gen6, which is why we
   1810           * only have one hardware field to program for both dispatch
   1811           * widths.
   1812           */
   1813          assert(wm_prog_data->base.dispatch_grf_start_reg ==
   1814                 wm_prog_data->dispatch_grf_start_reg_2);
   1815       }
   1816 
   1817       if (wm_prog_data->dispatch_8 || wm_prog_data->dispatch_16)
   1818          wm.GRFRegisterCount0 = wm_prog_data->reg_blocks_0;
   1819 
   1820       if (stage_state->sampler_count)
   1821          wm.SamplerStatePointer =
   1822             ro_bo(brw->batch.state.bo, stage_state->sampler_offset);
   1823 #if GEN_GEN == 5
   1824       if (wm_prog_data->prog_offset_2)
   1825          wm.GRFRegisterCount2 = wm_prog_data->reg_blocks_2;
   1826 #endif
   1827 
   1828       wm.SetupURBEntryReadLength = wm_prog_data->num_varying_inputs * 2;
   1829       wm.ConstantURBEntryReadLength = wm_prog_data->base.curb_read_length;
   1830       /* BRW_NEW_PUSH_CONSTANT_ALLOCATION */
   1831       wm.ConstantURBEntryReadOffset = brw->curbe.wm_start * 2;
   1832       wm.EarlyDepthTestEnable = true;
   1833       wm.LineAntialiasingRegionWidth = _05pixels;
   1834       wm.LineEndCapAntialiasingRegionWidth = _10pixels;
   1835 
   1836       /* _NEW_POLYGON */
   1837       if (ctx->Polygon.OffsetFill) {
   1838          wm.GlobalDepthOffsetEnable = true;
   1839          /* Something weird going on with legacy_global_depth_bias,
   1840           * offset_constant, scaling and MRD.  This value passes glean
   1841           * but gives some odd results elsewere (eg. the
   1842           * quad-offset-units test).
   1843           */
   1844          wm.GlobalDepthOffsetConstant = ctx->Polygon.OffsetUnits * 2;
   1845 
   1846          /* This is the only value that passes glean:
   1847          */
   1848          wm.GlobalDepthOffsetScale = ctx->Polygon.OffsetFactor;
   1849       }
   1850 
   1851       wm.DepthCoefficientURBReadOffset = 1;
   1852 #endif
   1853 
   1854       /* BRW_NEW_STATS_WM */
   1855       wm.StatisticsEnable = GEN_GEN >= 6 || brw->stats_wm;
   1856 
   1857 #if GEN_GEN < 7
   1858       if (wm_prog_data->base.use_alt_mode)
   1859          wm.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
   1860 
   1861       wm.SamplerCount = GEN_GEN == 5 ?
   1862          0 : DIV_ROUND_UP(stage_state->sampler_count, 4);
   1863 
   1864       wm.BindingTableEntryCount =
   1865          wm_prog_data->base.binding_table.size_bytes / 4;
   1866       wm.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
   1867       wm._8PixelDispatchEnable = wm_prog_data->dispatch_8;
   1868       wm._16PixelDispatchEnable = wm_prog_data->dispatch_16;
   1869       wm.DispatchGRFStartRegisterForConstantSetupData0 =
   1870          wm_prog_data->base.dispatch_grf_start_reg;
   1871       if (GEN_GEN == 6 ||
   1872           wm_prog_data->dispatch_8 || wm_prog_data->dispatch_16) {
   1873          wm.KernelStartPointer0 = KSP(brw, stage_state->prog_offset);
   1874       }
   1875 
   1876 #if GEN_GEN >= 5
   1877       if (GEN_GEN == 6 || wm_prog_data->prog_offset_2) {
   1878          wm.KernelStartPointer2 =
   1879             KSP(brw, stage_state->prog_offset + wm_prog_data->prog_offset_2);
   1880       }
   1881 #endif
   1882 
   1883 #if GEN_GEN == 6
   1884       wm.DualSourceBlendEnable =
   1885          wm_prog_data->dual_src_blend && (ctx->Color.BlendEnabled & 1) &&
   1886          ctx->Color.Blend[0]._UsesDualSrc;
   1887       wm.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
   1888       wm.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
   1889 
   1890       /* From the SNB PRM, volume 2 part 1, page 281:
   1891        * "If the PS kernel does not need the Position XY Offsets
   1892        * to compute a Position XY value, then this field should be
   1893        * programmed to POSOFFSET_NONE."
   1894        *
   1895        * "SW Recommendation: If the PS kernel needs the Position Offsets
   1896        * to compute a Position XY value, this field should match Position
   1897        * ZW Interpolation Mode to ensure a consistent position.xyzw
   1898        * computation."
   1899        * We only require XY sample offsets. So, this recommendation doesn't
   1900        * look useful at the moment. We might need this in future.
   1901        */
   1902       if (wm_prog_data->uses_pos_offset)
   1903          wm.PositionXYOffsetSelect = POSOFFSET_SAMPLE;
   1904       else
   1905          wm.PositionXYOffsetSelect = POSOFFSET_NONE;
   1906 
   1907       wm.DispatchGRFStartRegisterForConstantSetupData2 =
   1908          wm_prog_data->dispatch_grf_start_reg_2;
   1909 #endif
   1910 
   1911       if (wm_prog_data->base.total_scratch) {
   1912          wm.ScratchSpaceBasePointer = rw_bo(stage_state->scratch_bo, 0);
   1913          wm.PerThreadScratchSpace =
   1914             ffs(stage_state->per_thread_scratch) - 11;
   1915       }
   1916 
   1917       wm.PixelShaderComputedDepth = writes_depth;
   1918 #endif
   1919 
   1920       /* _NEW_LINE */
   1921       wm.LineStippleEnable = ctx->Line.StippleFlag;
   1922 
   1923       /* _NEW_POLYGON */
   1924       wm.PolygonStippleEnable = ctx->Polygon.StippleFlag;
   1925 
   1926 #if GEN_GEN < 8
   1927 
   1928 #if GEN_GEN >= 6
   1929       wm.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
   1930 
   1931       /* _NEW_BUFFERS */
   1932       const bool multisampled_fbo = _mesa_geometric_samples(ctx->DrawBuffer) > 1;
   1933 
   1934       if (multisampled_fbo) {
   1935          /* _NEW_MULTISAMPLE */
   1936          if (ctx->Multisample.Enabled)
   1937             wm.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
   1938          else
   1939             wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
   1940 
   1941          if (wm_prog_data->persample_dispatch)
   1942             wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
   1943          else
   1944             wm.MultisampleDispatchMode = MSDISPMODE_PERPIXEL;
   1945       } else {
   1946          wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
   1947          wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
   1948       }
   1949 #endif
   1950       wm.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
   1951       if (wm_prog_data->uses_kill ||
   1952           _mesa_is_alpha_test_enabled(ctx) ||
   1953           _mesa_is_alpha_to_coverage_enabled(ctx) ||
   1954           (GEN_GEN >= 6 && wm_prog_data->uses_omask)) {
   1955          wm.PixelShaderKillsPixel = true;
   1956       }
   1957 
   1958       /* _NEW_BUFFERS | _NEW_COLOR */
   1959       if (brw_color_buffer_write_enabled(brw) || writes_depth ||
   1960           wm.PixelShaderKillsPixel ||
   1961           (GEN_GEN >= 6 && wm_prog_data->has_side_effects)) {
   1962          wm.ThreadDispatchEnable = true;
   1963       }
   1964 
   1965 #if GEN_GEN >= 7
   1966       wm.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
   1967       wm.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
   1968 #endif
   1969 
   1970       /* The "UAV access enable" bits are unnecessary on HSW because they only
   1971        * seem to have an effect on the HW-assisted coherency mechanism which we
   1972        * don't need, and the rasterization-related UAV_ONLY flag and the
   1973        * DISPATCH_ENABLE bit can be set independently from it.
   1974        * C.f. gen8_upload_ps_extra().
   1975        *
   1976        * BRW_NEW_FRAGMENT_PROGRAM | BRW_NEW_FS_PROG_DATA | _NEW_BUFFERS |
   1977        * _NEW_COLOR
   1978        */
   1979 #if GEN_IS_HASWELL
   1980       if (!(brw_color_buffer_write_enabled(brw) || writes_depth) &&
   1981           wm_prog_data->has_side_effects)
   1982          wm.PSUAVonly = ON;
   1983 #endif
   1984 #endif
   1985 
   1986 #if GEN_GEN >= 7
   1987       /* BRW_NEW_FS_PROG_DATA */
   1988       if (wm_prog_data->early_fragment_tests)
   1989          wm.EarlyDepthStencilControl = EDSC_PREPS;
   1990       else if (wm_prog_data->has_side_effects)
   1991          wm.EarlyDepthStencilControl = EDSC_PSEXEC;
   1992 #endif
   1993    }
   1994 
   1995 #if GEN_GEN <= 5
   1996    if (brw->wm.offset_clamp != ctx->Polygon.OffsetClamp) {
   1997       brw_batch_emit(brw, GENX(3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP), clamp) {
   1998          clamp.GlobalDepthOffsetClamp = ctx->Polygon.OffsetClamp;
   1999       }
   2000 
   2001       brw->wm.offset_clamp = ctx->Polygon.OffsetClamp;
   2002    }
   2003 #endif
   2004 }
   2005 
   2006 static const struct brw_tracked_state genX(wm_state) = {
   2007    .dirty = {
   2008       .mesa  = _NEW_LINE |
   2009                _NEW_POLYGON |
   2010                (GEN_GEN < 8 ? _NEW_BUFFERS |
   2011                               _NEW_COLOR :
   2012                               0) |
   2013                (GEN_GEN == 6 ? _NEW_PROGRAM_CONSTANTS : 0) |
   2014                (GEN_GEN < 6 ? _NEW_POLYGONSTIPPLE : 0) |
   2015                (GEN_GEN < 8 && GEN_GEN >= 6 ? _NEW_MULTISAMPLE : 0),
   2016       .brw   = BRW_NEW_BLORP |
   2017                BRW_NEW_FS_PROG_DATA |
   2018                (GEN_GEN < 6 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
   2019                               BRW_NEW_FRAGMENT_PROGRAM |
   2020                               BRW_NEW_PROGRAM_CACHE |
   2021                               BRW_NEW_SAMPLER_STATE_TABLE |
   2022                               BRW_NEW_STATS_WM
   2023                             : 0) |
   2024                (GEN_GEN < 7 ? BRW_NEW_BATCH : BRW_NEW_CONTEXT),
   2025    },
   2026    .emit = genX(upload_wm),
   2027 };
   2028 
   2029 /* ---------------------------------------------------------------------- */
   2030 
   2031 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix) \
   2032    pkt.KernelStartPointer = KSP(brw, stage_state->prog_offset);           \
   2033    pkt.SamplerCount       =                                               \
   2034       DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4);          \
   2035    pkt.BindingTableEntryCount =                                           \
   2036       stage_prog_data->binding_table.size_bytes / 4;                      \
   2037    pkt.FloatingPointMode  = stage_prog_data->use_alt_mode;                \
   2038                                                                           \
   2039    if (stage_prog_data->total_scratch) {                                  \
   2040       pkt.ScratchSpaceBasePointer = rw_bo(stage_state->scratch_bo, 0);    \
   2041       pkt.PerThreadScratchSpace =                                         \
   2042          ffs(stage_state->per_thread_scratch) - 11;                       \
   2043    }                                                                      \
   2044                                                                           \
   2045    pkt.DispatchGRFStartRegisterForURBData =                               \
   2046       stage_prog_data->dispatch_grf_start_reg;                            \
   2047    pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length;       \
   2048    pkt.prefix##URBEntryReadOffset = 0;                                    \
   2049                                                                           \
   2050    pkt.StatisticsEnable = true;                                           \
   2051    pkt.Enable           = true;
   2052 
   2053 static void
   2054 genX(upload_vs_state)(struct brw_context *brw)
   2055 {
   2056    UNUSED struct gl_context *ctx = &brw->ctx;
   2057    const struct gen_device_info *devinfo = &brw->screen->devinfo;
   2058    struct brw_stage_state *stage_state = &brw->vs.base;
   2059 
   2060    /* BRW_NEW_VS_PROG_DATA */
   2061    const struct brw_vue_prog_data *vue_prog_data =
   2062       brw_vue_prog_data(brw->vs.base.prog_data);
   2063    const struct brw_stage_prog_data *stage_prog_data = &vue_prog_data->base;
   2064 
   2065    assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8 ||
   2066           vue_prog_data->dispatch_mode == DISPATCH_MODE_4X2_DUAL_OBJECT);
   2067 
   2068 #if GEN_GEN == 6
   2069    /* From the BSpec, 3D Pipeline > Geometry > Vertex Shader > State,
   2070     * 3DSTATE_VS, Dword 5.0 "VS Function Enable":
   2071     *
   2072     *   [DevSNB] A pipeline flush must be programmed prior to a 3DSTATE_VS
   2073     *   command that causes the VS Function Enable to toggle. Pipeline
   2074     *   flush can be executed by sending a PIPE_CONTROL command with CS
   2075     *   stall bit set and a post sync operation.
   2076     *
   2077     * We've already done such a flush at the start of state upload, so we
   2078     * don't need to do another one here.
   2079     */
   2080    brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_VS), cvs) {
   2081       if (stage_state->push_const_size != 0) {
   2082          cvs.Buffer0Valid = true;
   2083          cvs.PointertoVSConstantBuffer0 = stage_state->push_const_offset;
   2084          cvs.VSConstantBuffer0ReadLength = stage_state->push_const_size - 1;
   2085       }
   2086    }
   2087 #endif
   2088 
   2089    if (GEN_GEN == 7 && devinfo->is_ivybridge)
   2090       gen7_emit_vs_workaround_flush(brw);
   2091 
   2092 #if GEN_GEN >= 6
   2093    brw_batch_emit(brw, GENX(3DSTATE_VS), vs) {
   2094 #else
   2095    ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
   2096    brw_state_emit(brw, GENX(VS_STATE), 32, &stage_state->state_offset, vs) {
   2097 #endif
   2098       INIT_THREAD_DISPATCH_FIELDS(vs, Vertex);
   2099 
   2100       vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
   2101 
   2102 #if GEN_GEN < 6
   2103       vs.GRFRegisterCount = DIV_ROUND_UP(vue_prog_data->total_grf, 16) - 1;
   2104       vs.ConstantURBEntryReadLength = stage_prog_data->curb_read_length;
   2105       vs.ConstantURBEntryReadOffset = brw->curbe.vs_start * 2;
   2106 
   2107       vs.NumberofURBEntries = brw->urb.nr_vs_entries >> (GEN_GEN == 5 ? 2 : 0);
   2108       vs.URBEntryAllocationSize = brw->urb.vsize - 1;
   2109 
   2110       vs.MaximumNumberofThreads =
   2111          CLAMP(brw->urb.nr_vs_entries / 2, 1, devinfo->max_vs_threads) - 1;
   2112 
   2113       vs.StatisticsEnable = false;
   2114       vs.SamplerStatePointer =
   2115          ro_bo(brw->batch.state.bo, stage_state->sampler_offset);
   2116 #endif
   2117 
   2118 #if GEN_GEN == 5
   2119       /* Force single program flow on Ironlake.  We cannot reliably get
   2120        * all applications working without it.  See:
   2121        * https://bugs.freedesktop.org/show_bug.cgi?id=29172
   2122        *
   2123        * The most notable and reliably failing application is the Humus
   2124        * demo "CelShading"
   2125        */
   2126       vs.SingleProgramFlow = true;
   2127       vs.SamplerCount = 0; /* hardware requirement */
   2128 #endif
   2129 
   2130 #if GEN_GEN >= 8
   2131       vs.SIMD8DispatchEnable =
   2132          vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8;
   2133 
   2134       vs.UserClipDistanceCullTestEnableBitmask =
   2135          vue_prog_data->cull_distance_mask;
   2136 #endif
   2137    }
   2138 
   2139 #if GEN_GEN == 6
   2140    /* Based on my reading of the simulator, the VS constants don't get
   2141     * pulled into the VS FF unit until an appropriate pipeline flush
   2142     * happens, and instead the 3DSTATE_CONSTANT_VS packet just adds
   2143     * references to them into a little FIFO.  The flushes are common,
   2144     * but don't reliably happen between this and a 3DPRIMITIVE, causing
   2145     * the primitive to use the wrong constants.  Then the FIFO
   2146     * containing the constant setup gets added to again on the next
   2147     * constants change, and eventually when a flush does happen the
   2148     * unit is overwhelmed by constant changes and dies.
   2149     *
   2150     * To avoid this, send a PIPE_CONTROL down the line that will
   2151     * update the unit immediately loading the constants.  The flush
   2152     * type bits here were those set by the STATE_BASE_ADDRESS whose
   2153     * move in a82a43e8d99e1715dd11c9c091b5ab734079b6a6 triggered the
   2154     * bug reports that led to this workaround, and may be more than
   2155     * what is strictly required to avoid the issue.
   2156     */
   2157    brw_emit_pipe_control_flush(brw,
   2158                                PIPE_CONTROL_DEPTH_STALL |
   2159                                PIPE_CONTROL_INSTRUCTION_INVALIDATE |
   2160                                PIPE_CONTROL_STATE_CACHE_INVALIDATE);
   2161 #endif
   2162 }
   2163 
   2164 static const struct brw_tracked_state genX(vs_state) = {
   2165    .dirty = {
   2166       .mesa  = (GEN_GEN == 6 ? (_NEW_PROGRAM_CONSTANTS | _NEW_TRANSFORM) : 0),
   2167       .brw   = BRW_NEW_BATCH |
   2168                BRW_NEW_BLORP |
   2169                BRW_NEW_CONTEXT |
   2170                BRW_NEW_VS_PROG_DATA |
   2171                (GEN_GEN == 6 ? BRW_NEW_VERTEX_PROGRAM : 0) |
   2172                (GEN_GEN <= 5 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
   2173                                BRW_NEW_PROGRAM_CACHE |
   2174                                BRW_NEW_SAMPLER_STATE_TABLE |
   2175                                BRW_NEW_URB_FENCE
   2176                              : 0),
   2177    },
   2178    .emit = genX(upload_vs_state),
   2179 };
   2180 
   2181 /* ---------------------------------------------------------------------- */
   2182 
   2183 static void
   2184 genX(upload_cc_viewport)(struct brw_context *brw)
   2185 {
   2186    struct gl_context *ctx = &brw->ctx;
   2187 
   2188    /* BRW_NEW_VIEWPORT_COUNT */
   2189    const unsigned viewport_count = brw->clip.viewport_count;
   2190 
   2191    struct GENX(CC_VIEWPORT) ccv;
   2192    uint32_t cc_vp_offset;
   2193    uint32_t *cc_map =
   2194       brw_state_batch(brw, 4 * GENX(CC_VIEWPORT_length) * viewport_count,
   2195                       32, &cc_vp_offset);
   2196 
   2197    for (unsigned i = 0; i < viewport_count; i++) {
   2198       /* _NEW_VIEWPORT | _NEW_TRANSFORM */
   2199       const struct gl_viewport_attrib *vp = &ctx->ViewportArray[i];
   2200       if (ctx->Transform.DepthClamp) {
   2201          ccv.MinimumDepth = MIN2(vp->Near, vp->Far);
   2202          ccv.MaximumDepth = MAX2(vp->Near, vp->Far);
   2203       } else {
   2204          ccv.MinimumDepth = 0.0;
   2205          ccv.MaximumDepth = 1.0;
   2206       }
   2207       GENX(CC_VIEWPORT_pack)(NULL, cc_map, &ccv);
   2208       cc_map += GENX(CC_VIEWPORT_length);
   2209    }
   2210 
   2211 #if GEN_GEN >= 7
   2212    brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
   2213       ptr.CCViewportPointer = cc_vp_offset;
   2214    }
   2215 #elif GEN_GEN == 6
   2216    brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS), vp) {
   2217       vp.CCViewportStateChange = 1;
   2218       vp.PointertoCC_VIEWPORT = cc_vp_offset;
   2219    }
   2220 #else
   2221    brw->cc.vp_offset = cc_vp_offset;
   2222    ctx->NewDriverState |= BRW_NEW_CC_VP;
   2223 #endif
   2224 }
   2225 
   2226 const struct brw_tracked_state genX(cc_vp) = {
   2227    .dirty = {
   2228       .mesa = _NEW_TRANSFORM |
   2229               _NEW_VIEWPORT,
   2230       .brw = BRW_NEW_BATCH |
   2231              BRW_NEW_BLORP |
   2232              BRW_NEW_VIEWPORT_COUNT,
   2233    },
   2234    .emit = genX(upload_cc_viewport)
   2235 };
   2236 
   2237 /* ---------------------------------------------------------------------- */
   2238 
   2239 static void
   2240 set_scissor_bits(const struct gl_context *ctx, int i,
   2241                  bool render_to_fbo, unsigned fb_width, unsigned fb_height,
   2242                  struct GENX(SCISSOR_RECT) *sc)
   2243 {
   2244    int bbox[4];
   2245 
   2246    bbox[0] = MAX2(ctx->ViewportArray[i].X, 0);
   2247    bbox[1] = MIN2(bbox[0] + ctx->ViewportArray[i].Width, fb_width);
   2248    bbox[2] = MAX2(ctx->ViewportArray[i].Y, 0);
   2249    bbox[3] = MIN2(bbox[2] + ctx->ViewportArray[i].Height, fb_height);
   2250    _mesa_intersect_scissor_bounding_box(ctx, i, bbox);
   2251 
   2252    if (bbox[0] == bbox[1] || bbox[2] == bbox[3]) {
   2253       /* If the scissor was out of bounds and got clamped to 0 width/height
   2254        * at the bounds, the subtraction of 1 from maximums could produce a
   2255        * negative number and thus not clip anything.  Instead, just provide
   2256        * a min > max scissor inside the bounds, which produces the expected
   2257        * no rendering.
   2258        */
   2259       sc->ScissorRectangleXMin = 1;
   2260       sc->ScissorRectangleXMax = 0;
   2261       sc->ScissorRectangleYMin = 1;
   2262       sc->ScissorRectangleYMax = 0;
   2263    } else if (render_to_fbo) {
   2264       /* texmemory: Y=0=bottom */
   2265       sc->ScissorRectangleXMin = bbox[0];
   2266       sc->ScissorRectangleXMax = bbox[1] - 1;
   2267       sc->ScissorRectangleYMin = bbox[2];
   2268       sc->ScissorRectangleYMax = bbox[3] - 1;
   2269    } else {
   2270       /* memory: Y=0=top */
   2271       sc->ScissorRectangleXMin = bbox[0];
   2272       sc->ScissorRectangleXMax = bbox[1] - 1;
   2273       sc->ScissorRectangleYMin = fb_height - bbox[3];
   2274       sc->ScissorRectangleYMax = fb_height - bbox[2] - 1;
   2275    }
   2276 }
   2277 
   2278 #if GEN_GEN >= 6
   2279 static void
   2280 genX(upload_scissor_state)(struct brw_context *brw)
   2281 {
   2282    struct gl_context *ctx = &brw->ctx;
   2283    const bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
   2284    struct GENX(SCISSOR_RECT) scissor;
   2285    uint32_t scissor_state_offset;
   2286    const unsigned int fb_width = _mesa_geometric_width(ctx->DrawBuffer);
   2287    const unsigned int fb_height = _mesa_geometric_height(ctx->DrawBuffer);
   2288    uint32_t *scissor_map;
   2289 
   2290    /* BRW_NEW_VIEWPORT_COUNT */
   2291    const unsigned viewport_count = brw->clip.viewport_count;
   2292 
   2293    scissor_map = brw_state_batch(
   2294       brw, GENX(SCISSOR_RECT_length) * sizeof(uint32_t) * viewport_count,
   2295       32, &scissor_state_offset);
   2296 
   2297    /* _NEW_SCISSOR | _NEW_BUFFERS | _NEW_VIEWPORT */
   2298 
   2299    /* The scissor only needs to handle the intersection of drawable and
   2300     * scissor rect.  Clipping to the boundaries of static shared buffers
   2301     * for front/back/depth is covered by looping over cliprects in brw_draw.c.
   2302     *
   2303     * Note that the hardware's coordinates are inclusive, while Mesa's min is
   2304     * inclusive but max is exclusive.
   2305     */
   2306    for (unsigned i = 0; i < viewport_count; i++) {
   2307       set_scissor_bits(ctx, i, render_to_fbo, fb_width, fb_height, &scissor);
   2308       GENX(SCISSOR_RECT_pack)(
   2309          NULL, scissor_map + i * GENX(SCISSOR_RECT_length), &scissor);
   2310    }
   2311 
   2312    brw_batch_emit(brw, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
   2313       ptr.ScissorRectPointer = scissor_state_offset;
   2314    }
   2315 }
   2316 
   2317 static const struct brw_tracked_state genX(scissor_state) = {
   2318    .dirty = {
   2319       .mesa = _NEW_BUFFERS |
   2320               _NEW_SCISSOR |
   2321               _NEW_VIEWPORT,
   2322       .brw = BRW_NEW_BATCH |
   2323              BRW_NEW_BLORP |
   2324              BRW_NEW_VIEWPORT_COUNT,
   2325    },
   2326    .emit = genX(upload_scissor_state),
   2327 };
   2328 #endif
   2329 
   2330 /* ---------------------------------------------------------------------- */
   2331 
   2332 static void
   2333 brw_calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
   2334                              float m00, float m11, float m30, float m31,
   2335                              float *xmin, float *xmax,
   2336                              float *ymin, float *ymax)
   2337 {
   2338    /* According to the "Vertex X,Y Clamping and Quantization" section of the
   2339     * Strips and Fans documentation:
   2340     *
   2341     * "The vertex X and Y screen-space coordinates are also /clamped/ to the
   2342     *  fixed-point "guardband" range supported by the rasterization hardware"
   2343     *
   2344     * and
   2345     *
   2346     * "In almost all circumstances, if an objects vertices are actually
   2347     *  modified by this clamping (i.e., had X or Y coordinates outside of
   2348     *  the guardband extent the rendered object will not match the intended
   2349     *  result.  Therefore software should take steps to ensure that this does
   2350     *  not happen - e.g., by clipping objects such that they do not exceed
   2351     *  these limits after the Drawing Rectangle is applied."
   2352     *
   2353     * I believe the fundamental restriction is that the rasterizer (in
   2354     * the SF/WM stages) have a limit on the number of pixels that can be
   2355     * rasterized.  We need to ensure any coordinates beyond the rasterizer
   2356     * limit are handled by the clipper.  So effectively that limit becomes
   2357     * the clipper's guardband size.
   2358     *
   2359     * It goes on to say:
   2360     *
   2361     * "In addition, in order to be correctly rendered, objects must have a
   2362     *  screenspace bounding box not exceeding 8K in the X or Y direction.
   2363     *  This additional restriction must also be comprehended by software,
   2364     *  i.e., enforced by use of clipping."
   2365     *
   2366     * This makes no sense.  Gen7+ hardware supports 16K render targets,
   2367     * and you definitely need to be able to draw polygons that fill the
   2368     * surface.  Our assumption is that the rasterizer was limited to 8K
   2369     * on Sandybridge, which only supports 8K surfaces, and it was actually
   2370     * increased to 16K on Ivybridge and later.
   2371     *
   2372     * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
   2373     */
   2374    const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
   2375 
   2376    if (m00 != 0 && m11 != 0) {
   2377       /* First, we compute the screen-space render area */
   2378       const float ss_ra_xmin = MIN3(        0, m30 + m00, m30 - m00);
   2379       const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
   2380       const float ss_ra_ymin = MIN3(        0, m31 + m11, m31 - m11);
   2381       const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
   2382 
   2383       /* We want the guardband to be centered on that */
   2384       const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
   2385       const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
   2386       const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
   2387       const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
   2388 
   2389       /* Now we need it in native device coordinates */
   2390       const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
   2391       const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
   2392       const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
   2393       const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
   2394 
   2395       /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
   2396        * flipped upside-down.  X should be fine though.
   2397        */
   2398       assert(ndc_gb_xmin <= ndc_gb_xmax);
   2399       *xmin = ndc_gb_xmin;
   2400       *xmax = ndc_gb_xmax;
   2401       *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
   2402       *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
   2403    } else {
   2404       /* The viewport scales to 0, so nothing will be rendered. */
   2405       *xmin = 0.0f;
   2406       *xmax = 0.0f;
   2407       *ymin = 0.0f;
   2408       *ymax = 0.0f;
   2409    }
   2410 }
   2411 
   2412 static void
   2413 genX(upload_sf_clip_viewport)(struct brw_context *brw)
   2414 {
   2415    struct gl_context *ctx = &brw->ctx;
   2416    float y_scale, y_bias;
   2417 
   2418    /* BRW_NEW_VIEWPORT_COUNT */
   2419    const unsigned viewport_count = brw->clip.viewport_count;
   2420 
   2421    /* _NEW_BUFFERS */
   2422    const bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
   2423    const uint32_t fb_width = (float)_mesa_geometric_width(ctx->DrawBuffer);
   2424    const uint32_t fb_height = (float)_mesa_geometric_height(ctx->DrawBuffer);
   2425 
   2426 #if GEN_GEN >= 7
   2427 #define clv sfv
   2428    struct GENX(SF_CLIP_VIEWPORT) sfv;
   2429    uint32_t sf_clip_vp_offset;
   2430    uint32_t *sf_clip_map =
   2431       brw_state_batch(brw, GENX(SF_CLIP_VIEWPORT_length) * 4 * viewport_count,
   2432                       64, &sf_clip_vp_offset);
   2433 #else
   2434    struct GENX(SF_VIEWPORT) sfv;
   2435    struct GENX(CLIP_VIEWPORT) clv;
   2436    uint32_t sf_vp_offset, clip_vp_offset;
   2437    uint32_t *sf_map =
   2438       brw_state_batch(brw, GENX(SF_VIEWPORT_length) * 4 * viewport_count,
   2439                       32, &sf_vp_offset);
   2440    uint32_t *clip_map =
   2441       brw_state_batch(brw, GENX(CLIP_VIEWPORT_length) * 4 * viewport_count,
   2442                       32, &clip_vp_offset);
   2443 #endif
   2444 
   2445    /* _NEW_BUFFERS */
   2446    if (render_to_fbo) {
   2447       y_scale = 1.0;
   2448       y_bias = 0;
   2449    } else {
   2450       y_scale = -1.0;
   2451       y_bias = (float)fb_height;
   2452    }
   2453 
   2454    for (unsigned i = 0; i < brw->clip.viewport_count; i++) {
   2455       /* _NEW_VIEWPORT: Guardband Clipping */
   2456       float scale[3], translate[3], gb_xmin, gb_xmax, gb_ymin, gb_ymax;
   2457       _mesa_get_viewport_xform(ctx, i, scale, translate);
   2458 
   2459       sfv.ViewportMatrixElementm00 = scale[0];
   2460       sfv.ViewportMatrixElementm11 = scale[1] * y_scale,
   2461       sfv.ViewportMatrixElementm22 = scale[2],
   2462       sfv.ViewportMatrixElementm30 = translate[0],
   2463       sfv.ViewportMatrixElementm31 = translate[1] * y_scale + y_bias,
   2464       sfv.ViewportMatrixElementm32 = translate[2],
   2465       brw_calculate_guardband_size(fb_width, fb_height,
   2466                                    sfv.ViewportMatrixElementm00,
   2467                                    sfv.ViewportMatrixElementm11,
   2468                                    sfv.ViewportMatrixElementm30,
   2469                                    sfv.ViewportMatrixElementm31,
   2470                                    &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
   2471 
   2472 
   2473       clv.XMinClipGuardband = gb_xmin;
   2474       clv.XMaxClipGuardband = gb_xmax;
   2475       clv.YMinClipGuardband = gb_ymin;
   2476       clv.YMaxClipGuardband = gb_ymax;
   2477 
   2478 #if GEN_GEN < 6
   2479       set_scissor_bits(ctx, i, render_to_fbo, fb_width, fb_height,
   2480                        &sfv.ScissorRectangle);
   2481 #elif GEN_GEN >= 8
   2482       /* _NEW_VIEWPORT | _NEW_BUFFERS: Screen Space Viewport
   2483        * The hardware will take the intersection of the drawing rectangle,
   2484        * scissor rectangle, and the viewport extents. We don't need to be
   2485        * smart, and can therefore just program the viewport extents.
   2486        */
   2487       const float viewport_Xmax =
   2488          ctx->ViewportArray[i].X + ctx->ViewportArray[i].Width;
   2489       const float viewport_Ymax =
   2490          ctx->ViewportArray[i].Y + ctx->ViewportArray[i].Height;
   2491 
   2492       if (render_to_fbo) {
   2493          sfv.XMinViewPort = ctx->ViewportArray[i].X;
   2494          sfv.XMaxViewPort = viewport_Xmax - 1;
   2495          sfv.YMinViewPort = ctx->ViewportArray[i].Y;
   2496          sfv.YMaxViewPort = viewport_Ymax - 1;
   2497       } else {
   2498          sfv.XMinViewPort = ctx->ViewportArray[i].X;
   2499          sfv.XMaxViewPort = viewport_Xmax - 1;
   2500          sfv.YMinViewPort = fb_height - viewport_Ymax;
   2501          sfv.YMaxViewPort = fb_height - ctx->ViewportArray[i].Y - 1;
   2502       }
   2503 #endif
   2504 
   2505 #if GEN_GEN >= 7
   2506       GENX(SF_CLIP_VIEWPORT_pack)(NULL, sf_clip_map, &sfv);
   2507       sf_clip_map += GENX(SF_CLIP_VIEWPORT_length);
   2508 #else
   2509       GENX(SF_VIEWPORT_pack)(NULL, sf_map, &sfv);
   2510       GENX(CLIP_VIEWPORT_pack)(NULL, clip_map, &clv);
   2511       sf_map += GENX(SF_VIEWPORT_length);
   2512       clip_map += GENX(CLIP_VIEWPORT_length);
   2513 #endif
   2514    }
   2515 
   2516 #if GEN_GEN >= 7
   2517    brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
   2518       ptr.SFClipViewportPointer = sf_clip_vp_offset;
   2519    }
   2520 #elif GEN_GEN == 6
   2521    brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS), vp) {
   2522       vp.SFViewportStateChange = 1;
   2523       vp.CLIPViewportStateChange = 1;
   2524       vp.PointertoCLIP_VIEWPORT = clip_vp_offset;
   2525       vp.PointertoSF_VIEWPORT = sf_vp_offset;
   2526    }
   2527 #else
   2528    brw->sf.vp_offset = sf_vp_offset;
   2529    brw->clip.vp_offset = clip_vp_offset;
   2530    brw->ctx.NewDriverState |= BRW_NEW_SF_VP | BRW_NEW_CLIP_VP;
   2531 #endif
   2532 }
   2533 
   2534 static const struct brw_tracked_state genX(sf_clip_viewport) = {
   2535    .dirty = {
   2536       .mesa = _NEW_BUFFERS |
   2537               _NEW_VIEWPORT |
   2538               (GEN_GEN <= 5 ? _NEW_SCISSOR : 0),
   2539       .brw = BRW_NEW_BATCH |
   2540              BRW_NEW_BLORP |
   2541              BRW_NEW_VIEWPORT_COUNT,
   2542    },
   2543    .emit = genX(upload_sf_clip_viewport),
   2544 };
   2545 
   2546 /* ---------------------------------------------------------------------- */
   2547 
   2548 static void
   2549 genX(upload_gs_state)(struct brw_context *brw)
   2550 {
   2551    UNUSED struct gl_context *ctx = &brw->ctx;
   2552    UNUSED const struct gen_device_info *devinfo = &brw->screen->devinfo;
   2553    const struct brw_stage_state *stage_state = &brw->gs.base;
   2554    const struct gl_program *gs_prog = brw->programs[MESA_SHADER_GEOMETRY];
   2555    /* BRW_NEW_GEOMETRY_PROGRAM */
   2556    bool active = GEN_GEN >= 6 && gs_prog;
   2557 
   2558    /* BRW_NEW_GS_PROG_DATA */
   2559    struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
   2560    UNUSED const struct brw_vue_prog_data *vue_prog_data =
   2561       brw_vue_prog_data(stage_prog_data);
   2562 #if GEN_GEN >= 7
   2563    const struct brw_gs_prog_data *gs_prog_data =
   2564       brw_gs_prog_data(stage_prog_data);
   2565 #endif
   2566 
   2567 #if GEN_GEN == 6
   2568    brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_GS), cgs) {
   2569       if (active && stage_state->push_const_size != 0) {
   2570          cgs.Buffer0Valid = true;
   2571          cgs.PointertoGSConstantBuffer0 = stage_state->push_const_offset;
   2572          cgs.GSConstantBuffer0ReadLength = stage_state->push_const_size - 1;
   2573       }
   2574    }
   2575 #endif
   2576 
   2577 #if GEN_GEN == 7 && !GEN_IS_HASWELL
   2578    /**
   2579     * From Graphics BSpec: 3D-Media-GPGPU Engine > 3D Pipeline Stages >
   2580     * Geometry > Geometry Shader > State:
   2581     *
   2582     *     "Note: Because of corruption in IVB:GT2, software needs to flush the
   2583     *     whole fixed function pipeline when the GS enable changes value in
   2584     *     the 3DSTATE_GS."
   2585     *
   2586     * The hardware architects have clarified that in this context "flush the
   2587     * whole fixed function pipeline" means to emit a PIPE_CONTROL with the "CS
   2588     * Stall" bit set.
   2589     */
   2590    if (devinfo->gt == 2 && brw->gs.enabled != active)
   2591       gen7_emit_cs_stall_flush(brw);
   2592 #endif
   2593 
   2594 #if GEN_GEN >= 6
   2595    brw_batch_emit(brw, GENX(3DSTATE_GS), gs) {
   2596 #else
   2597    ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
   2598    brw_state_emit(brw, GENX(GS_STATE), 32, &brw->ff_gs.state_offset, gs) {
   2599 #endif
   2600 
   2601 #if GEN_GEN >= 6
   2602       if (active) {
   2603          INIT_THREAD_DISPATCH_FIELDS(gs, Vertex);
   2604 
   2605 #if GEN_GEN >= 7
   2606          gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
   2607          gs.OutputTopology = gs_prog_data->output_topology;
   2608          gs.ControlDataHeaderSize =
   2609             gs_prog_data->control_data_header_size_hwords;
   2610 
   2611          gs.InstanceControl = gs_prog_data->invocations - 1;
   2612          gs.DispatchMode = vue_prog_data->dispatch_mode;
   2613 
   2614          gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
   2615 
   2616          gs.ControlDataFormat = gs_prog_data->control_data_format;
   2617 #endif
   2618 
   2619          /* Note: the meaning of the GEN7_GS_REORDER_TRAILING bit changes between
   2620           * Ivy Bridge and Haswell.
   2621           *
   2622           * On Ivy Bridge, setting this bit causes the vertices of a triangle
   2623           * strip to be delivered to the geometry shader in an order that does
   2624           * not strictly follow the OpenGL spec, but preserves triangle
   2625           * orientation.  For example, if the vertices are (1, 2, 3, 4, 5), then
   2626           * the geometry shader sees triangles:
   2627           *
   2628           * (1, 2, 3), (2, 4, 3), (3, 4, 5)
   2629           *
   2630           * (Clearing the bit is even worse, because it fails to preserve
   2631           * orientation).
   2632           *
   2633           * Triangle strips with adjacency always ordered in a way that preserves
   2634           * triangle orientation but does not strictly follow the OpenGL spec,
   2635           * regardless of the setting of this bit.
   2636           *
   2637           * On Haswell, both triangle strips and triangle strips with adjacency
   2638           * are always ordered in a way that preserves triangle orientation.
   2639           * Setting this bit causes the ordering to strictly follow the OpenGL
   2640           * spec.
   2641           *
   2642           * So in either case we want to set the bit.  Unfortunately on Ivy
   2643           * Bridge this will get the order close to correct but not perfect.
   2644           */
   2645          gs.ReorderMode = TRAILING;
   2646          gs.MaximumNumberofThreads =
   2647             GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
   2648                          : (devinfo->max_gs_threads - 1);
   2649 
   2650 #if GEN_GEN < 7
   2651          gs.SOStatisticsEnable = true;
   2652          if (gs_prog->info.has_transform_feedback_varyings)
   2653             gs.SVBIPayloadEnable = true;
   2654 
   2655          /* GEN6_GS_SPF_MODE and GEN6_GS_VECTOR_MASK_ENABLE are enabled as it
   2656           * was previously done for gen6.
   2657           *
   2658           * TODO: test with both disabled to see if the HW is behaving
   2659           * as expected, like in gen7.
   2660           */
   2661          gs.SingleProgramFlow = true;
   2662          gs.VectorMaskEnable = true;
   2663 #endif
   2664 
   2665 #if GEN_GEN >= 8
   2666          gs.ExpectedVertexCount = gs_prog_data->vertices_in;
   2667 
   2668          if (gs_prog_data->static_vertex_count != -1) {
   2669             gs.StaticOutput = true;
   2670             gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
   2671          }
   2672          gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
   2673 
   2674          gs.UserClipDistanceCullTestEnableBitmask =
   2675             vue_prog_data->cull_distance_mask;
   2676 
   2677          const int urb_entry_write_offset = 1;
   2678          const uint32_t urb_entry_output_length =
   2679             DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
   2680             urb_entry_write_offset;
   2681 
   2682          gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
   2683          gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
   2684 #endif
   2685       }
   2686 #endif
   2687 
   2688 #if GEN_GEN <= 6
   2689       if (!active && brw->ff_gs.prog_active) {
   2690          /* In gen6, transform feedback for the VS stage is done with an
   2691           * ad-hoc GS program. This function provides the needed 3DSTATE_GS
   2692           * for this.
   2693           */
   2694          gs.KernelStartPointer = KSP(brw, brw->ff_gs.prog_offset);
   2695          gs.SingleProgramFlow = true;
   2696          gs.DispatchGRFStartRegisterForURBData = GEN_GEN == 6 ? 2 : 1;
   2697          gs.VertexURBEntryReadLength = brw->ff_gs.prog_data->urb_read_length;
   2698 
   2699 #if GEN_GEN <= 5
   2700          gs.GRFRegisterCount =
   2701             DIV_ROUND_UP(brw->ff_gs.prog_data->total_grf, 16) - 1;
   2702          /* BRW_NEW_URB_FENCE */
   2703          gs.NumberofURBEntries = brw->urb.nr_gs_entries;
   2704          gs.URBEntryAllocationSize = brw->urb.vsize - 1;
   2705          gs.MaximumNumberofThreads = brw->urb.nr_gs_entries >= 8 ? 1 : 0;
   2706          gs.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
   2707 #else
   2708          gs.Enable = true;
   2709          gs.VectorMaskEnable = true;
   2710          gs.SVBIPayloadEnable = true;
   2711          gs.SVBIPostIncrementEnable = true;
   2712          gs.SVBIPostIncrementValue =
   2713             brw->ff_gs.prog_data->svbi_postincrement_value;
   2714          gs.SOStatisticsEnable = true;
   2715          gs.MaximumNumberofThreads = devinfo->max_gs_threads - 1;
   2716 #endif
   2717       }
   2718 #endif
   2719       if (!active && !brw->ff_gs.prog_active) {
   2720 #if GEN_GEN < 8
   2721          gs.DispatchGRFStartRegisterForURBData = 1;
   2722 #if GEN_GEN >= 7
   2723          gs.IncludeVertexHandles = true;
   2724 #endif
   2725 #endif
   2726       }
   2727 
   2728 #if GEN_GEN >= 6
   2729       gs.StatisticsEnable = true;
   2730 #endif
   2731 #if GEN_GEN == 5 || GEN_GEN == 6
   2732       gs.RenderingEnabled = true;
   2733 #endif
   2734 #if GEN_GEN <= 5
   2735       gs.MaximumVPIndex = brw->clip.viewport_count - 1;
   2736 #endif
   2737    }
   2738 
   2739 #if GEN_GEN == 6
   2740    brw->gs.enabled = active;
   2741 #endif
   2742 }
   2743 
   2744 static const struct brw_tracked_state genX(gs_state) = {
   2745    .dirty = {
   2746       .mesa  = (GEN_GEN == 6 ? _NEW_PROGRAM_CONSTANTS : 0),
   2747       .brw   = BRW_NEW_BATCH |
   2748                BRW_NEW_BLORP |
   2749                (GEN_GEN <= 5 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
   2750                                BRW_NEW_PROGRAM_CACHE |
   2751                                BRW_NEW_URB_FENCE |
   2752                                BRW_NEW_VIEWPORT_COUNT
   2753                              : 0) |
   2754                (GEN_GEN >= 6 ? BRW_NEW_CONTEXT |
   2755                                BRW_NEW_GEOMETRY_PROGRAM |
   2756                                BRW_NEW_GS_PROG_DATA
   2757                              : 0) |
   2758                (GEN_GEN < 7 ? BRW_NEW_FF_GS_PROG_DATA : 0),
   2759    },
   2760    .emit = genX(upload_gs_state),
   2761 };
   2762 
   2763 /* ---------------------------------------------------------------------- */
   2764 
   2765 UNUSED static GLenum
   2766 fix_dual_blend_alpha_to_one(GLenum function)
   2767 {
   2768    switch (function) {
   2769    case GL_SRC1_ALPHA:
   2770       return GL_ONE;
   2771 
   2772    case GL_ONE_MINUS_SRC1_ALPHA:
   2773       return GL_ZERO;
   2774    }
   2775 
   2776    return function;
   2777 }
   2778 
   2779 #define blend_factor(x) brw_translate_blend_factor(x)
   2780 #define blend_eqn(x) brw_translate_blend_equation(x)
   2781 
   2782 /**
   2783  * Modify blend function to force destination alpha to 1.0
   2784  *
   2785  * If \c function specifies a blend function that uses destination alpha,
   2786  * replace it with a function that hard-wires destination alpha to 1.0.  This
   2787  * is used when rendering to xRGB targets.
   2788  */
   2789 static GLenum
   2790 brw_fix_xRGB_alpha(GLenum function)
   2791 {
   2792    switch (function) {
   2793    case GL_DST_ALPHA:
   2794       return GL_ONE;
   2795 
   2796    case GL_ONE_MINUS_DST_ALPHA:
   2797    case GL_SRC_ALPHA_SATURATE:
   2798       return GL_ZERO;
   2799    }
   2800 
   2801    return function;
   2802 }
   2803 
   2804 #if GEN_GEN >= 6
   2805 typedef struct GENX(BLEND_STATE_ENTRY) BLEND_ENTRY_GENXML;
   2806 #else
   2807 typedef struct GENX(COLOR_CALC_STATE) BLEND_ENTRY_GENXML;
   2808 #endif
   2809 
   2810 UNUSED static bool
   2811 set_blend_entry_bits(struct brw_context *brw, BLEND_ENTRY_GENXML *entry, int i,
   2812                      bool alpha_to_one)
   2813 {
   2814    struct gl_context *ctx = &brw->ctx;
   2815 
   2816    /* _NEW_BUFFERS */
   2817    const struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[i];
   2818 
   2819    bool independent_alpha_blend = false;
   2820 
   2821    /* Used for implementing the following bit of GL_EXT_texture_integer:
   2822     * "Per-fragment operations that require floating-point color
   2823     *  components, including multisample alpha operations, alpha test,
   2824     *  blending, and dithering, have no effect when the corresponding
   2825     *  colors are written to an integer color buffer."
   2826     */
   2827    const bool integer = ctx->DrawBuffer->_IntegerBuffers & (0x1 << i);
   2828 
   2829    const unsigned blend_enabled = GEN_GEN >= 6 ?
   2830       ctx->Color.BlendEnabled & (1 << i) : ctx->Color.BlendEnabled;
   2831 
   2832    /* _NEW_COLOR */
   2833    if (ctx->Color.ColorLogicOpEnabled) {
   2834       GLenum rb_type = rb ? _mesa_get_format_datatype(rb->Format)
   2835          : GL_UNSIGNED_NORMALIZED;
   2836       WARN_ONCE(ctx->Color.LogicOp != GL_COPY &&
   2837                 rb_type != GL_UNSIGNED_NORMALIZED &&
   2838                 rb_type != GL_FLOAT, "Ignoring %s logic op on %s "
   2839                 "renderbuffer\n",
   2840                 _mesa_enum_to_string(ctx->Color.LogicOp),
   2841                 _mesa_enum_to_string(rb_type));
   2842       if (GEN_GEN >= 8 || rb_type == GL_UNSIGNED_NORMALIZED) {
   2843          entry->LogicOpEnable = true;
   2844          entry->LogicOpFunction =
   2845             intel_translate_logic_op(ctx->Color.LogicOp);
   2846       }
   2847    } else if (blend_enabled && !ctx->Color._AdvancedBlendMode
   2848               && (GEN_GEN <= 5 || !integer)) {
   2849       GLenum eqRGB = ctx->Color.Blend[i].EquationRGB;
   2850       GLenum eqA = ctx->Color.Blend[i].EquationA;
   2851       GLenum srcRGB = ctx->Color.Blend[i].SrcRGB;
   2852       GLenum dstRGB = ctx->Color.Blend[i].DstRGB;
   2853       GLenum srcA = ctx->Color.Blend[i].SrcA;
   2854       GLenum dstA = ctx->Color.Blend[i].DstA;
   2855 
   2856       if (eqRGB == GL_MIN || eqRGB == GL_MAX)
   2857          srcRGB = dstRGB = GL_ONE;
   2858 
   2859       if (eqA == GL_MIN || eqA == GL_MAX)
   2860          srcA = dstA = GL_ONE;
   2861 
   2862       /* Due to hardware limitations, the destination may have information
   2863        * in an alpha channel even when the format specifies no alpha
   2864        * channel. In order to avoid getting any incorrect blending due to
   2865        * that alpha channel, coerce the blend factors to values that will
   2866        * not read the alpha channel, but will instead use the correct
   2867        * implicit value for alpha.
   2868        */
   2869       if (rb && !_mesa_base_format_has_channel(rb->_BaseFormat,
   2870                                                GL_TEXTURE_ALPHA_TYPE)) {
   2871          srcRGB = brw_fix_xRGB_alpha(srcRGB);
   2872          srcA = brw_fix_xRGB_alpha(srcA);
   2873          dstRGB = brw_fix_xRGB_alpha(dstRGB);
   2874          dstA = brw_fix_xRGB_alpha(dstA);
   2875       }
   2876 
   2877       /* From the BLEND_STATE docs, DWord 0, Bit 29 (AlphaToOne Enable):
   2878        * "If Dual Source Blending is enabled, this bit must be disabled."
   2879        *
   2880        * We override SRC1_ALPHA to ONE and ONE_MINUS_SRC1_ALPHA to ZERO,
   2881        * and leave it enabled anyway.
   2882        */
   2883       if (GEN_GEN >= 6 && ctx->Color.Blend[i]._UsesDualSrc && alpha_to_one) {
   2884          srcRGB = fix_dual_blend_alpha_to_one(srcRGB);
   2885          srcA = fix_dual_blend_alpha_to_one(srcA);
   2886          dstRGB = fix_dual_blend_alpha_to_one(dstRGB);
   2887          dstA = fix_dual_blend_alpha_to_one(dstA);
   2888       }
   2889 
   2890       entry->ColorBufferBlendEnable = true;
   2891       entry->DestinationBlendFactor = blend_factor(dstRGB);
   2892       entry->SourceBlendFactor = blend_factor(srcRGB);
   2893       entry->DestinationAlphaBlendFactor = blend_factor(dstA);
   2894       entry->SourceAlphaBlendFactor = blend_factor(srcA);
   2895       entry->ColorBlendFunction = blend_eqn(eqRGB);
   2896       entry->AlphaBlendFunction = blend_eqn(eqA);
   2897 
   2898       if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB)
   2899          independent_alpha_blend = true;
   2900    }
   2901 
   2902    return independent_alpha_blend;
   2903 }
   2904 
   2905 #if GEN_GEN >= 6
   2906 static void
   2907 genX(upload_blend_state)(struct brw_context *brw)
   2908 {
   2909    struct gl_context *ctx = &brw->ctx;
   2910    int size;
   2911 
   2912    /* We need at least one BLEND_STATE written, because we might do
   2913     * thread dispatch even if _NumColorDrawBuffers is 0 (for example
   2914     * for computed depth or alpha test), which will do an FB write
   2915     * with render target 0, which will reference BLEND_STATE[0] for
   2916     * alpha test enable.
   2917     */
   2918    int nr_draw_buffers = ctx->DrawBuffer->_NumColorDrawBuffers;
   2919    if (nr_draw_buffers == 0 && ctx->Color.AlphaEnabled)
   2920       nr_draw_buffers = 1;
   2921 
   2922    size = GENX(BLEND_STATE_ENTRY_length) * 4 * nr_draw_buffers;
   2923 #if GEN_GEN >= 8
   2924    size += GENX(BLEND_STATE_length) * 4;
   2925 #endif
   2926 
   2927    uint32_t *blend_map;
   2928    blend_map = brw_state_batch(brw, size, 64, &brw->cc.blend_state_offset);
   2929 
   2930 #if GEN_GEN >= 8
   2931    struct GENX(BLEND_STATE) blend = { 0 };
   2932    {
   2933 #else
   2934    for (int i = 0; i < nr_draw_buffers; i++) {
   2935       struct GENX(BLEND_STATE_ENTRY) entry = { 0 };
   2936 #define blend entry
   2937 #endif
   2938       /* OpenGL specification 3.3 (page 196), section 4.1.3 says:
   2939        * "If drawbuffer zero is not NONE and the buffer it references has an
   2940        * integer format, the SAMPLE_ALPHA_TO_COVERAGE and SAMPLE_ALPHA_TO_ONE
   2941        * operations are skipped."
   2942        */
   2943       if (!(ctx->DrawBuffer->_IntegerBuffers & 0x1)) {
   2944          /* _NEW_MULTISAMPLE */
   2945          if (_mesa_is_multisample_enabled(ctx)) {
   2946             if (ctx->Multisample.SampleAlphaToCoverage) {
   2947                blend.AlphaToCoverageEnable = true;
   2948                blend.AlphaToCoverageDitherEnable = GEN_GEN >= 7;
   2949             }
   2950             if (ctx->Multisample.SampleAlphaToOne)
   2951                blend.AlphaToOneEnable = true;
   2952          }
   2953 
   2954          /* _NEW_COLOR */
   2955          if (ctx->Color.AlphaEnabled) {
   2956             blend.AlphaTestEnable = true;
   2957             blend.AlphaTestFunction =
   2958                intel_translate_compare_func(ctx->Color.AlphaFunc);
   2959          }
   2960 
   2961          if (ctx->Color.DitherFlag) {
   2962             blend.ColorDitherEnable = true;
   2963          }
   2964       }
   2965 
   2966 #if GEN_GEN >= 8
   2967       for (int i = 0; i < nr_draw_buffers; i++) {
   2968          struct GENX(BLEND_STATE_ENTRY) entry = { 0 };
   2969 #else
   2970       {
   2971 #endif
   2972          blend.IndependentAlphaBlendEnable =
   2973             set_blend_entry_bits(brw, &entry, i, blend.AlphaToOneEnable) ||
   2974             blend.IndependentAlphaBlendEnable;
   2975 
   2976          /* See section 8.1.6 "Pre-Blend Color Clamping" of the
   2977           * SandyBridge PRM Volume 2 Part 1 for HW requirements.
   2978           *
   2979           * We do our ARB_color_buffer_float CLAMP_FRAGMENT_COLOR
   2980           * clamping in the fragment shader.  For its clamping of
   2981           * blending, the spec says:
   2982           *
   2983           *     "RESOLVED: For fixed-point color buffers, the inputs and
   2984           *      the result of the blending equation are clamped.  For
   2985           *      floating-point color buffers, no clamping occurs."
   2986           *
   2987           * So, generally, we want clamping to the render target's range.
   2988           * And, good news, the hardware tables for both pre- and
   2989           * post-blend color clamping are either ignored, or any are
   2990           * allowed, or clamping is required but RT range clamping is a
   2991           * valid option.
   2992           */
   2993          entry.PreBlendColorClampEnable = true;
   2994          entry.PostBlendColorClampEnable = true;
   2995          entry.ColorClampRange = COLORCLAMP_RTFORMAT;
   2996 
   2997          entry.WriteDisableRed   = !ctx->Color.ColorMask[i][0];
   2998          entry.WriteDisableGreen = !ctx->Color.ColorMask[i][1];
   2999          entry.WriteDisableBlue  = !ctx->Color.ColorMask[i][2];
   3000          entry.WriteDisableAlpha = !ctx->Color.ColorMask[i][3];
   3001 
   3002 #if GEN_GEN >= 8
   3003          GENX(BLEND_STATE_ENTRY_pack)(NULL, &blend_map[1 + i * 2], &entry);
   3004 #else
   3005          GENX(BLEND_STATE_ENTRY_pack)(NULL, &blend_map[i * 2], &entry);
   3006 #endif
   3007       }
   3008    }
   3009 
   3010 #if GEN_GEN >= 8
   3011    GENX(BLEND_STATE_pack)(NULL, blend_map, &blend);
   3012 #endif
   3013 
   3014 #if GEN_GEN < 7
   3015    brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
   3016       ptr.PointertoBLEND_STATE = brw->cc.blend_state_offset;
   3017       ptr.BLEND_STATEChange = true;
   3018    }
   3019 #else
   3020    brw_batch_emit(brw, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
   3021       ptr.BlendStatePointer = brw->cc.blend_state_offset;
   3022 #if GEN_GEN >= 8
   3023       ptr.BlendStatePointerValid = true;
   3024 #endif
   3025    }
   3026 #endif
   3027 }
   3028 
   3029 static const struct brw_tracked_state genX(blend_state) = {
   3030    .dirty = {
   3031       .mesa = _NEW_BUFFERS |
   3032               _NEW_COLOR |
   3033               _NEW_MULTISAMPLE,
   3034       .brw = BRW_NEW_BATCH |
   3035              BRW_NEW_BLORP |
   3036              BRW_NEW_STATE_BASE_ADDRESS,
   3037    },
   3038    .emit = genX(upload_blend_state),
   3039 };
   3040 #endif
   3041 
   3042 /* ---------------------------------------------------------------------- */
   3043 
   3044 #if GEN_GEN >= 7
   3045 UNUSED static const uint32_t push_constant_opcodes[] = {
   3046    [MESA_SHADER_VERTEX]                      = 21,
   3047    [MESA_SHADER_TESS_CTRL]                   = 25, /* HS */
   3048    [MESA_SHADER_TESS_EVAL]                   = 26, /* DS */
   3049    [MESA_SHADER_GEOMETRY]                    = 22,
   3050    [MESA_SHADER_FRAGMENT]                    = 23,
   3051    [MESA_SHADER_COMPUTE]                     = 0,
   3052 };
   3053 
   3054 static void
   3055 genX(upload_push_constant_packets)(struct brw_context *brw)
   3056 {
   3057    const struct gen_device_info *devinfo = &brw->screen->devinfo;
   3058    struct gl_context *ctx = &brw->ctx;
   3059 
   3060    UNUSED uint32_t mocs = GEN_GEN < 8 ? GEN7_MOCS_L3 : 0;
   3061 
   3062    struct brw_stage_state *stage_states[] = {
   3063       &brw->vs.base,
   3064       &brw->tcs.base,
   3065       &brw->tes.base,
   3066       &brw->gs.base,
   3067       &brw->wm.base,
   3068    };
   3069 
   3070    if (GEN_GEN == 7 && !GEN_IS_HASWELL && !devinfo->is_baytrail &&
   3071        stage_states[MESA_SHADER_VERTEX]->push_constants_dirty)
   3072       gen7_emit_vs_workaround_flush(brw);
   3073 
   3074    for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
   3075       struct brw_stage_state *stage_state = stage_states[stage];
   3076       UNUSED struct gl_program *prog = ctx->_Shader->CurrentProgram[stage];
   3077 
   3078       if (!stage_state->push_constants_dirty)
   3079          continue;
   3080 
   3081       brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_VS), pkt) {
   3082          pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
   3083          if (stage_state->prog_data) {
   3084 #if GEN_GEN >= 8 || GEN_IS_HASWELL
   3085             /* The Skylake PRM contains the following restriction:
   3086              *
   3087              *    "The driver must ensure The following case does not occur
   3088              *     without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
   3089              *     buffer 3 read length equal to zero committed followed by a
   3090              *     3DSTATE_CONSTANT_* with buffer 0 read length not equal to
   3091              *     zero committed."
   3092              *
   3093              * To avoid this, we program the buffers in the highest slots.
   3094              * This way, slot 0 is only used if slot 3 is also used.
   3095              */
   3096             int n = 3;
   3097 
   3098             for (int i = 3; i >= 0; i--) {
   3099                const struct brw_ubo_range *range =
   3100                   &stage_state->prog_data->ubo_ranges[i];
   3101 
   3102                if (range->length == 0)
   3103                   continue;
   3104 
   3105                const struct gl_uniform_block *block =
   3106                   prog->sh.UniformBlocks[range->block];
   3107                const struct gl_buffer_binding *binding =
   3108                   &ctx->UniformBufferBindings[block->Binding];
   3109 
   3110                if (binding->BufferObject == ctx->Shared->NullBufferObj) {
   3111                   static unsigned msg_id = 0;
   3112                   _mesa_gl_debug(ctx, &msg_id, MESA_DEBUG_SOURCE_API,
   3113                                  MESA_DEBUG_TYPE_UNDEFINED,
   3114                                  MESA_DEBUG_SEVERITY_HIGH,
   3115                                  "UBO %d unbound, %s shader uniform data "
   3116                                  "will be undefined.",
   3117                                  range->block,
   3118                                  _mesa_shader_stage_to_string(stage));
   3119                   continue;
   3120                }
   3121 
   3122                assert(binding->Offset % 32 == 0);
   3123 
   3124                struct brw_bo *bo = intel_bufferobj_buffer(brw,
   3125                   intel_buffer_object(binding->BufferObject),
   3126                   binding->Offset, range->length * 32, false);
   3127 
   3128                pkt.ConstantBody.ReadLength[n] = range->length;
   3129                pkt.ConstantBody.Buffer[n] =
   3130                   ro_bo(bo, range->start * 32 + binding->Offset);
   3131                n--;
   3132             }
   3133 
   3134             if (stage_state->push_const_size > 0) {
   3135                assert(n >= 0);
   3136                pkt.ConstantBody.ReadLength[n] = stage_state->push_const_size;
   3137                pkt.ConstantBody.Buffer[n] =
   3138                   ro_bo(stage_state->push_const_bo,
   3139                         stage_state->push_const_offset);
   3140             }
   3141 #else
   3142             pkt.ConstantBody.ReadLength[0] = stage_state->push_const_size;
   3143             pkt.ConstantBody.Buffer[0].offset =
   3144                stage_state->push_const_offset | mocs;
   3145 #endif
   3146          }
   3147       }
   3148 
   3149       stage_state->push_constants_dirty = false;
   3150       brw->ctx.NewDriverState |= GEN_GEN >= 9 ? BRW_NEW_SURFACES : 0;
   3151    }
   3152 }
   3153 
   3154 const struct brw_tracked_state genX(push_constant_packets) = {
   3155    .dirty = {
   3156       .mesa  = 0,
   3157       .brw   = BRW_NEW_DRAW_CALL,
   3158    },
   3159    .emit = genX(upload_push_constant_packets),
   3160 };
   3161 #endif
   3162 
   3163 #if GEN_GEN >= 6
   3164 static void
   3165 genX(upload_vs_push_constants)(struct brw_context *brw)
   3166 {
   3167    struct brw_stage_state *stage_state = &brw->vs.base;
   3168 
   3169    /* BRW_NEW_VERTEX_PROGRAM */
   3170    const struct gl_program *vp = brw->programs[MESA_SHADER_VERTEX];
   3171    /* BRW_NEW_VS_PROG_DATA */
   3172    const struct brw_stage_prog_data *prog_data = brw->vs.base.prog_data;
   3173 
   3174    gen6_upload_push_constants(brw, vp, prog_data, stage_state);
   3175 }
   3176 
   3177 static const struct brw_tracked_state genX(vs_push_constants) = {
   3178    .dirty = {
   3179       .mesa  = _NEW_PROGRAM_CONSTANTS |
   3180                _NEW_TRANSFORM,
   3181       .brw   = BRW_NEW_BATCH |
   3182                BRW_NEW_BLORP |
   3183                BRW_NEW_VERTEX_PROGRAM |
   3184                BRW_NEW_VS_PROG_DATA,
   3185    },
   3186    .emit = genX(upload_vs_push_constants),
   3187 };
   3188 
   3189 static void
   3190 genX(upload_gs_push_constants)(struct brw_context *brw)
   3191 {
   3192    struct brw_stage_state *stage_state = &brw->gs.base;
   3193 
   3194    /* BRW_NEW_GEOMETRY_PROGRAM */
   3195    const struct gl_program *gp = brw->programs[MESA_SHADER_GEOMETRY];
   3196 
   3197    /* BRW_NEW_GS_PROG_DATA */
   3198    struct brw_stage_prog_data *prog_data = brw->gs.base.prog_data;
   3199 
   3200    gen6_upload_push_constants(brw, gp, prog_data, stage_state);
   3201 }
   3202 
   3203 static const struct brw_tracked_state genX(gs_push_constants) = {
   3204    .dirty = {
   3205       .mesa  = _NEW_PROGRAM_CONSTANTS |
   3206                _NEW_TRANSFORM,
   3207       .brw   = BRW_NEW_BATCH |
   3208                BRW_NEW_BLORP |
   3209                BRW_NEW_GEOMETRY_PROGRAM |
   3210                BRW_NEW_GS_PROG_DATA,
   3211    },
   3212    .emit = genX(upload_gs_push_constants),
   3213 };
   3214 
   3215 static void
   3216 genX(upload_wm_push_constants)(struct brw_context *brw)
   3217 {
   3218    struct brw_stage_state *stage_state = &brw->wm.base;
   3219    /* BRW_NEW_FRAGMENT_PROGRAM */
   3220    const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
   3221    /* BRW_NEW_FS_PROG_DATA */
   3222    const struct brw_stage_prog_data *prog_data = brw->wm.base.prog_data;
   3223 
   3224    gen6_upload_push_constants(brw, fp, prog_data, stage_state);
   3225 }
   3226 
   3227 static const struct brw_tracked_state genX(wm_push_constants) = {
   3228    .dirty = {
   3229       .mesa  = _NEW_PROGRAM_CONSTANTS,
   3230       .brw   = BRW_NEW_BATCH |
   3231                BRW_NEW_BLORP |
   3232                BRW_NEW_FRAGMENT_PROGRAM |
   3233                BRW_NEW_FS_PROG_DATA,
   3234    },
   3235    .emit = genX(upload_wm_push_constants),
   3236 };
   3237 #endif
   3238 
   3239 /* ---------------------------------------------------------------------- */
   3240 
   3241 #if GEN_GEN >= 6
   3242 static unsigned
   3243 genX(determine_sample_mask)(struct brw_context *brw)
   3244 {
   3245    struct gl_context *ctx = &brw->ctx;
   3246    float coverage = 1.0f;
   3247    float coverage_invert = false;
   3248    unsigned sample_mask = ~0u;
   3249 
   3250    /* BRW_NEW_NUM_SAMPLES */
   3251    unsigned num_samples = brw->num_samples;
   3252 
   3253    if (_mesa_is_multisample_enabled(ctx)) {
   3254       if (ctx->Multisample.SampleCoverage) {
   3255          coverage = ctx->Multisample.SampleCoverageValue;
   3256          coverage_invert = ctx->Multisample.SampleCoverageInvert;
   3257       }
   3258       if (ctx->Multisample.SampleMask) {
   3259          sample_mask = ctx->Multisample.SampleMaskValue;
   3260       }
   3261    }
   3262 
   3263    if (num_samples > 1) {
   3264       int coverage_int = (int) (num_samples * coverage + 0.5f);
   3265       uint32_t coverage_bits = (1 << coverage_int) - 1;
   3266       if (coverage_invert)
   3267          coverage_bits ^= (1 << num_samples) - 1;
   3268       return coverage_bits & sample_mask;
   3269    } else {
   3270       return 1;
   3271    }
   3272 }
   3273 
   3274 static void
   3275 genX(emit_3dstate_multisample2)(struct brw_context *brw,
   3276                                 unsigned num_samples)
   3277 {
   3278    unsigned log2_samples = ffs(num_samples) - 1;
   3279 
   3280    brw_batch_emit(brw, GENX(3DSTATE_MULTISAMPLE), multi) {
   3281       multi.PixelLocation = CENTER;
   3282       multi.NumberofMultisamples = log2_samples;
   3283 #if GEN_GEN == 6
   3284       GEN_SAMPLE_POS_4X(multi.Sample);
   3285 #elif GEN_GEN == 7
   3286       switch (num_samples) {
   3287       case 1:
   3288          GEN_SAMPLE_POS_1X(multi.Sample);
   3289          break;
   3290       case 2:
   3291          GEN_SAMPLE_POS_2X(multi.Sample);
   3292          break;
   3293       case 4:
   3294          GEN_SAMPLE_POS_4X(multi.Sample);
   3295          break;
   3296       case 8:
   3297          GEN_SAMPLE_POS_8X(multi.Sample);
   3298          break;
   3299       default:
   3300          break;
   3301       }
   3302 #endif
   3303    }
   3304 }
   3305 
   3306 static void
   3307 genX(upload_multisample_state)(struct brw_context *brw)
   3308 {
   3309    assert(brw->num_samples > 0 && brw->num_samples <= 16);
   3310 
   3311    genX(emit_3dstate_multisample2)(brw, brw->num_samples);
   3312 
   3313    brw_batch_emit(brw, GENX(3DSTATE_SAMPLE_MASK), sm) {
   3314       sm.SampleMask = genX(determine_sample_mask)(brw);
   3315    }
   3316 }
   3317 
   3318 static const struct brw_tracked_state genX(multisample_state) = {
   3319    .dirty = {
   3320       .mesa = _NEW_MULTISAMPLE |
   3321               (GEN_GEN == 10 ? _NEW_BUFFERS : 0),
   3322       .brw = BRW_NEW_BLORP |
   3323              BRW_NEW_CONTEXT |
   3324              BRW_NEW_NUM_SAMPLES,
   3325    },
   3326    .emit = genX(upload_multisample_state)
   3327 };
   3328 #endif
   3329 
   3330 /* ---------------------------------------------------------------------- */
   3331 
   3332 static void
   3333 genX(upload_color_calc_state)(struct brw_context *brw)
   3334 {
   3335    struct gl_context *ctx = &brw->ctx;
   3336 
   3337    brw_state_emit(brw, GENX(COLOR_CALC_STATE), 64, &brw->cc.state_offset, cc) {
   3338 #if GEN_GEN <= 5
   3339       cc.IndependentAlphaBlendEnable =
   3340          set_blend_entry_bits(brw, &cc, 0, false);
   3341       set_depth_stencil_bits(brw, &cc);
   3342 
   3343       if (ctx->Color.AlphaEnabled &&
   3344           ctx->DrawBuffer->_NumColorDrawBuffers <= 1) {
   3345          cc.AlphaTestEnable = true;
   3346          cc.AlphaTestFunction =
   3347             intel_translate_compare_func(ctx->Color.AlphaFunc);
   3348       }
   3349 
   3350       cc.ColorDitherEnable = ctx->Color.DitherFlag;
   3351 
   3352       cc.StatisticsEnable = brw->stats_wm;
   3353 
   3354       cc.CCViewportStatePointer =
   3355          ro_bo(brw->batch.state.bo, brw->cc.vp_offset);
   3356 #else
   3357       /* _NEW_COLOR */
   3358       cc.BlendConstantColorRed = ctx->Color.BlendColorUnclamped[0];
   3359       cc.BlendConstantColorGreen = ctx->Color.BlendColorUnclamped[1];
   3360       cc.BlendConstantColorBlue = ctx->Color.BlendColorUnclamped[2];
   3361       cc.BlendConstantColorAlpha = ctx->Color.BlendColorUnclamped[3];
   3362 
   3363 #if GEN_GEN < 9
   3364       /* _NEW_STENCIL */
   3365       cc.StencilReferenceValue = _mesa_get_stencil_ref(ctx, 0);
   3366       cc.BackfaceStencilReferenceValue =
   3367          _mesa_get_stencil_ref(ctx, ctx->Stencil._BackFace);
   3368 #endif
   3369 
   3370 #endif
   3371 
   3372       /* _NEW_COLOR */
   3373       UNCLAMPED_FLOAT_TO_UBYTE(cc.AlphaReferenceValueAsUNORM8,
   3374                                ctx->Color.AlphaRef);
   3375    }
   3376 
   3377 #if GEN_GEN >= 6
   3378    brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
   3379       ptr.ColorCalcStatePointer = brw->cc.state_offset;
   3380 #if GEN_GEN != 7
   3381       ptr.ColorCalcStatePointerValid = true;
   3382 #endif
   3383    }
   3384 #else
   3385    brw->ctx.NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
   3386 #endif
   3387 }
   3388 
   3389 static const struct brw_tracked_state genX(color_calc_state) = {
   3390    .dirty = {
   3391       .mesa = _NEW_COLOR |
   3392               _NEW_STENCIL |
   3393               (GEN_GEN <= 5 ? _NEW_BUFFERS |
   3394                               _NEW_DEPTH
   3395                             : 0),
   3396       .brw = BRW_NEW_BATCH |
   3397              BRW_NEW_BLORP |
   3398              (GEN_GEN <= 5 ? BRW_NEW_CC_VP |
   3399                              BRW_NEW_STATS_WM
   3400                            : BRW_NEW_CC_STATE |
   3401                              BRW_NEW_STATE_BASE_ADDRESS),
   3402    },
   3403    .emit = genX(upload_color_calc_state),
   3404 };
   3405 
   3406 
   3407 /* ---------------------------------------------------------------------- */
   3408 
   3409 #if GEN_GEN >= 7
   3410 static void
   3411 genX(upload_sbe)(struct brw_context *brw)
   3412 {
   3413    struct gl_context *ctx = &brw->ctx;
   3414    /* BRW_NEW_FRAGMENT_PROGRAM */
   3415    UNUSED const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
   3416    /* BRW_NEW_FS_PROG_DATA */
   3417    const struct brw_wm_prog_data *wm_prog_data =
   3418       brw_wm_prog_data(brw->wm.base.prog_data);
   3419 #if GEN_GEN >= 8
   3420    struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = { { 0 } };
   3421 #else
   3422 #define attr_overrides sbe.Attribute
   3423 #endif
   3424    uint32_t urb_entry_read_length;
   3425    uint32_t urb_entry_read_offset;
   3426    uint32_t point_sprite_enables;
   3427 
   3428    brw_batch_emit(brw, GENX(3DSTATE_SBE), sbe) {
   3429       sbe.AttributeSwizzleEnable = true;
   3430       sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
   3431 
   3432       /* _NEW_BUFFERS */
   3433       bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
   3434 
   3435       /* _NEW_POINT
   3436        *
   3437        * Window coordinates in an FBO are inverted, which means point
   3438        * sprite origin must be inverted.
   3439        */
   3440       if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) != render_to_fbo)
   3441          sbe.PointSpriteTextureCoordinateOrigin = LOWERLEFT;
   3442       else
   3443          sbe.PointSpriteTextureCoordinateOrigin = UPPERLEFT;
   3444 
   3445       /* _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM,
   3446        * BRW_NEW_FS_PROG_DATA | BRW_NEW_FRAGMENT_PROGRAM |
   3447        * BRW_NEW_GS_PROG_DATA | BRW_NEW_PRIMITIVE | BRW_NEW_TES_PROG_DATA |
   3448        * BRW_NEW_VUE_MAP_GEOM_OUT
   3449        */
   3450       genX(calculate_attr_overrides)(brw,
   3451                                      attr_overrides,
   3452                                      &point_sprite_enables,
   3453                                      &urb_entry_read_length,
   3454                                      &urb_entry_read_offset);
   3455 
   3456       /* Typically, the URB entry read length and offset should be programmed
   3457        * in 3DSTATE_VS and 3DSTATE_GS; SBE inherits it from the last active
   3458        * stage which produces geometry.  However, we don't know the proper
   3459        * value until we call calculate_attr_overrides().
   3460        *
   3461        * To fit with our existing code, we override the inherited values and
   3462        * specify it here directly, as we did on previous generations.
   3463        */
   3464       sbe.VertexURBEntryReadLength = urb_entry_read_length;
   3465       sbe.VertexURBEntryReadOffset = urb_entry_read_offset;
   3466       sbe.PointSpriteTextureCoordinateEnable = point_sprite_enables;
   3467       sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
   3468 
   3469 #if GEN_GEN >= 8
   3470       sbe.ForceVertexURBEntryReadLength = true;
   3471       sbe.ForceVertexURBEntryReadOffset = true;
   3472 #endif
   3473 
   3474 #if GEN_GEN >= 9
   3475       /* prepare the active component dwords */
   3476       for (int i = 0; i < 32; i++)
   3477          sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
   3478 #endif
   3479    }
   3480 
   3481 #if GEN_GEN >= 8
   3482    brw_batch_emit(brw, GENX(3DSTATE_SBE_SWIZ), sbes) {
   3483       for (int i = 0; i < 16; i++)
   3484          sbes.Attribute[i] = attr_overrides[i];
   3485    }
   3486 #endif
   3487 
   3488 #undef attr_overrides
   3489 }
   3490 
   3491 static const struct brw_tracked_state genX(sbe_state) = {
   3492    .dirty = {
   3493       .mesa  = _NEW_BUFFERS |
   3494                _NEW_LIGHT |
   3495                _NEW_POINT |
   3496                _NEW_POLYGON |
   3497                _NEW_PROGRAM,
   3498       .brw   = BRW_NEW_BLORP |
   3499                BRW_NEW_CONTEXT |
   3500                BRW_NEW_FRAGMENT_PROGRAM |
   3501                BRW_NEW_FS_PROG_DATA |
   3502                BRW_NEW_GS_PROG_DATA |
   3503                BRW_NEW_TES_PROG_DATA |
   3504                BRW_NEW_VUE_MAP_GEOM_OUT |
   3505                (GEN_GEN == 7 ? BRW_NEW_PRIMITIVE
   3506                              : 0),
   3507    },
   3508    .emit = genX(upload_sbe),
   3509 };
   3510 #endif
   3511 
   3512 /* ---------------------------------------------------------------------- */
   3513 
   3514 #if GEN_GEN >= 7
   3515 /**
   3516  * Outputs the 3DSTATE_SO_DECL_LIST command.
   3517  *
   3518  * The data output is a series of 64-bit entries containing a SO_DECL per
   3519  * stream.  We only have one stream of rendering coming out of the GS unit, so
   3520  * we only emit stream 0 (low 16 bits) SO_DECLs.
   3521  */
   3522 static void
   3523 genX(upload_3dstate_so_decl_list)(struct brw_context *brw,
   3524                                   const struct brw_vue_map *vue_map)
   3525 {
   3526    struct gl_context *ctx = &brw->ctx;
   3527    /* BRW_NEW_TRANSFORM_FEEDBACK */
   3528    struct gl_transform_feedback_object *xfb_obj =
   3529       ctx->TransformFeedback.CurrentObject;
   3530    const struct gl_transform_feedback_info *linked_xfb_info =
   3531       xfb_obj->program->sh.LinkedTransformFeedback;
   3532    struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
   3533    int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
   3534    int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
   3535    int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
   3536    int max_decls = 0;
   3537    STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
   3538 
   3539    memset(so_decl, 0, sizeof(so_decl));
   3540 
   3541    /* Construct the list of SO_DECLs to be emitted.  The formatting of the
   3542     * command feels strange -- each dword pair contains a SO_DECL per stream.
   3543     */
   3544    for (unsigned i = 0; i < linked_xfb_info->NumOutputs; i++) {
   3545       const struct gl_transform_feedback_output *output =
   3546          &linked_xfb_info->Outputs[i];
   3547       const int buffer = output->OutputBuffer;
   3548       const int varying = output->OutputRegister;
   3549       const unsigned stream_id = output->StreamId;
   3550       assert(stream_id < MAX_VERTEX_STREAMS);
   3551 
   3552       buffer_mask[stream_id] |= 1 << buffer;
   3553 
   3554       assert(vue_map->varying_to_slot[varying] >= 0);
   3555 
   3556       /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
   3557        * array.  Instead, it simply increments DstOffset for the following
   3558        * input by the number of components that should be skipped.
   3559        *
   3560        * Our hardware is unusual in that it requires us to program SO_DECLs
   3561        * for fake "hole" components, rather than simply taking the offset
   3562        * for each real varying.  Each hole can have size 1, 2, 3, or 4; we
   3563        * program as many size = 4 holes as we can, then a final hole to
   3564        * accommodate the final 1, 2, or 3 remaining.
   3565        */
   3566       int skip_components = output->DstOffset - next_offset[buffer];
   3567 
   3568       while (skip_components > 0) {
   3569          so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
   3570             .HoleFlag = 1,
   3571             .OutputBufferSlot = output->OutputBuffer,
   3572             .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
   3573          };
   3574          skip_components -= 4;
   3575       }
   3576 
   3577       next_offset[buffer] = output->DstOffset + output->NumComponents;
   3578 
   3579       so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
   3580          .OutputBufferSlot = output->OutputBuffer,
   3581          .RegisterIndex = vue_map->varying_to_slot[varying],
   3582          .ComponentMask =
   3583             ((1 << output->NumComponents) - 1) << output->ComponentOffset,
   3584       };
   3585 
   3586       if (decls[stream_id] > max_decls)
   3587          max_decls = decls[stream_id];
   3588    }
   3589 
   3590    uint32_t *dw;
   3591    dw = brw_batch_emitn(brw, GENX(3DSTATE_SO_DECL_LIST), 3 + 2 * max_decls,
   3592                         .StreamtoBufferSelects0 = buffer_mask[0],
   3593                         .StreamtoBufferSelects1 = buffer_mask[1],
   3594                         .StreamtoBufferSelects2 = buffer_mask[2],
   3595                         .StreamtoBufferSelects3 = buffer_mask[3],
   3596                         .NumEntries0 = decls[0],
   3597                         .NumEntries1 = decls[1],
   3598                         .NumEntries2 = decls[2],
   3599                         .NumEntries3 = decls[3]);
   3600 
   3601    for (int i = 0; i < max_decls; i++) {
   3602       GENX(SO_DECL_ENTRY_pack)(
   3603          brw, dw + 2 + i * 2,
   3604          &(struct GENX(SO_DECL_ENTRY)) {
   3605             .Stream0Decl = so_decl[0][i],
   3606             .Stream1Decl = so_decl[1][i],
   3607             .Stream2Decl = so_decl[2][i],
   3608             .Stream3Decl = so_decl[3][i],
   3609          });
   3610    }
   3611 }
   3612 
   3613 static void
   3614 genX(upload_3dstate_so_buffers)(struct brw_context *brw)
   3615 {
   3616    struct gl_context *ctx = &brw->ctx;
   3617    /* BRW_NEW_TRANSFORM_FEEDBACK */
   3618    struct gl_transform_feedback_object *xfb_obj =
   3619       ctx->TransformFeedback.CurrentObject;
   3620 #if GEN_GEN < 8
   3621    const struct gl_transform_feedback_info *linked_xfb_info =
   3622       xfb_obj->program->sh.LinkedTransformFeedback;
   3623 #else
   3624    struct brw_transform_feedback_object *brw_obj =
   3625       (struct brw_transform_feedback_object *) xfb_obj;
   3626    uint32_t mocs_wb = GEN_GEN >= 9 ? SKL_MOCS_WB : BDW_MOCS_WB;
   3627 #endif
   3628 
   3629    /* Set up the up to 4 output buffers.  These are the ranges defined in the
   3630     * gl_transform_feedback_object.
   3631     */
   3632    for (int i = 0; i < 4; i++) {
   3633       struct intel_buffer_object *bufferobj =
   3634          intel_buffer_object(xfb_obj->Buffers[i]);
   3635 
   3636       if (!bufferobj) {
   3637          brw_batch_emit(brw, GENX(3DSTATE_SO_BUFFER), sob) {
   3638             sob.SOBufferIndex = i;
   3639          }
   3640          continue;
   3641       }
   3642 
   3643       uint32_t start = xfb_obj->Offset[i];
   3644       assert(start % 4 == 0);
   3645       uint32_t end = ALIGN(start + xfb_obj->Size[i], 4);
   3646       struct brw_bo *bo =
   3647          intel_bufferobj_buffer(brw, bufferobj, start, end - start, true);
   3648       assert(end <= bo->size);
   3649 
   3650       brw_batch_emit(brw, GENX(3DSTATE_SO_BUFFER), sob) {
   3651          sob.SOBufferIndex = i;
   3652 
   3653          sob.SurfaceBaseAddress = rw_bo(bo, start);
   3654 #if GEN_GEN < 8
   3655          sob.SurfacePitch = linked_xfb_info->Buffers[i].Stride * 4;
   3656          sob.SurfaceEndAddress = rw_bo(bo, end);
   3657 #else
   3658          sob.SOBufferEnable = true;
   3659          sob.StreamOffsetWriteEnable = true;
   3660          sob.StreamOutputBufferOffsetAddressEnable = true;
   3661          sob.SOBufferMOCS = mocs_wb;
   3662 
   3663          sob.SurfaceSize = MAX2(xfb_obj->Size[i] / 4, 1) - 1;
   3664          sob.StreamOutputBufferOffsetAddress =
   3665             rw_bo(brw_obj->offset_bo, i * sizeof(uint32_t));
   3666 
   3667          if (brw_obj->zero_offsets) {
   3668             /* Zero out the offset and write that to offset_bo */
   3669             sob.StreamOffset = 0;
   3670          } else {
   3671             /* Use offset_bo as the "Stream Offset." */
   3672             sob.StreamOffset = 0xFFFFFFFF;
   3673          }
   3674 #endif
   3675       }
   3676    }
   3677 
   3678 #if GEN_GEN >= 8
   3679    brw_obj->zero_offsets = false;
   3680 #endif
   3681 }
   3682 
   3683 static bool
   3684 query_active(struct gl_query_object *q)
   3685 {
   3686    return q && q->Active;
   3687 }
   3688 
   3689 static void
   3690 genX(upload_3dstate_streamout)(struct brw_context *brw, bool active,
   3691                                const struct brw_vue_map *vue_map)
   3692 {
   3693    struct gl_context *ctx = &brw->ctx;
   3694    /* BRW_NEW_TRANSFORM_FEEDBACK */
   3695    struct gl_transform_feedback_object *xfb_obj =
   3696       ctx->TransformFeedback.CurrentObject;
   3697 
   3698    brw_batch_emit(brw, GENX(3DSTATE_STREAMOUT), sos) {
   3699       if (active) {
   3700          int urb_entry_read_offset = 0;
   3701          int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
   3702             urb_entry_read_offset;
   3703 
   3704          sos.SOFunctionEnable = true;
   3705          sos.SOStatisticsEnable = true;
   3706 
   3707          /* BRW_NEW_RASTERIZER_DISCARD */
   3708          if (ctx->RasterDiscard) {
   3709             if (!query_active(ctx->Query.PrimitivesGenerated[0])) {
   3710                sos.RenderingDisable = true;
   3711             } else {
   3712                perf_debug("Rasterizer discard with a GL_PRIMITIVES_GENERATED "
   3713                           "query active relies on the clipper.\n");
   3714             }
   3715          }
   3716 
   3717          /* _NEW_LIGHT */
   3718          if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION)
   3719             sos.ReorderMode = TRAILING;
   3720 
   3721 #if GEN_GEN < 8
   3722          sos.SOBufferEnable0 = xfb_obj->Buffers[0] != NULL;
   3723          sos.SOBufferEnable1 = xfb_obj->Buffers[1] != NULL;
   3724          sos.SOBufferEnable2 = xfb_obj->Buffers[2] != NULL;
   3725          sos.SOBufferEnable3 = xfb_obj->Buffers[3] != NULL;
   3726 #else
   3727          const struct gl_transform_feedback_info *linked_xfb_info =
   3728             xfb_obj->program->sh.LinkedTransformFeedback;
   3729          /* Set buffer pitches; 0 means unbound. */
   3730          if (xfb_obj->Buffers[0])
   3731             sos.Buffer0SurfacePitch = linked_xfb_info->Buffers[0].Stride * 4;
   3732          if (xfb_obj->Buffers[1])
   3733             sos.Buffer1SurfacePitch = linked_xfb_info->Buffers[1].Stride * 4;
   3734          if (xfb_obj->Buffers[2])
   3735             sos.Buffer2SurfacePitch = linked_xfb_info->Buffers[2].Stride * 4;
   3736          if (xfb_obj->Buffers[3])
   3737             sos.Buffer3SurfacePitch = linked_xfb_info->Buffers[3].Stride * 4;
   3738 #endif
   3739 
   3740          /* We always read the whole vertex.  This could be reduced at some
   3741           * point by reading less and offsetting the register index in the
   3742           * SO_DECLs.
   3743           */
   3744          sos.Stream0VertexReadOffset = urb_entry_read_offset;
   3745          sos.Stream0VertexReadLength = urb_entry_read_length - 1;
   3746          sos.Stream1VertexReadOffset = urb_entry_read_offset;
   3747          sos.Stream1VertexReadLength = urb_entry_read_length - 1;
   3748          sos.Stream2VertexReadOffset = urb_entry_read_offset;
   3749          sos.Stream2VertexReadLength = urb_entry_read_length - 1;
   3750          sos.Stream3VertexReadOffset = urb_entry_read_offset;
   3751          sos.Stream3VertexReadLength = urb_entry_read_length - 1;
   3752       }
   3753    }
   3754 }
   3755 
   3756 static void
   3757 genX(upload_sol)(struct brw_context *brw)
   3758 {
   3759    struct gl_context *ctx = &brw->ctx;
   3760    /* BRW_NEW_TRANSFORM_FEEDBACK */
   3761    bool active = _mesa_is_xfb_active_and_unpaused(ctx);
   3762 
   3763    if (active) {
   3764       genX(upload_3dstate_so_buffers)(brw);
   3765 
   3766       /* BRW_NEW_VUE_MAP_GEOM_OUT */
   3767       genX(upload_3dstate_so_decl_list)(brw, &brw->vue_map_geom_out);
   3768    }
   3769 
   3770    /* Finally, set up the SOL stage.  This command must always follow updates to
   3771     * the nonpipelined SOL state (3DSTATE_SO_BUFFER, 3DSTATE_SO_DECL_LIST) or
   3772     * MMIO register updates (current performed by the kernel at each batch
   3773     * emit).
   3774     */
   3775    genX(upload_3dstate_streamout)(brw, active, &brw->vue_map_geom_out);
   3776 }
   3777 
   3778 static const struct brw_tracked_state genX(sol_state) = {
   3779    .dirty = {
   3780       .mesa  = _NEW_LIGHT,
   3781       .brw   = BRW_NEW_BATCH |
   3782                BRW_NEW_BLORP |
   3783                BRW_NEW_RASTERIZER_DISCARD |
   3784                BRW_NEW_VUE_MAP_GEOM_OUT |
   3785                BRW_NEW_TRANSFORM_FEEDBACK,
   3786    },
   3787    .emit = genX(upload_sol),
   3788 };
   3789 #endif
   3790 
   3791 /* ---------------------------------------------------------------------- */
   3792 
   3793 #if GEN_GEN >= 7
   3794 static void
   3795 genX(upload_ps)(struct brw_context *brw)
   3796 {
   3797    UNUSED const struct gl_context *ctx = &brw->ctx;
   3798    UNUSED const struct gen_device_info *devinfo = &brw->screen->devinfo;
   3799 
   3800    /* BRW_NEW_FS_PROG_DATA */
   3801    const struct brw_wm_prog_data *prog_data =
   3802       brw_wm_prog_data(brw->wm.base.prog_data);
   3803    const struct brw_stage_state *stage_state = &brw->wm.base;
   3804 
   3805 #if GEN_GEN < 8
   3806 #endif
   3807 
   3808    brw_batch_emit(brw, GENX(3DSTATE_PS), ps) {
   3809       /* Initialize the execution mask with VMask.  Otherwise, derivatives are
   3810        * incorrect for subspans where some of the pixels are unlit.  We believe
   3811        * the bit just didn't take effect in previous generations.
   3812        */
   3813       ps.VectorMaskEnable = GEN_GEN >= 8;
   3814 
   3815       ps.SamplerCount =
   3816          DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4);
   3817 
   3818       /* BRW_NEW_FS_PROG_DATA */
   3819       ps.BindingTableEntryCount = prog_data->base.binding_table.size_bytes / 4;
   3820 
   3821       if (prog_data->base.use_alt_mode)
   3822          ps.FloatingPointMode = Alternate;
   3823 
   3824       /* Haswell requires the sample mask to be set in this packet as well as
   3825        * in 3DSTATE_SAMPLE_MASK; the values should match.
   3826        */
   3827 
   3828       /* _NEW_BUFFERS, _NEW_MULTISAMPLE */
   3829 #if GEN_IS_HASWELL
   3830       ps.SampleMask = genX(determine_sample_mask(brw));
   3831 #endif
   3832 
   3833       /* 3DSTATE_PS expects the number of threads per PSD, which is always 64;
   3834        * it implicitly scales for different GT levels (which have some # of
   3835        * PSDs).
   3836        *
   3837        * In Gen8 the format is U8-2 whereas in Gen9 it is U8-1.
   3838        */
   3839 #if GEN_GEN >= 9
   3840       ps.MaximumNumberofThreadsPerPSD = 64 - 1;
   3841 #elif GEN_GEN >= 8
   3842       ps.MaximumNumberofThreadsPerPSD = 64 - 2;
   3843 #else
   3844       ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
   3845 #endif
   3846 
   3847       if (prog_data->base.nr_params > 0 ||
   3848           prog_data->base.ubo_ranges[0].length > 0)
   3849          ps.PushConstantEnable = true;
   3850 
   3851 #if GEN_GEN < 8
   3852       /* From the IVB PRM, volume 2 part 1, page 287:
   3853        * "This bit is inserted in the PS payload header and made available to
   3854        * the DataPort (either via the message header or via header bypass) to
   3855        * indicate that oMask data (one or two phases) is included in Render
   3856        * Target Write messages. If present, the oMask data is used to mask off
   3857        * samples."
   3858        */
   3859       ps.oMaskPresenttoRenderTarget = prog_data->uses_omask;
   3860 
   3861       /* The hardware wedges if you have this bit set but don't turn on any
   3862        * dual source blend factors.
   3863        *
   3864        * BRW_NEW_FS_PROG_DATA | _NEW_COLOR
   3865        */
   3866       ps.DualSourceBlendEnable = prog_data->dual_src_blend &&
   3867                                  (ctx->Color.BlendEnabled & 1) &&
   3868                                  ctx->Color.Blend[0]._UsesDualSrc;
   3869 
   3870       /* BRW_NEW_FS_PROG_DATA */
   3871       ps.AttributeEnable = (prog_data->num_varying_inputs != 0);
   3872 #endif
   3873 
   3874       /* From the documentation for this packet:
   3875        * "If the PS kernel does not need the Position XY Offsets to
   3876        *  compute a Position Value, then this field should be programmed
   3877        *  to POSOFFSET_NONE."
   3878        *
   3879        * "SW Recommendation: If the PS kernel needs the Position Offsets
   3880        *  to compute a Position XY value, this field should match Position
   3881        *  ZW Interpolation Mode to ensure a consistent position.xyzw
   3882        *  computation."
   3883        *
   3884        * We only require XY sample offsets. So, this recommendation doesn't
   3885        * look useful at the moment. We might need this in future.
   3886        */
   3887       if (prog_data->uses_pos_offset)
   3888          ps.PositionXYOffsetSelect = POSOFFSET_SAMPLE;
   3889       else
   3890          ps.PositionXYOffsetSelect = POSOFFSET_NONE;
   3891 
   3892       ps._8PixelDispatchEnable = prog_data->dispatch_8;
   3893       ps._16PixelDispatchEnable = prog_data->dispatch_16;
   3894       ps.DispatchGRFStartRegisterForConstantSetupData0 =
   3895          prog_data->base.dispatch_grf_start_reg;
   3896       ps.DispatchGRFStartRegisterForConstantSetupData2 =
   3897          prog_data->dispatch_grf_start_reg_2;
   3898 
   3899       ps.KernelStartPointer0 = stage_state->prog_offset;
   3900       ps.KernelStartPointer2 = stage_state->prog_offset +
   3901          prog_data->prog_offset_2;
   3902 
   3903       if (prog_data->base.total_scratch) {
   3904          ps.ScratchSpaceBasePointer =
   3905             rw_bo(stage_state->scratch_bo,
   3906                   ffs(stage_state->per_thread_scratch) - 11);
   3907       }
   3908    }
   3909 }
   3910 
   3911 static const struct brw_tracked_state genX(ps_state) = {
   3912    .dirty = {
   3913       .mesa  = _NEW_MULTISAMPLE |
   3914                (GEN_GEN < 8 ? _NEW_BUFFERS |
   3915                               _NEW_COLOR
   3916                             : 0),
   3917       .brw   = BRW_NEW_BATCH |
   3918                BRW_NEW_BLORP |
   3919                BRW_NEW_FS_PROG_DATA,
   3920    },
   3921    .emit = genX(upload_ps),
   3922 };
   3923 #endif
   3924 
   3925 /* ---------------------------------------------------------------------- */
   3926 
   3927 #if GEN_GEN >= 7
   3928 static void
   3929 genX(upload_hs_state)(struct brw_context *brw)
   3930 {
   3931    const struct gen_device_info *devinfo = &brw->screen->devinfo;
   3932    struct brw_stage_state *stage_state = &brw->tcs.base;
   3933    struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
   3934    const struct brw_vue_prog_data *vue_prog_data =
   3935       brw_vue_prog_data(stage_prog_data);
   3936 
   3937    /* BRW_NEW_TES_PROG_DATA */
   3938    struct brw_tcs_prog_data *tcs_prog_data =
   3939       brw_tcs_prog_data(stage_prog_data);
   3940 
   3941    if (!tcs_prog_data) {
   3942       brw_batch_emit(brw, GENX(3DSTATE_HS), hs);
   3943    } else {
   3944       brw_batch_emit(brw, GENX(3DSTATE_HS), hs) {
   3945          INIT_THREAD_DISPATCH_FIELDS(hs, Vertex);
   3946 
   3947          hs.InstanceCount = tcs_prog_data->instances - 1;
   3948          hs.IncludeVertexHandles = true;
   3949 
   3950          hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
   3951       }
   3952    }
   3953 }
   3954 
   3955 static const struct brw_tracked_state genX(hs_state) = {
   3956    .dirty = {
   3957       .mesa  = 0,
   3958       .brw   = BRW_NEW_BATCH |
   3959                BRW_NEW_BLORP |
   3960                BRW_NEW_TCS_PROG_DATA |
   3961                BRW_NEW_TESS_PROGRAMS,
   3962    },
   3963    .emit = genX(upload_hs_state),
   3964 };
   3965 
   3966 static void
   3967 genX(upload_ds_state)(struct brw_context *brw)
   3968 {
   3969    const struct gen_device_info *devinfo = &brw->screen->devinfo;
   3970    const struct brw_stage_state *stage_state = &brw->tes.base;
   3971    struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
   3972 
   3973    /* BRW_NEW_TES_PROG_DATA */
   3974    const struct brw_tes_prog_data *tes_prog_data =
   3975       brw_tes_prog_data(stage_prog_data);
   3976    const struct brw_vue_prog_data *vue_prog_data =
   3977       brw_vue_prog_data(stage_prog_data);
   3978 
   3979    if (!tes_prog_data) {
   3980       brw_batch_emit(brw, GENX(3DSTATE_DS), ds);
   3981    } else {
   3982       brw_batch_emit(brw, GENX(3DSTATE_DS), ds) {
   3983          INIT_THREAD_DISPATCH_FIELDS(ds, Patch);
   3984 
   3985         ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
   3986         ds.ComputeWCoordinateEnable =
   3987            tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
   3988 
   3989 #if GEN_GEN >= 8
   3990         if (vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8)
   3991            ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
   3992         ds.UserClipDistanceCullTestEnableBitmask =
   3993             vue_prog_data->cull_distance_mask;
   3994 #endif
   3995       }
   3996    }
   3997 }
   3998 
   3999 static const struct brw_tracked_state genX(ds_state) = {
   4000    .dirty = {
   4001       .mesa  = 0,
   4002       .brw   = BRW_NEW_BATCH |
   4003                BRW_NEW_BLORP |
   4004                BRW_NEW_TESS_PROGRAMS |
   4005                BRW_NEW_TES_PROG_DATA,
   4006    },
   4007    .emit = genX(upload_ds_state),
   4008 };
   4009 
   4010 /* ---------------------------------------------------------------------- */
   4011 
   4012 static void
   4013 upload_te_state(struct brw_context *brw)
   4014 {
   4015    /* BRW_NEW_TESS_PROGRAMS */
   4016    bool active = brw->programs[MESA_SHADER_TESS_EVAL];
   4017 
   4018    /* BRW_NEW_TES_PROG_DATA */
   4019    const struct brw_tes_prog_data *tes_prog_data =
   4020       brw_tes_prog_data(brw->tes.base.prog_data);
   4021 
   4022    if (active) {
   4023       brw_batch_emit(brw, GENX(3DSTATE_TE), te) {
   4024          te.Partitioning = tes_prog_data->partitioning;
   4025          te.OutputTopology = tes_prog_data->output_topology;
   4026          te.TEDomain = tes_prog_data->domain;
   4027          te.TEEnable = true;
   4028          te.MaximumTessellationFactorOdd = 63.0;
   4029          te.MaximumTessellationFactorNotOdd = 64.0;
   4030       }
   4031    } else {
   4032       brw_batch_emit(brw, GENX(3DSTATE_TE), te);
   4033    }
   4034 }
   4035 
   4036 static const struct brw_tracked_state genX(te_state) = {
   4037    .dirty = {
   4038       .mesa  = 0,
   4039       .brw   = BRW_NEW_BLORP |
   4040                BRW_NEW_CONTEXT |
   4041                BRW_NEW_TES_PROG_DATA |
   4042                BRW_NEW_TESS_PROGRAMS,
   4043    },
   4044    .emit = upload_te_state,
   4045 };
   4046 
   4047 /* ---------------------------------------------------------------------- */
   4048 
   4049 static void
   4050 genX(upload_tes_push_constants)(struct brw_context *brw)
   4051 {
   4052    struct brw_stage_state *stage_state = &brw->tes.base;
   4053    /* BRW_NEW_TESS_PROGRAMS */
   4054    const struct gl_program *tep = brw->programs[MESA_SHADER_TESS_EVAL];
   4055 
   4056    /* BRW_NEW_TES_PROG_DATA */
   4057    const struct brw_stage_prog_data *prog_data = brw->tes.base.prog_data;
   4058    gen6_upload_push_constants(brw, tep, prog_data, stage_state);
   4059 }
   4060 
   4061 static const struct brw_tracked_state genX(tes_push_constants) = {
   4062    .dirty = {
   4063       .mesa  = _NEW_PROGRAM_CONSTANTS,
   4064       .brw   = BRW_NEW_BATCH |
   4065                BRW_NEW_BLORP |
   4066                BRW_NEW_TESS_PROGRAMS |
   4067                BRW_NEW_TES_PROG_DATA,
   4068    },
   4069    .emit = genX(upload_tes_push_constants),
   4070 };
   4071 
   4072 static void
   4073 genX(upload_tcs_push_constants)(struct brw_context *brw)
   4074 {
   4075    struct brw_stage_state *stage_state = &brw->tcs.base;
   4076    /* BRW_NEW_TESS_PROGRAMS */
   4077    const struct gl_program *tcp = brw->programs[MESA_SHADER_TESS_CTRL];
   4078 
   4079    /* BRW_NEW_TCS_PROG_DATA */
   4080    const struct brw_stage_prog_data *prog_data = brw->tcs.base.prog_data;
   4081 
   4082    gen6_upload_push_constants(brw, tcp, prog_data, stage_state);
   4083 }
   4084 
   4085 static const struct brw_tracked_state genX(tcs_push_constants) = {
   4086    .dirty = {
   4087       .mesa  = _NEW_PROGRAM_CONSTANTS,
   4088       .brw   = BRW_NEW_BATCH |
   4089                BRW_NEW_BLORP |
   4090                BRW_NEW_DEFAULT_TESS_LEVELS |
   4091                BRW_NEW_TESS_PROGRAMS |
   4092                BRW_NEW_TCS_PROG_DATA,
   4093    },
   4094    .emit = genX(upload_tcs_push_constants),
   4095 };
   4096 
   4097 #endif
   4098 
   4099 /* ---------------------------------------------------------------------- */
   4100 
   4101 #if GEN_GEN >= 7
   4102 static void
   4103 genX(upload_cs_push_constants)(struct brw_context *brw)
   4104 {
   4105    struct brw_stage_state *stage_state = &brw->cs.base;
   4106 
   4107    /* BRW_NEW_COMPUTE_PROGRAM */
   4108    const struct gl_program *cp = brw->programs[MESA_SHADER_COMPUTE];
   4109 
   4110    if (cp) {
   4111       /* BRW_NEW_CS_PROG_DATA */
   4112       struct brw_cs_prog_data *cs_prog_data =
   4113          brw_cs_prog_data(brw->cs.base.prog_data);
   4114 
   4115       _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_COMPUTE);
   4116       brw_upload_cs_push_constants(brw, cp, cs_prog_data, stage_state);
   4117    }
   4118 }
   4119 
   4120 const struct brw_tracked_state genX(cs_push_constants) = {
   4121    .dirty = {
   4122       .mesa = _NEW_PROGRAM_CONSTANTS,
   4123       .brw = BRW_NEW_BATCH |
   4124              BRW_NEW_BLORP |
   4125              BRW_NEW_COMPUTE_PROGRAM |
   4126              BRW_NEW_CS_PROG_DATA,
   4127    },
   4128    .emit = genX(upload_cs_push_constants),
   4129 };
   4130 
   4131 /**
   4132  * Creates a new CS constant buffer reflecting the current CS program's
   4133  * constants, if needed by the CS program.
   4134  */
   4135 static void
   4136 genX(upload_cs_pull_constants)(struct brw_context *brw)
   4137 {
   4138    struct brw_stage_state *stage_state = &brw->cs.base;
   4139 
   4140    /* BRW_NEW_COMPUTE_PROGRAM */
   4141    struct brw_program *cp =
   4142       (struct brw_program *) brw->programs[MESA_SHADER_COMPUTE];
   4143 
   4144    /* BRW_NEW_CS_PROG_DATA */
   4145    const struct brw_stage_prog_data *prog_data = brw->cs.base.prog_data;
   4146 
   4147    _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_COMPUTE);
   4148    /* _NEW_PROGRAM_CONSTANTS */
   4149    brw_upload_pull_constants(brw, BRW_NEW_SURFACES, &cp->program,
   4150                              stage_state, prog_data);
   4151 }
   4152 
   4153 const struct brw_tracked_state genX(cs_pull_constants) = {
   4154    .dirty = {
   4155       .mesa = _NEW_PROGRAM_CONSTANTS,
   4156       .brw = BRW_NEW_BATCH |
   4157              BRW_NEW_BLORP |
   4158              BRW_NEW_COMPUTE_PROGRAM |
   4159              BRW_NEW_CS_PROG_DATA,
   4160    },
   4161    .emit = genX(upload_cs_pull_constants),
   4162 };
   4163 
   4164 static void
   4165 genX(upload_cs_state)(struct brw_context *brw)
   4166 {
   4167    if (!brw->cs.base.prog_data)
   4168       return;
   4169 
   4170    uint32_t offset;
   4171    uint32_t *desc = (uint32_t*) brw_state_batch(
   4172       brw, GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t), 64,
   4173       &offset);
   4174 
   4175    struct brw_stage_state *stage_state = &brw->cs.base;
   4176    struct brw_stage_prog_data *prog_data = stage_state->prog_data;
   4177    struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
   4178    const struct gen_device_info *devinfo = &brw->screen->devinfo;
   4179 
   4180    if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
   4181       brw_emit_buffer_surface_state(
   4182          brw, &stage_state->surf_offset[
   4183                  prog_data->binding_table.shader_time_start],
   4184          brw->shader_time.bo, 0, ISL_FORMAT_RAW,
   4185          brw->shader_time.bo->size, 1,
   4186          RELOC_WRITE);
   4187    }
   4188 
   4189    uint32_t *bind = brw_state_batch(brw, prog_data->binding_table.size_bytes,
   4190                                     32, &stage_state->bind_bo_offset);
   4191 
   4192    /* The MEDIA_VFE_STATE documentation for Gen8+ says:
   4193     *
   4194     * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
   4195     *  the only bits that are changed are scoreboard related: Scoreboard
   4196     *  Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
   4197     *  these scoreboard related states, a MEDIA_STATE_FLUSH is sufficient."
   4198     *
   4199     * Earlier generations say "MI_FLUSH" instead of "stalling PIPE_CONTROL",
   4200     * but MI_FLUSH isn't really a thing, so we assume they meant PIPE_CONTROL.
   4201     */
   4202    brw_emit_pipe_control_flush(brw, PIPE_CONTROL_CS_STALL);
   4203 
   4204    brw_batch_emit(brw, GENX(MEDIA_VFE_STATE), vfe) {
   4205       if (prog_data->total_scratch) {
   4206          uint32_t per_thread_scratch_value;
   4207 
   4208          if (GEN_GEN >= 8) {
   4209             /* Broadwell's Per Thread Scratch Space is in the range [0, 11]
   4210              * where 0 = 1k, 1 = 2k, 2 = 4k, ..., 11 = 2M.
   4211              */
   4212             per_thread_scratch_value = ffs(stage_state->per_thread_scratch) - 11;
   4213          } else if (GEN_IS_HASWELL) {
   4214             /* Haswell's Per Thread Scratch Space is in the range [0, 10]
   4215              * where 0 = 2k, 1 = 4k, 2 = 8k, ..., 10 = 2M.
   4216              */
   4217             per_thread_scratch_value = ffs(stage_state->per_thread_scratch) - 12;
   4218          } else {
   4219             /* Earlier platforms use the range [0, 11] to mean [1kB, 12kB]
   4220              * where 0 = 1kB, 1 = 2kB, 2 = 3kB, ..., 11 = 12kB.
   4221              */
   4222             per_thread_scratch_value = stage_state->per_thread_scratch / 1024 - 1;
   4223          }
   4224          vfe.ScratchSpaceBasePointer = rw_bo(stage_state->scratch_bo, 0);
   4225          vfe.PerThreadScratchSpace = per_thread_scratch_value;
   4226       }
   4227 
   4228       /* If brw->screen->subslice_total is greater than one, then
   4229        * devinfo->max_cs_threads stores number of threads per sub-slice;
   4230        * thus we need to multiply by that number by subslices to get
   4231        * the actual maximum number of threads; the -1 is because the HW
   4232        * has a bias of 1 (would not make sense to say the maximum number
   4233        * of threads is 0).
   4234        */
   4235       const uint32_t subslices = MAX2(brw->screen->subslice_total, 1);
   4236       vfe.MaximumNumberofThreads = devinfo->max_cs_threads * subslices - 1;
   4237       vfe.NumberofURBEntries = GEN_GEN >= 8 ? 2 : 0;
   4238       vfe.ResetGatewayTimer =
   4239          Resettingrelativetimerandlatchingtheglobaltimestamp;
   4240 #if GEN_GEN < 9
   4241       vfe.BypassGatewayControl = BypassingOpenGatewayCloseGatewayprotocol;
   4242 #endif
   4243 #if GEN_GEN == 7
   4244       vfe.GPGPUMode = 1;
   4245 #endif
   4246 
   4247       /* We are uploading duplicated copies of push constant uniforms for each
   4248        * thread. Although the local id data needs to vary per thread, it won't
   4249        * change for other uniform data. Unfortunately this duplication is
   4250        * required for gen7. As of Haswell, this duplication can be avoided,
   4251        * but this older mechanism with duplicated data continues to work.
   4252        *
   4253        * FINISHME: As of Haswell, we could make use of the
   4254        * INTERFACE_DESCRIPTOR_DATA "Cross-Thread Constant Data Read Length"
   4255        * field to only store one copy of uniform data.
   4256        *
   4257        * FINISHME: Broadwell adds a new alternative "Indirect Payload Storage"
   4258        * which is described in the GPGPU_WALKER command and in the Broadwell
   4259        * PRM Volume 7: 3D Media GPGPU, under Media GPGPU Pipeline => Mode of
   4260        * Operations => GPGPU Mode => Indirect Payload Storage.
   4261        *
   4262        * Note: The constant data is built in brw_upload_cs_push_constants
   4263        * below.
   4264        */
   4265       vfe.URBEntryAllocationSize = GEN_GEN >= 8 ? 2 : 0;
   4266 
   4267       const uint32_t vfe_curbe_allocation =
   4268          ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
   4269                cs_prog_data->push.cross_thread.regs, 2);
   4270       vfe.CURBEAllocationSize = vfe_curbe_allocation;
   4271    }
   4272 
   4273    if (cs_prog_data->push.total.size > 0) {
   4274       brw_batch_emit(brw, GENX(MEDIA_CURBE_LOAD), curbe) {
   4275          curbe.CURBETotalDataLength =
   4276             ALIGN(cs_prog_data->push.total.size, 64);
   4277          curbe.CURBEDataStartAddress = stage_state->push_const_offset;
   4278       }
   4279    }
   4280 
   4281    /* BRW_NEW_SURFACES and BRW_NEW_*_CONSTBUF */
   4282    memcpy(bind, stage_state->surf_offset,
   4283           prog_data->binding_table.size_bytes);
   4284    const struct GENX(INTERFACE_DESCRIPTOR_DATA) idd = {
   4285       .KernelStartPointer = brw->cs.base.prog_offset,
   4286       .SamplerStatePointer = stage_state->sampler_offset,
   4287       .SamplerCount = DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4),
   4288       .BindingTablePointer = stage_state->bind_bo_offset,
   4289       .ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs,
   4290       .NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads,
   4291       .SharedLocalMemorySize = encode_slm_size(GEN_GEN,
   4292                                                prog_data->total_shared),
   4293       .BarrierEnable = cs_prog_data->uses_barrier,
   4294 #if GEN_GEN >= 8 || GEN_IS_HASWELL
   4295       .CrossThreadConstantDataReadLength =
   4296          cs_prog_data->push.cross_thread.regs,
   4297 #endif
   4298    };
   4299 
   4300    GENX(INTERFACE_DESCRIPTOR_DATA_pack)(brw, desc, &idd);
   4301 
   4302    brw_batch_emit(brw, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
   4303       load.InterfaceDescriptorTotalLength =
   4304          GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
   4305       load.InterfaceDescriptorDataStartAddress = offset;
   4306    }
   4307 }
   4308 
   4309 static const struct brw_tracked_state genX(cs_state) = {
   4310    .dirty = {
   4311       .mesa = _NEW_PROGRAM_CONSTANTS,
   4312       .brw = BRW_NEW_BATCH |
   4313              BRW_NEW_BLORP |
   4314              BRW_NEW_CS_PROG_DATA |
   4315              BRW_NEW_SAMPLER_STATE_TABLE |
   4316              BRW_NEW_SURFACES,
   4317    },
   4318    .emit = genX(upload_cs_state)
   4319 };
   4320 
   4321 #endif
   4322 
   4323 /* ---------------------------------------------------------------------- */
   4324 
   4325 #if GEN_GEN >= 8
   4326 static void
   4327 genX(upload_raster)(struct brw_context *brw)
   4328 {
   4329    const struct gl_context *ctx = &brw->ctx;
   4330 
   4331    /* _NEW_BUFFERS */
   4332    const bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
   4333 
   4334    /* _NEW_POLYGON */
   4335    const struct gl_polygon_attrib *polygon = &ctx->Polygon;
   4336 
   4337    /* _NEW_POINT */
   4338    const struct gl_point_attrib *point = &ctx->Point;
   4339 
   4340    brw_batch_emit(brw, GENX(3DSTATE_RASTER), raster) {
   4341       if (brw->polygon_front_bit == render_to_fbo)
   4342          raster.FrontWinding = CounterClockwise;
   4343 
   4344       if (polygon->CullFlag) {
   4345          switch (polygon->CullFaceMode) {
   4346          case GL_FRONT:
   4347             raster.CullMode = CULLMODE_FRONT;
   4348             break;
   4349          case GL_BACK:
   4350             raster.CullMode = CULLMODE_BACK;
   4351             break;
   4352          case GL_FRONT_AND_BACK:
   4353             raster.CullMode = CULLMODE_BOTH;
   4354             break;
   4355          default:
   4356             unreachable("not reached");
   4357          }
   4358       } else {
   4359          raster.CullMode = CULLMODE_NONE;
   4360       }
   4361 
   4362       raster.SmoothPointEnable = point->SmoothFlag;
   4363 
   4364       raster.DXMultisampleRasterizationEnable =
   4365          _mesa_is_multisample_enabled(ctx);
   4366 
   4367       raster.GlobalDepthOffsetEnableSolid = polygon->OffsetFill;
   4368       raster.GlobalDepthOffsetEnableWireframe = polygon->OffsetLine;
   4369       raster.GlobalDepthOffsetEnablePoint = polygon->OffsetPoint;
   4370 
   4371       switch (polygon->FrontMode) {
   4372       case GL_FILL:
   4373          raster.FrontFaceFillMode = FILL_MODE_SOLID;
   4374          break;
   4375       case GL_LINE:
   4376          raster.FrontFaceFillMode = FILL_MODE_WIREFRAME;
   4377          break;
   4378       case GL_POINT:
   4379          raster.FrontFaceFillMode = FILL_MODE_POINT;
   4380          break;
   4381       default:
   4382          unreachable("not reached");
   4383       }
   4384 
   4385       switch (polygon->BackMode) {
   4386       case GL_FILL:
   4387          raster.BackFaceFillMode = FILL_MODE_SOLID;
   4388          break;
   4389       case GL_LINE:
   4390          raster.BackFaceFillMode = FILL_MODE_WIREFRAME;
   4391          break;
   4392       case GL_POINT:
   4393          raster.BackFaceFillMode = FILL_MODE_POINT;
   4394          break;
   4395       default:
   4396          unreachable("not reached");
   4397       }
   4398 
   4399       /* _NEW_LINE */
   4400       raster.AntialiasingEnable = ctx->Line.SmoothFlag;
   4401 
   4402 #if GEN_GEN == 10
   4403       /* _NEW_BUFFERS
   4404        * Antialiasing Enable bit MUST not be set when NUM_MULTISAMPLES > 1.
   4405        */
   4406       const bool multisampled_fbo =
   4407          _mesa_geometric_samples(ctx->DrawBuffer) > 1;
   4408       if (multisampled_fbo)
   4409          raster.AntialiasingEnable = false;
   4410 #endif
   4411 
   4412       /* _NEW_SCISSOR */
   4413       raster.ScissorRectangleEnable = ctx->Scissor.EnableFlags;
   4414 
   4415       /* _NEW_TRANSFORM */
   4416       if (!ctx->Transform.DepthClamp) {
   4417 #if GEN_GEN >= 9
   4418          raster.ViewportZFarClipTestEnable = true;
   4419          raster.ViewportZNearClipTestEnable = true;
   4420 #else
   4421          raster.ViewportZClipTestEnable = true;
   4422 #endif
   4423       }
   4424 
   4425       /* BRW_NEW_CONSERVATIVE_RASTERIZATION */
   4426 #if GEN_GEN >= 9
   4427       raster.ConservativeRasterizationEnable =
   4428          ctx->IntelConservativeRasterization;
   4429 #endif
   4430 
   4431       raster.GlobalDepthOffsetClamp = polygon->OffsetClamp;
   4432       raster.GlobalDepthOffsetScale = polygon->OffsetFactor;
   4433 
   4434       raster.GlobalDepthOffsetConstant = polygon->OffsetUnits * 2;
   4435    }
   4436 }
   4437 
   4438 static const struct brw_tracked_state genX(raster_state) = {
   4439    .dirty = {
   4440       .mesa  = _NEW_BUFFERS |
   4441                _NEW_LINE |
   4442                _NEW_MULTISAMPLE |
   4443                _NEW_POINT |
   4444                _NEW_POLYGON |
   4445                _NEW_SCISSOR |
   4446                _NEW_TRANSFORM,
   4447       .brw   = BRW_NEW_BLORP |
   4448                BRW_NEW_CONTEXT |
   4449                BRW_NEW_CONSERVATIVE_RASTERIZATION,
   4450    },
   4451    .emit = genX(upload_raster),
   4452 };
   4453 #endif
   4454 
   4455 /* ---------------------------------------------------------------------- */
   4456 
   4457 #if GEN_GEN >= 8
   4458 static void
   4459 genX(upload_ps_extra)(struct brw_context *brw)
   4460 {
   4461    UNUSED struct gl_context *ctx = &brw->ctx;
   4462 
   4463    const struct brw_wm_prog_data *prog_data =
   4464       brw_wm_prog_data(brw->wm.base.prog_data);
   4465 
   4466    brw_batch_emit(brw, GENX(3DSTATE_PS_EXTRA), psx) {
   4467       psx.PixelShaderValid = true;
   4468       psx.PixelShaderComputedDepthMode = prog_data->computed_depth_mode;
   4469       psx.PixelShaderKillsPixel = prog_data->uses_kill;
   4470       psx.AttributeEnable = prog_data->num_varying_inputs != 0;
   4471       psx.PixelShaderUsesSourceDepth = prog_data->uses_src_depth;
   4472       psx.PixelShaderUsesSourceW = prog_data->uses_src_w;
   4473       psx.PixelShaderIsPerSample = prog_data->persample_dispatch;
   4474 
   4475       /* _NEW_MULTISAMPLE | BRW_NEW_CONSERVATIVE_RASTERIZATION */
   4476       if (prog_data->uses_sample_mask) {
   4477 #if GEN_GEN >= 9
   4478          if (prog_data->post_depth_coverage)
   4479             psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
   4480          else if (prog_data->inner_coverage && ctx->IntelConservativeRasterization)
   4481             psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
   4482          else
   4483             psx.InputCoverageMaskState = ICMS_NORMAL;
   4484 #else
   4485          psx.PixelShaderUsesInputCoverageMask = true;
   4486 #endif
   4487       }
   4488 
   4489       psx.oMaskPresenttoRenderTarget = prog_data->uses_omask;
   4490 #if GEN_GEN >= 9
   4491       psx.PixelShaderPullsBary = prog_data->pulls_bary;
   4492       psx.PixelShaderComputesStencil = prog_data->computed_stencil;
   4493 #endif
   4494 
   4495       /* The stricter cross-primitive coherency guarantees that the hardware
   4496        * gives us with the "Accesses UAV" bit set for at least one shader stage
   4497        * and the "UAV coherency required" bit set on the 3DPRIMITIVE command
   4498        * are redundant within the current image, atomic counter and SSBO GL
   4499        * APIs, which all have very loose ordering and coherency requirements
   4500        * and generally rely on the application to insert explicit barriers when
   4501        * a shader invocation is expected to see the memory writes performed by
   4502        * the invocations of some previous primitive.  Regardless of the value
   4503        * of "UAV coherency required", the "Accesses UAV" bits will implicitly
   4504        * cause an in most cases useless DC flush when the lowermost stage with
   4505        * the bit set finishes execution.
   4506        *
   4507        * It would be nice to disable it, but in some cases we can't because on
   4508        * Gen8+ it also has an influence on rasterization via the PS UAV-only
   4509        * signal (which could be set independently from the coherency mechanism
   4510        * in the 3DSTATE_WM command on Gen7), and because in some cases it will
   4511        * determine whether the hardware skips execution of the fragment shader
   4512        * or not via the ThreadDispatchEnable signal.  However if we know that
   4513        * GEN8_PS_BLEND_HAS_WRITEABLE_RT is going to be set and
   4514        * GEN8_PSX_PIXEL_SHADER_NO_RT_WRITE is not set it shouldn't make any
   4515        * difference so we may just disable it here.
   4516        *
   4517        * Gen8 hardware tries to compute ThreadDispatchEnable for us but doesn't
   4518        * take into account KillPixels when no depth or stencil writes are
   4519        * enabled.  In order for occlusion queries to work correctly with no
   4520        * attachments, we need to force-enable here.
   4521        *
   4522        * BRW_NEW_FS_PROG_DATA | BRW_NEW_FRAGMENT_PROGRAM | _NEW_BUFFERS |
   4523        * _NEW_COLOR
   4524        */
   4525       if ((prog_data->has_side_effects || prog_data->uses_kill) &&
   4526           !brw_color_buffer_write_enabled(brw))
   4527          psx.PixelShaderHasUAV = true;
   4528    }
   4529 }
   4530 
   4531 const struct brw_tracked_state genX(ps_extra) = {
   4532    .dirty = {
   4533       .mesa  = _NEW_BUFFERS | _NEW_COLOR,
   4534       .brw   = BRW_NEW_BLORP |
   4535                BRW_NEW_CONTEXT |
   4536                BRW_NEW_FRAGMENT_PROGRAM |
   4537                BRW_NEW_FS_PROG_DATA |
   4538                BRW_NEW_CONSERVATIVE_RASTERIZATION,
   4539    },
   4540    .emit = genX(upload_ps_extra),
   4541 };
   4542 #endif
   4543 
   4544 /* ---------------------------------------------------------------------- */
   4545 
   4546 #if GEN_GEN >= 8
   4547 static void
   4548 genX(upload_ps_blend)(struct brw_context *brw)
   4549 {
   4550    struct gl_context *ctx = &brw->ctx;
   4551 
   4552    /* _NEW_BUFFERS */
   4553    struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0];
   4554    const bool buffer0_is_integer = ctx->DrawBuffer->_IntegerBuffers & 0x1;
   4555 
   4556    /* _NEW_COLOR */
   4557    struct gl_colorbuffer_attrib *color = &ctx->Color;
   4558 
   4559    brw_batch_emit(brw, GENX(3DSTATE_PS_BLEND), pb) {
   4560       /* BRW_NEW_FRAGMENT_PROGRAM | _NEW_BUFFERS | _NEW_COLOR */
   4561       pb.HasWriteableRT = brw_color_buffer_write_enabled(brw);
   4562 
   4563       bool alpha_to_one = false;
   4564 
   4565       if (!buffer0_is_integer) {
   4566          /* _NEW_MULTISAMPLE */
   4567 
   4568          if (_mesa_is_multisample_enabled(ctx)) {
   4569             pb.AlphaToCoverageEnable = ctx->Multisample.SampleAlphaToCoverage;
   4570             alpha_to_one = ctx->Multisample.SampleAlphaToOne;
   4571          }
   4572 
   4573          pb.AlphaTestEnable = color->AlphaEnabled;
   4574       }
   4575 
   4576       /* Used for implementing the following bit of GL_EXT_texture_integer:
   4577        * "Per-fragment operations that require floating-point color
   4578        *  components, including multisample alpha operations, alpha test,
   4579        *  blending, and dithering, have no effect when the corresponding
   4580        *  colors are written to an integer color buffer."
   4581        *
   4582        * The OpenGL specification 3.3 (page 196), section 4.1.3 says:
   4583        * "If drawbuffer zero is not NONE and the buffer it references has an
   4584        *  integer format, the SAMPLE_ALPHA_TO_COVERAGE and SAMPLE_ALPHA_TO_ONE
   4585        *  operations are skipped."
   4586        */
   4587       if (rb && !buffer0_is_integer && (color->BlendEnabled & 1)) {
   4588          GLenum eqRGB = color->Blend[0].EquationRGB;
   4589          GLenum eqA = color->Blend[0].EquationA;
   4590          GLenum srcRGB = color->Blend[0].SrcRGB;
   4591          GLenum dstRGB = color->Blend[0].DstRGB;
   4592          GLenum srcA = color->Blend[0].SrcA;
   4593          GLenum dstA = color->Blend[0].DstA;
   4594 
   4595          if (eqRGB == GL_MIN || eqRGB == GL_MAX)
   4596             srcRGB = dstRGB = GL_ONE;
   4597 
   4598          if (eqA == GL_MIN || eqA == GL_MAX)
   4599             srcA = dstA = GL_ONE;
   4600 
   4601          /* Due to hardware limitations, the destination may have information
   4602           * in an alpha channel even when the format specifies no alpha
   4603           * channel. In order to avoid getting any incorrect blending due to
   4604           * that alpha channel, coerce the blend factors to values that will
   4605           * not read the alpha channel, but will instead use the correct
   4606           * implicit value for alpha.
   4607           */
   4608          if (!_mesa_base_format_has_channel(rb->_BaseFormat,
   4609                                             GL_TEXTURE_ALPHA_TYPE)) {
   4610             srcRGB = brw_fix_xRGB_alpha(srcRGB);
   4611             srcA = brw_fix_xRGB_alpha(srcA);
   4612             dstRGB = brw_fix_xRGB_alpha(dstRGB);
   4613             dstA = brw_fix_xRGB_alpha(dstA);
   4614          }
   4615 
   4616          /* Alpha to One doesn't work with Dual Color Blending.  Override
   4617           * SRC1_ALPHA to ONE and ONE_MINUS_SRC1_ALPHA to ZERO.
   4618           */
   4619          if (alpha_to_one && color->Blend[0]._UsesDualSrc) {
   4620             srcRGB = fix_dual_blend_alpha_to_one(srcRGB);
   4621             srcA = fix_dual_blend_alpha_to_one(srcA);
   4622             dstRGB = fix_dual_blend_alpha_to_one(dstRGB);
   4623             dstA = fix_dual_blend_alpha_to_one(dstA);
   4624          }
   4625 
   4626          pb.ColorBufferBlendEnable = true;
   4627          pb.SourceAlphaBlendFactor = brw_translate_blend_factor(srcA);
   4628          pb.DestinationAlphaBlendFactor = brw_translate_blend_factor(dstA);
   4629          pb.SourceBlendFactor = brw_translate_blend_factor(srcRGB);
   4630          pb.DestinationBlendFactor = brw_translate_blend_factor(dstRGB);
   4631 
   4632          pb.IndependentAlphaBlendEnable =
   4633             srcA != srcRGB || dstA != dstRGB || eqA != eqRGB;
   4634       }
   4635    }
   4636 }
   4637 
   4638 static const struct brw_tracked_state genX(ps_blend) = {
   4639    .dirty = {
   4640       .mesa = _NEW_BUFFERS |
   4641               _NEW_COLOR |
   4642               _NEW_MULTISAMPLE,
   4643       .brw = BRW_NEW_BLORP |
   4644              BRW_NEW_CONTEXT |
   4645              BRW_NEW_FRAGMENT_PROGRAM,
   4646    },
   4647    .emit = genX(upload_ps_blend)
   4648 };
   4649 #endif
   4650 
   4651 /* ---------------------------------------------------------------------- */
   4652 
   4653 #if GEN_GEN >= 8
   4654 static void
   4655 genX(emit_vf_topology)(struct brw_context *brw)
   4656 {
   4657    brw_batch_emit(brw, GENX(3DSTATE_VF_TOPOLOGY), vftopo) {
   4658       vftopo.PrimitiveTopologyType = brw->primitive;
   4659    }
   4660 }
   4661 
   4662 static const struct brw_tracked_state genX(vf_topology) = {
   4663    .dirty = {
   4664       .mesa = 0,
   4665       .brw = BRW_NEW_BLORP |
   4666              BRW_NEW_PRIMITIVE,
   4667    },
   4668    .emit = genX(emit_vf_topology),
   4669 };
   4670 #endif
   4671 
   4672 /* ---------------------------------------------------------------------- */
   4673 
   4674 #if GEN_GEN >= 7
   4675 static void
   4676 genX(emit_mi_report_perf_count)(struct brw_context *brw,
   4677                                 struct brw_bo *bo,
   4678                                 uint32_t offset_in_bytes,
   4679                                 uint32_t report_id)
   4680 {
   4681    brw_batch_emit(brw, GENX(MI_REPORT_PERF_COUNT), mi_rpc) {
   4682       mi_rpc.MemoryAddress = ggtt_bo(bo, offset_in_bytes);
   4683       mi_rpc.ReportID = report_id;
   4684    }
   4685 }
   4686 #endif
   4687 
   4688 /* ---------------------------------------------------------------------- */
   4689 
   4690 /**
   4691  * Emit a 3DSTATE_SAMPLER_STATE_POINTERS_{VS,HS,GS,DS,PS} packet.
   4692  */
   4693 static void
   4694 genX(emit_sampler_state_pointers_xs)(struct brw_context *brw,
   4695                                      struct brw_stage_state *stage_state)
   4696 {
   4697 #if GEN_GEN >= 7
   4698    static const uint16_t packet_headers[] = {
   4699       [MESA_SHADER_VERTEX] = 43,
   4700       [MESA_SHADER_TESS_CTRL] = 44,
   4701       [MESA_SHADER_TESS_EVAL] = 45,
   4702       [MESA_SHADER_GEOMETRY] = 46,
   4703       [MESA_SHADER_FRAGMENT] = 47,
   4704    };
   4705 
   4706    /* Ivybridge requires a workaround flush before VS packets. */
   4707    if (GEN_GEN == 7 && !GEN_IS_HASWELL &&
   4708        stage_state->stage == MESA_SHADER_VERTEX) {
   4709       gen7_emit_vs_workaround_flush(brw);
   4710    }
   4711 
   4712    brw_batch_emit(brw, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
   4713       ptr._3DCommandSubOpcode = packet_headers[stage_state->stage];
   4714       ptr.PointertoVSSamplerState = stage_state->sampler_offset;
   4715    }
   4716 #endif
   4717 }
   4718 
   4719 UNUSED static bool
   4720 has_component(mesa_format format, int i)
   4721 {
   4722    if (_mesa_is_format_color_format(format))
   4723       return _mesa_format_has_color_component(format, i);
   4724 
   4725    /* depth and stencil have only one component */
   4726    return i == 0;
   4727 }
   4728 
   4729 /**
   4730  * Upload SAMPLER_BORDER_COLOR_STATE.
   4731  */
   4732 static void
   4733 genX(upload_default_color)(struct brw_context *brw,
   4734                            const struct gl_sampler_object *sampler,
   4735                            mesa_format format, GLenum base_format,
   4736                            bool is_integer_format, bool is_stencil_sampling,
   4737                            uint32_t *sdc_offset)
   4738 {
   4739    union gl_color_union color;
   4740 
   4741    switch (base_format) {
   4742    case GL_DEPTH_COMPONENT:
   4743       /* GL specs that border color for depth textures is taken from the
   4744        * R channel, while the hardware uses A.  Spam R into all the
   4745        * channels for safety.
   4746        */
   4747       color.ui[0] = sampler->BorderColor.ui[0];
   4748       color.ui[1] = sampler->BorderColor.ui[0];
   4749       color.ui[2] = sampler->BorderColor.ui[0];
   4750       color.ui[3] = sampler->BorderColor.ui[0];
   4751       break;
   4752    case GL_ALPHA:
   4753       color.ui[0] = 0u;
   4754       color.ui[1] = 0u;
   4755       color.ui[2] = 0u;
   4756       color.ui[3] = sampler->BorderColor.ui[3];
   4757       break;
   4758    case GL_INTENSITY:
   4759       color.ui[0] = sampler->BorderColor.ui[0];
   4760       color.ui[1] = sampler->BorderColor.ui[0];
   4761       color.ui[2] = sampler->BorderColor.ui[0];
   4762       color.ui[3] = sampler->BorderColor.ui[0];
   4763       break;
   4764    case GL_LUMINANCE:
   4765       color.ui[0] = sampler->BorderColor.ui[0];
   4766       color.ui[1] = sampler->BorderColor.ui[0];
   4767       color.ui[2] = sampler->BorderColor.ui[0];
   4768       color.ui[3] = float_as_int(1.0);
   4769       break;
   4770    case GL_LUMINANCE_ALPHA:
   4771       color.ui[0] = sampler->BorderColor.ui[0];
   4772       color.ui[1] = sampler->BorderColor.ui[0];
   4773       color.ui[2] = sampler->BorderColor.ui[0];
   4774       color.ui[3] = sampler->BorderColor.ui[3];
   4775       break;
   4776    default:
   4777       color.ui[0] = sampler->BorderColor.ui[0];
   4778       color.ui[1] = sampler->BorderColor.ui[1];
   4779       color.ui[2] = sampler->BorderColor.ui[2];
   4780       color.ui[3] = sampler->BorderColor.ui[3];
   4781       break;
   4782    }
   4783 
   4784    /* In some cases we use an RGBA surface format for GL RGB textures,
   4785     * where we've initialized the A channel to 1.0.  We also have to set
   4786     * the border color alpha to 1.0 in that case.
   4787     */
   4788    if (base_format == GL_RGB)
   4789       color.ui[3] = float_as_int(1.0);
   4790 
   4791    int alignment = 32;
   4792    if (GEN_GEN >= 8) {
   4793       alignment = 64;
   4794    } else if (GEN_IS_HASWELL && (is_integer_format || is_stencil_sampling)) {
   4795       alignment = 512;
   4796    }
   4797 
   4798    uint32_t *sdc = brw_state_batch(
   4799       brw, GENX(SAMPLER_BORDER_COLOR_STATE_length) * sizeof(uint32_t),
   4800       alignment, sdc_offset);
   4801 
   4802    struct GENX(SAMPLER_BORDER_COLOR_STATE) state = { 0 };
   4803 
   4804 #define ASSIGN(dst, src) \
   4805    do {                  \
   4806       dst = src;         \
   4807    } while (0)
   4808 
   4809 #define ASSIGNu16(dst, src) \
   4810    do {                     \
   4811       dst = (uint16_t)src;  \
   4812    } while (0)
   4813 
   4814 #define ASSIGNu8(dst, src) \
   4815    do {                    \
   4816       dst = (uint8_t)src;  \
   4817    } while (0)
   4818 
   4819 #define BORDER_COLOR_ATTR(macro, _color_type, src)              \
   4820    macro(state.BorderColor ## _color_type ## Red, src[0]);   \
   4821    macro(state.BorderColor ## _color_type ## Green, src[1]);   \
   4822    macro(state.BorderColor ## _color_type ## Blue, src[2]);   \
   4823    macro(state.BorderColor ## _color_type ## Alpha, src[3]);
   4824 
   4825 #if GEN_GEN >= 8
   4826    /* On Broadwell, the border color is represented as four 32-bit floats,
   4827     * integers, or unsigned values, interpreted according to the surface
   4828     * format.  This matches the sampler->BorderColor union exactly; just
   4829     * memcpy the values.
   4830     */
   4831    BORDER_COLOR_ATTR(ASSIGN, 32bit, color.ui);
   4832 #elif GEN_IS_HASWELL
   4833    if (is_integer_format || is_stencil_sampling) {
   4834       bool stencil = format == MESA_FORMAT_S_UINT8 || is_stencil_sampling;
   4835       const int bits_per_channel =
   4836          _mesa_get_format_bits(format, stencil ? GL_STENCIL_BITS : GL_RED_BITS);
   4837 
   4838       /* From the Haswell PRM, "Command Reference: Structures", Page 36:
   4839        * "If any color channel is missing from the surface format,
   4840        *  corresponding border color should be programmed as zero and if
   4841        *  alpha channel is missing, corresponding Alpha border color should
   4842        *  be programmed as 1."
   4843        */
   4844       unsigned c[4] = { 0, 0, 0, 1 };
   4845       for (int i = 0; i < 4; i++) {
   4846          if (has_component(format, i))
   4847             c[i] = color.ui[i];
   4848       }
   4849 
   4850       switch (bits_per_channel) {
   4851       case 8:
   4852          /* Copy RGBA in order. */
   4853          BORDER_COLOR_ATTR(ASSIGNu8, 8bit, c);
   4854          break;
   4855       case 10:
   4856          /* R10G10B10A2_UINT is treated like a 16-bit format. */
   4857       case 16:
   4858          BORDER_COLOR_ATTR(ASSIGNu16, 16bit, c);
   4859          break;
   4860       case 32:
   4861          if (base_format == GL_RG) {
   4862             /* Careful inspection of the tables reveals that for RG32 formats,
   4863              * the green channel needs to go where blue normally belongs.
   4864              */
   4865             state.BorderColor32bitRed = c[0];
   4866             state.BorderColor32bitBlue = c[1];
   4867             state.BorderColor32bitAlpha = 1;
   4868          } else {
   4869             /* Copy RGBA in order. */
   4870             BORDER_COLOR_ATTR(ASSIGN, 32bit, c);
   4871          }
   4872          break;
   4873       default:
   4874          assert(!"Invalid number of bits per channel in integer format.");
   4875          break;
   4876       }
   4877    } else {
   4878       BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
   4879    }
   4880 #elif GEN_GEN == 5 || GEN_GEN == 6
   4881    BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_UBYTE, Unorm, color.f);
   4882    BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_USHORT, Unorm16, color.f);
   4883    BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_SHORT, Snorm16, color.f);
   4884 
   4885 #define MESA_FLOAT_TO_HALF(dst, src) \
   4886    dst = _mesa_float_to_half(src);
   4887 
   4888    BORDER_COLOR_ATTR(MESA_FLOAT_TO_HALF, Float16, color.f);
   4889 
   4890 #undef MESA_FLOAT_TO_HALF
   4891 
   4892    state.BorderColorSnorm8Red   = state.BorderColorSnorm16Red >> 8;
   4893    state.BorderColorSnorm8Green = state.BorderColorSnorm16Green >> 8;
   4894    state.BorderColorSnorm8Blue  = state.BorderColorSnorm16Blue >> 8;
   4895    state.BorderColorSnorm8Alpha = state.BorderColorSnorm16Alpha >> 8;
   4896 
   4897    BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
   4898 #elif GEN_GEN == 4
   4899    BORDER_COLOR_ATTR(ASSIGN, , color.f);
   4900 #else
   4901    BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
   4902 #endif
   4903 
   4904 #undef ASSIGN
   4905 #undef BORDER_COLOR_ATTR
   4906 
   4907    GENX(SAMPLER_BORDER_COLOR_STATE_pack)(brw, sdc, &state);
   4908 }
   4909 
   4910 static uint32_t
   4911 translate_wrap_mode(struct brw_context *brw, GLenum wrap, bool using_nearest)
   4912 {
   4913    switch (wrap) {
   4914    case GL_REPEAT:
   4915       return TCM_WRAP;
   4916    case GL_CLAMP:
   4917 #if GEN_GEN >= 8
   4918       /* GL_CLAMP is the weird mode where coordinates are clamped to
   4919        * [0.0, 1.0], so linear filtering of coordinates outside of
   4920        * [0.0, 1.0] give you half edge texel value and half border
   4921        * color.
   4922        *
   4923        * Gen8+ supports this natively.
   4924        */
   4925       return TCM_HALF_BORDER;
   4926 #else
   4927       /* On Gen4-7.5, we clamp the coordinates in the fragment shader
   4928        * and set clamp_border here, which gets the result desired.
   4929        * We just use clamp(_to_edge) for nearest, because for nearest
   4930        * clamping to 1.0 gives border color instead of the desired
   4931        * edge texels.
   4932        */
   4933       if (using_nearest)
   4934          return TCM_CLAMP;
   4935       else
   4936          return TCM_CLAMP_BORDER;
   4937 #endif
   4938    case GL_CLAMP_TO_EDGE:
   4939       return TCM_CLAMP;
   4940    case GL_CLAMP_TO_BORDER:
   4941       return TCM_CLAMP_BORDER;
   4942    case GL_MIRRORED_REPEAT:
   4943       return TCM_MIRROR;
   4944    case GL_MIRROR_CLAMP_TO_EDGE:
   4945       return TCM_MIRROR_ONCE;
   4946    default:
   4947       return TCM_WRAP;
   4948    }
   4949 }
   4950 
   4951 /**
   4952  * Return true if the given wrap mode requires the border color to exist.
   4953  */
   4954 static bool
   4955 wrap_mode_needs_border_color(unsigned wrap_mode)
   4956 {
   4957 #if GEN_GEN >= 8
   4958    return wrap_mode == TCM_CLAMP_BORDER ||
   4959           wrap_mode == TCM_HALF_BORDER;
   4960 #else
   4961    return wrap_mode == TCM_CLAMP_BORDER;
   4962 #endif
   4963 }
   4964 
   4965 /**
   4966  * Sets the sampler state for a single unit based off of the sampler key
   4967  * entry.
   4968  */
   4969 static void
   4970 genX(update_sampler_state)(struct brw_context *brw,
   4971                            GLenum target, bool tex_cube_map_seamless,
   4972                            GLfloat tex_unit_lod_bias,
   4973                            mesa_format format, GLenum base_format,
   4974                            const struct gl_texture_object *texObj,
   4975                            const struct gl_sampler_object *sampler,
   4976                            uint32_t *sampler_state,
   4977                            uint32_t batch_offset_for_sampler_state)
   4978 {
   4979    struct GENX(SAMPLER_STATE) samp_st = { 0 };
   4980 
   4981    /* Select min and mip filters. */
   4982    switch (sampler->MinFilter) {
   4983    case GL_NEAREST:
   4984       samp_st.MinModeFilter = MAPFILTER_NEAREST;
   4985       samp_st.MipModeFilter = MIPFILTER_NONE;
   4986       break;
   4987    case GL_LINEAR:
   4988       samp_st.MinModeFilter = MAPFILTER_LINEAR;
   4989       samp_st.MipModeFilter = MIPFILTER_NONE;
   4990       break;
   4991    case GL_NEAREST_MIPMAP_NEAREST:
   4992       samp_st.MinModeFilter = MAPFILTER_NEAREST;
   4993       samp_st.MipModeFilter = MIPFILTER_NEAREST;
   4994       break;
   4995    case GL_LINEAR_MIPMAP_NEAREST:
   4996       samp_st.MinModeFilter = MAPFILTER_LINEAR;
   4997       samp_st.MipModeFilter = MIPFILTER_NEAREST;
   4998       break;
   4999    case GL_NEAREST_MIPMAP_LINEAR:
   5000       samp_st.MinModeFilter = MAPFILTER_NEAREST;
   5001       samp_st.MipModeFilter = MIPFILTER_LINEAR;
   5002       break;
   5003    case GL_LINEAR_MIPMAP_LINEAR:
   5004       samp_st.MinModeFilter = MAPFILTER_LINEAR;
   5005       samp_st.MipModeFilter = MIPFILTER_LINEAR;
   5006       break;
   5007    default:
   5008       unreachable("not reached");
   5009    }
   5010 
   5011    /* Select mag filter. */
   5012    samp_st.MagModeFilter = sampler->MagFilter == GL_LINEAR ?
   5013       MAPFILTER_LINEAR : MAPFILTER_NEAREST;
   5014 
   5015    /* Enable anisotropic filtering if desired. */
   5016    samp_st.MaximumAnisotropy = RATIO21;
   5017 
   5018    if (sampler->MaxAnisotropy > 1.0f) {
   5019       if (samp_st.MinModeFilter == MAPFILTER_LINEAR)
   5020          samp_st.MinModeFilter = MAPFILTER_ANISOTROPIC;
   5021       if (samp_st.MagModeFilter == MAPFILTER_LINEAR)
   5022          samp_st.MagModeFilter = MAPFILTER_ANISOTROPIC;
   5023 
   5024       if (sampler->MaxAnisotropy > 2.0f) {
   5025          samp_st.MaximumAnisotropy =
   5026             MIN2((sampler->MaxAnisotropy - 2) / 2, RATIO161);
   5027       }
   5028    }
   5029 
   5030    /* Set address rounding bits if not using nearest filtering. */
   5031    if (samp_st.MinModeFilter != MAPFILTER_NEAREST) {
   5032       samp_st.UAddressMinFilterRoundingEnable = true;
   5033       samp_st.VAddressMinFilterRoundingEnable = true;
   5034       samp_st.RAddressMinFilterRoundingEnable = true;
   5035    }
   5036 
   5037    if (samp_st.MagModeFilter != MAPFILTER_NEAREST) {
   5038       samp_st.UAddressMagFilterRoundingEnable = true;
   5039       samp_st.VAddressMagFilterRoundingEnable = true;
   5040       samp_st.RAddressMagFilterRoundingEnable = true;
   5041    }
   5042 
   5043    bool either_nearest =
   5044       sampler->MinFilter == GL_NEAREST || sampler->MagFilter == GL_NEAREST;
   5045    unsigned wrap_s = translate_wrap_mode(brw, sampler->WrapS, either_nearest);
   5046    unsigned wrap_t = translate_wrap_mode(brw, sampler->WrapT, either_nearest);
   5047    unsigned wrap_r = translate_wrap_mode(brw, sampler->WrapR, either_nearest);
   5048 
   5049    if (target == GL_TEXTURE_CUBE_MAP ||
   5050        target == GL_TEXTURE_CUBE_MAP_ARRAY) {
   5051       /* Cube maps must use the same wrap mode for all three coordinate
   5052        * dimensions.  Prior to Haswell, only CUBE and CLAMP are valid.
   5053        *
   5054        * Ivybridge and Baytrail seem to have problems with CUBE mode and
   5055        * integer formats.  Fall back to CLAMP for now.
   5056        */
   5057       if ((tex_cube_map_seamless || sampler->CubeMapSeamless) &&
   5058           !(GEN_GEN == 7 && !GEN_IS_HASWELL && texObj->_IsIntegerFormat)) {
   5059          wrap_s = TCM_CUBE;
   5060          wrap_t = TCM_CUBE;
   5061          wrap_r = TCM_CUBE;
   5062       } else {
   5063          wrap_s = TCM_CLAMP;
   5064          wrap_t = TCM_CLAMP;
   5065          wrap_r = TCM_CLAMP;
   5066       }
   5067    } else if (target == GL_TEXTURE_1D) {
   5068       /* There's a bug in 1D texture sampling - it actually pays
   5069        * attention to the wrap_t value, though it should not.
   5070        * Override the wrap_t value here to GL_REPEAT to keep
   5071        * any nonexistent border pixels from floating in.
   5072        */
   5073       wrap_t = TCM_WRAP;
   5074    }
   5075 
   5076    samp_st.TCXAddressControlMode = wrap_s;
   5077    samp_st.TCYAddressControlMode = wrap_t;
   5078    samp_st.TCZAddressControlMode = wrap_r;
   5079 
   5080    samp_st.ShadowFunction =
   5081       sampler->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB ?
   5082       intel_translate_shadow_compare_func(sampler->CompareFunc) : 0;
   5083 
   5084 #if GEN_GEN >= 7
   5085    /* Set shadow function. */
   5086    samp_st.AnisotropicAlgorithm =
   5087       samp_st.MinModeFilter == MAPFILTER_ANISOTROPIC ?
   5088       EWAApproximation : LEGACY;
   5089 #endif
   5090 
   5091 #if GEN_GEN >= 6
   5092    samp_st.NonnormalizedCoordinateEnable = target == GL_TEXTURE_RECTANGLE;
   5093 #endif
   5094 
   5095    const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
   5096    samp_st.MinLOD = CLAMP(sampler->MinLod, 0, hw_max_lod);
   5097    samp_st.MaxLOD = CLAMP(sampler->MaxLod, 0, hw_max_lod);
   5098    samp_st.TextureLODBias =
   5099       CLAMP(tex_unit_lod_bias + sampler->LodBias, -16, 15);
   5100 
   5101 #if GEN_GEN == 6
   5102    samp_st.BaseMipLevel =
   5103       CLAMP(texObj->MinLevel + texObj->BaseLevel, 0, hw_max_lod);
   5104    samp_st.MinandMagStateNotEqual =
   5105       samp_st.MinModeFilter != samp_st.MagModeFilter;
   5106 #endif
   5107 
   5108    /* Upload the border color if necessary.  If not, just point it at
   5109     * offset 0 (the start of the batch) - the color should be ignored,
   5110     * but that address won't fault in case something reads it anyway.
   5111     */
   5112    uint32_t border_color_offset = 0;
   5113    if (wrap_mode_needs_border_color(wrap_s) ||
   5114        wrap_mode_needs_border_color(wrap_t) ||
   5115        wrap_mode_needs_border_color(wrap_r)) {
   5116       genX(upload_default_color)(brw, sampler, format, base_format,
   5117                                  texObj->_IsIntegerFormat,
   5118                                  texObj->StencilSampling,
   5119                                  &border_color_offset);
   5120    }
   5121 #if GEN_GEN < 6
   5122       samp_st.BorderColorPointer =
   5123          ro_bo(brw->batch.state.bo, border_color_offset);
   5124 #else
   5125       samp_st.BorderColorPointer = border_color_offset;
   5126 #endif
   5127 
   5128 #if GEN_GEN >= 8
   5129    samp_st.LODPreClampMode = CLAMP_MODE_OGL;
   5130 #else
   5131    samp_st.LODPreClampEnable = true;
   5132 #endif
   5133 
   5134    GENX(SAMPLER_STATE_pack)(brw, sampler_state, &samp_st);
   5135 }
   5136 
   5137 static void
   5138 update_sampler_state(struct brw_context *brw,
   5139                      int unit,
   5140                      uint32_t *sampler_state,
   5141                      uint32_t batch_offset_for_sampler_state)
   5142 {
   5143    struct gl_context *ctx = &brw->ctx;
   5144    const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
   5145    const struct gl_texture_object *texObj = texUnit->_Current;
   5146    const struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, unit);
   5147 
   5148    /* These don't use samplers at all. */
   5149    if (texObj->Target == GL_TEXTURE_BUFFER)
   5150       return;
   5151 
   5152    struct gl_texture_image *firstImage = texObj->Image[0][texObj->BaseLevel];
   5153    genX(update_sampler_state)(brw, texObj->Target,
   5154                               ctx->Texture.CubeMapSeamless,
   5155                               texUnit->LodBias,
   5156                               firstImage->TexFormat, firstImage->_BaseFormat,
   5157                               texObj, sampler,
   5158                               sampler_state, batch_offset_for_sampler_state);
   5159 }
   5160 
   5161 static void
   5162 genX(upload_sampler_state_table)(struct brw_context *brw,
   5163                                  struct gl_program *prog,
   5164                                  struct brw_stage_state *stage_state)
   5165 {
   5166    struct gl_context *ctx = &brw->ctx;
   5167    uint32_t sampler_count = stage_state->sampler_count;
   5168 
   5169    GLbitfield SamplersUsed = prog->SamplersUsed;
   5170 
   5171    if (sampler_count == 0)
   5172       return;
   5173 
   5174    /* SAMPLER_STATE is 4 DWords on all platforms. */
   5175    const int dwords = GENX(SAMPLER_STATE_length);
   5176    const int size_in_bytes = dwords * sizeof(uint32_t);
   5177 
   5178    uint32_t *sampler_state = brw_state_batch(brw,
   5179                                              sampler_count * size_in_bytes,
   5180                                              32, &stage_state->sampler_offset);
   5181    /* memset(sampler_state, 0, sampler_count * size_in_bytes); */
   5182 
   5183    uint32_t batch_offset_for_sampler_state = stage_state->sampler_offset;
   5184 
   5185    for (unsigned s = 0; s < sampler_count; s++) {
   5186       if (SamplersUsed & (1 << s)) {
   5187          const unsigned unit = prog->SamplerUnits[s];
   5188          if (ctx->Texture.Unit[unit]._Current) {
   5189             update_sampler_state(brw, unit, sampler_state,
   5190                                  batch_offset_for_sampler_state);
   5191          }
   5192       }
   5193 
   5194       sampler_state += dwords;
   5195       batch_offset_for_sampler_state += size_in_bytes;
   5196    }
   5197 
   5198    if (GEN_GEN >= 7 && stage_state->stage != MESA_SHADER_COMPUTE) {
   5199       /* Emit a 3DSTATE_SAMPLER_STATE_POINTERS_XS packet. */
   5200       genX(emit_sampler_state_pointers_xs)(brw, stage_state);
   5201    } else {
   5202       /* Flag that the sampler state table pointer has changed; later atoms
   5203        * will handle it.
   5204        */
   5205       brw->ctx.NewDriverState |= BRW_NEW_SAMPLER_STATE_TABLE;
   5206    }
   5207 }
   5208 
   5209 static void
   5210 genX(upload_fs_samplers)(struct brw_context *brw)
   5211 {
   5212    /* BRW_NEW_FRAGMENT_PROGRAM */
   5213    struct gl_program *fs = brw->programs[MESA_SHADER_FRAGMENT];
   5214    genX(upload_sampler_state_table)(brw, fs, &brw->wm.base);
   5215 }
   5216 
   5217 static const struct brw_tracked_state genX(fs_samplers) = {
   5218    .dirty = {
   5219       .mesa = _NEW_TEXTURE,
   5220       .brw = BRW_NEW_BATCH |
   5221              BRW_NEW_BLORP |
   5222              BRW_NEW_FRAGMENT_PROGRAM,
   5223    },
   5224    .emit = genX(upload_fs_samplers),
   5225 };
   5226 
   5227 static void
   5228 genX(upload_vs_samplers)(struct brw_context *brw)
   5229 {
   5230    /* BRW_NEW_VERTEX_PROGRAM */
   5231    struct gl_program *vs = brw->programs[MESA_SHADER_VERTEX];
   5232    genX(upload_sampler_state_table)(brw, vs, &brw->vs.base);
   5233 }
   5234 
   5235 static const struct brw_tracked_state genX(vs_samplers) = {
   5236    .dirty = {
   5237       .mesa = _NEW_TEXTURE,
   5238       .brw = BRW_NEW_BATCH |
   5239              BRW_NEW_BLORP |
   5240              BRW_NEW_VERTEX_PROGRAM,
   5241    },
   5242    .emit = genX(upload_vs_samplers),
   5243 };
   5244 
   5245 #if GEN_GEN >= 6
   5246 static void
   5247 genX(upload_gs_samplers)(struct brw_context *brw)
   5248 {
   5249    /* BRW_NEW_GEOMETRY_PROGRAM */
   5250    struct gl_program *gs = brw->programs[MESA_SHADER_GEOMETRY];
   5251    if (!gs)
   5252       return;
   5253 
   5254    genX(upload_sampler_state_table)(brw, gs, &brw->gs.base);
   5255 }
   5256 
   5257 
   5258 static const struct brw_tracked_state genX(gs_samplers) = {
   5259    .dirty = {
   5260       .mesa = _NEW_TEXTURE,
   5261       .brw = BRW_NEW_BATCH |
   5262              BRW_NEW_BLORP |
   5263              BRW_NEW_GEOMETRY_PROGRAM,
   5264    },
   5265    .emit = genX(upload_gs_samplers),
   5266 };
   5267 #endif
   5268 
   5269 #if GEN_GEN >= 7
   5270 static void
   5271 genX(upload_tcs_samplers)(struct brw_context *brw)
   5272 {
   5273    /* BRW_NEW_TESS_PROGRAMS */
   5274    struct gl_program *tcs = brw->programs[MESA_SHADER_TESS_CTRL];
   5275    if (!tcs)
   5276       return;
   5277 
   5278    genX(upload_sampler_state_table)(brw, tcs, &brw->tcs.base);
   5279 }
   5280 
   5281 static const struct brw_tracked_state genX(tcs_samplers) = {
   5282    .dirty = {
   5283       .mesa = _NEW_TEXTURE,
   5284       .brw = BRW_NEW_BATCH |
   5285              BRW_NEW_BLORP |
   5286              BRW_NEW_TESS_PROGRAMS,
   5287    },
   5288    .emit = genX(upload_tcs_samplers),
   5289 };
   5290 #endif
   5291 
   5292 #if GEN_GEN >= 7
   5293 static void
   5294 genX(upload_tes_samplers)(struct brw_context *brw)
   5295 {
   5296    /* BRW_NEW_TESS_PROGRAMS */
   5297    struct gl_program *tes = brw->programs[MESA_SHADER_TESS_EVAL];
   5298    if (!tes)
   5299       return;
   5300 
   5301    genX(upload_sampler_state_table)(brw, tes, &brw->tes.base);
   5302 }
   5303 
   5304 static const struct brw_tracked_state genX(tes_samplers) = {
   5305    .dirty = {
   5306       .mesa = _NEW_TEXTURE,
   5307       .brw = BRW_NEW_BATCH |
   5308              BRW_NEW_BLORP |
   5309              BRW_NEW_TESS_PROGRAMS,
   5310    },
   5311    .emit = genX(upload_tes_samplers),
   5312 };
   5313 #endif
   5314 
   5315 #if GEN_GEN >= 7
   5316 static void
   5317 genX(upload_cs_samplers)(struct brw_context *brw)
   5318 {
   5319    /* BRW_NEW_COMPUTE_PROGRAM */
   5320    struct gl_program *cs = brw->programs[MESA_SHADER_COMPUTE];
   5321    if (!cs)
   5322       return;
   5323 
   5324    genX(upload_sampler_state_table)(brw, cs, &brw->cs.base);
   5325 }
   5326 
   5327 const struct brw_tracked_state genX(cs_samplers) = {
   5328    .dirty = {
   5329       .mesa = _NEW_TEXTURE,
   5330       .brw = BRW_NEW_BATCH |
   5331              BRW_NEW_BLORP |
   5332              BRW_NEW_COMPUTE_PROGRAM,
   5333    },
   5334    .emit = genX(upload_cs_samplers),
   5335 };
   5336 #endif
   5337 
   5338 /* ---------------------------------------------------------------------- */
   5339 
   5340 #if GEN_GEN <= 5
   5341 
   5342 static void genX(upload_blend_constant_color)(struct brw_context *brw)
   5343 {
   5344    struct gl_context *ctx = &brw->ctx;
   5345 
   5346    brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_COLOR), blend_cc) {
   5347       blend_cc.BlendConstantColorRed = ctx->Color.BlendColorUnclamped[0];
   5348       blend_cc.BlendConstantColorGreen = ctx->Color.BlendColorUnclamped[1];
   5349       blend_cc.BlendConstantColorBlue = ctx->Color.BlendColorUnclamped[2];
   5350       blend_cc.BlendConstantColorAlpha = ctx->Color.BlendColorUnclamped[3];
   5351    }
   5352 }
   5353 
   5354 static const struct brw_tracked_state genX(blend_constant_color) = {
   5355    .dirty = {
   5356       .mesa = _NEW_COLOR,
   5357       .brw = BRW_NEW_CONTEXT |
   5358              BRW_NEW_BLORP,
   5359    },
   5360    .emit = genX(upload_blend_constant_color)
   5361 };
   5362 #endif
   5363 
   5364 /* ---------------------------------------------------------------------- */
   5365 
   5366 void
   5367 genX(init_atoms)(struct brw_context *brw)
   5368 {
   5369 #if GEN_GEN < 6
   5370    static const struct brw_tracked_state *render_atoms[] =
   5371    {
   5372       /* Once all the programs are done, we know how large urb entry
   5373        * sizes need to be and can decide if we need to change the urb
   5374        * layout.
   5375        */
   5376       &brw_curbe_offsets,
   5377       &brw_recalculate_urb_fence,
   5378 
   5379       &genX(cc_vp),
   5380       &genX(color_calc_state),
   5381 
   5382       /* Surface state setup.  Must come before the VS/WM unit.  The binding
   5383        * table upload must be last.
   5384        */
   5385       &brw_vs_pull_constants,
   5386       &brw_wm_pull_constants,
   5387       &brw_renderbuffer_surfaces,
   5388       &brw_renderbuffer_read_surfaces,
   5389       &brw_texture_surfaces,
   5390       &brw_vs_binding_table,
   5391       &brw_wm_binding_table,
   5392 
   5393       &genX(fs_samplers),
   5394       &genX(vs_samplers),
   5395 
   5396       /* These set up state for brw_psp_urb_cbs */
   5397       &genX(wm_state),
   5398       &genX(sf_clip_viewport),
   5399       &genX(sf_state),
   5400       &genX(vs_state), /* always required, enabled or not */
   5401       &genX(clip_state),
   5402       &genX(gs_state),
   5403 
   5404       /* Command packets:
   5405        */
   5406       &brw_binding_table_pointers,
   5407       &genX(blend_constant_color),
   5408 
   5409       &brw_depthbuffer,
   5410 
   5411       &genX(polygon_stipple),
   5412       &genX(polygon_stipple_offset),
   5413 
   5414       &genX(line_stipple),
   5415 
   5416       &brw_psp_urb_cbs,
   5417 
   5418       &genX(drawing_rect),
   5419       &brw_indices, /* must come before brw_vertices */
   5420       &genX(index_buffer),
   5421       &genX(vertices),
   5422 
   5423       &brw_constant_buffer
   5424    };
   5425 #elif GEN_GEN == 6
   5426    static const struct brw_tracked_state *render_atoms[] =
   5427    {
   5428       &genX(sf_clip_viewport),
   5429 
   5430       /* Command packets: */
   5431 
   5432       &genX(cc_vp),
   5433 
   5434       &gen6_urb,
   5435       &genX(blend_state),		/* must do before cc unit */
   5436       &genX(color_calc_state),	/* must do before cc unit */
   5437       &genX(depth_stencil_state),	/* must do before cc unit */
   5438 
   5439       &genX(vs_push_constants), /* Before vs_state */
   5440       &genX(gs_push_constants), /* Before gs_state */
   5441       &genX(wm_push_constants), /* Before wm_state */
   5442 
   5443       /* Surface state setup.  Must come before the VS/WM unit.  The binding
   5444        * table upload must be last.
   5445        */
   5446       &brw_vs_pull_constants,
   5447       &brw_vs_ubo_surfaces,
   5448       &brw_gs_pull_constants,
   5449       &brw_gs_ubo_surfaces,
   5450       &brw_wm_pull_constants,
   5451       &brw_wm_ubo_surfaces,
   5452       &gen6_renderbuffer_surfaces,
   5453       &brw_renderbuffer_read_surfaces,
   5454       &brw_texture_surfaces,
   5455       &gen6_sol_surface,
   5456       &brw_vs_binding_table,
   5457       &gen6_gs_binding_table,
   5458       &brw_wm_binding_table,
   5459 
   5460       &genX(fs_samplers),
   5461       &genX(vs_samplers),
   5462       &genX(gs_samplers),
   5463       &gen6_sampler_state,
   5464       &genX(multisample_state),
   5465 
   5466       &genX(vs_state),
   5467       &genX(gs_state),
   5468       &genX(clip_state),
   5469       &genX(sf_state),
   5470       &genX(wm_state),
   5471 
   5472       &genX(scissor_state),
   5473 
   5474       &gen6_binding_table_pointers,
   5475 
   5476       &brw_depthbuffer,
   5477 
   5478       &genX(polygon_stipple),
   5479       &genX(polygon_stipple_offset),
   5480 
   5481       &genX(line_stipple),
   5482 
   5483       &genX(drawing_rect),
   5484 
   5485       &brw_indices, /* must come before brw_vertices */
   5486       &genX(index_buffer),
   5487       &genX(vertices),
   5488    };
   5489 #elif GEN_GEN == 7
   5490    static const struct brw_tracked_state *render_atoms[] =
   5491    {
   5492       /* Command packets: */
   5493 
   5494       &genX(cc_vp),
   5495       &genX(sf_clip_viewport),
   5496 
   5497       &gen7_l3_state,
   5498       &gen7_push_constant_space,
   5499       &gen7_urb,
   5500       &genX(blend_state),		/* must do before cc unit */
   5501       &genX(color_calc_state),	/* must do before cc unit */
   5502       &genX(depth_stencil_state),	/* must do before cc unit */
   5503 
   5504       &brw_vs_image_surfaces, /* Before vs push/pull constants and binding table */
   5505       &brw_tcs_image_surfaces, /* Before tcs push/pull constants and binding table */
   5506       &brw_tes_image_surfaces, /* Before tes push/pull constants and binding table */
   5507       &brw_gs_image_surfaces, /* Before gs push/pull constants and binding table */
   5508       &brw_wm_image_surfaces, /* Before wm push/pull constants and binding table */
   5509 
   5510       &genX(vs_push_constants), /* Before vs_state */
   5511       &genX(tcs_push_constants),
   5512       &genX(tes_push_constants),
   5513       &genX(gs_push_constants), /* Before gs_state */
   5514       &genX(wm_push_constants), /* Before wm_surfaces and constant_buffer */
   5515 
   5516       /* Surface state setup.  Must come before the VS/WM unit.  The binding
   5517        * table upload must be last.
   5518        */
   5519       &brw_vs_pull_constants,
   5520       &brw_vs_ubo_surfaces,
   5521       &brw_tcs_pull_constants,
   5522       &brw_tcs_ubo_surfaces,
   5523       &brw_tes_pull_constants,
   5524       &brw_tes_ubo_surfaces,
   5525       &brw_gs_pull_constants,
   5526       &brw_gs_ubo_surfaces,
   5527       &brw_wm_pull_constants,
   5528       &brw_wm_ubo_surfaces,
   5529       &gen6_renderbuffer_surfaces,
   5530       &brw_renderbuffer_read_surfaces,
   5531       &brw_texture_surfaces,
   5532 
   5533       &genX(push_constant_packets),
   5534 
   5535       &brw_vs_binding_table,
   5536       &brw_tcs_binding_table,
   5537       &brw_tes_binding_table,
   5538       &brw_gs_binding_table,
   5539       &brw_wm_binding_table,
   5540 
   5541       &genX(fs_samplers),
   5542       &genX(vs_samplers),
   5543       &genX(tcs_samplers),
   5544       &genX(tes_samplers),
   5545       &genX(gs_samplers),
   5546       &genX(multisample_state),
   5547 
   5548       &genX(vs_state),
   5549       &genX(hs_state),
   5550       &genX(te_state),
   5551       &genX(ds_state),
   5552       &genX(gs_state),
   5553       &genX(sol_state),
   5554       &genX(clip_state),
   5555       &genX(sbe_state),
   5556       &genX(sf_state),
   5557       &genX(wm_state),
   5558       &genX(ps_state),
   5559 
   5560       &genX(scissor_state),
   5561 
   5562       &gen7_depthbuffer,
   5563 
   5564       &genX(polygon_stipple),
   5565       &genX(polygon_stipple_offset),
   5566 
   5567       &genX(line_stipple),
   5568 
   5569       &genX(drawing_rect),
   5570 
   5571       &brw_indices, /* must come before brw_vertices */
   5572       &genX(index_buffer),
   5573       &genX(vertices),
   5574 
   5575 #if GEN_IS_HASWELL
   5576       &genX(cut_index),
   5577 #endif
   5578    };
   5579 #elif GEN_GEN >= 8
   5580    static const struct brw_tracked_state *render_atoms[] =
   5581    {
   5582       &genX(cc_vp),
   5583       &genX(sf_clip_viewport),
   5584 
   5585       &gen7_l3_state,
   5586       &gen7_push_constant_space,
   5587       &gen7_urb,
   5588       &genX(blend_state),
   5589       &genX(color_calc_state),
   5590 
   5591       &brw_vs_image_surfaces, /* Before vs push/pull constants and binding table */
   5592       &brw_tcs_image_surfaces, /* Before tcs push/pull constants and binding table */
   5593       &brw_tes_image_surfaces, /* Before tes push/pull constants and binding table */
   5594       &brw_gs_image_surfaces, /* Before gs push/pull constants and binding table */
   5595       &brw_wm_image_surfaces, /* Before wm push/pull constants and binding table */
   5596 
   5597       &genX(vs_push_constants), /* Before vs_state */
   5598       &genX(tcs_push_constants),
   5599       &genX(tes_push_constants),
   5600       &genX(gs_push_constants), /* Before gs_state */
   5601       &genX(wm_push_constants), /* Before wm_surfaces and constant_buffer */
   5602 
   5603       /* Surface state setup.  Must come before the VS/WM unit.  The binding
   5604        * table upload must be last.
   5605        */
   5606       &brw_vs_pull_constants,
   5607       &brw_vs_ubo_surfaces,
   5608       &brw_tcs_pull_constants,
   5609       &brw_tcs_ubo_surfaces,
   5610       &brw_tes_pull_constants,
   5611       &brw_tes_ubo_surfaces,
   5612       &brw_gs_pull_constants,
   5613       &brw_gs_ubo_surfaces,
   5614       &brw_wm_pull_constants,
   5615       &brw_wm_ubo_surfaces,
   5616       &gen6_renderbuffer_surfaces,
   5617       &brw_renderbuffer_read_surfaces,
   5618       &brw_texture_surfaces,
   5619 
   5620       &genX(push_constant_packets),
   5621 
   5622       &brw_vs_binding_table,
   5623       &brw_tcs_binding_table,
   5624       &brw_tes_binding_table,
   5625       &brw_gs_binding_table,
   5626       &brw_wm_binding_table,
   5627 
   5628       &genX(fs_samplers),
   5629       &genX(vs_samplers),
   5630       &genX(tcs_samplers),
   5631       &genX(tes_samplers),
   5632       &genX(gs_samplers),
   5633       &genX(multisample_state),
   5634 
   5635       &genX(vs_state),
   5636       &genX(hs_state),
   5637       &genX(te_state),
   5638       &genX(ds_state),
   5639       &genX(gs_state),
   5640       &genX(sol_state),
   5641       &genX(clip_state),
   5642       &genX(raster_state),
   5643       &genX(sbe_state),
   5644       &genX(sf_state),
   5645       &genX(ps_blend),
   5646       &genX(ps_extra),
   5647       &genX(ps_state),
   5648       &genX(depth_stencil_state),
   5649       &genX(wm_state),
   5650 
   5651       &genX(scissor_state),
   5652 
   5653       &gen7_depthbuffer,
   5654 
   5655       &genX(polygon_stipple),
   5656       &genX(polygon_stipple_offset),
   5657 
   5658       &genX(line_stipple),
   5659 
   5660       &genX(drawing_rect),
   5661 
   5662       &genX(vf_topology),
   5663 
   5664       &brw_indices,
   5665       &genX(index_buffer),
   5666       &genX(vertices),
   5667 
   5668       &genX(cut_index),
   5669       &gen8_pma_fix,
   5670    };
   5671 #endif
   5672 
   5673    STATIC_ASSERT(ARRAY_SIZE(render_atoms) <= ARRAY_SIZE(brw->render_atoms));
   5674    brw_copy_pipeline_atoms(brw, BRW_RENDER_PIPELINE,
   5675                            render_atoms, ARRAY_SIZE(render_atoms));
   5676 
   5677 #if GEN_GEN >= 7
   5678    static const struct brw_tracked_state *compute_atoms[] =
   5679    {
   5680       &gen7_l3_state,
   5681       &brw_cs_image_surfaces,
   5682       &genX(cs_push_constants),
   5683       &genX(cs_pull_constants),
   5684       &brw_cs_ubo_surfaces,
   5685       &brw_cs_texture_surfaces,
   5686       &brw_cs_work_groups_surface,
   5687       &genX(cs_samplers),
   5688       &genX(cs_state),
   5689    };
   5690 
   5691    STATIC_ASSERT(ARRAY_SIZE(compute_atoms) <= ARRAY_SIZE(brw->compute_atoms));
   5692    brw_copy_pipeline_atoms(brw, BRW_COMPUTE_PIPELINE,
   5693                            compute_atoms, ARRAY_SIZE(compute_atoms));
   5694 
   5695    brw->vtbl.emit_mi_report_perf_count = genX(emit_mi_report_perf_count);
   5696 #endif
   5697 }
   5698