Home | History | Annotate | Download | only in CodeGen
      1 //===-- PeepholeOptimizer.cpp - Peephole Optimizations --------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Perform peephole optimizations on the machine code:
     11 //
     12 // - Optimize Extensions
     13 //
     14 //     Optimization of sign / zero extension instructions. It may be extended to
     15 //     handle other instructions with similar properties.
     16 //
     17 //     On some targets, some instructions, e.g. X86 sign / zero extension, may
     18 //     leave the source value in the lower part of the result. This optimization
     19 //     will replace some uses of the pre-extension value with uses of the
     20 //     sub-register of the results.
     21 //
     22 // - Optimize Comparisons
     23 //
     24 //     Optimization of comparison instructions. For instance, in this code:
     25 //
     26 //       sub r1, 1
     27 //       cmp r1, 0
     28 //       bz  L1
     29 //
     30 //     If the "sub" instruction all ready sets (or could be modified to set) the
     31 //     same flag that the "cmp" instruction sets and that "bz" uses, then we can
     32 //     eliminate the "cmp" instruction.
     33 //
     34 //     Another instance, in this code:
     35 //
     36 //       sub r1, r3 | sub r1, imm
     37 //       cmp r3, r1 or cmp r1, r3 | cmp r1, imm
     38 //       bge L1
     39 //
     40 //     If the branch instruction can use flag from "sub", then we can replace
     41 //     "sub" with "subs" and eliminate the "cmp" instruction.
     42 //
     43 // - Optimize Loads:
     44 //
     45 //     Loads that can be folded into a later instruction. A load is foldable
     46 //     if it loads to virtual registers and the virtual register defined has
     47 //     a single use.
     48 //
     49 // - Optimize Copies and Bitcast (more generally, target specific copies):
     50 //
     51 //     Rewrite copies and bitcasts to avoid cross register bank copies
     52 //     when possible.
     53 //     E.g., Consider the following example, where capital and lower
     54 //     letters denote different register file:
     55 //     b = copy A <-- cross-bank copy
     56 //     C = copy b <-- cross-bank copy
     57 //   =>
     58 //     b = copy A <-- cross-bank copy
     59 //     C = copy A <-- same-bank copy
     60 //
     61 //     E.g., for bitcast:
     62 //     b = bitcast A <-- cross-bank copy
     63 //     C = bitcast b <-- cross-bank copy
     64 //   =>
     65 //     b = bitcast A <-- cross-bank copy
     66 //     C = copy A    <-- same-bank copy
     67 //===----------------------------------------------------------------------===//
     68 
     69 #include "llvm/CodeGen/Passes.h"
     70 #include "llvm/ADT/DenseMap.h"
     71 #include "llvm/ADT/SmallPtrSet.h"
     72 #include "llvm/ADT/SmallSet.h"
     73 #include "llvm/ADT/Statistic.h"
     74 #include "llvm/CodeGen/MachineDominators.h"
     75 #include "llvm/CodeGen/MachineInstrBuilder.h"
     76 #include "llvm/CodeGen/MachineRegisterInfo.h"
     77 #include "llvm/Support/CommandLine.h"
     78 #include "llvm/Support/Debug.h"
     79 #include "llvm/Support/raw_ostream.h"
     80 #include "llvm/Target/TargetInstrInfo.h"
     81 #include "llvm/Target/TargetRegisterInfo.h"
     82 #include "llvm/Target/TargetSubtargetInfo.h"
     83 #include <utility>
     84 using namespace llvm;
     85 
     86 #define DEBUG_TYPE "peephole-opt"
     87 
     88 // Optimize Extensions
     89 static cl::opt<bool>
     90 Aggressive("aggressive-ext-opt", cl::Hidden,
     91            cl::desc("Aggressive extension optimization"));
     92 
     93 static cl::opt<bool>
     94 DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
     95                 cl::desc("Disable the peephole optimizer"));
     96 
     97 static cl::opt<bool>
     98 DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false),
     99                   cl::desc("Disable advanced copy optimization"));
    100 
    101 static cl::opt<bool> DisableNAPhysCopyOpt(
    102     "disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false),
    103     cl::desc("Disable non-allocatable physical register copy optimization"));
    104 
    105 // Limit the number of PHI instructions to process
    106 // in PeepholeOptimizer::getNextSource.
    107 static cl::opt<unsigned> RewritePHILimit(
    108     "rewrite-phi-limit", cl::Hidden, cl::init(10),
    109     cl::desc("Limit the length of PHI chains to lookup"));
    110 
    111 STATISTIC(NumReuse,      "Number of extension results reused");
    112 STATISTIC(NumCmps,       "Number of compares eliminated");
    113 STATISTIC(NumImmFold,    "Number of move immediate folded");
    114 STATISTIC(NumLoadFold,   "Number of loads folded");
    115 STATISTIC(NumSelects,    "Number of selects optimized");
    116 STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized");
    117 STATISTIC(NumRewrittenCopies, "Number of copies rewritten");
    118 STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed");
    119 
    120 namespace {
    121   class ValueTrackerResult;
    122 
    123   class PeepholeOptimizer : public MachineFunctionPass {
    124     const TargetInstrInfo *TII;
    125     const TargetRegisterInfo *TRI;
    126     MachineRegisterInfo   *MRI;
    127     MachineDominatorTree  *DT;  // Machine dominator tree
    128 
    129   public:
    130     static char ID; // Pass identification
    131     PeepholeOptimizer() : MachineFunctionPass(ID) {
    132       initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
    133     }
    134 
    135     bool runOnMachineFunction(MachineFunction &MF) override;
    136 
    137     void getAnalysisUsage(AnalysisUsage &AU) const override {
    138       AU.setPreservesCFG();
    139       MachineFunctionPass::getAnalysisUsage(AU);
    140       if (Aggressive) {
    141         AU.addRequired<MachineDominatorTree>();
    142         AU.addPreserved<MachineDominatorTree>();
    143       }
    144     }
    145 
    146     /// \brief Track Def -> Use info used for rewriting copies.
    147     typedef SmallDenseMap<TargetInstrInfo::RegSubRegPair, ValueTrackerResult>
    148         RewriteMapTy;
    149 
    150   private:
    151     bool optimizeCmpInstr(MachineInstr *MI, MachineBasicBlock *MBB);
    152     bool optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
    153                           SmallPtrSetImpl<MachineInstr*> &LocalMIs);
    154     bool optimizeSelect(MachineInstr *MI,
    155                         SmallPtrSetImpl<MachineInstr *> &LocalMIs);
    156     bool optimizeCondBranch(MachineInstr *MI);
    157     bool optimizeCoalescableCopy(MachineInstr *MI);
    158     bool optimizeUncoalescableCopy(MachineInstr *MI,
    159                                    SmallPtrSetImpl<MachineInstr *> &LocalMIs);
    160     bool findNextSource(unsigned Reg, unsigned SubReg,
    161                         RewriteMapTy &RewriteMap);
    162     bool isMoveImmediate(MachineInstr *MI,
    163                          SmallSet<unsigned, 4> &ImmDefRegs,
    164                          DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
    165     bool foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB,
    166                        SmallSet<unsigned, 4> &ImmDefRegs,
    167                        DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
    168 
    169     /// \brief If copy instruction \p MI is a virtual register copy, track it in
    170     /// the set \p CopySrcRegs and \p CopyMIs. If this virtual register was
    171     /// previously seen as a copy, replace the uses of this copy with the
    172     /// previously seen copy's destination register.
    173     bool foldRedundantCopy(MachineInstr *MI,
    174                            SmallSet<unsigned, 4> &CopySrcRegs,
    175                            DenseMap<unsigned, MachineInstr *> &CopyMIs);
    176 
    177     /// \brief Is the register \p Reg a non-allocatable physical register?
    178     bool isNAPhysCopy(unsigned Reg);
    179 
    180     /// \brief If copy instruction \p MI is a non-allocatable virtual<->physical
    181     /// register copy, track it in the \p NAPhysToVirtMIs map. If this
    182     /// non-allocatable physical register was previously copied to a virtual
    183     /// registered and hasn't been clobbered, the virt->phys copy can be
    184     /// deleted.
    185     bool foldRedundantNAPhysCopy(
    186         MachineInstr *MI,
    187         DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs);
    188 
    189     bool isLoadFoldable(MachineInstr *MI,
    190                         SmallSet<unsigned, 16> &FoldAsLoadDefCandidates);
    191 
    192     /// \brief Check whether \p MI is understood by the register coalescer
    193     /// but may require some rewriting.
    194     bool isCoalescableCopy(const MachineInstr &MI) {
    195       // SubregToRegs are not interesting, because they are already register
    196       // coalescer friendly.
    197       return MI.isCopy() || (!DisableAdvCopyOpt &&
    198                              (MI.isRegSequence() || MI.isInsertSubreg() ||
    199                               MI.isExtractSubreg()));
    200     }
    201 
    202     /// \brief Check whether \p MI is a copy like instruction that is
    203     /// not recognized by the register coalescer.
    204     bool isUncoalescableCopy(const MachineInstr &MI) {
    205       return MI.isBitcast() ||
    206              (!DisableAdvCopyOpt &&
    207               (MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
    208                MI.isExtractSubregLike()));
    209     }
    210   };
    211 
    212   /// \brief Helper class to hold a reply for ValueTracker queries. Contains the
    213   /// returned sources for a given search and the instructions where the sources
    214   /// were tracked from.
    215   class ValueTrackerResult {
    216   private:
    217     /// Track all sources found by one ValueTracker query.
    218     SmallVector<TargetInstrInfo::RegSubRegPair, 2> RegSrcs;
    219 
    220     /// Instruction using the sources in 'RegSrcs'.
    221     const MachineInstr *Inst;
    222 
    223   public:
    224     ValueTrackerResult() : Inst(nullptr) {}
    225     ValueTrackerResult(unsigned Reg, unsigned SubReg) : Inst(nullptr) {
    226       addSource(Reg, SubReg);
    227     }
    228 
    229     bool isValid() const { return getNumSources() > 0; }
    230 
    231     void setInst(const MachineInstr *I) { Inst = I; }
    232     const MachineInstr *getInst() const { return Inst; }
    233 
    234     void clear() {
    235       RegSrcs.clear();
    236       Inst = nullptr;
    237     }
    238 
    239     void addSource(unsigned SrcReg, unsigned SrcSubReg) {
    240       RegSrcs.push_back(TargetInstrInfo::RegSubRegPair(SrcReg, SrcSubReg));
    241     }
    242 
    243     void setSource(int Idx, unsigned SrcReg, unsigned SrcSubReg) {
    244       assert(Idx < getNumSources() && "Reg pair source out of index");
    245       RegSrcs[Idx] = TargetInstrInfo::RegSubRegPair(SrcReg, SrcSubReg);
    246     }
    247 
    248     int getNumSources() const { return RegSrcs.size(); }
    249 
    250     unsigned getSrcReg(int Idx) const {
    251       assert(Idx < getNumSources() && "Reg source out of index");
    252       return RegSrcs[Idx].Reg;
    253     }
    254 
    255     unsigned getSrcSubReg(int Idx) const {
    256       assert(Idx < getNumSources() && "SubReg source out of index");
    257       return RegSrcs[Idx].SubReg;
    258     }
    259 
    260     bool operator==(const ValueTrackerResult &Other) {
    261       if (Other.getInst() != getInst())
    262         return false;
    263 
    264       if (Other.getNumSources() != getNumSources())
    265         return false;
    266 
    267       for (int i = 0, e = Other.getNumSources(); i != e; ++i)
    268         if (Other.getSrcReg(i) != getSrcReg(i) ||
    269             Other.getSrcSubReg(i) != getSrcSubReg(i))
    270           return false;
    271       return true;
    272     }
    273   };
    274 
    275   /// \brief Helper class to track the possible sources of a value defined by
    276   /// a (chain of) copy related instructions.
    277   /// Given a definition (instruction and definition index), this class
    278   /// follows the use-def chain to find successive suitable sources.
    279   /// The given source can be used to rewrite the definition into
    280   /// def = COPY src.
    281   ///
    282   /// For instance, let us consider the following snippet:
    283   /// v0 =
    284   /// v2 = INSERT_SUBREG v1, v0, sub0
    285   /// def = COPY v2.sub0
    286   ///
    287   /// Using a ValueTracker for def = COPY v2.sub0 will give the following
    288   /// suitable sources:
    289   /// v2.sub0 and v0.
    290   /// Then, def can be rewritten into def = COPY v0.
    291   class ValueTracker {
    292   private:
    293     /// The current point into the use-def chain.
    294     const MachineInstr *Def;
    295     /// The index of the definition in Def.
    296     unsigned DefIdx;
    297     /// The sub register index of the definition.
    298     unsigned DefSubReg;
    299     /// The register where the value can be found.
    300     unsigned Reg;
    301     /// Specifiy whether or not the value tracking looks through
    302     /// complex instructions. When this is false, the value tracker
    303     /// bails on everything that is not a copy or a bitcast.
    304     ///
    305     /// Note: This could have been implemented as a specialized version of
    306     /// the ValueTracker class but that would have complicated the code of
    307     /// the users of this class.
    308     bool UseAdvancedTracking;
    309     /// MachineRegisterInfo used to perform tracking.
    310     const MachineRegisterInfo &MRI;
    311     /// Optional TargetInstrInfo used to perform some complex
    312     /// tracking.
    313     const TargetInstrInfo *TII;
    314 
    315     /// \brief Dispatcher to the right underlying implementation of
    316     /// getNextSource.
    317     ValueTrackerResult getNextSourceImpl();
    318     /// \brief Specialized version of getNextSource for Copy instructions.
    319     ValueTrackerResult getNextSourceFromCopy();
    320     /// \brief Specialized version of getNextSource for Bitcast instructions.
    321     ValueTrackerResult getNextSourceFromBitcast();
    322     /// \brief Specialized version of getNextSource for RegSequence
    323     /// instructions.
    324     ValueTrackerResult getNextSourceFromRegSequence();
    325     /// \brief Specialized version of getNextSource for InsertSubreg
    326     /// instructions.
    327     ValueTrackerResult getNextSourceFromInsertSubreg();
    328     /// \brief Specialized version of getNextSource for ExtractSubreg
    329     /// instructions.
    330     ValueTrackerResult getNextSourceFromExtractSubreg();
    331     /// \brief Specialized version of getNextSource for SubregToReg
    332     /// instructions.
    333     ValueTrackerResult getNextSourceFromSubregToReg();
    334     /// \brief Specialized version of getNextSource for PHI instructions.
    335     ValueTrackerResult getNextSourceFromPHI();
    336 
    337   public:
    338     /// \brief Create a ValueTracker instance for the value defined by \p Reg.
    339     /// \p DefSubReg represents the sub register index the value tracker will
    340     /// track. It does not need to match the sub register index used in the
    341     /// definition of \p Reg.
    342     /// \p UseAdvancedTracking specifies whether or not the value tracker looks
    343     /// through complex instructions. By default (false), it handles only copy
    344     /// and bitcast instructions.
    345     /// If \p Reg is a physical register, a value tracker constructed with
    346     /// this constructor will not find any alternative source.
    347     /// Indeed, when \p Reg is a physical register that constructor does not
    348     /// know which definition of \p Reg it should track.
    349     /// Use the next constructor to track a physical register.
    350     ValueTracker(unsigned Reg, unsigned DefSubReg,
    351                  const MachineRegisterInfo &MRI,
    352                  bool UseAdvancedTracking = false,
    353                  const TargetInstrInfo *TII = nullptr)
    354         : Def(nullptr), DefIdx(0), DefSubReg(DefSubReg), Reg(Reg),
    355           UseAdvancedTracking(UseAdvancedTracking), MRI(MRI), TII(TII) {
    356       if (!TargetRegisterInfo::isPhysicalRegister(Reg)) {
    357         Def = MRI.getVRegDef(Reg);
    358         DefIdx = MRI.def_begin(Reg).getOperandNo();
    359       }
    360     }
    361 
    362     /// \brief Create a ValueTracker instance for the value defined by
    363     /// the pair \p MI, \p DefIdx.
    364     /// Unlike the other constructor, the value tracker produced by this one
    365     /// may be able to find a new source when the definition is a physical
    366     /// register.
    367     /// This could be useful to rewrite target specific instructions into
    368     /// generic copy instructions.
    369     ValueTracker(const MachineInstr &MI, unsigned DefIdx, unsigned DefSubReg,
    370                  const MachineRegisterInfo &MRI,
    371                  bool UseAdvancedTracking = false,
    372                  const TargetInstrInfo *TII = nullptr)
    373         : Def(&MI), DefIdx(DefIdx), DefSubReg(DefSubReg),
    374           UseAdvancedTracking(UseAdvancedTracking), MRI(MRI), TII(TII) {
    375       assert(DefIdx < Def->getDesc().getNumDefs() &&
    376              Def->getOperand(DefIdx).isReg() && "Invalid definition");
    377       Reg = Def->getOperand(DefIdx).getReg();
    378     }
    379 
    380     /// \brief Following the use-def chain, get the next available source
    381     /// for the tracked value.
    382     /// \return A ValueTrackerResult containing a set of registers
    383     /// and sub registers with tracked values. A ValueTrackerResult with
    384     /// an empty set of registers means no source was found.
    385     ValueTrackerResult getNextSource();
    386 
    387     /// \brief Get the last register where the initial value can be found.
    388     /// Initially this is the register of the definition.
    389     /// Then, after each successful call to getNextSource, this is the
    390     /// register of the last source.
    391     unsigned getReg() const { return Reg; }
    392   };
    393 }
    394 
    395 char PeepholeOptimizer::ID = 0;
    396 char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID;
    397 INITIALIZE_PASS_BEGIN(PeepholeOptimizer, "peephole-opts",
    398                 "Peephole Optimizations", false, false)
    399 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
    400 INITIALIZE_PASS_END(PeepholeOptimizer, "peephole-opts",
    401                 "Peephole Optimizations", false, false)
    402 
    403 /// optimizeExtInstr - If instruction is a copy-like instruction, i.e. it reads
    404 /// a single register and writes a single register and it does not modify the
    405 /// source, and if the source value is preserved as a sub-register of the
    406 /// result, then replace all reachable uses of the source with the subreg of the
    407 /// result.
    408 ///
    409 /// Do not generate an EXTRACT that is used only in a debug use, as this changes
    410 /// the code. Since this code does not currently share EXTRACTs, just ignore all
    411 /// debug uses.
    412 bool PeepholeOptimizer::
    413 optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
    414                  SmallPtrSetImpl<MachineInstr*> &LocalMIs) {
    415   unsigned SrcReg, DstReg, SubIdx;
    416   if (!TII->isCoalescableExtInstr(*MI, SrcReg, DstReg, SubIdx))
    417     return false;
    418 
    419   if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
    420       TargetRegisterInfo::isPhysicalRegister(SrcReg))
    421     return false;
    422 
    423   if (MRI->hasOneNonDBGUse(SrcReg))
    424     // No other uses.
    425     return false;
    426 
    427   // Ensure DstReg can get a register class that actually supports
    428   // sub-registers. Don't change the class until we commit.
    429   const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
    430   DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx);
    431   if (!DstRC)
    432     return false;
    433 
    434   // The ext instr may be operating on a sub-register of SrcReg as well.
    435   // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit
    436   // register.
    437   // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
    438   // SrcReg:SubIdx should be replaced.
    439   bool UseSrcSubIdx =
    440       TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr;
    441 
    442   // The source has other uses. See if we can replace the other uses with use of
    443   // the result of the extension.
    444   SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs;
    445   for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
    446     ReachedBBs.insert(UI.getParent());
    447 
    448   // Uses that are in the same BB of uses of the result of the instruction.
    449   SmallVector<MachineOperand*, 8> Uses;
    450 
    451   // Uses that the result of the instruction can reach.
    452   SmallVector<MachineOperand*, 8> ExtendedUses;
    453 
    454   bool ExtendLife = true;
    455   for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
    456     MachineInstr *UseMI = UseMO.getParent();
    457     if (UseMI == MI)
    458       continue;
    459 
    460     if (UseMI->isPHI()) {
    461       ExtendLife = false;
    462       continue;
    463     }
    464 
    465     // Only accept uses of SrcReg:SubIdx.
    466     if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx)
    467       continue;
    468 
    469     // It's an error to translate this:
    470     //
    471     //    %reg1025 = <sext> %reg1024
    472     //     ...
    473     //    %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
    474     //
    475     // into this:
    476     //
    477     //    %reg1025 = <sext> %reg1024
    478     //     ...
    479     //    %reg1027 = COPY %reg1025:4
    480     //    %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
    481     //
    482     // The problem here is that SUBREG_TO_REG is there to assert that an
    483     // implicit zext occurs. It doesn't insert a zext instruction. If we allow
    484     // the COPY here, it will give us the value after the <sext>, not the
    485     // original value of %reg1024 before <sext>.
    486     if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
    487       continue;
    488 
    489     MachineBasicBlock *UseMBB = UseMI->getParent();
    490     if (UseMBB == MBB) {
    491       // Local uses that come after the extension.
    492       if (!LocalMIs.count(UseMI))
    493         Uses.push_back(&UseMO);
    494     } else if (ReachedBBs.count(UseMBB)) {
    495       // Non-local uses where the result of the extension is used. Always
    496       // replace these unless it's a PHI.
    497       Uses.push_back(&UseMO);
    498     } else if (Aggressive && DT->dominates(MBB, UseMBB)) {
    499       // We may want to extend the live range of the extension result in order
    500       // to replace these uses.
    501       ExtendedUses.push_back(&UseMO);
    502     } else {
    503       // Both will be live out of the def MBB anyway. Don't extend live range of
    504       // the extension result.
    505       ExtendLife = false;
    506       break;
    507     }
    508   }
    509 
    510   if (ExtendLife && !ExtendedUses.empty())
    511     // Extend the liveness of the extension result.
    512     Uses.append(ExtendedUses.begin(), ExtendedUses.end());
    513 
    514   // Now replace all uses.
    515   bool Changed = false;
    516   if (!Uses.empty()) {
    517     SmallPtrSet<MachineBasicBlock*, 4> PHIBBs;
    518 
    519     // Look for PHI uses of the extended result, we don't want to extend the
    520     // liveness of a PHI input. It breaks all kinds of assumptions down
    521     // stream. A PHI use is expected to be the kill of its source values.
    522     for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
    523       if (UI.isPHI())
    524         PHIBBs.insert(UI.getParent());
    525 
    526     const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
    527     for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
    528       MachineOperand *UseMO = Uses[i];
    529       MachineInstr *UseMI = UseMO->getParent();
    530       MachineBasicBlock *UseMBB = UseMI->getParent();
    531       if (PHIBBs.count(UseMBB))
    532         continue;
    533 
    534       // About to add uses of DstReg, clear DstReg's kill flags.
    535       if (!Changed) {
    536         MRI->clearKillFlags(DstReg);
    537         MRI->constrainRegClass(DstReg, DstRC);
    538       }
    539 
    540       unsigned NewVR = MRI->createVirtualRegister(RC);
    541       MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
    542                                    TII->get(TargetOpcode::COPY), NewVR)
    543         .addReg(DstReg, 0, SubIdx);
    544       // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set.
    545       if (UseSrcSubIdx) {
    546         Copy->getOperand(0).setSubReg(SubIdx);
    547         Copy->getOperand(0).setIsUndef();
    548       }
    549       UseMO->setReg(NewVR);
    550       ++NumReuse;
    551       Changed = true;
    552     }
    553   }
    554 
    555   return Changed;
    556 }
    557 
    558 /// optimizeCmpInstr - If the instruction is a compare and the previous
    559 /// instruction it's comparing against all ready sets (or could be modified to
    560 /// set) the same flag as the compare, then we can remove the comparison and use
    561 /// the flag from the previous instruction.
    562 bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr *MI,
    563                                          MachineBasicBlock *MBB) {
    564   // If this instruction is a comparison against zero and isn't comparing a
    565   // physical register, we can try to optimize it.
    566   unsigned SrcReg, SrcReg2;
    567   int CmpMask, CmpValue;
    568   if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) ||
    569       TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
    570       (SrcReg2 != 0 && TargetRegisterInfo::isPhysicalRegister(SrcReg2)))
    571     return false;
    572 
    573   // Attempt to optimize the comparison instruction.
    574   if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) {
    575     ++NumCmps;
    576     return true;
    577   }
    578 
    579   return false;
    580 }
    581 
    582 /// Optimize a select instruction.
    583 bool PeepholeOptimizer::optimizeSelect(MachineInstr *MI,
    584                             SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
    585   unsigned TrueOp = 0;
    586   unsigned FalseOp = 0;
    587   bool Optimizable = false;
    588   SmallVector<MachineOperand, 4> Cond;
    589   if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable))
    590     return false;
    591   if (!Optimizable)
    592     return false;
    593   if (!TII->optimizeSelect(MI, LocalMIs))
    594     return false;
    595   MI->eraseFromParent();
    596   ++NumSelects;
    597   return true;
    598 }
    599 
    600 /// \brief Check if a simpler conditional branch can be
    601 // generated
    602 bool PeepholeOptimizer::optimizeCondBranch(MachineInstr *MI) {
    603   return TII->optimizeCondBranch(MI);
    604 }
    605 
    606 /// \brief Try to find the next source that share the same register file
    607 /// for the value defined by \p Reg and \p SubReg.
    608 /// When true is returned, the \p RewriteMap can be used by the client to
    609 /// retrieve all Def -> Use along the way up to the next source. Any found
    610 /// Use that is not itself a key for another entry, is the next source to
    611 /// use. During the search for the next source, multiple sources can be found
    612 /// given multiple incoming sources of a PHI instruction. In this case, we
    613 /// look in each PHI source for the next source; all found next sources must
    614 /// share the same register file as \p Reg and \p SubReg. The client should
    615 /// then be capable to rewrite all intermediate PHIs to get the next source.
    616 /// \return False if no alternative sources are available. True otherwise.
    617 bool PeepholeOptimizer::findNextSource(unsigned Reg, unsigned SubReg,
    618                                        RewriteMapTy &RewriteMap) {
    619   // Do not try to find a new source for a physical register.
    620   // So far we do not have any motivating example for doing that.
    621   // Thus, instead of maintaining untested code, we will revisit that if
    622   // that changes at some point.
    623   if (TargetRegisterInfo::isPhysicalRegister(Reg))
    624     return false;
    625   const TargetRegisterClass *DefRC = MRI->getRegClass(Reg);
    626 
    627   SmallVector<TargetInstrInfo::RegSubRegPair, 4> SrcToLook;
    628   TargetInstrInfo::RegSubRegPair CurSrcPair(Reg, SubReg);
    629   SrcToLook.push_back(CurSrcPair);
    630 
    631   unsigned PHICount = 0;
    632   while (!SrcToLook.empty() && PHICount < RewritePHILimit) {
    633     TargetInstrInfo::RegSubRegPair Pair = SrcToLook.pop_back_val();
    634     // As explained above, do not handle physical registers
    635     if (TargetRegisterInfo::isPhysicalRegister(Pair.Reg))
    636       return false;
    637 
    638     CurSrcPair = Pair;
    639     ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI,
    640                             !DisableAdvCopyOpt, TII);
    641     ValueTrackerResult Res;
    642     bool ShouldRewrite = false;
    643 
    644     do {
    645       // Follow the chain of copies until we reach the top of the use-def chain
    646       // or find a more suitable source.
    647       Res = ValTracker.getNextSource();
    648       if (!Res.isValid())
    649         break;
    650 
    651       // Insert the Def -> Use entry for the recently found source.
    652       ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair);
    653       if (CurSrcRes.isValid()) {
    654         assert(CurSrcRes == Res && "ValueTrackerResult found must match");
    655         // An existent entry with multiple sources is a PHI cycle we must avoid.
    656         // Otherwise it's an entry with a valid next source we already found.
    657         if (CurSrcRes.getNumSources() > 1) {
    658           DEBUG(dbgs() << "findNextSource: found PHI cycle, aborting...\n");
    659           return false;
    660         }
    661         break;
    662       }
    663       RewriteMap.insert(std::make_pair(CurSrcPair, Res));
    664 
    665       // ValueTrackerResult usually have one source unless it's the result from
    666       // a PHI instruction. Add the found PHI edges to be looked up further.
    667       unsigned NumSrcs = Res.getNumSources();
    668       if (NumSrcs > 1) {
    669         PHICount++;
    670         for (unsigned i = 0; i < NumSrcs; ++i)
    671           SrcToLook.push_back(TargetInstrInfo::RegSubRegPair(
    672               Res.getSrcReg(i), Res.getSrcSubReg(i)));
    673         break;
    674       }
    675 
    676       CurSrcPair.Reg = Res.getSrcReg(0);
    677       CurSrcPair.SubReg = Res.getSrcSubReg(0);
    678       // Do not extend the live-ranges of physical registers as they add
    679       // constraints to the register allocator. Moreover, if we want to extend
    680       // the live-range of a physical register, unlike SSA virtual register,
    681       // we will have to check that they aren't redefine before the related use.
    682       if (TargetRegisterInfo::isPhysicalRegister(CurSrcPair.Reg))
    683         return false;
    684 
    685       const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg);
    686       ShouldRewrite = TRI->shouldRewriteCopySrc(DefRC, SubReg, SrcRC,
    687                                                 CurSrcPair.SubReg);
    688     } while (!ShouldRewrite);
    689 
    690     // Continue looking for new sources...
    691     if (Res.isValid())
    692       continue;
    693 
    694     // Do not continue searching for a new source if the there's at least
    695     // one use-def which cannot be rewritten.
    696     if (!ShouldRewrite)
    697       return false;
    698   }
    699 
    700   if (PHICount >= RewritePHILimit) {
    701     DEBUG(dbgs() << "findNextSource: PHI limit reached\n");
    702     return false;
    703   }
    704 
    705   // If we did not find a more suitable source, there is nothing to optimize.
    706   return CurSrcPair.Reg != Reg;
    707 }
    708 
    709 /// \brief Insert a PHI instruction with incoming edges \p SrcRegs that are
    710 /// guaranteed to have the same register class. This is necessary whenever we
    711 /// successfully traverse a PHI instruction and find suitable sources coming
    712 /// from its edges. By inserting a new PHI, we provide a rewritten PHI def
    713 /// suitable to be used in a new COPY instruction.
    714 static MachineInstr *
    715 insertPHI(MachineRegisterInfo *MRI, const TargetInstrInfo *TII,
    716           const SmallVectorImpl<TargetInstrInfo::RegSubRegPair> &SrcRegs,
    717           MachineInstr *OrigPHI) {
    718   assert(!SrcRegs.empty() && "No sources to create a PHI instruction?");
    719 
    720   const TargetRegisterClass *NewRC = MRI->getRegClass(SrcRegs[0].Reg);
    721   unsigned NewVR = MRI->createVirtualRegister(NewRC);
    722   MachineBasicBlock *MBB = OrigPHI->getParent();
    723   MachineInstrBuilder MIB = BuildMI(*MBB, OrigPHI, OrigPHI->getDebugLoc(),
    724                                     TII->get(TargetOpcode::PHI), NewVR);
    725 
    726   unsigned MBBOpIdx = 2;
    727   for (auto RegPair : SrcRegs) {
    728     MIB.addReg(RegPair.Reg, 0, RegPair.SubReg);
    729     MIB.addMBB(OrigPHI->getOperand(MBBOpIdx).getMBB());
    730     // Since we're extended the lifetime of RegPair.Reg, clear the
    731     // kill flags to account for that and make RegPair.Reg reaches
    732     // the new PHI.
    733     MRI->clearKillFlags(RegPair.Reg);
    734     MBBOpIdx += 2;
    735   }
    736 
    737   return MIB;
    738 }
    739 
    740 namespace {
    741 /// \brief Helper class to rewrite the arguments of a copy-like instruction.
    742 class CopyRewriter {
    743 protected:
    744   /// The copy-like instruction.
    745   MachineInstr &CopyLike;
    746   /// The index of the source being rewritten.
    747   unsigned CurrentSrcIdx;
    748 
    749 public:
    750   CopyRewriter(MachineInstr &MI) : CopyLike(MI), CurrentSrcIdx(0) {}
    751 
    752   virtual ~CopyRewriter() {}
    753 
    754   /// \brief Get the next rewritable source (SrcReg, SrcSubReg) and
    755   /// the related value that it affects (TrackReg, TrackSubReg).
    756   /// A source is considered rewritable if its register class and the
    757   /// register class of the related TrackReg may not be register
    758   /// coalescer friendly. In other words, given a copy-like instruction
    759   /// not all the arguments may be returned at rewritable source, since
    760   /// some arguments are none to be register coalescer friendly.
    761   ///
    762   /// Each call of this method moves the current source to the next
    763   /// rewritable source.
    764   /// For instance, let CopyLike be the instruction to rewrite.
    765   /// CopyLike has one definition and one source:
    766   /// dst.dstSubIdx = CopyLike src.srcSubIdx.
    767   ///
    768   /// The first call will give the first rewritable source, i.e.,
    769   /// the only source this instruction has:
    770   /// (SrcReg, SrcSubReg) = (src, srcSubIdx).
    771   /// This source defines the whole definition, i.e.,
    772   /// (TrackReg, TrackSubReg) = (dst, dstSubIdx).
    773   ///
    774   /// The second and subsequent calls will return false, as there is only one
    775   /// rewritable source.
    776   ///
    777   /// \return True if a rewritable source has been found, false otherwise.
    778   /// The output arguments are valid if and only if true is returned.
    779   virtual bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
    780                                        unsigned &TrackReg,
    781                                        unsigned &TrackSubReg) {
    782     // If CurrentSrcIdx == 1, this means this function has already been called
    783     // once. CopyLike has one definition and one argument, thus, there is
    784     // nothing else to rewrite.
    785     if (!CopyLike.isCopy() || CurrentSrcIdx == 1)
    786       return false;
    787     // This is the first call to getNextRewritableSource.
    788     // Move the CurrentSrcIdx to remember that we made that call.
    789     CurrentSrcIdx = 1;
    790     // The rewritable source is the argument.
    791     const MachineOperand &MOSrc = CopyLike.getOperand(1);
    792     SrcReg = MOSrc.getReg();
    793     SrcSubReg = MOSrc.getSubReg();
    794     // What we track are the alternative sources of the definition.
    795     const MachineOperand &MODef = CopyLike.getOperand(0);
    796     TrackReg = MODef.getReg();
    797     TrackSubReg = MODef.getSubReg();
    798     return true;
    799   }
    800 
    801   /// \brief Rewrite the current source with \p NewReg and \p NewSubReg
    802   /// if possible.
    803   /// \return True if the rewriting was possible, false otherwise.
    804   virtual bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) {
    805     if (!CopyLike.isCopy() || CurrentSrcIdx != 1)
    806       return false;
    807     MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx);
    808     MOSrc.setReg(NewReg);
    809     MOSrc.setSubReg(NewSubReg);
    810     return true;
    811   }
    812 
    813   /// \brief Given a \p Def.Reg and Def.SubReg  pair, use \p RewriteMap to find
    814   /// the new source to use for rewrite. If \p HandleMultipleSources is true and
    815   /// multiple sources for a given \p Def are found along the way, we found a
    816   /// PHI instructions that needs to be rewritten.
    817   /// TODO: HandleMultipleSources should be removed once we test PHI handling
    818   /// with coalescable copies.
    819   TargetInstrInfo::RegSubRegPair
    820   getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII,
    821                TargetInstrInfo::RegSubRegPair Def,
    822                PeepholeOptimizer::RewriteMapTy &RewriteMap,
    823                bool HandleMultipleSources = true) {
    824 
    825     TargetInstrInfo::RegSubRegPair LookupSrc(Def.Reg, Def.SubReg);
    826     do {
    827       ValueTrackerResult Res = RewriteMap.lookup(LookupSrc);
    828       // If there are no entries on the map, LookupSrc is the new source.
    829       if (!Res.isValid())
    830         return LookupSrc;
    831 
    832       // There's only one source for this definition, keep searching...
    833       unsigned NumSrcs = Res.getNumSources();
    834       if (NumSrcs == 1) {
    835         LookupSrc.Reg = Res.getSrcReg(0);
    836         LookupSrc.SubReg = Res.getSrcSubReg(0);
    837         continue;
    838       }
    839 
    840       // TODO: Remove once multiple srcs w/ coalescable copies are supported.
    841       if (!HandleMultipleSources)
    842         break;
    843 
    844       // Multiple sources, recurse into each source to find a new source
    845       // for it. Then, rewrite the PHI accordingly to its new edges.
    846       SmallVector<TargetInstrInfo::RegSubRegPair, 4> NewPHISrcs;
    847       for (unsigned i = 0; i < NumSrcs; ++i) {
    848         TargetInstrInfo::RegSubRegPair PHISrc(Res.getSrcReg(i),
    849                                               Res.getSrcSubReg(i));
    850         NewPHISrcs.push_back(
    851             getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources));
    852       }
    853 
    854       // Build the new PHI node and return its def register as the new source.
    855       MachineInstr *OrigPHI = const_cast<MachineInstr *>(Res.getInst());
    856       MachineInstr *NewPHI = insertPHI(MRI, TII, NewPHISrcs, OrigPHI);
    857       DEBUG(dbgs() << "-- getNewSource\n");
    858       DEBUG(dbgs() << "   Replacing: " << *OrigPHI);
    859       DEBUG(dbgs() << "        With: " << *NewPHI);
    860       const MachineOperand &MODef = NewPHI->getOperand(0);
    861       return TargetInstrInfo::RegSubRegPair(MODef.getReg(), MODef.getSubReg());
    862 
    863     } while (1);
    864 
    865     return TargetInstrInfo::RegSubRegPair(0, 0);
    866   }
    867 
    868   /// \brief Rewrite the source found through \p Def, by using the \p RewriteMap
    869   /// and create a new COPY instruction. More info about RewriteMap in
    870   /// PeepholeOptimizer::findNextSource. Right now this is only used to handle
    871   /// Uncoalescable copies, since they are copy like instructions that aren't
    872   /// recognized by the register allocator.
    873   virtual MachineInstr *
    874   RewriteSource(TargetInstrInfo::RegSubRegPair Def,
    875                 PeepholeOptimizer::RewriteMapTy &RewriteMap) {
    876     return nullptr;
    877   }
    878 };
    879 
    880 /// \brief Helper class to rewrite uncoalescable copy like instructions
    881 /// into new COPY (coalescable friendly) instructions.
    882 class UncoalescableRewriter : public CopyRewriter {
    883 protected:
    884   const TargetInstrInfo &TII;
    885   MachineRegisterInfo   &MRI;
    886   /// The number of defs in the bitcast
    887   unsigned NumDefs;
    888 
    889 public:
    890   UncoalescableRewriter(MachineInstr &MI, const TargetInstrInfo &TII,
    891                          MachineRegisterInfo &MRI)
    892       : CopyRewriter(MI), TII(TII), MRI(MRI) {
    893     NumDefs = MI.getDesc().getNumDefs();
    894   }
    895 
    896   /// \brief Get the next rewritable def source (TrackReg, TrackSubReg)
    897   /// All such sources need to be considered rewritable in order to
    898   /// rewrite a uncoalescable copy-like instruction. This method return
    899   /// each definition that must be checked if rewritable.
    900   ///
    901   bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
    902                                unsigned &TrackReg,
    903                                unsigned &TrackSubReg) override {
    904     // Find the next non-dead definition and continue from there.
    905     if (CurrentSrcIdx == NumDefs)
    906       return false;
    907 
    908     while (CopyLike.getOperand(CurrentSrcIdx).isDead()) {
    909       ++CurrentSrcIdx;
    910       if (CurrentSrcIdx == NumDefs)
    911         return false;
    912     }
    913 
    914     // What we track are the alternative sources of the definition.
    915     const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx);
    916     TrackReg = MODef.getReg();
    917     TrackSubReg = MODef.getSubReg();
    918 
    919     CurrentSrcIdx++;
    920     return true;
    921   }
    922 
    923   /// \brief Rewrite the source found through \p Def, by using the \p RewriteMap
    924   /// and create a new COPY instruction. More info about RewriteMap in
    925   /// PeepholeOptimizer::findNextSource. Right now this is only used to handle
    926   /// Uncoalescable copies, since they are copy like instructions that aren't
    927   /// recognized by the register allocator.
    928   MachineInstr *
    929   RewriteSource(TargetInstrInfo::RegSubRegPair Def,
    930                 PeepholeOptimizer::RewriteMapTy &RewriteMap) override {
    931     assert(!TargetRegisterInfo::isPhysicalRegister(Def.Reg) &&
    932            "We do not rewrite physical registers");
    933 
    934     // Find the new source to use in the COPY rewrite.
    935     TargetInstrInfo::RegSubRegPair NewSrc =
    936         getNewSource(&MRI, &TII, Def, RewriteMap);
    937 
    938     // Insert the COPY.
    939     const TargetRegisterClass *DefRC = MRI.getRegClass(Def.Reg);
    940     unsigned NewVR = MRI.createVirtualRegister(DefRC);
    941 
    942     MachineInstr *NewCopy =
    943         BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(),
    944                 TII.get(TargetOpcode::COPY), NewVR)
    945             .addReg(NewSrc.Reg, 0, NewSrc.SubReg);
    946 
    947     NewCopy->getOperand(0).setSubReg(Def.SubReg);
    948     if (Def.SubReg)
    949       NewCopy->getOperand(0).setIsUndef();
    950 
    951     DEBUG(dbgs() << "-- RewriteSource\n");
    952     DEBUG(dbgs() << "   Replacing: " << CopyLike);
    953     DEBUG(dbgs() << "        With: " << *NewCopy);
    954     MRI.replaceRegWith(Def.Reg, NewVR);
    955     MRI.clearKillFlags(NewVR);
    956 
    957     // We extended the lifetime of NewSrc.Reg, clear the kill flags to
    958     // account for that.
    959     MRI.clearKillFlags(NewSrc.Reg);
    960 
    961     return NewCopy;
    962   }
    963 };
    964 
    965 /// \brief Specialized rewriter for INSERT_SUBREG instruction.
    966 class InsertSubregRewriter : public CopyRewriter {
    967 public:
    968   InsertSubregRewriter(MachineInstr &MI) : CopyRewriter(MI) {
    969     assert(MI.isInsertSubreg() && "Invalid instruction");
    970   }
    971 
    972   /// \brief See CopyRewriter::getNextRewritableSource.
    973   /// Here CopyLike has the following form:
    974   /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx.
    975   /// Src1 has the same register class has dst, hence, there is
    976   /// nothing to rewrite.
    977   /// Src2.src2SubIdx, may not be register coalescer friendly.
    978   /// Therefore, the first call to this method returns:
    979   /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
    980   /// (TrackReg, TrackSubReg) = (dst, subIdx).
    981   ///
    982   /// Subsequence calls will return false.
    983   bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
    984                                unsigned &TrackReg,
    985                                unsigned &TrackSubReg) override {
    986     // If we already get the only source we can rewrite, return false.
    987     if (CurrentSrcIdx == 2)
    988       return false;
    989     // We are looking at v2 = INSERT_SUBREG v0, v1, sub0.
    990     CurrentSrcIdx = 2;
    991     const MachineOperand &MOInsertedReg = CopyLike.getOperand(2);
    992     SrcReg = MOInsertedReg.getReg();
    993     SrcSubReg = MOInsertedReg.getSubReg();
    994     const MachineOperand &MODef = CopyLike.getOperand(0);
    995 
    996     // We want to track something that is compatible with the
    997     // partial definition.
    998     TrackReg = MODef.getReg();
    999     if (MODef.getSubReg())
   1000       // Bail if we have to compose sub-register indices.
   1001       return false;
   1002     TrackSubReg = (unsigned)CopyLike.getOperand(3).getImm();
   1003     return true;
   1004   }
   1005   bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
   1006     if (CurrentSrcIdx != 2)
   1007       return false;
   1008     // We are rewriting the inserted reg.
   1009     MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
   1010     MO.setReg(NewReg);
   1011     MO.setSubReg(NewSubReg);
   1012     return true;
   1013   }
   1014 };
   1015 
   1016 /// \brief Specialized rewriter for EXTRACT_SUBREG instruction.
   1017 class ExtractSubregRewriter : public CopyRewriter {
   1018   const TargetInstrInfo &TII;
   1019 
   1020 public:
   1021   ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII)
   1022       : CopyRewriter(MI), TII(TII) {
   1023     assert(MI.isExtractSubreg() && "Invalid instruction");
   1024   }
   1025 
   1026   /// \brief See CopyRewriter::getNextRewritableSource.
   1027   /// Here CopyLike has the following form:
   1028   /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx.
   1029   /// There is only one rewritable source: Src.subIdx,
   1030   /// which defines dst.dstSubIdx.
   1031   bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
   1032                                unsigned &TrackReg,
   1033                                unsigned &TrackSubReg) override {
   1034     // If we already get the only source we can rewrite, return false.
   1035     if (CurrentSrcIdx == 1)
   1036       return false;
   1037     // We are looking at v1 = EXTRACT_SUBREG v0, sub0.
   1038     CurrentSrcIdx = 1;
   1039     const MachineOperand &MOExtractedReg = CopyLike.getOperand(1);
   1040     SrcReg = MOExtractedReg.getReg();
   1041     // If we have to compose sub-register indices, bail out.
   1042     if (MOExtractedReg.getSubReg())
   1043       return false;
   1044 
   1045     SrcSubReg = CopyLike.getOperand(2).getImm();
   1046 
   1047     // We want to track something that is compatible with the definition.
   1048     const MachineOperand &MODef = CopyLike.getOperand(0);
   1049     TrackReg = MODef.getReg();
   1050     TrackSubReg = MODef.getSubReg();
   1051     return true;
   1052   }
   1053 
   1054   bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
   1055     // The only source we can rewrite is the input register.
   1056     if (CurrentSrcIdx != 1)
   1057       return false;
   1058 
   1059     CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg);
   1060 
   1061     // If we find a source that does not require to extract something,
   1062     // rewrite the operation with a copy.
   1063     if (!NewSubReg) {
   1064       // Move the current index to an invalid position.
   1065       // We do not want another call to this method to be able
   1066       // to do any change.
   1067       CurrentSrcIdx = -1;
   1068       // Rewrite the operation as a COPY.
   1069       // Get rid of the sub-register index.
   1070       CopyLike.RemoveOperand(2);
   1071       // Morph the operation into a COPY.
   1072       CopyLike.setDesc(TII.get(TargetOpcode::COPY));
   1073       return true;
   1074     }
   1075     CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg);
   1076     return true;
   1077   }
   1078 };
   1079 
   1080 /// \brief Specialized rewriter for REG_SEQUENCE instruction.
   1081 class RegSequenceRewriter : public CopyRewriter {
   1082 public:
   1083   RegSequenceRewriter(MachineInstr &MI) : CopyRewriter(MI) {
   1084     assert(MI.isRegSequence() && "Invalid instruction");
   1085   }
   1086 
   1087   /// \brief See CopyRewriter::getNextRewritableSource.
   1088   /// Here CopyLike has the following form:
   1089   /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2.
   1090   /// Each call will return a different source, walking all the available
   1091   /// source.
   1092   ///
   1093   /// The first call returns:
   1094   /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx).
   1095   /// (TrackReg, TrackSubReg) = (dst, subIdx1).
   1096   ///
   1097   /// The second call returns:
   1098   /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
   1099   /// (TrackReg, TrackSubReg) = (dst, subIdx2).
   1100   ///
   1101   /// And so on, until all the sources have been traversed, then
   1102   /// it returns false.
   1103   bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
   1104                                unsigned &TrackReg,
   1105                                unsigned &TrackSubReg) override {
   1106     // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc.
   1107 
   1108     // If this is the first call, move to the first argument.
   1109     if (CurrentSrcIdx == 0) {
   1110       CurrentSrcIdx = 1;
   1111     } else {
   1112       // Otherwise, move to the next argument and check that it is valid.
   1113       CurrentSrcIdx += 2;
   1114       if (CurrentSrcIdx >= CopyLike.getNumOperands())
   1115         return false;
   1116     }
   1117     const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx);
   1118     SrcReg = MOInsertedReg.getReg();
   1119     // If we have to compose sub-register indices, bail out.
   1120     if ((SrcSubReg = MOInsertedReg.getSubReg()))
   1121       return false;
   1122 
   1123     // We want to track something that is compatible with the related
   1124     // partial definition.
   1125     TrackSubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm();
   1126 
   1127     const MachineOperand &MODef = CopyLike.getOperand(0);
   1128     TrackReg = MODef.getReg();
   1129     // If we have to compose sub-registers, bail.
   1130     return MODef.getSubReg() == 0;
   1131   }
   1132 
   1133   bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
   1134     // We cannot rewrite out of bound operands.
   1135     // Moreover, rewritable sources are at odd positions.
   1136     if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands())
   1137       return false;
   1138 
   1139     MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
   1140     MO.setReg(NewReg);
   1141     MO.setSubReg(NewSubReg);
   1142     return true;
   1143   }
   1144 };
   1145 } // End namespace.
   1146 
   1147 /// \brief Get the appropriated CopyRewriter for \p MI.
   1148 /// \return A pointer to a dynamically allocated CopyRewriter or nullptr
   1149 /// if no rewriter works for \p MI.
   1150 static CopyRewriter *getCopyRewriter(MachineInstr &MI,
   1151                                      const TargetInstrInfo &TII,
   1152                                      MachineRegisterInfo &MRI) {
   1153   // Handle uncoalescable copy-like instructions.
   1154   if (MI.isBitcast() || (MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
   1155                          MI.isExtractSubregLike()))
   1156     return new UncoalescableRewriter(MI, TII, MRI);
   1157 
   1158   switch (MI.getOpcode()) {
   1159   default:
   1160     return nullptr;
   1161   case TargetOpcode::COPY:
   1162     return new CopyRewriter(MI);
   1163   case TargetOpcode::INSERT_SUBREG:
   1164     return new InsertSubregRewriter(MI);
   1165   case TargetOpcode::EXTRACT_SUBREG:
   1166     return new ExtractSubregRewriter(MI, TII);
   1167   case TargetOpcode::REG_SEQUENCE:
   1168     return new RegSequenceRewriter(MI);
   1169   }
   1170   llvm_unreachable(nullptr);
   1171 }
   1172 
   1173 /// \brief Optimize generic copy instructions to avoid cross
   1174 /// register bank copy. The optimization looks through a chain of
   1175 /// copies and tries to find a source that has a compatible register
   1176 /// class.
   1177 /// Two register classes are considered to be compatible if they share
   1178 /// the same register bank.
   1179 /// New copies issued by this optimization are register allocator
   1180 /// friendly. This optimization does not remove any copy as it may
   1181 /// overconstrain the register allocator, but replaces some operands
   1182 /// when possible.
   1183 /// \pre isCoalescableCopy(*MI) is true.
   1184 /// \return True, when \p MI has been rewritten. False otherwise.
   1185 bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr *MI) {
   1186   assert(MI && isCoalescableCopy(*MI) && "Invalid argument");
   1187   assert(MI->getDesc().getNumDefs() == 1 &&
   1188          "Coalescer can understand multiple defs?!");
   1189   const MachineOperand &MODef = MI->getOperand(0);
   1190   // Do not rewrite physical definitions.
   1191   if (TargetRegisterInfo::isPhysicalRegister(MODef.getReg()))
   1192     return false;
   1193 
   1194   bool Changed = false;
   1195   // Get the right rewriter for the current copy.
   1196   std::unique_ptr<CopyRewriter> CpyRewriter(getCopyRewriter(*MI, *TII, *MRI));
   1197   // If none exists, bail out.
   1198   if (!CpyRewriter)
   1199     return false;
   1200   // Rewrite each rewritable source.
   1201   unsigned SrcReg, SrcSubReg, TrackReg, TrackSubReg;
   1202   while (CpyRewriter->getNextRewritableSource(SrcReg, SrcSubReg, TrackReg,
   1203                                               TrackSubReg)) {
   1204     // Keep track of PHI nodes and its incoming edges when looking for sources.
   1205     RewriteMapTy RewriteMap;
   1206     // Try to find a more suitable source. If we failed to do so, or get the
   1207     // actual source, move to the next source.
   1208     if (!findNextSource(TrackReg, TrackSubReg, RewriteMap))
   1209       continue;
   1210 
   1211     // Get the new source to rewrite. TODO: Only enable handling of multiple
   1212     // sources (PHIs) once we have a motivating example and testcases for it.
   1213     TargetInstrInfo::RegSubRegPair TrackPair(TrackReg, TrackSubReg);
   1214     TargetInstrInfo::RegSubRegPair NewSrc = CpyRewriter->getNewSource(
   1215         MRI, TII, TrackPair, RewriteMap, false /* multiple sources */);
   1216     if (SrcReg == NewSrc.Reg || NewSrc.Reg == 0)
   1217       continue;
   1218 
   1219     // Rewrite source.
   1220     if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) {
   1221       // We may have extended the live-range of NewSrc, account for that.
   1222       MRI->clearKillFlags(NewSrc.Reg);
   1223       Changed = true;
   1224     }
   1225   }
   1226   // TODO: We could have a clean-up method to tidy the instruction.
   1227   // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0
   1228   // => v0 = COPY v1
   1229   // Currently we haven't seen motivating example for that and we
   1230   // want to avoid untested code.
   1231   NumRewrittenCopies += Changed;
   1232   return Changed;
   1233 }
   1234 
   1235 /// \brief Optimize copy-like instructions to create
   1236 /// register coalescer friendly instruction.
   1237 /// The optimization tries to kill-off the \p MI by looking
   1238 /// through a chain of copies to find a source that has a compatible
   1239 /// register class.
   1240 /// If such a source is found, it replace \p MI by a generic COPY
   1241 /// operation.
   1242 /// \pre isUncoalescableCopy(*MI) is true.
   1243 /// \return True, when \p MI has been optimized. In that case, \p MI has
   1244 /// been removed from its parent.
   1245 /// All COPY instructions created, are inserted in \p LocalMIs.
   1246 bool PeepholeOptimizer::optimizeUncoalescableCopy(
   1247     MachineInstr *MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
   1248   assert(MI && isUncoalescableCopy(*MI) && "Invalid argument");
   1249 
   1250   // Check if we can rewrite all the values defined by this instruction.
   1251   SmallVector<TargetInstrInfo::RegSubRegPair, 4> RewritePairs;
   1252   // Get the right rewriter for the current copy.
   1253   std::unique_ptr<CopyRewriter> CpyRewriter(getCopyRewriter(*MI, *TII, *MRI));
   1254   // If none exists, bail out.
   1255   if (!CpyRewriter)
   1256     return false;
   1257 
   1258   // Rewrite each rewritable source by generating new COPYs. This works
   1259   // differently from optimizeCoalescableCopy since it first makes sure that all
   1260   // definitions can be rewritten.
   1261   RewriteMapTy RewriteMap;
   1262   unsigned Reg, SubReg, CopyDefReg, CopyDefSubReg;
   1263   while (CpyRewriter->getNextRewritableSource(Reg, SubReg, CopyDefReg,
   1264                                               CopyDefSubReg)) {
   1265     // If a physical register is here, this is probably for a good reason.
   1266     // Do not rewrite that.
   1267     if (TargetRegisterInfo::isPhysicalRegister(CopyDefReg))
   1268       return false;
   1269 
   1270     // If we do not know how to rewrite this definition, there is no point
   1271     // in trying to kill this instruction.
   1272     TargetInstrInfo::RegSubRegPair Def(CopyDefReg, CopyDefSubReg);
   1273     if (!findNextSource(Def.Reg, Def.SubReg, RewriteMap))
   1274       return false;
   1275 
   1276     RewritePairs.push_back(Def);
   1277   }
   1278 
   1279   // The change is possible for all defs, do it.
   1280   for (const auto &Def : RewritePairs) {
   1281     // Rewrite the "copy" in a way the register coalescer understands.
   1282     MachineInstr *NewCopy = CpyRewriter->RewriteSource(Def, RewriteMap);
   1283     assert(NewCopy && "Should be able to always generate a new copy");
   1284     LocalMIs.insert(NewCopy);
   1285   }
   1286 
   1287   // MI is now dead.
   1288   MI->eraseFromParent();
   1289   ++NumUncoalescableCopies;
   1290   return true;
   1291 }
   1292 
   1293 /// isLoadFoldable - Check whether MI is a candidate for folding into a later
   1294 /// instruction. We only fold loads to virtual registers and the virtual
   1295 /// register defined has a single use.
   1296 bool PeepholeOptimizer::isLoadFoldable(
   1297                               MachineInstr *MI,
   1298                               SmallSet<unsigned, 16> &FoldAsLoadDefCandidates) {
   1299   if (!MI->canFoldAsLoad() || !MI->mayLoad())
   1300     return false;
   1301   const MCInstrDesc &MCID = MI->getDesc();
   1302   if (MCID.getNumDefs() != 1)
   1303     return false;
   1304 
   1305   unsigned Reg = MI->getOperand(0).getReg();
   1306   // To reduce compilation time, we check MRI->hasOneNonDBGUse when inserting
   1307   // loads. It should be checked when processing uses of the load, since
   1308   // uses can be removed during peephole.
   1309   if (!MI->getOperand(0).getSubReg() &&
   1310       TargetRegisterInfo::isVirtualRegister(Reg) &&
   1311       MRI->hasOneNonDBGUse(Reg)) {
   1312     FoldAsLoadDefCandidates.insert(Reg);
   1313     return true;
   1314   }
   1315   return false;
   1316 }
   1317 
   1318 bool PeepholeOptimizer::isMoveImmediate(MachineInstr *MI,
   1319                                         SmallSet<unsigned, 4> &ImmDefRegs,
   1320                                  DenseMap<unsigned, MachineInstr*> &ImmDefMIs) {
   1321   const MCInstrDesc &MCID = MI->getDesc();
   1322   if (!MI->isMoveImmediate())
   1323     return false;
   1324   if (MCID.getNumDefs() != 1)
   1325     return false;
   1326   unsigned Reg = MI->getOperand(0).getReg();
   1327   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
   1328     ImmDefMIs.insert(std::make_pair(Reg, MI));
   1329     ImmDefRegs.insert(Reg);
   1330     return true;
   1331   }
   1332 
   1333   return false;
   1334 }
   1335 
   1336 /// foldImmediate - Try folding register operands that are defined by move
   1337 /// immediate instructions, i.e. a trivial constant folding optimization, if
   1338 /// and only if the def and use are in the same BB.
   1339 bool PeepholeOptimizer::foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB,
   1340                                       SmallSet<unsigned, 4> &ImmDefRegs,
   1341                                  DenseMap<unsigned, MachineInstr*> &ImmDefMIs) {
   1342   for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
   1343     MachineOperand &MO = MI->getOperand(i);
   1344     if (!MO.isReg() || MO.isDef())
   1345       continue;
   1346     // Ignore dead implicit defs.
   1347     if (MO.isImplicit() && MO.isDead())
   1348       continue;
   1349     unsigned Reg = MO.getReg();
   1350     if (!TargetRegisterInfo::isVirtualRegister(Reg))
   1351       continue;
   1352     if (ImmDefRegs.count(Reg) == 0)
   1353       continue;
   1354     DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg);
   1355     assert(II != ImmDefMIs.end() && "couldn't find immediate definition");
   1356     if (TII->FoldImmediate(MI, II->second, Reg, MRI)) {
   1357       ++NumImmFold;
   1358       return true;
   1359     }
   1360   }
   1361   return false;
   1362 }
   1363 
   1364 // FIXME: This is very simple and misses some cases which should be handled when
   1365 // motivating examples are found.
   1366 //
   1367 // The copy rewriting logic should look at uses as well as defs and be able to
   1368 // eliminate copies across blocks.
   1369 //
   1370 // Later copies that are subregister extracts will also not be eliminated since
   1371 // only the first copy is considered.
   1372 //
   1373 // e.g.
   1374 // %vreg1 = COPY %vreg0
   1375 // %vreg2 = COPY %vreg0:sub1
   1376 //
   1377 // Should replace %vreg2 uses with %vreg1:sub1
   1378 bool PeepholeOptimizer::foldRedundantCopy(
   1379     MachineInstr *MI,
   1380     SmallSet<unsigned, 4> &CopySrcRegs,
   1381     DenseMap<unsigned, MachineInstr *> &CopyMIs) {
   1382   assert(MI->isCopy() && "expected a COPY machine instruction");
   1383 
   1384   unsigned SrcReg = MI->getOperand(1).getReg();
   1385   if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
   1386     return false;
   1387 
   1388   unsigned DstReg = MI->getOperand(0).getReg();
   1389   if (!TargetRegisterInfo::isVirtualRegister(DstReg))
   1390     return false;
   1391 
   1392   if (CopySrcRegs.insert(SrcReg).second) {
   1393     // First copy of this reg seen.
   1394     CopyMIs.insert(std::make_pair(SrcReg, MI));
   1395     return false;
   1396   }
   1397 
   1398   MachineInstr *PrevCopy = CopyMIs.find(SrcReg)->second;
   1399 
   1400   unsigned SrcSubReg = MI->getOperand(1).getSubReg();
   1401   unsigned PrevSrcSubReg = PrevCopy->getOperand(1).getSubReg();
   1402 
   1403   // Can't replace different subregister extracts.
   1404   if (SrcSubReg != PrevSrcSubReg)
   1405     return false;
   1406 
   1407   unsigned PrevDstReg = PrevCopy->getOperand(0).getReg();
   1408 
   1409   // Only replace if the copy register class is the same.
   1410   //
   1411   // TODO: If we have multiple copies to different register classes, we may want
   1412   // to track multiple copies of the same source register.
   1413   if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg))
   1414     return false;
   1415 
   1416   MRI->replaceRegWith(DstReg, PrevDstReg);
   1417 
   1418   // Lifetime of the previous copy has been extended.
   1419   MRI->clearKillFlags(PrevDstReg);
   1420   return true;
   1421 }
   1422 
   1423 bool PeepholeOptimizer::isNAPhysCopy(unsigned Reg) {
   1424   return TargetRegisterInfo::isPhysicalRegister(Reg) &&
   1425          !MRI->isAllocatable(Reg);
   1426 }
   1427 
   1428 bool PeepholeOptimizer::foldRedundantNAPhysCopy(
   1429     MachineInstr *MI, DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs) {
   1430   assert(MI->isCopy() && "expected a COPY machine instruction");
   1431 
   1432   if (DisableNAPhysCopyOpt)
   1433     return false;
   1434 
   1435   unsigned DstReg = MI->getOperand(0).getReg();
   1436   unsigned SrcReg = MI->getOperand(1).getReg();
   1437   if (isNAPhysCopy(SrcReg) && TargetRegisterInfo::isVirtualRegister(DstReg)) {
   1438     // %vreg = COPY %PHYSREG
   1439     // Avoid using a datastructure which can track multiple live non-allocatable
   1440     // phys->virt copies since LLVM doesn't seem to do this.
   1441     NAPhysToVirtMIs.insert({SrcReg, MI});
   1442     return false;
   1443   }
   1444 
   1445   if (!(TargetRegisterInfo::isVirtualRegister(SrcReg) && isNAPhysCopy(DstReg)))
   1446     return false;
   1447 
   1448   // %PHYSREG = COPY %vreg
   1449   auto PrevCopy = NAPhysToVirtMIs.find(DstReg);
   1450   if (PrevCopy == NAPhysToVirtMIs.end()) {
   1451     // We can't remove the copy: there was an intervening clobber of the
   1452     // non-allocatable physical register after the copy to virtual.
   1453     DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing " << *MI
   1454                  << '\n');
   1455     return false;
   1456   }
   1457 
   1458   unsigned PrevDstReg = PrevCopy->second->getOperand(0).getReg();
   1459   if (PrevDstReg == SrcReg) {
   1460     // Remove the virt->phys copy: we saw the virtual register definition, and
   1461     // the non-allocatable physical register's state hasn't changed since then.
   1462     DEBUG(dbgs() << "NAPhysCopy: erasing " << *MI << '\n');
   1463     ++NumNAPhysCopies;
   1464     return true;
   1465   }
   1466 
   1467   // Potential missed optimization opportunity: we saw a different virtual
   1468   // register get a copy of the non-allocatable physical register, and we only
   1469   // track one such copy. Avoid getting confused by this new non-allocatable
   1470   // physical register definition, and remove it from the tracked copies.
   1471   DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << *MI << '\n');
   1472   NAPhysToVirtMIs.erase(PrevCopy);
   1473   return false;
   1474 }
   1475 
   1476 bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
   1477   if (skipOptnoneFunction(*MF.getFunction()))
   1478     return false;
   1479 
   1480   DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n");
   1481   DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n');
   1482 
   1483   if (DisablePeephole)
   1484     return false;
   1485 
   1486   TII = MF.getSubtarget().getInstrInfo();
   1487   TRI = MF.getSubtarget().getRegisterInfo();
   1488   MRI = &MF.getRegInfo();
   1489   DT  = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr;
   1490 
   1491   bool Changed = false;
   1492 
   1493   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
   1494     MachineBasicBlock *MBB = &*I;
   1495 
   1496     bool SeenMoveImm = false;
   1497 
   1498     // During this forward scan, at some point it needs to answer the question
   1499     // "given a pointer to an MI in the current BB, is it located before or
   1500     // after the current instruction".
   1501     // To perform this, the following set keeps track of the MIs already seen
   1502     // during the scan, if a MI is not in the set, it is assumed to be located
   1503     // after. Newly created MIs have to be inserted in the set as well.
   1504     SmallPtrSet<MachineInstr*, 16> LocalMIs;
   1505     SmallSet<unsigned, 4> ImmDefRegs;
   1506     DenseMap<unsigned, MachineInstr*> ImmDefMIs;
   1507     SmallSet<unsigned, 16> FoldAsLoadDefCandidates;
   1508 
   1509     // Track when a non-allocatable physical register is copied to a virtual
   1510     // register so that useless moves can be removed.
   1511     //
   1512     // %PHYSREG is the map index; MI is the last valid `%vreg = COPY %PHYSREG`
   1513     // without any intervening re-definition of %PHYSREG.
   1514     DenseMap<unsigned, MachineInstr *> NAPhysToVirtMIs;
   1515 
   1516     // Set of virtual registers that are copied from.
   1517     SmallSet<unsigned, 4> CopySrcRegs;
   1518     DenseMap<unsigned, MachineInstr *> CopySrcMIs;
   1519 
   1520     for (MachineBasicBlock::iterator
   1521            MII = I->begin(), MIE = I->end(); MII != MIE; ) {
   1522       MachineInstr *MI = &*MII;
   1523       // We may be erasing MI below, increment MII now.
   1524       ++MII;
   1525       LocalMIs.insert(MI);
   1526 
   1527       // Skip debug values. They should not affect this peephole optimization.
   1528       if (MI->isDebugValue())
   1529           continue;
   1530 
   1531       // If we run into an instruction we can't fold across, discard
   1532       // the load candidates.
   1533       if (MI->isLoadFoldBarrier())
   1534         FoldAsLoadDefCandidates.clear();
   1535 
   1536       if (MI->isPosition() || MI->isPHI())
   1537         continue;
   1538 
   1539       if (!MI->isCopy()) {
   1540         for (const auto &Op : MI->operands()) {
   1541           // Visit all operands: definitions can be implicit or explicit.
   1542           if (Op.isReg()) {
   1543             unsigned Reg = Op.getReg();
   1544             if (Op.isDef() && isNAPhysCopy(Reg)) {
   1545               const auto &Def = NAPhysToVirtMIs.find(Reg);
   1546               if (Def != NAPhysToVirtMIs.end()) {
   1547                 // A new definition of the non-allocatable physical register
   1548                 // invalidates previous copies.
   1549                 DEBUG(dbgs() << "NAPhysCopy: invalidating because of " << *MI
   1550                              << '\n');
   1551                 NAPhysToVirtMIs.erase(Def);
   1552               }
   1553             }
   1554           } else if (Op.isRegMask()) {
   1555             const uint32_t *RegMask = Op.getRegMask();
   1556             for (auto &RegMI : NAPhysToVirtMIs) {
   1557               unsigned Def = RegMI.first;
   1558               if (MachineOperand::clobbersPhysReg(RegMask, Def)) {
   1559                 DEBUG(dbgs() << "NAPhysCopy: invalidating because of " << *MI
   1560                              << '\n');
   1561                 NAPhysToVirtMIs.erase(Def);
   1562               }
   1563             }
   1564           }
   1565         }
   1566       }
   1567 
   1568       if (MI->isImplicitDef() || MI->isKill())
   1569         continue;
   1570 
   1571       if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) {
   1572         // Blow away all non-allocatable physical registers knowledge since we
   1573         // don't know what's correct anymore.
   1574         //
   1575         // FIXME: handle explicit asm clobbers.
   1576         DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to " << *MI
   1577                      << '\n');
   1578         NAPhysToVirtMIs.clear();
   1579         continue;
   1580       }
   1581 
   1582       if ((isUncoalescableCopy(*MI) &&
   1583            optimizeUncoalescableCopy(MI, LocalMIs)) ||
   1584           (MI->isCompare() && optimizeCmpInstr(MI, MBB)) ||
   1585           (MI->isSelect() && optimizeSelect(MI, LocalMIs))) {
   1586         // MI is deleted.
   1587         LocalMIs.erase(MI);
   1588         Changed = true;
   1589         continue;
   1590       }
   1591 
   1592       if (MI->isConditionalBranch() && optimizeCondBranch(MI)) {
   1593         Changed = true;
   1594         continue;
   1595       }
   1596 
   1597       if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(MI)) {
   1598         // MI is just rewritten.
   1599         Changed = true;
   1600         continue;
   1601       }
   1602 
   1603       if (MI->isCopy() &&
   1604           (foldRedundantCopy(MI, CopySrcRegs, CopySrcMIs) ||
   1605            foldRedundantNAPhysCopy(MI, NAPhysToVirtMIs))) {
   1606         LocalMIs.erase(MI);
   1607         MI->eraseFromParent();
   1608         Changed = true;
   1609         continue;
   1610       }
   1611 
   1612       if (isMoveImmediate(MI, ImmDefRegs, ImmDefMIs)) {
   1613         SeenMoveImm = true;
   1614       } else {
   1615         Changed |= optimizeExtInstr(MI, MBB, LocalMIs);
   1616         // optimizeExtInstr might have created new instructions after MI
   1617         // and before the already incremented MII. Adjust MII so that the
   1618         // next iteration sees the new instructions.
   1619         MII = MI;
   1620         ++MII;
   1621         if (SeenMoveImm)
   1622           Changed |= foldImmediate(MI, MBB, ImmDefRegs, ImmDefMIs);
   1623       }
   1624 
   1625       // Check whether MI is a load candidate for folding into a later
   1626       // instruction. If MI is not a candidate, check whether we can fold an
   1627       // earlier load into MI.
   1628       if (!isLoadFoldable(MI, FoldAsLoadDefCandidates) &&
   1629           !FoldAsLoadDefCandidates.empty()) {
   1630         const MCInstrDesc &MIDesc = MI->getDesc();
   1631         for (unsigned i = MIDesc.getNumDefs(); i != MIDesc.getNumOperands();
   1632              ++i) {
   1633           const MachineOperand &MOp = MI->getOperand(i);
   1634           if (!MOp.isReg())
   1635             continue;
   1636           unsigned FoldAsLoadDefReg = MOp.getReg();
   1637           if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) {
   1638             // We need to fold load after optimizeCmpInstr, since
   1639             // optimizeCmpInstr can enable folding by converting SUB to CMP.
   1640             // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and
   1641             // we need it for markUsesInDebugValueAsUndef().
   1642             unsigned FoldedReg = FoldAsLoadDefReg;
   1643             MachineInstr *DefMI = nullptr;
   1644             MachineInstr *FoldMI = TII->optimizeLoadInstr(MI, MRI,
   1645                                                           FoldAsLoadDefReg,
   1646                                                           DefMI);
   1647             if (FoldMI) {
   1648               // Update LocalMIs since we replaced MI with FoldMI and deleted
   1649               // DefMI.
   1650               DEBUG(dbgs() << "Replacing: " << *MI);
   1651               DEBUG(dbgs() << "     With: " << *FoldMI);
   1652               LocalMIs.erase(MI);
   1653               LocalMIs.erase(DefMI);
   1654               LocalMIs.insert(FoldMI);
   1655               MI->eraseFromParent();
   1656               DefMI->eraseFromParent();
   1657               MRI->markUsesInDebugValueAsUndef(FoldedReg);
   1658               FoldAsLoadDefCandidates.erase(FoldedReg);
   1659               ++NumLoadFold;
   1660               // MI is replaced with FoldMI.
   1661               Changed = true;
   1662               break;
   1663             }
   1664           }
   1665         }
   1666       }
   1667     }
   1668   }
   1669 
   1670   return Changed;
   1671 }
   1672 
   1673 ValueTrackerResult ValueTracker::getNextSourceFromCopy() {
   1674   assert(Def->isCopy() && "Invalid definition");
   1675   // Copy instruction are supposed to be: Def = Src.
   1676   // If someone breaks this assumption, bad things will happen everywhere.
   1677   assert(Def->getNumOperands() == 2 && "Invalid number of operands");
   1678 
   1679   if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
   1680     // If we look for a different subreg, it means we want a subreg of src.
   1681     // Bails as we do not support composing subregs yet.
   1682     return ValueTrackerResult();
   1683   // Otherwise, we want the whole source.
   1684   const MachineOperand &Src = Def->getOperand(1);
   1685   return ValueTrackerResult(Src.getReg(), Src.getSubReg());
   1686 }
   1687 
   1688 ValueTrackerResult ValueTracker::getNextSourceFromBitcast() {
   1689   assert(Def->isBitcast() && "Invalid definition");
   1690 
   1691   // Bail if there are effects that a plain copy will not expose.
   1692   if (Def->hasUnmodeledSideEffects())
   1693     return ValueTrackerResult();
   1694 
   1695   // Bitcasts with more than one def are not supported.
   1696   if (Def->getDesc().getNumDefs() != 1)
   1697     return ValueTrackerResult();
   1698   if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
   1699     // If we look for a different subreg, it means we want a subreg of the src.
   1700     // Bails as we do not support composing subregs yet.
   1701     return ValueTrackerResult();
   1702 
   1703   unsigned SrcIdx = Def->getNumOperands();
   1704   for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx;
   1705        ++OpIdx) {
   1706     const MachineOperand &MO = Def->getOperand(OpIdx);
   1707     if (!MO.isReg() || !MO.getReg())
   1708       continue;
   1709     // Ignore dead implicit defs.
   1710     if (MO.isImplicit() && MO.isDead())
   1711       continue;
   1712     assert(!MO.isDef() && "We should have skipped all the definitions by now");
   1713     if (SrcIdx != EndOpIdx)
   1714       // Multiple sources?
   1715       return ValueTrackerResult();
   1716     SrcIdx = OpIdx;
   1717   }
   1718   const MachineOperand &Src = Def->getOperand(SrcIdx);
   1719   return ValueTrackerResult(Src.getReg(), Src.getSubReg());
   1720 }
   1721 
   1722 ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() {
   1723   assert((Def->isRegSequence() || Def->isRegSequenceLike()) &&
   1724          "Invalid definition");
   1725 
   1726   if (Def->getOperand(DefIdx).getSubReg())
   1727     // If we are composing subregs, bail out.
   1728     // The case we are checking is Def.<subreg> = REG_SEQUENCE.
   1729     // This should almost never happen as the SSA property is tracked at
   1730     // the register level (as opposed to the subreg level).
   1731     // I.e.,
   1732     // Def.sub0 =
   1733     // Def.sub1 =
   1734     // is a valid SSA representation for Def.sub0 and Def.sub1, but not for
   1735     // Def. Thus, it must not be generated.
   1736     // However, some code could theoretically generates a single
   1737     // Def.sub0 (i.e, not defining the other subregs) and we would
   1738     // have this case.
   1739     // If we can ascertain (or force) that this never happens, we could
   1740     // turn that into an assertion.
   1741     return ValueTrackerResult();
   1742 
   1743   if (!TII)
   1744     // We could handle the REG_SEQUENCE here, but we do not want to
   1745     // duplicate the code from the generic TII.
   1746     return ValueTrackerResult();
   1747 
   1748   SmallVector<TargetInstrInfo::RegSubRegPairAndIdx, 8> RegSeqInputRegs;
   1749   if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs))
   1750     return ValueTrackerResult();
   1751 
   1752   // We are looking at:
   1753   // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
   1754   // Check if one of the operand defines the subreg we are interested in.
   1755   for (auto &RegSeqInput : RegSeqInputRegs) {
   1756     if (RegSeqInput.SubIdx == DefSubReg) {
   1757       if (RegSeqInput.SubReg)
   1758         // Bail if we have to compose sub registers.
   1759         return ValueTrackerResult();
   1760 
   1761       return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg);
   1762     }
   1763   }
   1764 
   1765   // If the subreg we are tracking is super-defined by another subreg,
   1766   // we could follow this value. However, this would require to compose
   1767   // the subreg and we do not do that for now.
   1768   return ValueTrackerResult();
   1769 }
   1770 
   1771 ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() {
   1772   assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) &&
   1773          "Invalid definition");
   1774 
   1775   if (Def->getOperand(DefIdx).getSubReg())
   1776     // If we are composing subreg, bail out.
   1777     // Same remark as getNextSourceFromRegSequence.
   1778     // I.e., this may be turned into an assert.
   1779     return ValueTrackerResult();
   1780 
   1781   if (!TII)
   1782     // We could handle the REG_SEQUENCE here, but we do not want to
   1783     // duplicate the code from the generic TII.
   1784     return ValueTrackerResult();
   1785 
   1786   TargetInstrInfo::RegSubRegPair BaseReg;
   1787   TargetInstrInfo::RegSubRegPairAndIdx InsertedReg;
   1788   if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg))
   1789     return ValueTrackerResult();
   1790 
   1791   // We are looking at:
   1792   // Def = INSERT_SUBREG v0, v1, sub1
   1793   // There are two cases:
   1794   // 1. DefSubReg == sub1, get v1.
   1795   // 2. DefSubReg != sub1, the value may be available through v0.
   1796 
   1797   // #1 Check if the inserted register matches the required sub index.
   1798   if (InsertedReg.SubIdx == DefSubReg) {
   1799     return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg);
   1800   }
   1801   // #2 Otherwise, if the sub register we are looking for is not partial
   1802   // defined by the inserted element, we can look through the main
   1803   // register (v0).
   1804   const MachineOperand &MODef = Def->getOperand(DefIdx);
   1805   // If the result register (Def) and the base register (v0) do not
   1806   // have the same register class or if we have to compose
   1807   // subregisters, bail out.
   1808   if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) ||
   1809       BaseReg.SubReg)
   1810     return ValueTrackerResult();
   1811 
   1812   // Get the TRI and check if the inserted sub-register overlaps with the
   1813   // sub-register we are tracking.
   1814   const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
   1815   if (!TRI ||
   1816       (TRI->getSubRegIndexLaneMask(DefSubReg) &
   1817        TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)) != 0)
   1818     return ValueTrackerResult();
   1819   // At this point, the value is available in v0 via the same subreg
   1820   // we used for Def.
   1821   return ValueTrackerResult(BaseReg.Reg, DefSubReg);
   1822 }
   1823 
   1824 ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() {
   1825   assert((Def->isExtractSubreg() ||
   1826           Def->isExtractSubregLike()) && "Invalid definition");
   1827   // We are looking at:
   1828   // Def = EXTRACT_SUBREG v0, sub0
   1829 
   1830   // Bail if we have to compose sub registers.
   1831   // Indeed, if DefSubReg != 0, we would have to compose it with sub0.
   1832   if (DefSubReg)
   1833     return ValueTrackerResult();
   1834 
   1835   if (!TII)
   1836     // We could handle the EXTRACT_SUBREG here, but we do not want to
   1837     // duplicate the code from the generic TII.
   1838     return ValueTrackerResult();
   1839 
   1840   TargetInstrInfo::RegSubRegPairAndIdx ExtractSubregInputReg;
   1841   if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg))
   1842     return ValueTrackerResult();
   1843 
   1844   // Bail if we have to compose sub registers.
   1845   // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0.
   1846   if (ExtractSubregInputReg.SubReg)
   1847     return ValueTrackerResult();
   1848   // Otherwise, the value is available in the v0.sub0.
   1849   return ValueTrackerResult(ExtractSubregInputReg.Reg, ExtractSubregInputReg.SubIdx);
   1850 }
   1851 
   1852 ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() {
   1853   assert(Def->isSubregToReg() && "Invalid definition");
   1854   // We are looking at:
   1855   // Def = SUBREG_TO_REG Imm, v0, sub0
   1856 
   1857   // Bail if we have to compose sub registers.
   1858   // If DefSubReg != sub0, we would have to check that all the bits
   1859   // we track are included in sub0 and if yes, we would have to
   1860   // determine the right subreg in v0.
   1861   if (DefSubReg != Def->getOperand(3).getImm())
   1862     return ValueTrackerResult();
   1863   // Bail if we have to compose sub registers.
   1864   // Likewise, if v0.subreg != 0, we would have to compose it with sub0.
   1865   if (Def->getOperand(2).getSubReg())
   1866     return ValueTrackerResult();
   1867 
   1868   return ValueTrackerResult(Def->getOperand(2).getReg(),
   1869                             Def->getOperand(3).getImm());
   1870 }
   1871 
   1872 /// \brief Explore each PHI incoming operand and return its sources
   1873 ValueTrackerResult ValueTracker::getNextSourceFromPHI() {
   1874   assert(Def->isPHI() && "Invalid definition");
   1875   ValueTrackerResult Res;
   1876 
   1877   // If we look for a different subreg, bail as we do not support composing
   1878   // subregs yet.
   1879   if (Def->getOperand(0).getSubReg() != DefSubReg)
   1880     return ValueTrackerResult();
   1881 
   1882   // Return all register sources for PHI instructions.
   1883   for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) {
   1884     auto &MO = Def->getOperand(i);
   1885     assert(MO.isReg() && "Invalid PHI instruction");
   1886     Res.addSource(MO.getReg(), MO.getSubReg());
   1887   }
   1888 
   1889   return Res;
   1890 }
   1891 
   1892 ValueTrackerResult ValueTracker::getNextSourceImpl() {
   1893   assert(Def && "This method needs a valid definition");
   1894 
   1895   assert(
   1896       (DefIdx < Def->getDesc().getNumDefs() || Def->getDesc().isVariadic()) &&
   1897       Def->getOperand(DefIdx).isDef() && "Invalid DefIdx");
   1898   if (Def->isCopy())
   1899     return getNextSourceFromCopy();
   1900   if (Def->isBitcast())
   1901     return getNextSourceFromBitcast();
   1902   // All the remaining cases involve "complex" instructions.
   1903   // Bail if we did not ask for the advanced tracking.
   1904   if (!UseAdvancedTracking)
   1905     return ValueTrackerResult();
   1906   if (Def->isRegSequence() || Def->isRegSequenceLike())
   1907     return getNextSourceFromRegSequence();
   1908   if (Def->isInsertSubreg() || Def->isInsertSubregLike())
   1909     return getNextSourceFromInsertSubreg();
   1910   if (Def->isExtractSubreg() || Def->isExtractSubregLike())
   1911     return getNextSourceFromExtractSubreg();
   1912   if (Def->isSubregToReg())
   1913     return getNextSourceFromSubregToReg();
   1914   if (Def->isPHI())
   1915     return getNextSourceFromPHI();
   1916   return ValueTrackerResult();
   1917 }
   1918 
   1919 ValueTrackerResult ValueTracker::getNextSource() {
   1920   // If we reach a point where we cannot move up in the use-def chain,
   1921   // there is nothing we can get.
   1922   if (!Def)
   1923     return ValueTrackerResult();
   1924 
   1925   ValueTrackerResult Res = getNextSourceImpl();
   1926   if (Res.isValid()) {
   1927     // Update definition, definition index, and subregister for the
   1928     // next call of getNextSource.
   1929     // Update the current register.
   1930     bool OneRegSrc = Res.getNumSources() == 1;
   1931     if (OneRegSrc)
   1932       Reg = Res.getSrcReg(0);
   1933     // Update the result before moving up in the use-def chain
   1934     // with the instruction containing the last found sources.
   1935     Res.setInst(Def);
   1936 
   1937     // If we can still move up in the use-def chain, move to the next
   1938     // definition.
   1939     if (!TargetRegisterInfo::isPhysicalRegister(Reg) && OneRegSrc) {
   1940       Def = MRI.getVRegDef(Reg);
   1941       DefIdx = MRI.def_begin(Reg).getOperandNo();
   1942       DefSubReg = Res.getSrcSubReg(0);
   1943       return Res;
   1944     }
   1945   }
   1946   // If we end up here, this means we will not be able to find another source
   1947   // for the next iteration. Make sure any new call to getNextSource bails out
   1948   // early by cutting the use-def chain.
   1949   Def = nullptr;
   1950   return Res;
   1951 }
   1952