Home | History | Annotate | Download | only in Mips
      1 //===-- MipsastISel.cpp - Mips FastISel implementation
      2 //---------------------===//
      3 
      4 #include "MipsCCState.h"
      5 #include "MipsInstrInfo.h"
      6 #include "MipsISelLowering.h"
      7 #include "MipsMachineFunction.h"
      8 #include "MipsRegisterInfo.h"
      9 #include "MipsSubtarget.h"
     10 #include "MipsTargetMachine.h"
     11 #include "llvm/Analysis/TargetLibraryInfo.h"
     12 #include "llvm/CodeGen/FastISel.h"
     13 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     14 #include "llvm/CodeGen/MachineInstrBuilder.h"
     15 #include "llvm/CodeGen/MachineRegisterInfo.h"
     16 #include "llvm/IR/GetElementPtrTypeIterator.h"
     17 #include "llvm/IR/GlobalAlias.h"
     18 #include "llvm/IR/GlobalVariable.h"
     19 #include "llvm/MC/MCSymbol.h"
     20 #include "llvm/Target/TargetInstrInfo.h"
     21 
     22 using namespace llvm;
     23 
     24 namespace {
     25 
     26 class MipsFastISel final : public FastISel {
     27 
     28   // All possible address modes.
     29   class Address {
     30   public:
     31     typedef enum { RegBase, FrameIndexBase } BaseKind;
     32 
     33   private:
     34     BaseKind Kind;
     35     union {
     36       unsigned Reg;
     37       int FI;
     38     } Base;
     39 
     40     int64_t Offset;
     41 
     42     const GlobalValue *GV;
     43 
     44   public:
     45     // Innocuous defaults for our address.
     46     Address() : Kind(RegBase), Offset(0), GV(0) { Base.Reg = 0; }
     47     void setKind(BaseKind K) { Kind = K; }
     48     BaseKind getKind() const { return Kind; }
     49     bool isRegBase() const { return Kind == RegBase; }
     50     bool isFIBase() const { return Kind == FrameIndexBase; }
     51     void setReg(unsigned Reg) {
     52       assert(isRegBase() && "Invalid base register access!");
     53       Base.Reg = Reg;
     54     }
     55     unsigned getReg() const {
     56       assert(isRegBase() && "Invalid base register access!");
     57       return Base.Reg;
     58     }
     59     void setFI(unsigned FI) {
     60       assert(isFIBase() && "Invalid base frame index access!");
     61       Base.FI = FI;
     62     }
     63     unsigned getFI() const {
     64       assert(isFIBase() && "Invalid base frame index access!");
     65       return Base.FI;
     66     }
     67 
     68     void setOffset(int64_t Offset_) { Offset = Offset_; }
     69     int64_t getOffset() const { return Offset; }
     70     void setGlobalValue(const GlobalValue *G) { GV = G; }
     71     const GlobalValue *getGlobalValue() { return GV; }
     72   };
     73 
     74   /// Subtarget - Keep a pointer to the MipsSubtarget around so that we can
     75   /// make the right decision when generating code for different targets.
     76   const TargetMachine &TM;
     77   const MipsSubtarget *Subtarget;
     78   const TargetInstrInfo &TII;
     79   const TargetLowering &TLI;
     80   MipsFunctionInfo *MFI;
     81 
     82   // Convenience variables to avoid some queries.
     83   LLVMContext *Context;
     84 
     85   bool fastLowerCall(CallLoweringInfo &CLI) override;
     86   bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
     87 
     88   bool TargetSupported;
     89   bool UnsupportedFPMode; // To allow fast-isel to proceed and just not handle
     90   // floating point but not reject doing fast-isel in other
     91   // situations
     92 
     93 private:
     94   // Selection routines.
     95   bool selectLogicalOp(const Instruction *I);
     96   bool selectLoad(const Instruction *I);
     97   bool selectStore(const Instruction *I);
     98   bool selectBranch(const Instruction *I);
     99   bool selectSelect(const Instruction *I);
    100   bool selectCmp(const Instruction *I);
    101   bool selectFPExt(const Instruction *I);
    102   bool selectFPTrunc(const Instruction *I);
    103   bool selectFPToInt(const Instruction *I, bool IsSigned);
    104   bool selectRet(const Instruction *I);
    105   bool selectTrunc(const Instruction *I);
    106   bool selectIntExt(const Instruction *I);
    107   bool selectShift(const Instruction *I);
    108   bool selectDivRem(const Instruction *I, unsigned ISDOpcode);
    109 
    110   // Utility helper routines.
    111   bool isTypeLegal(Type *Ty, MVT &VT);
    112   bool isTypeSupported(Type *Ty, MVT &VT);
    113   bool isLoadTypeLegal(Type *Ty, MVT &VT);
    114   bool computeAddress(const Value *Obj, Address &Addr);
    115   bool computeCallAddress(const Value *V, Address &Addr);
    116   void simplifyAddress(Address &Addr);
    117 
    118   // Emit helper routines.
    119   bool emitCmp(unsigned DestReg, const CmpInst *CI);
    120   bool emitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
    121                 unsigned Alignment = 0);
    122   bool emitStore(MVT VT, unsigned SrcReg, Address Addr,
    123                  MachineMemOperand *MMO = nullptr);
    124   bool emitStore(MVT VT, unsigned SrcReg, Address &Addr,
    125                  unsigned Alignment = 0);
    126   unsigned emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
    127   bool emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg,
    128 
    129                   bool IsZExt);
    130   bool emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg);
    131 
    132   bool emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg);
    133   bool emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT,
    134                        unsigned DestReg);
    135   bool emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT,
    136                        unsigned DestReg);
    137 
    138   unsigned getRegEnsuringSimpleIntegerWidening(const Value *, bool IsUnsigned);
    139 
    140   unsigned emitLogicalOp(unsigned ISDOpc, MVT RetVT, const Value *LHS,
    141                          const Value *RHS);
    142 
    143   unsigned materializeFP(const ConstantFP *CFP, MVT VT);
    144   unsigned materializeGV(const GlobalValue *GV, MVT VT);
    145   unsigned materializeInt(const Constant *C, MVT VT);
    146   unsigned materialize32BitInt(int64_t Imm, const TargetRegisterClass *RC);
    147   unsigned materializeExternalCallSym(MCSymbol *Syn);
    148 
    149   MachineInstrBuilder emitInst(unsigned Opc) {
    150     return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
    151   }
    152   MachineInstrBuilder emitInst(unsigned Opc, unsigned DstReg) {
    153     return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
    154                    DstReg);
    155   }
    156   MachineInstrBuilder emitInstStore(unsigned Opc, unsigned SrcReg,
    157                                     unsigned MemReg, int64_t MemOffset) {
    158     return emitInst(Opc).addReg(SrcReg).addReg(MemReg).addImm(MemOffset);
    159   }
    160   MachineInstrBuilder emitInstLoad(unsigned Opc, unsigned DstReg,
    161                                    unsigned MemReg, int64_t MemOffset) {
    162     return emitInst(Opc, DstReg).addReg(MemReg).addImm(MemOffset);
    163   }
    164 
    165   unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
    166                            const TargetRegisterClass *RC,
    167                            unsigned Op0, bool Op0IsKill,
    168                            unsigned Op1, bool Op1IsKill);
    169 
    170   // for some reason, this default is not generated by tablegen
    171   // so we explicitly generate it here.
    172   //
    173   unsigned fastEmitInst_riir(uint64_t inst, const TargetRegisterClass *RC,
    174                              unsigned Op0, bool Op0IsKill, uint64_t imm1,
    175                              uint64_t imm2, unsigned Op3, bool Op3IsKill) {
    176     return 0;
    177   }
    178 
    179   // Call handling routines.
    180 private:
    181   CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const;
    182   bool processCallArgs(CallLoweringInfo &CLI, SmallVectorImpl<MVT> &ArgVTs,
    183                        unsigned &NumBytes);
    184   bool finishCall(CallLoweringInfo &CLI, MVT RetVT, unsigned NumBytes);
    185 
    186 public:
    187   // Backend specific FastISel code.
    188   explicit MipsFastISel(FunctionLoweringInfo &funcInfo,
    189                         const TargetLibraryInfo *libInfo)
    190       : FastISel(funcInfo, libInfo), TM(funcInfo.MF->getTarget()),
    191         Subtarget(&funcInfo.MF->getSubtarget<MipsSubtarget>()),
    192         TII(*Subtarget->getInstrInfo()), TLI(*Subtarget->getTargetLowering()) {
    193     MFI = funcInfo.MF->getInfo<MipsFunctionInfo>();
    194     Context = &funcInfo.Fn->getContext();
    195     bool ISASupported = !Subtarget->hasMips32r6() && Subtarget->hasMips32();
    196     TargetSupported =
    197         ISASupported && (TM.getRelocationModel() == Reloc::PIC_) &&
    198         (static_cast<const MipsTargetMachine &>(TM).getABI().IsO32());
    199     UnsupportedFPMode = Subtarget->isFP64bit();
    200   }
    201 
    202   unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
    203   unsigned fastMaterializeConstant(const Constant *C) override;
    204   bool fastSelectInstruction(const Instruction *I) override;
    205 
    206 #include "MipsGenFastISel.inc"
    207 };
    208 } // end anonymous namespace.
    209 
    210 static bool CC_Mips(unsigned ValNo, MVT ValVT, MVT LocVT,
    211                     CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
    212                     CCState &State) LLVM_ATTRIBUTE_UNUSED;
    213 
    214 static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT, MVT LocVT,
    215                             CCValAssign::LocInfo LocInfo,
    216                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
    217   llvm_unreachable("should not be called");
    218 }
    219 
    220 static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT, MVT LocVT,
    221                             CCValAssign::LocInfo LocInfo,
    222                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
    223   llvm_unreachable("should not be called");
    224 }
    225 
    226 #include "MipsGenCallingConv.inc"
    227 
    228 CCAssignFn *MipsFastISel::CCAssignFnForCall(CallingConv::ID CC) const {
    229   return CC_MipsO32;
    230 }
    231 
    232 unsigned MipsFastISel::emitLogicalOp(unsigned ISDOpc, MVT RetVT,
    233                                      const Value *LHS, const Value *RHS) {
    234   // Canonicalize immediates to the RHS first.
    235   if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS))
    236     std::swap(LHS, RHS);
    237 
    238   unsigned Opc;
    239   switch (ISDOpc) {
    240   case ISD::AND:
    241     Opc = Mips::AND;
    242     break;
    243   case ISD::OR:
    244     Opc = Mips::OR;
    245     break;
    246   case ISD::XOR:
    247     Opc = Mips::XOR;
    248     break;
    249   default:
    250     llvm_unreachable("unexpected opcode");
    251   }
    252 
    253   unsigned LHSReg = getRegForValue(LHS);
    254   if (!LHSReg)
    255     return 0;
    256 
    257   unsigned RHSReg;
    258   if (const auto *C = dyn_cast<ConstantInt>(RHS))
    259     RHSReg = materializeInt(C, MVT::i32);
    260   else
    261     RHSReg = getRegForValue(RHS);
    262   if (!RHSReg)
    263     return 0;
    264 
    265   unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
    266   if (!ResultReg)
    267     return 0;
    268 
    269   emitInst(Opc, ResultReg).addReg(LHSReg).addReg(RHSReg);
    270   return ResultReg;
    271 }
    272 
    273 unsigned MipsFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
    274   if (!TargetSupported)
    275     return 0;
    276 
    277   assert(TLI.getValueType(DL, AI->getType(), true) == MVT::i32 &&
    278          "Alloca should always return a pointer.");
    279 
    280   DenseMap<const AllocaInst *, int>::iterator SI =
    281       FuncInfo.StaticAllocaMap.find(AI);
    282 
    283   if (SI != FuncInfo.StaticAllocaMap.end()) {
    284     unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
    285     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::LEA_ADDiu),
    286             ResultReg)
    287         .addFrameIndex(SI->second)
    288         .addImm(0);
    289     return ResultReg;
    290   }
    291 
    292   return 0;
    293 }
    294 
    295 unsigned MipsFastISel::materializeInt(const Constant *C, MVT VT) {
    296   if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
    297     return 0;
    298   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
    299   const ConstantInt *CI = cast<ConstantInt>(C);
    300   return materialize32BitInt(CI->getZExtValue(), RC);
    301 }
    302 
    303 unsigned MipsFastISel::materialize32BitInt(int64_t Imm,
    304                                            const TargetRegisterClass *RC) {
    305   unsigned ResultReg = createResultReg(RC);
    306 
    307   if (isInt<16>(Imm)) {
    308     unsigned Opc = Mips::ADDiu;
    309     emitInst(Opc, ResultReg).addReg(Mips::ZERO).addImm(Imm);
    310     return ResultReg;
    311   } else if (isUInt<16>(Imm)) {
    312     emitInst(Mips::ORi, ResultReg).addReg(Mips::ZERO).addImm(Imm);
    313     return ResultReg;
    314   }
    315   unsigned Lo = Imm & 0xFFFF;
    316   unsigned Hi = (Imm >> 16) & 0xFFFF;
    317   if (Lo) {
    318     // Both Lo and Hi have nonzero bits.
    319     unsigned TmpReg = createResultReg(RC);
    320     emitInst(Mips::LUi, TmpReg).addImm(Hi);
    321     emitInst(Mips::ORi, ResultReg).addReg(TmpReg).addImm(Lo);
    322   } else {
    323     emitInst(Mips::LUi, ResultReg).addImm(Hi);
    324   }
    325   return ResultReg;
    326 }
    327 
    328 unsigned MipsFastISel::materializeFP(const ConstantFP *CFP, MVT VT) {
    329   if (UnsupportedFPMode)
    330     return 0;
    331   int64_t Imm = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
    332   if (VT == MVT::f32) {
    333     const TargetRegisterClass *RC = &Mips::FGR32RegClass;
    334     unsigned DestReg = createResultReg(RC);
    335     unsigned TempReg = materialize32BitInt(Imm, &Mips::GPR32RegClass);
    336     emitInst(Mips::MTC1, DestReg).addReg(TempReg);
    337     return DestReg;
    338   } else if (VT == MVT::f64) {
    339     const TargetRegisterClass *RC = &Mips::AFGR64RegClass;
    340     unsigned DestReg = createResultReg(RC);
    341     unsigned TempReg1 = materialize32BitInt(Imm >> 32, &Mips::GPR32RegClass);
    342     unsigned TempReg2 =
    343         materialize32BitInt(Imm & 0xFFFFFFFF, &Mips::GPR32RegClass);
    344     emitInst(Mips::BuildPairF64, DestReg).addReg(TempReg2).addReg(TempReg1);
    345     return DestReg;
    346   }
    347   return 0;
    348 }
    349 
    350 unsigned MipsFastISel::materializeGV(const GlobalValue *GV, MVT VT) {
    351   // For now 32-bit only.
    352   if (VT != MVT::i32)
    353     return 0;
    354   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
    355   unsigned DestReg = createResultReg(RC);
    356   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
    357   bool IsThreadLocal = GVar && GVar->isThreadLocal();
    358   // TLS not supported at this time.
    359   if (IsThreadLocal)
    360     return 0;
    361   emitInst(Mips::LW, DestReg)
    362       .addReg(MFI->getGlobalBaseReg())
    363       .addGlobalAddress(GV, 0, MipsII::MO_GOT);
    364   if ((GV->hasInternalLinkage() ||
    365        (GV->hasLocalLinkage() && !isa<Function>(GV)))) {
    366     unsigned TempReg = createResultReg(RC);
    367     emitInst(Mips::ADDiu, TempReg)
    368         .addReg(DestReg)
    369         .addGlobalAddress(GV, 0, MipsII::MO_ABS_LO);
    370     DestReg = TempReg;
    371   }
    372   return DestReg;
    373 }
    374 
    375 unsigned MipsFastISel::materializeExternalCallSym(MCSymbol *Sym) {
    376   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
    377   unsigned DestReg = createResultReg(RC);
    378   emitInst(Mips::LW, DestReg)
    379       .addReg(MFI->getGlobalBaseReg())
    380       .addSym(Sym, MipsII::MO_GOT);
    381   return DestReg;
    382 }
    383 
    384 // Materialize a constant into a register, and return the register
    385 // number (or zero if we failed to handle it).
    386 unsigned MipsFastISel::fastMaterializeConstant(const Constant *C) {
    387   if (!TargetSupported)
    388     return 0;
    389 
    390   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
    391 
    392   // Only handle simple types.
    393   if (!CEVT.isSimple())
    394     return 0;
    395   MVT VT = CEVT.getSimpleVT();
    396 
    397   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
    398     return (UnsupportedFPMode) ? 0 : materializeFP(CFP, VT);
    399   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
    400     return materializeGV(GV, VT);
    401   else if (isa<ConstantInt>(C))
    402     return materializeInt(C, VT);
    403 
    404   return 0;
    405 }
    406 
    407 bool MipsFastISel::computeAddress(const Value *Obj, Address &Addr) {
    408 
    409   const User *U = nullptr;
    410   unsigned Opcode = Instruction::UserOp1;
    411   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
    412     // Don't walk into other basic blocks unless the object is an alloca from
    413     // another block, otherwise it may not have a virtual register assigned.
    414     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
    415         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
    416       Opcode = I->getOpcode();
    417       U = I;
    418     }
    419   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
    420     Opcode = C->getOpcode();
    421     U = C;
    422   }
    423   switch (Opcode) {
    424   default:
    425     break;
    426   case Instruction::BitCast: {
    427     // Look through bitcasts.
    428     return computeAddress(U->getOperand(0), Addr);
    429   }
    430   case Instruction::GetElementPtr: {
    431     Address SavedAddr = Addr;
    432     uint64_t TmpOffset = Addr.getOffset();
    433     // Iterate through the GEP folding the constants into offsets where
    434     // we can.
    435     gep_type_iterator GTI = gep_type_begin(U);
    436     for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e;
    437          ++i, ++GTI) {
    438       const Value *Op = *i;
    439       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    440         const StructLayout *SL = DL.getStructLayout(STy);
    441         unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
    442         TmpOffset += SL->getElementOffset(Idx);
    443       } else {
    444         uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
    445         for (;;) {
    446           if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
    447             // Constant-offset addressing.
    448             TmpOffset += CI->getSExtValue() * S;
    449             break;
    450           }
    451           if (canFoldAddIntoGEP(U, Op)) {
    452             // A compatible add with a constant operand. Fold the constant.
    453             ConstantInt *CI =
    454                 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
    455             TmpOffset += CI->getSExtValue() * S;
    456             // Iterate on the other operand.
    457             Op = cast<AddOperator>(Op)->getOperand(0);
    458             continue;
    459           }
    460           // Unsupported
    461           goto unsupported_gep;
    462         }
    463       }
    464     }
    465     // Try to grab the base operand now.
    466     Addr.setOffset(TmpOffset);
    467     if (computeAddress(U->getOperand(0), Addr))
    468       return true;
    469     // We failed, restore everything and try the other options.
    470     Addr = SavedAddr;
    471   unsupported_gep:
    472     break;
    473   }
    474   case Instruction::Alloca: {
    475     const AllocaInst *AI = cast<AllocaInst>(Obj);
    476     DenseMap<const AllocaInst *, int>::iterator SI =
    477         FuncInfo.StaticAllocaMap.find(AI);
    478     if (SI != FuncInfo.StaticAllocaMap.end()) {
    479       Addr.setKind(Address::FrameIndexBase);
    480       Addr.setFI(SI->second);
    481       return true;
    482     }
    483     break;
    484   }
    485   }
    486   Addr.setReg(getRegForValue(Obj));
    487   return Addr.getReg() != 0;
    488 }
    489 
    490 bool MipsFastISel::computeCallAddress(const Value *V, Address &Addr) {
    491   const User *U = nullptr;
    492   unsigned Opcode = Instruction::UserOp1;
    493 
    494   if (const auto *I = dyn_cast<Instruction>(V)) {
    495     // Check if the value is defined in the same basic block. This information
    496     // is crucial to know whether or not folding an operand is valid.
    497     if (I->getParent() == FuncInfo.MBB->getBasicBlock()) {
    498       Opcode = I->getOpcode();
    499       U = I;
    500     }
    501   } else if (const auto *C = dyn_cast<ConstantExpr>(V)) {
    502     Opcode = C->getOpcode();
    503     U = C;
    504   }
    505 
    506   switch (Opcode) {
    507   default:
    508     break;
    509   case Instruction::BitCast:
    510     // Look past bitcasts if its operand is in the same BB.
    511       return computeCallAddress(U->getOperand(0), Addr);
    512     break;
    513   case Instruction::IntToPtr:
    514     // Look past no-op inttoptrs if its operand is in the same BB.
    515     if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
    516         TLI.getPointerTy(DL))
    517       return computeCallAddress(U->getOperand(0), Addr);
    518     break;
    519   case Instruction::PtrToInt:
    520     // Look past no-op ptrtoints if its operand is in the same BB.
    521     if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
    522       return computeCallAddress(U->getOperand(0), Addr);
    523     break;
    524   }
    525 
    526   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
    527     Addr.setGlobalValue(GV);
    528     return true;
    529   }
    530 
    531   // If all else fails, try to materialize the value in a register.
    532   if (!Addr.getGlobalValue()) {
    533     Addr.setReg(getRegForValue(V));
    534     return Addr.getReg() != 0;
    535   }
    536 
    537   return false;
    538 }
    539 
    540 bool MipsFastISel::isTypeLegal(Type *Ty, MVT &VT) {
    541   EVT evt = TLI.getValueType(DL, Ty, true);
    542   // Only handle simple types.
    543   if (evt == MVT::Other || !evt.isSimple())
    544     return false;
    545   VT = evt.getSimpleVT();
    546 
    547   // Handle all legal types, i.e. a register that will directly hold this
    548   // value.
    549   return TLI.isTypeLegal(VT);
    550 }
    551 
    552 bool MipsFastISel::isTypeSupported(Type *Ty, MVT &VT) {
    553   if (Ty->isVectorTy())
    554     return false;
    555 
    556   if (isTypeLegal(Ty, VT))
    557     return true;
    558 
    559   // If this is a type than can be sign or zero-extended to a basic operation
    560   // go ahead and accept it now.
    561   if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
    562     return true;
    563 
    564   return false;
    565 }
    566 
    567 bool MipsFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
    568   if (isTypeLegal(Ty, VT))
    569     return true;
    570   // We will extend this in a later patch:
    571   //   If this is a type than can be sign or zero-extended to a basic operation
    572   //   go ahead and accept it now.
    573   if (VT == MVT::i8 || VT == MVT::i16)
    574     return true;
    575   return false;
    576 }
    577 // Because of how EmitCmp is called with fast-isel, you can
    578 // end up with redundant "andi" instructions after the sequences emitted below.
    579 // We should try and solve this issue in the future.
    580 //
    581 bool MipsFastISel::emitCmp(unsigned ResultReg, const CmpInst *CI) {
    582   const Value *Left = CI->getOperand(0), *Right = CI->getOperand(1);
    583   bool IsUnsigned = CI->isUnsigned();
    584   unsigned LeftReg = getRegEnsuringSimpleIntegerWidening(Left, IsUnsigned);
    585   if (LeftReg == 0)
    586     return false;
    587   unsigned RightReg = getRegEnsuringSimpleIntegerWidening(Right, IsUnsigned);
    588   if (RightReg == 0)
    589     return false;
    590   CmpInst::Predicate P = CI->getPredicate();
    591 
    592   switch (P) {
    593   default:
    594     return false;
    595   case CmpInst::ICMP_EQ: {
    596     unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
    597     emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg);
    598     emitInst(Mips::SLTiu, ResultReg).addReg(TempReg).addImm(1);
    599     break;
    600   }
    601   case CmpInst::ICMP_NE: {
    602     unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
    603     emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg);
    604     emitInst(Mips::SLTu, ResultReg).addReg(Mips::ZERO).addReg(TempReg);
    605     break;
    606   }
    607   case CmpInst::ICMP_UGT: {
    608     emitInst(Mips::SLTu, ResultReg).addReg(RightReg).addReg(LeftReg);
    609     break;
    610   }
    611   case CmpInst::ICMP_ULT: {
    612     emitInst(Mips::SLTu, ResultReg).addReg(LeftReg).addReg(RightReg);
    613     break;
    614   }
    615   case CmpInst::ICMP_UGE: {
    616     unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
    617     emitInst(Mips::SLTu, TempReg).addReg(LeftReg).addReg(RightReg);
    618     emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
    619     break;
    620   }
    621   case CmpInst::ICMP_ULE: {
    622     unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
    623     emitInst(Mips::SLTu, TempReg).addReg(RightReg).addReg(LeftReg);
    624     emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
    625     break;
    626   }
    627   case CmpInst::ICMP_SGT: {
    628     emitInst(Mips::SLT, ResultReg).addReg(RightReg).addReg(LeftReg);
    629     break;
    630   }
    631   case CmpInst::ICMP_SLT: {
    632     emitInst(Mips::SLT, ResultReg).addReg(LeftReg).addReg(RightReg);
    633     break;
    634   }
    635   case CmpInst::ICMP_SGE: {
    636     unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
    637     emitInst(Mips::SLT, TempReg).addReg(LeftReg).addReg(RightReg);
    638     emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
    639     break;
    640   }
    641   case CmpInst::ICMP_SLE: {
    642     unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
    643     emitInst(Mips::SLT, TempReg).addReg(RightReg).addReg(LeftReg);
    644     emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
    645     break;
    646   }
    647   case CmpInst::FCMP_OEQ:
    648   case CmpInst::FCMP_UNE:
    649   case CmpInst::FCMP_OLT:
    650   case CmpInst::FCMP_OLE:
    651   case CmpInst::FCMP_OGT:
    652   case CmpInst::FCMP_OGE: {
    653     if (UnsupportedFPMode)
    654       return false;
    655     bool IsFloat = Left->getType()->isFloatTy();
    656     bool IsDouble = Left->getType()->isDoubleTy();
    657     if (!IsFloat && !IsDouble)
    658       return false;
    659     unsigned Opc, CondMovOpc;
    660     switch (P) {
    661     case CmpInst::FCMP_OEQ:
    662       Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32;
    663       CondMovOpc = Mips::MOVT_I;
    664       break;
    665     case CmpInst::FCMP_UNE:
    666       Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32;
    667       CondMovOpc = Mips::MOVF_I;
    668       break;
    669     case CmpInst::FCMP_OLT:
    670       Opc = IsFloat ? Mips::C_OLT_S : Mips::C_OLT_D32;
    671       CondMovOpc = Mips::MOVT_I;
    672       break;
    673     case CmpInst::FCMP_OLE:
    674       Opc = IsFloat ? Mips::C_OLE_S : Mips::C_OLE_D32;
    675       CondMovOpc = Mips::MOVT_I;
    676       break;
    677     case CmpInst::FCMP_OGT:
    678       Opc = IsFloat ? Mips::C_ULE_S : Mips::C_ULE_D32;
    679       CondMovOpc = Mips::MOVF_I;
    680       break;
    681     case CmpInst::FCMP_OGE:
    682       Opc = IsFloat ? Mips::C_ULT_S : Mips::C_ULT_D32;
    683       CondMovOpc = Mips::MOVF_I;
    684       break;
    685     default:
    686       llvm_unreachable("Only switching of a subset of CCs.");
    687     }
    688     unsigned RegWithZero = createResultReg(&Mips::GPR32RegClass);
    689     unsigned RegWithOne = createResultReg(&Mips::GPR32RegClass);
    690     emitInst(Mips::ADDiu, RegWithZero).addReg(Mips::ZERO).addImm(0);
    691     emitInst(Mips::ADDiu, RegWithOne).addReg(Mips::ZERO).addImm(1);
    692     emitInst(Opc).addReg(LeftReg).addReg(RightReg).addReg(
    693         Mips::FCC0, RegState::ImplicitDefine);
    694     MachineInstrBuilder MI = emitInst(CondMovOpc, ResultReg)
    695                                  .addReg(RegWithOne)
    696                                  .addReg(Mips::FCC0)
    697                                  .addReg(RegWithZero, RegState::Implicit);
    698     MI->tieOperands(0, 3);
    699     break;
    700   }
    701   }
    702   return true;
    703 }
    704 bool MipsFastISel::emitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
    705                             unsigned Alignment) {
    706   //
    707   // more cases will be handled here in following patches.
    708   //
    709   unsigned Opc;
    710   switch (VT.SimpleTy) {
    711   case MVT::i32: {
    712     ResultReg = createResultReg(&Mips::GPR32RegClass);
    713     Opc = Mips::LW;
    714     break;
    715   }
    716   case MVT::i16: {
    717     ResultReg = createResultReg(&Mips::GPR32RegClass);
    718     Opc = Mips::LHu;
    719     break;
    720   }
    721   case MVT::i8: {
    722     ResultReg = createResultReg(&Mips::GPR32RegClass);
    723     Opc = Mips::LBu;
    724     break;
    725   }
    726   case MVT::f32: {
    727     if (UnsupportedFPMode)
    728       return false;
    729     ResultReg = createResultReg(&Mips::FGR32RegClass);
    730     Opc = Mips::LWC1;
    731     break;
    732   }
    733   case MVT::f64: {
    734     if (UnsupportedFPMode)
    735       return false;
    736     ResultReg = createResultReg(&Mips::AFGR64RegClass);
    737     Opc = Mips::LDC1;
    738     break;
    739   }
    740   default:
    741     return false;
    742   }
    743   if (Addr.isRegBase()) {
    744     simplifyAddress(Addr);
    745     emitInstLoad(Opc, ResultReg, Addr.getReg(), Addr.getOffset());
    746     return true;
    747   }
    748   if (Addr.isFIBase()) {
    749     unsigned FI = Addr.getFI();
    750     unsigned Align = 4;
    751     unsigned Offset = Addr.getOffset();
    752     MachineFrameInfo &MFI = *MF->getFrameInfo();
    753     MachineMemOperand *MMO = MF->getMachineMemOperand(
    754         MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad,
    755         MFI.getObjectSize(FI), Align);
    756     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
    757         .addFrameIndex(FI)
    758         .addImm(Offset)
    759         .addMemOperand(MMO);
    760     return true;
    761   }
    762   return false;
    763 }
    764 
    765 bool MipsFastISel::emitStore(MVT VT, unsigned SrcReg, Address &Addr,
    766                              unsigned Alignment) {
    767   //
    768   // more cases will be handled here in following patches.
    769   //
    770   unsigned Opc;
    771   switch (VT.SimpleTy) {
    772   case MVT::i8:
    773     Opc = Mips::SB;
    774     break;
    775   case MVT::i16:
    776     Opc = Mips::SH;
    777     break;
    778   case MVT::i32:
    779     Opc = Mips::SW;
    780     break;
    781   case MVT::f32:
    782     if (UnsupportedFPMode)
    783       return false;
    784     Opc = Mips::SWC1;
    785     break;
    786   case MVT::f64:
    787     if (UnsupportedFPMode)
    788       return false;
    789     Opc = Mips::SDC1;
    790     break;
    791   default:
    792     return false;
    793   }
    794   if (Addr.isRegBase()) {
    795     simplifyAddress(Addr);
    796     emitInstStore(Opc, SrcReg, Addr.getReg(), Addr.getOffset());
    797     return true;
    798   }
    799   if (Addr.isFIBase()) {
    800     unsigned FI = Addr.getFI();
    801     unsigned Align = 4;
    802     unsigned Offset = Addr.getOffset();
    803     MachineFrameInfo &MFI = *MF->getFrameInfo();
    804     MachineMemOperand *MMO = MF->getMachineMemOperand(
    805         MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad,
    806         MFI.getObjectSize(FI), Align);
    807     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
    808         .addReg(SrcReg)
    809         .addFrameIndex(FI)
    810         .addImm(Offset)
    811         .addMemOperand(MMO);
    812     return true;
    813   }
    814   return false;
    815 }
    816 
    817 bool MipsFastISel::selectLogicalOp(const Instruction *I) {
    818   MVT VT;
    819   if (!isTypeSupported(I->getType(), VT))
    820     return false;
    821 
    822   unsigned ResultReg;
    823   switch (I->getOpcode()) {
    824   default:
    825     llvm_unreachable("Unexpected instruction.");
    826   case Instruction::And:
    827     ResultReg = emitLogicalOp(ISD::AND, VT, I->getOperand(0), I->getOperand(1));
    828     break;
    829   case Instruction::Or:
    830     ResultReg = emitLogicalOp(ISD::OR, VT, I->getOperand(0), I->getOperand(1));
    831     break;
    832   case Instruction::Xor:
    833     ResultReg = emitLogicalOp(ISD::XOR, VT, I->getOperand(0), I->getOperand(1));
    834     break;
    835   }
    836 
    837   if (!ResultReg)
    838     return false;
    839 
    840   updateValueMap(I, ResultReg);
    841   return true;
    842 }
    843 
    844 bool MipsFastISel::selectLoad(const Instruction *I) {
    845   // Atomic loads need special handling.
    846   if (cast<LoadInst>(I)->isAtomic())
    847     return false;
    848 
    849   // Verify we have a legal type before going any further.
    850   MVT VT;
    851   if (!isLoadTypeLegal(I->getType(), VT))
    852     return false;
    853 
    854   // See if we can handle this address.
    855   Address Addr;
    856   if (!computeAddress(I->getOperand(0), Addr))
    857     return false;
    858 
    859   unsigned ResultReg;
    860   if (!emitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
    861     return false;
    862   updateValueMap(I, ResultReg);
    863   return true;
    864 }
    865 
    866 bool MipsFastISel::selectStore(const Instruction *I) {
    867   Value *Op0 = I->getOperand(0);
    868   unsigned SrcReg = 0;
    869 
    870   // Atomic stores need special handling.
    871   if (cast<StoreInst>(I)->isAtomic())
    872     return false;
    873 
    874   // Verify we have a legal type before going any further.
    875   MVT VT;
    876   if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
    877     return false;
    878 
    879   // Get the value to be stored into a register.
    880   SrcReg = getRegForValue(Op0);
    881   if (SrcReg == 0)
    882     return false;
    883 
    884   // See if we can handle this address.
    885   Address Addr;
    886   if (!computeAddress(I->getOperand(1), Addr))
    887     return false;
    888 
    889   if (!emitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
    890     return false;
    891   return true;
    892 }
    893 
    894 //
    895 // This can cause a redundant sltiu to be generated.
    896 // FIXME: try and eliminate this in a future patch.
    897 //
    898 bool MipsFastISel::selectBranch(const Instruction *I) {
    899   const BranchInst *BI = cast<BranchInst>(I);
    900   MachineBasicBlock *BrBB = FuncInfo.MBB;
    901   //
    902   // TBB is the basic block for the case where the comparison is true.
    903   // FBB is the basic block for the case where the comparison is false.
    904   // if (cond) goto TBB
    905   // goto FBB
    906   // TBB:
    907   //
    908   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
    909   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
    910   BI->getCondition();
    911   // For now, just try the simplest case where it's fed by a compare.
    912   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
    913     unsigned CondReg = createResultReg(&Mips::GPR32RegClass);
    914     if (!emitCmp(CondReg, CI))
    915       return false;
    916     BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::BGTZ))
    917         .addReg(CondReg)
    918         .addMBB(TBB);
    919     finishCondBranch(BI->getParent(), TBB, FBB);
    920     return true;
    921   }
    922   return false;
    923 }
    924 
    925 bool MipsFastISel::selectCmp(const Instruction *I) {
    926   const CmpInst *CI = cast<CmpInst>(I);
    927   unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
    928   if (!emitCmp(ResultReg, CI))
    929     return false;
    930   updateValueMap(I, ResultReg);
    931   return true;
    932 }
    933 
    934 // Attempt to fast-select a floating-point extend instruction.
    935 bool MipsFastISel::selectFPExt(const Instruction *I) {
    936   if (UnsupportedFPMode)
    937     return false;
    938   Value *Src = I->getOperand(0);
    939   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
    940   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
    941 
    942   if (SrcVT != MVT::f32 || DestVT != MVT::f64)
    943     return false;
    944 
    945   unsigned SrcReg =
    946       getRegForValue(Src); // his must be a 32 bit floating point register class
    947                            // maybe we should handle this differently
    948   if (!SrcReg)
    949     return false;
    950 
    951   unsigned DestReg = createResultReg(&Mips::AFGR64RegClass);
    952   emitInst(Mips::CVT_D32_S, DestReg).addReg(SrcReg);
    953   updateValueMap(I, DestReg);
    954   return true;
    955 }
    956 
    957 bool MipsFastISel::selectSelect(const Instruction *I) {
    958   assert(isa<SelectInst>(I) && "Expected a select instruction.");
    959 
    960   MVT VT;
    961   if (!isTypeSupported(I->getType(), VT))
    962     return false;
    963 
    964   unsigned CondMovOpc;
    965   const TargetRegisterClass *RC;
    966 
    967   if (VT.isInteger() && !VT.isVector() && VT.getSizeInBits() <= 32) {
    968     CondMovOpc = Mips::MOVN_I_I;
    969     RC = &Mips::GPR32RegClass;
    970   } else if (VT == MVT::f32) {
    971     CondMovOpc = Mips::MOVN_I_S;
    972     RC = &Mips::FGR32RegClass;
    973   } else if (VT == MVT::f64) {
    974     CondMovOpc = Mips::MOVN_I_D32;
    975     RC = &Mips::AFGR64RegClass;
    976   } else
    977     return false;
    978 
    979   const SelectInst *SI = cast<SelectInst>(I);
    980   const Value *Cond = SI->getCondition();
    981   unsigned Src1Reg = getRegForValue(SI->getTrueValue());
    982   unsigned Src2Reg = getRegForValue(SI->getFalseValue());
    983   unsigned CondReg = getRegForValue(Cond);
    984 
    985   if (!Src1Reg || !Src2Reg || !CondReg)
    986     return false;
    987 
    988   unsigned ZExtCondReg = createResultReg(&Mips::GPR32RegClass);
    989   if (!ZExtCondReg)
    990     return false;
    991 
    992   if (!emitIntExt(MVT::i1, CondReg, MVT::i32, ZExtCondReg, true))
    993     return false;
    994 
    995   unsigned ResultReg = createResultReg(RC);
    996   unsigned TempReg = createResultReg(RC);
    997 
    998   if (!ResultReg || !TempReg)
    999     return false;
   1000 
   1001   emitInst(TargetOpcode::COPY, TempReg).addReg(Src2Reg);
   1002   emitInst(CondMovOpc, ResultReg)
   1003     .addReg(Src1Reg).addReg(ZExtCondReg).addReg(TempReg);
   1004   updateValueMap(I, ResultReg);
   1005   return true;
   1006 }
   1007 
   1008 // Attempt to fast-select a floating-point truncate instruction.
   1009 bool MipsFastISel::selectFPTrunc(const Instruction *I) {
   1010   if (UnsupportedFPMode)
   1011     return false;
   1012   Value *Src = I->getOperand(0);
   1013   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
   1014   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
   1015 
   1016   if (SrcVT != MVT::f64 || DestVT != MVT::f32)
   1017     return false;
   1018 
   1019   unsigned SrcReg = getRegForValue(Src);
   1020   if (!SrcReg)
   1021     return false;
   1022 
   1023   unsigned DestReg = createResultReg(&Mips::FGR32RegClass);
   1024   if (!DestReg)
   1025     return false;
   1026 
   1027   emitInst(Mips::CVT_S_D32, DestReg).addReg(SrcReg);
   1028   updateValueMap(I, DestReg);
   1029   return true;
   1030 }
   1031 
   1032 // Attempt to fast-select a floating-point-to-integer conversion.
   1033 bool MipsFastISel::selectFPToInt(const Instruction *I, bool IsSigned) {
   1034   if (UnsupportedFPMode)
   1035     return false;
   1036   MVT DstVT, SrcVT;
   1037   if (!IsSigned)
   1038     return false; // We don't handle this case yet. There is no native
   1039                   // instruction for this but it can be synthesized.
   1040   Type *DstTy = I->getType();
   1041   if (!isTypeLegal(DstTy, DstVT))
   1042     return false;
   1043 
   1044   if (DstVT != MVT::i32)
   1045     return false;
   1046 
   1047   Value *Src = I->getOperand(0);
   1048   Type *SrcTy = Src->getType();
   1049   if (!isTypeLegal(SrcTy, SrcVT))
   1050     return false;
   1051 
   1052   if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
   1053     return false;
   1054 
   1055   unsigned SrcReg = getRegForValue(Src);
   1056   if (SrcReg == 0)
   1057     return false;
   1058 
   1059   // Determine the opcode for the conversion, which takes place
   1060   // entirely within FPRs.
   1061   unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
   1062   unsigned TempReg = createResultReg(&Mips::FGR32RegClass);
   1063   unsigned Opc = (SrcVT == MVT::f32) ? Mips::TRUNC_W_S : Mips::TRUNC_W_D32;
   1064 
   1065   // Generate the convert.
   1066   emitInst(Opc, TempReg).addReg(SrcReg);
   1067   emitInst(Mips::MFC1, DestReg).addReg(TempReg);
   1068 
   1069   updateValueMap(I, DestReg);
   1070   return true;
   1071 }
   1072 
   1073 bool MipsFastISel::processCallArgs(CallLoweringInfo &CLI,
   1074                                    SmallVectorImpl<MVT> &OutVTs,
   1075                                    unsigned &NumBytes) {
   1076   CallingConv::ID CC = CLI.CallConv;
   1077   SmallVector<CCValAssign, 16> ArgLocs;
   1078   CCState CCInfo(CC, false, *FuncInfo.MF, ArgLocs, *Context);
   1079   CCInfo.AnalyzeCallOperands(OutVTs, CLI.OutFlags, CCAssignFnForCall(CC));
   1080   // Get a count of how many bytes are to be pushed on the stack.
   1081   NumBytes = CCInfo.getNextStackOffset();
   1082   // This is the minimum argument area used for A0-A3.
   1083   if (NumBytes < 16)
   1084     NumBytes = 16;
   1085 
   1086   emitInst(Mips::ADJCALLSTACKDOWN).addImm(16);
   1087   // Process the args.
   1088   MVT firstMVT;
   1089   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   1090     CCValAssign &VA = ArgLocs[i];
   1091     const Value *ArgVal = CLI.OutVals[VA.getValNo()];
   1092     MVT ArgVT = OutVTs[VA.getValNo()];
   1093 
   1094     if (i == 0) {
   1095       firstMVT = ArgVT;
   1096       if (ArgVT == MVT::f32) {
   1097         VA.convertToReg(Mips::F12);
   1098       } else if (ArgVT == MVT::f64) {
   1099         VA.convertToReg(Mips::D6);
   1100       }
   1101     } else if (i == 1) {
   1102       if ((firstMVT == MVT::f32) || (firstMVT == MVT::f64)) {
   1103         if (ArgVT == MVT::f32) {
   1104           VA.convertToReg(Mips::F14);
   1105         } else if (ArgVT == MVT::f64) {
   1106           VA.convertToReg(Mips::D7);
   1107         }
   1108       }
   1109     }
   1110     if (((ArgVT == MVT::i32) || (ArgVT == MVT::f32) || (ArgVT == MVT::i16) ||
   1111          (ArgVT == MVT::i8)) &&
   1112         VA.isMemLoc()) {
   1113       switch (VA.getLocMemOffset()) {
   1114       case 0:
   1115         VA.convertToReg(Mips::A0);
   1116         break;
   1117       case 4:
   1118         VA.convertToReg(Mips::A1);
   1119         break;
   1120       case 8:
   1121         VA.convertToReg(Mips::A2);
   1122         break;
   1123       case 12:
   1124         VA.convertToReg(Mips::A3);
   1125         break;
   1126       default:
   1127         break;
   1128       }
   1129     }
   1130     unsigned ArgReg = getRegForValue(ArgVal);
   1131     if (!ArgReg)
   1132       return false;
   1133 
   1134     // Handle arg promotion: SExt, ZExt, AExt.
   1135     switch (VA.getLocInfo()) {
   1136     case CCValAssign::Full:
   1137       break;
   1138     case CCValAssign::AExt:
   1139     case CCValAssign::SExt: {
   1140       MVT DestVT = VA.getLocVT();
   1141       MVT SrcVT = ArgVT;
   1142       ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/false);
   1143       if (!ArgReg)
   1144         return false;
   1145       break;
   1146     }
   1147     case CCValAssign::ZExt: {
   1148       MVT DestVT = VA.getLocVT();
   1149       MVT SrcVT = ArgVT;
   1150       ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/true);
   1151       if (!ArgReg)
   1152         return false;
   1153       break;
   1154     }
   1155     default:
   1156       llvm_unreachable("Unknown arg promotion!");
   1157     }
   1158 
   1159     // Now copy/store arg to correct locations.
   1160     if (VA.isRegLoc() && !VA.needsCustom()) {
   1161       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1162               TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
   1163       CLI.OutRegs.push_back(VA.getLocReg());
   1164     } else if (VA.needsCustom()) {
   1165       llvm_unreachable("Mips does not use custom args.");
   1166       return false;
   1167     } else {
   1168       //
   1169       // FIXME: This path will currently return false. It was copied
   1170       // from the AArch64 port and should be essentially fine for Mips too.
   1171       // The work to finish up this path will be done in a follow-on patch.
   1172       //
   1173       assert(VA.isMemLoc() && "Assuming store on stack.");
   1174       // Don't emit stores for undef values.
   1175       if (isa<UndefValue>(ArgVal))
   1176         continue;
   1177 
   1178       // Need to store on the stack.
   1179       // FIXME: This alignment is incorrect but this path is disabled
   1180       // for now (will return false). We need to determine the right alignment
   1181       // based on the normal alignment for the underlying machine type.
   1182       //
   1183       unsigned ArgSize = RoundUpToAlignment(ArgVT.getSizeInBits(), 4);
   1184 
   1185       unsigned BEAlign = 0;
   1186       if (ArgSize < 8 && !Subtarget->isLittle())
   1187         BEAlign = 8 - ArgSize;
   1188 
   1189       Address Addr;
   1190       Addr.setKind(Address::RegBase);
   1191       Addr.setReg(Mips::SP);
   1192       Addr.setOffset(VA.getLocMemOffset() + BEAlign);
   1193 
   1194       unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
   1195       MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
   1196           MachinePointerInfo::getStack(*FuncInfo.MF, Addr.getOffset()),
   1197           MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
   1198       (void)(MMO);
   1199       // if (!emitStore(ArgVT, ArgReg, Addr, MMO))
   1200       return false; // can't store on the stack yet.
   1201     }
   1202   }
   1203 
   1204   return true;
   1205 }
   1206 
   1207 bool MipsFastISel::finishCall(CallLoweringInfo &CLI, MVT RetVT,
   1208                               unsigned NumBytes) {
   1209   CallingConv::ID CC = CLI.CallConv;
   1210   emitInst(Mips::ADJCALLSTACKUP).addImm(16);
   1211   if (RetVT != MVT::isVoid) {
   1212     SmallVector<CCValAssign, 16> RVLocs;
   1213     CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
   1214     CCInfo.AnalyzeCallResult(RetVT, RetCC_Mips);
   1215 
   1216     // Only handle a single return value.
   1217     if (RVLocs.size() != 1)
   1218       return false;
   1219     // Copy all of the result registers out of their specified physreg.
   1220     MVT CopyVT = RVLocs[0].getValVT();
   1221     // Special handling for extended integers.
   1222     if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
   1223       CopyVT = MVT::i32;
   1224 
   1225     unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT));
   1226     if (!ResultReg)
   1227       return false;
   1228     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1229             TII.get(TargetOpcode::COPY),
   1230             ResultReg).addReg(RVLocs[0].getLocReg());
   1231     CLI.InRegs.push_back(RVLocs[0].getLocReg());
   1232 
   1233     CLI.ResultReg = ResultReg;
   1234     CLI.NumResultRegs = 1;
   1235   }
   1236   return true;
   1237 }
   1238 
   1239 bool MipsFastISel::fastLowerCall(CallLoweringInfo &CLI) {
   1240   if (!TargetSupported)
   1241     return false;
   1242 
   1243   CallingConv::ID CC = CLI.CallConv;
   1244   bool IsTailCall = CLI.IsTailCall;
   1245   bool IsVarArg = CLI.IsVarArg;
   1246   const Value *Callee = CLI.Callee;
   1247   MCSymbol *Symbol = CLI.Symbol;
   1248 
   1249   // Do not handle FastCC.
   1250   if (CC == CallingConv::Fast)
   1251     return false;
   1252 
   1253   // Allow SelectionDAG isel to handle tail calls.
   1254   if (IsTailCall)
   1255     return false;
   1256 
   1257   // Let SDISel handle vararg functions.
   1258   if (IsVarArg)
   1259     return false;
   1260 
   1261   // FIXME: Only handle *simple* calls for now.
   1262   MVT RetVT;
   1263   if (CLI.RetTy->isVoidTy())
   1264     RetVT = MVT::isVoid;
   1265   else if (!isTypeSupported(CLI.RetTy, RetVT))
   1266     return false;
   1267 
   1268   for (auto Flag : CLI.OutFlags)
   1269     if (Flag.isInReg() || Flag.isSRet() || Flag.isNest() || Flag.isByVal())
   1270       return false;
   1271 
   1272   // Set up the argument vectors.
   1273   SmallVector<MVT, 16> OutVTs;
   1274   OutVTs.reserve(CLI.OutVals.size());
   1275 
   1276   for (auto *Val : CLI.OutVals) {
   1277     MVT VT;
   1278     if (!isTypeLegal(Val->getType(), VT) &&
   1279         !(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16))
   1280       return false;
   1281 
   1282     // We don't handle vector parameters yet.
   1283     if (VT.isVector() || VT.getSizeInBits() > 64)
   1284       return false;
   1285 
   1286     OutVTs.push_back(VT);
   1287   }
   1288 
   1289   Address Addr;
   1290   if (!computeCallAddress(Callee, Addr))
   1291     return false;
   1292 
   1293   // Handle the arguments now that we've gotten them.
   1294   unsigned NumBytes;
   1295   if (!processCallArgs(CLI, OutVTs, NumBytes))
   1296     return false;
   1297 
   1298   if (!Addr.getGlobalValue())
   1299     return false;
   1300 
   1301   // Issue the call.
   1302   unsigned DestAddress;
   1303   if (Symbol)
   1304     DestAddress = materializeExternalCallSym(Symbol);
   1305   else
   1306     DestAddress = materializeGV(Addr.getGlobalValue(), MVT::i32);
   1307   emitInst(TargetOpcode::COPY, Mips::T9).addReg(DestAddress);
   1308   MachineInstrBuilder MIB =
   1309       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::JALR),
   1310               Mips::RA).addReg(Mips::T9);
   1311 
   1312   // Add implicit physical register uses to the call.
   1313   for (auto Reg : CLI.OutRegs)
   1314     MIB.addReg(Reg, RegState::Implicit);
   1315 
   1316   // Add a register mask with the call-preserved registers.
   1317   // Proper defs for return values will be added by setPhysRegsDeadExcept().
   1318   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
   1319 
   1320   CLI.Call = MIB;
   1321 
   1322   // Finish off the call including any return values.
   1323   return finishCall(CLI, RetVT, NumBytes);
   1324 }
   1325 
   1326 bool MipsFastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
   1327   if (!TargetSupported)
   1328     return false;
   1329 
   1330   switch (II->getIntrinsicID()) {
   1331   default:
   1332     return false;
   1333   case Intrinsic::bswap: {
   1334     Type *RetTy = II->getCalledFunction()->getReturnType();
   1335 
   1336     MVT VT;
   1337     if (!isTypeSupported(RetTy, VT))
   1338       return false;
   1339 
   1340     unsigned SrcReg = getRegForValue(II->getOperand(0));
   1341     if (SrcReg == 0)
   1342       return false;
   1343     unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
   1344     if (DestReg == 0)
   1345       return false;
   1346     if (VT == MVT::i16) {
   1347       if (Subtarget->hasMips32r2()) {
   1348         emitInst(Mips::WSBH, DestReg).addReg(SrcReg);
   1349         updateValueMap(II, DestReg);
   1350         return true;
   1351       } else {
   1352         unsigned TempReg[3];
   1353         for (int i = 0; i < 3; i++) {
   1354           TempReg[i] = createResultReg(&Mips::GPR32RegClass);
   1355           if (TempReg[i] == 0)
   1356             return false;
   1357         }
   1358         emitInst(Mips::SLL, TempReg[0]).addReg(SrcReg).addImm(8);
   1359         emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(8);
   1360         emitInst(Mips::OR, TempReg[2]).addReg(TempReg[0]).addReg(TempReg[1]);
   1361         emitInst(Mips::ANDi, DestReg).addReg(TempReg[2]).addImm(0xFFFF);
   1362         updateValueMap(II, DestReg);
   1363         return true;
   1364       }
   1365     } else if (VT == MVT::i32) {
   1366       if (Subtarget->hasMips32r2()) {
   1367         unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
   1368         emitInst(Mips::WSBH, TempReg).addReg(SrcReg);
   1369         emitInst(Mips::ROTR, DestReg).addReg(TempReg).addImm(16);
   1370         updateValueMap(II, DestReg);
   1371         return true;
   1372       } else {
   1373         unsigned TempReg[8];
   1374         for (int i = 0; i < 8; i++) {
   1375           TempReg[i] = createResultReg(&Mips::GPR32RegClass);
   1376           if (TempReg[i] == 0)
   1377             return false;
   1378         }
   1379 
   1380         emitInst(Mips::SRL, TempReg[0]).addReg(SrcReg).addImm(8);
   1381         emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(24);
   1382         emitInst(Mips::ANDi, TempReg[2]).addReg(TempReg[0]).addImm(0xFF00);
   1383         emitInst(Mips::OR, TempReg[3]).addReg(TempReg[1]).addReg(TempReg[2]);
   1384 
   1385         emitInst(Mips::ANDi, TempReg[4]).addReg(SrcReg).addImm(0xFF00);
   1386         emitInst(Mips::SLL, TempReg[5]).addReg(TempReg[4]).addImm(8);
   1387 
   1388         emitInst(Mips::SLL, TempReg[6]).addReg(SrcReg).addImm(24);
   1389         emitInst(Mips::OR, TempReg[7]).addReg(TempReg[3]).addReg(TempReg[5]);
   1390         emitInst(Mips::OR, DestReg).addReg(TempReg[6]).addReg(TempReg[7]);
   1391         updateValueMap(II, DestReg);
   1392         return true;
   1393       }
   1394     }
   1395     return false;
   1396   }
   1397   case Intrinsic::memcpy:
   1398   case Intrinsic::memmove: {
   1399     const auto *MTI = cast<MemTransferInst>(II);
   1400     // Don't handle volatile.
   1401     if (MTI->isVolatile())
   1402       return false;
   1403     if (!MTI->getLength()->getType()->isIntegerTy(32))
   1404       return false;
   1405     const char *IntrMemName = isa<MemCpyInst>(II) ? "memcpy" : "memmove";
   1406     return lowerCallTo(II, IntrMemName, II->getNumArgOperands() - 2);
   1407   }
   1408   case Intrinsic::memset: {
   1409     const MemSetInst *MSI = cast<MemSetInst>(II);
   1410     // Don't handle volatile.
   1411     if (MSI->isVolatile())
   1412       return false;
   1413     if (!MSI->getLength()->getType()->isIntegerTy(32))
   1414       return false;
   1415     return lowerCallTo(II, "memset", II->getNumArgOperands() - 2);
   1416   }
   1417   }
   1418   return false;
   1419 }
   1420 
   1421 bool MipsFastISel::selectRet(const Instruction *I) {
   1422   const Function &F = *I->getParent()->getParent();
   1423   const ReturnInst *Ret = cast<ReturnInst>(I);
   1424 
   1425   if (!FuncInfo.CanLowerReturn)
   1426     return false;
   1427 
   1428   // Build a list of return value registers.
   1429   SmallVector<unsigned, 4> RetRegs;
   1430 
   1431   if (Ret->getNumOperands() > 0) {
   1432     CallingConv::ID CC = F.getCallingConv();
   1433 
   1434     // Do not handle FastCC.
   1435     if (CC == CallingConv::Fast)
   1436       return false;
   1437 
   1438     SmallVector<ISD::OutputArg, 4> Outs;
   1439     GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
   1440 
   1441     // Analyze operands of the call, assigning locations to each operand.
   1442     SmallVector<CCValAssign, 16> ValLocs;
   1443     MipsCCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs,
   1444                        I->getContext());
   1445     CCAssignFn *RetCC = RetCC_Mips;
   1446     CCInfo.AnalyzeReturn(Outs, RetCC);
   1447 
   1448     // Only handle a single return value for now.
   1449     if (ValLocs.size() != 1)
   1450       return false;
   1451 
   1452     CCValAssign &VA = ValLocs[0];
   1453     const Value *RV = Ret->getOperand(0);
   1454 
   1455     // Don't bother handling odd stuff for now.
   1456     if ((VA.getLocInfo() != CCValAssign::Full) &&
   1457         (VA.getLocInfo() != CCValAssign::BCvt))
   1458       return false;
   1459 
   1460     // Only handle register returns for now.
   1461     if (!VA.isRegLoc())
   1462       return false;
   1463 
   1464     unsigned Reg = getRegForValue(RV);
   1465     if (Reg == 0)
   1466       return false;
   1467 
   1468     unsigned SrcReg = Reg + VA.getValNo();
   1469     unsigned DestReg = VA.getLocReg();
   1470     // Avoid a cross-class copy. This is very unlikely.
   1471     if (!MRI.getRegClass(SrcReg)->contains(DestReg))
   1472       return false;
   1473 
   1474     EVT RVEVT = TLI.getValueType(DL, RV->getType());
   1475     if (!RVEVT.isSimple())
   1476       return false;
   1477 
   1478     if (RVEVT.isVector())
   1479       return false;
   1480 
   1481     MVT RVVT = RVEVT.getSimpleVT();
   1482     if (RVVT == MVT::f128)
   1483       return false;
   1484 
   1485     MVT DestVT = VA.getValVT();
   1486     // Special handling for extended integers.
   1487     if (RVVT != DestVT) {
   1488       if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
   1489         return false;
   1490 
   1491       if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
   1492         bool IsZExt = Outs[0].Flags.isZExt();
   1493         SrcReg = emitIntExt(RVVT, SrcReg, DestVT, IsZExt);
   1494         if (SrcReg == 0)
   1495           return false;
   1496       }
   1497     }
   1498 
   1499     // Make the copy.
   1500     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1501             TII.get(TargetOpcode::COPY), DestReg).addReg(SrcReg);
   1502 
   1503     // Add register to return instruction.
   1504     RetRegs.push_back(VA.getLocReg());
   1505   }
   1506   MachineInstrBuilder MIB = emitInst(Mips::RetRA);
   1507   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
   1508     MIB.addReg(RetRegs[i], RegState::Implicit);
   1509   return true;
   1510 }
   1511 
   1512 bool MipsFastISel::selectTrunc(const Instruction *I) {
   1513   // The high bits for a type smaller than the register size are assumed to be
   1514   // undefined.
   1515   Value *Op = I->getOperand(0);
   1516 
   1517   EVT SrcVT, DestVT;
   1518   SrcVT = TLI.getValueType(DL, Op->getType(), true);
   1519   DestVT = TLI.getValueType(DL, I->getType(), true);
   1520 
   1521   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
   1522     return false;
   1523   if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
   1524     return false;
   1525 
   1526   unsigned SrcReg = getRegForValue(Op);
   1527   if (!SrcReg)
   1528     return false;
   1529 
   1530   // Because the high bits are undefined, a truncate doesn't generate
   1531   // any code.
   1532   updateValueMap(I, SrcReg);
   1533   return true;
   1534 }
   1535 bool MipsFastISel::selectIntExt(const Instruction *I) {
   1536   Type *DestTy = I->getType();
   1537   Value *Src = I->getOperand(0);
   1538   Type *SrcTy = Src->getType();
   1539 
   1540   bool isZExt = isa<ZExtInst>(I);
   1541   unsigned SrcReg = getRegForValue(Src);
   1542   if (!SrcReg)
   1543     return false;
   1544 
   1545   EVT SrcEVT, DestEVT;
   1546   SrcEVT = TLI.getValueType(DL, SrcTy, true);
   1547   DestEVT = TLI.getValueType(DL, DestTy, true);
   1548   if (!SrcEVT.isSimple())
   1549     return false;
   1550   if (!DestEVT.isSimple())
   1551     return false;
   1552 
   1553   MVT SrcVT = SrcEVT.getSimpleVT();
   1554   MVT DestVT = DestEVT.getSimpleVT();
   1555   unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
   1556 
   1557   if (!emitIntExt(SrcVT, SrcReg, DestVT, ResultReg, isZExt))
   1558     return false;
   1559   updateValueMap(I, ResultReg);
   1560   return true;
   1561 }
   1562 bool MipsFastISel::emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT,
   1563                                    unsigned DestReg) {
   1564   unsigned ShiftAmt;
   1565   switch (SrcVT.SimpleTy) {
   1566   default:
   1567     return false;
   1568   case MVT::i8:
   1569     ShiftAmt = 24;
   1570     break;
   1571   case MVT::i16:
   1572     ShiftAmt = 16;
   1573     break;
   1574   }
   1575   unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
   1576   emitInst(Mips::SLL, TempReg).addReg(SrcReg).addImm(ShiftAmt);
   1577   emitInst(Mips::SRA, DestReg).addReg(TempReg).addImm(ShiftAmt);
   1578   return true;
   1579 }
   1580 
   1581 bool MipsFastISel::emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT,
   1582                                    unsigned DestReg) {
   1583   switch (SrcVT.SimpleTy) {
   1584   default:
   1585     return false;
   1586   case MVT::i8:
   1587     emitInst(Mips::SEB, DestReg).addReg(SrcReg);
   1588     break;
   1589   case MVT::i16:
   1590     emitInst(Mips::SEH, DestReg).addReg(SrcReg);
   1591     break;
   1592   }
   1593   return true;
   1594 }
   1595 
   1596 bool MipsFastISel::emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
   1597                                unsigned DestReg) {
   1598   if ((DestVT != MVT::i32) && (DestVT != MVT::i16))
   1599     return false;
   1600   if (Subtarget->hasMips32r2())
   1601     return emitIntSExt32r2(SrcVT, SrcReg, DestVT, DestReg);
   1602   return emitIntSExt32r1(SrcVT, SrcReg, DestVT, DestReg);
   1603 }
   1604 
   1605 bool MipsFastISel::emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
   1606                                unsigned DestReg) {
   1607   int64_t Imm;
   1608 
   1609   switch (SrcVT.SimpleTy) {
   1610   default:
   1611     return false;
   1612   case MVT::i1:
   1613     Imm = 1;
   1614     break;
   1615   case MVT::i8:
   1616     Imm = 0xff;
   1617     break;
   1618   case MVT::i16:
   1619     Imm = 0xffff;
   1620     break;
   1621   }
   1622 
   1623   emitInst(Mips::ANDi, DestReg).addReg(SrcReg).addImm(Imm);
   1624   return true;
   1625 }
   1626 
   1627 bool MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
   1628                               unsigned DestReg, bool IsZExt) {
   1629   // FastISel does not have plumbing to deal with extensions where the SrcVT or
   1630   // DestVT are odd things, so test to make sure that they are both types we can
   1631   // handle (i1/i8/i16/i32 for SrcVT and i8/i16/i32/i64 for DestVT), otherwise
   1632   // bail out to SelectionDAG.
   1633   if (((DestVT != MVT::i8) && (DestVT != MVT::i16) && (DestVT != MVT::i32)) ||
   1634       ((SrcVT != MVT::i1) && (SrcVT != MVT::i8) && (SrcVT != MVT::i16)))
   1635     return false;
   1636   if (IsZExt)
   1637     return emitIntZExt(SrcVT, SrcReg, DestVT, DestReg);
   1638   return emitIntSExt(SrcVT, SrcReg, DestVT, DestReg);
   1639 }
   1640 
   1641 unsigned MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
   1642                                   bool isZExt) {
   1643   unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
   1644   bool Success = emitIntExt(SrcVT, SrcReg, DestVT, DestReg, isZExt);
   1645   return Success ? DestReg : 0;
   1646 }
   1647 
   1648 bool MipsFastISel::selectDivRem(const Instruction *I, unsigned ISDOpcode) {
   1649   EVT DestEVT = TLI.getValueType(DL, I->getType(), true);
   1650   if (!DestEVT.isSimple())
   1651     return false;
   1652 
   1653   MVT DestVT = DestEVT.getSimpleVT();
   1654   if (DestVT != MVT::i32)
   1655     return false;
   1656 
   1657   unsigned DivOpc;
   1658   switch (ISDOpcode) {
   1659   default:
   1660     return false;
   1661   case ISD::SDIV:
   1662   case ISD::SREM:
   1663     DivOpc = Mips::SDIV;
   1664     break;
   1665   case ISD::UDIV:
   1666   case ISD::UREM:
   1667     DivOpc = Mips::UDIV;
   1668     break;
   1669   }
   1670 
   1671   unsigned Src0Reg = getRegForValue(I->getOperand(0));
   1672   unsigned Src1Reg = getRegForValue(I->getOperand(1));
   1673   if (!Src0Reg || !Src1Reg)
   1674     return false;
   1675 
   1676   emitInst(DivOpc).addReg(Src0Reg).addReg(Src1Reg);
   1677   emitInst(Mips::TEQ).addReg(Src1Reg).addReg(Mips::ZERO).addImm(7);
   1678 
   1679   unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
   1680   if (!ResultReg)
   1681     return false;
   1682 
   1683   unsigned MFOpc = (ISDOpcode == ISD::SREM || ISDOpcode == ISD::UREM)
   1684                        ? Mips::MFHI
   1685                        : Mips::MFLO;
   1686   emitInst(MFOpc, ResultReg);
   1687 
   1688   updateValueMap(I, ResultReg);
   1689   return true;
   1690 }
   1691 
   1692 bool MipsFastISel::selectShift(const Instruction *I) {
   1693   MVT RetVT;
   1694 
   1695   if (!isTypeSupported(I->getType(), RetVT))
   1696     return false;
   1697 
   1698   unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
   1699   if (!ResultReg)
   1700     return false;
   1701 
   1702   unsigned Opcode = I->getOpcode();
   1703   const Value *Op0 = I->getOperand(0);
   1704   unsigned Op0Reg = getRegForValue(Op0);
   1705   if (!Op0Reg)
   1706     return false;
   1707 
   1708   // If AShr or LShr, then we need to make sure the operand0 is sign extended.
   1709   if (Opcode == Instruction::AShr || Opcode == Instruction::LShr) {
   1710     unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
   1711     if (!TempReg)
   1712       return false;
   1713 
   1714     MVT Op0MVT = TLI.getValueType(DL, Op0->getType(), true).getSimpleVT();
   1715     bool IsZExt = Opcode == Instruction::LShr;
   1716     if (!emitIntExt(Op0MVT, Op0Reg, MVT::i32, TempReg, IsZExt))
   1717       return false;
   1718 
   1719     Op0Reg = TempReg;
   1720   }
   1721 
   1722   if (const auto *C = dyn_cast<ConstantInt>(I->getOperand(1))) {
   1723     uint64_t ShiftVal = C->getZExtValue();
   1724 
   1725     switch (Opcode) {
   1726     default:
   1727       llvm_unreachable("Unexpected instruction.");
   1728     case Instruction::Shl:
   1729       Opcode = Mips::SLL;
   1730       break;
   1731     case Instruction::AShr:
   1732       Opcode = Mips::SRA;
   1733       break;
   1734     case Instruction::LShr:
   1735       Opcode = Mips::SRL;
   1736       break;
   1737     }
   1738 
   1739     emitInst(Opcode, ResultReg).addReg(Op0Reg).addImm(ShiftVal);
   1740     updateValueMap(I, ResultReg);
   1741     return true;
   1742   }
   1743 
   1744   unsigned Op1Reg = getRegForValue(I->getOperand(1));
   1745   if (!Op1Reg)
   1746     return false;
   1747 
   1748   switch (Opcode) {
   1749   default:
   1750     llvm_unreachable("Unexpected instruction.");
   1751   case Instruction::Shl:
   1752     Opcode = Mips::SLLV;
   1753     break;
   1754   case Instruction::AShr:
   1755     Opcode = Mips::SRAV;
   1756     break;
   1757   case Instruction::LShr:
   1758     Opcode = Mips::SRLV;
   1759     break;
   1760   }
   1761 
   1762   emitInst(Opcode, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
   1763   updateValueMap(I, ResultReg);
   1764   return true;
   1765 }
   1766 
   1767 bool MipsFastISel::fastSelectInstruction(const Instruction *I) {
   1768   if (!TargetSupported)
   1769     return false;
   1770   switch (I->getOpcode()) {
   1771   default:
   1772     break;
   1773   case Instruction::Load:
   1774     return selectLoad(I);
   1775   case Instruction::Store:
   1776     return selectStore(I);
   1777   case Instruction::SDiv:
   1778     if (!selectBinaryOp(I, ISD::SDIV))
   1779       return selectDivRem(I, ISD::SDIV);
   1780     return true;
   1781   case Instruction::UDiv:
   1782     if (!selectBinaryOp(I, ISD::UDIV))
   1783       return selectDivRem(I, ISD::UDIV);
   1784     return true;
   1785   case Instruction::SRem:
   1786     if (!selectBinaryOp(I, ISD::SREM))
   1787       return selectDivRem(I, ISD::SREM);
   1788     return true;
   1789   case Instruction::URem:
   1790     if (!selectBinaryOp(I, ISD::UREM))
   1791       return selectDivRem(I, ISD::UREM);
   1792     return true;
   1793   case Instruction::Shl:
   1794   case Instruction::LShr:
   1795   case Instruction::AShr:
   1796     return selectShift(I);
   1797   case Instruction::And:
   1798   case Instruction::Or:
   1799   case Instruction::Xor:
   1800     return selectLogicalOp(I);
   1801   case Instruction::Br:
   1802     return selectBranch(I);
   1803   case Instruction::Ret:
   1804     return selectRet(I);
   1805   case Instruction::Trunc:
   1806     return selectTrunc(I);
   1807   case Instruction::ZExt:
   1808   case Instruction::SExt:
   1809     return selectIntExt(I);
   1810   case Instruction::FPTrunc:
   1811     return selectFPTrunc(I);
   1812   case Instruction::FPExt:
   1813     return selectFPExt(I);
   1814   case Instruction::FPToSI:
   1815     return selectFPToInt(I, /*isSigned*/ true);
   1816   case Instruction::FPToUI:
   1817     return selectFPToInt(I, /*isSigned*/ false);
   1818   case Instruction::ICmp:
   1819   case Instruction::FCmp:
   1820     return selectCmp(I);
   1821   case Instruction::Select:
   1822     return selectSelect(I);
   1823   }
   1824   return false;
   1825 }
   1826 
   1827 unsigned MipsFastISel::getRegEnsuringSimpleIntegerWidening(const Value *V,
   1828                                                            bool IsUnsigned) {
   1829   unsigned VReg = getRegForValue(V);
   1830   if (VReg == 0)
   1831     return 0;
   1832   MVT VMVT = TLI.getValueType(DL, V->getType(), true).getSimpleVT();
   1833   if ((VMVT == MVT::i8) || (VMVT == MVT::i16)) {
   1834     unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
   1835     if (!emitIntExt(VMVT, VReg, MVT::i32, TempReg, IsUnsigned))
   1836       return 0;
   1837     VReg = TempReg;
   1838   }
   1839   return VReg;
   1840 }
   1841 
   1842 void MipsFastISel::simplifyAddress(Address &Addr) {
   1843   if (!isInt<16>(Addr.getOffset())) {
   1844     unsigned TempReg =
   1845         materialize32BitInt(Addr.getOffset(), &Mips::GPR32RegClass);
   1846     unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
   1847     emitInst(Mips::ADDu, DestReg).addReg(TempReg).addReg(Addr.getReg());
   1848     Addr.setReg(DestReg);
   1849     Addr.setOffset(0);
   1850   }
   1851 }
   1852 
   1853 unsigned MipsFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
   1854                                        const TargetRegisterClass *RC,
   1855                                        unsigned Op0, bool Op0IsKill,
   1856                                        unsigned Op1, bool Op1IsKill) {
   1857   // We treat the MUL instruction in a special way because it clobbers
   1858   // the HI0 & LO0 registers. The TableGen definition of this instruction can
   1859   // mark these registers only as implicitly defined. As a result, the
   1860   // register allocator runs out of registers when this instruction is
   1861   // followed by another instruction that defines the same registers too.
   1862   // We can fix this by explicitly marking those registers as dead.
   1863   if (MachineInstOpcode == Mips::MUL) {
   1864     unsigned ResultReg = createResultReg(RC);
   1865     const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1866     Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
   1867     Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
   1868     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
   1869       .addReg(Op0, getKillRegState(Op0IsKill))
   1870       .addReg(Op1, getKillRegState(Op1IsKill))
   1871       .addReg(Mips::HI0, RegState::ImplicitDefine | RegState::Dead)
   1872       .addReg(Mips::LO0, RegState::ImplicitDefine | RegState::Dead);
   1873     return ResultReg;
   1874   }
   1875 
   1876   return FastISel::fastEmitInst_rr(MachineInstOpcode, RC, Op0, Op0IsKill, Op1,
   1877                                    Op1IsKill);
   1878 }
   1879 
   1880 namespace llvm {
   1881 FastISel *Mips::createFastISel(FunctionLoweringInfo &funcInfo,
   1882                                const TargetLibraryInfo *libInfo) {
   1883   return new MipsFastISel(funcInfo, libInfo);
   1884 }
   1885 }
   1886