Home | History | Annotate | Download | only in arm64
      1 // Copyright 2013 the V8 project authors. All rights reserved.
      2 //
      3 // Redistribution and use in source and binary forms, with or without
      4 // modification, are permitted provided that the following conditions are
      5 // met:
      6 //
      7 //     * Redistributions of source code must retain the above copyright
      8 //       notice, this list of conditions and the following disclaimer.
      9 //     * Redistributions in binary form must reproduce the above
     10 //       copyright notice, this list of conditions and the following
     11 //       disclaimer in the documentation and/or other materials provided
     12 //       with the distribution.
     13 //     * Neither the name of Google Inc. nor the names of its
     14 //       contributors may be used to endorse or promote products derived
     15 //       from this software without specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     18 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     19 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     20 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     21 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     22 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     23 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     24 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     25 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     26 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     27 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     28 
     29 #if V8_TARGET_ARCH_ARM64
     30 
     31 #define ARM64_DEFINE_REG_STATICS
     32 #include "src/arm64/assembler-arm64.h"
     33 
     34 #include "src/arm64/assembler-arm64-inl.h"
     35 #include "src/arm64/frames-arm64.h"
     36 #include "src/base/bits.h"
     37 #include "src/base/cpu.h"
     38 #include "src/register-configuration.h"
     39 
     40 namespace v8 {
     41 namespace internal {
     42 
     43 
     44 // -----------------------------------------------------------------------------
     45 // CpuFeatures implementation.
     46 
     47 void CpuFeatures::ProbeImpl(bool cross_compile) {
     48   // AArch64 has no configuration options, no further probing is required.
     49   supported_ = 0;
     50 
     51   // Only use statically determined features for cross compile (snapshot).
     52   if (cross_compile) return;
     53 
     54   // We used to probe for coherent cache support, but on older CPUs it
     55   // causes crashes (crbug.com/524337), and newer CPUs don't even have
     56   // the feature any more.
     57 }
     58 
     59 void CpuFeatures::PrintTarget() { }
     60 void CpuFeatures::PrintFeatures() {}
     61 
     62 // -----------------------------------------------------------------------------
     63 // CPURegList utilities.
     64 
     65 CPURegister CPURegList::PopLowestIndex() {
     66   DCHECK(IsValid());
     67   if (IsEmpty()) {
     68     return NoCPUReg;
     69   }
     70   int index = CountTrailingZeros(list_, kRegListSizeInBits);
     71   DCHECK((1 << index) & list_);
     72   Remove(index);
     73   return CPURegister::Create(index, size_, type_);
     74 }
     75 
     76 
     77 CPURegister CPURegList::PopHighestIndex() {
     78   DCHECK(IsValid());
     79   if (IsEmpty()) {
     80     return NoCPUReg;
     81   }
     82   int index = CountLeadingZeros(list_, kRegListSizeInBits);
     83   index = kRegListSizeInBits - 1 - index;
     84   DCHECK((1 << index) & list_);
     85   Remove(index);
     86   return CPURegister::Create(index, size_, type_);
     87 }
     88 
     89 
     90 void CPURegList::RemoveCalleeSaved() {
     91   if (type() == CPURegister::kRegister) {
     92     Remove(GetCalleeSaved(RegisterSizeInBits()));
     93   } else if (type() == CPURegister::kFPRegister) {
     94     Remove(GetCalleeSavedFP(RegisterSizeInBits()));
     95   } else {
     96     DCHECK(type() == CPURegister::kNoRegister);
     97     DCHECK(IsEmpty());
     98     // The list must already be empty, so do nothing.
     99   }
    100 }
    101 
    102 
    103 CPURegList CPURegList::GetCalleeSaved(int size) {
    104   return CPURegList(CPURegister::kRegister, size, 19, 29);
    105 }
    106 
    107 
    108 CPURegList CPURegList::GetCalleeSavedFP(int size) {
    109   return CPURegList(CPURegister::kFPRegister, size, 8, 15);
    110 }
    111 
    112 
    113 CPURegList CPURegList::GetCallerSaved(int size) {
    114   // Registers x0-x18 and lr (x30) are caller-saved.
    115   CPURegList list = CPURegList(CPURegister::kRegister, size, 0, 18);
    116   list.Combine(lr);
    117   return list;
    118 }
    119 
    120 
    121 CPURegList CPURegList::GetCallerSavedFP(int size) {
    122   // Registers d0-d7 and d16-d31 are caller-saved.
    123   CPURegList list = CPURegList(CPURegister::kFPRegister, size, 0, 7);
    124   list.Combine(CPURegList(CPURegister::kFPRegister, size, 16, 31));
    125   return list;
    126 }
    127 
    128 
    129 // This function defines the list of registers which are associated with a
    130 // safepoint slot. Safepoint register slots are saved contiguously on the stack.
    131 // MacroAssembler::SafepointRegisterStackIndex handles mapping from register
    132 // code to index in the safepoint register slots. Any change here can affect
    133 // this mapping.
    134 CPURegList CPURegList::GetSafepointSavedRegisters() {
    135   CPURegList list = CPURegList::GetCalleeSaved();
    136   list.Combine(
    137       CPURegList(CPURegister::kRegister, kXRegSizeInBits, kJSCallerSaved));
    138 
    139   // Note that unfortunately we can't use symbolic names for registers and have
    140   // to directly use register codes. This is because this function is used to
    141   // initialize some static variables and we can't rely on register variables
    142   // to be initialized due to static initialization order issues in C++.
    143 
    144   // Drop ip0 and ip1 (i.e. x16 and x17), as they should not be expected to be
    145   // preserved outside of the macro assembler.
    146   list.Remove(16);
    147   list.Remove(17);
    148 
    149   // Add x18 to the safepoint list, as although it's not in kJSCallerSaved, it
    150   // is a caller-saved register according to the procedure call standard.
    151   list.Combine(18);
    152 
    153   // Drop jssp as the stack pointer doesn't need to be included.
    154   list.Remove(28);
    155 
    156   // Add the link register (x30) to the safepoint list.
    157   list.Combine(30);
    158 
    159   return list;
    160 }
    161 
    162 
    163 // -----------------------------------------------------------------------------
    164 // Implementation of RelocInfo
    165 
    166 const int RelocInfo::kApplyMask = 1 << RelocInfo::INTERNAL_REFERENCE;
    167 
    168 
    169 bool RelocInfo::IsCodedSpecially() {
    170   // The deserializer needs to know whether a pointer is specially coded. Being
    171   // specially coded on ARM64 means that it is a movz/movk sequence. We don't
    172   // generate those for relocatable pointers.
    173   return false;
    174 }
    175 
    176 
    177 bool RelocInfo::IsInConstantPool() {
    178   Instruction* instr = reinterpret_cast<Instruction*>(pc_);
    179   return instr->IsLdrLiteralX();
    180 }
    181 
    182 Address RelocInfo::wasm_memory_reference() {
    183   DCHECK(IsWasmMemoryReference(rmode_));
    184   return Memory::Address_at(Assembler::target_pointer_address_at(pc_));
    185 }
    186 
    187 uint32_t RelocInfo::wasm_memory_size_reference() {
    188   DCHECK(IsWasmMemorySizeReference(rmode_));
    189   return Memory::uint32_at(Assembler::target_pointer_address_at(pc_));
    190 }
    191 
    192 Address RelocInfo::wasm_global_reference() {
    193   DCHECK(IsWasmGlobalReference(rmode_));
    194   return Memory::Address_at(Assembler::target_pointer_address_at(pc_));
    195 }
    196 
    197 void RelocInfo::unchecked_update_wasm_memory_reference(
    198     Address address, ICacheFlushMode flush_mode) {
    199   Assembler::set_target_address_at(isolate_, pc_, host_, address, flush_mode);
    200 }
    201 
    202 void RelocInfo::unchecked_update_wasm_memory_size(uint32_t size,
    203                                                   ICacheFlushMode flush_mode) {
    204   Memory::uint32_at(Assembler::target_pointer_address_at(pc_)) = size;
    205 }
    206 
    207 Register GetAllocatableRegisterThatIsNotOneOf(Register reg1, Register reg2,
    208                                               Register reg3, Register reg4) {
    209   CPURegList regs(reg1, reg2, reg3, reg4);
    210   const RegisterConfiguration* config = RegisterConfiguration::Crankshaft();
    211   for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
    212     int code = config->GetAllocatableDoubleCode(i);
    213     Register candidate = Register::from_code(code);
    214     if (regs.IncludesAliasOf(candidate)) continue;
    215     return candidate;
    216   }
    217   UNREACHABLE();
    218   return NoReg;
    219 }
    220 
    221 
    222 bool AreAliased(const CPURegister& reg1, const CPURegister& reg2,
    223                 const CPURegister& reg3, const CPURegister& reg4,
    224                 const CPURegister& reg5, const CPURegister& reg6,
    225                 const CPURegister& reg7, const CPURegister& reg8) {
    226   int number_of_valid_regs = 0;
    227   int number_of_valid_fpregs = 0;
    228 
    229   RegList unique_regs = 0;
    230   RegList unique_fpregs = 0;
    231 
    232   const CPURegister regs[] = {reg1, reg2, reg3, reg4, reg5, reg6, reg7, reg8};
    233 
    234   for (unsigned i = 0; i < arraysize(regs); i++) {
    235     if (regs[i].IsRegister()) {
    236       number_of_valid_regs++;
    237       unique_regs |= regs[i].Bit();
    238     } else if (regs[i].IsFPRegister()) {
    239       number_of_valid_fpregs++;
    240       unique_fpregs |= regs[i].Bit();
    241     } else {
    242       DCHECK(!regs[i].IsValid());
    243     }
    244   }
    245 
    246   int number_of_unique_regs =
    247     CountSetBits(unique_regs, sizeof(unique_regs) * kBitsPerByte);
    248   int number_of_unique_fpregs =
    249     CountSetBits(unique_fpregs, sizeof(unique_fpregs) * kBitsPerByte);
    250 
    251   DCHECK(number_of_valid_regs >= number_of_unique_regs);
    252   DCHECK(number_of_valid_fpregs >= number_of_unique_fpregs);
    253 
    254   return (number_of_valid_regs != number_of_unique_regs) ||
    255          (number_of_valid_fpregs != number_of_unique_fpregs);
    256 }
    257 
    258 
    259 bool AreSameSizeAndType(const CPURegister& reg1, const CPURegister& reg2,
    260                         const CPURegister& reg3, const CPURegister& reg4,
    261                         const CPURegister& reg5, const CPURegister& reg6,
    262                         const CPURegister& reg7, const CPURegister& reg8) {
    263   DCHECK(reg1.IsValid());
    264   bool match = true;
    265   match &= !reg2.IsValid() || reg2.IsSameSizeAndType(reg1);
    266   match &= !reg3.IsValid() || reg3.IsSameSizeAndType(reg1);
    267   match &= !reg4.IsValid() || reg4.IsSameSizeAndType(reg1);
    268   match &= !reg5.IsValid() || reg5.IsSameSizeAndType(reg1);
    269   match &= !reg6.IsValid() || reg6.IsSameSizeAndType(reg1);
    270   match &= !reg7.IsValid() || reg7.IsSameSizeAndType(reg1);
    271   match &= !reg8.IsValid() || reg8.IsSameSizeAndType(reg1);
    272   return match;
    273 }
    274 
    275 
    276 void Immediate::InitializeHandle(Handle<Object> handle) {
    277   AllowDeferredHandleDereference using_raw_address;
    278 
    279   // Verify all Objects referred by code are NOT in new space.
    280   Object* obj = *handle;
    281   if (obj->IsHeapObject()) {
    282     DCHECK(!HeapObject::cast(obj)->GetHeap()->InNewSpace(obj));
    283     value_ = reinterpret_cast<intptr_t>(handle.location());
    284     rmode_ = RelocInfo::EMBEDDED_OBJECT;
    285   } else {
    286     STATIC_ASSERT(sizeof(intptr_t) == sizeof(int64_t));
    287     value_ = reinterpret_cast<intptr_t>(obj);
    288     rmode_ = RelocInfo::NONE64;
    289   }
    290 }
    291 
    292 
    293 bool Operand::NeedsRelocation(const Assembler* assembler) const {
    294   RelocInfo::Mode rmode = immediate_.rmode();
    295 
    296   if (rmode == RelocInfo::EXTERNAL_REFERENCE) {
    297     return assembler->serializer_enabled();
    298   }
    299 
    300   return !RelocInfo::IsNone(rmode);
    301 }
    302 
    303 
    304 // Constant Pool.
    305 void ConstPool::RecordEntry(intptr_t data,
    306                             RelocInfo::Mode mode) {
    307   DCHECK(mode != RelocInfo::COMMENT && mode != RelocInfo::POSITION &&
    308          mode != RelocInfo::STATEMENT_POSITION &&
    309          mode != RelocInfo::CONST_POOL && mode != RelocInfo::VENEER_POOL &&
    310          mode != RelocInfo::CODE_AGE_SEQUENCE &&
    311          mode != RelocInfo::DEOPT_REASON && mode != RelocInfo::DEOPT_ID);
    312   uint64_t raw_data = static_cast<uint64_t>(data);
    313   int offset = assm_->pc_offset();
    314   if (IsEmpty()) {
    315     first_use_ = offset;
    316   }
    317 
    318   std::pair<uint64_t, int> entry = std::make_pair(raw_data, offset);
    319   if (CanBeShared(mode)) {
    320     shared_entries_.insert(entry);
    321     if (shared_entries_.count(entry.first) == 1) {
    322       shared_entries_count++;
    323     }
    324   } else {
    325     unique_entries_.push_back(entry);
    326   }
    327 
    328   if (EntryCount() > Assembler::kApproxMaxPoolEntryCount) {
    329     // Request constant pool emission after the next instruction.
    330     assm_->SetNextConstPoolCheckIn(1);
    331   }
    332 }
    333 
    334 
    335 int ConstPool::DistanceToFirstUse() {
    336   DCHECK(first_use_ >= 0);
    337   return assm_->pc_offset() - first_use_;
    338 }
    339 
    340 
    341 int ConstPool::MaxPcOffset() {
    342   // There are no pending entries in the pool so we can never get out of
    343   // range.
    344   if (IsEmpty()) return kMaxInt;
    345 
    346   // Entries are not necessarily emitted in the order they are added so in the
    347   // worst case the first constant pool use will be accessing the last entry.
    348   return first_use_ + kMaxLoadLiteralRange - WorstCaseSize();
    349 }
    350 
    351 
    352 int ConstPool::WorstCaseSize() {
    353   if (IsEmpty()) return 0;
    354 
    355   // Max size prologue:
    356   //   b   over
    357   //   ldr xzr, #pool_size
    358   //   blr xzr
    359   //   nop
    360   // All entries are 64-bit for now.
    361   return 4 * kInstructionSize + EntryCount() * kPointerSize;
    362 }
    363 
    364 
    365 int ConstPool::SizeIfEmittedAtCurrentPc(bool require_jump) {
    366   if (IsEmpty()) return 0;
    367 
    368   // Prologue is:
    369   //   b   over  ;; if require_jump
    370   //   ldr xzr, #pool_size
    371   //   blr xzr
    372   //   nop       ;; if not 64-bit aligned
    373   int prologue_size = require_jump ? kInstructionSize : 0;
    374   prologue_size += 2 * kInstructionSize;
    375   prologue_size += IsAligned(assm_->pc_offset() + prologue_size, 8) ?
    376                    0 : kInstructionSize;
    377 
    378   // All entries are 64-bit for now.
    379   return prologue_size + EntryCount() * kPointerSize;
    380 }
    381 
    382 
    383 void ConstPool::Emit(bool require_jump) {
    384   DCHECK(!assm_->is_const_pool_blocked());
    385   // Prevent recursive pool emission and protect from veneer pools.
    386   Assembler::BlockPoolsScope block_pools(assm_);
    387 
    388   int size = SizeIfEmittedAtCurrentPc(require_jump);
    389   Label size_check;
    390   assm_->bind(&size_check);
    391 
    392   assm_->RecordConstPool(size);
    393   // Emit the constant pool. It is preceded by an optional branch if
    394   // require_jump and a header which will:
    395   //  1) Encode the size of the constant pool, for use by the disassembler.
    396   //  2) Terminate the program, to try to prevent execution from accidentally
    397   //     flowing into the constant pool.
    398   //  3) align the pool entries to 64-bit.
    399   // The header is therefore made of up to three arm64 instructions:
    400   //   ldr xzr, #<size of the constant pool in 32-bit words>
    401   //   blr xzr
    402   //   nop
    403   //
    404   // If executed, the header will likely segfault and lr will point to the
    405   // instruction following the offending blr.
    406   // TODO(all): Make the alignment part less fragile. Currently code is
    407   // allocated as a byte array so there are no guarantees the alignment will
    408   // be preserved on compaction. Currently it works as allocation seems to be
    409   // 64-bit aligned.
    410 
    411   // Emit branch if required
    412   Label after_pool;
    413   if (require_jump) {
    414     assm_->b(&after_pool);
    415   }
    416 
    417   // Emit the header.
    418   assm_->RecordComment("[ Constant Pool");
    419   EmitMarker();
    420   EmitGuard();
    421   assm_->Align(8);
    422 
    423   // Emit constant pool entries.
    424   // TODO(all): currently each relocated constant is 64 bits, consider adding
    425   // support for 32-bit entries.
    426   EmitEntries();
    427   assm_->RecordComment("]");
    428 
    429   if (after_pool.is_linked()) {
    430     assm_->bind(&after_pool);
    431   }
    432 
    433   DCHECK(assm_->SizeOfCodeGeneratedSince(&size_check) ==
    434          static_cast<unsigned>(size));
    435 }
    436 
    437 
    438 void ConstPool::Clear() {
    439   shared_entries_.clear();
    440   shared_entries_count = 0;
    441   unique_entries_.clear();
    442   first_use_ = -1;
    443 }
    444 
    445 
    446 bool ConstPool::CanBeShared(RelocInfo::Mode mode) {
    447   // Constant pool currently does not support 32-bit entries.
    448   DCHECK(mode != RelocInfo::NONE32);
    449 
    450   return RelocInfo::IsNone(mode) ||
    451          (!assm_->serializer_enabled() &&
    452           (mode >= RelocInfo::FIRST_SHAREABLE_RELOC_MODE));
    453 }
    454 
    455 
    456 void ConstPool::EmitMarker() {
    457   // A constant pool size is expressed in number of 32-bits words.
    458   // Currently all entries are 64-bit.
    459   // + 1 is for the crash guard.
    460   // + 0/1 for alignment.
    461   int word_count = EntryCount() * 2 + 1 +
    462                    (IsAligned(assm_->pc_offset(), 8) ? 0 : 1);
    463   assm_->Emit(LDR_x_lit                          |
    464               Assembler::ImmLLiteral(word_count) |
    465               Assembler::Rt(xzr));
    466 }
    467 
    468 
    469 MemOperand::PairResult MemOperand::AreConsistentForPair(
    470     const MemOperand& operandA,
    471     const MemOperand& operandB,
    472     int access_size_log2) {
    473   DCHECK(access_size_log2 >= 0);
    474   DCHECK(access_size_log2 <= 3);
    475   // Step one: check that they share the same base, that the mode is Offset
    476   // and that the offset is a multiple of access size.
    477   if (!operandA.base().Is(operandB.base()) ||
    478       (operandA.addrmode() != Offset) ||
    479       (operandB.addrmode() != Offset) ||
    480       ((operandA.offset() & ((1 << access_size_log2) - 1)) != 0)) {
    481     return kNotPair;
    482   }
    483   // Step two: check that the offsets are contiguous and that the range
    484   // is OK for ldp/stp.
    485   if ((operandB.offset() == operandA.offset() + (1 << access_size_log2)) &&
    486       is_int7(operandA.offset() >> access_size_log2)) {
    487     return kPairAB;
    488   }
    489   if ((operandA.offset() == operandB.offset() + (1 << access_size_log2)) &&
    490       is_int7(operandB.offset() >> access_size_log2)) {
    491     return kPairBA;
    492   }
    493   return kNotPair;
    494 }
    495 
    496 
    497 void ConstPool::EmitGuard() {
    498 #ifdef DEBUG
    499   Instruction* instr = reinterpret_cast<Instruction*>(assm_->pc());
    500   DCHECK(instr->preceding()->IsLdrLiteralX() &&
    501          instr->preceding()->Rt() == xzr.code());
    502 #endif
    503   assm_->EmitPoolGuard();
    504 }
    505 
    506 
    507 void ConstPool::EmitEntries() {
    508   DCHECK(IsAligned(assm_->pc_offset(), 8));
    509 
    510   typedef std::multimap<uint64_t, int>::const_iterator SharedEntriesIterator;
    511   SharedEntriesIterator value_it;
    512   // Iterate through the keys (constant pool values).
    513   for (value_it = shared_entries_.begin();
    514        value_it != shared_entries_.end();
    515        value_it = shared_entries_.upper_bound(value_it->first)) {
    516     std::pair<SharedEntriesIterator, SharedEntriesIterator> range;
    517     uint64_t data = value_it->first;
    518     range = shared_entries_.equal_range(data);
    519     SharedEntriesIterator offset_it;
    520     // Iterate through the offsets of a given key.
    521     for (offset_it = range.first; offset_it != range.second; offset_it++) {
    522       Instruction* instr = assm_->InstructionAt(offset_it->second);
    523 
    524       // Instruction to patch must be 'ldr rd, [pc, #offset]' with offset == 0.
    525       DCHECK(instr->IsLdrLiteral() && instr->ImmLLiteral() == 0);
    526       instr->SetImmPCOffsetTarget(assm_->isolate(), assm_->pc());
    527     }
    528     assm_->dc64(data);
    529   }
    530   shared_entries_.clear();
    531   shared_entries_count = 0;
    532 
    533   // Emit unique entries.
    534   std::vector<std::pair<uint64_t, int> >::const_iterator unique_it;
    535   for (unique_it = unique_entries_.begin();
    536        unique_it != unique_entries_.end();
    537        unique_it++) {
    538     Instruction* instr = assm_->InstructionAt(unique_it->second);
    539 
    540     // Instruction to patch must be 'ldr rd, [pc, #offset]' with offset == 0.
    541     DCHECK(instr->IsLdrLiteral() && instr->ImmLLiteral() == 0);
    542     instr->SetImmPCOffsetTarget(assm_->isolate(), assm_->pc());
    543     assm_->dc64(unique_it->first);
    544   }
    545   unique_entries_.clear();
    546   first_use_ = -1;
    547 }
    548 
    549 
    550 // Assembler
    551 Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
    552     : AssemblerBase(isolate, buffer, buffer_size),
    553       constpool_(this),
    554       recorded_ast_id_(TypeFeedbackId::None()),
    555       unresolved_branches_(),
    556       positions_recorder_(this) {
    557   const_pool_blocked_nesting_ = 0;
    558   veneer_pool_blocked_nesting_ = 0;
    559   Reset();
    560 }
    561 
    562 
    563 Assembler::~Assembler() {
    564   DCHECK(constpool_.IsEmpty());
    565   DCHECK(const_pool_blocked_nesting_ == 0);
    566   DCHECK(veneer_pool_blocked_nesting_ == 0);
    567 }
    568 
    569 
    570 void Assembler::Reset() {
    571 #ifdef DEBUG
    572   DCHECK((pc_ >= buffer_) && (pc_ < buffer_ + buffer_size_));
    573   DCHECK(const_pool_blocked_nesting_ == 0);
    574   DCHECK(veneer_pool_blocked_nesting_ == 0);
    575   DCHECK(unresolved_branches_.empty());
    576   memset(buffer_, 0, pc_ - buffer_);
    577 #endif
    578   pc_ = buffer_;
    579   reloc_info_writer.Reposition(reinterpret_cast<byte*>(buffer_ + buffer_size_),
    580                                reinterpret_cast<byte*>(pc_));
    581   constpool_.Clear();
    582   next_constant_pool_check_ = 0;
    583   next_veneer_pool_check_ = kMaxInt;
    584   no_const_pool_before_ = 0;
    585   ClearRecordedAstId();
    586 }
    587 
    588 
    589 void Assembler::GetCode(CodeDesc* desc) {
    590   reloc_info_writer.Finish();
    591   // Emit constant pool if necessary.
    592   CheckConstPool(true, false);
    593   DCHECK(constpool_.IsEmpty());
    594 
    595   // Set up code descriptor.
    596   if (desc) {
    597     desc->buffer = reinterpret_cast<byte*>(buffer_);
    598     desc->buffer_size = buffer_size_;
    599     desc->instr_size = pc_offset();
    600     desc->reloc_size =
    601         static_cast<int>((reinterpret_cast<byte*>(buffer_) + buffer_size_) -
    602                          reloc_info_writer.pos());
    603     desc->origin = this;
    604     desc->constant_pool_size = 0;
    605     desc->unwinding_info_size = 0;
    606     desc->unwinding_info = nullptr;
    607   }
    608 }
    609 
    610 
    611 void Assembler::Align(int m) {
    612   DCHECK(m >= 4 && base::bits::IsPowerOfTwo32(m));
    613   while ((pc_offset() & (m - 1)) != 0) {
    614     nop();
    615   }
    616 }
    617 
    618 
    619 void Assembler::CheckLabelLinkChain(Label const * label) {
    620 #ifdef DEBUG
    621   if (label->is_linked()) {
    622     static const int kMaxLinksToCheck = 64;  // Avoid O(n2) behaviour.
    623     int links_checked = 0;
    624     int64_t linkoffset = label->pos();
    625     bool end_of_chain = false;
    626     while (!end_of_chain) {
    627       if (++links_checked > kMaxLinksToCheck) break;
    628       Instruction * link = InstructionAt(linkoffset);
    629       int64_t linkpcoffset = link->ImmPCOffset();
    630       int64_t prevlinkoffset = linkoffset + linkpcoffset;
    631 
    632       end_of_chain = (linkoffset == prevlinkoffset);
    633       linkoffset = linkoffset + linkpcoffset;
    634     }
    635   }
    636 #endif
    637 }
    638 
    639 
    640 void Assembler::RemoveBranchFromLabelLinkChain(Instruction* branch,
    641                                                Label* label,
    642                                                Instruction* label_veneer) {
    643   DCHECK(label->is_linked());
    644 
    645   CheckLabelLinkChain(label);
    646 
    647   Instruction* link = InstructionAt(label->pos());
    648   Instruction* prev_link = link;
    649   Instruction* next_link;
    650   bool end_of_chain = false;
    651 
    652   while (link != branch && !end_of_chain) {
    653     next_link = link->ImmPCOffsetTarget();
    654     end_of_chain = (link == next_link);
    655     prev_link = link;
    656     link = next_link;
    657   }
    658 
    659   DCHECK(branch == link);
    660   next_link = branch->ImmPCOffsetTarget();
    661 
    662   if (branch == prev_link) {
    663     // The branch is the first instruction in the chain.
    664     if (branch == next_link) {
    665       // It is also the last instruction in the chain, so it is the only branch
    666       // currently referring to this label.
    667       label->Unuse();
    668     } else {
    669       label->link_to(
    670           static_cast<int>(reinterpret_cast<byte*>(next_link) - buffer_));
    671     }
    672 
    673   } else if (branch == next_link) {
    674     // The branch is the last (but not also the first) instruction in the chain.
    675     prev_link->SetImmPCOffsetTarget(isolate(), prev_link);
    676 
    677   } else {
    678     // The branch is in the middle of the chain.
    679     if (prev_link->IsTargetInImmPCOffsetRange(next_link)) {
    680       prev_link->SetImmPCOffsetTarget(isolate(), next_link);
    681     } else if (label_veneer != NULL) {
    682       // Use the veneer for all previous links in the chain.
    683       prev_link->SetImmPCOffsetTarget(isolate(), prev_link);
    684 
    685       end_of_chain = false;
    686       link = next_link;
    687       while (!end_of_chain) {
    688         next_link = link->ImmPCOffsetTarget();
    689         end_of_chain = (link == next_link);
    690         link->SetImmPCOffsetTarget(isolate(), label_veneer);
    691         link = next_link;
    692       }
    693     } else {
    694       // The assert below will fire.
    695       // Some other work could be attempted to fix up the chain, but it would be
    696       // rather complicated. If we crash here, we may want to consider using an
    697       // other mechanism than a chain of branches.
    698       //
    699       // Note that this situation currently should not happen, as we always call
    700       // this function with a veneer to the target label.
    701       // However this could happen with a MacroAssembler in the following state:
    702       //    [previous code]
    703       //    B(label);
    704       //    [20KB code]
    705       //    Tbz(label);   // First tbz. Pointing to unconditional branch.
    706       //    [20KB code]
    707       //    Tbz(label);   // Second tbz. Pointing to the first tbz.
    708       //    [more code]
    709       // and this function is called to remove the first tbz from the label link
    710       // chain. Since tbz has a range of +-32KB, the second tbz cannot point to
    711       // the unconditional branch.
    712       CHECK(prev_link->IsTargetInImmPCOffsetRange(next_link));
    713       UNREACHABLE();
    714     }
    715   }
    716 
    717   CheckLabelLinkChain(label);
    718 }
    719 
    720 
    721 void Assembler::bind(Label* label) {
    722   // Bind label to the address at pc_. All instructions (most likely branches)
    723   // that are linked to this label will be updated to point to the newly-bound
    724   // label.
    725 
    726   DCHECK(!label->is_near_linked());
    727   DCHECK(!label->is_bound());
    728 
    729   DeleteUnresolvedBranchInfoForLabel(label);
    730 
    731   // If the label is linked, the link chain looks something like this:
    732   //
    733   // |--I----I-------I-------L
    734   // |---------------------->| pc_offset
    735   // |-------------->|         linkoffset = label->pos()
    736   //         |<------|         link->ImmPCOffset()
    737   // |------>|                 prevlinkoffset = linkoffset + link->ImmPCOffset()
    738   //
    739   // On each iteration, the last link is updated and then removed from the
    740   // chain until only one remains. At that point, the label is bound.
    741   //
    742   // If the label is not linked, no preparation is required before binding.
    743   while (label->is_linked()) {
    744     int linkoffset = label->pos();
    745     Instruction* link = InstructionAt(linkoffset);
    746     int prevlinkoffset = linkoffset + static_cast<int>(link->ImmPCOffset());
    747 
    748     CheckLabelLinkChain(label);
    749 
    750     DCHECK(linkoffset >= 0);
    751     DCHECK(linkoffset < pc_offset());
    752     DCHECK((linkoffset > prevlinkoffset) ||
    753            (linkoffset - prevlinkoffset == kStartOfLabelLinkChain));
    754     DCHECK(prevlinkoffset >= 0);
    755 
    756     // Update the link to point to the label.
    757     if (link->IsUnresolvedInternalReference()) {
    758       // Internal references do not get patched to an instruction but directly
    759       // to an address.
    760       internal_reference_positions_.push_back(linkoffset);
    761       PatchingAssembler patcher(isolate(), link, 2);
    762       patcher.dc64(reinterpret_cast<uintptr_t>(pc_));
    763     } else {
    764       link->SetImmPCOffsetTarget(isolate(),
    765                                  reinterpret_cast<Instruction*>(pc_));
    766     }
    767 
    768     // Link the label to the previous link in the chain.
    769     if (linkoffset - prevlinkoffset == kStartOfLabelLinkChain) {
    770       // We hit kStartOfLabelLinkChain, so the chain is fully processed.
    771       label->Unuse();
    772     } else {
    773       // Update the label for the next iteration.
    774       label->link_to(prevlinkoffset);
    775     }
    776   }
    777   label->bind_to(pc_offset());
    778 
    779   DCHECK(label->is_bound());
    780   DCHECK(!label->is_linked());
    781 }
    782 
    783 
    784 int Assembler::LinkAndGetByteOffsetTo(Label* label) {
    785   DCHECK(sizeof(*pc_) == 1);
    786   CheckLabelLinkChain(label);
    787 
    788   int offset;
    789   if (label->is_bound()) {
    790     // The label is bound, so it does not need to be updated. Referring
    791     // instructions must link directly to the label as they will not be
    792     // updated.
    793     //
    794     // In this case, label->pos() returns the offset of the label from the
    795     // start of the buffer.
    796     //
    797     // Note that offset can be zero for self-referential instructions. (This
    798     // could be useful for ADR, for example.)
    799     offset = label->pos() - pc_offset();
    800     DCHECK(offset <= 0);
    801   } else {
    802     if (label->is_linked()) {
    803       // The label is linked, so the referring instruction should be added onto
    804       // the end of the label's link chain.
    805       //
    806       // In this case, label->pos() returns the offset of the last linked
    807       // instruction from the start of the buffer.
    808       offset = label->pos() - pc_offset();
    809       DCHECK(offset != kStartOfLabelLinkChain);
    810       // Note that the offset here needs to be PC-relative only so that the
    811       // first instruction in a buffer can link to an unbound label. Otherwise,
    812       // the offset would be 0 for this case, and 0 is reserved for
    813       // kStartOfLabelLinkChain.
    814     } else {
    815       // The label is unused, so it now becomes linked and the referring
    816       // instruction is at the start of the new link chain.
    817       offset = kStartOfLabelLinkChain;
    818     }
    819     // The instruction at pc is now the last link in the label's chain.
    820     label->link_to(pc_offset());
    821   }
    822 
    823   return offset;
    824 }
    825 
    826 
    827 void Assembler::DeleteUnresolvedBranchInfoForLabelTraverse(Label* label) {
    828   DCHECK(label->is_linked());
    829   CheckLabelLinkChain(label);
    830 
    831   int link_offset = label->pos();
    832   int link_pcoffset;
    833   bool end_of_chain = false;
    834 
    835   while (!end_of_chain) {
    836     Instruction * link = InstructionAt(link_offset);
    837     link_pcoffset = static_cast<int>(link->ImmPCOffset());
    838 
    839     // ADR instructions are not handled by veneers.
    840     if (link->IsImmBranch()) {
    841       int max_reachable_pc =
    842           static_cast<int>(InstructionOffset(link) +
    843                            Instruction::ImmBranchRange(link->BranchType()));
    844       typedef std::multimap<int, FarBranchInfo>::iterator unresolved_info_it;
    845       std::pair<unresolved_info_it, unresolved_info_it> range;
    846       range = unresolved_branches_.equal_range(max_reachable_pc);
    847       unresolved_info_it it;
    848       for (it = range.first; it != range.second; ++it) {
    849         if (it->second.pc_offset_ == link_offset) {
    850           unresolved_branches_.erase(it);
    851           break;
    852         }
    853       }
    854     }
    855 
    856     end_of_chain = (link_pcoffset == 0);
    857     link_offset = link_offset + link_pcoffset;
    858   }
    859 }
    860 
    861 
    862 void Assembler::DeleteUnresolvedBranchInfoForLabel(Label* label) {
    863   if (unresolved_branches_.empty()) {
    864     DCHECK(next_veneer_pool_check_ == kMaxInt);
    865     return;
    866   }
    867 
    868   if (label->is_linked()) {
    869     // Branches to this label will be resolved when the label is bound, normally
    870     // just after all the associated info has been deleted.
    871     DeleteUnresolvedBranchInfoForLabelTraverse(label);
    872   }
    873   if (unresolved_branches_.empty()) {
    874     next_veneer_pool_check_ = kMaxInt;
    875   } else {
    876     next_veneer_pool_check_ =
    877       unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
    878   }
    879 }
    880 
    881 
    882 void Assembler::StartBlockConstPool() {
    883   if (const_pool_blocked_nesting_++ == 0) {
    884     // Prevent constant pool checks happening by setting the next check to
    885     // the biggest possible offset.
    886     next_constant_pool_check_ = kMaxInt;
    887   }
    888 }
    889 
    890 
    891 void Assembler::EndBlockConstPool() {
    892   if (--const_pool_blocked_nesting_ == 0) {
    893     // Check the constant pool hasn't been blocked for too long.
    894     DCHECK(pc_offset() < constpool_.MaxPcOffset());
    895     // Two cases:
    896     //  * no_const_pool_before_ >= next_constant_pool_check_ and the emission is
    897     //    still blocked
    898     //  * no_const_pool_before_ < next_constant_pool_check_ and the next emit
    899     //    will trigger a check.
    900     next_constant_pool_check_ = no_const_pool_before_;
    901   }
    902 }
    903 
    904 
    905 bool Assembler::is_const_pool_blocked() const {
    906   return (const_pool_blocked_nesting_ > 0) ||
    907          (pc_offset() < no_const_pool_before_);
    908 }
    909 
    910 
    911 bool Assembler::IsConstantPoolAt(Instruction* instr) {
    912   // The constant pool marker is made of two instructions. These instructions
    913   // will never be emitted by the JIT, so checking for the first one is enough:
    914   // 0: ldr xzr, #<size of pool>
    915   bool result = instr->IsLdrLiteralX() && (instr->Rt() == kZeroRegCode);
    916 
    917   // It is still worth asserting the marker is complete.
    918   // 4: blr xzr
    919   DCHECK(!result || (instr->following()->IsBranchAndLinkToRegister() &&
    920                      instr->following()->Rn() == kZeroRegCode));
    921 
    922   return result;
    923 }
    924 
    925 
    926 int Assembler::ConstantPoolSizeAt(Instruction* instr) {
    927 #ifdef USE_SIMULATOR
    928   // Assembler::debug() embeds constants directly into the instruction stream.
    929   // Although this is not a genuine constant pool, treat it like one to avoid
    930   // disassembling the constants.
    931   if ((instr->Mask(ExceptionMask) == HLT) &&
    932       (instr->ImmException() == kImmExceptionIsDebug)) {
    933     const char* message =
    934         reinterpret_cast<const char*>(
    935             instr->InstructionAtOffset(kDebugMessageOffset));
    936     int size = static_cast<int>(kDebugMessageOffset + strlen(message) + 1);
    937     return RoundUp(size, kInstructionSize) / kInstructionSize;
    938   }
    939   // Same for printf support, see MacroAssembler::CallPrintf().
    940   if ((instr->Mask(ExceptionMask) == HLT) &&
    941       (instr->ImmException() == kImmExceptionIsPrintf)) {
    942     return kPrintfLength / kInstructionSize;
    943   }
    944 #endif
    945   if (IsConstantPoolAt(instr)) {
    946     return instr->ImmLLiteral();
    947   } else {
    948     return -1;
    949   }
    950 }
    951 
    952 
    953 void Assembler::EmitPoolGuard() {
    954   // We must generate only one instruction as this is used in scopes that
    955   // control the size of the code generated.
    956   Emit(BLR | Rn(xzr));
    957 }
    958 
    959 
    960 void Assembler::StartBlockVeneerPool() {
    961   ++veneer_pool_blocked_nesting_;
    962 }
    963 
    964 
    965 void Assembler::EndBlockVeneerPool() {
    966   if (--veneer_pool_blocked_nesting_ == 0) {
    967     // Check the veneer pool hasn't been blocked for too long.
    968     DCHECK(unresolved_branches_.empty() ||
    969            (pc_offset() < unresolved_branches_first_limit()));
    970   }
    971 }
    972 
    973 
    974 void Assembler::br(const Register& xn) {
    975   DCHECK(xn.Is64Bits());
    976   Emit(BR | Rn(xn));
    977 }
    978 
    979 
    980 void Assembler::blr(const Register& xn) {
    981   DCHECK(xn.Is64Bits());
    982   // The pattern 'blr xzr' is used as a guard to detect when execution falls
    983   // through the constant pool. It should not be emitted.
    984   DCHECK(!xn.Is(xzr));
    985   Emit(BLR | Rn(xn));
    986 }
    987 
    988 
    989 void Assembler::ret(const Register& xn) {
    990   DCHECK(xn.Is64Bits());
    991   Emit(RET | Rn(xn));
    992 }
    993 
    994 
    995 void Assembler::b(int imm26) {
    996   Emit(B | ImmUncondBranch(imm26));
    997 }
    998 
    999 
   1000 void Assembler::b(Label* label) {
   1001   b(LinkAndGetInstructionOffsetTo(label));
   1002 }
   1003 
   1004 
   1005 void Assembler::b(int imm19, Condition cond) {
   1006   Emit(B_cond | ImmCondBranch(imm19) | cond);
   1007 }
   1008 
   1009 
   1010 void Assembler::b(Label* label, Condition cond) {
   1011   b(LinkAndGetInstructionOffsetTo(label), cond);
   1012 }
   1013 
   1014 
   1015 void Assembler::bl(int imm26) {
   1016   Emit(BL | ImmUncondBranch(imm26));
   1017 }
   1018 
   1019 
   1020 void Assembler::bl(Label* label) {
   1021   bl(LinkAndGetInstructionOffsetTo(label));
   1022 }
   1023 
   1024 
   1025 void Assembler::cbz(const Register& rt,
   1026                     int imm19) {
   1027   Emit(SF(rt) | CBZ | ImmCmpBranch(imm19) | Rt(rt));
   1028 }
   1029 
   1030 
   1031 void Assembler::cbz(const Register& rt,
   1032                     Label* label) {
   1033   cbz(rt, LinkAndGetInstructionOffsetTo(label));
   1034 }
   1035 
   1036 
   1037 void Assembler::cbnz(const Register& rt,
   1038                      int imm19) {
   1039   Emit(SF(rt) | CBNZ | ImmCmpBranch(imm19) | Rt(rt));
   1040 }
   1041 
   1042 
   1043 void Assembler::cbnz(const Register& rt,
   1044                      Label* label) {
   1045   cbnz(rt, LinkAndGetInstructionOffsetTo(label));
   1046 }
   1047 
   1048 
   1049 void Assembler::tbz(const Register& rt,
   1050                     unsigned bit_pos,
   1051                     int imm14) {
   1052   DCHECK(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSizeInBits)));
   1053   Emit(TBZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
   1054 }
   1055 
   1056 
   1057 void Assembler::tbz(const Register& rt,
   1058                     unsigned bit_pos,
   1059                     Label* label) {
   1060   tbz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label));
   1061 }
   1062 
   1063 
   1064 void Assembler::tbnz(const Register& rt,
   1065                      unsigned bit_pos,
   1066                      int imm14) {
   1067   DCHECK(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSizeInBits)));
   1068   Emit(TBNZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
   1069 }
   1070 
   1071 
   1072 void Assembler::tbnz(const Register& rt,
   1073                      unsigned bit_pos,
   1074                      Label* label) {
   1075   tbnz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label));
   1076 }
   1077 
   1078 
   1079 void Assembler::adr(const Register& rd, int imm21) {
   1080   DCHECK(rd.Is64Bits());
   1081   Emit(ADR | ImmPCRelAddress(imm21) | Rd(rd));
   1082 }
   1083 
   1084 
   1085 void Assembler::adr(const Register& rd, Label* label) {
   1086   adr(rd, LinkAndGetByteOffsetTo(label));
   1087 }
   1088 
   1089 
   1090 void Assembler::add(const Register& rd,
   1091                     const Register& rn,
   1092                     const Operand& operand) {
   1093   AddSub(rd, rn, operand, LeaveFlags, ADD);
   1094 }
   1095 
   1096 
   1097 void Assembler::adds(const Register& rd,
   1098                      const Register& rn,
   1099                      const Operand& operand) {
   1100   AddSub(rd, rn, operand, SetFlags, ADD);
   1101 }
   1102 
   1103 
   1104 void Assembler::cmn(const Register& rn,
   1105                     const Operand& operand) {
   1106   Register zr = AppropriateZeroRegFor(rn);
   1107   adds(zr, rn, operand);
   1108 }
   1109 
   1110 
   1111 void Assembler::sub(const Register& rd,
   1112                     const Register& rn,
   1113                     const Operand& operand) {
   1114   AddSub(rd, rn, operand, LeaveFlags, SUB);
   1115 }
   1116 
   1117 
   1118 void Assembler::subs(const Register& rd,
   1119                      const Register& rn,
   1120                      const Operand& operand) {
   1121   AddSub(rd, rn, operand, SetFlags, SUB);
   1122 }
   1123 
   1124 
   1125 void Assembler::cmp(const Register& rn, const Operand& operand) {
   1126   Register zr = AppropriateZeroRegFor(rn);
   1127   subs(zr, rn, operand);
   1128 }
   1129 
   1130 
   1131 void Assembler::neg(const Register& rd, const Operand& operand) {
   1132   Register zr = AppropriateZeroRegFor(rd);
   1133   sub(rd, zr, operand);
   1134 }
   1135 
   1136 
   1137 void Assembler::negs(const Register& rd, const Operand& operand) {
   1138   Register zr = AppropriateZeroRegFor(rd);
   1139   subs(rd, zr, operand);
   1140 }
   1141 
   1142 
   1143 void Assembler::adc(const Register& rd,
   1144                     const Register& rn,
   1145                     const Operand& operand) {
   1146   AddSubWithCarry(rd, rn, operand, LeaveFlags, ADC);
   1147 }
   1148 
   1149 
   1150 void Assembler::adcs(const Register& rd,
   1151                      const Register& rn,
   1152                      const Operand& operand) {
   1153   AddSubWithCarry(rd, rn, operand, SetFlags, ADC);
   1154 }
   1155 
   1156 
   1157 void Assembler::sbc(const Register& rd,
   1158                     const Register& rn,
   1159                     const Operand& operand) {
   1160   AddSubWithCarry(rd, rn, operand, LeaveFlags, SBC);
   1161 }
   1162 
   1163 
   1164 void Assembler::sbcs(const Register& rd,
   1165                      const Register& rn,
   1166                      const Operand& operand) {
   1167   AddSubWithCarry(rd, rn, operand, SetFlags, SBC);
   1168 }
   1169 
   1170 
   1171 void Assembler::ngc(const Register& rd, const Operand& operand) {
   1172   Register zr = AppropriateZeroRegFor(rd);
   1173   sbc(rd, zr, operand);
   1174 }
   1175 
   1176 
   1177 void Assembler::ngcs(const Register& rd, const Operand& operand) {
   1178   Register zr = AppropriateZeroRegFor(rd);
   1179   sbcs(rd, zr, operand);
   1180 }
   1181 
   1182 
   1183 // Logical instructions.
   1184 void Assembler::and_(const Register& rd,
   1185                      const Register& rn,
   1186                      const Operand& operand) {
   1187   Logical(rd, rn, operand, AND);
   1188 }
   1189 
   1190 
   1191 void Assembler::ands(const Register& rd,
   1192                      const Register& rn,
   1193                      const Operand& operand) {
   1194   Logical(rd, rn, operand, ANDS);
   1195 }
   1196 
   1197 
   1198 void Assembler::tst(const Register& rn,
   1199                     const Operand& operand) {
   1200   ands(AppropriateZeroRegFor(rn), rn, operand);
   1201 }
   1202 
   1203 
   1204 void Assembler::bic(const Register& rd,
   1205                     const Register& rn,
   1206                     const Operand& operand) {
   1207   Logical(rd, rn, operand, BIC);
   1208 }
   1209 
   1210 
   1211 void Assembler::bics(const Register& rd,
   1212                      const Register& rn,
   1213                      const Operand& operand) {
   1214   Logical(rd, rn, operand, BICS);
   1215 }
   1216 
   1217 
   1218 void Assembler::orr(const Register& rd,
   1219                     const Register& rn,
   1220                     const Operand& operand) {
   1221   Logical(rd, rn, operand, ORR);
   1222 }
   1223 
   1224 
   1225 void Assembler::orn(const Register& rd,
   1226                     const Register& rn,
   1227                     const Operand& operand) {
   1228   Logical(rd, rn, operand, ORN);
   1229 }
   1230 
   1231 
   1232 void Assembler::eor(const Register& rd,
   1233                     const Register& rn,
   1234                     const Operand& operand) {
   1235   Logical(rd, rn, operand, EOR);
   1236 }
   1237 
   1238 
   1239 void Assembler::eon(const Register& rd,
   1240                     const Register& rn,
   1241                     const Operand& operand) {
   1242   Logical(rd, rn, operand, EON);
   1243 }
   1244 
   1245 
   1246 void Assembler::lslv(const Register& rd,
   1247                      const Register& rn,
   1248                      const Register& rm) {
   1249   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   1250   DCHECK(rd.SizeInBits() == rm.SizeInBits());
   1251   Emit(SF(rd) | LSLV | Rm(rm) | Rn(rn) | Rd(rd));
   1252 }
   1253 
   1254 
   1255 void Assembler::lsrv(const Register& rd,
   1256                      const Register& rn,
   1257                      const Register& rm) {
   1258   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   1259   DCHECK(rd.SizeInBits() == rm.SizeInBits());
   1260   Emit(SF(rd) | LSRV | Rm(rm) | Rn(rn) | Rd(rd));
   1261 }
   1262 
   1263 
   1264 void Assembler::asrv(const Register& rd,
   1265                      const Register& rn,
   1266                      const Register& rm) {
   1267   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   1268   DCHECK(rd.SizeInBits() == rm.SizeInBits());
   1269   Emit(SF(rd) | ASRV | Rm(rm) | Rn(rn) | Rd(rd));
   1270 }
   1271 
   1272 
   1273 void Assembler::rorv(const Register& rd,
   1274                      const Register& rn,
   1275                      const Register& rm) {
   1276   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   1277   DCHECK(rd.SizeInBits() == rm.SizeInBits());
   1278   Emit(SF(rd) | RORV | Rm(rm) | Rn(rn) | Rd(rd));
   1279 }
   1280 
   1281 
   1282 // Bitfield operations.
   1283 void Assembler::bfm(const Register& rd, const Register& rn, int immr,
   1284                     int imms) {
   1285   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   1286   Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
   1287   Emit(SF(rd) | BFM | N |
   1288        ImmR(immr, rd.SizeInBits()) |
   1289        ImmS(imms, rn.SizeInBits()) |
   1290        Rn(rn) | Rd(rd));
   1291 }
   1292 
   1293 
   1294 void Assembler::sbfm(const Register& rd, const Register& rn, int immr,
   1295                      int imms) {
   1296   DCHECK(rd.Is64Bits() || rn.Is32Bits());
   1297   Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
   1298   Emit(SF(rd) | SBFM | N |
   1299        ImmR(immr, rd.SizeInBits()) |
   1300        ImmS(imms, rn.SizeInBits()) |
   1301        Rn(rn) | Rd(rd));
   1302 }
   1303 
   1304 
   1305 void Assembler::ubfm(const Register& rd, const Register& rn, int immr,
   1306                      int imms) {
   1307   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   1308   Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
   1309   Emit(SF(rd) | UBFM | N |
   1310        ImmR(immr, rd.SizeInBits()) |
   1311        ImmS(imms, rn.SizeInBits()) |
   1312        Rn(rn) | Rd(rd));
   1313 }
   1314 
   1315 
   1316 void Assembler::extr(const Register& rd, const Register& rn, const Register& rm,
   1317                      int lsb) {
   1318   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   1319   DCHECK(rd.SizeInBits() == rm.SizeInBits());
   1320   Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
   1321   Emit(SF(rd) | EXTR | N | Rm(rm) |
   1322        ImmS(lsb, rn.SizeInBits()) | Rn(rn) | Rd(rd));
   1323 }
   1324 
   1325 
   1326 void Assembler::csel(const Register& rd,
   1327                      const Register& rn,
   1328                      const Register& rm,
   1329                      Condition cond) {
   1330   ConditionalSelect(rd, rn, rm, cond, CSEL);
   1331 }
   1332 
   1333 
   1334 void Assembler::csinc(const Register& rd,
   1335                       const Register& rn,
   1336                       const Register& rm,
   1337                       Condition cond) {
   1338   ConditionalSelect(rd, rn, rm, cond, CSINC);
   1339 }
   1340 
   1341 
   1342 void Assembler::csinv(const Register& rd,
   1343                       const Register& rn,
   1344                       const Register& rm,
   1345                       Condition cond) {
   1346   ConditionalSelect(rd, rn, rm, cond, CSINV);
   1347 }
   1348 
   1349 
   1350 void Assembler::csneg(const Register& rd,
   1351                       const Register& rn,
   1352                       const Register& rm,
   1353                       Condition cond) {
   1354   ConditionalSelect(rd, rn, rm, cond, CSNEG);
   1355 }
   1356 
   1357 
   1358 void Assembler::cset(const Register &rd, Condition cond) {
   1359   DCHECK((cond != al) && (cond != nv));
   1360   Register zr = AppropriateZeroRegFor(rd);
   1361   csinc(rd, zr, zr, NegateCondition(cond));
   1362 }
   1363 
   1364 
   1365 void Assembler::csetm(const Register &rd, Condition cond) {
   1366   DCHECK((cond != al) && (cond != nv));
   1367   Register zr = AppropriateZeroRegFor(rd);
   1368   csinv(rd, zr, zr, NegateCondition(cond));
   1369 }
   1370 
   1371 
   1372 void Assembler::cinc(const Register &rd, const Register &rn, Condition cond) {
   1373   DCHECK((cond != al) && (cond != nv));
   1374   csinc(rd, rn, rn, NegateCondition(cond));
   1375 }
   1376 
   1377 
   1378 void Assembler::cinv(const Register &rd, const Register &rn, Condition cond) {
   1379   DCHECK((cond != al) && (cond != nv));
   1380   csinv(rd, rn, rn, NegateCondition(cond));
   1381 }
   1382 
   1383 
   1384 void Assembler::cneg(const Register &rd, const Register &rn, Condition cond) {
   1385   DCHECK((cond != al) && (cond != nv));
   1386   csneg(rd, rn, rn, NegateCondition(cond));
   1387 }
   1388 
   1389 
   1390 void Assembler::ConditionalSelect(const Register& rd,
   1391                                   const Register& rn,
   1392                                   const Register& rm,
   1393                                   Condition cond,
   1394                                   ConditionalSelectOp op) {
   1395   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   1396   DCHECK(rd.SizeInBits() == rm.SizeInBits());
   1397   Emit(SF(rd) | op | Rm(rm) | Cond(cond) | Rn(rn) | Rd(rd));
   1398 }
   1399 
   1400 
   1401 void Assembler::ccmn(const Register& rn,
   1402                      const Operand& operand,
   1403                      StatusFlags nzcv,
   1404                      Condition cond) {
   1405   ConditionalCompare(rn, operand, nzcv, cond, CCMN);
   1406 }
   1407 
   1408 
   1409 void Assembler::ccmp(const Register& rn,
   1410                      const Operand& operand,
   1411                      StatusFlags nzcv,
   1412                      Condition cond) {
   1413   ConditionalCompare(rn, operand, nzcv, cond, CCMP);
   1414 }
   1415 
   1416 
   1417 void Assembler::DataProcessing3Source(const Register& rd,
   1418                                       const Register& rn,
   1419                                       const Register& rm,
   1420                                       const Register& ra,
   1421                                       DataProcessing3SourceOp op) {
   1422   Emit(SF(rd) | op | Rm(rm) | Ra(ra) | Rn(rn) | Rd(rd));
   1423 }
   1424 
   1425 
   1426 void Assembler::mul(const Register& rd,
   1427                     const Register& rn,
   1428                     const Register& rm) {
   1429   DCHECK(AreSameSizeAndType(rd, rn, rm));
   1430   Register zr = AppropriateZeroRegFor(rn);
   1431   DataProcessing3Source(rd, rn, rm, zr, MADD);
   1432 }
   1433 
   1434 
   1435 void Assembler::madd(const Register& rd,
   1436                      const Register& rn,
   1437                      const Register& rm,
   1438                      const Register& ra) {
   1439   DCHECK(AreSameSizeAndType(rd, rn, rm, ra));
   1440   DataProcessing3Source(rd, rn, rm, ra, MADD);
   1441 }
   1442 
   1443 
   1444 void Assembler::mneg(const Register& rd,
   1445                      const Register& rn,
   1446                      const Register& rm) {
   1447   DCHECK(AreSameSizeAndType(rd, rn, rm));
   1448   Register zr = AppropriateZeroRegFor(rn);
   1449   DataProcessing3Source(rd, rn, rm, zr, MSUB);
   1450 }
   1451 
   1452 
   1453 void Assembler::msub(const Register& rd,
   1454                      const Register& rn,
   1455                      const Register& rm,
   1456                      const Register& ra) {
   1457   DCHECK(AreSameSizeAndType(rd, rn, rm, ra));
   1458   DataProcessing3Source(rd, rn, rm, ra, MSUB);
   1459 }
   1460 
   1461 
   1462 void Assembler::smaddl(const Register& rd,
   1463                        const Register& rn,
   1464                        const Register& rm,
   1465                        const Register& ra) {
   1466   DCHECK(rd.Is64Bits() && ra.Is64Bits());
   1467   DCHECK(rn.Is32Bits() && rm.Is32Bits());
   1468   DataProcessing3Source(rd, rn, rm, ra, SMADDL_x);
   1469 }
   1470 
   1471 
   1472 void Assembler::smsubl(const Register& rd,
   1473                        const Register& rn,
   1474                        const Register& rm,
   1475                        const Register& ra) {
   1476   DCHECK(rd.Is64Bits() && ra.Is64Bits());
   1477   DCHECK(rn.Is32Bits() && rm.Is32Bits());
   1478   DataProcessing3Source(rd, rn, rm, ra, SMSUBL_x);
   1479 }
   1480 
   1481 
   1482 void Assembler::umaddl(const Register& rd,
   1483                        const Register& rn,
   1484                        const Register& rm,
   1485                        const Register& ra) {
   1486   DCHECK(rd.Is64Bits() && ra.Is64Bits());
   1487   DCHECK(rn.Is32Bits() && rm.Is32Bits());
   1488   DataProcessing3Source(rd, rn, rm, ra, UMADDL_x);
   1489 }
   1490 
   1491 
   1492 void Assembler::umsubl(const Register& rd,
   1493                        const Register& rn,
   1494                        const Register& rm,
   1495                        const Register& ra) {
   1496   DCHECK(rd.Is64Bits() && ra.Is64Bits());
   1497   DCHECK(rn.Is32Bits() && rm.Is32Bits());
   1498   DataProcessing3Source(rd, rn, rm, ra, UMSUBL_x);
   1499 }
   1500 
   1501 
   1502 void Assembler::smull(const Register& rd,
   1503                       const Register& rn,
   1504                       const Register& rm) {
   1505   DCHECK(rd.Is64Bits());
   1506   DCHECK(rn.Is32Bits() && rm.Is32Bits());
   1507   DataProcessing3Source(rd, rn, rm, xzr, SMADDL_x);
   1508 }
   1509 
   1510 
   1511 void Assembler::smulh(const Register& rd,
   1512                       const Register& rn,
   1513                       const Register& rm) {
   1514   DCHECK(AreSameSizeAndType(rd, rn, rm));
   1515   DataProcessing3Source(rd, rn, rm, xzr, SMULH_x);
   1516 }
   1517 
   1518 
   1519 void Assembler::sdiv(const Register& rd,
   1520                      const Register& rn,
   1521                      const Register& rm) {
   1522   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   1523   DCHECK(rd.SizeInBits() == rm.SizeInBits());
   1524   Emit(SF(rd) | SDIV | Rm(rm) | Rn(rn) | Rd(rd));
   1525 }
   1526 
   1527 
   1528 void Assembler::udiv(const Register& rd,
   1529                      const Register& rn,
   1530                      const Register& rm) {
   1531   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   1532   DCHECK(rd.SizeInBits() == rm.SizeInBits());
   1533   Emit(SF(rd) | UDIV | Rm(rm) | Rn(rn) | Rd(rd));
   1534 }
   1535 
   1536 
   1537 void Assembler::rbit(const Register& rd,
   1538                      const Register& rn) {
   1539   DataProcessing1Source(rd, rn, RBIT);
   1540 }
   1541 
   1542 
   1543 void Assembler::rev16(const Register& rd,
   1544                       const Register& rn) {
   1545   DataProcessing1Source(rd, rn, REV16);
   1546 }
   1547 
   1548 
   1549 void Assembler::rev32(const Register& rd,
   1550                       const Register& rn) {
   1551   DCHECK(rd.Is64Bits());
   1552   DataProcessing1Source(rd, rn, REV);
   1553 }
   1554 
   1555 
   1556 void Assembler::rev(const Register& rd,
   1557                     const Register& rn) {
   1558   DataProcessing1Source(rd, rn, rd.Is64Bits() ? REV_x : REV_w);
   1559 }
   1560 
   1561 
   1562 void Assembler::clz(const Register& rd,
   1563                     const Register& rn) {
   1564   DataProcessing1Source(rd, rn, CLZ);
   1565 }
   1566 
   1567 
   1568 void Assembler::cls(const Register& rd,
   1569                     const Register& rn) {
   1570   DataProcessing1Source(rd, rn, CLS);
   1571 }
   1572 
   1573 
   1574 void Assembler::ldp(const CPURegister& rt,
   1575                     const CPURegister& rt2,
   1576                     const MemOperand& src) {
   1577   LoadStorePair(rt, rt2, src, LoadPairOpFor(rt, rt2));
   1578 }
   1579 
   1580 
   1581 void Assembler::stp(const CPURegister& rt,
   1582                     const CPURegister& rt2,
   1583                     const MemOperand& dst) {
   1584   LoadStorePair(rt, rt2, dst, StorePairOpFor(rt, rt2));
   1585 }
   1586 
   1587 
   1588 void Assembler::ldpsw(const Register& rt,
   1589                       const Register& rt2,
   1590                       const MemOperand& src) {
   1591   DCHECK(rt.Is64Bits());
   1592   LoadStorePair(rt, rt2, src, LDPSW_x);
   1593 }
   1594 
   1595 
   1596 void Assembler::LoadStorePair(const CPURegister& rt,
   1597                               const CPURegister& rt2,
   1598                               const MemOperand& addr,
   1599                               LoadStorePairOp op) {
   1600   // 'rt' and 'rt2' can only be aliased for stores.
   1601   DCHECK(((op & LoadStorePairLBit) == 0) || !rt.Is(rt2));
   1602   DCHECK(AreSameSizeAndType(rt, rt2));
   1603   DCHECK(IsImmLSPair(addr.offset(), CalcLSPairDataSize(op)));
   1604   int offset = static_cast<int>(addr.offset());
   1605 
   1606   Instr memop = op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) |
   1607                 ImmLSPair(offset, CalcLSPairDataSize(op));
   1608 
   1609   Instr addrmodeop;
   1610   if (addr.IsImmediateOffset()) {
   1611     addrmodeop = LoadStorePairOffsetFixed;
   1612   } else {
   1613     // Pre-index and post-index modes.
   1614     DCHECK(!rt.Is(addr.base()));
   1615     DCHECK(!rt2.Is(addr.base()));
   1616     DCHECK(addr.offset() != 0);
   1617     if (addr.IsPreIndex()) {
   1618       addrmodeop = LoadStorePairPreIndexFixed;
   1619     } else {
   1620       DCHECK(addr.IsPostIndex());
   1621       addrmodeop = LoadStorePairPostIndexFixed;
   1622     }
   1623   }
   1624   Emit(addrmodeop | memop);
   1625 }
   1626 
   1627 
   1628 // Memory instructions.
   1629 void Assembler::ldrb(const Register& rt, const MemOperand& src) {
   1630   LoadStore(rt, src, LDRB_w);
   1631 }
   1632 
   1633 
   1634 void Assembler::strb(const Register& rt, const MemOperand& dst) {
   1635   LoadStore(rt, dst, STRB_w);
   1636 }
   1637 
   1638 
   1639 void Assembler::ldrsb(const Register& rt, const MemOperand& src) {
   1640   LoadStore(rt, src, rt.Is64Bits() ? LDRSB_x : LDRSB_w);
   1641 }
   1642 
   1643 
   1644 void Assembler::ldrh(const Register& rt, const MemOperand& src) {
   1645   LoadStore(rt, src, LDRH_w);
   1646 }
   1647 
   1648 
   1649 void Assembler::strh(const Register& rt, const MemOperand& dst) {
   1650   LoadStore(rt, dst, STRH_w);
   1651 }
   1652 
   1653 
   1654 void Assembler::ldrsh(const Register& rt, const MemOperand& src) {
   1655   LoadStore(rt, src, rt.Is64Bits() ? LDRSH_x : LDRSH_w);
   1656 }
   1657 
   1658 
   1659 void Assembler::ldr(const CPURegister& rt, const MemOperand& src) {
   1660   LoadStore(rt, src, LoadOpFor(rt));
   1661 }
   1662 
   1663 
   1664 void Assembler::str(const CPURegister& rt, const MemOperand& src) {
   1665   LoadStore(rt, src, StoreOpFor(rt));
   1666 }
   1667 
   1668 
   1669 void Assembler::ldrsw(const Register& rt, const MemOperand& src) {
   1670   DCHECK(rt.Is64Bits());
   1671   LoadStore(rt, src, LDRSW_x);
   1672 }
   1673 
   1674 
   1675 void Assembler::ldr_pcrel(const CPURegister& rt, int imm19) {
   1676   // The pattern 'ldr xzr, #offset' is used to indicate the beginning of a
   1677   // constant pool. It should not be emitted.
   1678   DCHECK(!rt.IsZero());
   1679   Emit(LoadLiteralOpFor(rt) | ImmLLiteral(imm19) | Rt(rt));
   1680 }
   1681 
   1682 
   1683 void Assembler::ldr(const CPURegister& rt, const Immediate& imm) {
   1684   // Currently we only support 64-bit literals.
   1685   DCHECK(rt.Is64Bits());
   1686 
   1687   RecordRelocInfo(imm.rmode(), imm.value());
   1688   BlockConstPoolFor(1);
   1689   // The load will be patched when the constpool is emitted, patching code
   1690   // expect a load literal with offset 0.
   1691   ldr_pcrel(rt, 0);
   1692 }
   1693 
   1694 void Assembler::ldar(const Register& rt, const Register& rn) {
   1695   DCHECK(rn.Is64Bits());
   1696   LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? LDAR_w : LDAR_x;
   1697   Emit(op | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
   1698 }
   1699 
   1700 void Assembler::ldaxr(const Register& rt, const Register& rn) {
   1701   DCHECK(rn.Is64Bits());
   1702   LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? LDAXR_w : LDAXR_x;
   1703   Emit(op | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
   1704 }
   1705 
   1706 void Assembler::stlr(const Register& rt, const Register& rn) {
   1707   DCHECK(rn.Is64Bits());
   1708   LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? STLR_w : STLR_x;
   1709   Emit(op | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
   1710 }
   1711 
   1712 void Assembler::stlxr(const Register& rs, const Register& rt,
   1713                       const Register& rn) {
   1714   DCHECK(rs.Is32Bits());
   1715   DCHECK(rn.Is64Bits());
   1716   LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? STLXR_w : STLXR_x;
   1717   Emit(op | Rs(rs) | Rt2(x31) | Rn(rn) | Rt(rt));
   1718 }
   1719 
   1720 void Assembler::ldarb(const Register& rt, const Register& rn) {
   1721   DCHECK(rt.Is32Bits());
   1722   DCHECK(rn.Is64Bits());
   1723   Emit(LDAR_b | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
   1724 }
   1725 
   1726 void Assembler::ldaxrb(const Register& rt, const Register& rn) {
   1727   DCHECK(rt.Is32Bits());
   1728   DCHECK(rn.Is64Bits());
   1729   Emit(LDAXR_b | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
   1730 }
   1731 
   1732 void Assembler::stlrb(const Register& rt, const Register& rn) {
   1733   DCHECK(rt.Is32Bits());
   1734   DCHECK(rn.Is64Bits());
   1735   Emit(STLR_b | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
   1736 }
   1737 
   1738 void Assembler::stlxrb(const Register& rs, const Register& rt,
   1739                        const Register& rn) {
   1740   DCHECK(rs.Is32Bits());
   1741   DCHECK(rt.Is32Bits());
   1742   DCHECK(rn.Is64Bits());
   1743   Emit(STLXR_b | Rs(rs) | Rt2(x31) | Rn(rn) | Rt(rt));
   1744 }
   1745 
   1746 void Assembler::ldarh(const Register& rt, const Register& rn) {
   1747   DCHECK(rt.Is32Bits());
   1748   DCHECK(rn.Is64Bits());
   1749   Emit(LDAR_h | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
   1750 }
   1751 
   1752 void Assembler::ldaxrh(const Register& rt, const Register& rn) {
   1753   DCHECK(rt.Is32Bits());
   1754   DCHECK(rn.Is64Bits());
   1755   Emit(LDAXR_h | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
   1756 }
   1757 
   1758 void Assembler::stlrh(const Register& rt, const Register& rn) {
   1759   DCHECK(rt.Is32Bits());
   1760   DCHECK(rn.Is64Bits());
   1761   Emit(STLR_h | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
   1762 }
   1763 
   1764 void Assembler::stlxrh(const Register& rs, const Register& rt,
   1765                        const Register& rn) {
   1766   DCHECK(rs.Is32Bits());
   1767   DCHECK(rt.Is32Bits());
   1768   DCHECK(rn.Is64Bits());
   1769   Emit(STLXR_h | Rs(rs) | Rt2(x31) | Rn(rn) | Rt(rt));
   1770 }
   1771 
   1772 void Assembler::mov(const Register& rd, const Register& rm) {
   1773   // Moves involving the stack pointer are encoded as add immediate with
   1774   // second operand of zero. Otherwise, orr with first operand zr is
   1775   // used.
   1776   if (rd.IsSP() || rm.IsSP()) {
   1777     add(rd, rm, 0);
   1778   } else {
   1779     orr(rd, AppropriateZeroRegFor(rd), rm);
   1780   }
   1781 }
   1782 
   1783 
   1784 void Assembler::mvn(const Register& rd, const Operand& operand) {
   1785   orn(rd, AppropriateZeroRegFor(rd), operand);
   1786 }
   1787 
   1788 
   1789 void Assembler::mrs(const Register& rt, SystemRegister sysreg) {
   1790   DCHECK(rt.Is64Bits());
   1791   Emit(MRS | ImmSystemRegister(sysreg) | Rt(rt));
   1792 }
   1793 
   1794 
   1795 void Assembler::msr(SystemRegister sysreg, const Register& rt) {
   1796   DCHECK(rt.Is64Bits());
   1797   Emit(MSR | Rt(rt) | ImmSystemRegister(sysreg));
   1798 }
   1799 
   1800 
   1801 void Assembler::hint(SystemHint code) {
   1802   Emit(HINT | ImmHint(code) | Rt(xzr));
   1803 }
   1804 
   1805 
   1806 void Assembler::dmb(BarrierDomain domain, BarrierType type) {
   1807   Emit(DMB | ImmBarrierDomain(domain) | ImmBarrierType(type));
   1808 }
   1809 
   1810 
   1811 void Assembler::dsb(BarrierDomain domain, BarrierType type) {
   1812   Emit(DSB | ImmBarrierDomain(domain) | ImmBarrierType(type));
   1813 }
   1814 
   1815 
   1816 void Assembler::isb() {
   1817   Emit(ISB | ImmBarrierDomain(FullSystem) | ImmBarrierType(BarrierAll));
   1818 }
   1819 
   1820 
   1821 void Assembler::fmov(FPRegister fd, double imm) {
   1822   DCHECK(fd.Is64Bits());
   1823   DCHECK(IsImmFP64(imm));
   1824   Emit(FMOV_d_imm | Rd(fd) | ImmFP64(imm));
   1825 }
   1826 
   1827 
   1828 void Assembler::fmov(FPRegister fd, float imm) {
   1829   DCHECK(fd.Is32Bits());
   1830   DCHECK(IsImmFP32(imm));
   1831   Emit(FMOV_s_imm | Rd(fd) | ImmFP32(imm));
   1832 }
   1833 
   1834 
   1835 void Assembler::fmov(Register rd, FPRegister fn) {
   1836   DCHECK(rd.SizeInBits() == fn.SizeInBits());
   1837   FPIntegerConvertOp op = rd.Is32Bits() ? FMOV_ws : FMOV_xd;
   1838   Emit(op | Rd(rd) | Rn(fn));
   1839 }
   1840 
   1841 
   1842 void Assembler::fmov(FPRegister fd, Register rn) {
   1843   DCHECK(fd.SizeInBits() == rn.SizeInBits());
   1844   FPIntegerConvertOp op = fd.Is32Bits() ? FMOV_sw : FMOV_dx;
   1845   Emit(op | Rd(fd) | Rn(rn));
   1846 }
   1847 
   1848 
   1849 void Assembler::fmov(FPRegister fd, FPRegister fn) {
   1850   DCHECK(fd.SizeInBits() == fn.SizeInBits());
   1851   Emit(FPType(fd) | FMOV | Rd(fd) | Rn(fn));
   1852 }
   1853 
   1854 
   1855 void Assembler::fadd(const FPRegister& fd,
   1856                      const FPRegister& fn,
   1857                      const FPRegister& fm) {
   1858   FPDataProcessing2Source(fd, fn, fm, FADD);
   1859 }
   1860 
   1861 
   1862 void Assembler::fsub(const FPRegister& fd,
   1863                      const FPRegister& fn,
   1864                      const FPRegister& fm) {
   1865   FPDataProcessing2Source(fd, fn, fm, FSUB);
   1866 }
   1867 
   1868 
   1869 void Assembler::fmul(const FPRegister& fd,
   1870                      const FPRegister& fn,
   1871                      const FPRegister& fm) {
   1872   FPDataProcessing2Source(fd, fn, fm, FMUL);
   1873 }
   1874 
   1875 
   1876 void Assembler::fmadd(const FPRegister& fd,
   1877                       const FPRegister& fn,
   1878                       const FPRegister& fm,
   1879                       const FPRegister& fa) {
   1880   FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMADD_s : FMADD_d);
   1881 }
   1882 
   1883 
   1884 void Assembler::fmsub(const FPRegister& fd,
   1885                       const FPRegister& fn,
   1886                       const FPRegister& fm,
   1887                       const FPRegister& fa) {
   1888   FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMSUB_s : FMSUB_d);
   1889 }
   1890 
   1891 
   1892 void Assembler::fnmadd(const FPRegister& fd,
   1893                        const FPRegister& fn,
   1894                        const FPRegister& fm,
   1895                        const FPRegister& fa) {
   1896   FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMADD_s : FNMADD_d);
   1897 }
   1898 
   1899 
   1900 void Assembler::fnmsub(const FPRegister& fd,
   1901                        const FPRegister& fn,
   1902                        const FPRegister& fm,
   1903                        const FPRegister& fa) {
   1904   FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMSUB_s : FNMSUB_d);
   1905 }
   1906 
   1907 
   1908 void Assembler::fdiv(const FPRegister& fd,
   1909                      const FPRegister& fn,
   1910                      const FPRegister& fm) {
   1911   FPDataProcessing2Source(fd, fn, fm, FDIV);
   1912 }
   1913 
   1914 
   1915 void Assembler::fmax(const FPRegister& fd,
   1916                      const FPRegister& fn,
   1917                      const FPRegister& fm) {
   1918   FPDataProcessing2Source(fd, fn, fm, FMAX);
   1919 }
   1920 
   1921 
   1922 void Assembler::fmaxnm(const FPRegister& fd,
   1923                        const FPRegister& fn,
   1924                        const FPRegister& fm) {
   1925   FPDataProcessing2Source(fd, fn, fm, FMAXNM);
   1926 }
   1927 
   1928 
   1929 void Assembler::fmin(const FPRegister& fd,
   1930                      const FPRegister& fn,
   1931                      const FPRegister& fm) {
   1932   FPDataProcessing2Source(fd, fn, fm, FMIN);
   1933 }
   1934 
   1935 
   1936 void Assembler::fminnm(const FPRegister& fd,
   1937                        const FPRegister& fn,
   1938                        const FPRegister& fm) {
   1939   FPDataProcessing2Source(fd, fn, fm, FMINNM);
   1940 }
   1941 
   1942 
   1943 void Assembler::fabs(const FPRegister& fd,
   1944                      const FPRegister& fn) {
   1945   DCHECK(fd.SizeInBits() == fn.SizeInBits());
   1946   FPDataProcessing1Source(fd, fn, FABS);
   1947 }
   1948 
   1949 
   1950 void Assembler::fneg(const FPRegister& fd,
   1951                      const FPRegister& fn) {
   1952   DCHECK(fd.SizeInBits() == fn.SizeInBits());
   1953   FPDataProcessing1Source(fd, fn, FNEG);
   1954 }
   1955 
   1956 
   1957 void Assembler::fsqrt(const FPRegister& fd,
   1958                       const FPRegister& fn) {
   1959   DCHECK(fd.SizeInBits() == fn.SizeInBits());
   1960   FPDataProcessing1Source(fd, fn, FSQRT);
   1961 }
   1962 
   1963 
   1964 void Assembler::frinta(const FPRegister& fd,
   1965                        const FPRegister& fn) {
   1966   DCHECK(fd.SizeInBits() == fn.SizeInBits());
   1967   FPDataProcessing1Source(fd, fn, FRINTA);
   1968 }
   1969 
   1970 
   1971 void Assembler::frintm(const FPRegister& fd,
   1972                        const FPRegister& fn) {
   1973   DCHECK(fd.SizeInBits() == fn.SizeInBits());
   1974   FPDataProcessing1Source(fd, fn, FRINTM);
   1975 }
   1976 
   1977 
   1978 void Assembler::frintn(const FPRegister& fd,
   1979                        const FPRegister& fn) {
   1980   DCHECK(fd.SizeInBits() == fn.SizeInBits());
   1981   FPDataProcessing1Source(fd, fn, FRINTN);
   1982 }
   1983 
   1984 
   1985 void Assembler::frintp(const FPRegister& fd, const FPRegister& fn) {
   1986   DCHECK(fd.SizeInBits() == fn.SizeInBits());
   1987   FPDataProcessing1Source(fd, fn, FRINTP);
   1988 }
   1989 
   1990 
   1991 void Assembler::frintz(const FPRegister& fd,
   1992                        const FPRegister& fn) {
   1993   DCHECK(fd.SizeInBits() == fn.SizeInBits());
   1994   FPDataProcessing1Source(fd, fn, FRINTZ);
   1995 }
   1996 
   1997 
   1998 void Assembler::fcmp(const FPRegister& fn,
   1999                      const FPRegister& fm) {
   2000   DCHECK(fn.SizeInBits() == fm.SizeInBits());
   2001   Emit(FPType(fn) | FCMP | Rm(fm) | Rn(fn));
   2002 }
   2003 
   2004 
   2005 void Assembler::fcmp(const FPRegister& fn,
   2006                      double value) {
   2007   USE(value);
   2008   // Although the fcmp instruction can strictly only take an immediate value of
   2009   // +0.0, we don't need to check for -0.0 because the sign of 0.0 doesn't
   2010   // affect the result of the comparison.
   2011   DCHECK(value == 0.0);
   2012   Emit(FPType(fn) | FCMP_zero | Rn(fn));
   2013 }
   2014 
   2015 
   2016 void Assembler::fccmp(const FPRegister& fn,
   2017                       const FPRegister& fm,
   2018                       StatusFlags nzcv,
   2019                       Condition cond) {
   2020   DCHECK(fn.SizeInBits() == fm.SizeInBits());
   2021   Emit(FPType(fn) | FCCMP | Rm(fm) | Cond(cond) | Rn(fn) | Nzcv(nzcv));
   2022 }
   2023 
   2024 
   2025 void Assembler::fcsel(const FPRegister& fd,
   2026                       const FPRegister& fn,
   2027                       const FPRegister& fm,
   2028                       Condition cond) {
   2029   DCHECK(fd.SizeInBits() == fn.SizeInBits());
   2030   DCHECK(fd.SizeInBits() == fm.SizeInBits());
   2031   Emit(FPType(fd) | FCSEL | Rm(fm) | Cond(cond) | Rn(fn) | Rd(fd));
   2032 }
   2033 
   2034 
   2035 void Assembler::FPConvertToInt(const Register& rd,
   2036                                const FPRegister& fn,
   2037                                FPIntegerConvertOp op) {
   2038   Emit(SF(rd) | FPType(fn) | op | Rn(fn) | Rd(rd));
   2039 }
   2040 
   2041 
   2042 void Assembler::fcvt(const FPRegister& fd,
   2043                      const FPRegister& fn) {
   2044   if (fd.Is64Bits()) {
   2045     // Convert float to double.
   2046     DCHECK(fn.Is32Bits());
   2047     FPDataProcessing1Source(fd, fn, FCVT_ds);
   2048   } else {
   2049     // Convert double to float.
   2050     DCHECK(fn.Is64Bits());
   2051     FPDataProcessing1Source(fd, fn, FCVT_sd);
   2052   }
   2053 }
   2054 
   2055 
   2056 void Assembler::fcvtau(const Register& rd, const FPRegister& fn) {
   2057   FPConvertToInt(rd, fn, FCVTAU);
   2058 }
   2059 
   2060 
   2061 void Assembler::fcvtas(const Register& rd, const FPRegister& fn) {
   2062   FPConvertToInt(rd, fn, FCVTAS);
   2063 }
   2064 
   2065 
   2066 void Assembler::fcvtmu(const Register& rd, const FPRegister& fn) {
   2067   FPConvertToInt(rd, fn, FCVTMU);
   2068 }
   2069 
   2070 
   2071 void Assembler::fcvtms(const Register& rd, const FPRegister& fn) {
   2072   FPConvertToInt(rd, fn, FCVTMS);
   2073 }
   2074 
   2075 
   2076 void Assembler::fcvtnu(const Register& rd, const FPRegister& fn) {
   2077   FPConvertToInt(rd, fn, FCVTNU);
   2078 }
   2079 
   2080 
   2081 void Assembler::fcvtns(const Register& rd, const FPRegister& fn) {
   2082   FPConvertToInt(rd, fn, FCVTNS);
   2083 }
   2084 
   2085 
   2086 void Assembler::fcvtzu(const Register& rd, const FPRegister& fn) {
   2087   FPConvertToInt(rd, fn, FCVTZU);
   2088 }
   2089 
   2090 
   2091 void Assembler::fcvtzs(const Register& rd, const FPRegister& fn) {
   2092   FPConvertToInt(rd, fn, FCVTZS);
   2093 }
   2094 
   2095 
   2096 void Assembler::scvtf(const FPRegister& fd,
   2097                       const Register& rn,
   2098                       unsigned fbits) {
   2099   if (fbits == 0) {
   2100     Emit(SF(rn) | FPType(fd) | SCVTF | Rn(rn) | Rd(fd));
   2101   } else {
   2102     Emit(SF(rn) | FPType(fd) | SCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
   2103          Rd(fd));
   2104   }
   2105 }
   2106 
   2107 
   2108 void Assembler::ucvtf(const FPRegister& fd,
   2109                       const Register& rn,
   2110                       unsigned fbits) {
   2111   if (fbits == 0) {
   2112     Emit(SF(rn) | FPType(fd) | UCVTF | Rn(rn) | Rd(fd));
   2113   } else {
   2114     Emit(SF(rn) | FPType(fd) | UCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
   2115          Rd(fd));
   2116   }
   2117 }
   2118 
   2119 
   2120 void Assembler::dcptr(Label* label) {
   2121   RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
   2122   if (label->is_bound()) {
   2123     // The label is bound, so it does not need to be updated and the internal
   2124     // reference should be emitted.
   2125     //
   2126     // In this case, label->pos() returns the offset of the label from the
   2127     // start of the buffer.
   2128     internal_reference_positions_.push_back(pc_offset());
   2129     dc64(reinterpret_cast<uintptr_t>(buffer_ + label->pos()));
   2130   } else {
   2131     int32_t offset;
   2132     if (label->is_linked()) {
   2133       // The label is linked, so the internal reference should be added
   2134       // onto the end of the label's link chain.
   2135       //
   2136       // In this case, label->pos() returns the offset of the last linked
   2137       // instruction from the start of the buffer.
   2138       offset = label->pos() - pc_offset();
   2139       DCHECK(offset != kStartOfLabelLinkChain);
   2140     } else {
   2141       // The label is unused, so it now becomes linked and the internal
   2142       // reference is at the start of the new link chain.
   2143       offset = kStartOfLabelLinkChain;
   2144     }
   2145     // The instruction at pc is now the last link in the label's chain.
   2146     label->link_to(pc_offset());
   2147 
   2148     // Traditionally the offset to the previous instruction in the chain is
   2149     // encoded in the instruction payload (e.g. branch range) but internal
   2150     // references are not instructions so while unbound they are encoded as
   2151     // two consecutive brk instructions. The two 16-bit immediates are used
   2152     // to encode the offset.
   2153     offset >>= kInstructionSizeLog2;
   2154     DCHECK(is_int32(offset));
   2155     uint32_t high16 = unsigned_bitextract_32(31, 16, offset);
   2156     uint32_t low16 = unsigned_bitextract_32(15, 0, offset);
   2157 
   2158     brk(high16);
   2159     brk(low16);
   2160   }
   2161 }
   2162 
   2163 
   2164 // Note:
   2165 // Below, a difference in case for the same letter indicates a
   2166 // negated bit.
   2167 // If b is 1, then B is 0.
   2168 Instr Assembler::ImmFP32(float imm) {
   2169   DCHECK(IsImmFP32(imm));
   2170   // bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000
   2171   uint32_t bits = float_to_rawbits(imm);
   2172   // bit7: a000.0000
   2173   uint32_t bit7 = ((bits >> 31) & 0x1) << 7;
   2174   // bit6: 0b00.0000
   2175   uint32_t bit6 = ((bits >> 29) & 0x1) << 6;
   2176   // bit5_to_0: 00cd.efgh
   2177   uint32_t bit5_to_0 = (bits >> 19) & 0x3f;
   2178 
   2179   return (bit7 | bit6 | bit5_to_0) << ImmFP_offset;
   2180 }
   2181 
   2182 
   2183 Instr Assembler::ImmFP64(double imm) {
   2184   DCHECK(IsImmFP64(imm));
   2185   // bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
   2186   //       0000.0000.0000.0000.0000.0000.0000.0000
   2187   uint64_t bits = double_to_rawbits(imm);
   2188   // bit7: a000.0000
   2189   uint64_t bit7 = ((bits >> 63) & 0x1) << 7;
   2190   // bit6: 0b00.0000
   2191   uint64_t bit6 = ((bits >> 61) & 0x1) << 6;
   2192   // bit5_to_0: 00cd.efgh
   2193   uint64_t bit5_to_0 = (bits >> 48) & 0x3f;
   2194 
   2195   return static_cast<Instr>((bit7 | bit6 | bit5_to_0) << ImmFP_offset);
   2196 }
   2197 
   2198 
   2199 // Code generation helpers.
   2200 void Assembler::MoveWide(const Register& rd,
   2201                          uint64_t imm,
   2202                          int shift,
   2203                          MoveWideImmediateOp mov_op) {
   2204   // Ignore the top 32 bits of an immediate if we're moving to a W register.
   2205   if (rd.Is32Bits()) {
   2206     // Check that the top 32 bits are zero (a positive 32-bit number) or top
   2207     // 33 bits are one (a negative 32-bit number, sign extended to 64 bits).
   2208     DCHECK(((imm >> kWRegSizeInBits) == 0) ||
   2209            ((imm >> (kWRegSizeInBits - 1)) == 0x1ffffffff));
   2210     imm &= kWRegMask;
   2211   }
   2212 
   2213   if (shift >= 0) {
   2214     // Explicit shift specified.
   2215     DCHECK((shift == 0) || (shift == 16) || (shift == 32) || (shift == 48));
   2216     DCHECK(rd.Is64Bits() || (shift == 0) || (shift == 16));
   2217     shift /= 16;
   2218   } else {
   2219     // Calculate a new immediate and shift combination to encode the immediate
   2220     // argument.
   2221     shift = 0;
   2222     if ((imm & ~0xffffUL) == 0) {
   2223       // Nothing to do.
   2224     } else if ((imm & ~(0xffffUL << 16)) == 0) {
   2225       imm >>= 16;
   2226       shift = 1;
   2227     } else if ((imm & ~(0xffffUL << 32)) == 0) {
   2228       DCHECK(rd.Is64Bits());
   2229       imm >>= 32;
   2230       shift = 2;
   2231     } else if ((imm & ~(0xffffUL << 48)) == 0) {
   2232       DCHECK(rd.Is64Bits());
   2233       imm >>= 48;
   2234       shift = 3;
   2235     }
   2236   }
   2237 
   2238   DCHECK(is_uint16(imm));
   2239 
   2240   Emit(SF(rd) | MoveWideImmediateFixed | mov_op | Rd(rd) |
   2241        ImmMoveWide(static_cast<int>(imm)) | ShiftMoveWide(shift));
   2242 }
   2243 
   2244 
   2245 void Assembler::AddSub(const Register& rd,
   2246                        const Register& rn,
   2247                        const Operand& operand,
   2248                        FlagsUpdate S,
   2249                        AddSubOp op) {
   2250   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   2251   DCHECK(!operand.NeedsRelocation(this));
   2252   if (operand.IsImmediate()) {
   2253     int64_t immediate = operand.ImmediateValue();
   2254     DCHECK(IsImmAddSub(immediate));
   2255     Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
   2256     Emit(SF(rd) | AddSubImmediateFixed | op | Flags(S) |
   2257          ImmAddSub(static_cast<int>(immediate)) | dest_reg | RnSP(rn));
   2258   } else if (operand.IsShiftedRegister()) {
   2259     DCHECK(operand.reg().SizeInBits() == rd.SizeInBits());
   2260     DCHECK(operand.shift() != ROR);
   2261 
   2262     // For instructions of the form:
   2263     //   add/sub   wsp, <Wn>, <Wm> [, LSL #0-3 ]
   2264     //   add/sub   <Wd>, wsp, <Wm> [, LSL #0-3 ]
   2265     //   add/sub   wsp, wsp, <Wm> [, LSL #0-3 ]
   2266     //   adds/subs <Wd>, wsp, <Wm> [, LSL #0-3 ]
   2267     // or their 64-bit register equivalents, convert the operand from shifted to
   2268     // extended register mode, and emit an add/sub extended instruction.
   2269     if (rn.IsSP() || rd.IsSP()) {
   2270       DCHECK(!(rd.IsSP() && (S == SetFlags)));
   2271       DataProcExtendedRegister(rd, rn, operand.ToExtendedRegister(), S,
   2272                                AddSubExtendedFixed | op);
   2273     } else {
   2274       DataProcShiftedRegister(rd, rn, operand, S, AddSubShiftedFixed | op);
   2275     }
   2276   } else {
   2277     DCHECK(operand.IsExtendedRegister());
   2278     DataProcExtendedRegister(rd, rn, operand, S, AddSubExtendedFixed | op);
   2279   }
   2280 }
   2281 
   2282 
   2283 void Assembler::AddSubWithCarry(const Register& rd,
   2284                                 const Register& rn,
   2285                                 const Operand& operand,
   2286                                 FlagsUpdate S,
   2287                                 AddSubWithCarryOp op) {
   2288   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   2289   DCHECK(rd.SizeInBits() == operand.reg().SizeInBits());
   2290   DCHECK(operand.IsShiftedRegister() && (operand.shift_amount() == 0));
   2291   DCHECK(!operand.NeedsRelocation(this));
   2292   Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) | Rn(rn) | Rd(rd));
   2293 }
   2294 
   2295 
   2296 void Assembler::hlt(int code) {
   2297   DCHECK(is_uint16(code));
   2298   Emit(HLT | ImmException(code));
   2299 }
   2300 
   2301 
   2302 void Assembler::brk(int code) {
   2303   DCHECK(is_uint16(code));
   2304   Emit(BRK | ImmException(code));
   2305 }
   2306 
   2307 
   2308 void Assembler::EmitStringData(const char* string) {
   2309   size_t len = strlen(string) + 1;
   2310   DCHECK(RoundUp(len, kInstructionSize) <= static_cast<size_t>(kGap));
   2311   EmitData(string, static_cast<int>(len));
   2312   // Pad with NULL characters until pc_ is aligned.
   2313   const char pad[] = {'\0', '\0', '\0', '\0'};
   2314   STATIC_ASSERT(sizeof(pad) == kInstructionSize);
   2315   EmitData(pad, RoundUp(pc_offset(), kInstructionSize) - pc_offset());
   2316 }
   2317 
   2318 
   2319 void Assembler::debug(const char* message, uint32_t code, Instr params) {
   2320 #ifdef USE_SIMULATOR
   2321   // Don't generate simulator specific code if we are building a snapshot, which
   2322   // might be run on real hardware.
   2323   if (!serializer_enabled()) {
   2324     // The arguments to the debug marker need to be contiguous in memory, so
   2325     // make sure we don't try to emit pools.
   2326     BlockPoolsScope scope(this);
   2327 
   2328     Label start;
   2329     bind(&start);
   2330 
   2331     // Refer to instructions-arm64.h for a description of the marker and its
   2332     // arguments.
   2333     hlt(kImmExceptionIsDebug);
   2334     DCHECK(SizeOfCodeGeneratedSince(&start) == kDebugCodeOffset);
   2335     dc32(code);
   2336     DCHECK(SizeOfCodeGeneratedSince(&start) == kDebugParamsOffset);
   2337     dc32(params);
   2338     DCHECK(SizeOfCodeGeneratedSince(&start) == kDebugMessageOffset);
   2339     EmitStringData(message);
   2340     hlt(kImmExceptionIsUnreachable);
   2341 
   2342     return;
   2343   }
   2344   // Fall through if Serializer is enabled.
   2345 #endif
   2346 
   2347   if (params & BREAK) {
   2348     hlt(kImmExceptionIsDebug);
   2349   }
   2350 }
   2351 
   2352 
   2353 void Assembler::Logical(const Register& rd,
   2354                         const Register& rn,
   2355                         const Operand& operand,
   2356                         LogicalOp op) {
   2357   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   2358   DCHECK(!operand.NeedsRelocation(this));
   2359   if (operand.IsImmediate()) {
   2360     int64_t immediate = operand.ImmediateValue();
   2361     unsigned reg_size = rd.SizeInBits();
   2362 
   2363     DCHECK(immediate != 0);
   2364     DCHECK(immediate != -1);
   2365     DCHECK(rd.Is64Bits() || is_uint32(immediate));
   2366 
   2367     // If the operation is NOT, invert the operation and immediate.
   2368     if ((op & NOT) == NOT) {
   2369       op = static_cast<LogicalOp>(op & ~NOT);
   2370       immediate = rd.Is64Bits() ? ~immediate : (~immediate & kWRegMask);
   2371     }
   2372 
   2373     unsigned n, imm_s, imm_r;
   2374     if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) {
   2375       // Immediate can be encoded in the instruction.
   2376       LogicalImmediate(rd, rn, n, imm_s, imm_r, op);
   2377     } else {
   2378       // This case is handled in the macro assembler.
   2379       UNREACHABLE();
   2380     }
   2381   } else {
   2382     DCHECK(operand.IsShiftedRegister());
   2383     DCHECK(operand.reg().SizeInBits() == rd.SizeInBits());
   2384     Instr dp_op = static_cast<Instr>(op | LogicalShiftedFixed);
   2385     DataProcShiftedRegister(rd, rn, operand, LeaveFlags, dp_op);
   2386   }
   2387 }
   2388 
   2389 
   2390 void Assembler::LogicalImmediate(const Register& rd,
   2391                                  const Register& rn,
   2392                                  unsigned n,
   2393                                  unsigned imm_s,
   2394                                  unsigned imm_r,
   2395                                  LogicalOp op) {
   2396   unsigned reg_size = rd.SizeInBits();
   2397   Instr dest_reg = (op == ANDS) ? Rd(rd) : RdSP(rd);
   2398   Emit(SF(rd) | LogicalImmediateFixed | op | BitN(n, reg_size) |
   2399        ImmSetBits(imm_s, reg_size) | ImmRotate(imm_r, reg_size) | dest_reg |
   2400        Rn(rn));
   2401 }
   2402 
   2403 
   2404 void Assembler::ConditionalCompare(const Register& rn,
   2405                                    const Operand& operand,
   2406                                    StatusFlags nzcv,
   2407                                    Condition cond,
   2408                                    ConditionalCompareOp op) {
   2409   Instr ccmpop;
   2410   DCHECK(!operand.NeedsRelocation(this));
   2411   if (operand.IsImmediate()) {
   2412     int64_t immediate = operand.ImmediateValue();
   2413     DCHECK(IsImmConditionalCompare(immediate));
   2414     ccmpop = ConditionalCompareImmediateFixed | op |
   2415              ImmCondCmp(static_cast<unsigned>(immediate));
   2416   } else {
   2417     DCHECK(operand.IsShiftedRegister() && (operand.shift_amount() == 0));
   2418     ccmpop = ConditionalCompareRegisterFixed | op | Rm(operand.reg());
   2419   }
   2420   Emit(SF(rn) | ccmpop | Cond(cond) | Rn(rn) | Nzcv(nzcv));
   2421 }
   2422 
   2423 
   2424 void Assembler::DataProcessing1Source(const Register& rd,
   2425                                       const Register& rn,
   2426                                       DataProcessing1SourceOp op) {
   2427   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   2428   Emit(SF(rn) | op | Rn(rn) | Rd(rd));
   2429 }
   2430 
   2431 
   2432 void Assembler::FPDataProcessing1Source(const FPRegister& fd,
   2433                                         const FPRegister& fn,
   2434                                         FPDataProcessing1SourceOp op) {
   2435   Emit(FPType(fn) | op | Rn(fn) | Rd(fd));
   2436 }
   2437 
   2438 
   2439 void Assembler::FPDataProcessing2Source(const FPRegister& fd,
   2440                                         const FPRegister& fn,
   2441                                         const FPRegister& fm,
   2442                                         FPDataProcessing2SourceOp op) {
   2443   DCHECK(fd.SizeInBits() == fn.SizeInBits());
   2444   DCHECK(fd.SizeInBits() == fm.SizeInBits());
   2445   Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd));
   2446 }
   2447 
   2448 
   2449 void Assembler::FPDataProcessing3Source(const FPRegister& fd,
   2450                                         const FPRegister& fn,
   2451                                         const FPRegister& fm,
   2452                                         const FPRegister& fa,
   2453                                         FPDataProcessing3SourceOp op) {
   2454   DCHECK(AreSameSizeAndType(fd, fn, fm, fa));
   2455   Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd) | Ra(fa));
   2456 }
   2457 
   2458 
   2459 void Assembler::EmitShift(const Register& rd,
   2460                           const Register& rn,
   2461                           Shift shift,
   2462                           unsigned shift_amount) {
   2463   switch (shift) {
   2464     case LSL:
   2465       lsl(rd, rn, shift_amount);
   2466       break;
   2467     case LSR:
   2468       lsr(rd, rn, shift_amount);
   2469       break;
   2470     case ASR:
   2471       asr(rd, rn, shift_amount);
   2472       break;
   2473     case ROR:
   2474       ror(rd, rn, shift_amount);
   2475       break;
   2476     default:
   2477       UNREACHABLE();
   2478   }
   2479 }
   2480 
   2481 
   2482 void Assembler::EmitExtendShift(const Register& rd,
   2483                                 const Register& rn,
   2484                                 Extend extend,
   2485                                 unsigned left_shift) {
   2486   DCHECK(rd.SizeInBits() >= rn.SizeInBits());
   2487   unsigned reg_size = rd.SizeInBits();
   2488   // Use the correct size of register.
   2489   Register rn_ = Register::Create(rn.code(), rd.SizeInBits());
   2490   // Bits extracted are high_bit:0.
   2491   unsigned high_bit = (8 << (extend & 0x3)) - 1;
   2492   // Number of bits left in the result that are not introduced by the shift.
   2493   unsigned non_shift_bits = (reg_size - left_shift) & (reg_size - 1);
   2494 
   2495   if ((non_shift_bits > high_bit) || (non_shift_bits == 0)) {
   2496     switch (extend) {
   2497       case UXTB:
   2498       case UXTH:
   2499       case UXTW: ubfm(rd, rn_, non_shift_bits, high_bit); break;
   2500       case SXTB:
   2501       case SXTH:
   2502       case SXTW: sbfm(rd, rn_, non_shift_bits, high_bit); break;
   2503       case UXTX:
   2504       case SXTX: {
   2505         DCHECK(rn.SizeInBits() == kXRegSizeInBits);
   2506         // Nothing to extend. Just shift.
   2507         lsl(rd, rn_, left_shift);
   2508         break;
   2509       }
   2510       default: UNREACHABLE();
   2511     }
   2512   } else {
   2513     // No need to extend as the extended bits would be shifted away.
   2514     lsl(rd, rn_, left_shift);
   2515   }
   2516 }
   2517 
   2518 
   2519 void Assembler::DataProcShiftedRegister(const Register& rd,
   2520                                         const Register& rn,
   2521                                         const Operand& operand,
   2522                                         FlagsUpdate S,
   2523                                         Instr op) {
   2524   DCHECK(operand.IsShiftedRegister());
   2525   DCHECK(rn.Is64Bits() || (rn.Is32Bits() && is_uint5(operand.shift_amount())));
   2526   DCHECK(!operand.NeedsRelocation(this));
   2527   Emit(SF(rd) | op | Flags(S) |
   2528        ShiftDP(operand.shift()) | ImmDPShift(operand.shift_amount()) |
   2529        Rm(operand.reg()) | Rn(rn) | Rd(rd));
   2530 }
   2531 
   2532 
   2533 void Assembler::DataProcExtendedRegister(const Register& rd,
   2534                                          const Register& rn,
   2535                                          const Operand& operand,
   2536                                          FlagsUpdate S,
   2537                                          Instr op) {
   2538   DCHECK(!operand.NeedsRelocation(this));
   2539   Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
   2540   Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) |
   2541        ExtendMode(operand.extend()) | ImmExtendShift(operand.shift_amount()) |
   2542        dest_reg | RnSP(rn));
   2543 }
   2544 
   2545 
   2546 bool Assembler::IsImmAddSub(int64_t immediate) {
   2547   return is_uint12(immediate) ||
   2548          (is_uint12(immediate >> 12) && ((immediate & 0xfff) == 0));
   2549 }
   2550 
   2551 void Assembler::LoadStore(const CPURegister& rt,
   2552                           const MemOperand& addr,
   2553                           LoadStoreOp op) {
   2554   Instr memop = op | Rt(rt) | RnSP(addr.base());
   2555 
   2556   if (addr.IsImmediateOffset()) {
   2557     LSDataSize size = CalcLSDataSize(op);
   2558     if (IsImmLSScaled(addr.offset(), size)) {
   2559       int offset = static_cast<int>(addr.offset());
   2560       // Use the scaled addressing mode.
   2561       Emit(LoadStoreUnsignedOffsetFixed | memop |
   2562            ImmLSUnsigned(offset >> size));
   2563     } else if (IsImmLSUnscaled(addr.offset())) {
   2564       int offset = static_cast<int>(addr.offset());
   2565       // Use the unscaled addressing mode.
   2566       Emit(LoadStoreUnscaledOffsetFixed | memop | ImmLS(offset));
   2567     } else {
   2568       // This case is handled in the macro assembler.
   2569       UNREACHABLE();
   2570     }
   2571   } else if (addr.IsRegisterOffset()) {
   2572     Extend ext = addr.extend();
   2573     Shift shift = addr.shift();
   2574     unsigned shift_amount = addr.shift_amount();
   2575 
   2576     // LSL is encoded in the option field as UXTX.
   2577     if (shift == LSL) {
   2578       ext = UXTX;
   2579     }
   2580 
   2581     // Shifts are encoded in one bit, indicating a left shift by the memory
   2582     // access size.
   2583     DCHECK((shift_amount == 0) ||
   2584            (shift_amount == static_cast<unsigned>(CalcLSDataSize(op))));
   2585     Emit(LoadStoreRegisterOffsetFixed | memop | Rm(addr.regoffset()) |
   2586          ExtendMode(ext) | ImmShiftLS((shift_amount > 0) ? 1 : 0));
   2587   } else {
   2588     // Pre-index and post-index modes.
   2589     DCHECK(!rt.Is(addr.base()));
   2590     if (IsImmLSUnscaled(addr.offset())) {
   2591       int offset = static_cast<int>(addr.offset());
   2592       if (addr.IsPreIndex()) {
   2593         Emit(LoadStorePreIndexFixed | memop | ImmLS(offset));
   2594       } else {
   2595         DCHECK(addr.IsPostIndex());
   2596         Emit(LoadStorePostIndexFixed | memop | ImmLS(offset));
   2597       }
   2598     } else {
   2599       // This case is handled in the macro assembler.
   2600       UNREACHABLE();
   2601     }
   2602   }
   2603 }
   2604 
   2605 
   2606 bool Assembler::IsImmLSUnscaled(int64_t offset) {
   2607   return is_int9(offset);
   2608 }
   2609 
   2610 
   2611 bool Assembler::IsImmLSScaled(int64_t offset, LSDataSize size) {
   2612   bool offset_is_size_multiple = (((offset >> size) << size) == offset);
   2613   return offset_is_size_multiple && is_uint12(offset >> size);
   2614 }
   2615 
   2616 
   2617 bool Assembler::IsImmLSPair(int64_t offset, LSDataSize size) {
   2618   bool offset_is_size_multiple = (((offset >> size) << size) == offset);
   2619   return offset_is_size_multiple && is_int7(offset >> size);
   2620 }
   2621 
   2622 
   2623 bool Assembler::IsImmLLiteral(int64_t offset) {
   2624   int inst_size = static_cast<int>(kInstructionSizeLog2);
   2625   bool offset_is_inst_multiple =
   2626       (((offset >> inst_size) << inst_size) == offset);
   2627   return offset_is_inst_multiple && is_intn(offset, ImmLLiteral_width);
   2628 }
   2629 
   2630 
   2631 // Test if a given value can be encoded in the immediate field of a logical
   2632 // instruction.
   2633 // If it can be encoded, the function returns true, and values pointed to by n,
   2634 // imm_s and imm_r are updated with immediates encoded in the format required
   2635 // by the corresponding fields in the logical instruction.
   2636 // If it can not be encoded, the function returns false, and the values pointed
   2637 // to by n, imm_s and imm_r are undefined.
   2638 bool Assembler::IsImmLogical(uint64_t value,
   2639                              unsigned width,
   2640                              unsigned* n,
   2641                              unsigned* imm_s,
   2642                              unsigned* imm_r) {
   2643   DCHECK((n != NULL) && (imm_s != NULL) && (imm_r != NULL));
   2644   DCHECK((width == kWRegSizeInBits) || (width == kXRegSizeInBits));
   2645 
   2646   bool negate = false;
   2647 
   2648   // Logical immediates are encoded using parameters n, imm_s and imm_r using
   2649   // the following table:
   2650   //
   2651   //    N   imms    immr    size        S             R
   2652   //    1  ssssss  rrrrrr    64    UInt(ssssss)  UInt(rrrrrr)
   2653   //    0  0sssss  xrrrrr    32    UInt(sssss)   UInt(rrrrr)
   2654   //    0  10ssss  xxrrrr    16    UInt(ssss)    UInt(rrrr)
   2655   //    0  110sss  xxxrrr     8    UInt(sss)     UInt(rrr)
   2656   //    0  1110ss  xxxxrr     4    UInt(ss)      UInt(rr)
   2657   //    0  11110s  xxxxxr     2    UInt(s)       UInt(r)
   2658   // (s bits must not be all set)
   2659   //
   2660   // A pattern is constructed of size bits, where the least significant S+1 bits
   2661   // are set. The pattern is rotated right by R, and repeated across a 32 or
   2662   // 64-bit value, depending on destination register width.
   2663   //
   2664   // Put another way: the basic format of a logical immediate is a single
   2665   // contiguous stretch of 1 bits, repeated across the whole word at intervals
   2666   // given by a power of 2. To identify them quickly, we first locate the
   2667   // lowest stretch of 1 bits, then the next 1 bit above that; that combination
   2668   // is different for every logical immediate, so it gives us all the
   2669   // information we need to identify the only logical immediate that our input
   2670   // could be, and then we simply check if that's the value we actually have.
   2671   //
   2672   // (The rotation parameter does give the possibility of the stretch of 1 bits
   2673   // going 'round the end' of the word. To deal with that, we observe that in
   2674   // any situation where that happens the bitwise NOT of the value is also a
   2675   // valid logical immediate. So we simply invert the input whenever its low bit
   2676   // is set, and then we know that the rotated case can't arise.)
   2677 
   2678   if (value & 1) {
   2679     // If the low bit is 1, negate the value, and set a flag to remember that we
   2680     // did (so that we can adjust the return values appropriately).
   2681     negate = true;
   2682     value = ~value;
   2683   }
   2684 
   2685   if (width == kWRegSizeInBits) {
   2686     // To handle 32-bit logical immediates, the very easiest thing is to repeat
   2687     // the input value twice to make a 64-bit word. The correct encoding of that
   2688     // as a logical immediate will also be the correct encoding of the 32-bit
   2689     // value.
   2690 
   2691     // The most-significant 32 bits may not be zero (ie. negate is true) so
   2692     // shift the value left before duplicating it.
   2693     value <<= kWRegSizeInBits;
   2694     value |= value >> kWRegSizeInBits;
   2695   }
   2696 
   2697   // The basic analysis idea: imagine our input word looks like this.
   2698   //
   2699   //    0011111000111110001111100011111000111110001111100011111000111110
   2700   //                                                          c  b    a
   2701   //                                                          |<--d-->|
   2702   //
   2703   // We find the lowest set bit (as an actual power-of-2 value, not its index)
   2704   // and call it a. Then we add a to our original number, which wipes out the
   2705   // bottommost stretch of set bits and replaces it with a 1 carried into the
   2706   // next zero bit. Then we look for the new lowest set bit, which is in
   2707   // position b, and subtract it, so now our number is just like the original
   2708   // but with the lowest stretch of set bits completely gone. Now we find the
   2709   // lowest set bit again, which is position c in the diagram above. Then we'll
   2710   // measure the distance d between bit positions a and c (using CLZ), and that
   2711   // tells us that the only valid logical immediate that could possibly be equal
   2712   // to this number is the one in which a stretch of bits running from a to just
   2713   // below b is replicated every d bits.
   2714   uint64_t a = LargestPowerOf2Divisor(value);
   2715   uint64_t value_plus_a = value + a;
   2716   uint64_t b = LargestPowerOf2Divisor(value_plus_a);
   2717   uint64_t value_plus_a_minus_b = value_plus_a - b;
   2718   uint64_t c = LargestPowerOf2Divisor(value_plus_a_minus_b);
   2719 
   2720   int d, clz_a, out_n;
   2721   uint64_t mask;
   2722 
   2723   if (c != 0) {
   2724     // The general case, in which there is more than one stretch of set bits.
   2725     // Compute the repeat distance d, and set up a bitmask covering the basic
   2726     // unit of repetition (i.e. a word with the bottom d bits set). Also, in all
   2727     // of these cases the N bit of the output will be zero.
   2728     clz_a = CountLeadingZeros(a, kXRegSizeInBits);
   2729     int clz_c = CountLeadingZeros(c, kXRegSizeInBits);
   2730     d = clz_a - clz_c;
   2731     mask = ((V8_UINT64_C(1) << d) - 1);
   2732     out_n = 0;
   2733   } else {
   2734     // Handle degenerate cases.
   2735     //
   2736     // If any of those 'find lowest set bit' operations didn't find a set bit at
   2737     // all, then the word will have been zero thereafter, so in particular the
   2738     // last lowest_set_bit operation will have returned zero. So we can test for
   2739     // all the special case conditions in one go by seeing if c is zero.
   2740     if (a == 0) {
   2741       // The input was zero (or all 1 bits, which will come to here too after we
   2742       // inverted it at the start of the function), for which we just return
   2743       // false.
   2744       return false;
   2745     } else {
   2746       // Otherwise, if c was zero but a was not, then there's just one stretch
   2747       // of set bits in our word, meaning that we have the trivial case of
   2748       // d == 64 and only one 'repetition'. Set up all the same variables as in
   2749       // the general case above, and set the N bit in the output.
   2750       clz_a = CountLeadingZeros(a, kXRegSizeInBits);
   2751       d = 64;
   2752       mask = ~V8_UINT64_C(0);
   2753       out_n = 1;
   2754     }
   2755   }
   2756 
   2757   // If the repeat period d is not a power of two, it can't be encoded.
   2758   if (!IS_POWER_OF_TWO(d)) {
   2759     return false;
   2760   }
   2761 
   2762   if (((b - a) & ~mask) != 0) {
   2763     // If the bit stretch (b - a) does not fit within the mask derived from the
   2764     // repeat period, then fail.
   2765     return false;
   2766   }
   2767 
   2768   // The only possible option is b - a repeated every d bits. Now we're going to
   2769   // actually construct the valid logical immediate derived from that
   2770   // specification, and see if it equals our original input.
   2771   //
   2772   // To repeat a value every d bits, we multiply it by a number of the form
   2773   // (1 + 2^d + 2^(2d) + ...), i.e. 0x0001000100010001 or similar. These can
   2774   // be derived using a table lookup on CLZ(d).
   2775   static const uint64_t multipliers[] = {
   2776     0x0000000000000001UL,
   2777     0x0000000100000001UL,
   2778     0x0001000100010001UL,
   2779     0x0101010101010101UL,
   2780     0x1111111111111111UL,
   2781     0x5555555555555555UL,
   2782   };
   2783   int multiplier_idx = CountLeadingZeros(d, kXRegSizeInBits) - 57;
   2784   // Ensure that the index to the multipliers array is within bounds.
   2785   DCHECK((multiplier_idx >= 0) &&
   2786          (static_cast<size_t>(multiplier_idx) < arraysize(multipliers)));
   2787   uint64_t multiplier = multipliers[multiplier_idx];
   2788   uint64_t candidate = (b - a) * multiplier;
   2789 
   2790   if (value != candidate) {
   2791     // The candidate pattern doesn't match our input value, so fail.
   2792     return false;
   2793   }
   2794 
   2795   // We have a match! This is a valid logical immediate, so now we have to
   2796   // construct the bits and pieces of the instruction encoding that generates
   2797   // it.
   2798 
   2799   // Count the set bits in our basic stretch. The special case of clz(0) == -1
   2800   // makes the answer come out right for stretches that reach the very top of
   2801   // the word (e.g. numbers like 0xffffc00000000000).
   2802   int clz_b = (b == 0) ? -1 : CountLeadingZeros(b, kXRegSizeInBits);
   2803   int s = clz_a - clz_b;
   2804 
   2805   // Decide how many bits to rotate right by, to put the low bit of that basic
   2806   // stretch in position a.
   2807   int r;
   2808   if (negate) {
   2809     // If we inverted the input right at the start of this function, here's
   2810     // where we compensate: the number of set bits becomes the number of clear
   2811     // bits, and the rotation count is based on position b rather than position
   2812     // a (since b is the location of the 'lowest' 1 bit after inversion).
   2813     s = d - s;
   2814     r = (clz_b + 1) & (d - 1);
   2815   } else {
   2816     r = (clz_a + 1) & (d - 1);
   2817   }
   2818 
   2819   // Now we're done, except for having to encode the S output in such a way that
   2820   // it gives both the number of set bits and the length of the repeated
   2821   // segment. The s field is encoded like this:
   2822   //
   2823   //     imms    size        S
   2824   //    ssssss    64    UInt(ssssss)
   2825   //    0sssss    32    UInt(sssss)
   2826   //    10ssss    16    UInt(ssss)
   2827   //    110sss     8    UInt(sss)
   2828   //    1110ss     4    UInt(ss)
   2829   //    11110s     2    UInt(s)
   2830   //
   2831   // So we 'or' (-d << 1) with our computed s to form imms.
   2832   *n = out_n;
   2833   *imm_s = ((-d << 1) | (s - 1)) & 0x3f;
   2834   *imm_r = r;
   2835 
   2836   return true;
   2837 }
   2838 
   2839 
   2840 bool Assembler::IsImmConditionalCompare(int64_t immediate) {
   2841   return is_uint5(immediate);
   2842 }
   2843 
   2844 
   2845 bool Assembler::IsImmFP32(float imm) {
   2846   // Valid values will have the form:
   2847   // aBbb.bbbc.defg.h000.0000.0000.0000.0000
   2848   uint32_t bits = float_to_rawbits(imm);
   2849   // bits[19..0] are cleared.
   2850   if ((bits & 0x7ffff) != 0) {
   2851     return false;
   2852   }
   2853 
   2854   // bits[29..25] are all set or all cleared.
   2855   uint32_t b_pattern = (bits >> 16) & 0x3e00;
   2856   if (b_pattern != 0 && b_pattern != 0x3e00) {
   2857     return false;
   2858   }
   2859 
   2860   // bit[30] and bit[29] are opposite.
   2861   if (((bits ^ (bits << 1)) & 0x40000000) == 0) {
   2862     return false;
   2863   }
   2864 
   2865   return true;
   2866 }
   2867 
   2868 
   2869 bool Assembler::IsImmFP64(double imm) {
   2870   // Valid values will have the form:
   2871   // aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
   2872   // 0000.0000.0000.0000.0000.0000.0000.0000
   2873   uint64_t bits = double_to_rawbits(imm);
   2874   // bits[47..0] are cleared.
   2875   if ((bits & 0xffffffffffffL) != 0) {
   2876     return false;
   2877   }
   2878 
   2879   // bits[61..54] are all set or all cleared.
   2880   uint32_t b_pattern = (bits >> 48) & 0x3fc0;
   2881   if (b_pattern != 0 && b_pattern != 0x3fc0) {
   2882     return false;
   2883   }
   2884 
   2885   // bit[62] and bit[61] are opposite.
   2886   if (((bits ^ (bits << 1)) & 0x4000000000000000L) == 0) {
   2887     return false;
   2888   }
   2889 
   2890   return true;
   2891 }
   2892 
   2893 
   2894 void Assembler::GrowBuffer() {
   2895   if (!own_buffer_) FATAL("external code buffer is too small");
   2896 
   2897   // Compute new buffer size.
   2898   CodeDesc desc;  // the new buffer
   2899   if (buffer_size_ < 1 * MB) {
   2900     desc.buffer_size = 2 * buffer_size_;
   2901   } else {
   2902     desc.buffer_size = buffer_size_ + 1 * MB;
   2903   }
   2904   CHECK_GT(desc.buffer_size, 0);  // No overflow.
   2905 
   2906   byte* buffer = reinterpret_cast<byte*>(buffer_);
   2907 
   2908   // Set up new buffer.
   2909   desc.buffer = NewArray<byte>(desc.buffer_size);
   2910   desc.origin = this;
   2911 
   2912   desc.instr_size = pc_offset();
   2913   desc.reloc_size =
   2914       static_cast<int>((buffer + buffer_size_) - reloc_info_writer.pos());
   2915 
   2916   // Copy the data.
   2917   intptr_t pc_delta = desc.buffer - buffer;
   2918   intptr_t rc_delta = (desc.buffer + desc.buffer_size) -
   2919                       (buffer + buffer_size_);
   2920   memmove(desc.buffer, buffer, desc.instr_size);
   2921   memmove(reloc_info_writer.pos() + rc_delta,
   2922           reloc_info_writer.pos(), desc.reloc_size);
   2923 
   2924   // Switch buffers.
   2925   DeleteArray(buffer_);
   2926   buffer_ = desc.buffer;
   2927   buffer_size_ = desc.buffer_size;
   2928   pc_ = reinterpret_cast<byte*>(pc_) + pc_delta;
   2929   reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
   2930                                reloc_info_writer.last_pc() + pc_delta);
   2931 
   2932   // None of our relocation types are pc relative pointing outside the code
   2933   // buffer nor pc absolute pointing inside the code buffer, so there is no need
   2934   // to relocate any emitted relocation entries.
   2935 
   2936   // Relocate internal references.
   2937   for (auto pos : internal_reference_positions_) {
   2938     intptr_t* p = reinterpret_cast<intptr_t*>(buffer_ + pos);
   2939     *p += pc_delta;
   2940   }
   2941 
   2942   // Pending relocation entries are also relative, no need to relocate.
   2943 }
   2944 
   2945 
   2946 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
   2947   // We do not try to reuse pool constants.
   2948   RelocInfo rinfo(isolate(), reinterpret_cast<byte*>(pc_), rmode, data, NULL);
   2949   if (((rmode >= RelocInfo::COMMENT) &&
   2950        (rmode <= RelocInfo::DEBUG_BREAK_SLOT_AT_TAIL_CALL)) ||
   2951       (rmode == RelocInfo::INTERNAL_REFERENCE) ||
   2952       (rmode == RelocInfo::CONST_POOL) || (rmode == RelocInfo::VENEER_POOL) ||
   2953       (rmode == RelocInfo::DEOPT_REASON) || (rmode == RelocInfo::DEOPT_ID) ||
   2954       (rmode == RelocInfo::GENERATOR_CONTINUATION)) {
   2955     // Adjust code for new modes.
   2956     DCHECK(RelocInfo::IsDebugBreakSlot(rmode) || RelocInfo::IsComment(rmode) ||
   2957            RelocInfo::IsDeoptReason(rmode) || RelocInfo::IsDeoptId(rmode) ||
   2958            RelocInfo::IsPosition(rmode) ||
   2959            RelocInfo::IsInternalReference(rmode) ||
   2960            RelocInfo::IsConstPool(rmode) || RelocInfo::IsVeneerPool(rmode) ||
   2961            RelocInfo::IsGeneratorContinuation(rmode));
   2962     // These modes do not need an entry in the constant pool.
   2963   } else {
   2964     constpool_.RecordEntry(data, rmode);
   2965     // Make sure the constant pool is not emitted in place of the next
   2966     // instruction for which we just recorded relocation info.
   2967     BlockConstPoolFor(1);
   2968   }
   2969 
   2970   if (!RelocInfo::IsNone(rmode)) {
   2971     // Don't record external references unless the heap will be serialized.
   2972     if (rmode == RelocInfo::EXTERNAL_REFERENCE &&
   2973         !serializer_enabled() && !emit_debug_code()) {
   2974       return;
   2975     }
   2976     DCHECK(buffer_space() >= kMaxRelocSize);  // too late to grow buffer here
   2977     if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
   2978       RelocInfo reloc_info_with_ast_id(isolate(), reinterpret_cast<byte*>(pc_),
   2979                                        rmode, RecordedAstId().ToInt(), NULL);
   2980       ClearRecordedAstId();
   2981       reloc_info_writer.Write(&reloc_info_with_ast_id);
   2982     } else {
   2983       reloc_info_writer.Write(&rinfo);
   2984     }
   2985   }
   2986 }
   2987 
   2988 
   2989 void Assembler::BlockConstPoolFor(int instructions) {
   2990   int pc_limit = pc_offset() + instructions * kInstructionSize;
   2991   if (no_const_pool_before_ < pc_limit) {
   2992     no_const_pool_before_ = pc_limit;
   2993     // Make sure the pool won't be blocked for too long.
   2994     DCHECK(pc_limit < constpool_.MaxPcOffset());
   2995   }
   2996 
   2997   if (next_constant_pool_check_ < no_const_pool_before_) {
   2998     next_constant_pool_check_ = no_const_pool_before_;
   2999   }
   3000 }
   3001 
   3002 
   3003 void Assembler::CheckConstPool(bool force_emit, bool require_jump) {
   3004   // Some short sequence of instruction mustn't be broken up by constant pool
   3005   // emission, such sequences are protected by calls to BlockConstPoolFor and
   3006   // BlockConstPoolScope.
   3007   if (is_const_pool_blocked()) {
   3008     // Something is wrong if emission is forced and blocked at the same time.
   3009     DCHECK(!force_emit);
   3010     return;
   3011   }
   3012 
   3013   // There is nothing to do if there are no pending constant pool entries.
   3014   if (constpool_.IsEmpty())  {
   3015     // Calculate the offset of the next check.
   3016     SetNextConstPoolCheckIn(kCheckConstPoolInterval);
   3017     return;
   3018   }
   3019 
   3020   // We emit a constant pool when:
   3021   //  * requested to do so by parameter force_emit (e.g. after each function).
   3022   //  * the distance to the first instruction accessing the constant pool is
   3023   //    kApproxMaxDistToConstPool or more.
   3024   //  * the number of entries in the pool is kApproxMaxPoolEntryCount or more.
   3025   int dist = constpool_.DistanceToFirstUse();
   3026   int count = constpool_.EntryCount();
   3027   if (!force_emit &&
   3028       (dist < kApproxMaxDistToConstPool) &&
   3029       (count < kApproxMaxPoolEntryCount)) {
   3030     return;
   3031   }
   3032 
   3033 
   3034   // Emit veneers for branches that would go out of range during emission of the
   3035   // constant pool.
   3036   int worst_case_size = constpool_.WorstCaseSize();
   3037   CheckVeneerPool(false, require_jump,
   3038                   kVeneerDistanceMargin + worst_case_size);
   3039 
   3040   // Check that the code buffer is large enough before emitting the constant
   3041   // pool (this includes the gap to the relocation information).
   3042   int needed_space = worst_case_size + kGap + 1 * kInstructionSize;
   3043   while (buffer_space() <= needed_space) {
   3044     GrowBuffer();
   3045   }
   3046 
   3047   Label size_check;
   3048   bind(&size_check);
   3049   constpool_.Emit(require_jump);
   3050   DCHECK(SizeOfCodeGeneratedSince(&size_check) <=
   3051          static_cast<unsigned>(worst_case_size));
   3052 
   3053   // Since a constant pool was just emitted, move the check offset forward by
   3054   // the standard interval.
   3055   SetNextConstPoolCheckIn(kCheckConstPoolInterval);
   3056 }
   3057 
   3058 
   3059 bool Assembler::ShouldEmitVeneer(int max_reachable_pc, int margin) {
   3060   // Account for the branch around the veneers and the guard.
   3061   int protection_offset = 2 * kInstructionSize;
   3062   return pc_offset() > max_reachable_pc - margin - protection_offset -
   3063     static_cast<int>(unresolved_branches_.size() * kMaxVeneerCodeSize);
   3064 }
   3065 
   3066 
   3067 void Assembler::RecordVeneerPool(int location_offset, int size) {
   3068   RelocInfo rinfo(isolate(), buffer_ + location_offset, RelocInfo::VENEER_POOL,
   3069                   static_cast<intptr_t>(size), NULL);
   3070   reloc_info_writer.Write(&rinfo);
   3071 }
   3072 
   3073 
   3074 void Assembler::EmitVeneers(bool force_emit, bool need_protection, int margin) {
   3075   BlockPoolsScope scope(this);
   3076   RecordComment("[ Veneers");
   3077 
   3078   // The exact size of the veneer pool must be recorded (see the comment at the
   3079   // declaration site of RecordConstPool()), but computing the number of
   3080   // veneers that will be generated is not obvious. So instead we remember the
   3081   // current position and will record the size after the pool has been
   3082   // generated.
   3083   Label size_check;
   3084   bind(&size_check);
   3085   int veneer_pool_relocinfo_loc = pc_offset();
   3086 
   3087   Label end;
   3088   if (need_protection) {
   3089     b(&end);
   3090   }
   3091 
   3092   EmitVeneersGuard();
   3093 
   3094   Label veneer_size_check;
   3095 
   3096   std::multimap<int, FarBranchInfo>::iterator it, it_to_delete;
   3097 
   3098   it = unresolved_branches_.begin();
   3099   while (it != unresolved_branches_.end()) {
   3100     if (force_emit || ShouldEmitVeneer(it->first, margin)) {
   3101       Instruction* branch = InstructionAt(it->second.pc_offset_);
   3102       Label* label = it->second.label_;
   3103 
   3104 #ifdef DEBUG
   3105       bind(&veneer_size_check);
   3106 #endif
   3107       // Patch the branch to point to the current position, and emit a branch
   3108       // to the label.
   3109       Instruction* veneer = reinterpret_cast<Instruction*>(pc_);
   3110       RemoveBranchFromLabelLinkChain(branch, label, veneer);
   3111       branch->SetImmPCOffsetTarget(isolate(), veneer);
   3112       b(label);
   3113 #ifdef DEBUG
   3114       DCHECK(SizeOfCodeGeneratedSince(&veneer_size_check) <=
   3115              static_cast<uint64_t>(kMaxVeneerCodeSize));
   3116       veneer_size_check.Unuse();
   3117 #endif
   3118 
   3119       it_to_delete = it++;
   3120       unresolved_branches_.erase(it_to_delete);
   3121     } else {
   3122       ++it;
   3123     }
   3124   }
   3125 
   3126   // Record the veneer pool size.
   3127   int pool_size = static_cast<int>(SizeOfCodeGeneratedSince(&size_check));
   3128   RecordVeneerPool(veneer_pool_relocinfo_loc, pool_size);
   3129 
   3130   if (unresolved_branches_.empty()) {
   3131     next_veneer_pool_check_ = kMaxInt;
   3132   } else {
   3133     next_veneer_pool_check_ =
   3134       unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
   3135   }
   3136 
   3137   bind(&end);
   3138 
   3139   RecordComment("]");
   3140 }
   3141 
   3142 
   3143 void Assembler::CheckVeneerPool(bool force_emit, bool require_jump,
   3144                                 int margin) {
   3145   // There is nothing to do if there are no pending veneer pool entries.
   3146   if (unresolved_branches_.empty())  {
   3147     DCHECK(next_veneer_pool_check_ == kMaxInt);
   3148     return;
   3149   }
   3150 
   3151   DCHECK(pc_offset() < unresolved_branches_first_limit());
   3152 
   3153   // Some short sequence of instruction mustn't be broken up by veneer pool
   3154   // emission, such sequences are protected by calls to BlockVeneerPoolFor and
   3155   // BlockVeneerPoolScope.
   3156   if (is_veneer_pool_blocked()) {
   3157     DCHECK(!force_emit);
   3158     return;
   3159   }
   3160 
   3161   if (!require_jump) {
   3162     // Prefer emitting veneers protected by an existing instruction.
   3163     margin *= kVeneerNoProtectionFactor;
   3164   }
   3165   if (force_emit || ShouldEmitVeneers(margin)) {
   3166     EmitVeneers(force_emit, require_jump, margin);
   3167   } else {
   3168     next_veneer_pool_check_ =
   3169       unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
   3170   }
   3171 }
   3172 
   3173 
   3174 int Assembler::buffer_space() const {
   3175   return static_cast<int>(reloc_info_writer.pos() -
   3176                           reinterpret_cast<byte*>(pc_));
   3177 }
   3178 
   3179 
   3180 void Assembler::RecordConstPool(int size) {
   3181   // We only need this for debugger support, to correctly compute offsets in the
   3182   // code.
   3183   RecordRelocInfo(RelocInfo::CONST_POOL, static_cast<intptr_t>(size));
   3184 }
   3185 
   3186 
   3187 void PatchingAssembler::PatchAdrFar(int64_t target_offset) {
   3188   // The code at the current instruction should be:
   3189   //   adr  rd, 0
   3190   //   nop  (adr_far)
   3191   //   nop  (adr_far)
   3192   //   movz scratch, 0
   3193 
   3194   // Verify the expected code.
   3195   Instruction* expected_adr = InstructionAt(0);
   3196   CHECK(expected_adr->IsAdr() && (expected_adr->ImmPCRel() == 0));
   3197   int rd_code = expected_adr->Rd();
   3198   for (int i = 0; i < kAdrFarPatchableNNops; ++i) {
   3199     CHECK(InstructionAt((i + 1) * kInstructionSize)->IsNop(ADR_FAR_NOP));
   3200   }
   3201   Instruction* expected_movz =
   3202       InstructionAt((kAdrFarPatchableNInstrs - 1) * kInstructionSize);
   3203   CHECK(expected_movz->IsMovz() &&
   3204         (expected_movz->ImmMoveWide() == 0) &&
   3205         (expected_movz->ShiftMoveWide() == 0));
   3206   int scratch_code = expected_movz->Rd();
   3207 
   3208   // Patch to load the correct address.
   3209   Register rd = Register::XRegFromCode(rd_code);
   3210   Register scratch = Register::XRegFromCode(scratch_code);
   3211   // Addresses are only 48 bits.
   3212   adr(rd, target_offset & 0xFFFF);
   3213   movz(scratch, (target_offset >> 16) & 0xFFFF, 16);
   3214   movk(scratch, (target_offset >> 32) & 0xFFFF, 32);
   3215   DCHECK((target_offset >> 48) == 0);
   3216   add(rd, rd, scratch);
   3217 }
   3218 
   3219 
   3220 }  // namespace internal
   3221 }  // namespace v8
   3222 
   3223 #endif  // V8_TARGET_ARCH_ARM64
   3224