Home | History | Annotate | Download | only in CodeGen
      1 //===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements a top-down list scheduler, using standard algorithms.
     11 // The basic approach uses a priority queue of available nodes to schedule.
     12 // One at a time, nodes are taken from the priority queue (thus in priority
     13 // order), checked for legality to schedule, and emitted if legal.
     14 //
     15 // Nodes may not be legal to schedule either due to structural hazards (e.g.
     16 // pipeline or resource constraints) or because an input to the instruction has
     17 // not completed execution.
     18 //
     19 //===----------------------------------------------------------------------===//
     20 
     21 #define DEBUG_TYPE "post-RA-sched"
     22 #include "AntiDepBreaker.h"
     23 #include "AggressiveAntiDepBreaker.h"
     24 #include "CriticalAntiDepBreaker.h"
     25 #include "llvm/CodeGen/Passes.h"
     26 #include "llvm/CodeGen/LatencyPriorityQueue.h"
     27 #include "llvm/CodeGen/SchedulerRegistry.h"
     28 #include "llvm/CodeGen/MachineDominators.h"
     29 #include "llvm/CodeGen/MachineFrameInfo.h"
     30 #include "llvm/CodeGen/MachineFunctionPass.h"
     31 #include "llvm/CodeGen/MachineLoopInfo.h"
     32 #include "llvm/CodeGen/MachineRegisterInfo.h"
     33 #include "llvm/CodeGen/RegisterClassInfo.h"
     34 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
     35 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
     36 #include "llvm/Analysis/AliasAnalysis.h"
     37 #include "llvm/Target/TargetLowering.h"
     38 #include "llvm/Target/TargetMachine.h"
     39 #include "llvm/Target/TargetInstrInfo.h"
     40 #include "llvm/Target/TargetRegisterInfo.h"
     41 #include "llvm/Target/TargetSubtargetInfo.h"
     42 #include "llvm/Support/CommandLine.h"
     43 #include "llvm/Support/Debug.h"
     44 #include "llvm/Support/ErrorHandling.h"
     45 #include "llvm/Support/raw_ostream.h"
     46 #include "llvm/ADT/BitVector.h"
     47 #include "llvm/ADT/Statistic.h"
     48 using namespace llvm;
     49 
     50 STATISTIC(NumNoops, "Number of noops inserted");
     51 STATISTIC(NumStalls, "Number of pipeline stalls");
     52 STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies");
     53 
     54 // Post-RA scheduling is enabled with
     55 // TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to
     56 // override the target.
     57 static cl::opt<bool>
     58 EnablePostRAScheduler("post-RA-scheduler",
     59                        cl::desc("Enable scheduling after register allocation"),
     60                        cl::init(false), cl::Hidden);
     61 static cl::opt<std::string>
     62 EnableAntiDepBreaking("break-anti-dependencies",
     63                       cl::desc("Break post-RA scheduling anti-dependencies: "
     64                                "\"critical\", \"all\", or \"none\""),
     65                       cl::init("none"), cl::Hidden);
     66 
     67 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
     68 static cl::opt<int>
     69 DebugDiv("postra-sched-debugdiv",
     70                       cl::desc("Debug control MBBs that are scheduled"),
     71                       cl::init(0), cl::Hidden);
     72 static cl::opt<int>
     73 DebugMod("postra-sched-debugmod",
     74                       cl::desc("Debug control MBBs that are scheduled"),
     75                       cl::init(0), cl::Hidden);
     76 
     77 AntiDepBreaker::~AntiDepBreaker() { }
     78 
     79 namespace {
     80   class PostRAScheduler : public MachineFunctionPass {
     81     const TargetInstrInfo *TII;
     82     RegisterClassInfo RegClassInfo;
     83 
     84   public:
     85     static char ID;
     86     PostRAScheduler() : MachineFunctionPass(ID) {}
     87 
     88     void getAnalysisUsage(AnalysisUsage &AU) const {
     89       AU.setPreservesCFG();
     90       AU.addRequired<AliasAnalysis>();
     91       AU.addRequired<TargetPassConfig>();
     92       AU.addRequired<MachineDominatorTree>();
     93       AU.addPreserved<MachineDominatorTree>();
     94       AU.addRequired<MachineLoopInfo>();
     95       AU.addPreserved<MachineLoopInfo>();
     96       MachineFunctionPass::getAnalysisUsage(AU);
     97     }
     98 
     99     bool runOnMachineFunction(MachineFunction &Fn);
    100   };
    101   char PostRAScheduler::ID = 0;
    102 
    103   class SchedulePostRATDList : public ScheduleDAGInstrs {
    104     /// AvailableQueue - The priority queue to use for the available SUnits.
    105     ///
    106     LatencyPriorityQueue AvailableQueue;
    107 
    108     /// PendingQueue - This contains all of the instructions whose operands have
    109     /// been issued, but their results are not ready yet (due to the latency of
    110     /// the operation).  Once the operands becomes available, the instruction is
    111     /// added to the AvailableQueue.
    112     std::vector<SUnit*> PendingQueue;
    113 
    114     /// Topo - A topological ordering for SUnits.
    115     ScheduleDAGTopologicalSort Topo;
    116 
    117     /// HazardRec - The hazard recognizer to use.
    118     ScheduleHazardRecognizer *HazardRec;
    119 
    120     /// AntiDepBreak - Anti-dependence breaking object, or NULL if none
    121     AntiDepBreaker *AntiDepBreak;
    122 
    123     /// AA - AliasAnalysis for making memory reference queries.
    124     AliasAnalysis *AA;
    125 
    126     /// LiveRegs - true if the register is live.
    127     BitVector LiveRegs;
    128 
    129     /// The schedule. Null SUnit*'s represent noop instructions.
    130     std::vector<SUnit*> Sequence;
    131 
    132   public:
    133     SchedulePostRATDList(
    134       MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
    135       AliasAnalysis *AA, const RegisterClassInfo&,
    136       TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
    137       SmallVectorImpl<const TargetRegisterClass*> &CriticalPathRCs);
    138 
    139     ~SchedulePostRATDList();
    140 
    141     /// startBlock - Initialize register live-range state for scheduling in
    142     /// this block.
    143     ///
    144     void startBlock(MachineBasicBlock *BB);
    145 
    146     /// Initialize the scheduler state for the next scheduling region.
    147     virtual void enterRegion(MachineBasicBlock *bb,
    148                              MachineBasicBlock::iterator begin,
    149                              MachineBasicBlock::iterator end,
    150                              unsigned endcount);
    151 
    152     /// Notify that the scheduler has finished scheduling the current region.
    153     virtual void exitRegion();
    154 
    155     /// Schedule - Schedule the instruction range using list scheduling.
    156     ///
    157     void schedule();
    158 
    159     void EmitSchedule();
    160 
    161     /// Observe - Update liveness information to account for the current
    162     /// instruction, which will not be scheduled.
    163     ///
    164     void Observe(MachineInstr *MI, unsigned Count);
    165 
    166     /// finishBlock - Clean up register live-range state.
    167     ///
    168     void finishBlock();
    169 
    170     /// FixupKills - Fix register kill flags that have been made
    171     /// invalid due to scheduling
    172     ///
    173     void FixupKills(MachineBasicBlock *MBB);
    174 
    175   private:
    176     void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
    177     void ReleaseSuccessors(SUnit *SU);
    178     void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
    179     void ListScheduleTopDown();
    180     void StartBlockForKills(MachineBasicBlock *BB);
    181 
    182     // ToggleKillFlag - Toggle a register operand kill flag. Other
    183     // adjustments may be made to the instruction if necessary. Return
    184     // true if the operand has been deleted, false if not.
    185     bool ToggleKillFlag(MachineInstr *MI, MachineOperand &MO);
    186 
    187     void dumpSchedule() const;
    188   };
    189 }
    190 
    191 char &llvm::PostRASchedulerID = PostRAScheduler::ID;
    192 
    193 INITIALIZE_PASS(PostRAScheduler, "post-RA-sched",
    194                 "Post RA top-down list latency scheduler", false, false)
    195 
    196 SchedulePostRATDList::SchedulePostRATDList(
    197   MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
    198   AliasAnalysis *AA, const RegisterClassInfo &RCI,
    199   TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
    200   SmallVectorImpl<const TargetRegisterClass*> &CriticalPathRCs)
    201   : ScheduleDAGInstrs(MF, MLI, MDT, /*IsPostRA=*/true), Topo(SUnits), AA(AA),
    202     LiveRegs(TRI->getNumRegs())
    203 {
    204   const TargetMachine &TM = MF.getTarget();
    205   const InstrItineraryData *InstrItins = TM.getInstrItineraryData();
    206   HazardRec =
    207     TM.getInstrInfo()->CreateTargetPostRAHazardRecognizer(InstrItins, this);
    208 
    209   assert((AntiDepMode == TargetSubtargetInfo::ANTIDEP_NONE ||
    210           MRI.tracksLiveness()) &&
    211          "Live-ins must be accurate for anti-dependency breaking");
    212   AntiDepBreak =
    213     ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL) ?
    214      (AntiDepBreaker *)new AggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs) :
    215      ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL) ?
    216       (AntiDepBreaker *)new CriticalAntiDepBreaker(MF, RCI) : NULL));
    217 }
    218 
    219 SchedulePostRATDList::~SchedulePostRATDList() {
    220   delete HazardRec;
    221   delete AntiDepBreak;
    222 }
    223 
    224 /// Initialize state associated with the next scheduling region.
    225 void SchedulePostRATDList::enterRegion(MachineBasicBlock *bb,
    226                  MachineBasicBlock::iterator begin,
    227                  MachineBasicBlock::iterator end,
    228                  unsigned endcount) {
    229   ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount);
    230   Sequence.clear();
    231 }
    232 
    233 /// Print the schedule before exiting the region.
    234 void SchedulePostRATDList::exitRegion() {
    235   DEBUG({
    236       dbgs() << "*** Final schedule ***\n";
    237       dumpSchedule();
    238       dbgs() << '\n';
    239     });
    240   ScheduleDAGInstrs::exitRegion();
    241 }
    242 
    243 #ifndef NDEBUG
    244 /// dumpSchedule - dump the scheduled Sequence.
    245 void SchedulePostRATDList::dumpSchedule() const {
    246   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
    247     if (SUnit *SU = Sequence[i])
    248       SU->dump(this);
    249     else
    250       dbgs() << "**** NOOP ****\n";
    251   }
    252 }
    253 #endif
    254 
    255 bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
    256   TII = Fn.getTarget().getInstrInfo();
    257   MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
    258   MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
    259   AliasAnalysis *AA = &getAnalysis<AliasAnalysis>();
    260   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
    261 
    262   RegClassInfo.runOnMachineFunction(Fn);
    263 
    264   // Check for explicit enable/disable of post-ra scheduling.
    265   TargetSubtargetInfo::AntiDepBreakMode AntiDepMode =
    266     TargetSubtargetInfo::ANTIDEP_NONE;
    267   SmallVector<const TargetRegisterClass*, 4> CriticalPathRCs;
    268   if (EnablePostRAScheduler.getPosition() > 0) {
    269     if (!EnablePostRAScheduler)
    270       return false;
    271   } else {
    272     // Check that post-RA scheduling is enabled for this target.
    273     // This may upgrade the AntiDepMode.
    274     const TargetSubtargetInfo &ST = Fn.getTarget().getSubtarget<TargetSubtargetInfo>();
    275     if (!ST.enablePostRAScheduler(PassConfig->getOptLevel(), AntiDepMode,
    276                                   CriticalPathRCs))
    277       return false;
    278   }
    279 
    280   // Check for antidep breaking override...
    281   if (EnableAntiDepBreaking.getPosition() > 0) {
    282     AntiDepMode = (EnableAntiDepBreaking == "all")
    283       ? TargetSubtargetInfo::ANTIDEP_ALL
    284       : ((EnableAntiDepBreaking == "critical")
    285          ? TargetSubtargetInfo::ANTIDEP_CRITICAL
    286          : TargetSubtargetInfo::ANTIDEP_NONE);
    287   }
    288 
    289   DEBUG(dbgs() << "PostRAScheduler\n");
    290 
    291   SchedulePostRATDList Scheduler(Fn, MLI, MDT, AA, RegClassInfo, AntiDepMode,
    292                                  CriticalPathRCs);
    293 
    294   // Loop over all of the basic blocks
    295   for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
    296        MBB != MBBe; ++MBB) {
    297 #ifndef NDEBUG
    298     // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
    299     if (DebugDiv > 0) {
    300       static int bbcnt = 0;
    301       if (bbcnt++ % DebugDiv != DebugMod)
    302         continue;
    303       dbgs() << "*** DEBUG scheduling " << Fn.getName()
    304              << ":BB#" << MBB->getNumber() << " ***\n";
    305     }
    306 #endif
    307 
    308     // Initialize register live-range state for scheduling in this block.
    309     Scheduler.startBlock(MBB);
    310 
    311     // Schedule each sequence of instructions not interrupted by a label
    312     // or anything else that effectively needs to shut down scheduling.
    313     MachineBasicBlock::iterator Current = MBB->end();
    314     unsigned Count = MBB->size(), CurrentCount = Count;
    315     for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
    316       MachineInstr *MI = llvm::prior(I);
    317       // Calls are not scheduling boundaries before register allocation, but
    318       // post-ra we don't gain anything by scheduling across calls since we
    319       // don't need to worry about register pressure.
    320       if (MI->isCall() || TII->isSchedulingBoundary(MI, MBB, Fn)) {
    321         Scheduler.enterRegion(MBB, I, Current, CurrentCount);
    322         Scheduler.schedule();
    323         Scheduler.exitRegion();
    324         Scheduler.EmitSchedule();
    325         Current = MI;
    326         CurrentCount = Count - 1;
    327         Scheduler.Observe(MI, CurrentCount);
    328       }
    329       I = MI;
    330       --Count;
    331       if (MI->isBundle())
    332         Count -= MI->getBundleSize();
    333     }
    334     assert(Count == 0 && "Instruction count mismatch!");
    335     assert((MBB->begin() == Current || CurrentCount != 0) &&
    336            "Instruction count mismatch!");
    337     Scheduler.enterRegion(MBB, MBB->begin(), Current, CurrentCount);
    338     Scheduler.schedule();
    339     Scheduler.exitRegion();
    340     Scheduler.EmitSchedule();
    341 
    342     // Clean up register live-range state.
    343     Scheduler.finishBlock();
    344 
    345     // Update register kills
    346     Scheduler.FixupKills(MBB);
    347   }
    348 
    349   return true;
    350 }
    351 
    352 /// StartBlock - Initialize register live-range state for scheduling in
    353 /// this block.
    354 ///
    355 void SchedulePostRATDList::startBlock(MachineBasicBlock *BB) {
    356   // Call the superclass.
    357   ScheduleDAGInstrs::startBlock(BB);
    358 
    359   // Reset the hazard recognizer and anti-dep breaker.
    360   HazardRec->Reset();
    361   if (AntiDepBreak != NULL)
    362     AntiDepBreak->StartBlock(BB);
    363 }
    364 
    365 /// Schedule - Schedule the instruction range using list scheduling.
    366 ///
    367 void SchedulePostRATDList::schedule() {
    368   // Build the scheduling graph.
    369   buildSchedGraph(AA);
    370 
    371   if (AntiDepBreak != NULL) {
    372     unsigned Broken =
    373       AntiDepBreak->BreakAntiDependencies(SUnits, RegionBegin, RegionEnd,
    374                                           EndIndex, DbgValues);
    375 
    376     if (Broken != 0) {
    377       // We made changes. Update the dependency graph.
    378       // Theoretically we could update the graph in place:
    379       // When a live range is changed to use a different register, remove
    380       // the def's anti-dependence *and* output-dependence edges due to
    381       // that register, and add new anti-dependence and output-dependence
    382       // edges based on the next live range of the register.
    383       ScheduleDAG::clearDAG();
    384       buildSchedGraph(AA);
    385 
    386       NumFixedAnti += Broken;
    387     }
    388   }
    389 
    390   DEBUG(dbgs() << "********** List Scheduling **********\n");
    391   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
    392           SUnits[su].dumpAll(this));
    393 
    394   AvailableQueue.initNodes(SUnits);
    395   ListScheduleTopDown();
    396   AvailableQueue.releaseState();
    397 }
    398 
    399 /// Observe - Update liveness information to account for the current
    400 /// instruction, which will not be scheduled.
    401 ///
    402 void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
    403   if (AntiDepBreak != NULL)
    404     AntiDepBreak->Observe(MI, Count, EndIndex);
    405 }
    406 
    407 /// FinishBlock - Clean up register live-range state.
    408 ///
    409 void SchedulePostRATDList::finishBlock() {
    410   if (AntiDepBreak != NULL)
    411     AntiDepBreak->FinishBlock();
    412 
    413   // Call the superclass.
    414   ScheduleDAGInstrs::finishBlock();
    415 }
    416 
    417 /// StartBlockForKills - Initialize register live-range state for updating kills
    418 ///
    419 void SchedulePostRATDList::StartBlockForKills(MachineBasicBlock *BB) {
    420   // Start with no live registers.
    421   LiveRegs.reset();
    422 
    423   // Determine the live-out physregs for this block.
    424   if (!BB->empty() && BB->back().isReturn()) {
    425     // In a return block, examine the function live-out regs.
    426     for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
    427            E = MRI.liveout_end(); I != E; ++I) {
    428       unsigned Reg = *I;
    429       LiveRegs.set(Reg);
    430       // Repeat, for all subregs.
    431       for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
    432         LiveRegs.set(*SubRegs);
    433     }
    434   }
    435   else {
    436     // In a non-return block, examine the live-in regs of all successors.
    437     for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
    438            SE = BB->succ_end(); SI != SE; ++SI) {
    439       for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
    440              E = (*SI)->livein_end(); I != E; ++I) {
    441         unsigned Reg = *I;
    442         LiveRegs.set(Reg);
    443         // Repeat, for all subregs.
    444         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
    445           LiveRegs.set(*SubRegs);
    446       }
    447     }
    448   }
    449 }
    450 
    451 bool SchedulePostRATDList::ToggleKillFlag(MachineInstr *MI,
    452                                           MachineOperand &MO) {
    453   // Setting kill flag...
    454   if (!MO.isKill()) {
    455     MO.setIsKill(true);
    456     return false;
    457   }
    458 
    459   // If MO itself is live, clear the kill flag...
    460   if (LiveRegs.test(MO.getReg())) {
    461     MO.setIsKill(false);
    462     return false;
    463   }
    464 
    465   // If any subreg of MO is live, then create an imp-def for that
    466   // subreg and keep MO marked as killed.
    467   MO.setIsKill(false);
    468   bool AllDead = true;
    469   const unsigned SuperReg = MO.getReg();
    470   for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) {
    471     if (LiveRegs.test(*SubRegs)) {
    472       MI->addOperand(MachineOperand::CreateReg(*SubRegs,
    473                                                true  /*IsDef*/,
    474                                                true  /*IsImp*/,
    475                                                false /*IsKill*/,
    476                                                false /*IsDead*/));
    477       AllDead = false;
    478     }
    479   }
    480 
    481   if(AllDead)
    482     MO.setIsKill(true);
    483   return false;
    484 }
    485 
    486 /// FixupKills - Fix the register kill flags, they may have been made
    487 /// incorrect by instruction reordering.
    488 ///
    489 void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) {
    490   DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
    491 
    492   BitVector killedRegs(TRI->getNumRegs());
    493   BitVector ReservedRegs = TRI->getReservedRegs(MF);
    494 
    495   StartBlockForKills(MBB);
    496 
    497   // Examine block from end to start...
    498   unsigned Count = MBB->size();
    499   for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
    500        I != E; --Count) {
    501     MachineInstr *MI = --I;
    502     if (MI->isDebugValue())
    503       continue;
    504 
    505     // Update liveness.  Registers that are defed but not used in this
    506     // instruction are now dead. Mark register and all subregs as they
    507     // are completely defined.
    508     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    509       MachineOperand &MO = MI->getOperand(i);
    510       if (MO.isRegMask())
    511         LiveRegs.clearBitsNotInMask(MO.getRegMask());
    512       if (!MO.isReg()) continue;
    513       unsigned Reg = MO.getReg();
    514       if (Reg == 0) continue;
    515       if (!MO.isDef()) continue;
    516       // Ignore two-addr defs.
    517       if (MI->isRegTiedToUseOperand(i)) continue;
    518 
    519       LiveRegs.reset(Reg);
    520 
    521       // Repeat for all subregs.
    522       for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
    523         LiveRegs.reset(*SubRegs);
    524     }
    525 
    526     // Examine all used registers and set/clear kill flag. When a
    527     // register is used multiple times we only set the kill flag on
    528     // the first use.
    529     killedRegs.reset();
    530     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    531       MachineOperand &MO = MI->getOperand(i);
    532       if (!MO.isReg() || !MO.isUse()) continue;
    533       unsigned Reg = MO.getReg();
    534       if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
    535 
    536       bool kill = false;
    537       if (!killedRegs.test(Reg)) {
    538         kill = true;
    539         // A register is not killed if any subregs are live...
    540         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
    541           if (LiveRegs.test(*SubRegs)) {
    542             kill = false;
    543             break;
    544           }
    545         }
    546 
    547         // If subreg is not live, then register is killed if it became
    548         // live in this instruction
    549         if (kill)
    550           kill = !LiveRegs.test(Reg);
    551       }
    552 
    553       if (MO.isKill() != kill) {
    554         DEBUG(dbgs() << "Fixing " << MO << " in ");
    555         // Warning: ToggleKillFlag may invalidate MO.
    556         ToggleKillFlag(MI, MO);
    557         DEBUG(MI->dump());
    558       }
    559 
    560       killedRegs.set(Reg);
    561     }
    562 
    563     // Mark any used register (that is not using undef) and subregs as
    564     // now live...
    565     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    566       MachineOperand &MO = MI->getOperand(i);
    567       if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
    568       unsigned Reg = MO.getReg();
    569       if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
    570 
    571       LiveRegs.set(Reg);
    572 
    573       for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
    574         LiveRegs.set(*SubRegs);
    575     }
    576   }
    577 }
    578 
    579 //===----------------------------------------------------------------------===//
    580 //  Top-Down Scheduling
    581 //===----------------------------------------------------------------------===//
    582 
    583 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
    584 /// the PendingQueue if the count reaches zero. Also update its cycle bound.
    585 void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
    586   SUnit *SuccSU = SuccEdge->getSUnit();
    587 
    588 #ifndef NDEBUG
    589   if (SuccSU->NumPredsLeft == 0) {
    590     dbgs() << "*** Scheduling failed! ***\n";
    591     SuccSU->dump(this);
    592     dbgs() << " has been released too many times!\n";
    593     llvm_unreachable(0);
    594   }
    595 #endif
    596   --SuccSU->NumPredsLeft;
    597 
    598   // Standard scheduler algorithms will recompute the depth of the successor
    599   // here as such:
    600   //   SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
    601   //
    602   // However, we lazily compute node depth instead. Note that
    603   // ScheduleNodeTopDown has already updated the depth of this node which causes
    604   // all descendents to be marked dirty. Setting the successor depth explicitly
    605   // here would cause depth to be recomputed for all its ancestors. If the
    606   // successor is not yet ready (because of a transitively redundant edge) then
    607   // this causes depth computation to be quadratic in the size of the DAG.
    608 
    609   // If all the node's predecessors are scheduled, this node is ready
    610   // to be scheduled. Ignore the special ExitSU node.
    611   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
    612     PendingQueue.push_back(SuccSU);
    613 }
    614 
    615 /// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
    616 void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
    617   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    618        I != E; ++I) {
    619     ReleaseSucc(SU, &*I);
    620   }
    621 }
    622 
    623 /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
    624 /// count of its successors. If a successor pending count is zero, add it to
    625 /// the Available queue.
    626 void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
    627   DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
    628   DEBUG(SU->dump(this));
    629 
    630   Sequence.push_back(SU);
    631   assert(CurCycle >= SU->getDepth() &&
    632          "Node scheduled above its depth!");
    633   SU->setDepthToAtLeast(CurCycle);
    634 
    635   ReleaseSuccessors(SU);
    636   SU->isScheduled = true;
    637   AvailableQueue.scheduledNode(SU);
    638 }
    639 
    640 /// ListScheduleTopDown - The main loop of list scheduling for top-down
    641 /// schedulers.
    642 void SchedulePostRATDList::ListScheduleTopDown() {
    643   unsigned CurCycle = 0;
    644 
    645   // We're scheduling top-down but we're visiting the regions in
    646   // bottom-up order, so we don't know the hazards at the start of a
    647   // region. So assume no hazards (this should usually be ok as most
    648   // blocks are a single region).
    649   HazardRec->Reset();
    650 
    651   // Release any successors of the special Entry node.
    652   ReleaseSuccessors(&EntrySU);
    653 
    654   // Add all leaves to Available queue.
    655   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
    656     // It is available if it has no predecessors.
    657     bool available = SUnits[i].Preds.empty();
    658     if (available) {
    659       AvailableQueue.push(&SUnits[i]);
    660       SUnits[i].isAvailable = true;
    661     }
    662   }
    663 
    664   // In any cycle where we can't schedule any instructions, we must
    665   // stall or emit a noop, depending on the target.
    666   bool CycleHasInsts = false;
    667 
    668   // While Available queue is not empty, grab the node with the highest
    669   // priority. If it is not ready put it back.  Schedule the node.
    670   std::vector<SUnit*> NotReady;
    671   Sequence.reserve(SUnits.size());
    672   while (!AvailableQueue.empty() || !PendingQueue.empty()) {
    673     // Check to see if any of the pending instructions are ready to issue.  If
    674     // so, add them to the available queue.
    675     unsigned MinDepth = ~0u;
    676     for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
    677       if (PendingQueue[i]->getDepth() <= CurCycle) {
    678         AvailableQueue.push(PendingQueue[i]);
    679         PendingQueue[i]->isAvailable = true;
    680         PendingQueue[i] = PendingQueue.back();
    681         PendingQueue.pop_back();
    682         --i; --e;
    683       } else if (PendingQueue[i]->getDepth() < MinDepth)
    684         MinDepth = PendingQueue[i]->getDepth();
    685     }
    686 
    687     DEBUG(dbgs() << "\n*** Examining Available\n"; AvailableQueue.dump(this));
    688 
    689     SUnit *FoundSUnit = 0;
    690     bool HasNoopHazards = false;
    691     while (!AvailableQueue.empty()) {
    692       SUnit *CurSUnit = AvailableQueue.pop();
    693 
    694       ScheduleHazardRecognizer::HazardType HT =
    695         HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
    696       if (HT == ScheduleHazardRecognizer::NoHazard) {
    697         FoundSUnit = CurSUnit;
    698         break;
    699       }
    700 
    701       // Remember if this is a noop hazard.
    702       HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
    703 
    704       NotReady.push_back(CurSUnit);
    705     }
    706 
    707     // Add the nodes that aren't ready back onto the available list.
    708     if (!NotReady.empty()) {
    709       AvailableQueue.push_all(NotReady);
    710       NotReady.clear();
    711     }
    712 
    713     // If we found a node to schedule...
    714     if (FoundSUnit) {
    715       // ... schedule the node...
    716       ScheduleNodeTopDown(FoundSUnit, CurCycle);
    717       HazardRec->EmitInstruction(FoundSUnit);
    718       CycleHasInsts = true;
    719       if (HazardRec->atIssueLimit()) {
    720         DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle << '\n');
    721         HazardRec->AdvanceCycle();
    722         ++CurCycle;
    723         CycleHasInsts = false;
    724       }
    725     } else {
    726       if (CycleHasInsts) {
    727         DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n');
    728         HazardRec->AdvanceCycle();
    729       } else if (!HasNoopHazards) {
    730         // Otherwise, we have a pipeline stall, but no other problem,
    731         // just advance the current cycle and try again.
    732         DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n');
    733         HazardRec->AdvanceCycle();
    734         ++NumStalls;
    735       } else {
    736         // Otherwise, we have no instructions to issue and we have instructions
    737         // that will fault if we don't do this right.  This is the case for
    738         // processors without pipeline interlocks and other cases.
    739         DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n');
    740         HazardRec->EmitNoop();
    741         Sequence.push_back(0);   // NULL here means noop
    742         ++NumNoops;
    743       }
    744 
    745       ++CurCycle;
    746       CycleHasInsts = false;
    747     }
    748   }
    749 
    750 #ifndef NDEBUG
    751   unsigned ScheduledNodes = VerifyScheduledDAG(/*isBottomUp=*/false);
    752   unsigned Noops = 0;
    753   for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
    754     if (!Sequence[i])
    755       ++Noops;
    756   assert(Sequence.size() - Noops == ScheduledNodes &&
    757          "The number of nodes scheduled doesn't match the expected number!");
    758 #endif // NDEBUG
    759 }
    760 
    761 // EmitSchedule - Emit the machine code in scheduled order.
    762 void SchedulePostRATDList::EmitSchedule() {
    763   RegionBegin = RegionEnd;
    764 
    765   // If first instruction was a DBG_VALUE then put it back.
    766   if (FirstDbgValue)
    767     BB->splice(RegionEnd, BB, FirstDbgValue);
    768 
    769   // Then re-insert them according to the given schedule.
    770   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
    771     if (SUnit *SU = Sequence[i])
    772       BB->splice(RegionEnd, BB, SU->getInstr());
    773     else
    774       // Null SUnit* is a noop.
    775       TII->insertNoop(*BB, RegionEnd);
    776 
    777     // Update the Begin iterator, as the first instruction in the block
    778     // may have been scheduled later.
    779     if (i == 0)
    780       RegionBegin = prior(RegionEnd);
    781   }
    782 
    783   // Reinsert any remaining debug_values.
    784   for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
    785          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
    786     std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
    787     MachineInstr *DbgValue = P.first;
    788     MachineBasicBlock::iterator OrigPrivMI = P.second;
    789     BB->splice(++OrigPrivMI, BB, DbgValue);
    790   }
    791   DbgValues.clear();
    792   FirstDbgValue = NULL;
    793 }
    794