Home | History | Annotate | Download | only in X86
      1 //===-- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the X86 implementation of the TargetInstrInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef X86INSTRUCTIONINFO_H
     15 #define X86INSTRUCTIONINFO_H
     16 
     17 #include "X86.h"
     18 #include "X86RegisterInfo.h"
     19 #include "llvm/ADT/DenseMap.h"
     20 #include "llvm/Target/TargetInstrInfo.h"
     21 
     22 #define GET_INSTRINFO_HEADER
     23 #include "X86GenInstrInfo.inc"
     24 
     25 namespace llvm {
     26   class X86RegisterInfo;
     27   class X86TargetMachine;
     28 
     29 namespace X86 {
     30   // X86 specific condition code. These correspond to X86_*_COND in
     31   // X86InstrInfo.td. They must be kept in synch.
     32   enum CondCode {
     33     COND_A  = 0,
     34     COND_AE = 1,
     35     COND_B  = 2,
     36     COND_BE = 3,
     37     COND_E  = 4,
     38     COND_G  = 5,
     39     COND_GE = 6,
     40     COND_L  = 7,
     41     COND_LE = 8,
     42     COND_NE = 9,
     43     COND_NO = 10,
     44     COND_NP = 11,
     45     COND_NS = 12,
     46     COND_O  = 13,
     47     COND_P  = 14,
     48     COND_S  = 15,
     49 
     50     // Artificial condition codes. These are used by AnalyzeBranch
     51     // to indicate a block terminated with two conditional branches to
     52     // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
     53     // which can't be represented on x86 with a single condition. These
     54     // are never used in MachineInstrs.
     55     COND_NE_OR_P,
     56     COND_NP_OR_E,
     57 
     58     COND_INVALID
     59   };
     60 
     61   // Turn condition code into conditional branch opcode.
     62   unsigned GetCondBranchFromCond(CondCode CC);
     63 
     64   /// GetOppositeBranchCondition - Return the inverse of the specified cond,
     65   /// e.g. turning COND_E to COND_NE.
     66   CondCode GetOppositeBranchCondition(X86::CondCode CC);
     67 }  // end namespace X86;
     68 
     69 
     70 /// isGlobalStubReference - Return true if the specified TargetFlag operand is
     71 /// a reference to a stub for a global, not the global itself.
     72 inline static bool isGlobalStubReference(unsigned char TargetFlag) {
     73   switch (TargetFlag) {
     74   case X86II::MO_DLLIMPORT: // dllimport stub.
     75   case X86II::MO_GOTPCREL:  // rip-relative GOT reference.
     76   case X86II::MO_GOT:       // normal GOT reference.
     77   case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Normal $non_lazy_ptr ref.
     78   case X86II::MO_DARWIN_NONLAZY:                 // Normal $non_lazy_ptr ref.
     79   case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
     80     return true;
     81   default:
     82     return false;
     83   }
     84 }
     85 
     86 /// isGlobalRelativeToPICBase - Return true if the specified global value
     87 /// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg).  If this
     88 /// is true, the addressing mode has the PIC base register added in (e.g. EBX).
     89 inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
     90   switch (TargetFlag) {
     91   case X86II::MO_GOTOFF:                         // isPICStyleGOT: local global.
     92   case X86II::MO_GOT:                            // isPICStyleGOT: other global.
     93   case X86II::MO_PIC_BASE_OFFSET:                // Darwin local global.
     94   case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Darwin/32 external global.
     95   case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global.
     96   case X86II::MO_TLVP:                           // ??? Pretty sure..
     97     return true;
     98   default:
     99     return false;
    100   }
    101 }
    102 
    103 inline static bool isScale(const MachineOperand &MO) {
    104   return MO.isImm() &&
    105     (MO.getImm() == 1 || MO.getImm() == 2 ||
    106      MO.getImm() == 4 || MO.getImm() == 8);
    107 }
    108 
    109 inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
    110   if (MI->getOperand(Op).isFI()) return true;
    111   return Op+4 <= MI->getNumOperands() &&
    112     MI->getOperand(Op  ).isReg() && isScale(MI->getOperand(Op+1)) &&
    113     MI->getOperand(Op+2).isReg() &&
    114     (MI->getOperand(Op+3).isImm() ||
    115      MI->getOperand(Op+3).isGlobal() ||
    116      MI->getOperand(Op+3).isCPI() ||
    117      MI->getOperand(Op+3).isJTI());
    118 }
    119 
    120 inline static bool isMem(const MachineInstr *MI, unsigned Op) {
    121   if (MI->getOperand(Op).isFI()) return true;
    122   return Op+5 <= MI->getNumOperands() &&
    123     MI->getOperand(Op+4).isReg() &&
    124     isLeaMem(MI, Op);
    125 }
    126 
    127 class X86InstrInfo : public X86GenInstrInfo {
    128   X86TargetMachine &TM;
    129   const X86RegisterInfo RI;
    130 
    131   /// RegOp2MemOpTable3Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
    132   /// RegOp2MemOpTable2, RegOp2MemOpTable3 - Load / store folding opcode maps.
    133   ///
    134   typedef DenseMap<unsigned,
    135                    std::pair<unsigned, unsigned> > RegOp2MemOpTableType;
    136   RegOp2MemOpTableType RegOp2MemOpTable2Addr;
    137   RegOp2MemOpTableType RegOp2MemOpTable0;
    138   RegOp2MemOpTableType RegOp2MemOpTable1;
    139   RegOp2MemOpTableType RegOp2MemOpTable2;
    140   RegOp2MemOpTableType RegOp2MemOpTable3;
    141 
    142   /// MemOp2RegOpTable - Load / store unfolding opcode map.
    143   ///
    144   typedef DenseMap<unsigned,
    145                    std::pair<unsigned, unsigned> > MemOp2RegOpTableType;
    146   MemOp2RegOpTableType MemOp2RegOpTable;
    147 
    148   static void AddTableEntry(RegOp2MemOpTableType &R2MTable,
    149                             MemOp2RegOpTableType &M2RTable,
    150                             unsigned RegOp, unsigned MemOp, unsigned Flags);
    151 
    152 public:
    153   explicit X86InstrInfo(X86TargetMachine &tm);
    154 
    155   /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
    156   /// such, whenever a client has an instance of instruction info, it should
    157   /// always be able to get register info as well (through this method).
    158   ///
    159   virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
    160 
    161   /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
    162   /// extension instruction. That is, it's like a copy where it's legal for the
    163   /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
    164   /// true, then it's expected the pre-extension value is available as a subreg
    165   /// of the result register. This also returns the sub-register index in
    166   /// SubIdx.
    167   virtual bool isCoalescableExtInstr(const MachineInstr &MI,
    168                                      unsigned &SrcReg, unsigned &DstReg,
    169                                      unsigned &SubIdx) const;
    170 
    171   unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
    172   /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
    173   /// stack locations as well.  This uses a heuristic so it isn't
    174   /// reliable for correctness.
    175   unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
    176                                      int &FrameIndex) const;
    177 
    178   unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
    179   /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
    180   /// stack locations as well.  This uses a heuristic so it isn't
    181   /// reliable for correctness.
    182   unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
    183                                     int &FrameIndex) const;
    184 
    185   bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
    186                                          AliasAnalysis *AA) const;
    187   void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
    188                      unsigned DestReg, unsigned SubIdx,
    189                      const MachineInstr *Orig,
    190                      const TargetRegisterInfo &TRI) const;
    191 
    192   /// convertToThreeAddress - This method must be implemented by targets that
    193   /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
    194   /// may be able to convert a two-address instruction into a true
    195   /// three-address instruction on demand.  This allows the X86 target (for
    196   /// example) to convert ADD and SHL instructions into LEA instructions if they
    197   /// would require register copies due to two-addressness.
    198   ///
    199   /// This method returns a null pointer if the transformation cannot be
    200   /// performed, otherwise it returns the new instruction.
    201   ///
    202   virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
    203                                               MachineBasicBlock::iterator &MBBI,
    204                                               LiveVariables *LV) const;
    205 
    206   /// commuteInstruction - We have a few instructions that must be hacked on to
    207   /// commute them.
    208   ///
    209   virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
    210 
    211   // Branch analysis.
    212   virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
    213   virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
    214                              MachineBasicBlock *&FBB,
    215                              SmallVectorImpl<MachineOperand> &Cond,
    216                              bool AllowModify) const;
    217   virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
    218   virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
    219                                 MachineBasicBlock *FBB,
    220                                 const SmallVectorImpl<MachineOperand> &Cond,
    221                                 DebugLoc DL) const;
    222   virtual bool canInsertSelect(const MachineBasicBlock&,
    223                                const SmallVectorImpl<MachineOperand> &Cond,
    224                                unsigned, unsigned, int&, int&, int&) const;
    225   virtual void insertSelect(MachineBasicBlock &MBB,
    226                             MachineBasicBlock::iterator MI, DebugLoc DL,
    227                             unsigned DstReg,
    228                             const SmallVectorImpl<MachineOperand> &Cond,
    229                             unsigned TrueReg, unsigned FalseReg) const;
    230   virtual void copyPhysReg(MachineBasicBlock &MBB,
    231                            MachineBasicBlock::iterator MI, DebugLoc DL,
    232                            unsigned DestReg, unsigned SrcReg,
    233                            bool KillSrc) const;
    234   virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
    235                                    MachineBasicBlock::iterator MI,
    236                                    unsigned SrcReg, bool isKill, int FrameIndex,
    237                                    const TargetRegisterClass *RC,
    238                                    const TargetRegisterInfo *TRI) const;
    239 
    240   virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
    241                               SmallVectorImpl<MachineOperand> &Addr,
    242                               const TargetRegisterClass *RC,
    243                               MachineInstr::mmo_iterator MMOBegin,
    244                               MachineInstr::mmo_iterator MMOEnd,
    245                               SmallVectorImpl<MachineInstr*> &NewMIs) const;
    246 
    247   virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
    248                                     MachineBasicBlock::iterator MI,
    249                                     unsigned DestReg, int FrameIndex,
    250                                     const TargetRegisterClass *RC,
    251                                     const TargetRegisterInfo *TRI) const;
    252 
    253   virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
    254                                SmallVectorImpl<MachineOperand> &Addr,
    255                                const TargetRegisterClass *RC,
    256                                MachineInstr::mmo_iterator MMOBegin,
    257                                MachineInstr::mmo_iterator MMOEnd,
    258                                SmallVectorImpl<MachineInstr*> &NewMIs) const;
    259 
    260   virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const;
    261 
    262   virtual
    263   MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
    264                                          int FrameIx, uint64_t Offset,
    265                                          const MDNode *MDPtr,
    266                                          DebugLoc DL) const;
    267 
    268   /// foldMemoryOperand - If this target supports it, fold a load or store of
    269   /// the specified stack slot into the specified machine instruction for the
    270   /// specified operand(s).  If this is possible, the target should perform the
    271   /// folding and return true, otherwise it should return false.  If it folds
    272   /// the instruction, it is likely that the MachineInstruction the iterator
    273   /// references has been changed.
    274   virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
    275                                               MachineInstr* MI,
    276                                            const SmallVectorImpl<unsigned> &Ops,
    277                                               int FrameIndex) const;
    278 
    279   /// foldMemoryOperand - Same as the previous version except it allows folding
    280   /// of any load and store from / to any address, not just from a specific
    281   /// stack slot.
    282   virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
    283                                               MachineInstr* MI,
    284                                            const SmallVectorImpl<unsigned> &Ops,
    285                                               MachineInstr* LoadMI) const;
    286 
    287   /// canFoldMemoryOperand - Returns true if the specified load / store is
    288   /// folding is possible.
    289   virtual bool canFoldMemoryOperand(const MachineInstr*,
    290                                     const SmallVectorImpl<unsigned> &) const;
    291 
    292   /// unfoldMemoryOperand - Separate a single instruction which folded a load or
    293   /// a store or a load and a store into two or more instruction. If this is
    294   /// possible, returns true as well as the new instructions by reference.
    295   virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
    296                            unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
    297                            SmallVectorImpl<MachineInstr*> &NewMIs) const;
    298 
    299   virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
    300                            SmallVectorImpl<SDNode*> &NewNodes) const;
    301 
    302   /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
    303   /// instruction after load / store are unfolded from an instruction of the
    304   /// specified opcode. It returns zero if the specified unfolding is not
    305   /// possible. If LoadRegIndex is non-null, it is filled in with the operand
    306   /// index of the operand which will hold the register holding the loaded
    307   /// value.
    308   virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
    309                                       bool UnfoldLoad, bool UnfoldStore,
    310                                       unsigned *LoadRegIndex = 0) const;
    311 
    312   /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
    313   /// to determine if two loads are loading from the same base address. It
    314   /// should only return true if the base pointers are the same and the
    315   /// only differences between the two addresses are the offset. It also returns
    316   /// the offsets by reference.
    317   virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
    318                                        int64_t &Offset1, int64_t &Offset2) const;
    319 
    320   /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
    321   /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
    322   /// be scheduled togther. On some targets if two loads are loading from
    323   /// addresses in the same cache line, it's better if they are scheduled
    324   /// together. This function takes two integers that represent the load offsets
    325   /// from the common base address. It returns true if it decides it's desirable
    326   /// to schedule the two loads together. "NumLoads" is the number of loads that
    327   /// have already been scheduled after Load1.
    328   virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
    329                                        int64_t Offset1, int64_t Offset2,
    330                                        unsigned NumLoads) const;
    331 
    332   virtual void getNoopForMachoTarget(MCInst &NopInst) const;
    333 
    334   virtual
    335   bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
    336 
    337   /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
    338   /// instruction that defines the specified register class.
    339   bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
    340 
    341   static bool isX86_64ExtendedReg(const MachineOperand &MO) {
    342     if (!MO.isReg()) return false;
    343     return X86II::isX86_64ExtendedReg(MO.getReg());
    344   }
    345 
    346   /// getGlobalBaseReg - Return a virtual register initialized with the
    347   /// the global base register value. Output instructions required to
    348   /// initialize the register in the function entry block, if necessary.
    349   ///
    350   unsigned getGlobalBaseReg(MachineFunction *MF) const;
    351 
    352   std::pair<uint16_t, uint16_t>
    353   getExecutionDomain(const MachineInstr *MI) const;
    354 
    355   void setExecutionDomain(MachineInstr *MI, unsigned Domain) const;
    356 
    357   unsigned getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
    358                                         const TargetRegisterInfo *TRI) const;
    359   void breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
    360                                  const TargetRegisterInfo *TRI) const;
    361 
    362   MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
    363                                       MachineInstr* MI,
    364                                       unsigned OpNum,
    365                                       const SmallVectorImpl<MachineOperand> &MOs,
    366                                       unsigned Size, unsigned Alignment) const;
    367 
    368   bool isHighLatencyDef(int opc) const;
    369 
    370   bool hasHighOperandLatency(const InstrItineraryData *ItinData,
    371                              const MachineRegisterInfo *MRI,
    372                              const MachineInstr *DefMI, unsigned DefIdx,
    373                              const MachineInstr *UseMI, unsigned UseIdx) const;
    374 
    375   /// analyzeCompare - For a comparison instruction, return the source registers
    376   /// in SrcReg and SrcReg2 if having two register operands, and the value it
    377   /// compares against in CmpValue. Return true if the comparison instruction
    378   /// can be analyzed.
    379   virtual bool analyzeCompare(const MachineInstr *MI, unsigned &SrcReg,
    380                               unsigned &SrcReg2,
    381                               int &CmpMask, int &CmpValue) const;
    382 
    383   /// optimizeCompareInstr - Check if there exists an earlier instruction that
    384   /// operates on the same source operands and sets flags in the same way as
    385   /// Compare; remove Compare if possible.
    386   virtual bool optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg,
    387                                     unsigned SrcReg2, int CmpMask, int CmpValue,
    388                                     const MachineRegisterInfo *MRI) const;
    389 
    390   /// optimizeLoadInstr - Try to remove the load by folding it to a register
    391   /// operand at the use. We fold the load instructions if and only if the
    392   /// def and use are in the same BB. We only look at one load and see
    393   /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
    394   /// defined by the load we are trying to fold. DefMI returns the machine
    395   /// instruction that defines FoldAsLoadDefReg, and the function returns
    396   /// the machine instruction generated due to folding.
    397   virtual MachineInstr* optimizeLoadInstr(MachineInstr *MI,
    398                         const MachineRegisterInfo *MRI,
    399                         unsigned &FoldAsLoadDefReg,
    400                         MachineInstr *&DefMI) const;
    401 
    402 private:
    403   MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc,
    404                                               MachineFunction::iterator &MFI,
    405                                               MachineBasicBlock::iterator &MBBI,
    406                                               LiveVariables *LV) const;
    407 
    408   /// isFrameOperand - Return true and the FrameIndex if the specified
    409   /// operand and follow operands form a reference to the stack frame.
    410   bool isFrameOperand(const MachineInstr *MI, unsigned int Op,
    411                       int &FrameIndex) const;
    412 };
    413 
    414 } // End llvm namespace
    415 
    416 #endif
    417