Home | History | Annotate | Download | only in Scalar
      1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass performs global value numbering to eliminate fully redundant
     11 // instructions.  It also performs simple dead load elimination.
     12 //
     13 // Note that this pass does the value numbering itself; it does not use the
     14 // ValueNumbering analysis passes.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #include "llvm/Transforms/Scalar.h"
     19 #include "llvm/ADT/DenseMap.h"
     20 #include "llvm/ADT/DepthFirstIterator.h"
     21 #include "llvm/ADT/Hashing.h"
     22 #include "llvm/ADT/MapVector.h"
     23 #include "llvm/ADT/PostOrderIterator.h"
     24 #include "llvm/ADT/SetVector.h"
     25 #include "llvm/ADT/SmallPtrSet.h"
     26 #include "llvm/ADT/Statistic.h"
     27 #include "llvm/Analysis/AliasAnalysis.h"
     28 #include "llvm/Analysis/AssumptionCache.h"
     29 #include "llvm/Analysis/CFG.h"
     30 #include "llvm/Analysis/ConstantFolding.h"
     31 #include "llvm/Analysis/GlobalsModRef.h"
     32 #include "llvm/Analysis/InstructionSimplify.h"
     33 #include "llvm/Analysis/Loads.h"
     34 #include "llvm/Analysis/MemoryBuiltins.h"
     35 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
     36 #include "llvm/Analysis/PHITransAddr.h"
     37 #include "llvm/Analysis/TargetLibraryInfo.h"
     38 #include "llvm/Analysis/ValueTracking.h"
     39 #include "llvm/IR/DataLayout.h"
     40 #include "llvm/IR/Dominators.h"
     41 #include "llvm/IR/GlobalVariable.h"
     42 #include "llvm/IR/IRBuilder.h"
     43 #include "llvm/IR/IntrinsicInst.h"
     44 #include "llvm/IR/LLVMContext.h"
     45 #include "llvm/IR/Metadata.h"
     46 #include "llvm/IR/PatternMatch.h"
     47 #include "llvm/Support/Allocator.h"
     48 #include "llvm/Support/CommandLine.h"
     49 #include "llvm/Support/Debug.h"
     50 #include "llvm/Support/raw_ostream.h"
     51 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     52 #include "llvm/Transforms/Utils/Local.h"
     53 #include "llvm/Transforms/Utils/SSAUpdater.h"
     54 #include <vector>
     55 using namespace llvm;
     56 using namespace PatternMatch;
     57 
     58 #define DEBUG_TYPE "gvn"
     59 
     60 STATISTIC(NumGVNInstr,  "Number of instructions deleted");
     61 STATISTIC(NumGVNLoad,   "Number of loads deleted");
     62 STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
     63 STATISTIC(NumGVNBlocks, "Number of blocks merged");
     64 STATISTIC(NumGVNSimpl,  "Number of instructions simplified");
     65 STATISTIC(NumGVNEqProp, "Number of equalities propagated");
     66 STATISTIC(NumPRELoad,   "Number of loads PRE'd");
     67 
     68 static cl::opt<bool> EnablePRE("enable-pre",
     69                                cl::init(true), cl::Hidden);
     70 static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
     71 
     72 // Maximum allowed recursion depth.
     73 static cl::opt<uint32_t>
     74 MaxRecurseDepth("max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore,
     75                 cl::desc("Max recurse depth (default = 1000)"));
     76 
     77 //===----------------------------------------------------------------------===//
     78 //                         ValueTable Class
     79 //===----------------------------------------------------------------------===//
     80 
     81 /// This class holds the mapping between values and value numbers.  It is used
     82 /// as an efficient mechanism to determine the expression-wise equivalence of
     83 /// two values.
     84 namespace {
     85   struct Expression {
     86     uint32_t opcode;
     87     Type *type;
     88     SmallVector<uint32_t, 4> varargs;
     89 
     90     Expression(uint32_t o = ~2U) : opcode(o) { }
     91 
     92     bool operator==(const Expression &other) const {
     93       if (opcode != other.opcode)
     94         return false;
     95       if (opcode == ~0U || opcode == ~1U)
     96         return true;
     97       if (type != other.type)
     98         return false;
     99       if (varargs != other.varargs)
    100         return false;
    101       return true;
    102     }
    103 
    104     friend hash_code hash_value(const Expression &Value) {
    105       return hash_combine(Value.opcode, Value.type,
    106                           hash_combine_range(Value.varargs.begin(),
    107                                              Value.varargs.end()));
    108     }
    109   };
    110 
    111   class ValueTable {
    112     DenseMap<Value*, uint32_t> valueNumbering;
    113     DenseMap<Expression, uint32_t> expressionNumbering;
    114     AliasAnalysis *AA;
    115     MemoryDependenceAnalysis *MD;
    116     DominatorTree *DT;
    117 
    118     uint32_t nextValueNumber;
    119 
    120     Expression create_expression(Instruction* I);
    121     Expression create_cmp_expression(unsigned Opcode,
    122                                      CmpInst::Predicate Predicate,
    123                                      Value *LHS, Value *RHS);
    124     Expression create_extractvalue_expression(ExtractValueInst* EI);
    125     uint32_t lookup_or_add_call(CallInst* C);
    126   public:
    127     ValueTable() : nextValueNumber(1) { }
    128     uint32_t lookup_or_add(Value *V);
    129     uint32_t lookup(Value *V) const;
    130     uint32_t lookup_or_add_cmp(unsigned Opcode, CmpInst::Predicate Pred,
    131                                Value *LHS, Value *RHS);
    132     bool exists(Value *V) const;
    133     void add(Value *V, uint32_t num);
    134     void clear();
    135     void erase(Value *v);
    136     void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
    137     AliasAnalysis *getAliasAnalysis() const { return AA; }
    138     void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
    139     void setDomTree(DominatorTree* D) { DT = D; }
    140     uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
    141     void verifyRemoved(const Value *) const;
    142   };
    143 }
    144 
    145 namespace llvm {
    146 template <> struct DenseMapInfo<Expression> {
    147   static inline Expression getEmptyKey() {
    148     return ~0U;
    149   }
    150 
    151   static inline Expression getTombstoneKey() {
    152     return ~1U;
    153   }
    154 
    155   static unsigned getHashValue(const Expression e) {
    156     using llvm::hash_value;
    157     return static_cast<unsigned>(hash_value(e));
    158   }
    159   static bool isEqual(const Expression &LHS, const Expression &RHS) {
    160     return LHS == RHS;
    161   }
    162 };
    163 
    164 }
    165 
    166 //===----------------------------------------------------------------------===//
    167 //                     ValueTable Internal Functions
    168 //===----------------------------------------------------------------------===//
    169 
    170 Expression ValueTable::create_expression(Instruction *I) {
    171   Expression e;
    172   e.type = I->getType();
    173   e.opcode = I->getOpcode();
    174   for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
    175        OI != OE; ++OI)
    176     e.varargs.push_back(lookup_or_add(*OI));
    177   if (I->isCommutative()) {
    178     // Ensure that commutative instructions that only differ by a permutation
    179     // of their operands get the same value number by sorting the operand value
    180     // numbers.  Since all commutative instructions have two operands it is more
    181     // efficient to sort by hand rather than using, say, std::sort.
    182     assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
    183     if (e.varargs[0] > e.varargs[1])
    184       std::swap(e.varargs[0], e.varargs[1]);
    185   }
    186 
    187   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
    188     // Sort the operand value numbers so x<y and y>x get the same value number.
    189     CmpInst::Predicate Predicate = C->getPredicate();
    190     if (e.varargs[0] > e.varargs[1]) {
    191       std::swap(e.varargs[0], e.varargs[1]);
    192       Predicate = CmpInst::getSwappedPredicate(Predicate);
    193     }
    194     e.opcode = (C->getOpcode() << 8) | Predicate;
    195   } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
    196     for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
    197          II != IE; ++II)
    198       e.varargs.push_back(*II);
    199   }
    200 
    201   return e;
    202 }
    203 
    204 Expression ValueTable::create_cmp_expression(unsigned Opcode,
    205                                              CmpInst::Predicate Predicate,
    206                                              Value *LHS, Value *RHS) {
    207   assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
    208          "Not a comparison!");
    209   Expression e;
    210   e.type = CmpInst::makeCmpResultType(LHS->getType());
    211   e.varargs.push_back(lookup_or_add(LHS));
    212   e.varargs.push_back(lookup_or_add(RHS));
    213 
    214   // Sort the operand value numbers so x<y and y>x get the same value number.
    215   if (e.varargs[0] > e.varargs[1]) {
    216     std::swap(e.varargs[0], e.varargs[1]);
    217     Predicate = CmpInst::getSwappedPredicate(Predicate);
    218   }
    219   e.opcode = (Opcode << 8) | Predicate;
    220   return e;
    221 }
    222 
    223 Expression ValueTable::create_extractvalue_expression(ExtractValueInst *EI) {
    224   assert(EI && "Not an ExtractValueInst?");
    225   Expression e;
    226   e.type = EI->getType();
    227   e.opcode = 0;
    228 
    229   IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
    230   if (I != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
    231     // EI might be an extract from one of our recognised intrinsics. If it
    232     // is we'll synthesize a semantically equivalent expression instead on
    233     // an extract value expression.
    234     switch (I->getIntrinsicID()) {
    235       case Intrinsic::sadd_with_overflow:
    236       case Intrinsic::uadd_with_overflow:
    237         e.opcode = Instruction::Add;
    238         break;
    239       case Intrinsic::ssub_with_overflow:
    240       case Intrinsic::usub_with_overflow:
    241         e.opcode = Instruction::Sub;
    242         break;
    243       case Intrinsic::smul_with_overflow:
    244       case Intrinsic::umul_with_overflow:
    245         e.opcode = Instruction::Mul;
    246         break;
    247       default:
    248         break;
    249     }
    250 
    251     if (e.opcode != 0) {
    252       // Intrinsic recognized. Grab its args to finish building the expression.
    253       assert(I->getNumArgOperands() == 2 &&
    254              "Expect two args for recognised intrinsics.");
    255       e.varargs.push_back(lookup_or_add(I->getArgOperand(0)));
    256       e.varargs.push_back(lookup_or_add(I->getArgOperand(1)));
    257       return e;
    258     }
    259   }
    260 
    261   // Not a recognised intrinsic. Fall back to producing an extract value
    262   // expression.
    263   e.opcode = EI->getOpcode();
    264   for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
    265        OI != OE; ++OI)
    266     e.varargs.push_back(lookup_or_add(*OI));
    267 
    268   for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
    269          II != IE; ++II)
    270     e.varargs.push_back(*II);
    271 
    272   return e;
    273 }
    274 
    275 //===----------------------------------------------------------------------===//
    276 //                     ValueTable External Functions
    277 //===----------------------------------------------------------------------===//
    278 
    279 /// add - Insert a value into the table with a specified value number.
    280 void ValueTable::add(Value *V, uint32_t num) {
    281   valueNumbering.insert(std::make_pair(V, num));
    282 }
    283 
    284 uint32_t ValueTable::lookup_or_add_call(CallInst *C) {
    285   if (AA->doesNotAccessMemory(C)) {
    286     Expression exp = create_expression(C);
    287     uint32_t &e = expressionNumbering[exp];
    288     if (!e) e = nextValueNumber++;
    289     valueNumbering[C] = e;
    290     return e;
    291   } else if (AA->onlyReadsMemory(C)) {
    292     Expression exp = create_expression(C);
    293     uint32_t &e = expressionNumbering[exp];
    294     if (!e) {
    295       e = nextValueNumber++;
    296       valueNumbering[C] = e;
    297       return e;
    298     }
    299     if (!MD) {
    300       e = nextValueNumber++;
    301       valueNumbering[C] = e;
    302       return e;
    303     }
    304 
    305     MemDepResult local_dep = MD->getDependency(C);
    306 
    307     if (!local_dep.isDef() && !local_dep.isNonLocal()) {
    308       valueNumbering[C] =  nextValueNumber;
    309       return nextValueNumber++;
    310     }
    311 
    312     if (local_dep.isDef()) {
    313       CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
    314 
    315       if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
    316         valueNumbering[C] = nextValueNumber;
    317         return nextValueNumber++;
    318       }
    319 
    320       for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
    321         uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
    322         uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
    323         if (c_vn != cd_vn) {
    324           valueNumbering[C] = nextValueNumber;
    325           return nextValueNumber++;
    326         }
    327       }
    328 
    329       uint32_t v = lookup_or_add(local_cdep);
    330       valueNumbering[C] = v;
    331       return v;
    332     }
    333 
    334     // Non-local case.
    335     const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
    336       MD->getNonLocalCallDependency(CallSite(C));
    337     // FIXME: Move the checking logic to MemDep!
    338     CallInst* cdep = nullptr;
    339 
    340     // Check to see if we have a single dominating call instruction that is
    341     // identical to C.
    342     for (unsigned i = 0, e = deps.size(); i != e; ++i) {
    343       const NonLocalDepEntry *I = &deps[i];
    344       if (I->getResult().isNonLocal())
    345         continue;
    346 
    347       // We don't handle non-definitions.  If we already have a call, reject
    348       // instruction dependencies.
    349       if (!I->getResult().isDef() || cdep != nullptr) {
    350         cdep = nullptr;
    351         break;
    352       }
    353 
    354       CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
    355       // FIXME: All duplicated with non-local case.
    356       if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
    357         cdep = NonLocalDepCall;
    358         continue;
    359       }
    360 
    361       cdep = nullptr;
    362       break;
    363     }
    364 
    365     if (!cdep) {
    366       valueNumbering[C] = nextValueNumber;
    367       return nextValueNumber++;
    368     }
    369 
    370     if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
    371       valueNumbering[C] = nextValueNumber;
    372       return nextValueNumber++;
    373     }
    374     for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
    375       uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
    376       uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
    377       if (c_vn != cd_vn) {
    378         valueNumbering[C] = nextValueNumber;
    379         return nextValueNumber++;
    380       }
    381     }
    382 
    383     uint32_t v = lookup_or_add(cdep);
    384     valueNumbering[C] = v;
    385     return v;
    386 
    387   } else {
    388     valueNumbering[C] = nextValueNumber;
    389     return nextValueNumber++;
    390   }
    391 }
    392 
    393 /// Returns true if a value number exists for the specified value.
    394 bool ValueTable::exists(Value *V) const { return valueNumbering.count(V) != 0; }
    395 
    396 /// lookup_or_add - Returns the value number for the specified value, assigning
    397 /// it a new number if it did not have one before.
    398 uint32_t ValueTable::lookup_or_add(Value *V) {
    399   DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
    400   if (VI != valueNumbering.end())
    401     return VI->second;
    402 
    403   if (!isa<Instruction>(V)) {
    404     valueNumbering[V] = nextValueNumber;
    405     return nextValueNumber++;
    406   }
    407 
    408   Instruction* I = cast<Instruction>(V);
    409   Expression exp;
    410   switch (I->getOpcode()) {
    411     case Instruction::Call:
    412       return lookup_or_add_call(cast<CallInst>(I));
    413     case Instruction::Add:
    414     case Instruction::FAdd:
    415     case Instruction::Sub:
    416     case Instruction::FSub:
    417     case Instruction::Mul:
    418     case Instruction::FMul:
    419     case Instruction::UDiv:
    420     case Instruction::SDiv:
    421     case Instruction::FDiv:
    422     case Instruction::URem:
    423     case Instruction::SRem:
    424     case Instruction::FRem:
    425     case Instruction::Shl:
    426     case Instruction::LShr:
    427     case Instruction::AShr:
    428     case Instruction::And:
    429     case Instruction::Or:
    430     case Instruction::Xor:
    431     case Instruction::ICmp:
    432     case Instruction::FCmp:
    433     case Instruction::Trunc:
    434     case Instruction::ZExt:
    435     case Instruction::SExt:
    436     case Instruction::FPToUI:
    437     case Instruction::FPToSI:
    438     case Instruction::UIToFP:
    439     case Instruction::SIToFP:
    440     case Instruction::FPTrunc:
    441     case Instruction::FPExt:
    442     case Instruction::PtrToInt:
    443     case Instruction::IntToPtr:
    444     case Instruction::BitCast:
    445     case Instruction::Select:
    446     case Instruction::ExtractElement:
    447     case Instruction::InsertElement:
    448     case Instruction::ShuffleVector:
    449     case Instruction::InsertValue:
    450     case Instruction::GetElementPtr:
    451       exp = create_expression(I);
    452       break;
    453     case Instruction::ExtractValue:
    454       exp = create_extractvalue_expression(cast<ExtractValueInst>(I));
    455       break;
    456     default:
    457       valueNumbering[V] = nextValueNumber;
    458       return nextValueNumber++;
    459   }
    460 
    461   uint32_t& e = expressionNumbering[exp];
    462   if (!e) e = nextValueNumber++;
    463   valueNumbering[V] = e;
    464   return e;
    465 }
    466 
    467 /// Returns the value number of the specified value. Fails if
    468 /// the value has not yet been numbered.
    469 uint32_t ValueTable::lookup(Value *V) const {
    470   DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
    471   assert(VI != valueNumbering.end() && "Value not numbered?");
    472   return VI->second;
    473 }
    474 
    475 /// Returns the value number of the given comparison,
    476 /// assigning it a new number if it did not have one before.  Useful when
    477 /// we deduced the result of a comparison, but don't immediately have an
    478 /// instruction realizing that comparison to hand.
    479 uint32_t ValueTable::lookup_or_add_cmp(unsigned Opcode,
    480                                        CmpInst::Predicate Predicate,
    481                                        Value *LHS, Value *RHS) {
    482   Expression exp = create_cmp_expression(Opcode, Predicate, LHS, RHS);
    483   uint32_t& e = expressionNumbering[exp];
    484   if (!e) e = nextValueNumber++;
    485   return e;
    486 }
    487 
    488 /// Remove all entries from the ValueTable.
    489 void ValueTable::clear() {
    490   valueNumbering.clear();
    491   expressionNumbering.clear();
    492   nextValueNumber = 1;
    493 }
    494 
    495 /// Remove a value from the value numbering.
    496 void ValueTable::erase(Value *V) {
    497   valueNumbering.erase(V);
    498 }
    499 
    500 /// verifyRemoved - Verify that the value is removed from all internal data
    501 /// structures.
    502 void ValueTable::verifyRemoved(const Value *V) const {
    503   for (DenseMap<Value*, uint32_t>::const_iterator
    504          I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
    505     assert(I->first != V && "Inst still occurs in value numbering map!");
    506   }
    507 }
    508 
    509 //===----------------------------------------------------------------------===//
    510 //                                GVN Pass
    511 //===----------------------------------------------------------------------===//
    512 
    513 namespace {
    514   class GVN;
    515   struct AvailableValueInBlock {
    516     /// BB - The basic block in question.
    517     BasicBlock *BB;
    518     enum ValType {
    519       SimpleVal,  // A simple offsetted value that is accessed.
    520       LoadVal,    // A value produced by a load.
    521       MemIntrin,  // A memory intrinsic which is loaded from.
    522       UndefVal    // A UndefValue representing a value from dead block (which
    523                   // is not yet physically removed from the CFG).
    524     };
    525 
    526     /// V - The value that is live out of the block.
    527     PointerIntPair<Value *, 2, ValType> Val;
    528 
    529     /// Offset - The byte offset in Val that is interesting for the load query.
    530     unsigned Offset;
    531 
    532     static AvailableValueInBlock get(BasicBlock *BB, Value *V,
    533                                      unsigned Offset = 0) {
    534       AvailableValueInBlock Res;
    535       Res.BB = BB;
    536       Res.Val.setPointer(V);
    537       Res.Val.setInt(SimpleVal);
    538       Res.Offset = Offset;
    539       return Res;
    540     }
    541 
    542     static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
    543                                        unsigned Offset = 0) {
    544       AvailableValueInBlock Res;
    545       Res.BB = BB;
    546       Res.Val.setPointer(MI);
    547       Res.Val.setInt(MemIntrin);
    548       Res.Offset = Offset;
    549       return Res;
    550     }
    551 
    552     static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI,
    553                                          unsigned Offset = 0) {
    554       AvailableValueInBlock Res;
    555       Res.BB = BB;
    556       Res.Val.setPointer(LI);
    557       Res.Val.setInt(LoadVal);
    558       Res.Offset = Offset;
    559       return Res;
    560     }
    561 
    562     static AvailableValueInBlock getUndef(BasicBlock *BB) {
    563       AvailableValueInBlock Res;
    564       Res.BB = BB;
    565       Res.Val.setPointer(nullptr);
    566       Res.Val.setInt(UndefVal);
    567       Res.Offset = 0;
    568       return Res;
    569     }
    570 
    571     bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
    572     bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
    573     bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
    574     bool isUndefValue() const { return Val.getInt() == UndefVal; }
    575 
    576     Value *getSimpleValue() const {
    577       assert(isSimpleValue() && "Wrong accessor");
    578       return Val.getPointer();
    579     }
    580 
    581     LoadInst *getCoercedLoadValue() const {
    582       assert(isCoercedLoadValue() && "Wrong accessor");
    583       return cast<LoadInst>(Val.getPointer());
    584     }
    585 
    586     MemIntrinsic *getMemIntrinValue() const {
    587       assert(isMemIntrinValue() && "Wrong accessor");
    588       return cast<MemIntrinsic>(Val.getPointer());
    589     }
    590 
    591     /// Emit code into this block to adjust the value defined here to the
    592     /// specified type. This handles various coercion cases.
    593     Value *MaterializeAdjustedValue(LoadInst *LI, GVN &gvn) const;
    594   };
    595 
    596   class GVN : public FunctionPass {
    597     bool NoLoads;
    598     MemoryDependenceAnalysis *MD;
    599     DominatorTree *DT;
    600     const TargetLibraryInfo *TLI;
    601     AssumptionCache *AC;
    602     SetVector<BasicBlock *> DeadBlocks;
    603 
    604     ValueTable VN;
    605 
    606     /// A mapping from value numbers to lists of Value*'s that
    607     /// have that value number.  Use findLeader to query it.
    608     struct LeaderTableEntry {
    609       Value *Val;
    610       const BasicBlock *BB;
    611       LeaderTableEntry *Next;
    612     };
    613     DenseMap<uint32_t, LeaderTableEntry> LeaderTable;
    614     BumpPtrAllocator TableAllocator;
    615 
    616     // Block-local map of equivalent values to their leader, does not
    617     // propagate to any successors. Entries added mid-block are applied
    618     // to the remaining instructions in the block.
    619     SmallMapVector<llvm::Value *, llvm::Constant *, 4> ReplaceWithConstMap;
    620     SmallVector<Instruction*, 8> InstrsToErase;
    621 
    622     typedef SmallVector<NonLocalDepResult, 64> LoadDepVect;
    623     typedef SmallVector<AvailableValueInBlock, 64> AvailValInBlkVect;
    624     typedef SmallVector<BasicBlock*, 64> UnavailBlkVect;
    625 
    626   public:
    627     static char ID; // Pass identification, replacement for typeid
    628     explicit GVN(bool noloads = false)
    629         : FunctionPass(ID), NoLoads(noloads), MD(nullptr) {
    630       initializeGVNPass(*PassRegistry::getPassRegistry());
    631     }
    632 
    633     bool runOnFunction(Function &F) override;
    634 
    635     /// This removes the specified instruction from
    636     /// our various maps and marks it for deletion.
    637     void markInstructionForDeletion(Instruction *I) {
    638       VN.erase(I);
    639       InstrsToErase.push_back(I);
    640     }
    641 
    642     DominatorTree &getDominatorTree() const { return *DT; }
    643     AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
    644     MemoryDependenceAnalysis &getMemDep() const { return *MD; }
    645   private:
    646     /// Push a new Value to the LeaderTable onto the list for its value number.
    647     void addToLeaderTable(uint32_t N, Value *V, const BasicBlock *BB) {
    648       LeaderTableEntry &Curr = LeaderTable[N];
    649       if (!Curr.Val) {
    650         Curr.Val = V;
    651         Curr.BB = BB;
    652         return;
    653       }
    654 
    655       LeaderTableEntry *Node = TableAllocator.Allocate<LeaderTableEntry>();
    656       Node->Val = V;
    657       Node->BB = BB;
    658       Node->Next = Curr.Next;
    659       Curr.Next = Node;
    660     }
    661 
    662     /// Scan the list of values corresponding to a given
    663     /// value number, and remove the given instruction if encountered.
    664     void removeFromLeaderTable(uint32_t N, Instruction *I, BasicBlock *BB) {
    665       LeaderTableEntry* Prev = nullptr;
    666       LeaderTableEntry* Curr = &LeaderTable[N];
    667 
    668       while (Curr && (Curr->Val != I || Curr->BB != BB)) {
    669         Prev = Curr;
    670         Curr = Curr->Next;
    671       }
    672 
    673       if (!Curr)
    674         return;
    675 
    676       if (Prev) {
    677         Prev->Next = Curr->Next;
    678       } else {
    679         if (!Curr->Next) {
    680           Curr->Val = nullptr;
    681           Curr->BB = nullptr;
    682         } else {
    683           LeaderTableEntry* Next = Curr->Next;
    684           Curr->Val = Next->Val;
    685           Curr->BB = Next->BB;
    686           Curr->Next = Next->Next;
    687         }
    688       }
    689     }
    690 
    691     // List of critical edges to be split between iterations.
    692     SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
    693 
    694     // This transformation requires dominator postdominator info
    695     void getAnalysisUsage(AnalysisUsage &AU) const override {
    696       AU.addRequired<AssumptionCacheTracker>();
    697       AU.addRequired<DominatorTreeWrapperPass>();
    698       AU.addRequired<TargetLibraryInfoWrapperPass>();
    699       if (!NoLoads)
    700         AU.addRequired<MemoryDependenceAnalysis>();
    701       AU.addRequired<AAResultsWrapperPass>();
    702 
    703       AU.addPreserved<DominatorTreeWrapperPass>();
    704       AU.addPreserved<GlobalsAAWrapperPass>();
    705     }
    706 
    707 
    708     // Helper functions of redundant load elimination
    709     bool processLoad(LoadInst *L);
    710     bool processNonLocalLoad(LoadInst *L);
    711     bool processAssumeIntrinsic(IntrinsicInst *II);
    712     void AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
    713                                  AvailValInBlkVect &ValuesPerBlock,
    714                                  UnavailBlkVect &UnavailableBlocks);
    715     bool PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
    716                         UnavailBlkVect &UnavailableBlocks);
    717 
    718     // Other helper routines
    719     bool processInstruction(Instruction *I);
    720     bool processBlock(BasicBlock *BB);
    721     void dump(DenseMap<uint32_t, Value*> &d);
    722     bool iterateOnFunction(Function &F);
    723     bool performPRE(Function &F);
    724     bool performScalarPRE(Instruction *I);
    725     bool performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred,
    726                                    unsigned int ValNo);
    727     Value *findLeader(const BasicBlock *BB, uint32_t num);
    728     void cleanupGlobalSets();
    729     void verifyRemoved(const Instruction *I) const;
    730     bool splitCriticalEdges();
    731     BasicBlock *splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ);
    732     bool replaceOperandsWithConsts(Instruction *I) const;
    733     bool propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root,
    734                            bool DominatesByEdge);
    735     bool processFoldableCondBr(BranchInst *BI);
    736     void addDeadBlock(BasicBlock *BB);
    737     void assignValNumForDeadCode();
    738   };
    739 
    740   char GVN::ID = 0;
    741 }
    742 
    743 // The public interface to this file...
    744 FunctionPass *llvm::createGVNPass(bool NoLoads) {
    745   return new GVN(NoLoads);
    746 }
    747 
    748 INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
    749 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
    750 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
    751 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    752 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
    753 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
    754 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
    755 INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
    756 
    757 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    758 void GVN::dump(DenseMap<uint32_t, Value*>& d) {
    759   errs() << "{\n";
    760   for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
    761        E = d.end(); I != E; ++I) {
    762       errs() << I->first << "\n";
    763       I->second->dump();
    764   }
    765   errs() << "}\n";
    766 }
    767 #endif
    768 
    769 /// Return true if we can prove that the value
    770 /// we're analyzing is fully available in the specified block.  As we go, keep
    771 /// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
    772 /// map is actually a tri-state map with the following values:
    773 ///   0) we know the block *is not* fully available.
    774 ///   1) we know the block *is* fully available.
    775 ///   2) we do not know whether the block is fully available or not, but we are
    776 ///      currently speculating that it will be.
    777 ///   3) we are speculating for this block and have used that to speculate for
    778 ///      other blocks.
    779 static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
    780                             DenseMap<BasicBlock*, char> &FullyAvailableBlocks,
    781                             uint32_t RecurseDepth) {
    782   if (RecurseDepth > MaxRecurseDepth)
    783     return false;
    784 
    785   // Optimistically assume that the block is fully available and check to see
    786   // if we already know about this block in one lookup.
    787   std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
    788     FullyAvailableBlocks.insert(std::make_pair(BB, 2));
    789 
    790   // If the entry already existed for this block, return the precomputed value.
    791   if (!IV.second) {
    792     // If this is a speculative "available" value, mark it as being used for
    793     // speculation of other blocks.
    794     if (IV.first->second == 2)
    795       IV.first->second = 3;
    796     return IV.first->second != 0;
    797   }
    798 
    799   // Otherwise, see if it is fully available in all predecessors.
    800   pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
    801 
    802   // If this block has no predecessors, it isn't live-in here.
    803   if (PI == PE)
    804     goto SpeculationFailure;
    805 
    806   for (; PI != PE; ++PI)
    807     // If the value isn't fully available in one of our predecessors, then it
    808     // isn't fully available in this block either.  Undo our previous
    809     // optimistic assumption and bail out.
    810     if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1))
    811       goto SpeculationFailure;
    812 
    813   return true;
    814 
    815 // If we get here, we found out that this is not, after
    816 // all, a fully-available block.  We have a problem if we speculated on this and
    817 // used the speculation to mark other blocks as available.
    818 SpeculationFailure:
    819   char &BBVal = FullyAvailableBlocks[BB];
    820 
    821   // If we didn't speculate on this, just return with it set to false.
    822   if (BBVal == 2) {
    823     BBVal = 0;
    824     return false;
    825   }
    826 
    827   // If we did speculate on this value, we could have blocks set to 1 that are
    828   // incorrect.  Walk the (transitive) successors of this block and mark them as
    829   // 0 if set to one.
    830   SmallVector<BasicBlock*, 32> BBWorklist;
    831   BBWorklist.push_back(BB);
    832 
    833   do {
    834     BasicBlock *Entry = BBWorklist.pop_back_val();
    835     // Note that this sets blocks to 0 (unavailable) if they happen to not
    836     // already be in FullyAvailableBlocks.  This is safe.
    837     char &EntryVal = FullyAvailableBlocks[Entry];
    838     if (EntryVal == 0) continue;  // Already unavailable.
    839 
    840     // Mark as unavailable.
    841     EntryVal = 0;
    842 
    843     BBWorklist.append(succ_begin(Entry), succ_end(Entry));
    844   } while (!BBWorklist.empty());
    845 
    846   return false;
    847 }
    848 
    849 
    850 /// Return true if CoerceAvailableValueToLoadType will succeed.
    851 static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
    852                                             Type *LoadTy,
    853                                             const DataLayout &DL) {
    854   // If the loaded or stored value is an first class array or struct, don't try
    855   // to transform them.  We need to be able to bitcast to integer.
    856   if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
    857       StoredVal->getType()->isStructTy() ||
    858       StoredVal->getType()->isArrayTy())
    859     return false;
    860 
    861   // The store has to be at least as big as the load.
    862   if (DL.getTypeSizeInBits(StoredVal->getType()) <
    863         DL.getTypeSizeInBits(LoadTy))
    864     return false;
    865 
    866   return true;
    867 }
    868 
    869 /// If we saw a store of a value to memory, and
    870 /// then a load from a must-aliased pointer of a different type, try to coerce
    871 /// the stored value.  LoadedTy is the type of the load we want to replace.
    872 /// IRB is IRBuilder used to insert new instructions.
    873 ///
    874 /// If we can't do it, return null.
    875 static Value *CoerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy,
    876                                              IRBuilder<> &IRB,
    877                                              const DataLayout &DL) {
    878   if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL))
    879     return nullptr;
    880 
    881   // If this is already the right type, just return it.
    882   Type *StoredValTy = StoredVal->getType();
    883 
    884   uint64_t StoreSize = DL.getTypeSizeInBits(StoredValTy);
    885   uint64_t LoadSize = DL.getTypeSizeInBits(LoadedTy);
    886 
    887   // If the store and reload are the same size, we can always reuse it.
    888   if (StoreSize == LoadSize) {
    889     // Pointer to Pointer -> use bitcast.
    890     if (StoredValTy->getScalarType()->isPointerTy() &&
    891         LoadedTy->getScalarType()->isPointerTy())
    892       return IRB.CreateBitCast(StoredVal, LoadedTy);
    893 
    894     // Convert source pointers to integers, which can be bitcast.
    895     if (StoredValTy->getScalarType()->isPointerTy()) {
    896       StoredValTy = DL.getIntPtrType(StoredValTy);
    897       StoredVal = IRB.CreatePtrToInt(StoredVal, StoredValTy);
    898     }
    899 
    900     Type *TypeToCastTo = LoadedTy;
    901     if (TypeToCastTo->getScalarType()->isPointerTy())
    902       TypeToCastTo = DL.getIntPtrType(TypeToCastTo);
    903 
    904     if (StoredValTy != TypeToCastTo)
    905       StoredVal = IRB.CreateBitCast(StoredVal, TypeToCastTo);
    906 
    907     // Cast to pointer if the load needs a pointer type.
    908     if (LoadedTy->getScalarType()->isPointerTy())
    909       StoredVal = IRB.CreateIntToPtr(StoredVal, LoadedTy);
    910 
    911     return StoredVal;
    912   }
    913 
    914   // If the loaded value is smaller than the available value, then we can
    915   // extract out a piece from it.  If the available value is too small, then we
    916   // can't do anything.
    917   assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
    918 
    919   // Convert source pointers to integers, which can be manipulated.
    920   if (StoredValTy->getScalarType()->isPointerTy()) {
    921     StoredValTy = DL.getIntPtrType(StoredValTy);
    922     StoredVal = IRB.CreatePtrToInt(StoredVal, StoredValTy);
    923   }
    924 
    925   // Convert vectors and fp to integer, which can be manipulated.
    926   if (!StoredValTy->isIntegerTy()) {
    927     StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
    928     StoredVal = IRB.CreateBitCast(StoredVal, StoredValTy);
    929   }
    930 
    931   // If this is a big-endian system, we need to shift the value down to the low
    932   // bits so that a truncate will work.
    933   if (DL.isBigEndian()) {
    934     StoredVal = IRB.CreateLShr(StoredVal, StoreSize - LoadSize, "tmp");
    935   }
    936 
    937   // Truncate the integer to the right size now.
    938   Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
    939   StoredVal  = IRB.CreateTrunc(StoredVal, NewIntTy, "trunc");
    940 
    941   if (LoadedTy == NewIntTy)
    942     return StoredVal;
    943 
    944   // If the result is a pointer, inttoptr.
    945   if (LoadedTy->getScalarType()->isPointerTy())
    946     return IRB.CreateIntToPtr(StoredVal, LoadedTy, "inttoptr");
    947 
    948   // Otherwise, bitcast.
    949   return IRB.CreateBitCast(StoredVal, LoadedTy, "bitcast");
    950 }
    951 
    952 /// This function is called when we have a
    953 /// memdep query of a load that ends up being a clobbering memory write (store,
    954 /// memset, memcpy, memmove).  This means that the write *may* provide bits used
    955 /// by the load but we can't be sure because the pointers don't mustalias.
    956 ///
    957 /// Check this case to see if there is anything more we can do before we give
    958 /// up.  This returns -1 if we have to give up, or a byte number in the stored
    959 /// value of the piece that feeds the load.
    960 static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
    961                                           Value *WritePtr,
    962                                           uint64_t WriteSizeInBits,
    963                                           const DataLayout &DL) {
    964   // If the loaded or stored value is a first class array or struct, don't try
    965   // to transform them.  We need to be able to bitcast to integer.
    966   if (LoadTy->isStructTy() || LoadTy->isArrayTy())
    967     return -1;
    968 
    969   int64_t StoreOffset = 0, LoadOffset = 0;
    970   Value *StoreBase =
    971       GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL);
    972   Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL);
    973   if (StoreBase != LoadBase)
    974     return -1;
    975 
    976   // If the load and store are to the exact same address, they should have been
    977   // a must alias.  AA must have gotten confused.
    978   // FIXME: Study to see if/when this happens.  One case is forwarding a memset
    979   // to a load from the base of the memset.
    980 #if 0
    981   if (LoadOffset == StoreOffset) {
    982     dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
    983     << "Base       = " << *StoreBase << "\n"
    984     << "Store Ptr  = " << *WritePtr << "\n"
    985     << "Store Offs = " << StoreOffset << "\n"
    986     << "Load Ptr   = " << *LoadPtr << "\n";
    987     abort();
    988   }
    989 #endif
    990 
    991   // If the load and store don't overlap at all, the store doesn't provide
    992   // anything to the load.  In this case, they really don't alias at all, AA
    993   // must have gotten confused.
    994   uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy);
    995 
    996   if ((WriteSizeInBits & 7) | (LoadSize & 7))
    997     return -1;
    998   uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
    999   LoadSize >>= 3;
   1000 
   1001 
   1002   bool isAAFailure = false;
   1003   if (StoreOffset < LoadOffset)
   1004     isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
   1005   else
   1006     isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
   1007 
   1008   if (isAAFailure) {
   1009 #if 0
   1010     dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
   1011     << "Base       = " << *StoreBase << "\n"
   1012     << "Store Ptr  = " << *WritePtr << "\n"
   1013     << "Store Offs = " << StoreOffset << "\n"
   1014     << "Load Ptr   = " << *LoadPtr << "\n";
   1015     abort();
   1016 #endif
   1017     return -1;
   1018   }
   1019 
   1020   // If the Load isn't completely contained within the stored bits, we don't
   1021   // have all the bits to feed it.  We could do something crazy in the future
   1022   // (issue a smaller load then merge the bits in) but this seems unlikely to be
   1023   // valuable.
   1024   if (StoreOffset > LoadOffset ||
   1025       StoreOffset+StoreSize < LoadOffset+LoadSize)
   1026     return -1;
   1027 
   1028   // Okay, we can do this transformation.  Return the number of bytes into the
   1029   // store that the load is.
   1030   return LoadOffset-StoreOffset;
   1031 }
   1032 
   1033 /// This function is called when we have a
   1034 /// memdep query of a load that ends up being a clobbering store.
   1035 static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
   1036                                           StoreInst *DepSI) {
   1037   // Cannot handle reading from store of first-class aggregate yet.
   1038   if (DepSI->getValueOperand()->getType()->isStructTy() ||
   1039       DepSI->getValueOperand()->getType()->isArrayTy())
   1040     return -1;
   1041 
   1042   const DataLayout &DL = DepSI->getModule()->getDataLayout();
   1043   Value *StorePtr = DepSI->getPointerOperand();
   1044   uint64_t StoreSize =DL.getTypeSizeInBits(DepSI->getValueOperand()->getType());
   1045   return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
   1046                                         StorePtr, StoreSize, DL);
   1047 }
   1048 
   1049 /// This function is called when we have a
   1050 /// memdep query of a load that ends up being clobbered by another load.  See if
   1051 /// the other load can feed into the second load.
   1052 static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
   1053                                          LoadInst *DepLI, const DataLayout &DL){
   1054   // Cannot handle reading from store of first-class aggregate yet.
   1055   if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
   1056     return -1;
   1057 
   1058   Value *DepPtr = DepLI->getPointerOperand();
   1059   uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType());
   1060   int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL);
   1061   if (R != -1) return R;
   1062 
   1063   // If we have a load/load clobber an DepLI can be widened to cover this load,
   1064   // then we should widen it!
   1065   int64_t LoadOffs = 0;
   1066   const Value *LoadBase =
   1067       GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, DL);
   1068   unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
   1069 
   1070   unsigned Size = MemoryDependenceAnalysis::getLoadLoadClobberFullWidthSize(
   1071       LoadBase, LoadOffs, LoadSize, DepLI);
   1072   if (Size == 0) return -1;
   1073 
   1074   return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, DL);
   1075 }
   1076 
   1077 
   1078 
   1079 static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
   1080                                             MemIntrinsic *MI,
   1081                                             const DataLayout &DL) {
   1082   // If the mem operation is a non-constant size, we can't handle it.
   1083   ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
   1084   if (!SizeCst) return -1;
   1085   uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
   1086 
   1087   // If this is memset, we just need to see if the offset is valid in the size
   1088   // of the memset..
   1089   if (MI->getIntrinsicID() == Intrinsic::memset)
   1090     return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
   1091                                           MemSizeInBits, DL);
   1092 
   1093   // If we have a memcpy/memmove, the only case we can handle is if this is a
   1094   // copy from constant memory.  In that case, we can read directly from the
   1095   // constant memory.
   1096   MemTransferInst *MTI = cast<MemTransferInst>(MI);
   1097 
   1098   Constant *Src = dyn_cast<Constant>(MTI->getSource());
   1099   if (!Src) return -1;
   1100 
   1101   GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, DL));
   1102   if (!GV || !GV->isConstant()) return -1;
   1103 
   1104   // See if the access is within the bounds of the transfer.
   1105   int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
   1106                                               MI->getDest(), MemSizeInBits, DL);
   1107   if (Offset == -1)
   1108     return Offset;
   1109 
   1110   unsigned AS = Src->getType()->getPointerAddressSpace();
   1111   // Otherwise, see if we can constant fold a load from the constant with the
   1112   // offset applied as appropriate.
   1113   Src = ConstantExpr::getBitCast(Src,
   1114                                  Type::getInt8PtrTy(Src->getContext(), AS));
   1115   Constant *OffsetCst =
   1116     ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
   1117   Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src,
   1118                                        OffsetCst);
   1119   Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
   1120   if (ConstantFoldLoadFromConstPtr(Src, DL))
   1121     return Offset;
   1122   return -1;
   1123 }
   1124 
   1125 
   1126 /// This function is called when we have a
   1127 /// memdep query of a load that ends up being a clobbering store.  This means
   1128 /// that the store provides bits used by the load but we the pointers don't
   1129 /// mustalias.  Check this case to see if there is anything more we can do
   1130 /// before we give up.
   1131 static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
   1132                                    Type *LoadTy,
   1133                                    Instruction *InsertPt, const DataLayout &DL){
   1134   LLVMContext &Ctx = SrcVal->getType()->getContext();
   1135 
   1136   uint64_t StoreSize = (DL.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
   1137   uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy) + 7) / 8;
   1138 
   1139   IRBuilder<> Builder(InsertPt);
   1140 
   1141   // Compute which bits of the stored value are being used by the load.  Convert
   1142   // to an integer type to start with.
   1143   if (SrcVal->getType()->getScalarType()->isPointerTy())
   1144     SrcVal = Builder.CreatePtrToInt(SrcVal,
   1145         DL.getIntPtrType(SrcVal->getType()));
   1146   if (!SrcVal->getType()->isIntegerTy())
   1147     SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8));
   1148 
   1149   // Shift the bits to the least significant depending on endianness.
   1150   unsigned ShiftAmt;
   1151   if (DL.isLittleEndian())
   1152     ShiftAmt = Offset*8;
   1153   else
   1154     ShiftAmt = (StoreSize-LoadSize-Offset)*8;
   1155 
   1156   if (ShiftAmt)
   1157     SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt);
   1158 
   1159   if (LoadSize != StoreSize)
   1160     SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8));
   1161 
   1162   return CoerceAvailableValueToLoadType(SrcVal, LoadTy, Builder, DL);
   1163 }
   1164 
   1165 /// This function is called when we have a
   1166 /// memdep query of a load that ends up being a clobbering load.  This means
   1167 /// that the load *may* provide bits used by the load but we can't be sure
   1168 /// because the pointers don't mustalias.  Check this case to see if there is
   1169 /// anything more we can do before we give up.
   1170 static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
   1171                                   Type *LoadTy, Instruction *InsertPt,
   1172                                   GVN &gvn) {
   1173   const DataLayout &DL = SrcVal->getModule()->getDataLayout();
   1174   // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
   1175   // widen SrcVal out to a larger load.
   1176   unsigned SrcValSize = DL.getTypeStoreSize(SrcVal->getType());
   1177   unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
   1178   if (Offset+LoadSize > SrcValSize) {
   1179     assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
   1180     assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
   1181     // If we have a load/load clobber an DepLI can be widened to cover this
   1182     // load, then we should widen it to the next power of 2 size big enough!
   1183     unsigned NewLoadSize = Offset+LoadSize;
   1184     if (!isPowerOf2_32(NewLoadSize))
   1185       NewLoadSize = NextPowerOf2(NewLoadSize);
   1186 
   1187     Value *PtrVal = SrcVal->getPointerOperand();
   1188 
   1189     // Insert the new load after the old load.  This ensures that subsequent
   1190     // memdep queries will find the new load.  We can't easily remove the old
   1191     // load completely because it is already in the value numbering table.
   1192     IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
   1193     Type *DestPTy =
   1194       IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
   1195     DestPTy = PointerType::get(DestPTy,
   1196                                PtrVal->getType()->getPointerAddressSpace());
   1197     Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
   1198     PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
   1199     LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
   1200     NewLoad->takeName(SrcVal);
   1201     NewLoad->setAlignment(SrcVal->getAlignment());
   1202 
   1203     DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
   1204     DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
   1205 
   1206     // Replace uses of the original load with the wider load.  On a big endian
   1207     // system, we need to shift down to get the relevant bits.
   1208     Value *RV = NewLoad;
   1209     if (DL.isBigEndian())
   1210       RV = Builder.CreateLShr(RV,
   1211                     NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits());
   1212     RV = Builder.CreateTrunc(RV, SrcVal->getType());
   1213     SrcVal->replaceAllUsesWith(RV);
   1214 
   1215     // We would like to use gvn.markInstructionForDeletion here, but we can't
   1216     // because the load is already memoized into the leader map table that GVN
   1217     // tracks.  It is potentially possible to remove the load from the table,
   1218     // but then there all of the operations based on it would need to be
   1219     // rehashed.  Just leave the dead load around.
   1220     gvn.getMemDep().removeInstruction(SrcVal);
   1221     SrcVal = NewLoad;
   1222   }
   1223 
   1224   return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL);
   1225 }
   1226 
   1227 
   1228 /// This function is called when we have a
   1229 /// memdep query of a load that ends up being a clobbering mem intrinsic.
   1230 static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
   1231                                      Type *LoadTy, Instruction *InsertPt,
   1232                                      const DataLayout &DL){
   1233   LLVMContext &Ctx = LoadTy->getContext();
   1234   uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy)/8;
   1235 
   1236   IRBuilder<> Builder(InsertPt);
   1237 
   1238   // We know that this method is only called when the mem transfer fully
   1239   // provides the bits for the load.
   1240   if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
   1241     // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
   1242     // independently of what the offset is.
   1243     Value *Val = MSI->getValue();
   1244     if (LoadSize != 1)
   1245       Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
   1246 
   1247     Value *OneElt = Val;
   1248 
   1249     // Splat the value out to the right number of bits.
   1250     for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
   1251       // If we can double the number of bytes set, do it.
   1252       if (NumBytesSet*2 <= LoadSize) {
   1253         Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
   1254         Val = Builder.CreateOr(Val, ShVal);
   1255         NumBytesSet <<= 1;
   1256         continue;
   1257       }
   1258 
   1259       // Otherwise insert one byte at a time.
   1260       Value *ShVal = Builder.CreateShl(Val, 1*8);
   1261       Val = Builder.CreateOr(OneElt, ShVal);
   1262       ++NumBytesSet;
   1263     }
   1264 
   1265     return CoerceAvailableValueToLoadType(Val, LoadTy, Builder, DL);
   1266   }
   1267 
   1268   // Otherwise, this is a memcpy/memmove from a constant global.
   1269   MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
   1270   Constant *Src = cast<Constant>(MTI->getSource());
   1271   unsigned AS = Src->getType()->getPointerAddressSpace();
   1272 
   1273   // Otherwise, see if we can constant fold a load from the constant with the
   1274   // offset applied as appropriate.
   1275   Src = ConstantExpr::getBitCast(Src,
   1276                                  Type::getInt8PtrTy(Src->getContext(), AS));
   1277   Constant *OffsetCst =
   1278     ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
   1279   Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src,
   1280                                        OffsetCst);
   1281   Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
   1282   return ConstantFoldLoadFromConstPtr(Src, DL);
   1283 }
   1284 
   1285 
   1286 /// Given a set of loads specified by ValuesPerBlock,
   1287 /// construct SSA form, allowing us to eliminate LI.  This returns the value
   1288 /// that should be used at LI's definition site.
   1289 static Value *ConstructSSAForLoadSet(LoadInst *LI,
   1290                          SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
   1291                                      GVN &gvn) {
   1292   // Check for the fully redundant, dominating load case.  In this case, we can
   1293   // just use the dominating value directly.
   1294   if (ValuesPerBlock.size() == 1 &&
   1295       gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
   1296                                                LI->getParent())) {
   1297     assert(!ValuesPerBlock[0].isUndefValue() && "Dead BB dominate this block");
   1298     return ValuesPerBlock[0].MaterializeAdjustedValue(LI, gvn);
   1299   }
   1300 
   1301   // Otherwise, we have to construct SSA form.
   1302   SmallVector<PHINode*, 8> NewPHIs;
   1303   SSAUpdater SSAUpdate(&NewPHIs);
   1304   SSAUpdate.Initialize(LI->getType(), LI->getName());
   1305 
   1306   for (const AvailableValueInBlock &AV : ValuesPerBlock) {
   1307     BasicBlock *BB = AV.BB;
   1308 
   1309     if (SSAUpdate.HasValueForBlock(BB))
   1310       continue;
   1311 
   1312     SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LI, gvn));
   1313   }
   1314 
   1315   // Perform PHI construction.
   1316   return SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
   1317 }
   1318 
   1319 Value *AvailableValueInBlock::MaterializeAdjustedValue(LoadInst *LI,
   1320                                                        GVN &gvn) const {
   1321   Value *Res;
   1322   Type *LoadTy = LI->getType();
   1323   const DataLayout &DL = LI->getModule()->getDataLayout();
   1324   if (isSimpleValue()) {
   1325     Res = getSimpleValue();
   1326     if (Res->getType() != LoadTy) {
   1327       Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(), DL);
   1328 
   1329       DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
   1330                    << *getSimpleValue() << '\n'
   1331                    << *Res << '\n' << "\n\n\n");
   1332     }
   1333   } else if (isCoercedLoadValue()) {
   1334     LoadInst *Load = getCoercedLoadValue();
   1335     if (Load->getType() == LoadTy && Offset == 0) {
   1336       Res = Load;
   1337     } else {
   1338       Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(),
   1339                                 gvn);
   1340 
   1341       DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << "  "
   1342                    << *getCoercedLoadValue() << '\n'
   1343                    << *Res << '\n' << "\n\n\n");
   1344     }
   1345   } else if (isMemIntrinValue()) {
   1346     Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy,
   1347                                  BB->getTerminator(), DL);
   1348     DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
   1349                  << "  " << *getMemIntrinValue() << '\n'
   1350                  << *Res << '\n' << "\n\n\n");
   1351   } else {
   1352     assert(isUndefValue() && "Should be UndefVal");
   1353     DEBUG(dbgs() << "GVN COERCED NONLOCAL Undef:\n";);
   1354     return UndefValue::get(LoadTy);
   1355   }
   1356   return Res;
   1357 }
   1358 
   1359 static bool isLifetimeStart(const Instruction *Inst) {
   1360   if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
   1361     return II->getIntrinsicID() == Intrinsic::lifetime_start;
   1362   return false;
   1363 }
   1364 
   1365 void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
   1366                                   AvailValInBlkVect &ValuesPerBlock,
   1367                                   UnavailBlkVect &UnavailableBlocks) {
   1368 
   1369   // Filter out useless results (non-locals, etc).  Keep track of the blocks
   1370   // where we have a value available in repl, also keep track of whether we see
   1371   // dependencies that produce an unknown value for the load (such as a call
   1372   // that could potentially clobber the load).
   1373   unsigned NumDeps = Deps.size();
   1374   const DataLayout &DL = LI->getModule()->getDataLayout();
   1375   for (unsigned i = 0, e = NumDeps; i != e; ++i) {
   1376     BasicBlock *DepBB = Deps[i].getBB();
   1377     MemDepResult DepInfo = Deps[i].getResult();
   1378 
   1379     if (DeadBlocks.count(DepBB)) {
   1380       // Dead dependent mem-op disguise as a load evaluating the same value
   1381       // as the load in question.
   1382       ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB));
   1383       continue;
   1384     }
   1385 
   1386     if (!DepInfo.isDef() && !DepInfo.isClobber()) {
   1387       UnavailableBlocks.push_back(DepBB);
   1388       continue;
   1389     }
   1390 
   1391     if (DepInfo.isClobber()) {
   1392       // The address being loaded in this non-local block may not be the same as
   1393       // the pointer operand of the load if PHI translation occurs.  Make sure
   1394       // to consider the right address.
   1395       Value *Address = Deps[i].getAddress();
   1396 
   1397       // If the dependence is to a store that writes to a superset of the bits
   1398       // read by the load, we can extract the bits we need for the load from the
   1399       // stored value.
   1400       if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
   1401         if (Address) {
   1402           int Offset =
   1403               AnalyzeLoadFromClobberingStore(LI->getType(), Address, DepSI);
   1404           if (Offset != -1) {
   1405             ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
   1406                                                        DepSI->getValueOperand(),
   1407                                                                 Offset));
   1408             continue;
   1409           }
   1410         }
   1411       }
   1412 
   1413       // Check to see if we have something like this:
   1414       //    load i32* P
   1415       //    load i8* (P+1)
   1416       // if we have this, replace the later with an extraction from the former.
   1417       if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
   1418         // If this is a clobber and L is the first instruction in its block, then
   1419         // we have the first instruction in the entry block.
   1420         if (DepLI != LI && Address) {
   1421           int Offset =
   1422               AnalyzeLoadFromClobberingLoad(LI->getType(), Address, DepLI, DL);
   1423 
   1424           if (Offset != -1) {
   1425             ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
   1426                                                                     Offset));
   1427             continue;
   1428           }
   1429         }
   1430       }
   1431 
   1432       // If the clobbering value is a memset/memcpy/memmove, see if we can
   1433       // forward a value on from it.
   1434       if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
   1435         if (Address) {
   1436           int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
   1437                                                         DepMI, DL);
   1438           if (Offset != -1) {
   1439             ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
   1440                                                                   Offset));
   1441             continue;
   1442           }
   1443         }
   1444       }
   1445 
   1446       UnavailableBlocks.push_back(DepBB);
   1447       continue;
   1448     }
   1449 
   1450     // DepInfo.isDef() here
   1451 
   1452     Instruction *DepInst = DepInfo.getInst();
   1453 
   1454     // Loading the allocation -> undef.
   1455     if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
   1456         // Loading immediately after lifetime begin -> undef.
   1457         isLifetimeStart(DepInst)) {
   1458       ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
   1459                                              UndefValue::get(LI->getType())));
   1460       continue;
   1461     }
   1462 
   1463     // Loading from calloc (which zero initializes memory) -> zero
   1464     if (isCallocLikeFn(DepInst, TLI)) {
   1465       ValuesPerBlock.push_back(AvailableValueInBlock::get(
   1466           DepBB, Constant::getNullValue(LI->getType())));
   1467       continue;
   1468     }
   1469 
   1470     if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
   1471       // Reject loads and stores that are to the same address but are of
   1472       // different types if we have to.
   1473       if (S->getValueOperand()->getType() != LI->getType()) {
   1474         // If the stored value is larger or equal to the loaded value, we can
   1475         // reuse it.
   1476         if (!CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
   1477                                              LI->getType(), DL)) {
   1478           UnavailableBlocks.push_back(DepBB);
   1479           continue;
   1480         }
   1481       }
   1482 
   1483       ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
   1484                                                          S->getValueOperand()));
   1485       continue;
   1486     }
   1487 
   1488     if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
   1489       // If the types mismatch and we can't handle it, reject reuse of the load.
   1490       if (LD->getType() != LI->getType()) {
   1491         // If the stored value is larger or equal to the loaded value, we can
   1492         // reuse it.
   1493         if (!CanCoerceMustAliasedValueToLoad(LD, LI->getType(), DL)) {
   1494           UnavailableBlocks.push_back(DepBB);
   1495           continue;
   1496         }
   1497       }
   1498       ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD));
   1499       continue;
   1500     }
   1501 
   1502     UnavailableBlocks.push_back(DepBB);
   1503   }
   1504 }
   1505 
   1506 bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
   1507                          UnavailBlkVect &UnavailableBlocks) {
   1508   // Okay, we have *some* definitions of the value.  This means that the value
   1509   // is available in some of our (transitive) predecessors.  Lets think about
   1510   // doing PRE of this load.  This will involve inserting a new load into the
   1511   // predecessor when it's not available.  We could do this in general, but
   1512   // prefer to not increase code size.  As such, we only do this when we know
   1513   // that we only have to insert *one* load (which means we're basically moving
   1514   // the load, not inserting a new one).
   1515 
   1516   SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(),
   1517                                         UnavailableBlocks.end());
   1518 
   1519   // Let's find the first basic block with more than one predecessor.  Walk
   1520   // backwards through predecessors if needed.
   1521   BasicBlock *LoadBB = LI->getParent();
   1522   BasicBlock *TmpBB = LoadBB;
   1523 
   1524   while (TmpBB->getSinglePredecessor()) {
   1525     TmpBB = TmpBB->getSinglePredecessor();
   1526     if (TmpBB == LoadBB) // Infinite (unreachable) loop.
   1527       return false;
   1528     if (Blockers.count(TmpBB))
   1529       return false;
   1530 
   1531     // If any of these blocks has more than one successor (i.e. if the edge we
   1532     // just traversed was critical), then there are other paths through this
   1533     // block along which the load may not be anticipated.  Hoisting the load
   1534     // above this block would be adding the load to execution paths along
   1535     // which it was not previously executed.
   1536     if (TmpBB->getTerminator()->getNumSuccessors() != 1)
   1537       return false;
   1538   }
   1539 
   1540   assert(TmpBB);
   1541   LoadBB = TmpBB;
   1542 
   1543   // Check to see how many predecessors have the loaded value fully
   1544   // available.
   1545   MapVector<BasicBlock *, Value *> PredLoads;
   1546   DenseMap<BasicBlock*, char> FullyAvailableBlocks;
   1547   for (const AvailableValueInBlock &AV : ValuesPerBlock)
   1548     FullyAvailableBlocks[AV.BB] = true;
   1549   for (BasicBlock *UnavailableBB : UnavailableBlocks)
   1550     FullyAvailableBlocks[UnavailableBB] = false;
   1551 
   1552   SmallVector<BasicBlock *, 4> CriticalEdgePred;
   1553   for (BasicBlock *Pred : predecessors(LoadBB)) {
   1554     // If any predecessor block is an EH pad that does not allow non-PHI
   1555     // instructions before the terminator, we can't PRE the load.
   1556     if (Pred->getTerminator()->isEHPad()) {
   1557       DEBUG(dbgs()
   1558             << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '"
   1559             << Pred->getName() << "': " << *LI << '\n');
   1560       return false;
   1561     }
   1562 
   1563     if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
   1564       continue;
   1565     }
   1566 
   1567     if (Pred->getTerminator()->getNumSuccessors() != 1) {
   1568       if (isa<IndirectBrInst>(Pred->getTerminator())) {
   1569         DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
   1570               << Pred->getName() << "': " << *LI << '\n');
   1571         return false;
   1572       }
   1573 
   1574       if (LoadBB->isEHPad()) {
   1575         DEBUG(dbgs()
   1576               << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '"
   1577               << Pred->getName() << "': " << *LI << '\n');
   1578         return false;
   1579       }
   1580 
   1581       CriticalEdgePred.push_back(Pred);
   1582     } else {
   1583       // Only add the predecessors that will not be split for now.
   1584       PredLoads[Pred] = nullptr;
   1585     }
   1586   }
   1587 
   1588   // Decide whether PRE is profitable for this load.
   1589   unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size();
   1590   assert(NumUnavailablePreds != 0 &&
   1591          "Fully available value should already be eliminated!");
   1592 
   1593   // If this load is unavailable in multiple predecessors, reject it.
   1594   // FIXME: If we could restructure the CFG, we could make a common pred with
   1595   // all the preds that don't have an available LI and insert a new load into
   1596   // that one block.
   1597   if (NumUnavailablePreds != 1)
   1598       return false;
   1599 
   1600   // Split critical edges, and update the unavailable predecessors accordingly.
   1601   for (BasicBlock *OrigPred : CriticalEdgePred) {
   1602     BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
   1603     assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!");
   1604     PredLoads[NewPred] = nullptr;
   1605     DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->"
   1606                  << LoadBB->getName() << '\n');
   1607   }
   1608 
   1609   // Check if the load can safely be moved to all the unavailable predecessors.
   1610   bool CanDoPRE = true;
   1611   const DataLayout &DL = LI->getModule()->getDataLayout();
   1612   SmallVector<Instruction*, 8> NewInsts;
   1613   for (auto &PredLoad : PredLoads) {
   1614     BasicBlock *UnavailablePred = PredLoad.first;
   1615 
   1616     // Do PHI translation to get its value in the predecessor if necessary.  The
   1617     // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
   1618 
   1619     // If all preds have a single successor, then we know it is safe to insert
   1620     // the load on the pred (?!?), so we can insert code to materialize the
   1621     // pointer if it is not available.
   1622     PHITransAddr Address(LI->getPointerOperand(), DL, AC);
   1623     Value *LoadPtr = nullptr;
   1624     LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
   1625                                                 *DT, NewInsts);
   1626 
   1627     // If we couldn't find or insert a computation of this phi translated value,
   1628     // we fail PRE.
   1629     if (!LoadPtr) {
   1630       DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
   1631             << *LI->getPointerOperand() << "\n");
   1632       CanDoPRE = false;
   1633       break;
   1634     }
   1635 
   1636     PredLoad.second = LoadPtr;
   1637   }
   1638 
   1639   if (!CanDoPRE) {
   1640     while (!NewInsts.empty()) {
   1641       Instruction *I = NewInsts.pop_back_val();
   1642       if (MD) MD->removeInstruction(I);
   1643       I->eraseFromParent();
   1644     }
   1645     // HINT: Don't revert the edge-splitting as following transformation may
   1646     // also need to split these critical edges.
   1647     return !CriticalEdgePred.empty();
   1648   }
   1649 
   1650   // Okay, we can eliminate this load by inserting a reload in the predecessor
   1651   // and using PHI construction to get the value in the other predecessors, do
   1652   // it.
   1653   DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
   1654   DEBUG(if (!NewInsts.empty())
   1655           dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
   1656                  << *NewInsts.back() << '\n');
   1657 
   1658   // Assign value numbers to the new instructions.
   1659   for (Instruction *I : NewInsts) {
   1660     // FIXME: We really _ought_ to insert these value numbers into their
   1661     // parent's availability map.  However, in doing so, we risk getting into
   1662     // ordering issues.  If a block hasn't been processed yet, we would be
   1663     // marking a value as AVAIL-IN, which isn't what we intend.
   1664     VN.lookup_or_add(I);
   1665   }
   1666 
   1667   for (const auto &PredLoad : PredLoads) {
   1668     BasicBlock *UnavailablePred = PredLoad.first;
   1669     Value *LoadPtr = PredLoad.second;
   1670 
   1671     Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
   1672                                         LI->getAlignment(),
   1673                                         UnavailablePred->getTerminator());
   1674 
   1675     // Transfer the old load's AA tags to the new load.
   1676     AAMDNodes Tags;
   1677     LI->getAAMetadata(Tags);
   1678     if (Tags)
   1679       NewLoad->setAAMetadata(Tags);
   1680 
   1681     if (auto *MD = LI->getMetadata(LLVMContext::MD_invariant_load))
   1682       NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD);
   1683     if (auto *InvGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group))
   1684       NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD);
   1685 
   1686     // Transfer DebugLoc.
   1687     NewLoad->setDebugLoc(LI->getDebugLoc());
   1688 
   1689     // Add the newly created load.
   1690     ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
   1691                                                         NewLoad));
   1692     MD->invalidateCachedPointerInfo(LoadPtr);
   1693     DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
   1694   }
   1695 
   1696   // Perform PHI construction.
   1697   Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
   1698   LI->replaceAllUsesWith(V);
   1699   if (isa<PHINode>(V))
   1700     V->takeName(LI);
   1701   if (Instruction *I = dyn_cast<Instruction>(V))
   1702     I->setDebugLoc(LI->getDebugLoc());
   1703   if (V->getType()->getScalarType()->isPointerTy())
   1704     MD->invalidateCachedPointerInfo(V);
   1705   markInstructionForDeletion(LI);
   1706   ++NumPRELoad;
   1707   return true;
   1708 }
   1709 
   1710 /// Attempt to eliminate a load whose dependencies are
   1711 /// non-local by performing PHI construction.
   1712 bool GVN::processNonLocalLoad(LoadInst *LI) {
   1713   // non-local speculations are not allowed under asan.
   1714   if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeAddress))
   1715     return false;
   1716 
   1717   // Step 1: Find the non-local dependencies of the load.
   1718   LoadDepVect Deps;
   1719   MD->getNonLocalPointerDependency(LI, Deps);
   1720 
   1721   // If we had to process more than one hundred blocks to find the
   1722   // dependencies, this load isn't worth worrying about.  Optimizing
   1723   // it will be too expensive.
   1724   unsigned NumDeps = Deps.size();
   1725   if (NumDeps > 100)
   1726     return false;
   1727 
   1728   // If we had a phi translation failure, we'll have a single entry which is a
   1729   // clobber in the current block.  Reject this early.
   1730   if (NumDeps == 1 &&
   1731       !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
   1732     DEBUG(
   1733       dbgs() << "GVN: non-local load ";
   1734       LI->printAsOperand(dbgs());
   1735       dbgs() << " has unknown dependencies\n";
   1736     );
   1737     return false;
   1738   }
   1739 
   1740   // If this load follows a GEP, see if we can PRE the indices before analyzing.
   1741   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) {
   1742     for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(),
   1743                                         OE = GEP->idx_end();
   1744          OI != OE; ++OI)
   1745       if (Instruction *I = dyn_cast<Instruction>(OI->get()))
   1746         performScalarPRE(I);
   1747   }
   1748 
   1749   // Step 2: Analyze the availability of the load
   1750   AvailValInBlkVect ValuesPerBlock;
   1751   UnavailBlkVect UnavailableBlocks;
   1752   AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks);
   1753 
   1754   // If we have no predecessors that produce a known value for this load, exit
   1755   // early.
   1756   if (ValuesPerBlock.empty())
   1757     return false;
   1758 
   1759   // Step 3: Eliminate fully redundancy.
   1760   //
   1761   // If all of the instructions we depend on produce a known value for this
   1762   // load, then it is fully redundant and we can use PHI insertion to compute
   1763   // its value.  Insert PHIs and remove the fully redundant value now.
   1764   if (UnavailableBlocks.empty()) {
   1765     DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
   1766 
   1767     // Perform PHI construction.
   1768     Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
   1769     LI->replaceAllUsesWith(V);
   1770 
   1771     if (isa<PHINode>(V))
   1772       V->takeName(LI);
   1773     if (Instruction *I = dyn_cast<Instruction>(V))
   1774       if (LI->getDebugLoc())
   1775         I->setDebugLoc(LI->getDebugLoc());
   1776     if (V->getType()->getScalarType()->isPointerTy())
   1777       MD->invalidateCachedPointerInfo(V);
   1778     markInstructionForDeletion(LI);
   1779     ++NumGVNLoad;
   1780     return true;
   1781   }
   1782 
   1783   // Step 4: Eliminate partial redundancy.
   1784   if (!EnablePRE || !EnableLoadPRE)
   1785     return false;
   1786 
   1787   return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks);
   1788 }
   1789 
   1790 bool GVN::processAssumeIntrinsic(IntrinsicInst *IntrinsicI) {
   1791   assert(IntrinsicI->getIntrinsicID() == Intrinsic::assume &&
   1792          "This function can only be called with llvm.assume intrinsic");
   1793   Value *V = IntrinsicI->getArgOperand(0);
   1794 
   1795   if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) {
   1796     if (Cond->isZero()) {
   1797       Type *Int8Ty = Type::getInt8Ty(V->getContext());
   1798       // Insert a new store to null instruction before the load to indicate that
   1799       // this code is not reachable.  FIXME: We could insert unreachable
   1800       // instruction directly because we can modify the CFG.
   1801       new StoreInst(UndefValue::get(Int8Ty),
   1802                     Constant::getNullValue(Int8Ty->getPointerTo()),
   1803                     IntrinsicI);
   1804     }
   1805     markInstructionForDeletion(IntrinsicI);
   1806     return false;
   1807   }
   1808 
   1809   Constant *True = ConstantInt::getTrue(V->getContext());
   1810   bool Changed = false;
   1811 
   1812   for (BasicBlock *Successor : successors(IntrinsicI->getParent())) {
   1813     BasicBlockEdge Edge(IntrinsicI->getParent(), Successor);
   1814 
   1815     // This property is only true in dominated successors, propagateEquality
   1816     // will check dominance for us.
   1817     Changed |= propagateEquality(V, True, Edge, false);
   1818   }
   1819 
   1820   // We can replace assume value with true, which covers cases like this:
   1821   // call void @llvm.assume(i1 %cmp)
   1822   // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true
   1823   ReplaceWithConstMap[V] = True;
   1824 
   1825   // If one of *cmp *eq operand is const, adding it to map will cover this:
   1826   // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen
   1827   // call void @llvm.assume(i1 %cmp)
   1828   // ret float %0 ; will change it to ret float 3.000000e+00
   1829   if (auto *CmpI = dyn_cast<CmpInst>(V)) {
   1830     if (CmpI->getPredicate() == CmpInst::Predicate::ICMP_EQ ||
   1831         CmpI->getPredicate() == CmpInst::Predicate::FCMP_OEQ ||
   1832         (CmpI->getPredicate() == CmpInst::Predicate::FCMP_UEQ &&
   1833          CmpI->getFastMathFlags().noNaNs())) {
   1834       Value *CmpLHS = CmpI->getOperand(0);
   1835       Value *CmpRHS = CmpI->getOperand(1);
   1836       if (isa<Constant>(CmpLHS))
   1837         std::swap(CmpLHS, CmpRHS);
   1838       auto *RHSConst = dyn_cast<Constant>(CmpRHS);
   1839 
   1840       // If only one operand is constant.
   1841       if (RHSConst != nullptr && !isa<Constant>(CmpLHS))
   1842         ReplaceWithConstMap[CmpLHS] = RHSConst;
   1843     }
   1844   }
   1845   return Changed;
   1846 }
   1847 
   1848 static void patchReplacementInstruction(Instruction *I, Value *Repl) {
   1849   // Patch the replacement so that it is not more restrictive than the value
   1850   // being replaced.
   1851   BinaryOperator *Op = dyn_cast<BinaryOperator>(I);
   1852   BinaryOperator *ReplOp = dyn_cast<BinaryOperator>(Repl);
   1853   if (Op && ReplOp)
   1854     ReplOp->andIRFlags(Op);
   1855 
   1856   if (Instruction *ReplInst = dyn_cast<Instruction>(Repl)) {
   1857     // FIXME: If both the original and replacement value are part of the
   1858     // same control-flow region (meaning that the execution of one
   1859     // guarantees the execution of the other), then we can combine the
   1860     // noalias scopes here and do better than the general conservative
   1861     // answer used in combineMetadata().
   1862 
   1863     // In general, GVN unifies expressions over different control-flow
   1864     // regions, and so we need a conservative combination of the noalias
   1865     // scopes.
   1866     static const unsigned KnownIDs[] = {
   1867         LLVMContext::MD_tbaa,           LLVMContext::MD_alias_scope,
   1868         LLVMContext::MD_noalias,        LLVMContext::MD_range,
   1869         LLVMContext::MD_fpmath,         LLVMContext::MD_invariant_load,
   1870         LLVMContext::MD_invariant_group};
   1871     combineMetadata(ReplInst, I, KnownIDs);
   1872   }
   1873 }
   1874 
   1875 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
   1876   patchReplacementInstruction(I, Repl);
   1877   I->replaceAllUsesWith(Repl);
   1878 }
   1879 
   1880 /// Attempt to eliminate a load, first by eliminating it
   1881 /// locally, and then attempting non-local elimination if that fails.
   1882 bool GVN::processLoad(LoadInst *L) {
   1883   if (!MD)
   1884     return false;
   1885 
   1886   if (!L->isSimple())
   1887     return false;
   1888 
   1889   if (L->use_empty()) {
   1890     markInstructionForDeletion(L);
   1891     return true;
   1892   }
   1893 
   1894   // ... to a pointer that has been loaded from before...
   1895   MemDepResult Dep = MD->getDependency(L);
   1896   const DataLayout &DL = L->getModule()->getDataLayout();
   1897 
   1898   // If we have a clobber and target data is around, see if this is a clobber
   1899   // that we can fix up through code synthesis.
   1900   if (Dep.isClobber()) {
   1901     // Check to see if we have something like this:
   1902     //   store i32 123, i32* %P
   1903     //   %A = bitcast i32* %P to i8*
   1904     //   %B = gep i8* %A, i32 1
   1905     //   %C = load i8* %B
   1906     //
   1907     // We could do that by recognizing if the clobber instructions are obviously
   1908     // a common base + constant offset, and if the previous store (or memset)
   1909     // completely covers this load.  This sort of thing can happen in bitfield
   1910     // access code.
   1911     Value *AvailVal = nullptr;
   1912     if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
   1913       int Offset = AnalyzeLoadFromClobberingStore(
   1914           L->getType(), L->getPointerOperand(), DepSI);
   1915       if (Offset != -1)
   1916         AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
   1917                                         L->getType(), L, DL);
   1918     }
   1919 
   1920     // Check to see if we have something like this:
   1921     //    load i32* P
   1922     //    load i8* (P+1)
   1923     // if we have this, replace the later with an extraction from the former.
   1924     if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) {
   1925       // If this is a clobber and L is the first instruction in its block, then
   1926       // we have the first instruction in the entry block.
   1927       if (DepLI == L)
   1928         return false;
   1929 
   1930       int Offset = AnalyzeLoadFromClobberingLoad(
   1931           L->getType(), L->getPointerOperand(), DepLI, DL);
   1932       if (Offset != -1)
   1933         AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
   1934     }
   1935 
   1936     // If the clobbering value is a memset/memcpy/memmove, see if we can forward
   1937     // a value on from it.
   1938     if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
   1939       int Offset = AnalyzeLoadFromClobberingMemInst(
   1940           L->getType(), L->getPointerOperand(), DepMI, DL);
   1941       if (Offset != -1)
   1942         AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, DL);
   1943     }
   1944 
   1945     if (AvailVal) {
   1946       DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
   1947             << *AvailVal << '\n' << *L << "\n\n\n");
   1948 
   1949       // Replace the load!
   1950       L->replaceAllUsesWith(AvailVal);
   1951       if (AvailVal->getType()->getScalarType()->isPointerTy())
   1952         MD->invalidateCachedPointerInfo(AvailVal);
   1953       markInstructionForDeletion(L);
   1954       ++NumGVNLoad;
   1955       return true;
   1956     }
   1957 
   1958     // If the value isn't available, don't do anything!
   1959     DEBUG(
   1960       // fast print dep, using operator<< on instruction is too slow.
   1961       dbgs() << "GVN: load ";
   1962       L->printAsOperand(dbgs());
   1963       Instruction *I = Dep.getInst();
   1964       dbgs() << " is clobbered by " << *I << '\n';
   1965     );
   1966     return false;
   1967   }
   1968 
   1969   // If it is defined in another block, try harder.
   1970   if (Dep.isNonLocal())
   1971     return processNonLocalLoad(L);
   1972 
   1973   if (!Dep.isDef()) {
   1974     DEBUG(
   1975       // fast print dep, using operator<< on instruction is too slow.
   1976       dbgs() << "GVN: load ";
   1977       L->printAsOperand(dbgs());
   1978       dbgs() << " has unknown dependence\n";
   1979     );
   1980     return false;
   1981   }
   1982 
   1983   Instruction *DepInst = Dep.getInst();
   1984   if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
   1985     Value *StoredVal = DepSI->getValueOperand();
   1986 
   1987     // The store and load are to a must-aliased pointer, but they may not
   1988     // actually have the same type.  See if we know how to reuse the stored
   1989     // value (depending on its type).
   1990     if (StoredVal->getType() != L->getType()) {
   1991       IRBuilder<> Builder(L);
   1992       StoredVal =
   1993           CoerceAvailableValueToLoadType(StoredVal, L->getType(), Builder, DL);
   1994       if (!StoredVal)
   1995         return false;
   1996 
   1997       DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
   1998                    << '\n' << *L << "\n\n\n");
   1999     }
   2000 
   2001     // Remove it!
   2002     L->replaceAllUsesWith(StoredVal);
   2003     if (StoredVal->getType()->getScalarType()->isPointerTy())
   2004       MD->invalidateCachedPointerInfo(StoredVal);
   2005     markInstructionForDeletion(L);
   2006     ++NumGVNLoad;
   2007     return true;
   2008   }
   2009 
   2010   if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
   2011     Value *AvailableVal = DepLI;
   2012 
   2013     // The loads are of a must-aliased pointer, but they may not actually have
   2014     // the same type.  See if we know how to reuse the previously loaded value
   2015     // (depending on its type).
   2016     if (DepLI->getType() != L->getType()) {
   2017       IRBuilder<> Builder(L);
   2018       AvailableVal =
   2019           CoerceAvailableValueToLoadType(DepLI, L->getType(), Builder, DL);
   2020       if (!AvailableVal)
   2021         return false;
   2022 
   2023       DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
   2024                    << "\n" << *L << "\n\n\n");
   2025     }
   2026 
   2027     // Remove it!
   2028     patchAndReplaceAllUsesWith(L, AvailableVal);
   2029     if (DepLI->getType()->getScalarType()->isPointerTy())
   2030       MD->invalidateCachedPointerInfo(DepLI);
   2031     markInstructionForDeletion(L);
   2032     ++NumGVNLoad;
   2033     return true;
   2034   }
   2035 
   2036   // If this load really doesn't depend on anything, then we must be loading an
   2037   // undef value.  This can happen when loading for a fresh allocation with no
   2038   // intervening stores, for example.
   2039   if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) {
   2040     L->replaceAllUsesWith(UndefValue::get(L->getType()));
   2041     markInstructionForDeletion(L);
   2042     ++NumGVNLoad;
   2043     return true;
   2044   }
   2045 
   2046   // If this load occurs either right after a lifetime begin,
   2047   // then the loaded value is undefined.
   2048   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) {
   2049     if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
   2050       L->replaceAllUsesWith(UndefValue::get(L->getType()));
   2051       markInstructionForDeletion(L);
   2052       ++NumGVNLoad;
   2053       return true;
   2054     }
   2055   }
   2056 
   2057   // If this load follows a calloc (which zero initializes memory),
   2058   // then the loaded value is zero
   2059   if (isCallocLikeFn(DepInst, TLI)) {
   2060     L->replaceAllUsesWith(Constant::getNullValue(L->getType()));
   2061     markInstructionForDeletion(L);
   2062     ++NumGVNLoad;
   2063     return true;
   2064   }
   2065 
   2066   return false;
   2067 }
   2068 
   2069 // In order to find a leader for a given value number at a
   2070 // specific basic block, we first obtain the list of all Values for that number,
   2071 // and then scan the list to find one whose block dominates the block in
   2072 // question.  This is fast because dominator tree queries consist of only
   2073 // a few comparisons of DFS numbers.
   2074 Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
   2075   LeaderTableEntry Vals = LeaderTable[num];
   2076   if (!Vals.Val) return nullptr;
   2077 
   2078   Value *Val = nullptr;
   2079   if (DT->dominates(Vals.BB, BB)) {
   2080     Val = Vals.Val;
   2081     if (isa<Constant>(Val)) return Val;
   2082   }
   2083 
   2084   LeaderTableEntry* Next = Vals.Next;
   2085   while (Next) {
   2086     if (DT->dominates(Next->BB, BB)) {
   2087       if (isa<Constant>(Next->Val)) return Next->Val;
   2088       if (!Val) Val = Next->Val;
   2089     }
   2090 
   2091     Next = Next->Next;
   2092   }
   2093 
   2094   return Val;
   2095 }
   2096 
   2097 /// There is an edge from 'Src' to 'Dst'.  Return
   2098 /// true if every path from the entry block to 'Dst' passes via this edge.  In
   2099 /// particular 'Dst' must not be reachable via another edge from 'Src'.
   2100 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
   2101                                        DominatorTree *DT) {
   2102   // While in theory it is interesting to consider the case in which Dst has
   2103   // more than one predecessor, because Dst might be part of a loop which is
   2104   // only reachable from Src, in practice it is pointless since at the time
   2105   // GVN runs all such loops have preheaders, which means that Dst will have
   2106   // been changed to have only one predecessor, namely Src.
   2107   const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
   2108   const BasicBlock *Src = E.getStart();
   2109   assert((!Pred || Pred == Src) && "No edge between these basic blocks!");
   2110   (void)Src;
   2111   return Pred != nullptr;
   2112 }
   2113 
   2114 // Tries to replace instruction with const, using information from
   2115 // ReplaceWithConstMap.
   2116 bool GVN::replaceOperandsWithConsts(Instruction *Instr) const {
   2117   bool Changed = false;
   2118   for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) {
   2119     Value *Operand = Instr->getOperand(OpNum);
   2120     auto it = ReplaceWithConstMap.find(Operand);
   2121     if (it != ReplaceWithConstMap.end()) {
   2122       assert(!isa<Constant>(Operand) &&
   2123              "Replacing constants with constants is invalid");
   2124       DEBUG(dbgs() << "GVN replacing: " << *Operand << " with " << *it->second
   2125                    << " in instruction " << *Instr << '\n');
   2126       Instr->setOperand(OpNum, it->second);
   2127       Changed = true;
   2128     }
   2129   }
   2130   return Changed;
   2131 }
   2132 
   2133 /// The given values are known to be equal in every block
   2134 /// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
   2135 /// 'RHS' everywhere in the scope.  Returns whether a change was made.
   2136 /// If DominatesByEdge is false, then it means that it is dominated by Root.End.
   2137 bool GVN::propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root,
   2138                             bool DominatesByEdge) {
   2139   SmallVector<std::pair<Value*, Value*>, 4> Worklist;
   2140   Worklist.push_back(std::make_pair(LHS, RHS));
   2141   bool Changed = false;
   2142   // For speed, compute a conservative fast approximation to
   2143   // DT->dominates(Root, Root.getEnd());
   2144   bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
   2145 
   2146   while (!Worklist.empty()) {
   2147     std::pair<Value*, Value*> Item = Worklist.pop_back_val();
   2148     LHS = Item.first; RHS = Item.second;
   2149 
   2150     if (LHS == RHS)
   2151       continue;
   2152     assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
   2153 
   2154     // Don't try to propagate equalities between constants.
   2155     if (isa<Constant>(LHS) && isa<Constant>(RHS))
   2156       continue;
   2157 
   2158     // Prefer a constant on the right-hand side, or an Argument if no constants.
   2159     if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
   2160       std::swap(LHS, RHS);
   2161     assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
   2162 
   2163     // If there is no obvious reason to prefer the left-hand side over the
   2164     // right-hand side, ensure the longest lived term is on the right-hand side,
   2165     // so the shortest lived term will be replaced by the longest lived.
   2166     // This tends to expose more simplifications.
   2167     uint32_t LVN = VN.lookup_or_add(LHS);
   2168     if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
   2169         (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
   2170       // Move the 'oldest' value to the right-hand side, using the value number
   2171       // as a proxy for age.
   2172       uint32_t RVN = VN.lookup_or_add(RHS);
   2173       if (LVN < RVN) {
   2174         std::swap(LHS, RHS);
   2175         LVN = RVN;
   2176       }
   2177     }
   2178 
   2179     // If value numbering later sees that an instruction in the scope is equal
   2180     // to 'LHS' then ensure it will be turned into 'RHS'.  In order to preserve
   2181     // the invariant that instructions only occur in the leader table for their
   2182     // own value number (this is used by removeFromLeaderTable), do not do this
   2183     // if RHS is an instruction (if an instruction in the scope is morphed into
   2184     // LHS then it will be turned into RHS by the next GVN iteration anyway, so
   2185     // using the leader table is about compiling faster, not optimizing better).
   2186     // The leader table only tracks basic blocks, not edges. Only add to if we
   2187     // have the simple case where the edge dominates the end.
   2188     if (RootDominatesEnd && !isa<Instruction>(RHS))
   2189       addToLeaderTable(LVN, RHS, Root.getEnd());
   2190 
   2191     // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
   2192     // LHS always has at least one use that is not dominated by Root, this will
   2193     // never do anything if LHS has only one use.
   2194     if (!LHS->hasOneUse()) {
   2195       unsigned NumReplacements =
   2196           DominatesByEdge
   2197               ? replaceDominatedUsesWith(LHS, RHS, *DT, Root)
   2198               : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getEnd());
   2199 
   2200       Changed |= NumReplacements > 0;
   2201       NumGVNEqProp += NumReplacements;
   2202     }
   2203 
   2204     // Now try to deduce additional equalities from this one. For example, if
   2205     // the known equality was "(A != B)" == "false" then it follows that A and B
   2206     // are equal in the scope. Only boolean equalities with an explicit true or
   2207     // false RHS are currently supported.
   2208     if (!RHS->getType()->isIntegerTy(1))
   2209       // Not a boolean equality - bail out.
   2210       continue;
   2211     ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
   2212     if (!CI)
   2213       // RHS neither 'true' nor 'false' - bail out.
   2214       continue;
   2215     // Whether RHS equals 'true'.  Otherwise it equals 'false'.
   2216     bool isKnownTrue = CI->isAllOnesValue();
   2217     bool isKnownFalse = !isKnownTrue;
   2218 
   2219     // If "A && B" is known true then both A and B are known true.  If "A || B"
   2220     // is known false then both A and B are known false.
   2221     Value *A, *B;
   2222     if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
   2223         (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
   2224       Worklist.push_back(std::make_pair(A, RHS));
   2225       Worklist.push_back(std::make_pair(B, RHS));
   2226       continue;
   2227     }
   2228 
   2229     // If we are propagating an equality like "(A == B)" == "true" then also
   2230     // propagate the equality A == B.  When propagating a comparison such as
   2231     // "(A >= B)" == "true", replace all instances of "A < B" with "false".
   2232     if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) {
   2233       Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
   2234 
   2235       // If "A == B" is known true, or "A != B" is known false, then replace
   2236       // A with B everywhere in the scope.
   2237       if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
   2238           (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
   2239         Worklist.push_back(std::make_pair(Op0, Op1));
   2240 
   2241       // Handle the floating point versions of equality comparisons too.
   2242       if ((isKnownTrue && Cmp->getPredicate() == CmpInst::FCMP_OEQ) ||
   2243           (isKnownFalse && Cmp->getPredicate() == CmpInst::FCMP_UNE)) {
   2244 
   2245         // Floating point -0.0 and 0.0 compare equal, so we can only
   2246         // propagate values if we know that we have a constant and that
   2247         // its value is non-zero.
   2248 
   2249         // FIXME: We should do this optimization if 'no signed zeros' is
   2250         // applicable via an instruction-level fast-math-flag or some other
   2251         // indicator that relaxed FP semantics are being used.
   2252 
   2253         if (isa<ConstantFP>(Op1) && !cast<ConstantFP>(Op1)->isZero())
   2254           Worklist.push_back(std::make_pair(Op0, Op1));
   2255       }
   2256 
   2257       // If "A >= B" is known true, replace "A < B" with false everywhere.
   2258       CmpInst::Predicate NotPred = Cmp->getInversePredicate();
   2259       Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
   2260       // Since we don't have the instruction "A < B" immediately to hand, work
   2261       // out the value number that it would have and use that to find an
   2262       // appropriate instruction (if any).
   2263       uint32_t NextNum = VN.getNextUnusedValueNumber();
   2264       uint32_t Num = VN.lookup_or_add_cmp(Cmp->getOpcode(), NotPred, Op0, Op1);
   2265       // If the number we were assigned was brand new then there is no point in
   2266       // looking for an instruction realizing it: there cannot be one!
   2267       if (Num < NextNum) {
   2268         Value *NotCmp = findLeader(Root.getEnd(), Num);
   2269         if (NotCmp && isa<Instruction>(NotCmp)) {
   2270           unsigned NumReplacements =
   2271               DominatesByEdge
   2272                   ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root)
   2273                   : replaceDominatedUsesWith(NotCmp, NotVal, *DT,
   2274                                              Root.getEnd());
   2275           Changed |= NumReplacements > 0;
   2276           NumGVNEqProp += NumReplacements;
   2277         }
   2278       }
   2279       // Ensure that any instruction in scope that gets the "A < B" value number
   2280       // is replaced with false.
   2281       // The leader table only tracks basic blocks, not edges. Only add to if we
   2282       // have the simple case where the edge dominates the end.
   2283       if (RootDominatesEnd)
   2284         addToLeaderTable(Num, NotVal, Root.getEnd());
   2285 
   2286       continue;
   2287     }
   2288   }
   2289 
   2290   return Changed;
   2291 }
   2292 
   2293 /// When calculating availability, handle an instruction
   2294 /// by inserting it into the appropriate sets
   2295 bool GVN::processInstruction(Instruction *I) {
   2296   // Ignore dbg info intrinsics.
   2297   if (isa<DbgInfoIntrinsic>(I))
   2298     return false;
   2299 
   2300   // If the instruction can be easily simplified then do so now in preference
   2301   // to value numbering it.  Value numbering often exposes redundancies, for
   2302   // example if it determines that %y is equal to %x then the instruction
   2303   // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
   2304   const DataLayout &DL = I->getModule()->getDataLayout();
   2305   if (Value *V = SimplifyInstruction(I, DL, TLI, DT, AC)) {
   2306     I->replaceAllUsesWith(V);
   2307     if (MD && V->getType()->getScalarType()->isPointerTy())
   2308       MD->invalidateCachedPointerInfo(V);
   2309     markInstructionForDeletion(I);
   2310     ++NumGVNSimpl;
   2311     return true;
   2312   }
   2313 
   2314   if (IntrinsicInst *IntrinsicI = dyn_cast<IntrinsicInst>(I))
   2315     if (IntrinsicI->getIntrinsicID() == Intrinsic::assume)
   2316       return processAssumeIntrinsic(IntrinsicI);
   2317 
   2318   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
   2319     if (processLoad(LI))
   2320       return true;
   2321 
   2322     unsigned Num = VN.lookup_or_add(LI);
   2323     addToLeaderTable(Num, LI, LI->getParent());
   2324     return false;
   2325   }
   2326 
   2327   // For conditional branches, we can perform simple conditional propagation on
   2328   // the condition value itself.
   2329   if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
   2330     if (!BI->isConditional())
   2331       return false;
   2332 
   2333     if (isa<Constant>(BI->getCondition()))
   2334       return processFoldableCondBr(BI);
   2335 
   2336     Value *BranchCond = BI->getCondition();
   2337     BasicBlock *TrueSucc = BI->getSuccessor(0);
   2338     BasicBlock *FalseSucc = BI->getSuccessor(1);
   2339     // Avoid multiple edges early.
   2340     if (TrueSucc == FalseSucc)
   2341       return false;
   2342 
   2343     BasicBlock *Parent = BI->getParent();
   2344     bool Changed = false;
   2345 
   2346     Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
   2347     BasicBlockEdge TrueE(Parent, TrueSucc);
   2348     Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true);
   2349 
   2350     Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
   2351     BasicBlockEdge FalseE(Parent, FalseSucc);
   2352     Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true);
   2353 
   2354     return Changed;
   2355   }
   2356 
   2357   // For switches, propagate the case values into the case destinations.
   2358   if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
   2359     Value *SwitchCond = SI->getCondition();
   2360     BasicBlock *Parent = SI->getParent();
   2361     bool Changed = false;
   2362 
   2363     // Remember how many outgoing edges there are to every successor.
   2364     SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
   2365     for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
   2366       ++SwitchEdges[SI->getSuccessor(i)];
   2367 
   2368     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
   2369          i != e; ++i) {
   2370       BasicBlock *Dst = i.getCaseSuccessor();
   2371       // If there is only a single edge, propagate the case value into it.
   2372       if (SwitchEdges.lookup(Dst) == 1) {
   2373         BasicBlockEdge E(Parent, Dst);
   2374         Changed |= propagateEquality(SwitchCond, i.getCaseValue(), E, true);
   2375       }
   2376     }
   2377     return Changed;
   2378   }
   2379 
   2380   // Instructions with void type don't return a value, so there's
   2381   // no point in trying to find redundancies in them.
   2382   if (I->getType()->isVoidTy())
   2383     return false;
   2384 
   2385   uint32_t NextNum = VN.getNextUnusedValueNumber();
   2386   unsigned Num = VN.lookup_or_add(I);
   2387 
   2388   // Allocations are always uniquely numbered, so we can save time and memory
   2389   // by fast failing them.
   2390   if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
   2391     addToLeaderTable(Num, I, I->getParent());
   2392     return false;
   2393   }
   2394 
   2395   // If the number we were assigned was a brand new VN, then we don't
   2396   // need to do a lookup to see if the number already exists
   2397   // somewhere in the domtree: it can't!
   2398   if (Num >= NextNum) {
   2399     addToLeaderTable(Num, I, I->getParent());
   2400     return false;
   2401   }
   2402 
   2403   // Perform fast-path value-number based elimination of values inherited from
   2404   // dominators.
   2405   Value *Repl = findLeader(I->getParent(), Num);
   2406   if (!Repl) {
   2407     // Failure, just remember this instance for future use.
   2408     addToLeaderTable(Num, I, I->getParent());
   2409     return false;
   2410   } else if (Repl == I) {
   2411     // If I was the result of a shortcut PRE, it might already be in the table
   2412     // and the best replacement for itself. Nothing to do.
   2413     return false;
   2414   }
   2415 
   2416   // Remove it!
   2417   patchAndReplaceAllUsesWith(I, Repl);
   2418   if (MD && Repl->getType()->getScalarType()->isPointerTy())
   2419     MD->invalidateCachedPointerInfo(Repl);
   2420   markInstructionForDeletion(I);
   2421   return true;
   2422 }
   2423 
   2424 /// runOnFunction - This is the main transformation entry point for a function.
   2425 bool GVN::runOnFunction(Function& F) {
   2426   if (skipOptnoneFunction(F))
   2427     return false;
   2428 
   2429   if (!NoLoads)
   2430     MD = &getAnalysis<MemoryDependenceAnalysis>();
   2431   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
   2432   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
   2433   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
   2434   VN.setAliasAnalysis(&getAnalysis<AAResultsWrapperPass>().getAAResults());
   2435   VN.setMemDep(MD);
   2436   VN.setDomTree(DT);
   2437 
   2438   bool Changed = false;
   2439   bool ShouldContinue = true;
   2440 
   2441   // Merge unconditional branches, allowing PRE to catch more
   2442   // optimization opportunities.
   2443   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
   2444     BasicBlock *BB = &*FI++;
   2445 
   2446     bool removedBlock =
   2447         MergeBlockIntoPredecessor(BB, DT, /* LoopInfo */ nullptr, MD);
   2448     if (removedBlock) ++NumGVNBlocks;
   2449 
   2450     Changed |= removedBlock;
   2451   }
   2452 
   2453   unsigned Iteration = 0;
   2454   while (ShouldContinue) {
   2455     DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
   2456     ShouldContinue = iterateOnFunction(F);
   2457     Changed |= ShouldContinue;
   2458     ++Iteration;
   2459   }
   2460 
   2461   if (EnablePRE) {
   2462     // Fabricate val-num for dead-code in order to suppress assertion in
   2463     // performPRE().
   2464     assignValNumForDeadCode();
   2465     bool PREChanged = true;
   2466     while (PREChanged) {
   2467       PREChanged = performPRE(F);
   2468       Changed |= PREChanged;
   2469     }
   2470   }
   2471 
   2472   // FIXME: Should perform GVN again after PRE does something.  PRE can move
   2473   // computations into blocks where they become fully redundant.  Note that
   2474   // we can't do this until PRE's critical edge splitting updates memdep.
   2475   // Actually, when this happens, we should just fully integrate PRE into GVN.
   2476 
   2477   cleanupGlobalSets();
   2478   // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each
   2479   // iteration.
   2480   DeadBlocks.clear();
   2481 
   2482   return Changed;
   2483 }
   2484 
   2485 bool GVN::processBlock(BasicBlock *BB) {
   2486   // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
   2487   // (and incrementing BI before processing an instruction).
   2488   assert(InstrsToErase.empty() &&
   2489          "We expect InstrsToErase to be empty across iterations");
   2490   if (DeadBlocks.count(BB))
   2491     return false;
   2492 
   2493   // Clearing map before every BB because it can be used only for single BB.
   2494   ReplaceWithConstMap.clear();
   2495   bool ChangedFunction = false;
   2496 
   2497   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
   2498        BI != BE;) {
   2499     if (!ReplaceWithConstMap.empty())
   2500       ChangedFunction |= replaceOperandsWithConsts(&*BI);
   2501     ChangedFunction |= processInstruction(&*BI);
   2502 
   2503     if (InstrsToErase.empty()) {
   2504       ++BI;
   2505       continue;
   2506     }
   2507 
   2508     // If we need some instructions deleted, do it now.
   2509     NumGVNInstr += InstrsToErase.size();
   2510 
   2511     // Avoid iterator invalidation.
   2512     bool AtStart = BI == BB->begin();
   2513     if (!AtStart)
   2514       --BI;
   2515 
   2516     for (SmallVectorImpl<Instruction *>::iterator I = InstrsToErase.begin(),
   2517          E = InstrsToErase.end(); I != E; ++I) {
   2518       DEBUG(dbgs() << "GVN removed: " << **I << '\n');
   2519       if (MD) MD->removeInstruction(*I);
   2520       DEBUG(verifyRemoved(*I));
   2521       (*I)->eraseFromParent();
   2522     }
   2523     InstrsToErase.clear();
   2524 
   2525     if (AtStart)
   2526       BI = BB->begin();
   2527     else
   2528       ++BI;
   2529   }
   2530 
   2531   return ChangedFunction;
   2532 }
   2533 
   2534 // Instantiate an expression in a predecessor that lacked it.
   2535 bool GVN::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred,
   2536                                     unsigned int ValNo) {
   2537   // Because we are going top-down through the block, all value numbers
   2538   // will be available in the predecessor by the time we need them.  Any
   2539   // that weren't originally present will have been instantiated earlier
   2540   // in this loop.
   2541   bool success = true;
   2542   for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) {
   2543     Value *Op = Instr->getOperand(i);
   2544     if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
   2545       continue;
   2546     // This could be a newly inserted instruction, in which case, we won't
   2547     // find a value number, and should give up before we hurt ourselves.
   2548     // FIXME: Rewrite the infrastructure to let it easier to value number
   2549     // and process newly inserted instructions.
   2550     if (!VN.exists(Op)) {
   2551       success = false;
   2552       break;
   2553     }
   2554     if (Value *V = findLeader(Pred, VN.lookup(Op))) {
   2555       Instr->setOperand(i, V);
   2556     } else {
   2557       success = false;
   2558       break;
   2559     }
   2560   }
   2561 
   2562   // Fail out if we encounter an operand that is not available in
   2563   // the PRE predecessor.  This is typically because of loads which
   2564   // are not value numbered precisely.
   2565   if (!success)
   2566     return false;
   2567 
   2568   Instr->insertBefore(Pred->getTerminator());
   2569   Instr->setName(Instr->getName() + ".pre");
   2570   Instr->setDebugLoc(Instr->getDebugLoc());
   2571   VN.add(Instr, ValNo);
   2572 
   2573   // Update the availability map to include the new instruction.
   2574   addToLeaderTable(ValNo, Instr, Pred);
   2575   return true;
   2576 }
   2577 
   2578 bool GVN::performScalarPRE(Instruction *CurInst) {
   2579   SmallVector<std::pair<Value*, BasicBlock*>, 8> predMap;
   2580 
   2581   if (isa<AllocaInst>(CurInst) || isa<TerminatorInst>(CurInst) ||
   2582       isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() ||
   2583       CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
   2584       isa<DbgInfoIntrinsic>(CurInst))
   2585     return false;
   2586 
   2587   // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
   2588   // sinking the compare again, and it would force the code generator to
   2589   // move the i1 from processor flags or predicate registers into a general
   2590   // purpose register.
   2591   if (isa<CmpInst>(CurInst))
   2592     return false;
   2593 
   2594   // We don't currently value number ANY inline asm calls.
   2595   if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
   2596     if (CallI->isInlineAsm())
   2597       return false;
   2598 
   2599   uint32_t ValNo = VN.lookup(CurInst);
   2600 
   2601   // Look for the predecessors for PRE opportunities.  We're
   2602   // only trying to solve the basic diamond case, where
   2603   // a value is computed in the successor and one predecessor,
   2604   // but not the other.  We also explicitly disallow cases
   2605   // where the successor is its own predecessor, because they're
   2606   // more complicated to get right.
   2607   unsigned NumWith = 0;
   2608   unsigned NumWithout = 0;
   2609   BasicBlock *PREPred = nullptr;
   2610   BasicBlock *CurrentBlock = CurInst->getParent();
   2611   predMap.clear();
   2612 
   2613   for (BasicBlock *P : predecessors(CurrentBlock)) {
   2614     // We're not interested in PRE where the block is its
   2615     // own predecessor, or in blocks with predecessors
   2616     // that are not reachable.
   2617     if (P == CurrentBlock) {
   2618       NumWithout = 2;
   2619       break;
   2620     } else if (!DT->isReachableFromEntry(P)) {
   2621       NumWithout = 2;
   2622       break;
   2623     }
   2624 
   2625     Value *predV = findLeader(P, ValNo);
   2626     if (!predV) {
   2627       predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P));
   2628       PREPred = P;
   2629       ++NumWithout;
   2630     } else if (predV == CurInst) {
   2631       /* CurInst dominates this predecessor. */
   2632       NumWithout = 2;
   2633       break;
   2634     } else {
   2635       predMap.push_back(std::make_pair(predV, P));
   2636       ++NumWith;
   2637     }
   2638   }
   2639 
   2640   // Don't do PRE when it might increase code size, i.e. when
   2641   // we would need to insert instructions in more than one pred.
   2642   if (NumWithout > 1 || NumWith == 0)
   2643     return false;
   2644 
   2645   // We may have a case where all predecessors have the instruction,
   2646   // and we just need to insert a phi node. Otherwise, perform
   2647   // insertion.
   2648   Instruction *PREInstr = nullptr;
   2649 
   2650   if (NumWithout != 0) {
   2651     // Don't do PRE across indirect branch.
   2652     if (isa<IndirectBrInst>(PREPred->getTerminator()))
   2653       return false;
   2654 
   2655     // We can't do PRE safely on a critical edge, so instead we schedule
   2656     // the edge to be split and perform the PRE the next time we iterate
   2657     // on the function.
   2658     unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
   2659     if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
   2660       toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
   2661       return false;
   2662     }
   2663     // We need to insert somewhere, so let's give it a shot
   2664     PREInstr = CurInst->clone();
   2665     if (!performScalarPREInsertion(PREInstr, PREPred, ValNo)) {
   2666       // If we failed insertion, make sure we remove the instruction.
   2667       DEBUG(verifyRemoved(PREInstr));
   2668       delete PREInstr;
   2669       return false;
   2670     }
   2671   }
   2672 
   2673   // Either we should have filled in the PRE instruction, or we should
   2674   // not have needed insertions.
   2675   assert (PREInstr != nullptr || NumWithout == 0);
   2676 
   2677   ++NumGVNPRE;
   2678 
   2679   // Create a PHI to make the value available in this block.
   2680   PHINode *Phi =
   2681       PHINode::Create(CurInst->getType(), predMap.size(),
   2682                       CurInst->getName() + ".pre-phi", &CurrentBlock->front());
   2683   for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
   2684     if (Value *V = predMap[i].first)
   2685       Phi->addIncoming(V, predMap[i].second);
   2686     else
   2687       Phi->addIncoming(PREInstr, PREPred);
   2688   }
   2689 
   2690   VN.add(Phi, ValNo);
   2691   addToLeaderTable(ValNo, Phi, CurrentBlock);
   2692   Phi->setDebugLoc(CurInst->getDebugLoc());
   2693   CurInst->replaceAllUsesWith(Phi);
   2694   if (MD && Phi->getType()->getScalarType()->isPointerTy())
   2695     MD->invalidateCachedPointerInfo(Phi);
   2696   VN.erase(CurInst);
   2697   removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
   2698 
   2699   DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
   2700   if (MD)
   2701     MD->removeInstruction(CurInst);
   2702   DEBUG(verifyRemoved(CurInst));
   2703   CurInst->eraseFromParent();
   2704   ++NumGVNInstr;
   2705 
   2706   return true;
   2707 }
   2708 
   2709 /// Perform a purely local form of PRE that looks for diamond
   2710 /// control flow patterns and attempts to perform simple PRE at the join point.
   2711 bool GVN::performPRE(Function &F) {
   2712   bool Changed = false;
   2713   for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) {
   2714     // Nothing to PRE in the entry block.
   2715     if (CurrentBlock == &F.getEntryBlock())
   2716       continue;
   2717 
   2718     // Don't perform PRE on an EH pad.
   2719     if (CurrentBlock->isEHPad())
   2720       continue;
   2721 
   2722     for (BasicBlock::iterator BI = CurrentBlock->begin(),
   2723                               BE = CurrentBlock->end();
   2724          BI != BE;) {
   2725       Instruction *CurInst = &*BI++;
   2726       Changed |= performScalarPRE(CurInst);
   2727     }
   2728   }
   2729 
   2730   if (splitCriticalEdges())
   2731     Changed = true;
   2732 
   2733   return Changed;
   2734 }
   2735 
   2736 /// Split the critical edge connecting the given two blocks, and return
   2737 /// the block inserted to the critical edge.
   2738 BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) {
   2739   BasicBlock *BB =
   2740       SplitCriticalEdge(Pred, Succ, CriticalEdgeSplittingOptions(DT));
   2741   if (MD)
   2742     MD->invalidateCachedPredecessors();
   2743   return BB;
   2744 }
   2745 
   2746 /// Split critical edges found during the previous
   2747 /// iteration that may enable further optimization.
   2748 bool GVN::splitCriticalEdges() {
   2749   if (toSplit.empty())
   2750     return false;
   2751   do {
   2752     std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
   2753     SplitCriticalEdge(Edge.first, Edge.second,
   2754                       CriticalEdgeSplittingOptions(DT));
   2755   } while (!toSplit.empty());
   2756   if (MD) MD->invalidateCachedPredecessors();
   2757   return true;
   2758 }
   2759 
   2760 /// Executes one iteration of GVN
   2761 bool GVN::iterateOnFunction(Function &F) {
   2762   cleanupGlobalSets();
   2763 
   2764   // Top-down walk of the dominator tree
   2765   bool Changed = false;
   2766   // Save the blocks this function have before transformation begins. GVN may
   2767   // split critical edge, and hence may invalidate the RPO/DT iterator.
   2768   //
   2769   std::vector<BasicBlock *> BBVect;
   2770   BBVect.reserve(256);
   2771   // Needed for value numbering with phi construction to work.
   2772   ReversePostOrderTraversal<Function *> RPOT(&F);
   2773   for (ReversePostOrderTraversal<Function *>::rpo_iterator RI = RPOT.begin(),
   2774                                                            RE = RPOT.end();
   2775        RI != RE; ++RI)
   2776     BBVect.push_back(*RI);
   2777 
   2778   for (std::vector<BasicBlock *>::iterator I = BBVect.begin(), E = BBVect.end();
   2779        I != E; I++)
   2780     Changed |= processBlock(*I);
   2781 
   2782   return Changed;
   2783 }
   2784 
   2785 void GVN::cleanupGlobalSets() {
   2786   VN.clear();
   2787   LeaderTable.clear();
   2788   TableAllocator.Reset();
   2789 }
   2790 
   2791 /// Verify that the specified instruction does not occur in our
   2792 /// internal data structures.
   2793 void GVN::verifyRemoved(const Instruction *Inst) const {
   2794   VN.verifyRemoved(Inst);
   2795 
   2796   // Walk through the value number scope to make sure the instruction isn't
   2797   // ferreted away in it.
   2798   for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
   2799        I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
   2800     const LeaderTableEntry *Node = &I->second;
   2801     assert(Node->Val != Inst && "Inst still in value numbering scope!");
   2802 
   2803     while (Node->Next) {
   2804       Node = Node->Next;
   2805       assert(Node->Val != Inst && "Inst still in value numbering scope!");
   2806     }
   2807   }
   2808 }
   2809 
   2810 /// BB is declared dead, which implied other blocks become dead as well. This
   2811 /// function is to add all these blocks to "DeadBlocks". For the dead blocks'
   2812 /// live successors, update their phi nodes by replacing the operands
   2813 /// corresponding to dead blocks with UndefVal.
   2814 void GVN::addDeadBlock(BasicBlock *BB) {
   2815   SmallVector<BasicBlock *, 4> NewDead;
   2816   SmallSetVector<BasicBlock *, 4> DF;
   2817 
   2818   NewDead.push_back(BB);
   2819   while (!NewDead.empty()) {
   2820     BasicBlock *D = NewDead.pop_back_val();
   2821     if (DeadBlocks.count(D))
   2822       continue;
   2823 
   2824     // All blocks dominated by D are dead.
   2825     SmallVector<BasicBlock *, 8> Dom;
   2826     DT->getDescendants(D, Dom);
   2827     DeadBlocks.insert(Dom.begin(), Dom.end());
   2828 
   2829     // Figure out the dominance-frontier(D).
   2830     for (BasicBlock *B : Dom) {
   2831       for (BasicBlock *S : successors(B)) {
   2832         if (DeadBlocks.count(S))
   2833           continue;
   2834 
   2835         bool AllPredDead = true;
   2836         for (BasicBlock *P : predecessors(S))
   2837           if (!DeadBlocks.count(P)) {
   2838             AllPredDead = false;
   2839             break;
   2840           }
   2841 
   2842         if (!AllPredDead) {
   2843           // S could be proved dead later on. That is why we don't update phi
   2844           // operands at this moment.
   2845           DF.insert(S);
   2846         } else {
   2847           // While S is not dominated by D, it is dead by now. This could take
   2848           // place if S already have a dead predecessor before D is declared
   2849           // dead.
   2850           NewDead.push_back(S);
   2851         }
   2852       }
   2853     }
   2854   }
   2855 
   2856   // For the dead blocks' live successors, update their phi nodes by replacing
   2857   // the operands corresponding to dead blocks with UndefVal.
   2858   for(SmallSetVector<BasicBlock *, 4>::iterator I = DF.begin(), E = DF.end();
   2859         I != E; I++) {
   2860     BasicBlock *B = *I;
   2861     if (DeadBlocks.count(B))
   2862       continue;
   2863 
   2864     SmallVector<BasicBlock *, 4> Preds(pred_begin(B), pred_end(B));
   2865     for (BasicBlock *P : Preds) {
   2866       if (!DeadBlocks.count(P))
   2867         continue;
   2868 
   2869       if (isCriticalEdge(P->getTerminator(), GetSuccessorNumber(P, B))) {
   2870         if (BasicBlock *S = splitCriticalEdges(P, B))
   2871           DeadBlocks.insert(P = S);
   2872       }
   2873 
   2874       for (BasicBlock::iterator II = B->begin(); isa<PHINode>(II); ++II) {
   2875         PHINode &Phi = cast<PHINode>(*II);
   2876         Phi.setIncomingValue(Phi.getBasicBlockIndex(P),
   2877                              UndefValue::get(Phi.getType()));
   2878       }
   2879     }
   2880   }
   2881 }
   2882 
   2883 // If the given branch is recognized as a foldable branch (i.e. conditional
   2884 // branch with constant condition), it will perform following analyses and
   2885 // transformation.
   2886 //  1) If the dead out-coming edge is a critical-edge, split it. Let
   2887 //     R be the target of the dead out-coming edge.
   2888 //  1) Identify the set of dead blocks implied by the branch's dead outcoming
   2889 //     edge. The result of this step will be {X| X is dominated by R}
   2890 //  2) Identify those blocks which haves at least one dead predecessor. The
   2891 //     result of this step will be dominance-frontier(R).
   2892 //  3) Update the PHIs in DF(R) by replacing the operands corresponding to
   2893 //     dead blocks with "UndefVal" in an hope these PHIs will optimized away.
   2894 //
   2895 // Return true iff *NEW* dead code are found.
   2896 bool GVN::processFoldableCondBr(BranchInst *BI) {
   2897   if (!BI || BI->isUnconditional())
   2898     return false;
   2899 
   2900   // If a branch has two identical successors, we cannot declare either dead.
   2901   if (BI->getSuccessor(0) == BI->getSuccessor(1))
   2902     return false;
   2903 
   2904   ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
   2905   if (!Cond)
   2906     return false;
   2907 
   2908   BasicBlock *DeadRoot = Cond->getZExtValue() ?
   2909                          BI->getSuccessor(1) : BI->getSuccessor(0);
   2910   if (DeadBlocks.count(DeadRoot))
   2911     return false;
   2912 
   2913   if (!DeadRoot->getSinglePredecessor())
   2914     DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot);
   2915 
   2916   addDeadBlock(DeadRoot);
   2917   return true;
   2918 }
   2919 
   2920 // performPRE() will trigger assert if it comes across an instruction without
   2921 // associated val-num. As it normally has far more live instructions than dead
   2922 // instructions, it makes more sense just to "fabricate" a val-number for the
   2923 // dead code than checking if instruction involved is dead or not.
   2924 void GVN::assignValNumForDeadCode() {
   2925   for (BasicBlock *BB : DeadBlocks) {
   2926     for (Instruction &Inst : *BB) {
   2927       unsigned ValNum = VN.lookup_or_add(&Inst);
   2928       addToLeaderTable(ValNum, &Inst, BB);
   2929     }
   2930   }
   2931 }
   2932