Home | History | Annotate | Download | only in TableGen
      1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines structures to encapsulate information gleaned from the
     11 // target register and register class definitions.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "CodeGenRegisters.h"
     16 #include "CodeGenTarget.h"
     17 #include "llvm/ADT/IntEqClasses.h"
     18 #include "llvm/ADT/STLExtras.h"
     19 #include "llvm/ADT/SmallVector.h"
     20 #include "llvm/ADT/StringExtras.h"
     21 #include "llvm/ADT/Twine.h"
     22 #include "llvm/Support/Debug.h"
     23 #include "llvm/TableGen/Error.h"
     24 
     25 using namespace llvm;
     26 
     27 #define DEBUG_TYPE "regalloc-emitter"
     28 
     29 //===----------------------------------------------------------------------===//
     30 //                             CodeGenSubRegIndex
     31 //===----------------------------------------------------------------------===//
     32 
     33 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
     34   : TheDef(R), EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) {
     35   Name = R->getName();
     36   if (R->getValue("Namespace"))
     37     Namespace = R->getValueAsString("Namespace");
     38   Size = R->getValueAsInt("Size");
     39   Offset = R->getValueAsInt("Offset");
     40 }
     41 
     42 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
     43                                        unsigned Enum)
     44   : TheDef(nullptr), Name(N), Namespace(Nspace), Size(-1), Offset(-1),
     45     EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) {
     46 }
     47 
     48 std::string CodeGenSubRegIndex::getQualifiedName() const {
     49   std::string N = getNamespace();
     50   if (!N.empty())
     51     N += "::";
     52   N += getName();
     53   return N;
     54 }
     55 
     56 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
     57   if (!TheDef)
     58     return;
     59 
     60   std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
     61   if (!Comps.empty()) {
     62     if (Comps.size() != 2)
     63       PrintFatalError(TheDef->getLoc(),
     64                       "ComposedOf must have exactly two entries");
     65     CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
     66     CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
     67     CodeGenSubRegIndex *X = A->addComposite(B, this);
     68     if (X)
     69       PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
     70   }
     71 
     72   std::vector<Record*> Parts =
     73     TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
     74   if (!Parts.empty()) {
     75     if (Parts.size() < 2)
     76       PrintFatalError(TheDef->getLoc(),
     77                       "CoveredBySubRegs must have two or more entries");
     78     SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
     79     for (unsigned i = 0, e = Parts.size(); i != e; ++i)
     80       IdxParts.push_back(RegBank.getSubRegIdx(Parts[i]));
     81     RegBank.addConcatSubRegIndex(IdxParts, this);
     82   }
     83 }
     84 
     85 unsigned CodeGenSubRegIndex::computeLaneMask() const {
     86   // Already computed?
     87   if (LaneMask)
     88     return LaneMask;
     89 
     90   // Recursion guard, shouldn't be required.
     91   LaneMask = ~0u;
     92 
     93   // The lane mask is simply the union of all sub-indices.
     94   unsigned M = 0;
     95   for (const auto &C : Composed)
     96     M |= C.second->computeLaneMask();
     97   assert(M && "Missing lane mask, sub-register cycle?");
     98   LaneMask = M;
     99   return LaneMask;
    100 }
    101 
    102 //===----------------------------------------------------------------------===//
    103 //                              CodeGenRegister
    104 //===----------------------------------------------------------------------===//
    105 
    106 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
    107   : TheDef(R),
    108     EnumValue(Enum),
    109     CostPerUse(R->getValueAsInt("CostPerUse")),
    110     CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
    111     HasDisjunctSubRegs(false),
    112     SubRegsComplete(false),
    113     SuperRegsComplete(false),
    114     TopoSig(~0u)
    115 {}
    116 
    117 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
    118   std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
    119   std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
    120 
    121   if (SRIs.size() != SRs.size())
    122     PrintFatalError(TheDef->getLoc(),
    123                     "SubRegs and SubRegIndices must have the same size");
    124 
    125   for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
    126     ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
    127     ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
    128   }
    129 
    130   // Also compute leading super-registers. Each register has a list of
    131   // covered-by-subregs super-registers where it appears as the first explicit
    132   // sub-register.
    133   //
    134   // This is used by computeSecondarySubRegs() to find candidates.
    135   if (CoveredBySubRegs && !ExplicitSubRegs.empty())
    136     ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
    137 
    138   // Add ad hoc alias links. This is a symmetric relationship between two
    139   // registers, so build a symmetric graph by adding links in both ends.
    140   std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
    141   for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
    142     CodeGenRegister *Reg = RegBank.getReg(Aliases[i]);
    143     ExplicitAliases.push_back(Reg);
    144     Reg->ExplicitAliases.push_back(this);
    145   }
    146 }
    147 
    148 const std::string &CodeGenRegister::getName() const {
    149   assert(TheDef && "no def");
    150   return TheDef->getName();
    151 }
    152 
    153 namespace {
    154 // Iterate over all register units in a set of registers.
    155 class RegUnitIterator {
    156   CodeGenRegister::Vec::const_iterator RegI, RegE;
    157   CodeGenRegister::RegUnitList::iterator UnitI, UnitE;
    158 
    159 public:
    160   RegUnitIterator(const CodeGenRegister::Vec &Regs):
    161     RegI(Regs.begin()), RegE(Regs.end()), UnitI(), UnitE() {
    162 
    163     if (RegI != RegE) {
    164       UnitI = (*RegI)->getRegUnits().begin();
    165       UnitE = (*RegI)->getRegUnits().end();
    166       advance();
    167     }
    168   }
    169 
    170   bool isValid() const { return UnitI != UnitE; }
    171 
    172   unsigned operator* () const { assert(isValid()); return *UnitI; }
    173 
    174   const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
    175 
    176   /// Preincrement.  Move to the next unit.
    177   void operator++() {
    178     assert(isValid() && "Cannot advance beyond the last operand");
    179     ++UnitI;
    180     advance();
    181   }
    182 
    183 protected:
    184   void advance() {
    185     while (UnitI == UnitE) {
    186       if (++RegI == RegE)
    187         break;
    188       UnitI = (*RegI)->getRegUnits().begin();
    189       UnitE = (*RegI)->getRegUnits().end();
    190     }
    191   }
    192 };
    193 } // namespace
    194 
    195 // Return true of this unit appears in RegUnits.
    196 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
    197   return RegUnits.test(Unit);
    198 }
    199 
    200 // Inherit register units from subregisters.
    201 // Return true if the RegUnits changed.
    202 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
    203   bool changed = false;
    204   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
    205        I != E; ++I) {
    206     CodeGenRegister *SR = I->second;
    207     // Merge the subregister's units into this register's RegUnits.
    208     changed |= (RegUnits |= SR->RegUnits);
    209   }
    210 
    211   return changed;
    212 }
    213 
    214 const CodeGenRegister::SubRegMap &
    215 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
    216   // Only compute this map once.
    217   if (SubRegsComplete)
    218     return SubRegs;
    219   SubRegsComplete = true;
    220 
    221   HasDisjunctSubRegs = ExplicitSubRegs.size() > 1;
    222 
    223   // First insert the explicit subregs and make sure they are fully indexed.
    224   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
    225     CodeGenRegister *SR = ExplicitSubRegs[i];
    226     CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
    227     if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
    228       PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
    229                       " appears twice in Register " + getName());
    230     // Map explicit sub-registers first, so the names take precedence.
    231     // The inherited sub-registers are mapped below.
    232     SubReg2Idx.insert(std::make_pair(SR, Idx));
    233   }
    234 
    235   // Keep track of inherited subregs and how they can be reached.
    236   SmallPtrSet<CodeGenRegister*, 8> Orphans;
    237 
    238   // Clone inherited subregs and place duplicate entries in Orphans.
    239   // Here the order is important - earlier subregs take precedence.
    240   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
    241     CodeGenRegister *SR = ExplicitSubRegs[i];
    242     const SubRegMap &Map = SR->computeSubRegs(RegBank);
    243     HasDisjunctSubRegs |= SR->HasDisjunctSubRegs;
    244 
    245     for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
    246          ++SI) {
    247       if (!SubRegs.insert(*SI).second)
    248         Orphans.insert(SI->second);
    249     }
    250   }
    251 
    252   // Expand any composed subreg indices.
    253   // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
    254   // qsub_1 subreg, add a dsub_2 subreg.  Keep growing Indices and process
    255   // expanded subreg indices recursively.
    256   SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
    257   for (unsigned i = 0; i != Indices.size(); ++i) {
    258     CodeGenSubRegIndex *Idx = Indices[i];
    259     const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
    260     CodeGenRegister *SR = SubRegs[Idx];
    261     const SubRegMap &Map = SR->computeSubRegs(RegBank);
    262 
    263     // Look at the possible compositions of Idx.
    264     // They may not all be supported by SR.
    265     for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(),
    266            E = Comps.end(); I != E; ++I) {
    267       SubRegMap::const_iterator SRI = Map.find(I->first);
    268       if (SRI == Map.end())
    269         continue; // Idx + I->first doesn't exist in SR.
    270       // Add I->second as a name for the subreg SRI->second, assuming it is
    271       // orphaned, and the name isn't already used for something else.
    272       if (SubRegs.count(I->second) || !Orphans.erase(SRI->second))
    273         continue;
    274       // We found a new name for the orphaned sub-register.
    275       SubRegs.insert(std::make_pair(I->second, SRI->second));
    276       Indices.push_back(I->second);
    277     }
    278   }
    279 
    280   // Now Orphans contains the inherited subregisters without a direct index.
    281   // Create inferred indexes for all missing entries.
    282   // Work backwards in the Indices vector in order to compose subregs bottom-up.
    283   // Consider this subreg sequence:
    284   //
    285   //   qsub_1 -> dsub_0 -> ssub_0
    286   //
    287   // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
    288   // can be reached in two different ways:
    289   //
    290   //   qsub_1 -> ssub_0
    291   //   dsub_2 -> ssub_0
    292   //
    293   // We pick the latter composition because another register may have [dsub_0,
    294   // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg.  The
    295   // dsub_2 -> ssub_0 composition can be shared.
    296   while (!Indices.empty() && !Orphans.empty()) {
    297     CodeGenSubRegIndex *Idx = Indices.pop_back_val();
    298     CodeGenRegister *SR = SubRegs[Idx];
    299     const SubRegMap &Map = SR->computeSubRegs(RegBank);
    300     for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
    301          ++SI)
    302       if (Orphans.erase(SI->second))
    303         SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second;
    304   }
    305 
    306   // Compute the inverse SubReg -> Idx map.
    307   for (SubRegMap::const_iterator SI = SubRegs.begin(), SE = SubRegs.end();
    308        SI != SE; ++SI) {
    309     if (SI->second == this) {
    310       ArrayRef<SMLoc> Loc;
    311       if (TheDef)
    312         Loc = TheDef->getLoc();
    313       PrintFatalError(Loc, "Register " + getName() +
    314                       " has itself as a sub-register");
    315     }
    316 
    317     // Compute AllSuperRegsCovered.
    318     if (!CoveredBySubRegs)
    319       SI->first->AllSuperRegsCovered = false;
    320 
    321     // Ensure that every sub-register has a unique name.
    322     DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
    323       SubReg2Idx.insert(std::make_pair(SI->second, SI->first)).first;
    324     if (Ins->second == SI->first)
    325       continue;
    326     // Trouble: Two different names for SI->second.
    327     ArrayRef<SMLoc> Loc;
    328     if (TheDef)
    329       Loc = TheDef->getLoc();
    330     PrintFatalError(Loc, "Sub-register can't have two names: " +
    331                   SI->second->getName() + " available as " +
    332                   SI->first->getName() + " and " + Ins->second->getName());
    333   }
    334 
    335   // Derive possible names for sub-register concatenations from any explicit
    336   // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
    337   // that getConcatSubRegIndex() won't invent any concatenated indices that the
    338   // user already specified.
    339   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
    340     CodeGenRegister *SR = ExplicitSubRegs[i];
    341     if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1)
    342       continue;
    343 
    344     // SR is composed of multiple sub-regs. Find their names in this register.
    345     SmallVector<CodeGenSubRegIndex*, 8> Parts;
    346     for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j)
    347       Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
    348 
    349     // Offer this as an existing spelling for the concatenation of Parts.
    350     RegBank.addConcatSubRegIndex(Parts, ExplicitSubRegIndices[i]);
    351   }
    352 
    353   // Initialize RegUnitList. Because getSubRegs is called recursively, this
    354   // processes the register hierarchy in postorder.
    355   //
    356   // Inherit all sub-register units. It is good enough to look at the explicit
    357   // sub-registers, the other registers won't contribute any more units.
    358   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
    359     CodeGenRegister *SR = ExplicitSubRegs[i];
    360     RegUnits |= SR->RegUnits;
    361   }
    362 
    363   // Absent any ad hoc aliasing, we create one register unit per leaf register.
    364   // These units correspond to the maximal cliques in the register overlap
    365   // graph which is optimal.
    366   //
    367   // When there is ad hoc aliasing, we simply create one unit per edge in the
    368   // undirected ad hoc aliasing graph. Technically, we could do better by
    369   // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
    370   // are extremely rare anyway (I've never seen one), so we don't bother with
    371   // the added complexity.
    372   for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
    373     CodeGenRegister *AR = ExplicitAliases[i];
    374     // Only visit each edge once.
    375     if (AR->SubRegsComplete)
    376       continue;
    377     // Create a RegUnit representing this alias edge, and add it to both
    378     // registers.
    379     unsigned Unit = RegBank.newRegUnit(this, AR);
    380     RegUnits.set(Unit);
    381     AR->RegUnits.set(Unit);
    382   }
    383 
    384   // Finally, create units for leaf registers without ad hoc aliases. Note that
    385   // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
    386   // necessary. This means the aliasing leaf registers can share a single unit.
    387   if (RegUnits.empty())
    388     RegUnits.set(RegBank.newRegUnit(this));
    389 
    390   // We have now computed the native register units. More may be adopted later
    391   // for balancing purposes.
    392   NativeRegUnits = RegUnits;
    393 
    394   return SubRegs;
    395 }
    396 
    397 // In a register that is covered by its sub-registers, try to find redundant
    398 // sub-registers. For example:
    399 //
    400 //   QQ0 = {Q0, Q1}
    401 //   Q0 = {D0, D1}
    402 //   Q1 = {D2, D3}
    403 //
    404 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in
    405 // the register definition.
    406 //
    407 // The explicitly specified registers form a tree. This function discovers
    408 // sub-register relationships that would force a DAG.
    409 //
    410 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
    411   // Collect new sub-registers first, add them later.
    412   SmallVector<SubRegMap::value_type, 8> NewSubRegs;
    413 
    414   // Look at the leading super-registers of each sub-register. Those are the
    415   // candidates for new sub-registers, assuming they are fully contained in
    416   // this register.
    417   for (SubRegMap::iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I){
    418     const CodeGenRegister *SubReg = I->second;
    419     const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
    420     for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
    421       CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
    422       // Already got this sub-register?
    423       if (Cand == this || getSubRegIndex(Cand))
    424         continue;
    425       // Check if each component of Cand is already a sub-register.
    426       // We know that the first component is I->second, and is present with the
    427       // name I->first.
    428       SmallVector<CodeGenSubRegIndex*, 8> Parts(1, I->first);
    429       assert(!Cand->ExplicitSubRegs.empty() &&
    430              "Super-register has no sub-registers");
    431       for (unsigned j = 1, e = Cand->ExplicitSubRegs.size(); j != e; ++j) {
    432         if (CodeGenSubRegIndex *Idx = getSubRegIndex(Cand->ExplicitSubRegs[j]))
    433           Parts.push_back(Idx);
    434         else {
    435           // Sub-register doesn't exist.
    436           Parts.clear();
    437           break;
    438         }
    439       }
    440       // If some Cand sub-register is not part of this register, or if Cand only
    441       // has one sub-register, there is nothing to do.
    442       if (Parts.size() <= 1)
    443         continue;
    444 
    445       // Each part of Cand is a sub-register of this. Make the full Cand also
    446       // a sub-register with a concatenated sub-register index.
    447       CodeGenSubRegIndex *Concat= RegBank.getConcatSubRegIndex(Parts);
    448       NewSubRegs.push_back(std::make_pair(Concat, Cand));
    449     }
    450   }
    451 
    452   // Now add all the new sub-registers.
    453   for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
    454     // Don't add Cand if another sub-register is already using the index.
    455     if (!SubRegs.insert(NewSubRegs[i]).second)
    456       continue;
    457 
    458     CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
    459     CodeGenRegister *NewSubReg = NewSubRegs[i].second;
    460     SubReg2Idx.insert(std::make_pair(NewSubReg, NewIdx));
    461   }
    462 
    463   // Create sub-register index composition maps for the synthesized indices.
    464   for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
    465     CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
    466     CodeGenRegister *NewSubReg = NewSubRegs[i].second;
    467     for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(),
    468            SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) {
    469       CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second);
    470       if (!SubIdx)
    471         PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
    472                         SI->second->getName() + " in " + getName());
    473       NewIdx->addComposite(SI->first, SubIdx);
    474     }
    475   }
    476 }
    477 
    478 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
    479   // Only visit each register once.
    480   if (SuperRegsComplete)
    481     return;
    482   SuperRegsComplete = true;
    483 
    484   // Make sure all sub-registers have been visited first, so the super-reg
    485   // lists will be topologically ordered.
    486   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
    487        I != E; ++I)
    488     I->second->computeSuperRegs(RegBank);
    489 
    490   // Now add this as a super-register on all sub-registers.
    491   // Also compute the TopoSigId in post-order.
    492   TopoSigId Id;
    493   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
    494        I != E; ++I) {
    495     // Topological signature computed from SubIdx, TopoId(SubReg).
    496     // Loops and idempotent indices have TopoSig = ~0u.
    497     Id.push_back(I->first->EnumValue);
    498     Id.push_back(I->second->TopoSig);
    499 
    500     // Don't add duplicate entries.
    501     if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this)
    502       continue;
    503     I->second->SuperRegs.push_back(this);
    504   }
    505   TopoSig = RegBank.getTopoSig(Id);
    506 }
    507 
    508 void
    509 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
    510                                     CodeGenRegBank &RegBank) const {
    511   assert(SubRegsComplete && "Must precompute sub-registers");
    512   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
    513     CodeGenRegister *SR = ExplicitSubRegs[i];
    514     if (OSet.insert(SR))
    515       SR->addSubRegsPreOrder(OSet, RegBank);
    516   }
    517   // Add any secondary sub-registers that weren't part of the explicit tree.
    518   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
    519        I != E; ++I)
    520     OSet.insert(I->second);
    521 }
    522 
    523 // Get the sum of this register's unit weights.
    524 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
    525   unsigned Weight = 0;
    526   for (RegUnitList::iterator I = RegUnits.begin(), E = RegUnits.end();
    527        I != E; ++I) {
    528     Weight += RegBank.getRegUnit(*I).Weight;
    529   }
    530   return Weight;
    531 }
    532 
    533 //===----------------------------------------------------------------------===//
    534 //                               RegisterTuples
    535 //===----------------------------------------------------------------------===//
    536 
    537 // A RegisterTuples def is used to generate pseudo-registers from lists of
    538 // sub-registers. We provide a SetTheory expander class that returns the new
    539 // registers.
    540 namespace {
    541 struct TupleExpander : SetTheory::Expander {
    542   void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override {
    543     std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
    544     unsigned Dim = Indices.size();
    545     ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
    546     if (Dim != SubRegs->size())
    547       PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
    548     if (Dim < 2)
    549       PrintFatalError(Def->getLoc(),
    550                       "Tuples must have at least 2 sub-registers");
    551 
    552     // Evaluate the sub-register lists to be zipped.
    553     unsigned Length = ~0u;
    554     SmallVector<SetTheory::RecSet, 4> Lists(Dim);
    555     for (unsigned i = 0; i != Dim; ++i) {
    556       ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
    557       Length = std::min(Length, unsigned(Lists[i].size()));
    558     }
    559 
    560     if (Length == 0)
    561       return;
    562 
    563     // Precompute some types.
    564     Record *RegisterCl = Def->getRecords().getClass("Register");
    565     RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
    566     StringInit *BlankName = StringInit::get("");
    567 
    568     // Zip them up.
    569     for (unsigned n = 0; n != Length; ++n) {
    570       std::string Name;
    571       Record *Proto = Lists[0][n];
    572       std::vector<Init*> Tuple;
    573       unsigned CostPerUse = 0;
    574       for (unsigned i = 0; i != Dim; ++i) {
    575         Record *Reg = Lists[i][n];
    576         if (i) Name += '_';
    577         Name += Reg->getName();
    578         Tuple.push_back(DefInit::get(Reg));
    579         CostPerUse = std::max(CostPerUse,
    580                               unsigned(Reg->getValueAsInt("CostPerUse")));
    581       }
    582 
    583       // Create a new Record representing the synthesized register. This record
    584       // is only for consumption by CodeGenRegister, it is not added to the
    585       // RecordKeeper.
    586       Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords());
    587       Elts.insert(NewReg);
    588 
    589       // Copy Proto super-classes.
    590       ArrayRef<Record *> Supers = Proto->getSuperClasses();
    591       ArrayRef<SMRange> Ranges = Proto->getSuperClassRanges();
    592       for (unsigned i = 0, e = Supers.size(); i != e; ++i)
    593         NewReg->addSuperClass(Supers[i], Ranges[i]);
    594 
    595       // Copy Proto fields.
    596       for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
    597         RecordVal RV = Proto->getValues()[i];
    598 
    599         // Skip existing fields, like NAME.
    600         if (NewReg->getValue(RV.getNameInit()))
    601           continue;
    602 
    603         StringRef Field = RV.getName();
    604 
    605         // Replace the sub-register list with Tuple.
    606         if (Field == "SubRegs")
    607           RV.setValue(ListInit::get(Tuple, RegisterRecTy));
    608 
    609         // Provide a blank AsmName. MC hacks are required anyway.
    610         if (Field == "AsmName")
    611           RV.setValue(BlankName);
    612 
    613         // CostPerUse is aggregated from all Tuple members.
    614         if (Field == "CostPerUse")
    615           RV.setValue(IntInit::get(CostPerUse));
    616 
    617         // Composite registers are always covered by sub-registers.
    618         if (Field == "CoveredBySubRegs")
    619           RV.setValue(BitInit::get(true));
    620 
    621         // Copy fields from the RegisterTuples def.
    622         if (Field == "SubRegIndices" ||
    623             Field == "CompositeIndices") {
    624           NewReg->addValue(*Def->getValue(Field));
    625           continue;
    626         }
    627 
    628         // Some fields get their default uninitialized value.
    629         if (Field == "DwarfNumbers" ||
    630             Field == "DwarfAlias" ||
    631             Field == "Aliases") {
    632           if (const RecordVal *DefRV = RegisterCl->getValue(Field))
    633             NewReg->addValue(*DefRV);
    634           continue;
    635         }
    636 
    637         // Everything else is copied from Proto.
    638         NewReg->addValue(RV);
    639       }
    640     }
    641   }
    642 };
    643 }
    644 
    645 //===----------------------------------------------------------------------===//
    646 //                            CodeGenRegisterClass
    647 //===----------------------------------------------------------------------===//
    648 
    649 static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) {
    650   std::sort(M.begin(), M.end(), deref<llvm::less>());
    651   M.erase(std::unique(M.begin(), M.end(), deref<llvm::equal>()), M.end());
    652 }
    653 
    654 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
    655   : TheDef(R),
    656     Name(R->getName()),
    657     TopoSigs(RegBank.getNumTopoSigs()),
    658     EnumValue(-1),
    659     LaneMask(0) {
    660   // Rename anonymous register classes.
    661   if (R->getName().size() > 9 && R->getName()[9] == '.') {
    662     static unsigned AnonCounter = 0;
    663     R->setName("AnonRegClass_" + utostr(AnonCounter++));
    664   }
    665 
    666   std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
    667   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
    668     Record *Type = TypeList[i];
    669     if (!Type->isSubClassOf("ValueType"))
    670       PrintFatalError("RegTypes list member '" + Type->getName() +
    671         "' does not derive from the ValueType class!");
    672     VTs.push_back(getValueType(Type));
    673   }
    674   assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
    675 
    676   // Allocation order 0 is the full set. AltOrders provides others.
    677   const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
    678   ListInit *AltOrders = R->getValueAsListInit("AltOrders");
    679   Orders.resize(1 + AltOrders->size());
    680 
    681   // Default allocation order always contains all registers.
    682   for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
    683     Orders[0].push_back((*Elements)[i]);
    684     const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
    685     Members.push_back(Reg);
    686     TopoSigs.set(Reg->getTopoSig());
    687   }
    688   sortAndUniqueRegisters(Members);
    689 
    690   // Alternative allocation orders may be subsets.
    691   SetTheory::RecSet Order;
    692   for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
    693     RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
    694     Orders[1 + i].append(Order.begin(), Order.end());
    695     // Verify that all altorder members are regclass members.
    696     while (!Order.empty()) {
    697       CodeGenRegister *Reg = RegBank.getReg(Order.back());
    698       Order.pop_back();
    699       if (!contains(Reg))
    700         PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
    701                       " is not a class member");
    702     }
    703   }
    704 
    705   // Allow targets to override the size in bits of the RegisterClass.
    706   unsigned Size = R->getValueAsInt("Size");
    707 
    708   Namespace = R->getValueAsString("Namespace");
    709   SpillSize = Size ? Size : MVT(VTs[0]).getSizeInBits();
    710   SpillAlignment = R->getValueAsInt("Alignment");
    711   CopyCost = R->getValueAsInt("CopyCost");
    712   Allocatable = R->getValueAsBit("isAllocatable");
    713   AltOrderSelect = R->getValueAsString("AltOrderSelect");
    714   int AllocationPriority = R->getValueAsInt("AllocationPriority");
    715   if (AllocationPriority < 0 || AllocationPriority > 63)
    716     PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]");
    717   this->AllocationPriority = AllocationPriority;
    718 }
    719 
    720 // Create an inferred register class that was missing from the .td files.
    721 // Most properties will be inherited from the closest super-class after the
    722 // class structure has been computed.
    723 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
    724                                            StringRef Name, Key Props)
    725   : Members(*Props.Members),
    726     TheDef(nullptr),
    727     Name(Name),
    728     TopoSigs(RegBank.getNumTopoSigs()),
    729     EnumValue(-1),
    730     SpillSize(Props.SpillSize),
    731     SpillAlignment(Props.SpillAlignment),
    732     CopyCost(0),
    733     Allocatable(true),
    734     AllocationPriority(0) {
    735   for (const auto R : Members)
    736     TopoSigs.set(R->getTopoSig());
    737 }
    738 
    739 // Compute inherited propertied for a synthesized register class.
    740 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
    741   assert(!getDef() && "Only synthesized classes can inherit properties");
    742   assert(!SuperClasses.empty() && "Synthesized class without super class");
    743 
    744   // The last super-class is the smallest one.
    745   CodeGenRegisterClass &Super = *SuperClasses.back();
    746 
    747   // Most properties are copied directly.
    748   // Exceptions are members, size, and alignment
    749   Namespace = Super.Namespace;
    750   VTs = Super.VTs;
    751   CopyCost = Super.CopyCost;
    752   Allocatable = Super.Allocatable;
    753   AltOrderSelect = Super.AltOrderSelect;
    754   AllocationPriority = Super.AllocationPriority;
    755 
    756   // Copy all allocation orders, filter out foreign registers from the larger
    757   // super-class.
    758   Orders.resize(Super.Orders.size());
    759   for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
    760     for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
    761       if (contains(RegBank.getReg(Super.Orders[i][j])))
    762         Orders[i].push_back(Super.Orders[i][j]);
    763 }
    764 
    765 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
    766   return std::binary_search(Members.begin(), Members.end(), Reg,
    767                             deref<llvm::less>());
    768 }
    769 
    770 namespace llvm {
    771   raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
    772     OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment;
    773     for (const auto R : *K.Members)
    774       OS << ", " << R->getName();
    775     return OS << " }";
    776   }
    777 }
    778 
    779 // This is a simple lexicographical order that can be used to search for sets.
    780 // It is not the same as the topological order provided by TopoOrderRC.
    781 bool CodeGenRegisterClass::Key::
    782 operator<(const CodeGenRegisterClass::Key &B) const {
    783   assert(Members && B.Members);
    784   return std::tie(*Members, SpillSize, SpillAlignment) <
    785          std::tie(*B.Members, B.SpillSize, B.SpillAlignment);
    786 }
    787 
    788 // Returns true if RC is a strict subclass.
    789 // RC is a sub-class of this class if it is a valid replacement for any
    790 // instruction operand where a register of this classis required. It must
    791 // satisfy these conditions:
    792 //
    793 // 1. All RC registers are also in this.
    794 // 2. The RC spill size must not be smaller than our spill size.
    795 // 3. RC spill alignment must be compatible with ours.
    796 //
    797 static bool testSubClass(const CodeGenRegisterClass *A,
    798                          const CodeGenRegisterClass *B) {
    799   return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 &&
    800          A->SpillSize <= B->SpillSize &&
    801          std::includes(A->getMembers().begin(), A->getMembers().end(),
    802                        B->getMembers().begin(), B->getMembers().end(),
    803                        deref<llvm::less>());
    804 }
    805 
    806 /// Sorting predicate for register classes.  This provides a topological
    807 /// ordering that arranges all register classes before their sub-classes.
    808 ///
    809 /// Register classes with the same registers, spill size, and alignment form a
    810 /// clique.  They will be ordered alphabetically.
    811 ///
    812 static bool TopoOrderRC(const CodeGenRegisterClass &PA,
    813                         const CodeGenRegisterClass &PB) {
    814   auto *A = &PA;
    815   auto *B = &PB;
    816   if (A == B)
    817     return 0;
    818 
    819   // Order by ascending spill size.
    820   if (A->SpillSize < B->SpillSize)
    821     return true;
    822   if (A->SpillSize > B->SpillSize)
    823     return false;
    824 
    825   // Order by ascending spill alignment.
    826   if (A->SpillAlignment < B->SpillAlignment)
    827     return true;
    828   if (A->SpillAlignment > B->SpillAlignment)
    829     return false;
    830 
    831   // Order by descending set size.  Note that the classes' allocation order may
    832   // not have been computed yet.  The Members set is always vaild.
    833   if (A->getMembers().size() > B->getMembers().size())
    834     return true;
    835   if (A->getMembers().size() < B->getMembers().size())
    836     return false;
    837 
    838   // Finally order by name as a tie breaker.
    839   return StringRef(A->getName()) < B->getName();
    840 }
    841 
    842 std::string CodeGenRegisterClass::getQualifiedName() const {
    843   if (Namespace.empty())
    844     return getName();
    845   else
    846     return Namespace + "::" + getName();
    847 }
    848 
    849 // Compute sub-classes of all register classes.
    850 // Assume the classes are ordered topologically.
    851 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
    852   auto &RegClasses = RegBank.getRegClasses();
    853 
    854   // Visit backwards so sub-classes are seen first.
    855   for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) {
    856     CodeGenRegisterClass &RC = *I;
    857     RC.SubClasses.resize(RegClasses.size());
    858     RC.SubClasses.set(RC.EnumValue);
    859 
    860     // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
    861     for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) {
    862       CodeGenRegisterClass &SubRC = *I2;
    863       if (RC.SubClasses.test(SubRC.EnumValue))
    864         continue;
    865       if (!testSubClass(&RC, &SubRC))
    866         continue;
    867       // SubRC is a sub-class. Grap all its sub-classes so we won't have to
    868       // check them again.
    869       RC.SubClasses |= SubRC.SubClasses;
    870     }
    871 
    872     // Sweep up missed clique members.  They will be immediately preceding RC.
    873     for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2)
    874       RC.SubClasses.set(I2->EnumValue);
    875   }
    876 
    877   // Compute the SuperClasses lists from the SubClasses vectors.
    878   for (auto &RC : RegClasses) {
    879     const BitVector &SC = RC.getSubClasses();
    880     auto I = RegClasses.begin();
    881     for (int s = 0, next_s = SC.find_first(); next_s != -1;
    882          next_s = SC.find_next(s)) {
    883       std::advance(I, next_s - s);
    884       s = next_s;
    885       if (&*I == &RC)
    886         continue;
    887       I->SuperClasses.push_back(&RC);
    888     }
    889   }
    890 
    891   // With the class hierarchy in place, let synthesized register classes inherit
    892   // properties from their closest super-class. The iteration order here can
    893   // propagate properties down multiple levels.
    894   for (auto &RC : RegClasses)
    895     if (!RC.getDef())
    896       RC.inheritProperties(RegBank);
    897 }
    898 
    899 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx,
    900                                               BitVector &Out) const {
    901   auto FindI = SuperRegClasses.find(SubIdx);
    902   if (FindI == SuperRegClasses.end())
    903     return;
    904   for (CodeGenRegisterClass *RC : FindI->second)
    905     Out.set(RC->EnumValue);
    906 }
    907 
    908 // Populate a unique sorted list of units from a register set.
    909 void CodeGenRegisterClass::buildRegUnitSet(
    910   std::vector<unsigned> &RegUnits) const {
    911   std::vector<unsigned> TmpUnits;
    912   for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI)
    913     TmpUnits.push_back(*UnitI);
    914   std::sort(TmpUnits.begin(), TmpUnits.end());
    915   std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
    916                    std::back_inserter(RegUnits));
    917 }
    918 
    919 //===----------------------------------------------------------------------===//
    920 //                               CodeGenRegBank
    921 //===----------------------------------------------------------------------===//
    922 
    923 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) {
    924   // Configure register Sets to understand register classes and tuples.
    925   Sets.addFieldExpander("RegisterClass", "MemberList");
    926   Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
    927   Sets.addExpander("RegisterTuples", llvm::make_unique<TupleExpander>());
    928 
    929   // Read in the user-defined (named) sub-register indices.
    930   // More indices will be synthesized later.
    931   std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
    932   std::sort(SRIs.begin(), SRIs.end(), LessRecord());
    933   for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
    934     getSubRegIdx(SRIs[i]);
    935   // Build composite maps from ComposedOf fields.
    936   for (auto &Idx : SubRegIndices)
    937     Idx.updateComponents(*this);
    938 
    939   // Read in the register definitions.
    940   std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
    941   std::sort(Regs.begin(), Regs.end(), LessRecordRegister());
    942   // Assign the enumeration values.
    943   for (unsigned i = 0, e = Regs.size(); i != e; ++i)
    944     getReg(Regs[i]);
    945 
    946   // Expand tuples and number the new registers.
    947   std::vector<Record*> Tups =
    948     Records.getAllDerivedDefinitions("RegisterTuples");
    949 
    950   for (Record *R : Tups) {
    951     std::vector<Record *> TupRegs = *Sets.expand(R);
    952     std::sort(TupRegs.begin(), TupRegs.end(), LessRecordRegister());
    953     for (Record *RC : TupRegs)
    954       getReg(RC);
    955   }
    956 
    957   // Now all the registers are known. Build the object graph of explicit
    958   // register-register references.
    959   for (auto &Reg : Registers)
    960     Reg.buildObjectGraph(*this);
    961 
    962   // Compute register name map.
    963   for (auto &Reg : Registers)
    964     // FIXME: This could just be RegistersByName[name] = register, except that
    965     // causes some failures in MIPS - perhaps they have duplicate register name
    966     // entries? (or maybe there's a reason for it - I don't know much about this
    967     // code, just drive-by refactoring)
    968     RegistersByName.insert(
    969         std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg));
    970 
    971   // Precompute all sub-register maps.
    972   // This will create Composite entries for all inferred sub-register indices.
    973   for (auto &Reg : Registers)
    974     Reg.computeSubRegs(*this);
    975 
    976   // Infer even more sub-registers by combining leading super-registers.
    977   for (auto &Reg : Registers)
    978     if (Reg.CoveredBySubRegs)
    979       Reg.computeSecondarySubRegs(*this);
    980 
    981   // After the sub-register graph is complete, compute the topologically
    982   // ordered SuperRegs list.
    983   for (auto &Reg : Registers)
    984     Reg.computeSuperRegs(*this);
    985 
    986   // Native register units are associated with a leaf register. They've all been
    987   // discovered now.
    988   NumNativeRegUnits = RegUnits.size();
    989 
    990   // Read in register class definitions.
    991   std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
    992   if (RCs.empty())
    993     PrintFatalError("No 'RegisterClass' subclasses defined!");
    994 
    995   // Allocate user-defined register classes.
    996   for (auto *RC : RCs) {
    997     RegClasses.emplace_back(*this, RC);
    998     addToMaps(&RegClasses.back());
    999   }
   1000 
   1001   // Infer missing classes to create a full algebra.
   1002   computeInferredRegisterClasses();
   1003 
   1004   // Order register classes topologically and assign enum values.
   1005   RegClasses.sort(TopoOrderRC);
   1006   unsigned i = 0;
   1007   for (auto &RC : RegClasses)
   1008     RC.EnumValue = i++;
   1009   CodeGenRegisterClass::computeSubClasses(*this);
   1010 }
   1011 
   1012 // Create a synthetic CodeGenSubRegIndex without a corresponding Record.
   1013 CodeGenSubRegIndex*
   1014 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
   1015   SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1);
   1016   return &SubRegIndices.back();
   1017 }
   1018 
   1019 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
   1020   CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
   1021   if (Idx)
   1022     return Idx;
   1023   SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1);
   1024   Idx = &SubRegIndices.back();
   1025   return Idx;
   1026 }
   1027 
   1028 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
   1029   CodeGenRegister *&Reg = Def2Reg[Def];
   1030   if (Reg)
   1031     return Reg;
   1032   Registers.emplace_back(Def, Registers.size() + 1);
   1033   Reg = &Registers.back();
   1034   return Reg;
   1035 }
   1036 
   1037 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
   1038   if (Record *Def = RC->getDef())
   1039     Def2RC.insert(std::make_pair(Def, RC));
   1040 
   1041   // Duplicate classes are rejected by insert().
   1042   // That's OK, we only care about the properties handled by CGRC::Key.
   1043   CodeGenRegisterClass::Key K(*RC);
   1044   Key2RC.insert(std::make_pair(K, RC));
   1045 }
   1046 
   1047 // Create a synthetic sub-class if it is missing.
   1048 CodeGenRegisterClass*
   1049 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
   1050                                     const CodeGenRegister::Vec *Members,
   1051                                     StringRef Name) {
   1052   // Synthetic sub-class has the same size and alignment as RC.
   1053   CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment);
   1054   RCKeyMap::const_iterator FoundI = Key2RC.find(K);
   1055   if (FoundI != Key2RC.end())
   1056     return FoundI->second;
   1057 
   1058   // Sub-class doesn't exist, create a new one.
   1059   RegClasses.emplace_back(*this, Name, K);
   1060   addToMaps(&RegClasses.back());
   1061   return &RegClasses.back();
   1062 }
   1063 
   1064 CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) {
   1065   if (CodeGenRegisterClass *RC = Def2RC[Def])
   1066     return RC;
   1067 
   1068   PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
   1069 }
   1070 
   1071 CodeGenSubRegIndex*
   1072 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
   1073                                         CodeGenSubRegIndex *B) {
   1074   // Look for an existing entry.
   1075   CodeGenSubRegIndex *Comp = A->compose(B);
   1076   if (Comp)
   1077     return Comp;
   1078 
   1079   // None exists, synthesize one.
   1080   std::string Name = A->getName() + "_then_" + B->getName();
   1081   Comp = createSubRegIndex(Name, A->getNamespace());
   1082   A->addComposite(B, Comp);
   1083   return Comp;
   1084 }
   1085 
   1086 CodeGenSubRegIndex *CodeGenRegBank::
   1087 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) {
   1088   assert(Parts.size() > 1 && "Need two parts to concatenate");
   1089 
   1090   // Look for an existing entry.
   1091   CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
   1092   if (Idx)
   1093     return Idx;
   1094 
   1095   // None exists, synthesize one.
   1096   std::string Name = Parts.front()->getName();
   1097   // Determine whether all parts are contiguous.
   1098   bool isContinuous = true;
   1099   unsigned Size = Parts.front()->Size;
   1100   unsigned LastOffset = Parts.front()->Offset;
   1101   unsigned LastSize = Parts.front()->Size;
   1102   for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
   1103     Name += '_';
   1104     Name += Parts[i]->getName();
   1105     Size += Parts[i]->Size;
   1106     if (Parts[i]->Offset != (LastOffset + LastSize))
   1107       isContinuous = false;
   1108     LastOffset = Parts[i]->Offset;
   1109     LastSize = Parts[i]->Size;
   1110   }
   1111   Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
   1112   Idx->Size = Size;
   1113   Idx->Offset = isContinuous ? Parts.front()->Offset : -1;
   1114   return Idx;
   1115 }
   1116 
   1117 void CodeGenRegBank::computeComposites() {
   1118   // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
   1119   // and many registers will share TopoSigs on regular architectures.
   1120   BitVector TopoSigs(getNumTopoSigs());
   1121 
   1122   for (const auto &Reg1 : Registers) {
   1123     // Skip identical subreg structures already processed.
   1124     if (TopoSigs.test(Reg1.getTopoSig()))
   1125       continue;
   1126     TopoSigs.set(Reg1.getTopoSig());
   1127 
   1128     const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs();
   1129     for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(),
   1130          e1 = SRM1.end(); i1 != e1; ++i1) {
   1131       CodeGenSubRegIndex *Idx1 = i1->first;
   1132       CodeGenRegister *Reg2 = i1->second;
   1133       // Ignore identity compositions.
   1134       if (&Reg1 == Reg2)
   1135         continue;
   1136       const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
   1137       // Try composing Idx1 with another SubRegIndex.
   1138       for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(),
   1139            e2 = SRM2.end(); i2 != e2; ++i2) {
   1140         CodeGenSubRegIndex *Idx2 = i2->first;
   1141         CodeGenRegister *Reg3 = i2->second;
   1142         // Ignore identity compositions.
   1143         if (Reg2 == Reg3)
   1144           continue;
   1145         // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
   1146         CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3);
   1147         assert(Idx3 && "Sub-register doesn't have an index");
   1148 
   1149         // Conflicting composition? Emit a warning but allow it.
   1150         if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3))
   1151           PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
   1152                        " and " + Idx2->getQualifiedName() +
   1153                        " compose ambiguously as " + Prev->getQualifiedName() +
   1154                        " or " + Idx3->getQualifiedName());
   1155       }
   1156     }
   1157   }
   1158 }
   1159 
   1160 // Compute lane masks. This is similar to register units, but at the
   1161 // sub-register index level. Each bit in the lane mask is like a register unit
   1162 // class, and two lane masks will have a bit in common if two sub-register
   1163 // indices overlap in some register.
   1164 //
   1165 // Conservatively share a lane mask bit if two sub-register indices overlap in
   1166 // some registers, but not in others. That shouldn't happen a lot.
   1167 void CodeGenRegBank::computeSubRegLaneMasks() {
   1168   // First assign individual bits to all the leaf indices.
   1169   unsigned Bit = 0;
   1170   // Determine mask of lanes that cover their registers.
   1171   CoveringLanes = ~0u;
   1172   for (auto &Idx : SubRegIndices) {
   1173     if (Idx.getComposites().empty()) {
   1174       if (Bit > 32) {
   1175         PrintFatalError(
   1176           Twine("Ran out of lanemask bits to represent subregister ")
   1177           + Idx.getName());
   1178       }
   1179       Idx.LaneMask = 1u << Bit;
   1180       ++Bit;
   1181     } else {
   1182       Idx.LaneMask = 0;
   1183     }
   1184   }
   1185 
   1186   // Compute transformation sequences for composeSubRegIndexLaneMask. The idea
   1187   // here is that for each possible target subregister we look at the leafs
   1188   // in the subregister graph that compose for this target and create
   1189   // transformation sequences for the lanemasks. Each step in the sequence
   1190   // consists of a bitmask and a bitrotate operation. As the rotation amounts
   1191   // are usually the same for many subregisters we can easily combine the steps
   1192   // by combining the masks.
   1193   for (const auto &Idx : SubRegIndices) {
   1194     const auto &Composites = Idx.getComposites();
   1195     auto &LaneTransforms = Idx.CompositionLaneMaskTransform;
   1196     // Go through all leaf subregisters and find the ones that compose with Idx.
   1197     // These make out all possible valid bits in the lane mask we want to
   1198     // transform. Looking only at the leafs ensure that only a single bit in
   1199     // the mask is set.
   1200     unsigned NextBit = 0;
   1201     for (auto &Idx2 : SubRegIndices) {
   1202       // Skip non-leaf subregisters.
   1203       if (!Idx2.getComposites().empty())
   1204         continue;
   1205       // Replicate the behaviour from the lane mask generation loop above.
   1206       unsigned SrcBit = NextBit;
   1207       unsigned SrcMask = 1u << SrcBit;
   1208       if (NextBit < 31)
   1209         ++NextBit;
   1210       assert(Idx2.LaneMask == SrcMask);
   1211 
   1212       // Get the composed subregister if there is any.
   1213       auto C = Composites.find(&Idx2);
   1214       if (C == Composites.end())
   1215         continue;
   1216       const CodeGenSubRegIndex *Composite = C->second;
   1217       // The Composed subreg should be a leaf subreg too
   1218       assert(Composite->getComposites().empty());
   1219 
   1220       // Create Mask+Rotate operation and merge with existing ops if possible.
   1221       unsigned DstBit = Log2_32(Composite->LaneMask);
   1222       int Shift = DstBit - SrcBit;
   1223       uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift : 32+Shift;
   1224       for (auto &I : LaneTransforms) {
   1225         if (I.RotateLeft == RotateLeft) {
   1226           I.Mask |= SrcMask;
   1227           SrcMask = 0;
   1228         }
   1229       }
   1230       if (SrcMask != 0) {
   1231         MaskRolPair MaskRol = { SrcMask, RotateLeft };
   1232         LaneTransforms.push_back(MaskRol);
   1233       }
   1234     }
   1235     // Optimize if the transformation consists of one step only: Set mask to
   1236     // 0xffffffff (including some irrelevant invalid bits) so that it should
   1237     // merge with more entries later while compressing the table.
   1238     if (LaneTransforms.size() == 1)
   1239       LaneTransforms[0].Mask = ~0u;
   1240 
   1241     // Further compression optimization: For invalid compositions resulting
   1242     // in a sequence with 0 entries we can just pick any other. Choose
   1243     // Mask 0xffffffff with Rotation 0.
   1244     if (LaneTransforms.size() == 0) {
   1245       MaskRolPair P = { ~0u, 0 };
   1246       LaneTransforms.push_back(P);
   1247     }
   1248   }
   1249 
   1250   // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
   1251   // by the sub-register graph? This doesn't occur in any known targets.
   1252 
   1253   // Inherit lanes from composites.
   1254   for (const auto &Idx : SubRegIndices) {
   1255     unsigned Mask = Idx.computeLaneMask();
   1256     // If some super-registers without CoveredBySubRegs use this index, we can
   1257     // no longer assume that the lanes are covering their registers.
   1258     if (!Idx.AllSuperRegsCovered)
   1259       CoveringLanes &= ~Mask;
   1260   }
   1261 
   1262   // Compute lane mask combinations for register classes.
   1263   for (auto &RegClass : RegClasses) {
   1264     unsigned LaneMask = 0;
   1265     for (const auto &SubRegIndex : SubRegIndices) {
   1266       if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr)
   1267         continue;
   1268       LaneMask |= SubRegIndex.LaneMask;
   1269     }
   1270 
   1271     // For classes without any subregisters set LaneMask to ~0u instead of 0.
   1272     // This makes it easier for client code to handle classes uniformly.
   1273     if (LaneMask == 0)
   1274       LaneMask = ~0u;
   1275 
   1276     RegClass.LaneMask = LaneMask;
   1277   }
   1278 }
   1279 
   1280 namespace {
   1281 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
   1282 // the transitive closure of the union of overlapping register
   1283 // classes. Together, the UberRegSets form a partition of the registers. If we
   1284 // consider overlapping register classes to be connected, then each UberRegSet
   1285 // is a set of connected components.
   1286 //
   1287 // An UberRegSet will likely be a horizontal slice of register names of
   1288 // the same width. Nontrivial subregisters should then be in a separate
   1289 // UberRegSet. But this property isn't required for valid computation of
   1290 // register unit weights.
   1291 //
   1292 // A Weight field caches the max per-register unit weight in each UberRegSet.
   1293 //
   1294 // A set of SingularDeterminants flags single units of some register in this set
   1295 // for which the unit weight equals the set weight. These units should not have
   1296 // their weight increased.
   1297 struct UberRegSet {
   1298   CodeGenRegister::Vec Regs;
   1299   unsigned Weight;
   1300   CodeGenRegister::RegUnitList SingularDeterminants;
   1301 
   1302   UberRegSet(): Weight(0) {}
   1303 };
   1304 } // namespace
   1305 
   1306 // Partition registers into UberRegSets, where each set is the transitive
   1307 // closure of the union of overlapping register classes.
   1308 //
   1309 // UberRegSets[0] is a special non-allocatable set.
   1310 static void computeUberSets(std::vector<UberRegSet> &UberSets,
   1311                             std::vector<UberRegSet*> &RegSets,
   1312                             CodeGenRegBank &RegBank) {
   1313 
   1314   const auto &Registers = RegBank.getRegisters();
   1315 
   1316   // The Register EnumValue is one greater than its index into Registers.
   1317   assert(Registers.size() == Registers.back().EnumValue &&
   1318          "register enum value mismatch");
   1319 
   1320   // For simplicitly make the SetID the same as EnumValue.
   1321   IntEqClasses UberSetIDs(Registers.size()+1);
   1322   std::set<unsigned> AllocatableRegs;
   1323   for (auto &RegClass : RegBank.getRegClasses()) {
   1324     if (!RegClass.Allocatable)
   1325       continue;
   1326 
   1327     const CodeGenRegister::Vec &Regs = RegClass.getMembers();
   1328     if (Regs.empty())
   1329       continue;
   1330 
   1331     unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
   1332     assert(USetID && "register number 0 is invalid");
   1333 
   1334     AllocatableRegs.insert((*Regs.begin())->EnumValue);
   1335     for (auto I = std::next(Regs.begin()), E = Regs.end(); I != E; ++I) {
   1336       AllocatableRegs.insert((*I)->EnumValue);
   1337       UberSetIDs.join(USetID, (*I)->EnumValue);
   1338     }
   1339   }
   1340   // Combine non-allocatable regs.
   1341   for (const auto &Reg : Registers) {
   1342     unsigned RegNum = Reg.EnumValue;
   1343     if (AllocatableRegs.count(RegNum))
   1344       continue;
   1345 
   1346     UberSetIDs.join(0, RegNum);
   1347   }
   1348   UberSetIDs.compress();
   1349 
   1350   // Make the first UberSet a special unallocatable set.
   1351   unsigned ZeroID = UberSetIDs[0];
   1352 
   1353   // Insert Registers into the UberSets formed by union-find.
   1354   // Do not resize after this.
   1355   UberSets.resize(UberSetIDs.getNumClasses());
   1356   unsigned i = 0;
   1357   for (const CodeGenRegister &Reg : Registers) {
   1358     unsigned USetID = UberSetIDs[Reg.EnumValue];
   1359     if (!USetID)
   1360       USetID = ZeroID;
   1361     else if (USetID == ZeroID)
   1362       USetID = 0;
   1363 
   1364     UberRegSet *USet = &UberSets[USetID];
   1365     USet->Regs.push_back(&Reg);
   1366     sortAndUniqueRegisters(USet->Regs);
   1367     RegSets[i++] = USet;
   1368   }
   1369 }
   1370 
   1371 // Recompute each UberSet weight after changing unit weights.
   1372 static void computeUberWeights(std::vector<UberRegSet> &UberSets,
   1373                                CodeGenRegBank &RegBank) {
   1374   // Skip the first unallocatable set.
   1375   for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()),
   1376          E = UberSets.end(); I != E; ++I) {
   1377 
   1378     // Initialize all unit weights in this set, and remember the max units/reg.
   1379     const CodeGenRegister *Reg = nullptr;
   1380     unsigned MaxWeight = 0, Weight = 0;
   1381     for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
   1382       if (Reg != UnitI.getReg()) {
   1383         if (Weight > MaxWeight)
   1384           MaxWeight = Weight;
   1385         Reg = UnitI.getReg();
   1386         Weight = 0;
   1387       }
   1388       unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
   1389       if (!UWeight) {
   1390         UWeight = 1;
   1391         RegBank.increaseRegUnitWeight(*UnitI, UWeight);
   1392       }
   1393       Weight += UWeight;
   1394     }
   1395     if (Weight > MaxWeight)
   1396       MaxWeight = Weight;
   1397     if (I->Weight != MaxWeight) {
   1398       DEBUG(
   1399         dbgs() << "UberSet " << I - UberSets.begin() << " Weight " << MaxWeight;
   1400         for (auto &Unit : I->Regs)
   1401           dbgs() << " " << Unit->getName();
   1402         dbgs() << "\n");
   1403       // Update the set weight.
   1404       I->Weight = MaxWeight;
   1405     }
   1406 
   1407     // Find singular determinants.
   1408     for (const auto R : I->Regs) {
   1409       if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) {
   1410         I->SingularDeterminants |= R->getRegUnits();
   1411       }
   1412     }
   1413   }
   1414 }
   1415 
   1416 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
   1417 // a register and its subregisters so that they have the same weight as their
   1418 // UberSet. Self-recursion processes the subregister tree in postorder so
   1419 // subregisters are normalized first.
   1420 //
   1421 // Side effects:
   1422 // - creates new adopted register units
   1423 // - causes superregisters to inherit adopted units
   1424 // - increases the weight of "singular" units
   1425 // - induces recomputation of UberWeights.
   1426 static bool normalizeWeight(CodeGenRegister *Reg,
   1427                             std::vector<UberRegSet> &UberSets,
   1428                             std::vector<UberRegSet*> &RegSets,
   1429                             SparseBitVector<> &NormalRegs,
   1430                             CodeGenRegister::RegUnitList &NormalUnits,
   1431                             CodeGenRegBank &RegBank) {
   1432   if (NormalRegs.test(Reg->EnumValue))
   1433     return false;
   1434   NormalRegs.set(Reg->EnumValue);
   1435 
   1436   bool Changed = false;
   1437   const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
   1438   for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(),
   1439          SRE = SRM.end(); SRI != SRE; ++SRI) {
   1440     if (SRI->second == Reg)
   1441       continue; // self-cycles happen
   1442 
   1443     Changed |= normalizeWeight(SRI->second, UberSets, RegSets,
   1444                                NormalRegs, NormalUnits, RegBank);
   1445   }
   1446   // Postorder register normalization.
   1447 
   1448   // Inherit register units newly adopted by subregisters.
   1449   if (Reg->inheritRegUnits(RegBank))
   1450     computeUberWeights(UberSets, RegBank);
   1451 
   1452   // Check if this register is too skinny for its UberRegSet.
   1453   UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
   1454 
   1455   unsigned RegWeight = Reg->getWeight(RegBank);
   1456   if (UberSet->Weight > RegWeight) {
   1457     // A register unit's weight can be adjusted only if it is the singular unit
   1458     // for this register, has not been used to normalize a subregister's set,
   1459     // and has not already been used to singularly determine this UberRegSet.
   1460     unsigned AdjustUnit = *Reg->getRegUnits().begin();
   1461     if (Reg->getRegUnits().count() != 1
   1462         || hasRegUnit(NormalUnits, AdjustUnit)
   1463         || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
   1464       // We don't have an adjustable unit, so adopt a new one.
   1465       AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
   1466       Reg->adoptRegUnit(AdjustUnit);
   1467       // Adopting a unit does not immediately require recomputing set weights.
   1468     }
   1469     else {
   1470       // Adjust the existing single unit.
   1471       RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
   1472       // The unit may be shared among sets and registers within this set.
   1473       computeUberWeights(UberSets, RegBank);
   1474     }
   1475     Changed = true;
   1476   }
   1477 
   1478   // Mark these units normalized so superregisters can't change their weights.
   1479   NormalUnits |= Reg->getRegUnits();
   1480 
   1481   return Changed;
   1482 }
   1483 
   1484 // Compute a weight for each register unit created during getSubRegs.
   1485 //
   1486 // The goal is that two registers in the same class will have the same weight,
   1487 // where each register's weight is defined as sum of its units' weights.
   1488 void CodeGenRegBank::computeRegUnitWeights() {
   1489   std::vector<UberRegSet> UberSets;
   1490   std::vector<UberRegSet*> RegSets(Registers.size());
   1491   computeUberSets(UberSets, RegSets, *this);
   1492   // UberSets and RegSets are now immutable.
   1493 
   1494   computeUberWeights(UberSets, *this);
   1495 
   1496   // Iterate over each Register, normalizing the unit weights until reaching
   1497   // a fix point.
   1498   unsigned NumIters = 0;
   1499   for (bool Changed = true; Changed; ++NumIters) {
   1500     assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
   1501     Changed = false;
   1502     for (auto &Reg : Registers) {
   1503       CodeGenRegister::RegUnitList NormalUnits;
   1504       SparseBitVector<> NormalRegs;
   1505       Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs,
   1506                                  NormalUnits, *this);
   1507     }
   1508   }
   1509 }
   1510 
   1511 // Find a set in UniqueSets with the same elements as Set.
   1512 // Return an iterator into UniqueSets.
   1513 static std::vector<RegUnitSet>::const_iterator
   1514 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
   1515                const RegUnitSet &Set) {
   1516   std::vector<RegUnitSet>::const_iterator
   1517     I = UniqueSets.begin(), E = UniqueSets.end();
   1518   for(;I != E; ++I) {
   1519     if (I->Units == Set.Units)
   1520       break;
   1521   }
   1522   return I;
   1523 }
   1524 
   1525 // Return true if the RUSubSet is a subset of RUSuperSet.
   1526 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
   1527                             const std::vector<unsigned> &RUSuperSet) {
   1528   return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
   1529                        RUSubSet.begin(), RUSubSet.end());
   1530 }
   1531 
   1532 /// Iteratively prune unit sets. Prune subsets that are close to the superset,
   1533 /// but with one or two registers removed. We occasionally have registers like
   1534 /// APSR and PC thrown in with the general registers. We also see many
   1535 /// special-purpose register subsets, such as tail-call and Thumb
   1536 /// encodings. Generating all possible overlapping sets is combinatorial and
   1537 /// overkill for modeling pressure. Ideally we could fix this statically in
   1538 /// tablegen by (1) having the target define register classes that only include
   1539 /// the allocatable registers and marking other classes as non-allocatable and
   1540 /// (2) having a way to mark special purpose classes as "don't-care" classes for
   1541 /// the purpose of pressure.  However, we make an attempt to handle targets that
   1542 /// are not nicely defined by merging nearly identical register unit sets
   1543 /// statically. This generates smaller tables. Then, dynamically, we adjust the
   1544 /// set limit by filtering the reserved registers.
   1545 ///
   1546 /// Merge sets only if the units have the same weight. For example, on ARM,
   1547 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We
   1548 /// should not expand the S set to include D regs.
   1549 void CodeGenRegBank::pruneUnitSets() {
   1550   assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
   1551 
   1552   // Form an equivalence class of UnitSets with no significant difference.
   1553   std::vector<unsigned> SuperSetIDs;
   1554   for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
   1555        SubIdx != EndIdx; ++SubIdx) {
   1556     const RegUnitSet &SubSet = RegUnitSets[SubIdx];
   1557     unsigned SuperIdx = 0;
   1558     for (; SuperIdx != EndIdx; ++SuperIdx) {
   1559       if (SuperIdx == SubIdx)
   1560         continue;
   1561 
   1562       unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight;
   1563       const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
   1564       if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
   1565           && (SubSet.Units.size() + 3 > SuperSet.Units.size())
   1566           && UnitWeight == RegUnits[SuperSet.Units[0]].Weight
   1567           && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) {
   1568         DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx
   1569               << "\n");
   1570         // We can pick any of the set names for the merged set. Go for the
   1571         // shortest one to avoid picking the name of one of the classes that are
   1572         // artificially created by tablegen. So "FPR128_lo" instead of
   1573         // "QQQQ_with_qsub3_in_FPR128_lo".
   1574         if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size())
   1575           RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name;
   1576         break;
   1577       }
   1578     }
   1579     if (SuperIdx == EndIdx)
   1580       SuperSetIDs.push_back(SubIdx);
   1581   }
   1582   // Populate PrunedUnitSets with each equivalence class's superset.
   1583   std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
   1584   for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
   1585     unsigned SuperIdx = SuperSetIDs[i];
   1586     PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
   1587     PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
   1588   }
   1589   RegUnitSets.swap(PrunedUnitSets);
   1590 }
   1591 
   1592 // Create a RegUnitSet for each RegClass that contains all units in the class
   1593 // including adopted units that are necessary to model register pressure. Then
   1594 // iteratively compute RegUnitSets such that the union of any two overlapping
   1595 // RegUnitSets is repreresented.
   1596 //
   1597 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
   1598 // RegUnitSet that is a superset of that RegUnitClass.
   1599 void CodeGenRegBank::computeRegUnitSets() {
   1600   assert(RegUnitSets.empty() && "dirty RegUnitSets");
   1601 
   1602   // Compute a unique RegUnitSet for each RegClass.
   1603   auto &RegClasses = getRegClasses();
   1604   for (auto &RC : RegClasses) {
   1605     if (!RC.Allocatable)
   1606       continue;
   1607 
   1608     // Speculatively grow the RegUnitSets to hold the new set.
   1609     RegUnitSets.resize(RegUnitSets.size() + 1);
   1610     RegUnitSets.back().Name = RC.getName();
   1611 
   1612     // Compute a sorted list of units in this class.
   1613     RC.buildRegUnitSet(RegUnitSets.back().Units);
   1614 
   1615     // Find an existing RegUnitSet.
   1616     std::vector<RegUnitSet>::const_iterator SetI =
   1617       findRegUnitSet(RegUnitSets, RegUnitSets.back());
   1618     if (SetI != std::prev(RegUnitSets.end()))
   1619       RegUnitSets.pop_back();
   1620   }
   1621 
   1622   DEBUG(dbgs() << "\nBefore pruning:\n";
   1623         for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
   1624              USIdx < USEnd; ++USIdx) {
   1625           dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
   1626                  << ":";
   1627           for (auto &U : RegUnitSets[USIdx].Units)
   1628             dbgs() << " " << RegUnits[U].Roots[0]->getName();
   1629           dbgs() << "\n";
   1630         });
   1631 
   1632   // Iteratively prune unit sets.
   1633   pruneUnitSets();
   1634 
   1635   DEBUG(dbgs() << "\nBefore union:\n";
   1636         for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
   1637              USIdx < USEnd; ++USIdx) {
   1638           dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
   1639                  << ":";
   1640           for (auto &U : RegUnitSets[USIdx].Units)
   1641             dbgs() << " " << RegUnits[U].Roots[0]->getName();
   1642           dbgs() << "\n";
   1643         }
   1644         dbgs() << "\nUnion sets:\n");
   1645 
   1646   // Iterate over all unit sets, including new ones added by this loop.
   1647   unsigned NumRegUnitSubSets = RegUnitSets.size();
   1648   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
   1649     // In theory, this is combinatorial. In practice, it needs to be bounded
   1650     // by a small number of sets for regpressure to be efficient.
   1651     // If the assert is hit, we need to implement pruning.
   1652     assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
   1653 
   1654     // Compare new sets with all original classes.
   1655     for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
   1656          SearchIdx != EndIdx; ++SearchIdx) {
   1657       std::set<unsigned> Intersection;
   1658       std::set_intersection(RegUnitSets[Idx].Units.begin(),
   1659                             RegUnitSets[Idx].Units.end(),
   1660                             RegUnitSets[SearchIdx].Units.begin(),
   1661                             RegUnitSets[SearchIdx].Units.end(),
   1662                             std::inserter(Intersection, Intersection.begin()));
   1663       if (Intersection.empty())
   1664         continue;
   1665 
   1666       // Speculatively grow the RegUnitSets to hold the new set.
   1667       RegUnitSets.resize(RegUnitSets.size() + 1);
   1668       RegUnitSets.back().Name =
   1669         RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name;
   1670 
   1671       std::set_union(RegUnitSets[Idx].Units.begin(),
   1672                      RegUnitSets[Idx].Units.end(),
   1673                      RegUnitSets[SearchIdx].Units.begin(),
   1674                      RegUnitSets[SearchIdx].Units.end(),
   1675                      std::inserter(RegUnitSets.back().Units,
   1676                                    RegUnitSets.back().Units.begin()));
   1677 
   1678       // Find an existing RegUnitSet, or add the union to the unique sets.
   1679       std::vector<RegUnitSet>::const_iterator SetI =
   1680         findRegUnitSet(RegUnitSets, RegUnitSets.back());
   1681       if (SetI != std::prev(RegUnitSets.end()))
   1682         RegUnitSets.pop_back();
   1683       else {
   1684         DEBUG(dbgs() << "UnitSet " << RegUnitSets.size()-1
   1685               << " " << RegUnitSets.back().Name << ":";
   1686               for (auto &U : RegUnitSets.back().Units)
   1687                 dbgs() << " " << RegUnits[U].Roots[0]->getName();
   1688               dbgs() << "\n";);
   1689       }
   1690     }
   1691   }
   1692 
   1693   // Iteratively prune unit sets after inferring supersets.
   1694   pruneUnitSets();
   1695 
   1696   DEBUG(dbgs() << "\n";
   1697         for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
   1698              USIdx < USEnd; ++USIdx) {
   1699           dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
   1700                  << ":";
   1701           for (auto &U : RegUnitSets[USIdx].Units)
   1702             dbgs() << " " << RegUnits[U].Roots[0]->getName();
   1703           dbgs() << "\n";
   1704         });
   1705 
   1706   // For each register class, list the UnitSets that are supersets.
   1707   RegClassUnitSets.resize(RegClasses.size());
   1708   int RCIdx = -1;
   1709   for (auto &RC : RegClasses) {
   1710     ++RCIdx;
   1711     if (!RC.Allocatable)
   1712       continue;
   1713 
   1714     // Recompute the sorted list of units in this class.
   1715     std::vector<unsigned> RCRegUnits;
   1716     RC.buildRegUnitSet(RCRegUnits);
   1717 
   1718     // Don't increase pressure for unallocatable regclasses.
   1719     if (RCRegUnits.empty())
   1720       continue;
   1721 
   1722     DEBUG(dbgs() << "RC " << RC.getName() << " Units: \n";
   1723           for (auto &U : RCRegUnits)
   1724             dbgs() << RegUnits[U].getRoots()[0]->getName() << " ";
   1725           dbgs() << "\n  UnitSetIDs:");
   1726 
   1727     // Find all supersets.
   1728     for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
   1729          USIdx != USEnd; ++USIdx) {
   1730       if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) {
   1731         DEBUG(dbgs() << " " << USIdx);
   1732         RegClassUnitSets[RCIdx].push_back(USIdx);
   1733       }
   1734     }
   1735     DEBUG(dbgs() << "\n");
   1736     assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass");
   1737   }
   1738 
   1739   // For each register unit, ensure that we have the list of UnitSets that
   1740   // contain the unit. Normally, this matches an existing list of UnitSets for a
   1741   // register class. If not, we create a new entry in RegClassUnitSets as a
   1742   // "fake" register class.
   1743   for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits;
   1744        UnitIdx < UnitEnd; ++UnitIdx) {
   1745     std::vector<unsigned> RUSets;
   1746     for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
   1747       RegUnitSet &RUSet = RegUnitSets[i];
   1748       if (std::find(RUSet.Units.begin(), RUSet.Units.end(), UnitIdx)
   1749           == RUSet.Units.end())
   1750         continue;
   1751       RUSets.push_back(i);
   1752     }
   1753     unsigned RCUnitSetsIdx = 0;
   1754     for (unsigned e = RegClassUnitSets.size();
   1755          RCUnitSetsIdx != e; ++RCUnitSetsIdx) {
   1756       if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
   1757         break;
   1758       }
   1759     }
   1760     RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
   1761     if (RCUnitSetsIdx == RegClassUnitSets.size()) {
   1762       // Create a new list of UnitSets as a "fake" register class.
   1763       RegClassUnitSets.resize(RCUnitSetsIdx + 1);
   1764       RegClassUnitSets[RCUnitSetsIdx].swap(RUSets);
   1765     }
   1766   }
   1767 }
   1768 
   1769 void CodeGenRegBank::computeRegUnitLaneMasks() {
   1770   for (auto &Register : Registers) {
   1771     // Create an initial lane mask for all register units.
   1772     const auto &RegUnits = Register.getRegUnits();
   1773     CodeGenRegister::RegUnitLaneMaskList RegUnitLaneMasks(RegUnits.count(), 0);
   1774     // Iterate through SubRegisters.
   1775     typedef CodeGenRegister::SubRegMap SubRegMap;
   1776     const SubRegMap &SubRegs = Register.getSubRegs();
   1777     for (SubRegMap::const_iterator S = SubRegs.begin(),
   1778          SE = SubRegs.end(); S != SE; ++S) {
   1779       CodeGenRegister *SubReg = S->second;
   1780       // Ignore non-leaf subregisters, their lane masks are fully covered by
   1781       // the leaf subregisters anyway.
   1782       if (SubReg->getSubRegs().size() != 0)
   1783         continue;
   1784       CodeGenSubRegIndex *SubRegIndex = S->first;
   1785       const CodeGenRegister *SubRegister = S->second;
   1786       unsigned LaneMask = SubRegIndex->LaneMask;
   1787       // Distribute LaneMask to Register Units touched.
   1788       for (unsigned SUI : SubRegister->getRegUnits()) {
   1789         bool Found = false;
   1790         unsigned u = 0;
   1791         for (unsigned RU : RegUnits) {
   1792           if (SUI == RU) {
   1793             RegUnitLaneMasks[u] |= LaneMask;
   1794             assert(!Found);
   1795             Found = true;
   1796           }
   1797           ++u;
   1798         }
   1799         (void)Found;
   1800         assert(Found);
   1801       }
   1802     }
   1803     Register.setRegUnitLaneMasks(RegUnitLaneMasks);
   1804   }
   1805 }
   1806 
   1807 void CodeGenRegBank::computeDerivedInfo() {
   1808   computeComposites();
   1809   computeSubRegLaneMasks();
   1810 
   1811   // Compute a weight for each register unit created during getSubRegs.
   1812   // This may create adopted register units (with unit # >= NumNativeRegUnits).
   1813   computeRegUnitWeights();
   1814 
   1815   // Compute a unique set of RegUnitSets. One for each RegClass and inferred
   1816   // supersets for the union of overlapping sets.
   1817   computeRegUnitSets();
   1818 
   1819   computeRegUnitLaneMasks();
   1820 
   1821   // Compute register class HasDisjunctSubRegs flag.
   1822   for (CodeGenRegisterClass &RC : RegClasses) {
   1823     RC.HasDisjunctSubRegs = false;
   1824     for (const CodeGenRegister *Reg : RC.getMembers())
   1825       RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs;
   1826   }
   1827 
   1828   // Get the weight of each set.
   1829   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
   1830     RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units);
   1831 
   1832   // Find the order of each set.
   1833   RegUnitSetOrder.reserve(RegUnitSets.size());
   1834   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
   1835     RegUnitSetOrder.push_back(Idx);
   1836 
   1837   std::stable_sort(RegUnitSetOrder.begin(), RegUnitSetOrder.end(),
   1838                    [this](unsigned ID1, unsigned ID2) {
   1839     return getRegPressureSet(ID1).Units.size() <
   1840            getRegPressureSet(ID2).Units.size();
   1841   });
   1842   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
   1843     RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx;
   1844   }
   1845 }
   1846 
   1847 //
   1848 // Synthesize missing register class intersections.
   1849 //
   1850 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
   1851 // returns a maximal register class for all X.
   1852 //
   1853 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
   1854   assert(!RegClasses.empty());
   1855   // Stash the iterator to the last element so that this loop doesn't visit
   1856   // elements added by the getOrCreateSubClass call within it.
   1857   for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end());
   1858        I != std::next(E); ++I) {
   1859     CodeGenRegisterClass *RC1 = RC;
   1860     CodeGenRegisterClass *RC2 = &*I;
   1861     if (RC1 == RC2)
   1862       continue;
   1863 
   1864     // Compute the set intersection of RC1 and RC2.
   1865     const CodeGenRegister::Vec &Memb1 = RC1->getMembers();
   1866     const CodeGenRegister::Vec &Memb2 = RC2->getMembers();
   1867     CodeGenRegister::Vec Intersection;
   1868     std::set_intersection(
   1869         Memb1.begin(), Memb1.end(), Memb2.begin(), Memb2.end(),
   1870         std::inserter(Intersection, Intersection.begin()), deref<llvm::less>());
   1871 
   1872     // Skip disjoint class pairs.
   1873     if (Intersection.empty())
   1874       continue;
   1875 
   1876     // If RC1 and RC2 have different spill sizes or alignments, use the
   1877     // larger size for sub-classing.  If they are equal, prefer RC1.
   1878     if (RC2->SpillSize > RC1->SpillSize ||
   1879         (RC2->SpillSize == RC1->SpillSize &&
   1880          RC2->SpillAlignment > RC1->SpillAlignment))
   1881       std::swap(RC1, RC2);
   1882 
   1883     getOrCreateSubClass(RC1, &Intersection,
   1884                         RC1->getName() + "_and_" + RC2->getName());
   1885   }
   1886 }
   1887 
   1888 //
   1889 // Synthesize missing sub-classes for getSubClassWithSubReg().
   1890 //
   1891 // Make sure that the set of registers in RC with a given SubIdx sub-register
   1892 // form a register class.  Update RC->SubClassWithSubReg.
   1893 //
   1894 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
   1895   // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
   1896   typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec,
   1897                    deref<llvm::less>> SubReg2SetMap;
   1898 
   1899   // Compute the set of registers supporting each SubRegIndex.
   1900   SubReg2SetMap SRSets;
   1901   for (const auto R : RC->getMembers()) {
   1902     const CodeGenRegister::SubRegMap &SRM = R->getSubRegs();
   1903     for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
   1904          E = SRM.end(); I != E; ++I)
   1905       SRSets[I->first].push_back(R);
   1906   }
   1907 
   1908   for (auto I : SRSets)
   1909     sortAndUniqueRegisters(I.second);
   1910 
   1911   // Find matching classes for all SRSets entries.  Iterate in SubRegIndex
   1912   // numerical order to visit synthetic indices last.
   1913   for (const auto &SubIdx : SubRegIndices) {
   1914     SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx);
   1915     // Unsupported SubRegIndex. Skip it.
   1916     if (I == SRSets.end())
   1917       continue;
   1918     // In most cases, all RC registers support the SubRegIndex.
   1919     if (I->second.size() == RC->getMembers().size()) {
   1920       RC->setSubClassWithSubReg(&SubIdx, RC);
   1921       continue;
   1922     }
   1923     // This is a real subset.  See if we have a matching class.
   1924     CodeGenRegisterClass *SubRC =
   1925       getOrCreateSubClass(RC, &I->second,
   1926                           RC->getName() + "_with_" + I->first->getName());
   1927     RC->setSubClassWithSubReg(&SubIdx, SubRC);
   1928   }
   1929 }
   1930 
   1931 //
   1932 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
   1933 //
   1934 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
   1935 // has a maximal result for any SubIdx and any X >= FirstSubRegRC.
   1936 //
   1937 
   1938 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
   1939                                                 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) {
   1940   SmallVector<std::pair<const CodeGenRegister*,
   1941                         const CodeGenRegister*>, 16> SSPairs;
   1942   BitVector TopoSigs(getNumTopoSigs());
   1943 
   1944   // Iterate in SubRegIndex numerical order to visit synthetic indices last.
   1945   for (auto &SubIdx : SubRegIndices) {
   1946     // Skip indexes that aren't fully supported by RC's registers. This was
   1947     // computed by inferSubClassWithSubReg() above which should have been
   1948     // called first.
   1949     if (RC->getSubClassWithSubReg(&SubIdx) != RC)
   1950       continue;
   1951 
   1952     // Build list of (Super, Sub) pairs for this SubIdx.
   1953     SSPairs.clear();
   1954     TopoSigs.reset();
   1955     for (const auto Super : RC->getMembers()) {
   1956       const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second;
   1957       assert(Sub && "Missing sub-register");
   1958       SSPairs.push_back(std::make_pair(Super, Sub));
   1959       TopoSigs.set(Sub->getTopoSig());
   1960     }
   1961 
   1962     // Iterate over sub-register class candidates.  Ignore classes created by
   1963     // this loop. They will never be useful.
   1964     // Store an iterator to the last element (not end) so that this loop doesn't
   1965     // visit newly inserted elements.
   1966     assert(!RegClasses.empty());
   1967     for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end());
   1968          I != std::next(E); ++I) {
   1969       CodeGenRegisterClass &SubRC = *I;
   1970       // Topological shortcut: SubRC members have the wrong shape.
   1971       if (!TopoSigs.anyCommon(SubRC.getTopoSigs()))
   1972         continue;
   1973       // Compute the subset of RC that maps into SubRC.
   1974       CodeGenRegister::Vec SubSetVec;
   1975       for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
   1976         if (SubRC.contains(SSPairs[i].second))
   1977           SubSetVec.push_back(SSPairs[i].first);
   1978 
   1979       if (SubSetVec.empty())
   1980         continue;
   1981 
   1982       // RC injects completely into SubRC.
   1983       sortAndUniqueRegisters(SubSetVec);
   1984       if (SubSetVec.size() == SSPairs.size()) {
   1985         SubRC.addSuperRegClass(&SubIdx, RC);
   1986         continue;
   1987       }
   1988 
   1989       // Only a subset of RC maps into SubRC. Make sure it is represented by a
   1990       // class.
   1991       getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" +
   1992                                           SubIdx.getName() + "_in_" +
   1993                                           SubRC.getName());
   1994     }
   1995   }
   1996 }
   1997 
   1998 
   1999 //
   2000 // Infer missing register classes.
   2001 //
   2002 void CodeGenRegBank::computeInferredRegisterClasses() {
   2003   assert(!RegClasses.empty());
   2004   // When this function is called, the register classes have not been sorted
   2005   // and assigned EnumValues yet.  That means getSubClasses(),
   2006   // getSuperClasses(), and hasSubClass() functions are defunct.
   2007 
   2008   // Use one-before-the-end so it doesn't move forward when new elements are
   2009   // added.
   2010   auto FirstNewRC = std::prev(RegClasses.end());
   2011 
   2012   // Visit all register classes, including the ones being added by the loop.
   2013   // Watch out for iterator invalidation here.
   2014   for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) {
   2015     CodeGenRegisterClass *RC = &*I;
   2016 
   2017     // Synthesize answers for getSubClassWithSubReg().
   2018     inferSubClassWithSubReg(RC);
   2019 
   2020     // Synthesize answers for getCommonSubClass().
   2021     inferCommonSubClass(RC);
   2022 
   2023     // Synthesize answers for getMatchingSuperRegClass().
   2024     inferMatchingSuperRegClass(RC);
   2025 
   2026     // New register classes are created while this loop is running, and we need
   2027     // to visit all of them.  I  particular, inferMatchingSuperRegClass needs
   2028     // to match old super-register classes with sub-register classes created
   2029     // after inferMatchingSuperRegClass was called.  At this point,
   2030     // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
   2031     // [0..FirstNewRC).  We need to cover SubRC = [FirstNewRC..rci].
   2032     if (I == FirstNewRC) {
   2033       auto NextNewRC = std::prev(RegClasses.end());
   2034       for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2;
   2035            ++I2)
   2036         inferMatchingSuperRegClass(&*I2, E2);
   2037       FirstNewRC = NextNewRC;
   2038     }
   2039   }
   2040 }
   2041 
   2042 /// getRegisterClassForRegister - Find the register class that contains the
   2043 /// specified physical register.  If the register is not in a register class,
   2044 /// return null. If the register is in multiple classes, and the classes have a
   2045 /// superset-subset relationship and the same set of types, return the
   2046 /// superclass.  Otherwise return null.
   2047 const CodeGenRegisterClass*
   2048 CodeGenRegBank::getRegClassForRegister(Record *R) {
   2049   const CodeGenRegister *Reg = getReg(R);
   2050   const CodeGenRegisterClass *FoundRC = nullptr;
   2051   for (const auto &RC : getRegClasses()) {
   2052     if (!RC.contains(Reg))
   2053       continue;
   2054 
   2055     // If this is the first class that contains the register,
   2056     // make a note of it and go on to the next class.
   2057     if (!FoundRC) {
   2058       FoundRC = &RC;
   2059       continue;
   2060     }
   2061 
   2062     // If a register's classes have different types, return null.
   2063     if (RC.getValueTypes() != FoundRC->getValueTypes())
   2064       return nullptr;
   2065 
   2066     // Check to see if the previously found class that contains
   2067     // the register is a subclass of the current class. If so,
   2068     // prefer the superclass.
   2069     if (RC.hasSubClass(FoundRC)) {
   2070       FoundRC = &RC;
   2071       continue;
   2072     }
   2073 
   2074     // Check to see if the previously found class that contains
   2075     // the register is a superclass of the current class. If so,
   2076     // prefer the superclass.
   2077     if (FoundRC->hasSubClass(&RC))
   2078       continue;
   2079 
   2080     // Multiple classes, and neither is a superclass of the other.
   2081     // Return null.
   2082     return nullptr;
   2083   }
   2084   return FoundRC;
   2085 }
   2086 
   2087 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
   2088   SetVector<const CodeGenRegister*> Set;
   2089 
   2090   // First add Regs with all sub-registers.
   2091   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
   2092     CodeGenRegister *Reg = getReg(Regs[i]);
   2093     if (Set.insert(Reg))
   2094       // Reg is new, add all sub-registers.
   2095       // The pre-ordering is not important here.
   2096       Reg->addSubRegsPreOrder(Set, *this);
   2097   }
   2098 
   2099   // Second, find all super-registers that are completely covered by the set.
   2100   for (unsigned i = 0; i != Set.size(); ++i) {
   2101     const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
   2102     for (unsigned j = 0, e = SR.size(); j != e; ++j) {
   2103       const CodeGenRegister *Super = SR[j];
   2104       if (!Super->CoveredBySubRegs || Set.count(Super))
   2105         continue;
   2106       // This new super-register is covered by its sub-registers.
   2107       bool AllSubsInSet = true;
   2108       const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
   2109       for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
   2110              E = SRM.end(); I != E; ++I)
   2111         if (!Set.count(I->second)) {
   2112           AllSubsInSet = false;
   2113           break;
   2114         }
   2115       // All sub-registers in Set, add Super as well.
   2116       // We will visit Super later to recheck its super-registers.
   2117       if (AllSubsInSet)
   2118         Set.insert(Super);
   2119     }
   2120   }
   2121 
   2122   // Convert to BitVector.
   2123   BitVector BV(Registers.size() + 1);
   2124   for (unsigned i = 0, e = Set.size(); i != e; ++i)
   2125     BV.set(Set[i]->EnumValue);
   2126   return BV;
   2127 }
   2128