Home | History | Annotate | Download | only in Target
      1 //===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes the target machine instruction set to the code generator.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_TARGET_TARGETINSTRINFO_H
     15 #define LLVM_TARGET_TARGETINSTRINFO_H
     16 
     17 #include "llvm/MC/MCInstrInfo.h"
     18 #include "llvm/CodeGen/DFAPacketizer.h"
     19 #include "llvm/CodeGen/MachineFunction.h"
     20 
     21 namespace llvm {
     22 
     23 class InstrItineraryData;
     24 class LiveVariables;
     25 class MCAsmInfo;
     26 class MachineMemOperand;
     27 class MachineRegisterInfo;
     28 class MDNode;
     29 class MCInst;
     30 class SDNode;
     31 class ScheduleHazardRecognizer;
     32 class SelectionDAG;
     33 class ScheduleDAG;
     34 class TargetRegisterClass;
     35 class TargetRegisterInfo;
     36 class BranchProbability;
     37 
     38 template<class T> class SmallVectorImpl;
     39 
     40 
     41 //---------------------------------------------------------------------------
     42 ///
     43 /// TargetInstrInfo - Interface to description of machine instruction set
     44 ///
     45 class TargetInstrInfo : public MCInstrInfo {
     46   TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
     47   void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
     48 public:
     49   TargetInstrInfo(int CFSetupOpcode = -1, int CFDestroyOpcode = -1)
     50     : CallFrameSetupOpcode(CFSetupOpcode),
     51       CallFrameDestroyOpcode(CFDestroyOpcode) {
     52   }
     53 
     54   virtual ~TargetInstrInfo();
     55 
     56   /// getRegClass - Givem a machine instruction descriptor, returns the register
     57   /// class constraint for OpNum, or NULL.
     58   const TargetRegisterClass *getRegClass(const MCInstrDesc &TID,
     59                                          unsigned OpNum,
     60                                          const TargetRegisterInfo *TRI) const;
     61 
     62   /// isTriviallyReMaterializable - Return true if the instruction is trivially
     63   /// rematerializable, meaning it has no side effects and requires no operands
     64   /// that aren't always available.
     65   bool isTriviallyReMaterializable(const MachineInstr *MI,
     66                                    AliasAnalysis *AA = 0) const {
     67     return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF ||
     68            (MI->getDesc().isRematerializable() &&
     69             (isReallyTriviallyReMaterializable(MI, AA) ||
     70              isReallyTriviallyReMaterializableGeneric(MI, AA)));
     71   }
     72 
     73 protected:
     74   /// isReallyTriviallyReMaterializable - For instructions with opcodes for
     75   /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
     76   /// specify whether the instruction is actually trivially rematerializable,
     77   /// taking into consideration its operands. This predicate must return false
     78   /// if the instruction has any side effects other than producing a value, or
     79   /// if it requres any address registers that are not always available.
     80   virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
     81                                                  AliasAnalysis *AA) const {
     82     return false;
     83   }
     84 
     85 private:
     86   /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
     87   /// for which the M_REMATERIALIZABLE flag is set and the target hook
     88   /// isReallyTriviallyReMaterializable returns false, this function does
     89   /// target-independent tests to determine if the instruction is really
     90   /// trivially rematerializable.
     91   bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
     92                                                 AliasAnalysis *AA) const;
     93 
     94 public:
     95   /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
     96   /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
     97   /// targets use pseudo instructions in order to abstract away the difference
     98   /// between operating with a frame pointer and operating without, through the
     99   /// use of these two instructions.
    100   ///
    101   int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
    102   int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
    103 
    104   /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
    105   /// extension instruction. That is, it's like a copy where it's legal for the
    106   /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
    107   /// true, then it's expected the pre-extension value is available as a subreg
    108   /// of the result register. This also returns the sub-register index in
    109   /// SubIdx.
    110   virtual bool isCoalescableExtInstr(const MachineInstr &MI,
    111                                      unsigned &SrcReg, unsigned &DstReg,
    112                                      unsigned &SubIdx) const {
    113     return false;
    114   }
    115 
    116   /// isLoadFromStackSlot - If the specified machine instruction is a direct
    117   /// load from a stack slot, return the virtual or physical register number of
    118   /// the destination along with the FrameIndex of the loaded stack slot.  If
    119   /// not, return 0.  This predicate must return 0 if the instruction has
    120   /// any side effects other than loading from the stack slot.
    121   virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
    122                                        int &FrameIndex) const {
    123     return 0;
    124   }
    125 
    126   /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
    127   /// stack locations as well.  This uses a heuristic so it isn't
    128   /// reliable for correctness.
    129   virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
    130                                              int &FrameIndex) const {
    131     return 0;
    132   }
    133 
    134   /// hasLoadFromStackSlot - If the specified machine instruction has
    135   /// a load from a stack slot, return true along with the FrameIndex
    136   /// of the loaded stack slot and the machine mem operand containing
    137   /// the reference.  If not, return false.  Unlike
    138   /// isLoadFromStackSlot, this returns true for any instructions that
    139   /// loads from the stack.  This is just a hint, as some cases may be
    140   /// missed.
    141   virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
    142                                     const MachineMemOperand *&MMO,
    143                                     int &FrameIndex) const {
    144     return 0;
    145   }
    146 
    147   /// isStoreToStackSlot - If the specified machine instruction is a direct
    148   /// store to a stack slot, return the virtual or physical register number of
    149   /// the source reg along with the FrameIndex of the loaded stack slot.  If
    150   /// not, return 0.  This predicate must return 0 if the instruction has
    151   /// any side effects other than storing to the stack slot.
    152   virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
    153                                       int &FrameIndex) const {
    154     return 0;
    155   }
    156 
    157   /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
    158   /// stack locations as well.  This uses a heuristic so it isn't
    159   /// reliable for correctness.
    160   virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
    161                                             int &FrameIndex) const {
    162     return 0;
    163   }
    164 
    165   /// hasStoreToStackSlot - If the specified machine instruction has a
    166   /// store to a stack slot, return true along with the FrameIndex of
    167   /// the loaded stack slot and the machine mem operand containing the
    168   /// reference.  If not, return false.  Unlike isStoreToStackSlot,
    169   /// this returns true for any instructions that stores to the
    170   /// stack.  This is just a hint, as some cases may be missed.
    171   virtual bool hasStoreToStackSlot(const MachineInstr *MI,
    172                                    const MachineMemOperand *&MMO,
    173                                    int &FrameIndex) const {
    174     return 0;
    175   }
    176 
    177   /// reMaterialize - Re-issue the specified 'original' instruction at the
    178   /// specific location targeting a new destination register.
    179   /// The register in Orig->getOperand(0).getReg() will be substituted by
    180   /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
    181   /// SubIdx.
    182   virtual void reMaterialize(MachineBasicBlock &MBB,
    183                              MachineBasicBlock::iterator MI,
    184                              unsigned DestReg, unsigned SubIdx,
    185                              const MachineInstr *Orig,
    186                              const TargetRegisterInfo &TRI) const = 0;
    187 
    188   /// scheduleTwoAddrSource - Schedule the copy / re-mat of the source of the
    189   /// two-addrss instruction inserted by two-address pass.
    190   virtual void scheduleTwoAddrSource(MachineInstr *SrcMI,
    191                                      MachineInstr *UseMI,
    192                                      const TargetRegisterInfo &TRI) const {
    193     // Do nothing.
    194   }
    195 
    196   /// duplicate - Create a duplicate of the Orig instruction in MF. This is like
    197   /// MachineFunction::CloneMachineInstr(), but the target may update operands
    198   /// that are required to be unique.
    199   ///
    200   /// The instruction must be duplicable as indicated by isNotDuplicable().
    201   virtual MachineInstr *duplicate(MachineInstr *Orig,
    202                                   MachineFunction &MF) const = 0;
    203 
    204   /// convertToThreeAddress - This method must be implemented by targets that
    205   /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
    206   /// may be able to convert a two-address instruction into one or more true
    207   /// three-address instructions on demand.  This allows the X86 target (for
    208   /// example) to convert ADD and SHL instructions into LEA instructions if they
    209   /// would require register copies due to two-addressness.
    210   ///
    211   /// This method returns a null pointer if the transformation cannot be
    212   /// performed, otherwise it returns the last new instruction.
    213   ///
    214   virtual MachineInstr *
    215   convertToThreeAddress(MachineFunction::iterator &MFI,
    216                    MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
    217     return 0;
    218   }
    219 
    220   /// commuteInstruction - If a target has any instructions that are
    221   /// commutable but require converting to different instructions or making
    222   /// non-trivial changes to commute them, this method can overloaded to do
    223   /// that.  The default implementation simply swaps the commutable operands.
    224   /// If NewMI is false, MI is modified in place and returned; otherwise, a
    225   /// new machine instruction is created and returned.  Do not call this
    226   /// method for a non-commutable instruction, but there may be some cases
    227   /// where this method fails and returns null.
    228   virtual MachineInstr *commuteInstruction(MachineInstr *MI,
    229                                            bool NewMI = false) const = 0;
    230 
    231   /// findCommutedOpIndices - If specified MI is commutable, return the two
    232   /// operand indices that would swap value. Return false if the instruction
    233   /// is not in a form which this routine understands.
    234   virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
    235                                      unsigned &SrcOpIdx2) const = 0;
    236 
    237   /// produceSameValue - Return true if two machine instructions would produce
    238   /// identical values. By default, this is only true when the two instructions
    239   /// are deemed identical except for defs. If this function is called when the
    240   /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
    241   /// aggressive checks.
    242   virtual bool produceSameValue(const MachineInstr *MI0,
    243                                 const MachineInstr *MI1,
    244                                 const MachineRegisterInfo *MRI = 0) const = 0;
    245 
    246   /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
    247   /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
    248   /// implemented for a target).  Upon success, this returns false and returns
    249   /// with the following information in various cases:
    250   ///
    251   /// 1. If this block ends with no branches (it just falls through to its succ)
    252   ///    just return false, leaving TBB/FBB null.
    253   /// 2. If this block ends with only an unconditional branch, it sets TBB to be
    254   ///    the destination block.
    255   /// 3. If this block ends with a conditional branch and it falls through to a
    256   ///    successor block, it sets TBB to be the branch destination block and a
    257   ///    list of operands that evaluate the condition. These operands can be
    258   ///    passed to other TargetInstrInfo methods to create new branches.
    259   /// 4. If this block ends with a conditional branch followed by an
    260   ///    unconditional branch, it returns the 'true' destination in TBB, the
    261   ///    'false' destination in FBB, and a list of operands that evaluate the
    262   ///    condition.  These operands can be passed to other TargetInstrInfo
    263   ///    methods to create new branches.
    264   ///
    265   /// Note that RemoveBranch and InsertBranch must be implemented to support
    266   /// cases where this method returns success.
    267   ///
    268   /// If AllowModify is true, then this routine is allowed to modify the basic
    269   /// block (e.g. delete instructions after the unconditional branch).
    270   ///
    271   virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
    272                              MachineBasicBlock *&FBB,
    273                              SmallVectorImpl<MachineOperand> &Cond,
    274                              bool AllowModify = false) const {
    275     return true;
    276   }
    277 
    278   /// RemoveBranch - Remove the branching code at the end of the specific MBB.
    279   /// This is only invoked in cases where AnalyzeBranch returns success. It
    280   /// returns the number of instructions that were removed.
    281   virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
    282     llvm_unreachable("Target didn't implement TargetInstrInfo::RemoveBranch!");
    283   }
    284 
    285   /// InsertBranch - Insert branch code into the end of the specified
    286   /// MachineBasicBlock.  The operands to this method are the same as those
    287   /// returned by AnalyzeBranch.  This is only invoked in cases where
    288   /// AnalyzeBranch returns success. It returns the number of instructions
    289   /// inserted.
    290   ///
    291   /// It is also invoked by tail merging to add unconditional branches in
    292   /// cases where AnalyzeBranch doesn't apply because there was no original
    293   /// branch to analyze.  At least this much must be implemented, else tail
    294   /// merging needs to be disabled.
    295   virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
    296                                 MachineBasicBlock *FBB,
    297                                 const SmallVectorImpl<MachineOperand> &Cond,
    298                                 DebugLoc DL) const {
    299     llvm_unreachable("Target didn't implement TargetInstrInfo::InsertBranch!");
    300   }
    301 
    302   /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
    303   /// after it, replacing it with an unconditional branch to NewDest. This is
    304   /// used by the tail merging pass.
    305   virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
    306                                        MachineBasicBlock *NewDest) const = 0;
    307 
    308   /// isLegalToSplitMBBAt - Return true if it's legal to split the given basic
    309   /// block at the specified instruction (i.e. instruction would be the start
    310   /// of a new basic block).
    311   virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
    312                                    MachineBasicBlock::iterator MBBI) const {
    313     return true;
    314   }
    315 
    316   /// isProfitableToIfCvt - Return true if it's profitable to predicate
    317   /// instructions with accumulated instruction latency of "NumCycles"
    318   /// of the specified basic block, where the probability of the instructions
    319   /// being executed is given by Probability, and Confidence is a measure
    320   /// of our confidence that it will be properly predicted.
    321   virtual
    322   bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCyles,
    323                            unsigned ExtraPredCycles,
    324                            const BranchProbability &Probability) const {
    325     return false;
    326   }
    327 
    328   /// isProfitableToIfCvt - Second variant of isProfitableToIfCvt, this one
    329   /// checks for the case where two basic blocks from true and false path
    330   /// of a if-then-else (diamond) are predicated on mutally exclusive
    331   /// predicates, where the probability of the true path being taken is given
    332   /// by Probability, and Confidence is a measure of our confidence that it
    333   /// will be properly predicted.
    334   virtual bool
    335   isProfitableToIfCvt(MachineBasicBlock &TMBB,
    336                       unsigned NumTCycles, unsigned ExtraTCycles,
    337                       MachineBasicBlock &FMBB,
    338                       unsigned NumFCycles, unsigned ExtraFCycles,
    339                       const BranchProbability &Probability) const {
    340     return false;
    341   }
    342 
    343   /// isProfitableToDupForIfCvt - Return true if it's profitable for
    344   /// if-converter to duplicate instructions of specified accumulated
    345   /// instruction latencies in the specified MBB to enable if-conversion.
    346   /// The probability of the instructions being executed is given by
    347   /// Probability, and Confidence is a measure of our confidence that it
    348   /// will be properly predicted.
    349   virtual bool
    350   isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCyles,
    351                             const BranchProbability &Probability) const {
    352     return false;
    353   }
    354 
    355   /// isProfitableToUnpredicate - Return true if it's profitable to unpredicate
    356   /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
    357   /// exclusive predicates.
    358   /// e.g.
    359   ///   subeq  r0, r1, #1
    360   ///   addne  r0, r1, #1
    361   /// =>
    362   ///   sub    r0, r1, #1
    363   ///   addne  r0, r1, #1
    364   ///
    365   /// This may be profitable is conditional instructions are always executed.
    366   virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
    367                                          MachineBasicBlock &FMBB) const {
    368     return false;
    369   }
    370 
    371   /// copyPhysReg - Emit instructions to copy a pair of physical registers.
    372   virtual void copyPhysReg(MachineBasicBlock &MBB,
    373                            MachineBasicBlock::iterator MI, DebugLoc DL,
    374                            unsigned DestReg, unsigned SrcReg,
    375                            bool KillSrc) const {
    376     llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
    377   }
    378 
    379   /// storeRegToStackSlot - Store the specified register of the given register
    380   /// class to the specified stack frame index. The store instruction is to be
    381   /// added to the given machine basic block before the specified machine
    382   /// instruction. If isKill is true, the register operand is the last use and
    383   /// must be marked kill.
    384   virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
    385                                    MachineBasicBlock::iterator MI,
    386                                    unsigned SrcReg, bool isKill, int FrameIndex,
    387                                    const TargetRegisterClass *RC,
    388                                    const TargetRegisterInfo *TRI) const {
    389     llvm_unreachable("Target didn't implement "
    390                      "TargetInstrInfo::storeRegToStackSlot!");
    391   }
    392 
    393   /// loadRegFromStackSlot - Load the specified register of the given register
    394   /// class from the specified stack frame index. The load instruction is to be
    395   /// added to the given machine basic block before the specified machine
    396   /// instruction.
    397   virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
    398                                     MachineBasicBlock::iterator MI,
    399                                     unsigned DestReg, int FrameIndex,
    400                                     const TargetRegisterClass *RC,
    401                                     const TargetRegisterInfo *TRI) const {
    402     llvm_unreachable("Target didn't implement "
    403                      "TargetInstrInfo::loadRegFromStackSlot!");
    404   }
    405 
    406   /// expandPostRAPseudo - This function is called for all pseudo instructions
    407   /// that remain after register allocation. Many pseudo instructions are
    408   /// created to help register allocation. This is the place to convert them
    409   /// into real instructions. The target can edit MI in place, or it can insert
    410   /// new instructions and erase MI. The function should return true if
    411   /// anything was changed.
    412   virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
    413     return false;
    414   }
    415 
    416   /// emitFrameIndexDebugValue - Emit a target-dependent form of
    417   /// DBG_VALUE encoding the address of a frame index.  Addresses would
    418   /// normally be lowered the same way as other addresses on the target,
    419   /// e.g. in load instructions.  For targets that do not support this
    420   /// the debug info is simply lost.
    421   /// If you add this for a target you should handle this DBG_VALUE in the
    422   /// target-specific AsmPrinter code as well; you will probably get invalid
    423   /// assembly output if you don't.
    424   virtual MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
    425                                                  int FrameIx,
    426                                                  uint64_t Offset,
    427                                                  const MDNode *MDPtr,
    428                                                  DebugLoc dl) const {
    429     return 0;
    430   }
    431 
    432   /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
    433   /// slot into the specified machine instruction for the specified operand(s).
    434   /// If this is possible, a new instruction is returned with the specified
    435   /// operand folded, otherwise NULL is returned.
    436   /// The new instruction is inserted before MI, and the client is responsible
    437   /// for removing the old instruction.
    438   MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
    439                                   const SmallVectorImpl<unsigned> &Ops,
    440                                   int FrameIndex) const;
    441 
    442   /// foldMemoryOperand - Same as the previous version except it allows folding
    443   /// of any load and store from / to any address, not just from a specific
    444   /// stack slot.
    445   MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
    446                                   const SmallVectorImpl<unsigned> &Ops,
    447                                   MachineInstr* LoadMI) const;
    448 
    449 protected:
    450   /// foldMemoryOperandImpl - Target-dependent implementation for
    451   /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
    452   /// take care of adding a MachineMemOperand to the newly created instruction.
    453   virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
    454                                           MachineInstr* MI,
    455                                           const SmallVectorImpl<unsigned> &Ops,
    456                                           int FrameIndex) const {
    457     return 0;
    458   }
    459 
    460   /// foldMemoryOperandImpl - Target-dependent implementation for
    461   /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
    462   /// take care of adding a MachineMemOperand to the newly created instruction.
    463   virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
    464                                               MachineInstr* MI,
    465                                           const SmallVectorImpl<unsigned> &Ops,
    466                                               MachineInstr* LoadMI) const {
    467     return 0;
    468   }
    469 
    470 public:
    471   /// canFoldMemoryOperand - Returns true for the specified load / store if
    472   /// folding is possible.
    473   virtual
    474   bool canFoldMemoryOperand(const MachineInstr *MI,
    475                             const SmallVectorImpl<unsigned> &Ops) const =0;
    476 
    477   /// unfoldMemoryOperand - Separate a single instruction which folded a load or
    478   /// a store or a load and a store into two or more instruction. If this is
    479   /// possible, returns true as well as the new instructions by reference.
    480   virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
    481                                 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
    482                                  SmallVectorImpl<MachineInstr*> &NewMIs) const{
    483     return false;
    484   }
    485 
    486   virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
    487                                    SmallVectorImpl<SDNode*> &NewNodes) const {
    488     return false;
    489   }
    490 
    491   /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
    492   /// instruction after load / store are unfolded from an instruction of the
    493   /// specified opcode. It returns zero if the specified unfolding is not
    494   /// possible. If LoadRegIndex is non-null, it is filled in with the operand
    495   /// index of the operand which will hold the register holding the loaded
    496   /// value.
    497   virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
    498                                       bool UnfoldLoad, bool UnfoldStore,
    499                                       unsigned *LoadRegIndex = 0) const {
    500     return 0;
    501   }
    502 
    503   /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
    504   /// to determine if two loads are loading from the same base address. It
    505   /// should only return true if the base pointers are the same and the
    506   /// only differences between the two addresses are the offset. It also returns
    507   /// the offsets by reference.
    508   virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
    509                                     int64_t &Offset1, int64_t &Offset2) const {
    510     return false;
    511   }
    512 
    513   /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
    514   /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
    515   /// be scheduled togther. On some targets if two loads are loading from
    516   /// addresses in the same cache line, it's better if they are scheduled
    517   /// together. This function takes two integers that represent the load offsets
    518   /// from the common base address. It returns true if it decides it's desirable
    519   /// to schedule the two loads together. "NumLoads" is the number of loads that
    520   /// have already been scheduled after Load1.
    521   virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
    522                                        int64_t Offset1, int64_t Offset2,
    523                                        unsigned NumLoads) const {
    524     return false;
    525   }
    526 
    527   /// ReverseBranchCondition - Reverses the branch condition of the specified
    528   /// condition list, returning false on success and true if it cannot be
    529   /// reversed.
    530   virtual
    531   bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
    532     return true;
    533   }
    534 
    535   /// insertNoop - Insert a noop into the instruction stream at the specified
    536   /// point.
    537   virtual void insertNoop(MachineBasicBlock &MBB,
    538                           MachineBasicBlock::iterator MI) const;
    539 
    540 
    541   /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
    542   virtual void getNoopForMachoTarget(MCInst &NopInst) const {
    543     // Default to just using 'nop' string.
    544   }
    545 
    546 
    547   /// isPredicated - Returns true if the instruction is already predicated.
    548   ///
    549   virtual bool isPredicated(const MachineInstr *MI) const {
    550     return false;
    551   }
    552 
    553   /// isUnpredicatedTerminator - Returns true if the instruction is a
    554   /// terminator instruction that has not been predicated.
    555   virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const = 0;
    556 
    557   /// PredicateInstruction - Convert the instruction into a predicated
    558   /// instruction. It returns true if the operation was successful.
    559   virtual
    560   bool PredicateInstruction(MachineInstr *MI,
    561                         const SmallVectorImpl<MachineOperand> &Pred) const = 0;
    562 
    563   /// SubsumesPredicate - Returns true if the first specified predicate
    564   /// subsumes the second, e.g. GE subsumes GT.
    565   virtual
    566   bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
    567                          const SmallVectorImpl<MachineOperand> &Pred2) const {
    568     return false;
    569   }
    570 
    571   /// DefinesPredicate - If the specified instruction defines any predicate
    572   /// or condition code register(s) used for predication, returns true as well
    573   /// as the definition predicate(s) by reference.
    574   virtual bool DefinesPredicate(MachineInstr *MI,
    575                                 std::vector<MachineOperand> &Pred) const {
    576     return false;
    577   }
    578 
    579   /// isPredicable - Return true if the specified instruction can be predicated.
    580   /// By default, this returns true for every instruction with a
    581   /// PredicateOperand.
    582   virtual bool isPredicable(MachineInstr *MI) const {
    583     return MI->getDesc().isPredicable();
    584   }
    585 
    586   /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
    587   /// instruction that defines the specified register class.
    588   virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
    589     return true;
    590   }
    591 
    592   /// isSchedulingBoundary - Test if the given instruction should be
    593   /// considered a scheduling boundary. This primarily includes labels and
    594   /// terminators.
    595   virtual bool isSchedulingBoundary(const MachineInstr *MI,
    596                                     const MachineBasicBlock *MBB,
    597                                     const MachineFunction &MF) const = 0;
    598 
    599   /// Measure the specified inline asm to determine an approximation of its
    600   /// length.
    601   virtual unsigned getInlineAsmLength(const char *Str,
    602                                       const MCAsmInfo &MAI) const;
    603 
    604   /// CreateTargetHazardRecognizer - Allocate and return a hazard recognizer to
    605   /// use for this target when scheduling the machine instructions before
    606   /// register allocation.
    607   virtual ScheduleHazardRecognizer*
    608   CreateTargetHazardRecognizer(const TargetMachine *TM,
    609                                const ScheduleDAG *DAG) const = 0;
    610 
    611   /// CreateTargetPostRAHazardRecognizer - Allocate and return a hazard
    612   /// recognizer to use for this target when scheduling the machine instructions
    613   /// after register allocation.
    614   virtual ScheduleHazardRecognizer*
    615   CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
    616                                      const ScheduleDAG *DAG) const = 0;
    617 
    618   /// AnalyzeCompare - For a comparison instruction, return the source register
    619   /// in SrcReg and the value it compares against in CmpValue. Return true if
    620   /// the comparison instruction can be analyzed.
    621   virtual bool AnalyzeCompare(const MachineInstr *MI,
    622                               unsigned &SrcReg, int &Mask, int &Value) const {
    623     return false;
    624   }
    625 
    626   /// OptimizeCompareInstr - See if the comparison instruction can be converted
    627   /// into something more efficient. E.g., on ARM most instructions can set the
    628   /// flags register, obviating the need for a separate CMP.
    629   virtual bool OptimizeCompareInstr(MachineInstr *CmpInstr,
    630                                     unsigned SrcReg, int Mask, int Value,
    631                                     const MachineRegisterInfo *MRI) const {
    632     return false;
    633   }
    634 
    635   /// FoldImmediate - 'Reg' is known to be defined by a move immediate
    636   /// instruction, try to fold the immediate into the use instruction.
    637   virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
    638                              unsigned Reg, MachineRegisterInfo *MRI) const {
    639     return false;
    640   }
    641 
    642   /// getNumMicroOps - Return the number of u-operations the given machine
    643   /// instruction will be decoded to on the target cpu.
    644   virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
    645                                   const MachineInstr *MI) const;
    646 
    647   /// isZeroCost - Return true for pseudo instructions that don't consume any
    648   /// machine resources in their current form. These are common cases that the
    649   /// scheduler should consider free, rather than conservatively handling them
    650   /// as instructions with no itinerary.
    651   bool isZeroCost(unsigned Opcode) const {
    652     return Opcode <= TargetOpcode::COPY;
    653   }
    654 
    655   /// getOperandLatency - Compute and return the use operand latency of a given
    656   /// pair of def and use.
    657   /// In most cases, the static scheduling itinerary was enough to determine the
    658   /// operand latency. But it may not be possible for instructions with variable
    659   /// number of defs / uses.
    660   virtual int getOperandLatency(const InstrItineraryData *ItinData,
    661                               const MachineInstr *DefMI, unsigned DefIdx,
    662                               const MachineInstr *UseMI, unsigned UseIdx) const;
    663 
    664   virtual int getOperandLatency(const InstrItineraryData *ItinData,
    665                                 SDNode *DefNode, unsigned DefIdx,
    666                                 SDNode *UseNode, unsigned UseIdx) const = 0;
    667 
    668   /// getOutputLatency - Compute and return the output dependency latency of a
    669   /// a given pair of defs which both target the same register. This is usually
    670   /// one.
    671   virtual unsigned getOutputLatency(const InstrItineraryData *ItinData,
    672                                     const MachineInstr *DefMI, unsigned DefIdx,
    673                                     const MachineInstr *DepMI) const {
    674     return 1;
    675   }
    676 
    677   /// getInstrLatency - Compute the instruction latency of a given instruction.
    678   /// If the instruction has higher cost when predicated, it's returned via
    679   /// PredCost.
    680   virtual int getInstrLatency(const InstrItineraryData *ItinData,
    681                               const MachineInstr *MI,
    682                               unsigned *PredCost = 0) const;
    683 
    684   virtual int getInstrLatency(const InstrItineraryData *ItinData,
    685                               SDNode *Node) const = 0;
    686 
    687   /// isHighLatencyDef - Return true if this opcode has high latency to its
    688   /// result.
    689   virtual bool isHighLatencyDef(int opc) const { return false; }
    690 
    691   /// hasHighOperandLatency - Compute operand latency between a def of 'Reg'
    692   /// and an use in the current loop, return true if the target considered
    693   /// it 'high'. This is used by optimization passes such as machine LICM to
    694   /// determine whether it makes sense to hoist an instruction out even in
    695   /// high register pressure situation.
    696   virtual
    697   bool hasHighOperandLatency(const InstrItineraryData *ItinData,
    698                              const MachineRegisterInfo *MRI,
    699                              const MachineInstr *DefMI, unsigned DefIdx,
    700                              const MachineInstr *UseMI, unsigned UseIdx) const {
    701     return false;
    702   }
    703 
    704   /// hasLowDefLatency - Compute operand latency of a def of 'Reg', return true
    705   /// if the target considered it 'low'.
    706   virtual
    707   bool hasLowDefLatency(const InstrItineraryData *ItinData,
    708                         const MachineInstr *DefMI, unsigned DefIdx) const;
    709 
    710   /// verifyInstruction - Perform target specific instruction verification.
    711   virtual
    712   bool verifyInstruction(const MachineInstr *MI, StringRef &ErrInfo) const {
    713     return true;
    714   }
    715 
    716   /// getExecutionDomain - Return the current execution domain and bit mask of
    717   /// possible domains for instruction.
    718   ///
    719   /// Some micro-architectures have multiple execution domains, and multiple
    720   /// opcodes that perform the same operation in different domains.  For
    721   /// example, the x86 architecture provides the por, orps, and orpd
    722   /// instructions that all do the same thing.  There is a latency penalty if a
    723   /// register is written in one domain and read in another.
    724   ///
    725   /// This function returns a pair (domain, mask) containing the execution
    726   /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain
    727   /// function can be used to change the opcode to one of the domains in the
    728   /// bit mask.  Instructions whose execution domain can't be changed should
    729   /// return a 0 mask.
    730   ///
    731   /// The execution domain numbers don't have any special meaning except domain
    732   /// 0 is used for instructions that are not associated with any interesting
    733   /// execution domain.
    734   ///
    735   virtual std::pair<uint16_t, uint16_t>
    736   getExecutionDomain(const MachineInstr *MI) const {
    737     return std::make_pair(0, 0);
    738   }
    739 
    740   /// setExecutionDomain - Change the opcode of MI to execute in Domain.
    741   ///
    742   /// The bit (1 << Domain) must be set in the mask returned from
    743   /// getExecutionDomain(MI).
    744   ///
    745   virtual void setExecutionDomain(MachineInstr *MI, unsigned Domain) const {}
    746 
    747 
    748   /// getPartialRegUpdateClearance - Returns the preferred minimum clearance
    749   /// before an instruction with an unwanted partial register update.
    750   ///
    751   /// Some instructions only write part of a register, and implicitly need to
    752   /// read the other parts of the register.  This may cause unwanted stalls
    753   /// preventing otherwise unrelated instructions from executing in parallel in
    754   /// an out-of-order CPU.
    755   ///
    756   /// For example, the x86 instruction cvtsi2ss writes its result to bits
    757   /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
    758   /// the instruction needs to wait for the old value of the register to become
    759   /// available:
    760   ///
    761   ///   addps %xmm1, %xmm0
    762   ///   movaps %xmm0, (%rax)
    763   ///   cvtsi2ss %rbx, %xmm0
    764   ///
    765   /// In the code above, the cvtsi2ss instruction needs to wait for the addps
    766   /// instruction before it can issue, even though the high bits of %xmm0
    767   /// probably aren't needed.
    768   ///
    769   /// This hook returns the preferred clearance before MI, measured in
    770   /// instructions.  Other defs of MI's operand OpNum are avoided in the last N
    771   /// instructions before MI.  It should only return a positive value for
    772   /// unwanted dependencies.  If the old bits of the defined register have
    773   /// useful values, or if MI is determined to otherwise read the dependency,
    774   /// the hook should return 0.
    775   ///
    776   /// The unwanted dependency may be handled by:
    777   ///
    778   /// 1. Allocating the same register for an MI def and use.  That makes the
    779   ///    unwanted dependency identical to a required dependency.
    780   ///
    781   /// 2. Allocating a register for the def that has no defs in the previous N
    782   ///    instructions.
    783   ///
    784   /// 3. Calling breakPartialRegDependency() with the same arguments.  This
    785   ///    allows the target to insert a dependency breaking instruction.
    786   ///
    787   virtual unsigned
    788   getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
    789                                const TargetRegisterInfo *TRI) const {
    790     // The default implementation returns 0 for no partial register dependency.
    791     return 0;
    792   }
    793 
    794   /// breakPartialRegDependency - Insert a dependency-breaking instruction
    795   /// before MI to eliminate an unwanted dependency on OpNum.
    796   ///
    797   /// If it wasn't possible to avoid a def in the last N instructions before MI
    798   /// (see getPartialRegUpdateClearance), this hook will be called to break the
    799   /// unwanted dependency.
    800   ///
    801   /// On x86, an xorps instruction can be used as a dependency breaker:
    802   ///
    803   ///   addps %xmm1, %xmm0
    804   ///   movaps %xmm0, (%rax)
    805   ///   xorps %xmm0, %xmm0
    806   ///   cvtsi2ss %rbx, %xmm0
    807   ///
    808   /// An <imp-kill> operand should be added to MI if an instruction was
    809   /// inserted.  This ties the instructions together in the post-ra scheduler.
    810   ///
    811   virtual void
    812   breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
    813                             const TargetRegisterInfo *TRI) const {}
    814 
    815   /// Create machine specific model for scheduling.
    816   virtual DFAPacketizer*
    817     CreateTargetScheduleState(const TargetMachine*, const ScheduleDAG*) const {
    818     return NULL;
    819   }
    820 
    821 private:
    822   int CallFrameSetupOpcode, CallFrameDestroyOpcode;
    823 };
    824 
    825 /// TargetInstrInfoImpl - This is the default implementation of
    826 /// TargetInstrInfo, which just provides a couple of default implementations
    827 /// for various methods.  This separated out because it is implemented in
    828 /// libcodegen, not in libtarget.
    829 class TargetInstrInfoImpl : public TargetInstrInfo {
    830 protected:
    831   TargetInstrInfoImpl(int CallFrameSetupOpcode = -1,
    832                       int CallFrameDestroyOpcode = -1)
    833     : TargetInstrInfo(CallFrameSetupOpcode, CallFrameDestroyOpcode) {}
    834 public:
    835   virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
    836                                        MachineBasicBlock *NewDest) const;
    837   virtual MachineInstr *commuteInstruction(MachineInstr *MI,
    838                                            bool NewMI = false) const;
    839   virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
    840                                      unsigned &SrcOpIdx2) const;
    841   virtual bool canFoldMemoryOperand(const MachineInstr *MI,
    842                                     const SmallVectorImpl<unsigned> &Ops) const;
    843   virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
    844                                     const MachineMemOperand *&MMO,
    845                                     int &FrameIndex) const;
    846   virtual bool hasStoreToStackSlot(const MachineInstr *MI,
    847                                    const MachineMemOperand *&MMO,
    848                                    int &FrameIndex) const;
    849   virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
    850   virtual bool PredicateInstruction(MachineInstr *MI,
    851                             const SmallVectorImpl<MachineOperand> &Pred) const;
    852   virtual void reMaterialize(MachineBasicBlock &MBB,
    853                              MachineBasicBlock::iterator MI,
    854                              unsigned DestReg, unsigned SubReg,
    855                              const MachineInstr *Orig,
    856                              const TargetRegisterInfo &TRI) const;
    857   virtual MachineInstr *duplicate(MachineInstr *Orig,
    858                                   MachineFunction &MF) const;
    859   virtual bool produceSameValue(const MachineInstr *MI0,
    860                                 const MachineInstr *MI1,
    861                                 const MachineRegisterInfo *MRI) const;
    862   virtual bool isSchedulingBoundary(const MachineInstr *MI,
    863                                     const MachineBasicBlock *MBB,
    864                                     const MachineFunction &MF) const;
    865   using TargetInstrInfo::getOperandLatency;
    866   virtual int getOperandLatency(const InstrItineraryData *ItinData,
    867                                 SDNode *DefNode, unsigned DefIdx,
    868                                 SDNode *UseNode, unsigned UseIdx) const;
    869   using TargetInstrInfo::getInstrLatency;
    870   virtual int getInstrLatency(const InstrItineraryData *ItinData,
    871                               SDNode *Node) const;
    872 
    873   bool usePreRAHazardRecognizer() const;
    874 
    875   virtual ScheduleHazardRecognizer *
    876   CreateTargetHazardRecognizer(const TargetMachine*, const ScheduleDAG*) const;
    877 
    878   virtual ScheduleHazardRecognizer *
    879   CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
    880                                      const ScheduleDAG*) const;
    881 };
    882 
    883 } // End llvm namespace
    884 
    885 #endif
    886