1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the PPCISelLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCISelLowering.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPCCallingConv.h" 17 #include "PPCCCState.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCPerfectShuffle.h" 20 #include "PPCTargetMachine.h" 21 #include "PPCTargetObjectFile.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/CodeGen/CallingConvLower.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineLoopInfo.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/SelectionDAG.h" 33 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/Format.h" 42 #include "llvm/Support/MathExtras.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Target/TargetOptions.h" 45 #include <list> 46 47 using namespace llvm; 48 49 #define DEBUG_TYPE "ppc-lowering" 50 51 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 52 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 53 54 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 55 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 56 57 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 58 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 59 60 static cl::opt<bool> DisableSCO("disable-ppc-sco", 61 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 62 63 STATISTIC(NumTailCalls, "Number of tail calls"); 64 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 65 66 // FIXME: Remove this once the bug has been fixed! 67 extern cl::opt<bool> ANDIGlueBug; 68 69 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 70 const PPCSubtarget &STI) 71 : TargetLowering(TM), Subtarget(STI) { 72 // Use _setjmp/_longjmp instead of setjmp/longjmp. 73 setUseUnderscoreSetJmp(true); 74 setUseUnderscoreLongJmp(true); 75 76 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 77 // arguments are at least 4/8 bytes aligned. 78 bool isPPC64 = Subtarget.isPPC64(); 79 setMinStackArgumentAlignment(isPPC64 ? 8:4); 80 81 // Set up the register classes. 82 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 83 if (!useSoftFloat()) { 84 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 85 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 86 } 87 88 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD 89 for (MVT VT : MVT::integer_valuetypes()) { 90 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 91 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 92 } 93 94 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 95 96 // PowerPC has pre-inc load and store's. 97 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 98 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 99 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 100 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 101 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 102 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 103 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 104 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 105 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 106 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 107 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 108 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 109 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 110 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 111 112 if (Subtarget.useCRBits()) { 113 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 114 115 if (isPPC64 || Subtarget.hasFPCVT()) { 116 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 117 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 118 isPPC64 ? MVT::i64 : MVT::i32); 119 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 120 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 121 isPPC64 ? MVT::i64 : MVT::i32); 122 } else { 123 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 124 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 125 } 126 127 // PowerPC does not support direct load / store of condition registers 128 setOperationAction(ISD::LOAD, MVT::i1, Custom); 129 setOperationAction(ISD::STORE, MVT::i1, Custom); 130 131 // FIXME: Remove this once the ANDI glue bug is fixed: 132 if (ANDIGlueBug) 133 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 134 135 for (MVT VT : MVT::integer_valuetypes()) { 136 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 137 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 138 setTruncStoreAction(VT, MVT::i1, Expand); 139 } 140 141 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 142 } 143 144 // This is used in the ppcf128->int sequence. Note it has different semantics 145 // from FP_ROUND: that rounds to nearest, this rounds to zero. 146 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom); 147 148 // We do not currently implement these libm ops for PowerPC. 149 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 150 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 151 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 152 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 153 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 154 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 155 156 // PowerPC has no SREM/UREM instructions 157 setOperationAction(ISD::SREM, MVT::i32, Expand); 158 setOperationAction(ISD::UREM, MVT::i32, Expand); 159 setOperationAction(ISD::SREM, MVT::i64, Expand); 160 setOperationAction(ISD::UREM, MVT::i64, Expand); 161 162 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 163 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 164 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 165 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 166 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 167 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 168 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 169 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 170 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 171 172 // We don't support sin/cos/sqrt/fmod/pow 173 setOperationAction(ISD::FSIN , MVT::f64, Expand); 174 setOperationAction(ISD::FCOS , MVT::f64, Expand); 175 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 176 setOperationAction(ISD::FREM , MVT::f64, Expand); 177 setOperationAction(ISD::FPOW , MVT::f64, Expand); 178 setOperationAction(ISD::FMA , MVT::f64, Legal); 179 setOperationAction(ISD::FSIN , MVT::f32, Expand); 180 setOperationAction(ISD::FCOS , MVT::f32, Expand); 181 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 182 setOperationAction(ISD::FREM , MVT::f32, Expand); 183 setOperationAction(ISD::FPOW , MVT::f32, Expand); 184 setOperationAction(ISD::FMA , MVT::f32, Legal); 185 186 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 187 188 // If we're enabling GP optimizations, use hardware square root 189 if (!Subtarget.hasFSQRT() && 190 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 191 Subtarget.hasFRE())) 192 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 193 194 if (!Subtarget.hasFSQRT() && 195 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 196 Subtarget.hasFRES())) 197 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 198 199 if (Subtarget.hasFCPSGN()) { 200 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 201 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 202 } else { 203 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 204 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 205 } 206 207 if (Subtarget.hasFPRND()) { 208 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 209 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 210 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 211 setOperationAction(ISD::FROUND, MVT::f64, Legal); 212 213 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 214 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 215 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 216 setOperationAction(ISD::FROUND, MVT::f32, Legal); 217 } 218 219 // PowerPC does not have BSWAP, CTPOP or CTTZ 220 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 221 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 222 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 223 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 224 225 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 226 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 227 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 228 } else { 229 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 230 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 231 } 232 233 // PowerPC does not have ROTR 234 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 235 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 236 237 if (!Subtarget.useCRBits()) { 238 // PowerPC does not have Select 239 setOperationAction(ISD::SELECT, MVT::i32, Expand); 240 setOperationAction(ISD::SELECT, MVT::i64, Expand); 241 setOperationAction(ISD::SELECT, MVT::f32, Expand); 242 setOperationAction(ISD::SELECT, MVT::f64, Expand); 243 } 244 245 // PowerPC wants to turn select_cc of FP into fsel when possible. 246 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 247 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 248 249 // PowerPC wants to optimize integer setcc a bit 250 if (!Subtarget.useCRBits()) 251 setOperationAction(ISD::SETCC, MVT::i32, Custom); 252 253 // PowerPC does not have BRCOND which requires SetCC 254 if (!Subtarget.useCRBits()) 255 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 256 257 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 258 259 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 260 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 261 262 // PowerPC does not have [U|S]INT_TO_FP 263 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 264 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 265 266 if (Subtarget.hasDirectMove() && isPPC64) { 267 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 268 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 269 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 270 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 271 } else { 272 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 273 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 274 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 275 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 276 } 277 278 // We cannot sextinreg(i1). Expand to shifts. 279 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 280 281 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 282 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 283 // support continuation, user-level threading, and etc.. As a result, no 284 // other SjLj exception interfaces are implemented and please don't build 285 // your own exception handling based on them. 286 // LLVM/Clang supports zero-cost DWARF exception handling. 287 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 288 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 289 290 // We want to legalize GlobalAddress and ConstantPool nodes into the 291 // appropriate instructions to materialize the address. 292 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 293 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 294 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 295 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 296 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 297 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 298 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 299 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 300 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 301 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 302 303 // TRAP is legal. 304 setOperationAction(ISD::TRAP, MVT::Other, Legal); 305 306 // TRAMPOLINE is custom lowered. 307 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 308 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 309 310 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 311 setOperationAction(ISD::VASTART , MVT::Other, Custom); 312 313 if (Subtarget.isSVR4ABI()) { 314 if (isPPC64) { 315 // VAARG always uses double-word chunks, so promote anything smaller. 316 setOperationAction(ISD::VAARG, MVT::i1, Promote); 317 AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64); 318 setOperationAction(ISD::VAARG, MVT::i8, Promote); 319 AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64); 320 setOperationAction(ISD::VAARG, MVT::i16, Promote); 321 AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64); 322 setOperationAction(ISD::VAARG, MVT::i32, Promote); 323 AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64); 324 setOperationAction(ISD::VAARG, MVT::Other, Expand); 325 } else { 326 // VAARG is custom lowered with the 32-bit SVR4 ABI. 327 setOperationAction(ISD::VAARG, MVT::Other, Custom); 328 setOperationAction(ISD::VAARG, MVT::i64, Custom); 329 } 330 } else 331 setOperationAction(ISD::VAARG, MVT::Other, Expand); 332 333 if (Subtarget.isSVR4ABI() && !isPPC64) 334 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 335 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 336 else 337 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 338 339 // Use the default implementation. 340 setOperationAction(ISD::VAEND , MVT::Other, Expand); 341 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 342 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 343 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 344 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 345 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 346 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 347 348 // We want to custom lower some of our intrinsics. 349 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 350 351 // To handle counter-based loop conditions. 352 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 353 354 // Comparisons that require checking two conditions. 355 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 356 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 357 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 358 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 359 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 360 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 361 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 362 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 363 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 364 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 365 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 366 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 367 368 if (Subtarget.has64BitSupport()) { 369 // They also have instructions for converting between i64 and fp. 370 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 371 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 372 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 373 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 374 // This is just the low 32 bits of a (signed) fp->i64 conversion. 375 // We cannot do this with Promote because i64 is not a legal type. 376 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 377 378 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 379 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 380 } else { 381 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 382 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 383 } 384 385 // With the instructions enabled under FPCVT, we can do everything. 386 if (Subtarget.hasFPCVT()) { 387 if (Subtarget.has64BitSupport()) { 388 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 389 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 390 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 391 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 392 } 393 394 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 395 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 396 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 397 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 398 } 399 400 if (Subtarget.use64BitRegs()) { 401 // 64-bit PowerPC implementations can support i64 types directly 402 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 403 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 404 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 405 // 64-bit PowerPC wants to expand i128 shifts itself. 406 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 407 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 408 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 409 } else { 410 // 32-bit PowerPC wants to expand i64 shifts itself. 411 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 412 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 413 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 414 } 415 416 if (Subtarget.hasAltivec()) { 417 // First set operation action for all vector types to expand. Then we 418 // will selectively turn on ones that can be effectively codegen'd. 419 for (MVT VT : MVT::vector_valuetypes()) { 420 // add/sub are legal for all supported vector VT's. 421 setOperationAction(ISD::ADD, VT, Legal); 422 setOperationAction(ISD::SUB, VT, Legal); 423 424 // Vector instructions introduced in P8 425 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 426 setOperationAction(ISD::CTPOP, VT, Legal); 427 setOperationAction(ISD::CTLZ, VT, Legal); 428 } 429 else { 430 setOperationAction(ISD::CTPOP, VT, Expand); 431 setOperationAction(ISD::CTLZ, VT, Expand); 432 } 433 434 // We promote all shuffles to v16i8. 435 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 436 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 437 438 // We promote all non-typed operations to v4i32. 439 setOperationAction(ISD::AND , VT, Promote); 440 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 441 setOperationAction(ISD::OR , VT, Promote); 442 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 443 setOperationAction(ISD::XOR , VT, Promote); 444 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 445 setOperationAction(ISD::LOAD , VT, Promote); 446 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 447 setOperationAction(ISD::SELECT, VT, Promote); 448 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 449 setOperationAction(ISD::SELECT_CC, VT, Promote); 450 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 451 setOperationAction(ISD::STORE, VT, Promote); 452 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 453 454 // No other operations are legal. 455 setOperationAction(ISD::MUL , VT, Expand); 456 setOperationAction(ISD::SDIV, VT, Expand); 457 setOperationAction(ISD::SREM, VT, Expand); 458 setOperationAction(ISD::UDIV, VT, Expand); 459 setOperationAction(ISD::UREM, VT, Expand); 460 setOperationAction(ISD::FDIV, VT, Expand); 461 setOperationAction(ISD::FREM, VT, Expand); 462 setOperationAction(ISD::FNEG, VT, Expand); 463 setOperationAction(ISD::FSQRT, VT, Expand); 464 setOperationAction(ISD::FLOG, VT, Expand); 465 setOperationAction(ISD::FLOG10, VT, Expand); 466 setOperationAction(ISD::FLOG2, VT, Expand); 467 setOperationAction(ISD::FEXP, VT, Expand); 468 setOperationAction(ISD::FEXP2, VT, Expand); 469 setOperationAction(ISD::FSIN, VT, Expand); 470 setOperationAction(ISD::FCOS, VT, Expand); 471 setOperationAction(ISD::FABS, VT, Expand); 472 setOperationAction(ISD::FPOWI, VT, Expand); 473 setOperationAction(ISD::FFLOOR, VT, Expand); 474 setOperationAction(ISD::FCEIL, VT, Expand); 475 setOperationAction(ISD::FTRUNC, VT, Expand); 476 setOperationAction(ISD::FRINT, VT, Expand); 477 setOperationAction(ISD::FNEARBYINT, VT, Expand); 478 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 479 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 480 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 481 setOperationAction(ISD::MULHU, VT, Expand); 482 setOperationAction(ISD::MULHS, VT, Expand); 483 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 484 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 485 setOperationAction(ISD::UDIVREM, VT, Expand); 486 setOperationAction(ISD::SDIVREM, VT, Expand); 487 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 488 setOperationAction(ISD::FPOW, VT, Expand); 489 setOperationAction(ISD::BSWAP, VT, Expand); 490 setOperationAction(ISD::CTTZ, VT, Expand); 491 setOperationAction(ISD::VSELECT, VT, Expand); 492 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 493 setOperationAction(ISD::ROTL, VT, Expand); 494 setOperationAction(ISD::ROTR, VT, Expand); 495 496 for (MVT InnerVT : MVT::vector_valuetypes()) { 497 setTruncStoreAction(VT, InnerVT, Expand); 498 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 499 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 500 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 501 } 502 } 503 504 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 505 // with merges, splats, etc. 506 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 507 508 setOperationAction(ISD::AND , MVT::v4i32, Legal); 509 setOperationAction(ISD::OR , MVT::v4i32, Legal); 510 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 511 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 512 setOperationAction(ISD::SELECT, MVT::v4i32, 513 Subtarget.useCRBits() ? Legal : Expand); 514 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 515 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 516 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 517 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 518 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 519 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 520 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 521 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 522 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 523 524 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 525 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 526 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 527 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 528 529 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 530 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 531 532 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 533 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 534 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 535 } 536 537 if (Subtarget.hasP8Altivec()) 538 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 539 else 540 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 541 542 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 543 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 544 545 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 546 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 547 548 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 549 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 550 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 551 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 552 553 // Altivec does not contain unordered floating-point compare instructions 554 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 555 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 556 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 557 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 558 559 if (Subtarget.hasVSX()) { 560 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 561 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 562 if (Subtarget.hasP8Vector()) { 563 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 564 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 565 } 566 if (Subtarget.hasDirectMove() && isPPC64) { 567 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 568 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 569 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 570 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 571 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 572 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 573 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 574 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 575 } 576 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 577 578 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 579 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 580 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 581 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 582 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 583 584 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 585 586 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 587 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 588 589 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 590 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 591 592 setOperationAction(ISD::VSELECT, MVT::v16i8, Legal); 593 setOperationAction(ISD::VSELECT, MVT::v8i16, Legal); 594 setOperationAction(ISD::VSELECT, MVT::v4i32, Legal); 595 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 596 setOperationAction(ISD::VSELECT, MVT::v2f64, Legal); 597 598 // Share the Altivec comparison restrictions. 599 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 600 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 601 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 602 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 603 604 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 605 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 606 607 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 608 609 if (Subtarget.hasP8Vector()) 610 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 611 612 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 613 614 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 615 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 616 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 617 618 if (Subtarget.hasP8Altivec()) { 619 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 620 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 621 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 622 623 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 624 } 625 else { 626 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 627 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 628 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 629 630 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 631 632 // VSX v2i64 only supports non-arithmetic operations. 633 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 634 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 635 } 636 637 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 638 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 639 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 640 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 641 642 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 643 644 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 645 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 646 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 647 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 648 649 // Vector operation legalization checks the result type of 650 // SIGN_EXTEND_INREG, overall legalization checks the inner type. 651 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 652 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 653 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); 654 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); 655 656 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 657 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 658 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 659 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 660 661 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 662 } 663 664 if (Subtarget.hasP8Altivec()) { 665 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 666 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 667 } 668 if (Subtarget.hasP9Vector()) { 669 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Legal); 670 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Legal); 671 } 672 } 673 674 if (Subtarget.hasQPX()) { 675 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 676 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 677 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 678 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 679 680 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 681 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 682 683 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 684 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 685 686 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 687 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 688 689 if (!Subtarget.useCRBits()) 690 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 691 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 692 693 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 694 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 695 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 696 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 697 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 698 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 699 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 700 701 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 702 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 703 704 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 705 setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand); 706 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 707 708 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 709 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 710 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 711 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 712 setOperationAction(ISD::FPOWI , MVT::v4f64, Expand); 713 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 714 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 715 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 716 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 717 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 718 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 719 720 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 721 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 722 723 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 724 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 725 726 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 727 728 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 729 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 730 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 731 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 732 733 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 734 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 735 736 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 737 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 738 739 if (!Subtarget.useCRBits()) 740 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 741 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 742 743 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 744 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 745 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 746 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 747 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 748 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 749 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 750 751 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 752 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 753 754 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 755 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 756 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 757 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 758 setOperationAction(ISD::FPOWI , MVT::v4f32, Expand); 759 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 760 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 761 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 762 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 763 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 764 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 765 766 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 767 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 768 769 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 770 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 771 772 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 773 774 setOperationAction(ISD::AND , MVT::v4i1, Legal); 775 setOperationAction(ISD::OR , MVT::v4i1, Legal); 776 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 777 778 if (!Subtarget.useCRBits()) 779 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 780 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 781 782 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 783 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 784 785 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 786 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 787 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 788 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 789 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 790 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 791 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 792 793 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 794 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 795 796 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 797 798 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 799 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 800 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 801 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 802 803 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 804 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 805 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 806 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 807 808 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 809 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 810 811 // These need to set FE_INEXACT, and so cannot be vectorized here. 812 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 813 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 814 815 if (TM.Options.UnsafeFPMath) { 816 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 817 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 818 819 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 820 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 821 } else { 822 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 823 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 824 825 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 826 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 827 } 828 } 829 830 if (Subtarget.has64BitSupport()) 831 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 832 833 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 834 835 if (!isPPC64) { 836 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 837 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 838 } 839 840 setBooleanContents(ZeroOrOneBooleanContent); 841 842 if (Subtarget.hasAltivec()) { 843 // Altivec instructions set fields to all zeros or all ones. 844 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 845 } 846 847 if (!isPPC64) { 848 // These libcalls are not available in 32-bit. 849 setLibcallName(RTLIB::SHL_I128, nullptr); 850 setLibcallName(RTLIB::SRL_I128, nullptr); 851 setLibcallName(RTLIB::SRA_I128, nullptr); 852 } 853 854 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 855 856 // We have target-specific dag combine patterns for the following nodes: 857 setTargetDAGCombine(ISD::SINT_TO_FP); 858 setTargetDAGCombine(ISD::BUILD_VECTOR); 859 if (Subtarget.hasFPCVT()) 860 setTargetDAGCombine(ISD::UINT_TO_FP); 861 setTargetDAGCombine(ISD::LOAD); 862 setTargetDAGCombine(ISD::STORE); 863 setTargetDAGCombine(ISD::BR_CC); 864 if (Subtarget.useCRBits()) 865 setTargetDAGCombine(ISD::BRCOND); 866 setTargetDAGCombine(ISD::BSWAP); 867 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 868 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 869 setTargetDAGCombine(ISD::INTRINSIC_VOID); 870 871 setTargetDAGCombine(ISD::SIGN_EXTEND); 872 setTargetDAGCombine(ISD::ZERO_EXTEND); 873 setTargetDAGCombine(ISD::ANY_EXTEND); 874 875 if (Subtarget.useCRBits()) { 876 setTargetDAGCombine(ISD::TRUNCATE); 877 setTargetDAGCombine(ISD::SETCC); 878 setTargetDAGCombine(ISD::SELECT_CC); 879 } 880 881 // Use reciprocal estimates. 882 if (TM.Options.UnsafeFPMath) { 883 setTargetDAGCombine(ISD::FDIV); 884 setTargetDAGCombine(ISD::FSQRT); 885 } 886 887 // Darwin long double math library functions have $LDBL128 appended. 888 if (Subtarget.isDarwin()) { 889 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 890 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 891 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 892 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 893 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 894 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 895 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 896 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 897 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 898 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 899 } 900 901 // With 32 condition bits, we don't need to sink (and duplicate) compares 902 // aggressively in CodeGenPrep. 903 if (Subtarget.useCRBits()) { 904 setHasMultipleConditionRegisters(); 905 setJumpIsExpensive(); 906 } 907 908 setMinFunctionAlignment(2); 909 if (Subtarget.isDarwin()) 910 setPrefFunctionAlignment(4); 911 912 switch (Subtarget.getDarwinDirective()) { 913 default: break; 914 case PPC::DIR_970: 915 case PPC::DIR_A2: 916 case PPC::DIR_E500mc: 917 case PPC::DIR_E5500: 918 case PPC::DIR_PWR4: 919 case PPC::DIR_PWR5: 920 case PPC::DIR_PWR5X: 921 case PPC::DIR_PWR6: 922 case PPC::DIR_PWR6X: 923 case PPC::DIR_PWR7: 924 case PPC::DIR_PWR8: 925 case PPC::DIR_PWR9: 926 setPrefFunctionAlignment(4); 927 setPrefLoopAlignment(4); 928 break; 929 } 930 931 if (Subtarget.enableMachineScheduler()) 932 setSchedulingPreference(Sched::Source); 933 else 934 setSchedulingPreference(Sched::Hybrid); 935 936 computeRegisterProperties(STI.getRegisterInfo()); 937 938 // The Freescale cores do better with aggressive inlining of memcpy and 939 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 940 if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc || 941 Subtarget.getDarwinDirective() == PPC::DIR_E5500) { 942 MaxStoresPerMemset = 32; 943 MaxStoresPerMemsetOptSize = 16; 944 MaxStoresPerMemcpy = 32; 945 MaxStoresPerMemcpyOptSize = 8; 946 MaxStoresPerMemmove = 32; 947 MaxStoresPerMemmoveOptSize = 8; 948 } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) { 949 // The A2 also benefits from (very) aggressive inlining of memcpy and 950 // friends. The overhead of a the function call, even when warm, can be 951 // over one hundred cycles. 952 MaxStoresPerMemset = 128; 953 MaxStoresPerMemcpy = 128; 954 MaxStoresPerMemmove = 128; 955 } 956 } 957 958 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 959 /// the desired ByVal argument alignment. 960 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 961 unsigned MaxMaxAlign) { 962 if (MaxAlign == MaxMaxAlign) 963 return; 964 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 965 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 966 MaxAlign = 32; 967 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 968 MaxAlign = 16; 969 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 970 unsigned EltAlign = 0; 971 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 972 if (EltAlign > MaxAlign) 973 MaxAlign = EltAlign; 974 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 975 for (auto *EltTy : STy->elements()) { 976 unsigned EltAlign = 0; 977 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 978 if (EltAlign > MaxAlign) 979 MaxAlign = EltAlign; 980 if (MaxAlign == MaxMaxAlign) 981 break; 982 } 983 } 984 } 985 986 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 987 /// function arguments in the caller parameter area. 988 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 989 const DataLayout &DL) const { 990 // Darwin passes everything on 4 byte boundary. 991 if (Subtarget.isDarwin()) 992 return 4; 993 994 // 16byte and wider vectors are passed on 16byte boundary. 995 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 996 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 997 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 998 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 999 return Align; 1000 } 1001 1002 bool PPCTargetLowering::useSoftFloat() const { 1003 return Subtarget.useSoftFloat(); 1004 } 1005 1006 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1007 switch ((PPCISD::NodeType)Opcode) { 1008 case PPCISD::FIRST_NUMBER: break; 1009 case PPCISD::FSEL: return "PPCISD::FSEL"; 1010 case PPCISD::FCFID: return "PPCISD::FCFID"; 1011 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1012 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1013 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1014 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1015 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1016 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1017 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1018 case PPCISD::FRE: return "PPCISD::FRE"; 1019 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1020 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1021 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 1022 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 1023 case PPCISD::VPERM: return "PPCISD::VPERM"; 1024 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1025 case PPCISD::XXINSERT: return "PPCISD::XXINSERT"; 1026 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1027 case PPCISD::CMPB: return "PPCISD::CMPB"; 1028 case PPCISD::Hi: return "PPCISD::Hi"; 1029 case PPCISD::Lo: return "PPCISD::Lo"; 1030 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1031 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1032 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1033 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1034 case PPCISD::SRL: return "PPCISD::SRL"; 1035 case PPCISD::SRA: return "PPCISD::SRA"; 1036 case PPCISD::SHL: return "PPCISD::SHL"; 1037 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1038 case PPCISD::CALL: return "PPCISD::CALL"; 1039 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1040 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1041 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1042 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1043 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1044 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1045 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1046 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1047 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1048 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1049 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1050 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1051 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1052 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1053 case PPCISD::ANDIo_1_EQ_BIT: return "PPCISD::ANDIo_1_EQ_BIT"; 1054 case PPCISD::ANDIo_1_GT_BIT: return "PPCISD::ANDIo_1_GT_BIT"; 1055 case PPCISD::VCMP: return "PPCISD::VCMP"; 1056 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1057 case PPCISD::LBRX: return "PPCISD::LBRX"; 1058 case PPCISD::STBRX: return "PPCISD::STBRX"; 1059 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1060 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1061 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1062 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1063 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1064 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1065 case PPCISD::BDZ: return "PPCISD::BDZ"; 1066 case PPCISD::MFFS: return "PPCISD::MFFS"; 1067 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1068 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1069 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1070 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1071 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1072 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1073 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1074 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1075 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1076 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1077 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1078 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1079 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1080 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1081 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1082 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1083 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1084 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1085 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1086 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1087 case PPCISD::SC: return "PPCISD::SC"; 1088 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1089 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1090 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1091 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1092 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1093 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1094 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1095 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1096 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1097 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1098 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1099 } 1100 return nullptr; 1101 } 1102 1103 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1104 EVT VT) const { 1105 if (!VT.isVector()) 1106 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1107 1108 if (Subtarget.hasQPX()) 1109 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1110 1111 return VT.changeVectorElementTypeToInteger(); 1112 } 1113 1114 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1115 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1116 return true; 1117 } 1118 1119 //===----------------------------------------------------------------------===// 1120 // Node matching predicates, for use by the tblgen matching code. 1121 //===----------------------------------------------------------------------===// 1122 1123 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1124 static bool isFloatingPointZero(SDValue Op) { 1125 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1126 return CFP->getValueAPF().isZero(); 1127 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1128 // Maybe this has already been legalized into the constant pool? 1129 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1130 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1131 return CFP->getValueAPF().isZero(); 1132 } 1133 return false; 1134 } 1135 1136 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1137 /// true if Op is undef or if it matches the specified value. 1138 static bool isConstantOrUndef(int Op, int Val) { 1139 return Op < 0 || Op == Val; 1140 } 1141 1142 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1143 /// VPKUHUM instruction. 1144 /// The ShuffleKind distinguishes between big-endian operations with 1145 /// two different inputs (0), either-endian operations with two identical 1146 /// inputs (1), and little-endian operations with two different inputs (2). 1147 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1148 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1149 SelectionDAG &DAG) { 1150 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1151 if (ShuffleKind == 0) { 1152 if (IsLE) 1153 return false; 1154 for (unsigned i = 0; i != 16; ++i) 1155 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1156 return false; 1157 } else if (ShuffleKind == 2) { 1158 if (!IsLE) 1159 return false; 1160 for (unsigned i = 0; i != 16; ++i) 1161 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1162 return false; 1163 } else if (ShuffleKind == 1) { 1164 unsigned j = IsLE ? 0 : 1; 1165 for (unsigned i = 0; i != 8; ++i) 1166 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1167 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1168 return false; 1169 } 1170 return true; 1171 } 1172 1173 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1174 /// VPKUWUM instruction. 1175 /// The ShuffleKind distinguishes between big-endian operations with 1176 /// two different inputs (0), either-endian operations with two identical 1177 /// inputs (1), and little-endian operations with two different inputs (2). 1178 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1179 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1180 SelectionDAG &DAG) { 1181 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1182 if (ShuffleKind == 0) { 1183 if (IsLE) 1184 return false; 1185 for (unsigned i = 0; i != 16; i += 2) 1186 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1187 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1188 return false; 1189 } else if (ShuffleKind == 2) { 1190 if (!IsLE) 1191 return false; 1192 for (unsigned i = 0; i != 16; i += 2) 1193 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1194 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1195 return false; 1196 } else if (ShuffleKind == 1) { 1197 unsigned j = IsLE ? 0 : 2; 1198 for (unsigned i = 0; i != 8; i += 2) 1199 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1200 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1201 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1202 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1203 return false; 1204 } 1205 return true; 1206 } 1207 1208 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1209 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1210 /// current subtarget. 1211 /// 1212 /// The ShuffleKind distinguishes between big-endian operations with 1213 /// two different inputs (0), either-endian operations with two identical 1214 /// inputs (1), and little-endian operations with two different inputs (2). 1215 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1216 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1217 SelectionDAG &DAG) { 1218 const PPCSubtarget& Subtarget = 1219 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1220 if (!Subtarget.hasP8Vector()) 1221 return false; 1222 1223 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1224 if (ShuffleKind == 0) { 1225 if (IsLE) 1226 return false; 1227 for (unsigned i = 0; i != 16; i += 4) 1228 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1229 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1230 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1231 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1232 return false; 1233 } else if (ShuffleKind == 2) { 1234 if (!IsLE) 1235 return false; 1236 for (unsigned i = 0; i != 16; i += 4) 1237 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1238 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1239 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1240 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1241 return false; 1242 } else if (ShuffleKind == 1) { 1243 unsigned j = IsLE ? 0 : 4; 1244 for (unsigned i = 0; i != 8; i += 4) 1245 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1246 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1247 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1248 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1249 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1250 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1251 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1252 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1253 return false; 1254 } 1255 return true; 1256 } 1257 1258 /// isVMerge - Common function, used to match vmrg* shuffles. 1259 /// 1260 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1261 unsigned LHSStart, unsigned RHSStart) { 1262 if (N->getValueType(0) != MVT::v16i8) 1263 return false; 1264 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1265 "Unsupported merge size!"); 1266 1267 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1268 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1269 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1270 LHSStart+j+i*UnitSize) || 1271 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1272 RHSStart+j+i*UnitSize)) 1273 return false; 1274 } 1275 return true; 1276 } 1277 1278 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1279 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1280 /// The ShuffleKind distinguishes between big-endian merges with two 1281 /// different inputs (0), either-endian merges with two identical inputs (1), 1282 /// and little-endian merges with two different inputs (2). For the latter, 1283 /// the input operands are swapped (see PPCInstrAltivec.td). 1284 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1285 unsigned ShuffleKind, SelectionDAG &DAG) { 1286 if (DAG.getDataLayout().isLittleEndian()) { 1287 if (ShuffleKind == 1) // unary 1288 return isVMerge(N, UnitSize, 0, 0); 1289 else if (ShuffleKind == 2) // swapped 1290 return isVMerge(N, UnitSize, 0, 16); 1291 else 1292 return false; 1293 } else { 1294 if (ShuffleKind == 1) // unary 1295 return isVMerge(N, UnitSize, 8, 8); 1296 else if (ShuffleKind == 0) // normal 1297 return isVMerge(N, UnitSize, 8, 24); 1298 else 1299 return false; 1300 } 1301 } 1302 1303 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1304 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1305 /// The ShuffleKind distinguishes between big-endian merges with two 1306 /// different inputs (0), either-endian merges with two identical inputs (1), 1307 /// and little-endian merges with two different inputs (2). For the latter, 1308 /// the input operands are swapped (see PPCInstrAltivec.td). 1309 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1310 unsigned ShuffleKind, SelectionDAG &DAG) { 1311 if (DAG.getDataLayout().isLittleEndian()) { 1312 if (ShuffleKind == 1) // unary 1313 return isVMerge(N, UnitSize, 8, 8); 1314 else if (ShuffleKind == 2) // swapped 1315 return isVMerge(N, UnitSize, 8, 24); 1316 else 1317 return false; 1318 } else { 1319 if (ShuffleKind == 1) // unary 1320 return isVMerge(N, UnitSize, 0, 0); 1321 else if (ShuffleKind == 0) // normal 1322 return isVMerge(N, UnitSize, 0, 16); 1323 else 1324 return false; 1325 } 1326 } 1327 1328 /** 1329 * \brief Common function used to match vmrgew and vmrgow shuffles 1330 * 1331 * The indexOffset determines whether to look for even or odd words in 1332 * the shuffle mask. This is based on the of the endianness of the target 1333 * machine. 1334 * - Little Endian: 1335 * - Use offset of 0 to check for odd elements 1336 * - Use offset of 4 to check for even elements 1337 * - Big Endian: 1338 * - Use offset of 0 to check for even elements 1339 * - Use offset of 4 to check for odd elements 1340 * A detailed description of the vector element ordering for little endian and 1341 * big endian can be found at 1342 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1343 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1344 * compiler differences mean to you 1345 * 1346 * The mask to the shuffle vector instruction specifies the indices of the 1347 * elements from the two input vectors to place in the result. The elements are 1348 * numbered in array-access order, starting with the first vector. These vectors 1349 * are always of type v16i8, thus each vector will contain 16 elements of size 1350 * 8. More info on the shuffle vector can be found in the 1351 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1352 * Language Reference. 1353 * 1354 * The RHSStartValue indicates whether the same input vectors are used (unary) 1355 * or two different input vectors are used, based on the following: 1356 * - If the instruction uses the same vector for both inputs, the range of the 1357 * indices will be 0 to 15. In this case, the RHSStart value passed should 1358 * be 0. 1359 * - If the instruction has two different vectors then the range of the 1360 * indices will be 0 to 31. In this case, the RHSStart value passed should 1361 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1362 * to 31 specify elements in the second vector). 1363 * 1364 * \param[in] N The shuffle vector SD Node to analyze 1365 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1366 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1367 * vector to the shuffle_vector instruction 1368 * \return true iff this shuffle vector represents an even or odd word merge 1369 */ 1370 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1371 unsigned RHSStartValue) { 1372 if (N->getValueType(0) != MVT::v16i8) 1373 return false; 1374 1375 for (unsigned i = 0; i < 2; ++i) 1376 for (unsigned j = 0; j < 4; ++j) 1377 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1378 i*RHSStartValue+j+IndexOffset) || 1379 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1380 i*RHSStartValue+j+IndexOffset+8)) 1381 return false; 1382 return true; 1383 } 1384 1385 /** 1386 * \brief Determine if the specified shuffle mask is suitable for the vmrgew or 1387 * vmrgow instructions. 1388 * 1389 * \param[in] N The shuffle vector SD Node to analyze 1390 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1391 * \param[in] ShuffleKind Identify the type of merge: 1392 * - 0 = big-endian merge with two different inputs; 1393 * - 1 = either-endian merge with two identical inputs; 1394 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1395 * little-endian merges). 1396 * \param[in] DAG The current SelectionDAG 1397 * \return true iff this shuffle mask 1398 */ 1399 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1400 unsigned ShuffleKind, SelectionDAG &DAG) { 1401 if (DAG.getDataLayout().isLittleEndian()) { 1402 unsigned indexOffset = CheckEven ? 4 : 0; 1403 if (ShuffleKind == 1) // Unary 1404 return isVMerge(N, indexOffset, 0); 1405 else if (ShuffleKind == 2) // swapped 1406 return isVMerge(N, indexOffset, 16); 1407 else 1408 return false; 1409 } 1410 else { 1411 unsigned indexOffset = CheckEven ? 0 : 4; 1412 if (ShuffleKind == 1) // Unary 1413 return isVMerge(N, indexOffset, 0); 1414 else if (ShuffleKind == 0) // Normal 1415 return isVMerge(N, indexOffset, 16); 1416 else 1417 return false; 1418 } 1419 return false; 1420 } 1421 1422 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1423 /// amount, otherwise return -1. 1424 /// The ShuffleKind distinguishes between big-endian operations with two 1425 /// different inputs (0), either-endian operations with two identical inputs 1426 /// (1), and little-endian operations with two different inputs (2). For the 1427 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1428 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1429 SelectionDAG &DAG) { 1430 if (N->getValueType(0) != MVT::v16i8) 1431 return -1; 1432 1433 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1434 1435 // Find the first non-undef value in the shuffle mask. 1436 unsigned i; 1437 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1438 /*search*/; 1439 1440 if (i == 16) return -1; // all undef. 1441 1442 // Otherwise, check to see if the rest of the elements are consecutively 1443 // numbered from this value. 1444 unsigned ShiftAmt = SVOp->getMaskElt(i); 1445 if (ShiftAmt < i) return -1; 1446 1447 ShiftAmt -= i; 1448 bool isLE = DAG.getDataLayout().isLittleEndian(); 1449 1450 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1451 // Check the rest of the elements to see if they are consecutive. 1452 for (++i; i != 16; ++i) 1453 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1454 return -1; 1455 } else if (ShuffleKind == 1) { 1456 // Check the rest of the elements to see if they are consecutive. 1457 for (++i; i != 16; ++i) 1458 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1459 return -1; 1460 } else 1461 return -1; 1462 1463 if (isLE) 1464 ShiftAmt = 16 - ShiftAmt; 1465 1466 return ShiftAmt; 1467 } 1468 1469 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1470 /// specifies a splat of a single element that is suitable for input to 1471 /// VSPLTB/VSPLTH/VSPLTW. 1472 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1473 assert(N->getValueType(0) == MVT::v16i8 && 1474 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 1475 1476 // The consecutive indices need to specify an element, not part of two 1477 // different elements. So abandon ship early if this isn't the case. 1478 if (N->getMaskElt(0) % EltSize != 0) 1479 return false; 1480 1481 // This is a splat operation if each element of the permute is the same, and 1482 // if the value doesn't reference the second vector. 1483 unsigned ElementBase = N->getMaskElt(0); 1484 1485 // FIXME: Handle UNDEF elements too! 1486 if (ElementBase >= 16) 1487 return false; 1488 1489 // Check that the indices are consecutive, in the case of a multi-byte element 1490 // splatted with a v16i8 mask. 1491 for (unsigned i = 1; i != EltSize; ++i) 1492 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1493 return false; 1494 1495 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1496 if (N->getMaskElt(i) < 0) continue; 1497 for (unsigned j = 0; j != EltSize; ++j) 1498 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1499 return false; 1500 } 1501 return true; 1502 } 1503 1504 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1505 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 1506 1507 // Check that the mask is shuffling words 1508 for (unsigned i = 0; i < 4; ++i) { 1509 unsigned B0 = N->getMaskElt(i*4); 1510 unsigned B1 = N->getMaskElt(i*4+1); 1511 unsigned B2 = N->getMaskElt(i*4+2); 1512 unsigned B3 = N->getMaskElt(i*4+3); 1513 if (B0 % 4) 1514 return false; 1515 if (B1 != B0+1 || B2 != B1+1 || B3 != B2+1) 1516 return false; 1517 } 1518 1519 // Now we look at mask elements 0,4,8,12 1520 unsigned M0 = N->getMaskElt(0) / 4; 1521 unsigned M1 = N->getMaskElt(4) / 4; 1522 unsigned M2 = N->getMaskElt(8) / 4; 1523 unsigned M3 = N->getMaskElt(12) / 4; 1524 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 1525 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 1526 1527 // Below, let H and L be arbitrary elements of the shuffle mask 1528 // where H is in the range [4,7] and L is in the range [0,3]. 1529 // H, 1, 2, 3 or L, 5, 6, 7 1530 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 1531 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 1532 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 1533 InsertAtByte = IsLE ? 12 : 0; 1534 Swap = M0 < 4; 1535 return true; 1536 } 1537 // 0, H, 2, 3 or 4, L, 6, 7 1538 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 1539 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 1540 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 1541 InsertAtByte = IsLE ? 8 : 4; 1542 Swap = M1 < 4; 1543 return true; 1544 } 1545 // 0, 1, H, 3 or 4, 5, L, 7 1546 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 1547 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 1548 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 1549 InsertAtByte = IsLE ? 4 : 8; 1550 Swap = M2 < 4; 1551 return true; 1552 } 1553 // 0, 1, 2, H or 4, 5, 6, L 1554 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 1555 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 1556 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 1557 InsertAtByte = IsLE ? 0 : 12; 1558 Swap = M3 < 4; 1559 return true; 1560 } 1561 1562 // If both vector operands for the shuffle are the same vector, the mask will 1563 // contain only elements from the first one and the second one will be undef. 1564 if (N->getOperand(1).isUndef()) { 1565 ShiftElts = 0; 1566 Swap = true; 1567 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 1568 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 1569 InsertAtByte = IsLE ? 12 : 0; 1570 return true; 1571 } 1572 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 1573 InsertAtByte = IsLE ? 8 : 4; 1574 return true; 1575 } 1576 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 1577 InsertAtByte = IsLE ? 4 : 8; 1578 return true; 1579 } 1580 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 1581 InsertAtByte = IsLE ? 0 : 12; 1582 return true; 1583 } 1584 } 1585 1586 return false; 1587 } 1588 1589 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 1590 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 1591 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize, 1592 SelectionDAG &DAG) { 1593 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1594 assert(isSplatShuffleMask(SVOp, EltSize)); 1595 if (DAG.getDataLayout().isLittleEndian()) 1596 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 1597 else 1598 return SVOp->getMaskElt(0) / EltSize; 1599 } 1600 1601 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 1602 /// by using a vspltis[bhw] instruction of the specified element size, return 1603 /// the constant being splatted. The ByteSize field indicates the number of 1604 /// bytes of each element [124] -> [bhw]. 1605 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 1606 SDValue OpVal(nullptr, 0); 1607 1608 // If ByteSize of the splat is bigger than the element size of the 1609 // build_vector, then we have a case where we are checking for a splat where 1610 // multiple elements of the buildvector are folded together into a single 1611 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 1612 unsigned EltSize = 16/N->getNumOperands(); 1613 if (EltSize < ByteSize) { 1614 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 1615 SDValue UniquedVals[4]; 1616 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 1617 1618 // See if all of the elements in the buildvector agree across. 1619 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1620 if (N->getOperand(i).isUndef()) continue; 1621 // If the element isn't a constant, bail fully out. 1622 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 1623 1624 1625 if (!UniquedVals[i&(Multiple-1)].getNode()) 1626 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 1627 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 1628 return SDValue(); // no match. 1629 } 1630 1631 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 1632 // either constant or undef values that are identical for each chunk. See 1633 // if these chunks can form into a larger vspltis*. 1634 1635 // Check to see if all of the leading entries are either 0 or -1. If 1636 // neither, then this won't fit into the immediate field. 1637 bool LeadingZero = true; 1638 bool LeadingOnes = true; 1639 for (unsigned i = 0; i != Multiple-1; ++i) { 1640 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 1641 1642 LeadingZero &= isNullConstant(UniquedVals[i]); 1643 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 1644 } 1645 // Finally, check the least significant entry. 1646 if (LeadingZero) { 1647 if (!UniquedVals[Multiple-1].getNode()) 1648 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 1649 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 1650 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 1651 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 1652 } 1653 if (LeadingOnes) { 1654 if (!UniquedVals[Multiple-1].getNode()) 1655 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 1656 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 1657 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 1658 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 1659 } 1660 1661 return SDValue(); 1662 } 1663 1664 // Check to see if this buildvec has a single non-undef value in its elements. 1665 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1666 if (N->getOperand(i).isUndef()) continue; 1667 if (!OpVal.getNode()) 1668 OpVal = N->getOperand(i); 1669 else if (OpVal != N->getOperand(i)) 1670 return SDValue(); 1671 } 1672 1673 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 1674 1675 unsigned ValSizeInBytes = EltSize; 1676 uint64_t Value = 0; 1677 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 1678 Value = CN->getZExtValue(); 1679 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 1680 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 1681 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 1682 } 1683 1684 // If the splat value is larger than the element value, then we can never do 1685 // this splat. The only case that we could fit the replicated bits into our 1686 // immediate field for would be zero, and we prefer to use vxor for it. 1687 if (ValSizeInBytes < ByteSize) return SDValue(); 1688 1689 // If the element value is larger than the splat value, check if it consists 1690 // of a repeated bit pattern of size ByteSize. 1691 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 1692 return SDValue(); 1693 1694 // Properly sign extend the value. 1695 int MaskVal = SignExtend32(Value, ByteSize * 8); 1696 1697 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 1698 if (MaskVal == 0) return SDValue(); 1699 1700 // Finally, if this value fits in a 5 bit sext field, return it 1701 if (SignExtend32<5>(MaskVal) == MaskVal) 1702 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 1703 return SDValue(); 1704 } 1705 1706 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 1707 /// amount, otherwise return -1. 1708 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 1709 EVT VT = N->getValueType(0); 1710 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 1711 return -1; 1712 1713 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1714 1715 // Find the first non-undef value in the shuffle mask. 1716 unsigned i; 1717 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 1718 /*search*/; 1719 1720 if (i == 4) return -1; // all undef. 1721 1722 // Otherwise, check to see if the rest of the elements are consecutively 1723 // numbered from this value. 1724 unsigned ShiftAmt = SVOp->getMaskElt(i); 1725 if (ShiftAmt < i) return -1; 1726 ShiftAmt -= i; 1727 1728 // Check the rest of the elements to see if they are consecutive. 1729 for (++i; i != 4; ++i) 1730 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1731 return -1; 1732 1733 return ShiftAmt; 1734 } 1735 1736 //===----------------------------------------------------------------------===// 1737 // Addressing Mode Selection 1738 //===----------------------------------------------------------------------===// 1739 1740 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 1741 /// or 64-bit immediate, and if the value can be accurately represented as a 1742 /// sign extension from a 16-bit value. If so, this returns true and the 1743 /// immediate. 1744 static bool isIntS16Immediate(SDNode *N, short &Imm) { 1745 if (!isa<ConstantSDNode>(N)) 1746 return false; 1747 1748 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); 1749 if (N->getValueType(0) == MVT::i32) 1750 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 1751 else 1752 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 1753 } 1754 static bool isIntS16Immediate(SDValue Op, short &Imm) { 1755 return isIntS16Immediate(Op.getNode(), Imm); 1756 } 1757 1758 /// SelectAddressRegReg - Given the specified addressed, check to see if it 1759 /// can be represented as an indexed [r+r] operation. Returns false if it 1760 /// can be more efficiently represented with [r+imm]. 1761 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 1762 SDValue &Index, 1763 SelectionDAG &DAG) const { 1764 short imm = 0; 1765 if (N.getOpcode() == ISD::ADD) { 1766 if (isIntS16Immediate(N.getOperand(1), imm)) 1767 return false; // r+i 1768 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 1769 return false; // r+i 1770 1771 Base = N.getOperand(0); 1772 Index = N.getOperand(1); 1773 return true; 1774 } else if (N.getOpcode() == ISD::OR) { 1775 if (isIntS16Immediate(N.getOperand(1), imm)) 1776 return false; // r+i can fold it if we can. 1777 1778 // If this is an or of disjoint bitfields, we can codegen this as an add 1779 // (for better address arithmetic) if the LHS and RHS of the OR are provably 1780 // disjoint. 1781 APInt LHSKnownZero, LHSKnownOne; 1782 APInt RHSKnownZero, RHSKnownOne; 1783 DAG.computeKnownBits(N.getOperand(0), 1784 LHSKnownZero, LHSKnownOne); 1785 1786 if (LHSKnownZero.getBoolValue()) { 1787 DAG.computeKnownBits(N.getOperand(1), 1788 RHSKnownZero, RHSKnownOne); 1789 // If all of the bits are known zero on the LHS or RHS, the add won't 1790 // carry. 1791 if (~(LHSKnownZero | RHSKnownZero) == 0) { 1792 Base = N.getOperand(0); 1793 Index = N.getOperand(1); 1794 return true; 1795 } 1796 } 1797 } 1798 1799 return false; 1800 } 1801 1802 // If we happen to be doing an i64 load or store into a stack slot that has 1803 // less than a 4-byte alignment, then the frame-index elimination may need to 1804 // use an indexed load or store instruction (because the offset may not be a 1805 // multiple of 4). The extra register needed to hold the offset comes from the 1806 // register scavenger, and it is possible that the scavenger will need to use 1807 // an emergency spill slot. As a result, we need to make sure that a spill slot 1808 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 1809 // stack slot. 1810 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 1811 // FIXME: This does not handle the LWA case. 1812 if (VT != MVT::i64) 1813 return; 1814 1815 // NOTE: We'll exclude negative FIs here, which come from argument 1816 // lowering, because there are no known test cases triggering this problem 1817 // using packed structures (or similar). We can remove this exclusion if 1818 // we find such a test case. The reason why this is so test-case driven is 1819 // because this entire 'fixup' is only to prevent crashes (from the 1820 // register scavenger) on not-really-valid inputs. For example, if we have: 1821 // %a = alloca i1 1822 // %b = bitcast i1* %a to i64* 1823 // store i64* a, i64 b 1824 // then the store should really be marked as 'align 1', but is not. If it 1825 // were marked as 'align 1' then the indexed form would have been 1826 // instruction-selected initially, and the problem this 'fixup' is preventing 1827 // won't happen regardless. 1828 if (FrameIdx < 0) 1829 return; 1830 1831 MachineFunction &MF = DAG.getMachineFunction(); 1832 MachineFrameInfo *MFI = MF.getFrameInfo(); 1833 1834 unsigned Align = MFI->getObjectAlignment(FrameIdx); 1835 if (Align >= 4) 1836 return; 1837 1838 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1839 FuncInfo->setHasNonRISpills(); 1840 } 1841 1842 /// Returns true if the address N can be represented by a base register plus 1843 /// a signed 16-bit displacement [r+imm], and if it is not better 1844 /// represented as reg+reg. If Aligned is true, only accept displacements 1845 /// suitable for STD and friends, i.e. multiples of 4. 1846 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 1847 SDValue &Base, 1848 SelectionDAG &DAG, 1849 bool Aligned) const { 1850 // FIXME dl should come from parent load or store, not from address 1851 SDLoc dl(N); 1852 // If this can be more profitably realized as r+r, fail. 1853 if (SelectAddressRegReg(N, Disp, Base, DAG)) 1854 return false; 1855 1856 if (N.getOpcode() == ISD::ADD) { 1857 short imm = 0; 1858 if (isIntS16Immediate(N.getOperand(1), imm) && 1859 (!Aligned || (imm & 3) == 0)) { 1860 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 1861 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1862 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1863 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1864 } else { 1865 Base = N.getOperand(0); 1866 } 1867 return true; // [r+i] 1868 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 1869 // Match LOAD (ADD (X, Lo(G))). 1870 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 1871 && "Cannot handle constant offsets yet!"); 1872 Disp = N.getOperand(1).getOperand(0); // The global address. 1873 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 1874 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 1875 Disp.getOpcode() == ISD::TargetConstantPool || 1876 Disp.getOpcode() == ISD::TargetJumpTable); 1877 Base = N.getOperand(0); 1878 return true; // [&g+r] 1879 } 1880 } else if (N.getOpcode() == ISD::OR) { 1881 short imm = 0; 1882 if (isIntS16Immediate(N.getOperand(1), imm) && 1883 (!Aligned || (imm & 3) == 0)) { 1884 // If this is an or of disjoint bitfields, we can codegen this as an add 1885 // (for better address arithmetic) if the LHS and RHS of the OR are 1886 // provably disjoint. 1887 APInt LHSKnownZero, LHSKnownOne; 1888 DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne); 1889 1890 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 1891 // If all of the bits are known zero on the LHS or RHS, the add won't 1892 // carry. 1893 if (FrameIndexSDNode *FI = 1894 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1895 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1896 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1897 } else { 1898 Base = N.getOperand(0); 1899 } 1900 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 1901 return true; 1902 } 1903 } 1904 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 1905 // Loading from a constant address. 1906 1907 // If this address fits entirely in a 16-bit sext immediate field, codegen 1908 // this as "d, 0" 1909 short Imm; 1910 if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) { 1911 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 1912 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 1913 CN->getValueType(0)); 1914 return true; 1915 } 1916 1917 // Handle 32-bit sext immediates with LIS + addr mode. 1918 if ((CN->getValueType(0) == MVT::i32 || 1919 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 1920 (!Aligned || (CN->getZExtValue() & 3) == 0)) { 1921 int Addr = (int)CN->getZExtValue(); 1922 1923 // Otherwise, break this down into an LIS + disp. 1924 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 1925 1926 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 1927 MVT::i32); 1928 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 1929 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 1930 return true; 1931 } 1932 } 1933 1934 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 1935 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 1936 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1937 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1938 } else 1939 Base = N; 1940 return true; // [r+0] 1941 } 1942 1943 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 1944 /// represented as an indexed [r+r] operation. 1945 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 1946 SDValue &Index, 1947 SelectionDAG &DAG) const { 1948 // Check to see if we can easily represent this as an [r+r] address. This 1949 // will fail if it thinks that the address is more profitably represented as 1950 // reg+imm, e.g. where imm = 0. 1951 if (SelectAddressRegReg(N, Base, Index, DAG)) 1952 return true; 1953 1954 // If the operand is an addition, always emit this as [r+r], since this is 1955 // better (for code size, and execution, as the memop does the add for free) 1956 // than emitting an explicit add. 1957 if (N.getOpcode() == ISD::ADD) { 1958 Base = N.getOperand(0); 1959 Index = N.getOperand(1); 1960 return true; 1961 } 1962 1963 // Otherwise, do it the hard way, using R0 as the base register. 1964 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 1965 N.getValueType()); 1966 Index = N; 1967 return true; 1968 } 1969 1970 /// getPreIndexedAddressParts - returns true by value, base pointer and 1971 /// offset pointer and addressing mode by reference if the node's address 1972 /// can be legally represented as pre-indexed load / store address. 1973 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 1974 SDValue &Offset, 1975 ISD::MemIndexedMode &AM, 1976 SelectionDAG &DAG) const { 1977 if (DisablePPCPreinc) return false; 1978 1979 bool isLoad = true; 1980 SDValue Ptr; 1981 EVT VT; 1982 unsigned Alignment; 1983 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1984 Ptr = LD->getBasePtr(); 1985 VT = LD->getMemoryVT(); 1986 Alignment = LD->getAlignment(); 1987 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 1988 Ptr = ST->getBasePtr(); 1989 VT = ST->getMemoryVT(); 1990 Alignment = ST->getAlignment(); 1991 isLoad = false; 1992 } else 1993 return false; 1994 1995 // PowerPC doesn't have preinc load/store instructions for vectors (except 1996 // for QPX, which does have preinc r+r forms). 1997 if (VT.isVector()) { 1998 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 1999 return false; 2000 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 2001 AM = ISD::PRE_INC; 2002 return true; 2003 } 2004 } 2005 2006 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2007 2008 // Common code will reject creating a pre-inc form if the base pointer 2009 // is a frame index, or if N is a store and the base pointer is either 2010 // the same as or a predecessor of the value being stored. Check for 2011 // those situations here, and try with swapped Base/Offset instead. 2012 bool Swap = false; 2013 2014 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2015 Swap = true; 2016 else if (!isLoad) { 2017 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2018 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2019 Swap = true; 2020 } 2021 2022 if (Swap) 2023 std::swap(Base, Offset); 2024 2025 AM = ISD::PRE_INC; 2026 return true; 2027 } 2028 2029 // LDU/STU can only handle immediates that are a multiple of 4. 2030 if (VT != MVT::i64) { 2031 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false)) 2032 return false; 2033 } else { 2034 // LDU/STU need an address with at least 4-byte alignment. 2035 if (Alignment < 4) 2036 return false; 2037 2038 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true)) 2039 return false; 2040 } 2041 2042 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2043 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2044 // sext i32 to i64 when addr mode is r+i. 2045 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2046 LD->getExtensionType() == ISD::SEXTLOAD && 2047 isa<ConstantSDNode>(Offset)) 2048 return false; 2049 } 2050 2051 AM = ISD::PRE_INC; 2052 return true; 2053 } 2054 2055 //===----------------------------------------------------------------------===// 2056 // LowerOperation implementation 2057 //===----------------------------------------------------------------------===// 2058 2059 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2060 /// and LoOpFlags to the target MO flags. 2061 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2062 unsigned &HiOpFlags, unsigned &LoOpFlags, 2063 const GlobalValue *GV = nullptr) { 2064 HiOpFlags = PPCII::MO_HA; 2065 LoOpFlags = PPCII::MO_LO; 2066 2067 // Don't use the pic base if not in PIC relocation model. 2068 if (IsPIC) { 2069 HiOpFlags |= PPCII::MO_PIC_FLAG; 2070 LoOpFlags |= PPCII::MO_PIC_FLAG; 2071 } 2072 2073 // If this is a reference to a global value that requires a non-lazy-ptr, make 2074 // sure that instruction lowering adds it. 2075 if (GV && Subtarget.hasLazyResolverStub(GV)) { 2076 HiOpFlags |= PPCII::MO_NLP_FLAG; 2077 LoOpFlags |= PPCII::MO_NLP_FLAG; 2078 2079 if (GV->hasHiddenVisibility()) { 2080 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2081 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2082 } 2083 } 2084 } 2085 2086 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2087 SelectionDAG &DAG) { 2088 SDLoc DL(HiPart); 2089 EVT PtrVT = HiPart.getValueType(); 2090 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2091 2092 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2093 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2094 2095 // With PIC, the first instruction is actually "GR+hi(&G)". 2096 if (isPIC) 2097 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2098 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2099 2100 // Generate non-pic code that has direct accesses to the constant pool. 2101 // The address of the global is just (hi(&g)+lo(&g)). 2102 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2103 } 2104 2105 static void setUsesTOCBasePtr(MachineFunction &MF) { 2106 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2107 FuncInfo->setUsesTOCBasePtr(); 2108 } 2109 2110 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2111 setUsesTOCBasePtr(DAG.getMachineFunction()); 2112 } 2113 2114 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit, 2115 SDValue GA) { 2116 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2117 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) : 2118 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2119 2120 SDValue Ops[] = { GA, Reg }; 2121 return DAG.getMemIntrinsicNode( 2122 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2123 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, false, true, 2124 false, 0); 2125 } 2126 2127 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2128 SelectionDAG &DAG) const { 2129 EVT PtrVT = Op.getValueType(); 2130 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2131 const Constant *C = CP->getConstVal(); 2132 2133 // 64-bit SVR4 ABI code is always position-independent. 2134 // The actual address of the GlobalValue is stored in the TOC. 2135 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2136 setUsesTOCBasePtr(DAG); 2137 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2138 return getTOCEntry(DAG, SDLoc(CP), true, GA); 2139 } 2140 2141 unsigned MOHiFlag, MOLoFlag; 2142 bool IsPIC = isPositionIndependent(); 2143 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2144 2145 if (IsPIC && Subtarget.isSVR4ABI()) { 2146 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2147 PPCII::MO_PIC_FLAG); 2148 return getTOCEntry(DAG, SDLoc(CP), false, GA); 2149 } 2150 2151 SDValue CPIHi = 2152 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2153 SDValue CPILo = 2154 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2155 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2156 } 2157 2158 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2159 EVT PtrVT = Op.getValueType(); 2160 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2161 2162 // 64-bit SVR4 ABI code is always position-independent. 2163 // The actual address of the GlobalValue is stored in the TOC. 2164 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2165 setUsesTOCBasePtr(DAG); 2166 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2167 return getTOCEntry(DAG, SDLoc(JT), true, GA); 2168 } 2169 2170 unsigned MOHiFlag, MOLoFlag; 2171 bool IsPIC = isPositionIndependent(); 2172 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2173 2174 if (IsPIC && Subtarget.isSVR4ABI()) { 2175 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2176 PPCII::MO_PIC_FLAG); 2177 return getTOCEntry(DAG, SDLoc(GA), false, GA); 2178 } 2179 2180 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2181 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2182 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 2183 } 2184 2185 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2186 SelectionDAG &DAG) const { 2187 EVT PtrVT = Op.getValueType(); 2188 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2189 const BlockAddress *BA = BASDN->getBlockAddress(); 2190 2191 // 64-bit SVR4 ABI code is always position-independent. 2192 // The actual BlockAddress is stored in the TOC. 2193 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2194 setUsesTOCBasePtr(DAG); 2195 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2196 return getTOCEntry(DAG, SDLoc(BASDN), true, GA); 2197 } 2198 2199 unsigned MOHiFlag, MOLoFlag; 2200 bool IsPIC = isPositionIndependent(); 2201 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2202 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2203 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2204 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 2205 } 2206 2207 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2208 SelectionDAG &DAG) const { 2209 2210 // FIXME: TLS addresses currently use medium model code sequences, 2211 // which is the most useful form. Eventually support for small and 2212 // large models could be added if users need it, at the cost of 2213 // additional complexity. 2214 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2215 if (DAG.getTarget().Options.EmulatedTLS) 2216 return LowerToTLSEmulatedModel(GA, DAG); 2217 2218 SDLoc dl(GA); 2219 const GlobalValue *GV = GA->getGlobal(); 2220 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2221 bool is64bit = Subtarget.isPPC64(); 2222 const Module *M = DAG.getMachineFunction().getFunction()->getParent(); 2223 PICLevel::Level picLevel = M->getPICLevel(); 2224 2225 TLSModel::Model Model = getTargetMachine().getTLSModel(GV); 2226 2227 if (Model == TLSModel::LocalExec) { 2228 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2229 PPCII::MO_TPREL_HA); 2230 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2231 PPCII::MO_TPREL_LO); 2232 SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2, 2233 is64bit ? MVT::i64 : MVT::i32); 2234 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2235 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2236 } 2237 2238 if (Model == TLSModel::InitialExec) { 2239 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2240 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2241 PPCII::MO_TLS); 2242 SDValue GOTPtr; 2243 if (is64bit) { 2244 setUsesTOCBasePtr(DAG); 2245 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2246 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2247 PtrVT, GOTReg, TGA); 2248 } else 2249 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2250 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2251 PtrVT, TGA, GOTPtr); 2252 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2253 } 2254 2255 if (Model == TLSModel::GeneralDynamic) { 2256 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2257 SDValue GOTPtr; 2258 if (is64bit) { 2259 setUsesTOCBasePtr(DAG); 2260 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2261 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2262 GOTReg, TGA); 2263 } else { 2264 if (picLevel == PICLevel::SmallPIC) 2265 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2266 else 2267 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2268 } 2269 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2270 GOTPtr, TGA, TGA); 2271 } 2272 2273 if (Model == TLSModel::LocalDynamic) { 2274 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2275 SDValue GOTPtr; 2276 if (is64bit) { 2277 setUsesTOCBasePtr(DAG); 2278 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2279 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 2280 GOTReg, TGA); 2281 } else { 2282 if (picLevel == PICLevel::SmallPIC) 2283 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2284 else 2285 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2286 } 2287 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 2288 PtrVT, GOTPtr, TGA, TGA); 2289 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 2290 PtrVT, TLSAddr, TGA); 2291 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 2292 } 2293 2294 llvm_unreachable("Unknown TLS model!"); 2295 } 2296 2297 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 2298 SelectionDAG &DAG) const { 2299 EVT PtrVT = Op.getValueType(); 2300 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 2301 SDLoc DL(GSDN); 2302 const GlobalValue *GV = GSDN->getGlobal(); 2303 2304 // 64-bit SVR4 ABI code is always position-independent. 2305 // The actual address of the GlobalValue is stored in the TOC. 2306 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2307 setUsesTOCBasePtr(DAG); 2308 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 2309 return getTOCEntry(DAG, DL, true, GA); 2310 } 2311 2312 unsigned MOHiFlag, MOLoFlag; 2313 bool IsPIC = isPositionIndependent(); 2314 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 2315 2316 if (IsPIC && Subtarget.isSVR4ABI()) { 2317 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 2318 GSDN->getOffset(), 2319 PPCII::MO_PIC_FLAG); 2320 return getTOCEntry(DAG, DL, false, GA); 2321 } 2322 2323 SDValue GAHi = 2324 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 2325 SDValue GALo = 2326 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 2327 2328 SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG); 2329 2330 // If the global reference is actually to a non-lazy-pointer, we have to do an 2331 // extra load to get the address of the global. 2332 if (MOHiFlag & PPCII::MO_NLP_FLAG) 2333 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(), 2334 false, false, false, 0); 2335 return Ptr; 2336 } 2337 2338 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 2339 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2340 SDLoc dl(Op); 2341 2342 if (Op.getValueType() == MVT::v2i64) { 2343 // When the operands themselves are v2i64 values, we need to do something 2344 // special because VSX has no underlying comparison operations for these. 2345 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 2346 // Equality can be handled by casting to the legal type for Altivec 2347 // comparisons, everything else needs to be expanded. 2348 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 2349 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 2350 DAG.getSetCC(dl, MVT::v4i32, 2351 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 2352 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 2353 CC)); 2354 } 2355 2356 return SDValue(); 2357 } 2358 2359 // We handle most of these in the usual way. 2360 return Op; 2361 } 2362 2363 // If we're comparing for equality to zero, expose the fact that this is 2364 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 2365 // fold the new nodes. 2366 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2367 if (C->isNullValue() && CC == ISD::SETEQ) { 2368 EVT VT = Op.getOperand(0).getValueType(); 2369 SDValue Zext = Op.getOperand(0); 2370 if (VT.bitsLT(MVT::i32)) { 2371 VT = MVT::i32; 2372 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 2373 } 2374 unsigned Log2b = Log2_32(VT.getSizeInBits()); 2375 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 2376 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 2377 DAG.getConstant(Log2b, dl, MVT::i32)); 2378 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 2379 } 2380 // Leave comparisons against 0 and -1 alone for now, since they're usually 2381 // optimized. FIXME: revisit this when we can custom lower all setcc 2382 // optimizations. 2383 if (C->isAllOnesValue() || C->isNullValue()) 2384 return SDValue(); 2385 } 2386 2387 // If we have an integer seteq/setne, turn it into a compare against zero 2388 // by xor'ing the rhs with the lhs, which is faster than setting a 2389 // condition register, reading it back out, and masking the correct bit. The 2390 // normal approach here uses sub to do this instead of xor. Using xor exposes 2391 // the result to other bit-twiddling opportunities. 2392 EVT LHSVT = Op.getOperand(0).getValueType(); 2393 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 2394 EVT VT = Op.getValueType(); 2395 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 2396 Op.getOperand(1)); 2397 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 2398 } 2399 return SDValue(); 2400 } 2401 2402 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 2403 SDNode *Node = Op.getNode(); 2404 EVT VT = Node->getValueType(0); 2405 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2406 SDValue InChain = Node->getOperand(0); 2407 SDValue VAListPtr = Node->getOperand(1); 2408 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2409 SDLoc dl(Node); 2410 2411 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 2412 2413 // gpr_index 2414 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2415 VAListPtr, MachinePointerInfo(SV), MVT::i8, 2416 false, false, false, 0); 2417 InChain = GprIndex.getValue(1); 2418 2419 if (VT == MVT::i64) { 2420 // Check if GprIndex is even 2421 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 2422 DAG.getConstant(1, dl, MVT::i32)); 2423 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 2424 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 2425 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 2426 DAG.getConstant(1, dl, MVT::i32)); 2427 // Align GprIndex to be even if it isn't 2428 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 2429 GprIndex); 2430 } 2431 2432 // fpr index is 1 byte after gpr 2433 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2434 DAG.getConstant(1, dl, MVT::i32)); 2435 2436 // fpr 2437 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2438 FprPtr, MachinePointerInfo(SV), MVT::i8, 2439 false, false, false, 0); 2440 InChain = FprIndex.getValue(1); 2441 2442 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2443 DAG.getConstant(8, dl, MVT::i32)); 2444 2445 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2446 DAG.getConstant(4, dl, MVT::i32)); 2447 2448 // areas 2449 SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, 2450 MachinePointerInfo(), false, false, 2451 false, 0); 2452 InChain = OverflowArea.getValue(1); 2453 2454 SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, 2455 MachinePointerInfo(), false, false, 2456 false, 0); 2457 InChain = RegSaveArea.getValue(1); 2458 2459 // select overflow_area if index > 8 2460 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 2461 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 2462 2463 // adjustment constant gpr_index * 4/8 2464 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 2465 VT.isInteger() ? GprIndex : FprIndex, 2466 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 2467 MVT::i32)); 2468 2469 // OurReg = RegSaveArea + RegConstant 2470 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 2471 RegConstant); 2472 2473 // Floating types are 32 bytes into RegSaveArea 2474 if (VT.isFloatingPoint()) 2475 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 2476 DAG.getConstant(32, dl, MVT::i32)); 2477 2478 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 2479 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 2480 VT.isInteger() ? GprIndex : FprIndex, 2481 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 2482 MVT::i32)); 2483 2484 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 2485 VT.isInteger() ? VAListPtr : FprPtr, 2486 MachinePointerInfo(SV), 2487 MVT::i8, false, false, 0); 2488 2489 // determine if we should load from reg_save_area or overflow_area 2490 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 2491 2492 // increase overflow_area by 4/8 if gpr/fpr > 8 2493 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 2494 DAG.getConstant(VT.isInteger() ? 4 : 8, 2495 dl, MVT::i32)); 2496 2497 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 2498 OverflowAreaPlusN); 2499 2500 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, 2501 OverflowAreaPtr, 2502 MachinePointerInfo(), 2503 MVT::i32, false, false, 0); 2504 2505 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(), 2506 false, false, false, 0); 2507 } 2508 2509 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 2510 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 2511 2512 // We have to copy the entire va_list struct: 2513 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 2514 return DAG.getMemcpy(Op.getOperand(0), Op, 2515 Op.getOperand(1), Op.getOperand(2), 2516 DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true, 2517 false, MachinePointerInfo(), MachinePointerInfo()); 2518 } 2519 2520 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 2521 SelectionDAG &DAG) const { 2522 return Op.getOperand(0); 2523 } 2524 2525 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 2526 SelectionDAG &DAG) const { 2527 SDValue Chain = Op.getOperand(0); 2528 SDValue Trmp = Op.getOperand(1); // trampoline 2529 SDValue FPtr = Op.getOperand(2); // nested function 2530 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 2531 SDLoc dl(Op); 2532 2533 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2534 bool isPPC64 = (PtrVT == MVT::i64); 2535 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 2536 2537 TargetLowering::ArgListTy Args; 2538 TargetLowering::ArgListEntry Entry; 2539 2540 Entry.Ty = IntPtrTy; 2541 Entry.Node = Trmp; Args.push_back(Entry); 2542 2543 // TrampSize == (isPPC64 ? 48 : 40); 2544 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 2545 isPPC64 ? MVT::i64 : MVT::i32); 2546 Args.push_back(Entry); 2547 2548 Entry.Node = FPtr; Args.push_back(Entry); 2549 Entry.Node = Nest; Args.push_back(Entry); 2550 2551 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 2552 TargetLowering::CallLoweringInfo CLI(DAG); 2553 CLI.setDebugLoc(dl).setChain(Chain) 2554 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 2555 DAG.getExternalSymbol("__trampoline_setup", PtrVT), 2556 std::move(Args)); 2557 2558 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 2559 return CallResult.second; 2560 } 2561 2562 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 2563 MachineFunction &MF = DAG.getMachineFunction(); 2564 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2565 EVT PtrVT = getPointerTy(MF.getDataLayout()); 2566 2567 SDLoc dl(Op); 2568 2569 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 2570 // vastart just stores the address of the VarArgsFrameIndex slot into the 2571 // memory location argument. 2572 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2573 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2574 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 2575 MachinePointerInfo(SV), 2576 false, false, 0); 2577 } 2578 2579 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 2580 // We suppose the given va_list is already allocated. 2581 // 2582 // typedef struct { 2583 // char gpr; /* index into the array of 8 GPRs 2584 // * stored in the register save area 2585 // * gpr=0 corresponds to r3, 2586 // * gpr=1 to r4, etc. 2587 // */ 2588 // char fpr; /* index into the array of 8 FPRs 2589 // * stored in the register save area 2590 // * fpr=0 corresponds to f1, 2591 // * fpr=1 to f2, etc. 2592 // */ 2593 // char *overflow_arg_area; 2594 // /* location on stack that holds 2595 // * the next overflow argument 2596 // */ 2597 // char *reg_save_area; 2598 // /* where r3:r10 and f1:f8 (if saved) 2599 // * are stored 2600 // */ 2601 // } va_list[1]; 2602 2603 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 2604 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 2605 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 2606 PtrVT); 2607 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 2608 PtrVT); 2609 2610 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 2611 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 2612 2613 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 2614 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 2615 2616 uint64_t FPROffset = 1; 2617 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 2618 2619 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2620 2621 // Store first byte : number of int regs 2622 SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, 2623 Op.getOperand(1), 2624 MachinePointerInfo(SV), 2625 MVT::i8, false, false, 0); 2626 uint64_t nextOffset = FPROffset; 2627 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 2628 ConstFPROffset); 2629 2630 // Store second byte : number of float regs 2631 SDValue secondStore = 2632 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 2633 MachinePointerInfo(SV, nextOffset), MVT::i8, 2634 false, false, 0); 2635 nextOffset += StackOffset; 2636 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 2637 2638 // Store second word : arguments given on stack 2639 SDValue thirdStore = 2640 DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 2641 MachinePointerInfo(SV, nextOffset), 2642 false, false, 0); 2643 nextOffset += FrameOffset; 2644 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 2645 2646 // Store third word : arguments given in registers 2647 return DAG.getStore(thirdStore, dl, FR, nextPtr, 2648 MachinePointerInfo(SV, nextOffset), 2649 false, false, 0); 2650 2651 } 2652 2653 #include "PPCGenCallingConv.inc" 2654 2655 // Function whose sole purpose is to kill compiler warnings 2656 // stemming from unused functions included from PPCGenCallingConv.inc. 2657 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const { 2658 return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS; 2659 } 2660 2661 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 2662 CCValAssign::LocInfo &LocInfo, 2663 ISD::ArgFlagsTy &ArgFlags, 2664 CCState &State) { 2665 return true; 2666 } 2667 2668 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 2669 MVT &LocVT, 2670 CCValAssign::LocInfo &LocInfo, 2671 ISD::ArgFlagsTy &ArgFlags, 2672 CCState &State) { 2673 static const MCPhysReg ArgRegs[] = { 2674 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2675 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2676 }; 2677 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2678 2679 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2680 2681 // Skip one register if the first unallocated register has an even register 2682 // number and there are still argument registers available which have not been 2683 // allocated yet. RegNum is actually an index into ArgRegs, which means we 2684 // need to skip a register if RegNum is odd. 2685 if (RegNum != NumArgRegs && RegNum % 2 == 1) { 2686 State.AllocateReg(ArgRegs[RegNum]); 2687 } 2688 2689 // Always return false here, as this function only makes sure that the first 2690 // unallocated register has an odd register number and does not actually 2691 // allocate a register for the current argument. 2692 return false; 2693 } 2694 2695 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 2696 MVT &LocVT, 2697 CCValAssign::LocInfo &LocInfo, 2698 ISD::ArgFlagsTy &ArgFlags, 2699 CCState &State) { 2700 static const MCPhysReg ArgRegs[] = { 2701 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 2702 PPC::F8 2703 }; 2704 2705 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2706 2707 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2708 2709 // If there is only one Floating-point register left we need to put both f64 2710 // values of a split ppc_fp128 value on the stack. 2711 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { 2712 State.AllocateReg(ArgRegs[RegNum]); 2713 } 2714 2715 // Always return false here, as this function only makes sure that the two f64 2716 // values a ppc_fp128 value is split into are both passed in registers or both 2717 // passed on the stack and does not actually allocate a register for the 2718 // current argument. 2719 return false; 2720 } 2721 2722 /// FPR - The set of FP registers that should be allocated for arguments, 2723 /// on Darwin. 2724 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 2725 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 2726 PPC::F11, PPC::F12, PPC::F13}; 2727 2728 /// QFPR - The set of QPX registers that should be allocated for arguments. 2729 static const MCPhysReg QFPR[] = { 2730 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 2731 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 2732 2733 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 2734 /// the stack. 2735 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 2736 unsigned PtrByteSize) { 2737 unsigned ArgSize = ArgVT.getStoreSize(); 2738 if (Flags.isByVal()) 2739 ArgSize = Flags.getByValSize(); 2740 2741 // Round up to multiples of the pointer size, except for array members, 2742 // which are always packed. 2743 if (!Flags.isInConsecutiveRegs()) 2744 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2745 2746 return ArgSize; 2747 } 2748 2749 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 2750 /// on the stack. 2751 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 2752 ISD::ArgFlagsTy Flags, 2753 unsigned PtrByteSize) { 2754 unsigned Align = PtrByteSize; 2755 2756 // Altivec parameters are padded to a 16 byte boundary. 2757 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 2758 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 2759 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 2760 ArgVT == MVT::v1i128) 2761 Align = 16; 2762 // QPX vector types stored in double-precision are padded to a 32 byte 2763 // boundary. 2764 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 2765 Align = 32; 2766 2767 // ByVal parameters are aligned as requested. 2768 if (Flags.isByVal()) { 2769 unsigned BVAlign = Flags.getByValAlign(); 2770 if (BVAlign > PtrByteSize) { 2771 if (BVAlign % PtrByteSize != 0) 2772 llvm_unreachable( 2773 "ByVal alignment is not a multiple of the pointer size"); 2774 2775 Align = BVAlign; 2776 } 2777 } 2778 2779 // Array members are always packed to their original alignment. 2780 if (Flags.isInConsecutiveRegs()) { 2781 // If the array member was split into multiple registers, the first 2782 // needs to be aligned to the size of the full type. (Except for 2783 // ppcf128, which is only aligned as its f64 components.) 2784 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 2785 Align = OrigVT.getStoreSize(); 2786 else 2787 Align = ArgVT.getStoreSize(); 2788 } 2789 2790 return Align; 2791 } 2792 2793 /// CalculateStackSlotUsed - Return whether this argument will use its 2794 /// stack slot (instead of being passed in registers). ArgOffset, 2795 /// AvailableFPRs, and AvailableVRs must hold the current argument 2796 /// position, and will be updated to account for this argument. 2797 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 2798 ISD::ArgFlagsTy Flags, 2799 unsigned PtrByteSize, 2800 unsigned LinkageSize, 2801 unsigned ParamAreaSize, 2802 unsigned &ArgOffset, 2803 unsigned &AvailableFPRs, 2804 unsigned &AvailableVRs, bool HasQPX) { 2805 bool UseMemory = false; 2806 2807 // Respect alignment of argument on the stack. 2808 unsigned Align = 2809 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 2810 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 2811 // If there's no space left in the argument save area, we must 2812 // use memory (this check also catches zero-sized arguments). 2813 if (ArgOffset >= LinkageSize + ParamAreaSize) 2814 UseMemory = true; 2815 2816 // Allocate argument on the stack. 2817 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 2818 if (Flags.isInConsecutiveRegsLast()) 2819 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2820 // If we overran the argument save area, we must use memory 2821 // (this check catches arguments passed partially in memory) 2822 if (ArgOffset > LinkageSize + ParamAreaSize) 2823 UseMemory = true; 2824 2825 // However, if the argument is actually passed in an FPR or a VR, 2826 // we don't use memory after all. 2827 if (!Flags.isByVal()) { 2828 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 2829 // QPX registers overlap with the scalar FP registers. 2830 (HasQPX && (ArgVT == MVT::v4f32 || 2831 ArgVT == MVT::v4f64 || 2832 ArgVT == MVT::v4i1))) 2833 if (AvailableFPRs > 0) { 2834 --AvailableFPRs; 2835 return false; 2836 } 2837 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 2838 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 2839 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 2840 ArgVT == MVT::v1i128) 2841 if (AvailableVRs > 0) { 2842 --AvailableVRs; 2843 return false; 2844 } 2845 } 2846 2847 return UseMemory; 2848 } 2849 2850 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 2851 /// ensure minimum alignment required for target. 2852 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 2853 unsigned NumBytes) { 2854 unsigned TargetAlign = Lowering->getStackAlignment(); 2855 unsigned AlignMask = TargetAlign - 1; 2856 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 2857 return NumBytes; 2858 } 2859 2860 SDValue PPCTargetLowering::LowerFormalArguments( 2861 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 2862 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 2863 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 2864 if (Subtarget.isSVR4ABI()) { 2865 if (Subtarget.isPPC64()) 2866 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, 2867 dl, DAG, InVals); 2868 else 2869 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, 2870 dl, DAG, InVals); 2871 } else { 2872 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, 2873 dl, DAG, InVals); 2874 } 2875 } 2876 2877 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 2878 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 2879 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 2880 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 2881 2882 // 32-bit SVR4 ABI Stack Frame Layout: 2883 // +-----------------------------------+ 2884 // +--> | Back chain | 2885 // | +-----------------------------------+ 2886 // | | Floating-point register save area | 2887 // | +-----------------------------------+ 2888 // | | General register save area | 2889 // | +-----------------------------------+ 2890 // | | CR save word | 2891 // | +-----------------------------------+ 2892 // | | VRSAVE save word | 2893 // | +-----------------------------------+ 2894 // | | Alignment padding | 2895 // | +-----------------------------------+ 2896 // | | Vector register save area | 2897 // | +-----------------------------------+ 2898 // | | Local variable space | 2899 // | +-----------------------------------+ 2900 // | | Parameter list area | 2901 // | +-----------------------------------+ 2902 // | | LR save word | 2903 // | +-----------------------------------+ 2904 // SP--> +--- | Back chain | 2905 // +-----------------------------------+ 2906 // 2907 // Specifications: 2908 // System V Application Binary Interface PowerPC Processor Supplement 2909 // AltiVec Technology Programming Interface Manual 2910 2911 MachineFunction &MF = DAG.getMachineFunction(); 2912 MachineFrameInfo *MFI = MF.getFrameInfo(); 2913 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2914 2915 EVT PtrVT = getPointerTy(MF.getDataLayout()); 2916 // Potential tail calls could cause overwriting of argument stack slots. 2917 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 2918 (CallConv == CallingConv::Fast)); 2919 unsigned PtrByteSize = 4; 2920 2921 // Assign locations to all of the incoming arguments. 2922 SmallVector<CCValAssign, 16> ArgLocs; 2923 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 2924 *DAG.getContext()); 2925 2926 // Reserve space for the linkage area on the stack. 2927 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 2928 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 2929 if (useSoftFloat()) 2930 CCInfo.PreAnalyzeFormalArguments(Ins); 2931 2932 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 2933 CCInfo.clearWasPPCF128(); 2934 2935 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2936 CCValAssign &VA = ArgLocs[i]; 2937 2938 // Arguments stored in registers. 2939 if (VA.isRegLoc()) { 2940 const TargetRegisterClass *RC; 2941 EVT ValVT = VA.getValVT(); 2942 2943 switch (ValVT.getSimpleVT().SimpleTy) { 2944 default: 2945 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 2946 case MVT::i1: 2947 case MVT::i32: 2948 RC = &PPC::GPRCRegClass; 2949 break; 2950 case MVT::f32: 2951 if (Subtarget.hasP8Vector()) 2952 RC = &PPC::VSSRCRegClass; 2953 else 2954 RC = &PPC::F4RCRegClass; 2955 break; 2956 case MVT::f64: 2957 if (Subtarget.hasVSX()) 2958 RC = &PPC::VSFRCRegClass; 2959 else 2960 RC = &PPC::F8RCRegClass; 2961 break; 2962 case MVT::v16i8: 2963 case MVT::v8i16: 2964 case MVT::v4i32: 2965 RC = &PPC::VRRCRegClass; 2966 break; 2967 case MVT::v4f32: 2968 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 2969 break; 2970 case MVT::v2f64: 2971 case MVT::v2i64: 2972 RC = &PPC::VSHRCRegClass; 2973 break; 2974 case MVT::v4f64: 2975 RC = &PPC::QFRCRegClass; 2976 break; 2977 case MVT::v4i1: 2978 RC = &PPC::QBRCRegClass; 2979 break; 2980 } 2981 2982 // Transform the arguments stored in physical registers into virtual ones. 2983 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 2984 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 2985 ValVT == MVT::i1 ? MVT::i32 : ValVT); 2986 2987 if (ValVT == MVT::i1) 2988 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 2989 2990 InVals.push_back(ArgValue); 2991 } else { 2992 // Argument stored in memory. 2993 assert(VA.isMemLoc()); 2994 2995 unsigned ArgSize = VA.getLocVT().getStoreSize(); 2996 int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), 2997 isImmutable); 2998 2999 // Create load nodes to retrieve arguments from the stack. 3000 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3001 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, 3002 MachinePointerInfo(), 3003 false, false, false, 0)); 3004 } 3005 } 3006 3007 // Assign locations to all of the incoming aggregate by value arguments. 3008 // Aggregates passed by value are stored in the local variable space of the 3009 // caller's stack frame, right above the parameter list area. 3010 SmallVector<CCValAssign, 16> ByValArgLocs; 3011 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3012 ByValArgLocs, *DAG.getContext()); 3013 3014 // Reserve stack space for the allocations in CCInfo. 3015 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 3016 3017 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3018 3019 // Area that is at least reserved in the caller of this function. 3020 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3021 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3022 3023 // Set the size that is at least reserved in caller of this function. Tail 3024 // call optimized function's reserved stack space needs to be aligned so that 3025 // taking the difference between two stack areas will result in an aligned 3026 // stack. 3027 MinReservedArea = 3028 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3029 FuncInfo->setMinReservedArea(MinReservedArea); 3030 3031 SmallVector<SDValue, 8> MemOps; 3032 3033 // If the function takes variable number of arguments, make a frame index for 3034 // the start of the first vararg value... for expansion of llvm.va_start. 3035 if (isVarArg) { 3036 static const MCPhysReg GPArgRegs[] = { 3037 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3038 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3039 }; 3040 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3041 3042 static const MCPhysReg FPArgRegs[] = { 3043 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3044 PPC::F8 3045 }; 3046 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3047 3048 if (useSoftFloat()) 3049 NumFPArgRegs = 0; 3050 3051 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3052 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3053 3054 // Make room for NumGPArgRegs and NumFPArgRegs. 3055 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3056 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3057 3058 FuncInfo->setVarArgsStackOffset( 3059 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 3060 CCInfo.getNextStackOffset(), true)); 3061 3062 FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false)); 3063 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3064 3065 // The fixed integer arguments of a variadic function are stored to the 3066 // VarArgsFrameIndex on the stack so that they may be loaded by 3067 // dereferencing the result of va_next. 3068 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3069 // Get an existing live-in vreg, or add a new one. 3070 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3071 if (!VReg) 3072 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3073 3074 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3075 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3076 MachinePointerInfo(), false, false, 0); 3077 MemOps.push_back(Store); 3078 // Increment the address by four for the next argument to store 3079 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3080 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3081 } 3082 3083 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3084 // is set. 3085 // The double arguments are stored to the VarArgsFrameIndex 3086 // on the stack. 3087 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3088 // Get an existing live-in vreg, or add a new one. 3089 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3090 if (!VReg) 3091 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3092 3093 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3094 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3095 MachinePointerInfo(), false, false, 0); 3096 MemOps.push_back(Store); 3097 // Increment the address by eight for the next argument to store 3098 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3099 PtrVT); 3100 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3101 } 3102 } 3103 3104 if (!MemOps.empty()) 3105 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3106 3107 return Chain; 3108 } 3109 3110 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3111 // value to MVT::i64 and then truncate to the correct register size. 3112 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3113 EVT ObjectVT, SelectionDAG &DAG, 3114 SDValue ArgVal, 3115 const SDLoc &dl) const { 3116 if (Flags.isSExt()) 3117 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3118 DAG.getValueType(ObjectVT)); 3119 else if (Flags.isZExt()) 3120 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3121 DAG.getValueType(ObjectVT)); 3122 3123 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3124 } 3125 3126 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3127 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3128 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3129 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3130 // TODO: add description of PPC stack frame format, or at least some docs. 3131 // 3132 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3133 bool isLittleEndian = Subtarget.isLittleEndian(); 3134 MachineFunction &MF = DAG.getMachineFunction(); 3135 MachineFrameInfo *MFI = MF.getFrameInfo(); 3136 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3137 3138 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3139 "fastcc not supported on varargs functions"); 3140 3141 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3142 // Potential tail calls could cause overwriting of argument stack slots. 3143 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3144 (CallConv == CallingConv::Fast)); 3145 unsigned PtrByteSize = 8; 3146 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3147 3148 static const MCPhysReg GPR[] = { 3149 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3150 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3151 }; 3152 static const MCPhysReg VR[] = { 3153 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3154 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3155 }; 3156 static const MCPhysReg VSRH[] = { 3157 PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8, 3158 PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13 3159 }; 3160 3161 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3162 const unsigned Num_FPR_Regs = 13; 3163 const unsigned Num_VR_Regs = array_lengthof(VR); 3164 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3165 3166 // Do a first pass over the arguments to determine whether the ABI 3167 // guarantees that our caller has allocated the parameter save area 3168 // on its stack frame. In the ELFv1 ABI, this is always the case; 3169 // in the ELFv2 ABI, it is true if this is a vararg function or if 3170 // any parameter is located in a stack slot. 3171 3172 bool HasParameterArea = !isELFv2ABI || isVarArg; 3173 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3174 unsigned NumBytes = LinkageSize; 3175 unsigned AvailableFPRs = Num_FPR_Regs; 3176 unsigned AvailableVRs = Num_VR_Regs; 3177 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3178 if (Ins[i].Flags.isNest()) 3179 continue; 3180 3181 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3182 PtrByteSize, LinkageSize, ParamAreaSize, 3183 NumBytes, AvailableFPRs, AvailableVRs, 3184 Subtarget.hasQPX())) 3185 HasParameterArea = true; 3186 } 3187 3188 // Add DAG nodes to load the arguments or copy them out of registers. On 3189 // entry to a function on PPC, the arguments start after the linkage area, 3190 // although the first ones are often in registers. 3191 3192 unsigned ArgOffset = LinkageSize; 3193 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3194 unsigned &QFPR_idx = FPR_idx; 3195 SmallVector<SDValue, 8> MemOps; 3196 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 3197 unsigned CurArgIdx = 0; 3198 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3199 SDValue ArgVal; 3200 bool needsLoad = false; 3201 EVT ObjectVT = Ins[ArgNo].VT; 3202 EVT OrigVT = Ins[ArgNo].ArgVT; 3203 unsigned ObjSize = ObjectVT.getStoreSize(); 3204 unsigned ArgSize = ObjSize; 3205 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3206 if (Ins[ArgNo].isOrigArg()) { 3207 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3208 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3209 } 3210 // We re-align the argument offset for each argument, except when using the 3211 // fast calling convention, when we need to make sure we do that only when 3212 // we'll actually use a stack slot. 3213 unsigned CurArgOffset, Align; 3214 auto ComputeArgOffset = [&]() { 3215 /* Respect alignment of argument on the stack. */ 3216 Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3217 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3218 CurArgOffset = ArgOffset; 3219 }; 3220 3221 if (CallConv != CallingConv::Fast) { 3222 ComputeArgOffset(); 3223 3224 /* Compute GPR index associated with argument offset. */ 3225 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3226 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3227 } 3228 3229 // FIXME the codegen can be much improved in some cases. 3230 // We do not have to keep everything in memory. 3231 if (Flags.isByVal()) { 3232 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3233 3234 if (CallConv == CallingConv::Fast) 3235 ComputeArgOffset(); 3236 3237 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3238 ObjSize = Flags.getByValSize(); 3239 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3240 // Empty aggregate parameters do not take up registers. Examples: 3241 // struct { } a; 3242 // union { } b; 3243 // int c[0]; 3244 // etc. However, we have to provide a place-holder in InVals, so 3245 // pretend we have an 8-byte item at the current address for that 3246 // purpose. 3247 if (!ObjSize) { 3248 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 3249 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3250 InVals.push_back(FIN); 3251 continue; 3252 } 3253 3254 // Create a stack object covering all stack doublewords occupied 3255 // by the argument. If the argument is (fully or partially) on 3256 // the stack, or if the argument is fully in registers but the 3257 // caller has allocated the parameter save anyway, we can refer 3258 // directly to the caller's stack frame. Otherwise, create a 3259 // local copy in our own frame. 3260 int FI; 3261 if (HasParameterArea || 3262 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3263 FI = MFI->CreateFixedObject(ArgSize, ArgOffset, false, true); 3264 else 3265 FI = MFI->CreateStackObject(ArgSize, Align, false); 3266 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3267 3268 // Handle aggregates smaller than 8 bytes. 3269 if (ObjSize < PtrByteSize) { 3270 // The value of the object is its address, which differs from the 3271 // address of the enclosing doubleword on big-endian systems. 3272 SDValue Arg = FIN; 3273 if (!isLittleEndian) { 3274 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3275 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3276 } 3277 InVals.push_back(Arg); 3278 3279 if (GPR_idx != Num_GPR_Regs) { 3280 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3281 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3282 SDValue Store; 3283 3284 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3285 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3286 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3287 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3288 MachinePointerInfo(&*FuncArg), ObjType, 3289 false, false, 0); 3290 } else { 3291 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3292 // store the whole register as-is to the parameter save area 3293 // slot. 3294 Store = 3295 DAG.getStore(Val.getValue(1), dl, Val, FIN, 3296 MachinePointerInfo(&*FuncArg), false, false, 0); 3297 } 3298 3299 MemOps.push_back(Store); 3300 } 3301 // Whether we copied from a register or not, advance the offset 3302 // into the parameter save area by a full doubleword. 3303 ArgOffset += PtrByteSize; 3304 continue; 3305 } 3306 3307 // The value of the object is its address, which is the address of 3308 // its first stack doubleword. 3309 InVals.push_back(FIN); 3310 3311 // Store whatever pieces of the object are in registers to memory. 3312 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3313 if (GPR_idx == Num_GPR_Regs) 3314 break; 3315 3316 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3317 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3318 SDValue Addr = FIN; 3319 if (j) { 3320 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3321 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3322 } 3323 SDValue Store = 3324 DAG.getStore(Val.getValue(1), dl, Val, Addr, 3325 MachinePointerInfo(&*FuncArg, j), false, false, 0); 3326 MemOps.push_back(Store); 3327 ++GPR_idx; 3328 } 3329 ArgOffset += ArgSize; 3330 continue; 3331 } 3332 3333 switch (ObjectVT.getSimpleVT().SimpleTy) { 3334 default: llvm_unreachable("Unhandled argument type!"); 3335 case MVT::i1: 3336 case MVT::i32: 3337 case MVT::i64: 3338 if (Flags.isNest()) { 3339 // The 'nest' parameter, if any, is passed in R11. 3340 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 3341 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3342 3343 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3344 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3345 3346 break; 3347 } 3348 3349 // These can be scalar arguments or elements of an integer array type 3350 // passed directly. Clang may use those instead of "byval" aggregate 3351 // types to avoid forcing arguments to memory unnecessarily. 3352 if (GPR_idx != Num_GPR_Regs) { 3353 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3354 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3355 3356 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3357 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3358 // value to MVT::i64 and then truncate to the correct register size. 3359 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3360 } else { 3361 if (CallConv == CallingConv::Fast) 3362 ComputeArgOffset(); 3363 3364 needsLoad = true; 3365 ArgSize = PtrByteSize; 3366 } 3367 if (CallConv != CallingConv::Fast || needsLoad) 3368 ArgOffset += 8; 3369 break; 3370 3371 case MVT::f32: 3372 case MVT::f64: 3373 // These can be scalar arguments or elements of a float array type 3374 // passed directly. The latter are used to implement ELFv2 homogenous 3375 // float aggregates. 3376 if (FPR_idx != Num_FPR_Regs) { 3377 unsigned VReg; 3378 3379 if (ObjectVT == MVT::f32) 3380 VReg = MF.addLiveIn(FPR[FPR_idx], 3381 Subtarget.hasP8Vector() 3382 ? &PPC::VSSRCRegClass 3383 : &PPC::F4RCRegClass); 3384 else 3385 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 3386 ? &PPC::VSFRCRegClass 3387 : &PPC::F8RCRegClass); 3388 3389 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3390 ++FPR_idx; 3391 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 3392 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 3393 // once we support fp <-> gpr moves. 3394 3395 // This can only ever happen in the presence of f32 array types, 3396 // since otherwise we never run out of FPRs before running out 3397 // of GPRs. 3398 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3399 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3400 3401 if (ObjectVT == MVT::f32) { 3402 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 3403 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 3404 DAG.getConstant(32, dl, MVT::i32)); 3405 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 3406 } 3407 3408 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 3409 } else { 3410 if (CallConv == CallingConv::Fast) 3411 ComputeArgOffset(); 3412 3413 needsLoad = true; 3414 } 3415 3416 // When passing an array of floats, the array occupies consecutive 3417 // space in the argument area; only round up to the next doubleword 3418 // at the end of the array. Otherwise, each float takes 8 bytes. 3419 if (CallConv != CallingConv::Fast || needsLoad) { 3420 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 3421 ArgOffset += ArgSize; 3422 if (Flags.isInConsecutiveRegsLast()) 3423 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3424 } 3425 break; 3426 case MVT::v4f32: 3427 case MVT::v4i32: 3428 case MVT::v8i16: 3429 case MVT::v16i8: 3430 case MVT::v2f64: 3431 case MVT::v2i64: 3432 case MVT::v1i128: 3433 if (!Subtarget.hasQPX()) { 3434 // These can be scalar arguments or elements of a vector array type 3435 // passed directly. The latter are used to implement ELFv2 homogenous 3436 // vector aggregates. 3437 if (VR_idx != Num_VR_Regs) { 3438 unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ? 3439 MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) : 3440 MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3441 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3442 ++VR_idx; 3443 } else { 3444 if (CallConv == CallingConv::Fast) 3445 ComputeArgOffset(); 3446 3447 needsLoad = true; 3448 } 3449 if (CallConv != CallingConv::Fast || needsLoad) 3450 ArgOffset += 16; 3451 break; 3452 } // not QPX 3453 3454 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 3455 "Invalid QPX parameter type"); 3456 /* fall through */ 3457 3458 case MVT::v4f64: 3459 case MVT::v4i1: 3460 // QPX vectors are treated like their scalar floating-point subregisters 3461 // (except that they're larger). 3462 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 3463 if (QFPR_idx != Num_QFPR_Regs) { 3464 const TargetRegisterClass *RC; 3465 switch (ObjectVT.getSimpleVT().SimpleTy) { 3466 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 3467 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 3468 default: RC = &PPC::QBRCRegClass; break; 3469 } 3470 3471 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 3472 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3473 ++QFPR_idx; 3474 } else { 3475 if (CallConv == CallingConv::Fast) 3476 ComputeArgOffset(); 3477 needsLoad = true; 3478 } 3479 if (CallConv != CallingConv::Fast || needsLoad) 3480 ArgOffset += Sz; 3481 break; 3482 } 3483 3484 // We need to load the argument to a virtual register if we determined 3485 // above that we ran out of physical registers of the appropriate type. 3486 if (needsLoad) { 3487 if (ObjSize < ArgSize && !isLittleEndian) 3488 CurArgOffset += ArgSize - ObjSize; 3489 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 3490 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3491 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 3492 false, false, false, 0); 3493 } 3494 3495 InVals.push_back(ArgVal); 3496 } 3497 3498 // Area that is at least reserved in the caller of this function. 3499 unsigned MinReservedArea; 3500 if (HasParameterArea) 3501 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 3502 else 3503 MinReservedArea = LinkageSize; 3504 3505 // Set the size that is at least reserved in caller of this function. Tail 3506 // call optimized functions' reserved stack space needs to be aligned so that 3507 // taking the difference between two stack areas will result in an aligned 3508 // stack. 3509 MinReservedArea = 3510 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3511 FuncInfo->setMinReservedArea(MinReservedArea); 3512 3513 // If the function takes variable number of arguments, make a frame index for 3514 // the start of the first vararg value... for expansion of llvm.va_start. 3515 if (isVarArg) { 3516 int Depth = ArgOffset; 3517 3518 FuncInfo->setVarArgsFrameIndex( 3519 MFI->CreateFixedObject(PtrByteSize, Depth, true)); 3520 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3521 3522 // If this function is vararg, store any remaining integer argument regs 3523 // to their spots on the stack so that they may be loaded by dereferencing 3524 // the result of va_next. 3525 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3526 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 3527 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3528 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3529 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3530 MachinePointerInfo(), false, false, 0); 3531 MemOps.push_back(Store); 3532 // Increment the address by four for the next argument to store 3533 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 3534 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3535 } 3536 } 3537 3538 if (!MemOps.empty()) 3539 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3540 3541 return Chain; 3542 } 3543 3544 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 3545 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3546 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3547 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3548 // TODO: add description of PPC stack frame format, or at least some docs. 3549 // 3550 MachineFunction &MF = DAG.getMachineFunction(); 3551 MachineFrameInfo *MFI = MF.getFrameInfo(); 3552 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3553 3554 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3555 bool isPPC64 = PtrVT == MVT::i64; 3556 // Potential tail calls could cause overwriting of argument stack slots. 3557 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3558 (CallConv == CallingConv::Fast)); 3559 unsigned PtrByteSize = isPPC64 ? 8 : 4; 3560 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3561 unsigned ArgOffset = LinkageSize; 3562 // Area that is at least reserved in caller of this function. 3563 unsigned MinReservedArea = ArgOffset; 3564 3565 static const MCPhysReg GPR_32[] = { // 32-bit registers. 3566 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3567 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3568 }; 3569 static const MCPhysReg GPR_64[] = { // 64-bit registers. 3570 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3571 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3572 }; 3573 static const MCPhysReg VR[] = { 3574 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3575 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3576 }; 3577 3578 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 3579 const unsigned Num_FPR_Regs = 13; 3580 const unsigned Num_VR_Regs = array_lengthof( VR); 3581 3582 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3583 3584 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 3585 3586 // In 32-bit non-varargs functions, the stack space for vectors is after the 3587 // stack space for non-vectors. We do not use this space unless we have 3588 // too many vectors to fit in registers, something that only occurs in 3589 // constructed examples:), but we have to walk the arglist to figure 3590 // that out...for the pathological case, compute VecArgOffset as the 3591 // start of the vector parameter area. Computing VecArgOffset is the 3592 // entire point of the following loop. 3593 unsigned VecArgOffset = ArgOffset; 3594 if (!isVarArg && !isPPC64) { 3595 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 3596 ++ArgNo) { 3597 EVT ObjectVT = Ins[ArgNo].VT; 3598 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3599 3600 if (Flags.isByVal()) { 3601 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 3602 unsigned ObjSize = Flags.getByValSize(); 3603 unsigned ArgSize = 3604 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3605 VecArgOffset += ArgSize; 3606 continue; 3607 } 3608 3609 switch(ObjectVT.getSimpleVT().SimpleTy) { 3610 default: llvm_unreachable("Unhandled argument type!"); 3611 case MVT::i1: 3612 case MVT::i32: 3613 case MVT::f32: 3614 VecArgOffset += 4; 3615 break; 3616 case MVT::i64: // PPC64 3617 case MVT::f64: 3618 // FIXME: We are guaranteed to be !isPPC64 at this point. 3619 // Does MVT::i64 apply? 3620 VecArgOffset += 8; 3621 break; 3622 case MVT::v4f32: 3623 case MVT::v4i32: 3624 case MVT::v8i16: 3625 case MVT::v16i8: 3626 // Nothing to do, we're only looking at Nonvector args here. 3627 break; 3628 } 3629 } 3630 } 3631 // We've found where the vector parameter area in memory is. Skip the 3632 // first 12 parameters; these don't use that memory. 3633 VecArgOffset = ((VecArgOffset+15)/16)*16; 3634 VecArgOffset += 12*16; 3635 3636 // Add DAG nodes to load the arguments or copy them out of registers. On 3637 // entry to a function on PPC, the arguments start after the linkage area, 3638 // although the first ones are often in registers. 3639 3640 SmallVector<SDValue, 8> MemOps; 3641 unsigned nAltivecParamsAtEnd = 0; 3642 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 3643 unsigned CurArgIdx = 0; 3644 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3645 SDValue ArgVal; 3646 bool needsLoad = false; 3647 EVT ObjectVT = Ins[ArgNo].VT; 3648 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 3649 unsigned ArgSize = ObjSize; 3650 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3651 if (Ins[ArgNo].isOrigArg()) { 3652 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3653 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3654 } 3655 unsigned CurArgOffset = ArgOffset; 3656 3657 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 3658 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 3659 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 3660 if (isVarArg || isPPC64) { 3661 MinReservedArea = ((MinReservedArea+15)/16)*16; 3662 MinReservedArea += CalculateStackSlotSize(ObjectVT, 3663 Flags, 3664 PtrByteSize); 3665 } else nAltivecParamsAtEnd++; 3666 } else 3667 // Calculate min reserved area. 3668 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 3669 Flags, 3670 PtrByteSize); 3671 3672 // FIXME the codegen can be much improved in some cases. 3673 // We do not have to keep everything in memory. 3674 if (Flags.isByVal()) { 3675 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3676 3677 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3678 ObjSize = Flags.getByValSize(); 3679 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3680 // Objects of size 1 and 2 are right justified, everything else is 3681 // left justified. This means the memory address is adjusted forwards. 3682 if (ObjSize==1 || ObjSize==2) { 3683 CurArgOffset = CurArgOffset + (4 - ObjSize); 3684 } 3685 // The value of the object is its address. 3686 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, false, true); 3687 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3688 InVals.push_back(FIN); 3689 if (ObjSize==1 || ObjSize==2) { 3690 if (GPR_idx != Num_GPR_Regs) { 3691 unsigned VReg; 3692 if (isPPC64) 3693 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3694 else 3695 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3696 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3697 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 3698 SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 3699 MachinePointerInfo(&*FuncArg), 3700 ObjType, false, false, 0); 3701 MemOps.push_back(Store); 3702 ++GPR_idx; 3703 } 3704 3705 ArgOffset += PtrByteSize; 3706 3707 continue; 3708 } 3709 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3710 // Store whatever pieces of the object are in registers 3711 // to memory. ArgOffset will be the address of the beginning 3712 // of the object. 3713 if (GPR_idx != Num_GPR_Regs) { 3714 unsigned VReg; 3715 if (isPPC64) 3716 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3717 else 3718 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3719 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 3720 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3721 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3722 SDValue Store = 3723 DAG.getStore(Val.getValue(1), dl, Val, FIN, 3724 MachinePointerInfo(&*FuncArg, j), false, false, 0); 3725 MemOps.push_back(Store); 3726 ++GPR_idx; 3727 ArgOffset += PtrByteSize; 3728 } else { 3729 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 3730 break; 3731 } 3732 } 3733 continue; 3734 } 3735 3736 switch (ObjectVT.getSimpleVT().SimpleTy) { 3737 default: llvm_unreachable("Unhandled argument type!"); 3738 case MVT::i1: 3739 case MVT::i32: 3740 if (!isPPC64) { 3741 if (GPR_idx != Num_GPR_Regs) { 3742 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3743 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 3744 3745 if (ObjectVT == MVT::i1) 3746 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 3747 3748 ++GPR_idx; 3749 } else { 3750 needsLoad = true; 3751 ArgSize = PtrByteSize; 3752 } 3753 // All int arguments reserve stack space in the Darwin ABI. 3754 ArgOffset += PtrByteSize; 3755 break; 3756 } 3757 // FALLTHROUGH 3758 case MVT::i64: // PPC64 3759 if (GPR_idx != Num_GPR_Regs) { 3760 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3761 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3762 3763 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3764 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3765 // value to MVT::i64 and then truncate to the correct register size. 3766 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3767 3768 ++GPR_idx; 3769 } else { 3770 needsLoad = true; 3771 ArgSize = PtrByteSize; 3772 } 3773 // All int arguments reserve stack space in the Darwin ABI. 3774 ArgOffset += 8; 3775 break; 3776 3777 case MVT::f32: 3778 case MVT::f64: 3779 // Every 4 bytes of argument space consumes one of the GPRs available for 3780 // argument passing. 3781 if (GPR_idx != Num_GPR_Regs) { 3782 ++GPR_idx; 3783 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 3784 ++GPR_idx; 3785 } 3786 if (FPR_idx != Num_FPR_Regs) { 3787 unsigned VReg; 3788 3789 if (ObjectVT == MVT::f32) 3790 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 3791 else 3792 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 3793 3794 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3795 ++FPR_idx; 3796 } else { 3797 needsLoad = true; 3798 } 3799 3800 // All FP arguments reserve stack space in the Darwin ABI. 3801 ArgOffset += isPPC64 ? 8 : ObjSize; 3802 break; 3803 case MVT::v4f32: 3804 case MVT::v4i32: 3805 case MVT::v8i16: 3806 case MVT::v16i8: 3807 // Note that vector arguments in registers don't reserve stack space, 3808 // except in varargs functions. 3809 if (VR_idx != Num_VR_Regs) { 3810 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3811 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3812 if (isVarArg) { 3813 while ((ArgOffset % 16) != 0) { 3814 ArgOffset += PtrByteSize; 3815 if (GPR_idx != Num_GPR_Regs) 3816 GPR_idx++; 3817 } 3818 ArgOffset += 16; 3819 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 3820 } 3821 ++VR_idx; 3822 } else { 3823 if (!isVarArg && !isPPC64) { 3824 // Vectors go after all the nonvectors. 3825 CurArgOffset = VecArgOffset; 3826 VecArgOffset += 16; 3827 } else { 3828 // Vectors are aligned. 3829 ArgOffset = ((ArgOffset+15)/16)*16; 3830 CurArgOffset = ArgOffset; 3831 ArgOffset += 16; 3832 } 3833 needsLoad = true; 3834 } 3835 break; 3836 } 3837 3838 // We need to load the argument to a virtual register if we determined above 3839 // that we ran out of physical registers of the appropriate type. 3840 if (needsLoad) { 3841 int FI = MFI->CreateFixedObject(ObjSize, 3842 CurArgOffset + (ArgSize - ObjSize), 3843 isImmutable); 3844 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3845 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 3846 false, false, false, 0); 3847 } 3848 3849 InVals.push_back(ArgVal); 3850 } 3851 3852 // Allow for Altivec parameters at the end, if needed. 3853 if (nAltivecParamsAtEnd) { 3854 MinReservedArea = ((MinReservedArea+15)/16)*16; 3855 MinReservedArea += 16*nAltivecParamsAtEnd; 3856 } 3857 3858 // Area that is at least reserved in the caller of this function. 3859 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 3860 3861 // Set the size that is at least reserved in caller of this function. Tail 3862 // call optimized functions' reserved stack space needs to be aligned so that 3863 // taking the difference between two stack areas will result in an aligned 3864 // stack. 3865 MinReservedArea = 3866 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3867 FuncInfo->setMinReservedArea(MinReservedArea); 3868 3869 // If the function takes variable number of arguments, make a frame index for 3870 // the start of the first vararg value... for expansion of llvm.va_start. 3871 if (isVarArg) { 3872 int Depth = ArgOffset; 3873 3874 FuncInfo->setVarArgsFrameIndex( 3875 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 3876 Depth, true)); 3877 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3878 3879 // If this function is vararg, store any remaining integer argument regs 3880 // to their spots on the stack so that they may be loaded by dereferencing 3881 // the result of va_next. 3882 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 3883 unsigned VReg; 3884 3885 if (isPPC64) 3886 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3887 else 3888 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3889 3890 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3891 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3892 MachinePointerInfo(), false, false, 0); 3893 MemOps.push_back(Store); 3894 // Increment the address by four for the next argument to store 3895 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3896 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3897 } 3898 } 3899 3900 if (!MemOps.empty()) 3901 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3902 3903 return Chain; 3904 } 3905 3906 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 3907 /// adjusted to accommodate the arguments for the tailcall. 3908 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 3909 unsigned ParamSize) { 3910 3911 if (!isTailCall) return 0; 3912 3913 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 3914 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 3915 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 3916 // Remember only if the new adjustement is bigger. 3917 if (SPDiff < FI->getTailCallSPDelta()) 3918 FI->setTailCallSPDelta(SPDiff); 3919 3920 return SPDiff; 3921 } 3922 3923 static bool isFunctionGlobalAddress(SDValue Callee); 3924 3925 static bool 3926 resideInSameModule(SDValue Callee, Reloc::Model RelMod) { 3927 // If !G, Callee can be an external symbol. 3928 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 3929 if (!G) return false; 3930 3931 const GlobalValue *GV = G->getGlobal(); 3932 3933 if (GV->isDeclaration()) return false; 3934 3935 switch(GV->getLinkage()) { 3936 default: llvm_unreachable("unknow linkage type"); 3937 case GlobalValue::AvailableExternallyLinkage: 3938 case GlobalValue::ExternalWeakLinkage: 3939 return false; 3940 3941 // Callee with weak linkage is allowed if it has hidden or protected 3942 // visibility 3943 case GlobalValue::LinkOnceAnyLinkage: 3944 case GlobalValue::LinkOnceODRLinkage: // e.g. c++ inline functions 3945 case GlobalValue::WeakAnyLinkage: 3946 case GlobalValue::WeakODRLinkage: // e.g. c++ template instantiation 3947 if (GV->hasDefaultVisibility()) 3948 return false; 3949 3950 case GlobalValue::ExternalLinkage: 3951 case GlobalValue::InternalLinkage: 3952 case GlobalValue::PrivateLinkage: 3953 break; 3954 } 3955 3956 // With '-fPIC', calling default visiblity function need insert 'nop' after 3957 // function call, no matter that function resides in same module or not, so 3958 // we treat it as in different module. 3959 if (RelMod == Reloc::PIC_ && GV->hasDefaultVisibility()) 3960 return false; 3961 3962 return true; 3963 } 3964 3965 static bool 3966 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 3967 const SmallVectorImpl<ISD::OutputArg> &Outs) { 3968 assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64()); 3969 3970 const unsigned PtrByteSize = 8; 3971 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3972 3973 static const MCPhysReg GPR[] = { 3974 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3975 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3976 }; 3977 static const MCPhysReg VR[] = { 3978 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3979 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3980 }; 3981 3982 const unsigned NumGPRs = array_lengthof(GPR); 3983 const unsigned NumFPRs = 13; 3984 const unsigned NumVRs = array_lengthof(VR); 3985 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 3986 3987 unsigned NumBytes = LinkageSize; 3988 unsigned AvailableFPRs = NumFPRs; 3989 unsigned AvailableVRs = NumVRs; 3990 3991 for (const ISD::OutputArg& Param : Outs) { 3992 if (Param.Flags.isNest()) continue; 3993 3994 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, 3995 PtrByteSize, LinkageSize, ParamAreaSize, 3996 NumBytes, AvailableFPRs, AvailableVRs, 3997 Subtarget.hasQPX())) 3998 return true; 3999 } 4000 return false; 4001 } 4002 4003 static bool 4004 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite *CS) { 4005 if (CS->arg_size() != CallerFn->getArgumentList().size()) 4006 return false; 4007 4008 ImmutableCallSite::arg_iterator CalleeArgIter = CS->arg_begin(); 4009 ImmutableCallSite::arg_iterator CalleeArgEnd = CS->arg_end(); 4010 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4011 4012 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4013 const Value* CalleeArg = *CalleeArgIter; 4014 const Value* CallerArg = &(*CallerArgIter); 4015 if (CalleeArg == CallerArg) 4016 continue; 4017 4018 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4019 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4020 // } 4021 // 1st argument of callee is undef and has the same type as caller. 4022 if (CalleeArg->getType() == CallerArg->getType() && 4023 isa<UndefValue>(CalleeArg)) 4024 continue; 4025 4026 return false; 4027 } 4028 4029 return true; 4030 } 4031 4032 bool 4033 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4034 SDValue Callee, 4035 CallingConv::ID CalleeCC, 4036 ImmutableCallSite *CS, 4037 bool isVarArg, 4038 const SmallVectorImpl<ISD::OutputArg> &Outs, 4039 const SmallVectorImpl<ISD::InputArg> &Ins, 4040 SelectionDAG& DAG) const { 4041 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4042 4043 if (DisableSCO && !TailCallOpt) return false; 4044 4045 // Variadic argument functions are not supported. 4046 if (isVarArg) return false; 4047 4048 MachineFunction &MF = DAG.getMachineFunction(); 4049 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); 4050 4051 // Tail or Sibling call optimization (TCO/SCO) needs callee and caller has 4052 // the same calling convention 4053 if (CallerCC != CalleeCC) return false; 4054 4055 // SCO support C calling convention 4056 if (CalleeCC != CallingConv::Fast && CalleeCC != CallingConv::C) 4057 return false; 4058 4059 // Functions containing by val parameters are not supported. 4060 if (std::any_of(Ins.begin(), Ins.end(), 4061 [](const ISD::InputArg& IA) { return IA.Flags.isByVal(); })) 4062 return false; 4063 4064 // No TCO/SCO on indirect call because Caller have to restore its TOC 4065 if (!isFunctionGlobalAddress(Callee) && 4066 !isa<ExternalSymbolSDNode>(Callee)) 4067 return false; 4068 4069 // Check if Callee resides in the same module, because for now, PPC64 SVR4 ABI 4070 // (ELFv1/ELFv2) doesn't allow tail calls to a symbol resides in another 4071 // module. 4072 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4073 if (!resideInSameModule(Callee, getTargetMachine().getRelocationModel())) 4074 return false; 4075 4076 // TCO allows altering callee ABI, so we don't have to check further. 4077 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4078 return true; 4079 4080 if (DisableSCO) return false; 4081 4082 // If callee use the same argument list that caller is using, then we can 4083 // apply SCO on this case. If it is not, then we need to check if callee needs 4084 // stack for passing arguments. 4085 if (!hasSameArgumentList(MF.getFunction(), CS) && 4086 needStackSlotPassParameters(Subtarget, Outs)) { 4087 return false; 4088 } 4089 4090 return true; 4091 } 4092 4093 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4094 /// for tail call optimization. Targets which want to do tail call 4095 /// optimization should implement this function. 4096 bool 4097 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4098 CallingConv::ID CalleeCC, 4099 bool isVarArg, 4100 const SmallVectorImpl<ISD::InputArg> &Ins, 4101 SelectionDAG& DAG) const { 4102 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4103 return false; 4104 4105 // Variable argument functions are not supported. 4106 if (isVarArg) 4107 return false; 4108 4109 MachineFunction &MF = DAG.getMachineFunction(); 4110 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); 4111 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4112 // Functions containing by val parameters are not supported. 4113 for (unsigned i = 0; i != Ins.size(); i++) { 4114 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4115 if (Flags.isByVal()) return false; 4116 } 4117 4118 // Non-PIC/GOT tail calls are supported. 4119 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4120 return true; 4121 4122 // At the moment we can only do local tail calls (in same module, hidden 4123 // or protected) if we are generating PIC. 4124 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4125 return G->getGlobal()->hasHiddenVisibility() 4126 || G->getGlobal()->hasProtectedVisibility(); 4127 } 4128 4129 return false; 4130 } 4131 4132 /// isCallCompatibleAddress - Return the immediate to use if the specified 4133 /// 32-bit value is representable in the immediate field of a BxA instruction. 4134 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4135 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4136 if (!C) return nullptr; 4137 4138 int Addr = C->getZExtValue(); 4139 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4140 SignExtend32<26>(Addr) != Addr) 4141 return nullptr; // Top 6 bits have to be sext of immediate. 4142 4143 return DAG 4144 .getConstant( 4145 (int)C->getZExtValue() >> 2, SDLoc(Op), 4146 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4147 .getNode(); 4148 } 4149 4150 namespace { 4151 4152 struct TailCallArgumentInfo { 4153 SDValue Arg; 4154 SDValue FrameIdxOp; 4155 int FrameIdx; 4156 4157 TailCallArgumentInfo() : FrameIdx(0) {} 4158 }; 4159 } 4160 4161 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4162 static void StoreTailCallArgumentsToStackSlot( 4163 SelectionDAG &DAG, SDValue Chain, 4164 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4165 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4166 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4167 SDValue Arg = TailCallArgs[i].Arg; 4168 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4169 int FI = TailCallArgs[i].FrameIdx; 4170 // Store relative to framepointer. 4171 MemOpChains.push_back(DAG.getStore( 4172 Chain, dl, Arg, FIN, 4173 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false, 4174 false, 0)); 4175 } 4176 } 4177 4178 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4179 /// the appropriate stack slot for the tail call optimized function call. 4180 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4181 SDValue OldRetAddr, SDValue OldFP, 4182 int SPDiff, const SDLoc &dl) { 4183 if (SPDiff) { 4184 // Calculate the new stack slot for the return address. 4185 MachineFunction &MF = DAG.getMachineFunction(); 4186 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4187 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4188 bool isPPC64 = Subtarget.isPPC64(); 4189 int SlotSize = isPPC64 ? 8 : 4; 4190 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4191 int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize, 4192 NewRetAddrLoc, true); 4193 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4194 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4195 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4196 MachinePointerInfo::getFixedStack(MF, NewRetAddr), 4197 false, false, 0); 4198 4199 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 4200 // slot as the FP is never overwritten. 4201 if (Subtarget.isDarwinABI()) { 4202 int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset(); 4203 int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc, 4204 true); 4205 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 4206 Chain = DAG.getStore( 4207 Chain, dl, OldFP, NewFramePtrIdx, 4208 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewFPIdx), 4209 false, false, 0); 4210 } 4211 } 4212 return Chain; 4213 } 4214 4215 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4216 /// the position of the argument. 4217 static void 4218 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4219 SDValue Arg, int SPDiff, unsigned ArgOffset, 4220 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4221 int Offset = ArgOffset + SPDiff; 4222 uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8; 4223 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); 4224 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4225 SDValue FIN = DAG.getFrameIndex(FI, VT); 4226 TailCallArgumentInfo Info; 4227 Info.Arg = Arg; 4228 Info.FrameIdxOp = FIN; 4229 Info.FrameIdx = FI; 4230 TailCallArguments.push_back(Info); 4231 } 4232 4233 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4234 /// stack slot. Returns the chain as result and the loaded frame pointers in 4235 /// LROpOut/FPOpout. Used when tail calling. 4236 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4237 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4238 SDValue &FPOpOut, const SDLoc &dl) const { 4239 if (SPDiff) { 4240 // Load the LR and FP stack slot for later adjusting. 4241 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4242 LROpOut = getReturnAddrFrameIndex(DAG); 4243 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(), 4244 false, false, false, 0); 4245 Chain = SDValue(LROpOut.getNode(), 1); 4246 4247 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 4248 // slot as the FP is never overwritten. 4249 if (Subtarget.isDarwinABI()) { 4250 FPOpOut = getFramePointerFrameIndex(DAG); 4251 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(), 4252 false, false, false, 0); 4253 Chain = SDValue(FPOpOut.getNode(), 1); 4254 } 4255 } 4256 return Chain; 4257 } 4258 4259 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4260 /// by "Src" to address "Dst" of size "Size". Alignment information is 4261 /// specified by the specific parameter attribute. The copy will be passed as 4262 /// a byval function parameter. 4263 /// Sometimes what we are copying is the end of a larger object, the part that 4264 /// does not fit in registers. 4265 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 4266 SDValue Chain, ISD::ArgFlagsTy Flags, 4267 SelectionDAG &DAG, const SDLoc &dl) { 4268 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4269 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 4270 false, false, false, MachinePointerInfo(), 4271 MachinePointerInfo()); 4272 } 4273 4274 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4275 /// tail calls. 4276 static void LowerMemOpCallTo( 4277 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 4278 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 4279 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4280 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 4281 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4282 if (!isTailCall) { 4283 if (isVector) { 4284 SDValue StackPtr; 4285 if (isPPC64) 4286 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4287 else 4288 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4289 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4290 DAG.getConstant(ArgOffset, dl, PtrVT)); 4291 } 4292 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 4293 MachinePointerInfo(), false, false, 0)); 4294 // Calculate and remember argument location. 4295 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4296 TailCallArguments); 4297 } 4298 4299 static void 4300 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4301 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 4302 SDValue FPOp, 4303 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4304 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4305 // might overwrite each other in case of tail call optimization. 4306 SmallVector<SDValue, 8> MemOpChains2; 4307 // Do not flag preceding copytoreg stuff together with the following stuff. 4308 InFlag = SDValue(); 4309 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4310 MemOpChains2, dl); 4311 if (!MemOpChains2.empty()) 4312 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4313 4314 // Store the return address to the appropriate stack slot. 4315 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 4316 4317 // Emit callseq_end just before tailcall node. 4318 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4319 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4320 InFlag = Chain.getValue(1); 4321 } 4322 4323 // Is this global address that of a function that can be called by name? (as 4324 // opposed to something that must hold a descriptor for an indirect call). 4325 static bool isFunctionGlobalAddress(SDValue Callee) { 4326 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4327 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4328 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4329 return false; 4330 4331 return G->getGlobal()->getValueType()->isFunctionTy(); 4332 } 4333 4334 return false; 4335 } 4336 4337 static unsigned 4338 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain, 4339 SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall, 4340 bool isPatchPoint, bool hasNest, 4341 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, 4342 SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys, 4343 ImmutableCallSite *CS, const PPCSubtarget &Subtarget) { 4344 4345 bool isPPC64 = Subtarget.isPPC64(); 4346 bool isSVR4ABI = Subtarget.isSVR4ABI(); 4347 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4348 4349 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4350 NodeTys.push_back(MVT::Other); // Returns a chain 4351 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 4352 4353 unsigned CallOpc = PPCISD::CALL; 4354 4355 bool needIndirectCall = true; 4356 if (!isSVR4ABI || !isPPC64) 4357 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 4358 // If this is an absolute destination address, use the munged value. 4359 Callee = SDValue(Dest, 0); 4360 needIndirectCall = false; 4361 } 4362 4363 // PC-relative references to external symbols should go through $stub, unless 4364 // we're building with the leopard linker or later, which automatically 4365 // synthesizes these stubs. 4366 const TargetMachine &TM = DAG.getTarget(); 4367 const Module *Mod = DAG.getMachineFunction().getFunction()->getParent(); 4368 const GlobalValue *GV = nullptr; 4369 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4370 GV = G->getGlobal(); 4371 bool Local = TM.shouldAssumeDSOLocal(*Mod, GV); 4372 bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64; 4373 4374 if (isFunctionGlobalAddress(Callee)) { 4375 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 4376 // A call to a TLS address is actually an indirect call to a 4377 // thread-specific pointer. 4378 unsigned OpFlags = 0; 4379 if (UsePlt) 4380 OpFlags = PPCII::MO_PLT; 4381 4382 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 4383 // every direct call is) turn it into a TargetGlobalAddress / 4384 // TargetExternalSymbol node so that legalize doesn't hack it. 4385 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 4386 Callee.getValueType(), 0, OpFlags); 4387 needIndirectCall = false; 4388 } 4389 4390 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 4391 unsigned char OpFlags = 0; 4392 4393 if (UsePlt) 4394 OpFlags = PPCII::MO_PLT; 4395 4396 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 4397 OpFlags); 4398 needIndirectCall = false; 4399 } 4400 4401 if (isPatchPoint) { 4402 // We'll form an invalid direct call when lowering a patchpoint; the full 4403 // sequence for an indirect call is complicated, and many of the 4404 // instructions introduced might have side effects (and, thus, can't be 4405 // removed later). The call itself will be removed as soon as the 4406 // argument/return lowering is complete, so the fact that it has the wrong 4407 // kind of operands should not really matter. 4408 needIndirectCall = false; 4409 } 4410 4411 if (needIndirectCall) { 4412 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 4413 // to do the call, we can't use PPCISD::CALL. 4414 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 4415 4416 if (isSVR4ABI && isPPC64 && !isELFv2ABI) { 4417 // Function pointers in the 64-bit SVR4 ABI do not point to the function 4418 // entry point, but to the function descriptor (the function entry point 4419 // address is part of the function descriptor though). 4420 // The function descriptor is a three doubleword structure with the 4421 // following fields: function entry point, TOC base address and 4422 // environment pointer. 4423 // Thus for a call through a function pointer, the following actions need 4424 // to be performed: 4425 // 1. Save the TOC of the caller in the TOC save area of its stack 4426 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 4427 // 2. Load the address of the function entry point from the function 4428 // descriptor. 4429 // 3. Load the TOC of the callee from the function descriptor into r2. 4430 // 4. Load the environment pointer from the function descriptor into 4431 // r11. 4432 // 5. Branch to the function entry point address. 4433 // 6. On return of the callee, the TOC of the caller needs to be 4434 // restored (this is done in FinishCall()). 4435 // 4436 // The loads are scheduled at the beginning of the call sequence, and the 4437 // register copies are flagged together to ensure that no other 4438 // operations can be scheduled in between. E.g. without flagging the 4439 // copies together, a TOC access in the caller could be scheduled between 4440 // the assignment of the callee TOC and the branch to the callee, which 4441 // results in the TOC access going through the TOC of the callee instead 4442 // of going through the TOC of the caller, which leads to incorrect code. 4443 4444 // Load the address of the function entry point from the function 4445 // descriptor. 4446 SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1); 4447 if (LDChain.getValueType() == MVT::Glue) 4448 LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2); 4449 4450 bool LoadsInv = Subtarget.hasInvariantFunctionDescriptors(); 4451 4452 MachinePointerInfo MPI(CS ? CS->getCalledValue() : nullptr); 4453 SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI, 4454 false, false, LoadsInv, 8); 4455 4456 // Load environment pointer into r11. 4457 SDValue PtrOff = DAG.getIntPtrConstant(16, dl); 4458 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 4459 SDValue LoadEnvPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, 4460 MPI.getWithOffset(16), false, false, 4461 LoadsInv, 8); 4462 4463 SDValue TOCOff = DAG.getIntPtrConstant(8, dl); 4464 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff); 4465 SDValue TOCPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, 4466 MPI.getWithOffset(8), false, false, 4467 LoadsInv, 8); 4468 4469 setUsesTOCBasePtr(DAG); 4470 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr, 4471 InFlag); 4472 Chain = TOCVal.getValue(0); 4473 InFlag = TOCVal.getValue(1); 4474 4475 // If the function call has an explicit 'nest' parameter, it takes the 4476 // place of the environment pointer. 4477 if (!hasNest) { 4478 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 4479 InFlag); 4480 4481 Chain = EnvVal.getValue(0); 4482 InFlag = EnvVal.getValue(1); 4483 } 4484 4485 MTCTROps[0] = Chain; 4486 MTCTROps[1] = LoadFuncPtr; 4487 MTCTROps[2] = InFlag; 4488 } 4489 4490 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, 4491 makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2)); 4492 InFlag = Chain.getValue(1); 4493 4494 NodeTys.clear(); 4495 NodeTys.push_back(MVT::Other); 4496 NodeTys.push_back(MVT::Glue); 4497 Ops.push_back(Chain); 4498 CallOpc = PPCISD::BCTRL; 4499 Callee.setNode(nullptr); 4500 // Add use of X11 (holding environment pointer) 4501 if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest) 4502 Ops.push_back(DAG.getRegister(PPC::X11, PtrVT)); 4503 // Add CTR register as callee so a bctr can be emitted later. 4504 if (isTailCall) 4505 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 4506 } 4507 4508 // If this is a direct call, pass the chain and the callee. 4509 if (Callee.getNode()) { 4510 Ops.push_back(Chain); 4511 Ops.push_back(Callee); 4512 } 4513 // If this is a tail call add stack pointer delta. 4514 if (isTailCall) 4515 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 4516 4517 // Add argument registers to the end of the list so that they are known live 4518 // into the call. 4519 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 4520 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 4521 RegsToPass[i].second.getValueType())); 4522 4523 // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live 4524 // into the call. 4525 if (isSVR4ABI && isPPC64 && !isPatchPoint) { 4526 setUsesTOCBasePtr(DAG); 4527 Ops.push_back(DAG.getRegister(PPC::X2, PtrVT)); 4528 } 4529 4530 return CallOpc; 4531 } 4532 4533 static 4534 bool isLocalCall(const SDValue &Callee) 4535 { 4536 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4537 return G->getGlobal()->isStrongDefinitionForLinker(); 4538 return false; 4539 } 4540 4541 SDValue PPCTargetLowering::LowerCallResult( 4542 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 4543 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4544 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4545 4546 SmallVector<CCValAssign, 16> RVLocs; 4547 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 4548 *DAG.getContext()); 4549 CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC); 4550 4551 // Copy all of the result registers out of their specified physreg. 4552 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 4553 CCValAssign &VA = RVLocs[i]; 4554 assert(VA.isRegLoc() && "Can only return in registers!"); 4555 4556 SDValue Val = DAG.getCopyFromReg(Chain, dl, 4557 VA.getLocReg(), VA.getLocVT(), InFlag); 4558 Chain = Val.getValue(1); 4559 InFlag = Val.getValue(2); 4560 4561 switch (VA.getLocInfo()) { 4562 default: llvm_unreachable("Unknown loc info!"); 4563 case CCValAssign::Full: break; 4564 case CCValAssign::AExt: 4565 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4566 break; 4567 case CCValAssign::ZExt: 4568 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 4569 DAG.getValueType(VA.getValVT())); 4570 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4571 break; 4572 case CCValAssign::SExt: 4573 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 4574 DAG.getValueType(VA.getValVT())); 4575 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4576 break; 4577 } 4578 4579 InVals.push_back(Val); 4580 } 4581 4582 return Chain; 4583 } 4584 4585 SDValue PPCTargetLowering::FinishCall( 4586 CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg, 4587 bool isPatchPoint, bool hasNest, SelectionDAG &DAG, 4588 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag, 4589 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 4590 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 4591 SmallVectorImpl<SDValue> &InVals, ImmutableCallSite *CS) const { 4592 4593 std::vector<EVT> NodeTys; 4594 SmallVector<SDValue, 8> Ops; 4595 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl, 4596 SPDiff, isTailCall, isPatchPoint, hasNest, 4597 RegsToPass, Ops, NodeTys, CS, Subtarget); 4598 4599 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 4600 if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64()) 4601 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 4602 4603 // When performing tail call optimization the callee pops its arguments off 4604 // the stack. Account for this here so these bytes can be pushed back on in 4605 // PPCFrameLowering::eliminateCallFramePseudoInstr. 4606 int BytesCalleePops = 4607 (CallConv == CallingConv::Fast && 4608 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; 4609 4610 // Add a register mask operand representing the call-preserved registers. 4611 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4612 const uint32_t *Mask = 4613 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 4614 assert(Mask && "Missing call preserved mask for calling convention"); 4615 Ops.push_back(DAG.getRegisterMask(Mask)); 4616 4617 if (InFlag.getNode()) 4618 Ops.push_back(InFlag); 4619 4620 // Emit tail call. 4621 if (isTailCall) { 4622 assert(((Callee.getOpcode() == ISD::Register && 4623 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 4624 Callee.getOpcode() == ISD::TargetExternalSymbol || 4625 Callee.getOpcode() == ISD::TargetGlobalAddress || 4626 isa<ConstantSDNode>(Callee)) && 4627 "Expecting an global address, external symbol, absolute value or register"); 4628 4629 DAG.getMachineFunction().getFrameInfo()->setHasTailCall(); 4630 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops); 4631 } 4632 4633 // Add a NOP immediately after the branch instruction when using the 64-bit 4634 // SVR4 ABI. At link time, if caller and callee are in a different module and 4635 // thus have a different TOC, the call will be replaced with a call to a stub 4636 // function which saves the current TOC, loads the TOC of the callee and 4637 // branches to the callee. The NOP will be replaced with a load instruction 4638 // which restores the TOC of the caller from the TOC save slot of the current 4639 // stack frame. If caller and callee belong to the same module (and have the 4640 // same TOC), the NOP will remain unchanged. 4641 4642 if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() && 4643 !isPatchPoint) { 4644 if (CallOpc == PPCISD::BCTRL) { 4645 // This is a call through a function pointer. 4646 // Restore the caller TOC from the save area into R2. 4647 // See PrepareCall() for more information about calls through function 4648 // pointers in the 64-bit SVR4 ABI. 4649 // We are using a target-specific load with r2 hard coded, because the 4650 // result of a target-independent load would never go directly into r2, 4651 // since r2 is a reserved register (which prevents the register allocator 4652 // from allocating it), resulting in an additional register being 4653 // allocated and an unnecessary move instruction being generated. 4654 CallOpc = PPCISD::BCTRL_LOAD_TOC; 4655 4656 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4657 SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT); 4658 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 4659 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 4660 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff); 4661 4662 // The address needs to go after the chain input but before the flag (or 4663 // any other variadic arguments). 4664 Ops.insert(std::next(Ops.begin()), AddTOC); 4665 } else if ((CallOpc == PPCISD::CALL) && 4666 (!isLocalCall(Callee) || 4667 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) 4668 // Otherwise insert NOP for non-local calls. 4669 CallOpc = PPCISD::CALL_NOP; 4670 } 4671 4672 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); 4673 InFlag = Chain.getValue(1); 4674 4675 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4676 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 4677 InFlag, dl); 4678 if (!Ins.empty()) 4679 InFlag = Chain.getValue(1); 4680 4681 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 4682 Ins, dl, DAG, InVals); 4683 } 4684 4685 SDValue 4686 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 4687 SmallVectorImpl<SDValue> &InVals) const { 4688 SelectionDAG &DAG = CLI.DAG; 4689 SDLoc &dl = CLI.DL; 4690 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 4691 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 4692 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 4693 SDValue Chain = CLI.Chain; 4694 SDValue Callee = CLI.Callee; 4695 bool &isTailCall = CLI.IsTailCall; 4696 CallingConv::ID CallConv = CLI.CallConv; 4697 bool isVarArg = CLI.IsVarArg; 4698 bool isPatchPoint = CLI.IsPatchPoint; 4699 ImmutableCallSite *CS = CLI.CS; 4700 4701 if (isTailCall) { 4702 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 4703 isTailCall = 4704 IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS, 4705 isVarArg, Outs, Ins, DAG); 4706 else 4707 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 4708 Ins, DAG); 4709 if (isTailCall) { 4710 ++NumTailCalls; 4711 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4712 ++NumSiblingCalls; 4713 4714 assert(isa<GlobalAddressSDNode>(Callee) && 4715 "Callee should be an llvm::Function object."); 4716 DEBUG( 4717 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); 4718 const unsigned Width = 80 - strlen("TCO caller: ") 4719 - strlen(", callee linkage: 0, 0"); 4720 dbgs() << "TCO caller: " 4721 << left_justify(DAG.getMachineFunction().getName(), Width) 4722 << ", callee linkage: " 4723 << GV->getVisibility() << ", " << GV->getLinkage() << "\n" 4724 ); 4725 } 4726 } 4727 4728 if (!isTailCall && CS && CS->isMustTailCall()) 4729 report_fatal_error("failed to perform tail call elimination on a call " 4730 "site marked musttail"); 4731 4732 if (Subtarget.isSVR4ABI()) { 4733 if (Subtarget.isPPC64()) 4734 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, 4735 isTailCall, isPatchPoint, Outs, OutVals, Ins, 4736 dl, DAG, InVals, CS); 4737 else 4738 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, 4739 isTailCall, isPatchPoint, Outs, OutVals, Ins, 4740 dl, DAG, InVals, CS); 4741 } 4742 4743 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 4744 isTailCall, isPatchPoint, Outs, OutVals, Ins, 4745 dl, DAG, InVals, CS); 4746 } 4747 4748 SDValue PPCTargetLowering::LowerCall_32SVR4( 4749 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 4750 bool isTailCall, bool isPatchPoint, 4751 const SmallVectorImpl<ISD::OutputArg> &Outs, 4752 const SmallVectorImpl<SDValue> &OutVals, 4753 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4754 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 4755 ImmutableCallSite *CS) const { 4756 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 4757 // of the 32-bit SVR4 ABI stack frame layout. 4758 4759 assert((CallConv == CallingConv::C || 4760 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 4761 4762 unsigned PtrByteSize = 4; 4763 4764 MachineFunction &MF = DAG.getMachineFunction(); 4765 4766 // Mark this function as potentially containing a function that contains a 4767 // tail call. As a consequence the frame pointer will be used for dynamicalloc 4768 // and restoring the callers stack pointer in this functions epilog. This is 4769 // done because by tail calling the called function might overwrite the value 4770 // in this function's (MF) stack pointer stack slot 0(SP). 4771 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4772 CallConv == CallingConv::Fast) 4773 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 4774 4775 // Count how many bytes are to be pushed on the stack, including the linkage 4776 // area, parameter list area and the part of the local variable space which 4777 // contains copies of aggregates which are passed by value. 4778 4779 // Assign locations to all of the outgoing arguments. 4780 SmallVector<CCValAssign, 16> ArgLocs; 4781 PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 4782 4783 // Reserve space for the linkage area on the stack. 4784 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 4785 PtrByteSize); 4786 if (useSoftFloat()) 4787 CCInfo.PreAnalyzeCallOperands(Outs); 4788 4789 if (isVarArg) { 4790 // Handle fixed and variable vector arguments differently. 4791 // Fixed vector arguments go into registers as long as registers are 4792 // available. Variable vector arguments always go into memory. 4793 unsigned NumArgs = Outs.size(); 4794 4795 for (unsigned i = 0; i != NumArgs; ++i) { 4796 MVT ArgVT = Outs[i].VT; 4797 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 4798 bool Result; 4799 4800 if (Outs[i].IsFixed) { 4801 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 4802 CCInfo); 4803 } else { 4804 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 4805 ArgFlags, CCInfo); 4806 } 4807 4808 if (Result) { 4809 #ifndef NDEBUG 4810 errs() << "Call operand #" << i << " has unhandled type " 4811 << EVT(ArgVT).getEVTString() << "\n"; 4812 #endif 4813 llvm_unreachable(nullptr); 4814 } 4815 } 4816 } else { 4817 // All arguments are treated the same. 4818 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 4819 } 4820 CCInfo.clearWasPPCF128(); 4821 4822 // Assign locations to all of the outgoing aggregate by value arguments. 4823 SmallVector<CCValAssign, 16> ByValArgLocs; 4824 CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext()); 4825 4826 // Reserve stack space for the allocations in CCInfo. 4827 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 4828 4829 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 4830 4831 // Size of the linkage area, parameter list area and the part of the local 4832 // space variable where copies of aggregates which are passed by value are 4833 // stored. 4834 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 4835 4836 // Calculate by how many bytes the stack has to be adjusted in case of tail 4837 // call optimization. 4838 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 4839 4840 // Adjust the stack pointer for the new arguments... 4841 // These operations are automatically eliminated by the prolog/epilog pass 4842 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4843 dl); 4844 SDValue CallSeqStart = Chain; 4845 4846 // Load the return address and frame pointer so it can be moved somewhere else 4847 // later. 4848 SDValue LROp, FPOp; 4849 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 4850 4851 // Set up a copy of the stack pointer for use loading and storing any 4852 // arguments that may not fit in the registers available for argument 4853 // passing. 4854 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4855 4856 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 4857 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 4858 SmallVector<SDValue, 8> MemOpChains; 4859 4860 bool seenFloatArg = false; 4861 // Walk the register/memloc assignments, inserting copies/loads. 4862 for (unsigned i = 0, j = 0, e = ArgLocs.size(); 4863 i != e; 4864 ++i) { 4865 CCValAssign &VA = ArgLocs[i]; 4866 SDValue Arg = OutVals[i]; 4867 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4868 4869 if (Flags.isByVal()) { 4870 // Argument is an aggregate which is passed by value, thus we need to 4871 // create a copy of it in the local variable space of the current stack 4872 // frame (which is the stack frame of the caller) and pass the address of 4873 // this copy to the callee. 4874 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 4875 CCValAssign &ByValVA = ByValArgLocs[j++]; 4876 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 4877 4878 // Memory reserved in the local variable space of the callers stack frame. 4879 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 4880 4881 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 4882 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 4883 StackPtr, PtrOff); 4884 4885 // Create a copy of the argument in the local area of the current 4886 // stack frame. 4887 SDValue MemcpyCall = 4888 CreateCopyOfByValArgument(Arg, PtrOff, 4889 CallSeqStart.getNode()->getOperand(0), 4890 Flags, DAG, dl); 4891 4892 // This must go outside the CALLSEQ_START..END. 4893 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 4894 CallSeqStart.getNode()->getOperand(1), 4895 SDLoc(MemcpyCall)); 4896 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 4897 NewCallSeqStart.getNode()); 4898 Chain = CallSeqStart = NewCallSeqStart; 4899 4900 // Pass the address of the aggregate copy on the stack either in a 4901 // physical register or in the parameter list area of the current stack 4902 // frame to the callee. 4903 Arg = PtrOff; 4904 } 4905 4906 if (VA.isRegLoc()) { 4907 if (Arg.getValueType() == MVT::i1) 4908 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg); 4909 4910 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 4911 // Put argument in a physical register. 4912 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 4913 } else { 4914 // Put argument in the parameter list area of the current stack frame. 4915 assert(VA.isMemLoc()); 4916 unsigned LocMemOffset = VA.getLocMemOffset(); 4917 4918 if (!isTailCall) { 4919 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 4920 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 4921 StackPtr, PtrOff); 4922 4923 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 4924 MachinePointerInfo(), 4925 false, false, 0)); 4926 } else { 4927 // Calculate and remember argument location. 4928 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 4929 TailCallArguments); 4930 } 4931 } 4932 } 4933 4934 if (!MemOpChains.empty()) 4935 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 4936 4937 // Build a sequence of copy-to-reg nodes chained together with token chain 4938 // and flag operands which copy the outgoing args into the appropriate regs. 4939 SDValue InFlag; 4940 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 4941 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 4942 RegsToPass[i].second, InFlag); 4943 InFlag = Chain.getValue(1); 4944 } 4945 4946 // Set CR bit 6 to true if this is a vararg call with floating args passed in 4947 // registers. 4948 if (isVarArg) { 4949 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 4950 SDValue Ops[] = { Chain, InFlag }; 4951 4952 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 4953 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 4954 4955 InFlag = Chain.getValue(1); 4956 } 4957 4958 if (isTailCall) 4959 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 4960 TailCallArguments); 4961 4962 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 4963 /* unused except on PPC64 ELFv1 */ false, DAG, 4964 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 4965 NumBytes, Ins, InVals, CS); 4966 } 4967 4968 // Copy an argument into memory, being careful to do this outside the 4969 // call sequence for the call to which the argument belongs. 4970 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 4971 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 4972 SelectionDAG &DAG, const SDLoc &dl) const { 4973 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 4974 CallSeqStart.getNode()->getOperand(0), 4975 Flags, DAG, dl); 4976 // The MEMCPY must go outside the CALLSEQ_START..END. 4977 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 4978 CallSeqStart.getNode()->getOperand(1), 4979 SDLoc(MemcpyCall)); 4980 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 4981 NewCallSeqStart.getNode()); 4982 return NewCallSeqStart; 4983 } 4984 4985 SDValue PPCTargetLowering::LowerCall_64SVR4( 4986 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 4987 bool isTailCall, bool isPatchPoint, 4988 const SmallVectorImpl<ISD::OutputArg> &Outs, 4989 const SmallVectorImpl<SDValue> &OutVals, 4990 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4991 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 4992 ImmutableCallSite *CS) const { 4993 4994 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4995 bool isLittleEndian = Subtarget.isLittleEndian(); 4996 unsigned NumOps = Outs.size(); 4997 bool hasNest = false; 4998 bool IsSibCall = false; 4999 5000 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5001 unsigned PtrByteSize = 8; 5002 5003 MachineFunction &MF = DAG.getMachineFunction(); 5004 5005 if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5006 IsSibCall = true; 5007 5008 // Mark this function as potentially containing a function that contains a 5009 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5010 // and restoring the callers stack pointer in this functions epilog. This is 5011 // done because by tail calling the called function might overwrite the value 5012 // in this function's (MF) stack pointer stack slot 0(SP). 5013 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5014 CallConv == CallingConv::Fast) 5015 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5016 5017 assert(!(CallConv == CallingConv::Fast && isVarArg) && 5018 "fastcc not supported on varargs functions"); 5019 5020 // Count how many bytes are to be pushed on the stack, including the linkage 5021 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5022 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5023 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5024 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5025 unsigned NumBytes = LinkageSize; 5026 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5027 unsigned &QFPR_idx = FPR_idx; 5028 5029 static const MCPhysReg GPR[] = { 5030 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5031 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5032 }; 5033 static const MCPhysReg VR[] = { 5034 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5035 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5036 }; 5037 static const MCPhysReg VSRH[] = { 5038 PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8, 5039 PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13 5040 }; 5041 5042 const unsigned NumGPRs = array_lengthof(GPR); 5043 const unsigned NumFPRs = 13; 5044 const unsigned NumVRs = array_lengthof(VR); 5045 const unsigned NumQFPRs = NumFPRs; 5046 5047 // When using the fast calling convention, we don't provide backing for 5048 // arguments that will be in registers. 5049 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5050 5051 // Add up all the space actually used. 5052 for (unsigned i = 0; i != NumOps; ++i) { 5053 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5054 EVT ArgVT = Outs[i].VT; 5055 EVT OrigVT = Outs[i].ArgVT; 5056 5057 if (Flags.isNest()) 5058 continue; 5059 5060 if (CallConv == CallingConv::Fast) { 5061 if (Flags.isByVal()) 5062 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5063 else 5064 switch (ArgVT.getSimpleVT().SimpleTy) { 5065 default: llvm_unreachable("Unexpected ValueType for argument!"); 5066 case MVT::i1: 5067 case MVT::i32: 5068 case MVT::i64: 5069 if (++NumGPRsUsed <= NumGPRs) 5070 continue; 5071 break; 5072 case MVT::v4i32: 5073 case MVT::v8i16: 5074 case MVT::v16i8: 5075 case MVT::v2f64: 5076 case MVT::v2i64: 5077 case MVT::v1i128: 5078 if (++NumVRsUsed <= NumVRs) 5079 continue; 5080 break; 5081 case MVT::v4f32: 5082 // When using QPX, this is handled like a FP register, otherwise, it 5083 // is an Altivec register. 5084 if (Subtarget.hasQPX()) { 5085 if (++NumFPRsUsed <= NumFPRs) 5086 continue; 5087 } else { 5088 if (++NumVRsUsed <= NumVRs) 5089 continue; 5090 } 5091 break; 5092 case MVT::f32: 5093 case MVT::f64: 5094 case MVT::v4f64: // QPX 5095 case MVT::v4i1: // QPX 5096 if (++NumFPRsUsed <= NumFPRs) 5097 continue; 5098 break; 5099 } 5100 } 5101 5102 /* Respect alignment of argument on the stack. */ 5103 unsigned Align = 5104 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5105 NumBytes = ((NumBytes + Align - 1) / Align) * Align; 5106 5107 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5108 if (Flags.isInConsecutiveRegsLast()) 5109 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5110 } 5111 5112 unsigned NumBytesActuallyUsed = NumBytes; 5113 5114 // The prolog code of the callee may store up to 8 GPR argument registers to 5115 // the stack, allowing va_start to index over them in memory if its varargs. 5116 // Because we cannot tell if this is needed on the caller side, we have to 5117 // conservatively assume that it is needed. As such, make sure we have at 5118 // least enough stack space for the caller to store the 8 GPRs. 5119 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. 5120 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5121 5122 // Tail call needs the stack to be aligned. 5123 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5124 CallConv == CallingConv::Fast) 5125 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5126 5127 int SPDiff = 0; 5128 5129 // Calculate by how many bytes the stack has to be adjusted in case of tail 5130 // call optimization. 5131 if (!IsSibCall) 5132 SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5133 5134 // To protect arguments on the stack from being clobbered in a tail call, 5135 // force all the loads to happen before doing any other lowering. 5136 if (isTailCall) 5137 Chain = DAG.getStackArgumentTokenFactor(Chain); 5138 5139 // Adjust the stack pointer for the new arguments... 5140 // These operations are automatically eliminated by the prolog/epilog pass 5141 if (!IsSibCall) 5142 Chain = DAG.getCALLSEQ_START(Chain, 5143 DAG.getIntPtrConstant(NumBytes, dl, true), dl); 5144 SDValue CallSeqStart = Chain; 5145 5146 // Load the return address and frame pointer so it can be move somewhere else 5147 // later. 5148 SDValue LROp, FPOp; 5149 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5150 5151 // Set up a copy of the stack pointer for use loading and storing any 5152 // arguments that may not fit in the registers available for argument 5153 // passing. 5154 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5155 5156 // Figure out which arguments are going to go in registers, and which in 5157 // memory. Also, if this is a vararg function, floating point operations 5158 // must be stored to our stack, and loaded into integer regs as well, if 5159 // any integer regs are available for argument passing. 5160 unsigned ArgOffset = LinkageSize; 5161 5162 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5163 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5164 5165 SmallVector<SDValue, 8> MemOpChains; 5166 for (unsigned i = 0; i != NumOps; ++i) { 5167 SDValue Arg = OutVals[i]; 5168 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5169 EVT ArgVT = Outs[i].VT; 5170 EVT OrigVT = Outs[i].ArgVT; 5171 5172 // PtrOff will be used to store the current argument to the stack if a 5173 // register cannot be found for it. 5174 SDValue PtrOff; 5175 5176 // We re-align the argument offset for each argument, except when using the 5177 // fast calling convention, when we need to make sure we do that only when 5178 // we'll actually use a stack slot. 5179 auto ComputePtrOff = [&]() { 5180 /* Respect alignment of argument on the stack. */ 5181 unsigned Align = 5182 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5183 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 5184 5185 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5186 5187 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5188 }; 5189 5190 if (CallConv != CallingConv::Fast) { 5191 ComputePtrOff(); 5192 5193 /* Compute GPR index associated with argument offset. */ 5194 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 5195 GPR_idx = std::min(GPR_idx, NumGPRs); 5196 } 5197 5198 // Promote integers to 64-bit values. 5199 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 5200 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5201 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5202 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5203 } 5204 5205 // FIXME memcpy is used way more than necessary. Correctness first. 5206 // Note: "by value" is code for passing a structure by value, not 5207 // basic types. 5208 if (Flags.isByVal()) { 5209 // Note: Size includes alignment padding, so 5210 // struct x { short a; char b; } 5211 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 5212 // These are the proper values we need for right-justifying the 5213 // aggregate in a parameter register. 5214 unsigned Size = Flags.getByValSize(); 5215 5216 // An empty aggregate parameter takes up no storage and no 5217 // registers. 5218 if (Size == 0) 5219 continue; 5220 5221 if (CallConv == CallingConv::Fast) 5222 ComputePtrOff(); 5223 5224 // All aggregates smaller than 8 bytes must be passed right-justified. 5225 if (Size==1 || Size==2 || Size==4) { 5226 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 5227 if (GPR_idx != NumGPRs) { 5228 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5229 MachinePointerInfo(), VT, 5230 false, false, false, 0); 5231 MemOpChains.push_back(Load.getValue(1)); 5232 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5233 5234 ArgOffset += PtrByteSize; 5235 continue; 5236 } 5237 } 5238 5239 if (GPR_idx == NumGPRs && Size < 8) { 5240 SDValue AddPtr = PtrOff; 5241 if (!isLittleEndian) { 5242 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5243 PtrOff.getValueType()); 5244 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5245 } 5246 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5247 CallSeqStart, 5248 Flags, DAG, dl); 5249 ArgOffset += PtrByteSize; 5250 continue; 5251 } 5252 // Copy entire object into memory. There are cases where gcc-generated 5253 // code assumes it is there, even if it could be put entirely into 5254 // registers. (This is not what the doc says.) 5255 5256 // FIXME: The above statement is likely due to a misunderstanding of the 5257 // documents. All arguments must be copied into the parameter area BY 5258 // THE CALLEE in the event that the callee takes the address of any 5259 // formal argument. That has not yet been implemented. However, it is 5260 // reasonable to use the stack area as a staging area for the register 5261 // load. 5262 5263 // Skip this for small aggregates, as we will use the same slot for a 5264 // right-justified copy, below. 5265 if (Size >= 8) 5266 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5267 CallSeqStart, 5268 Flags, DAG, dl); 5269 5270 // When a register is available, pass a small aggregate right-justified. 5271 if (Size < 8 && GPR_idx != NumGPRs) { 5272 // The easiest way to get this right-justified in a register 5273 // is to copy the structure into the rightmost portion of a 5274 // local variable slot, then load the whole slot into the 5275 // register. 5276 // FIXME: The memcpy seems to produce pretty awful code for 5277 // small aggregates, particularly for packed ones. 5278 // FIXME: It would be preferable to use the slot in the 5279 // parameter save area instead of a new local variable. 5280 SDValue AddPtr = PtrOff; 5281 if (!isLittleEndian) { 5282 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 5283 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5284 } 5285 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5286 CallSeqStart, 5287 Flags, DAG, dl); 5288 5289 // Load the slot into the register. 5290 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff, 5291 MachinePointerInfo(), 5292 false, false, false, 0); 5293 MemOpChains.push_back(Load.getValue(1)); 5294 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5295 5296 // Done with this argument. 5297 ArgOffset += PtrByteSize; 5298 continue; 5299 } 5300 5301 // For aggregates larger than PtrByteSize, copy the pieces of the 5302 // object that fit into registers from the parameter save area. 5303 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5304 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5305 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5306 if (GPR_idx != NumGPRs) { 5307 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 5308 MachinePointerInfo(), 5309 false, false, false, 0); 5310 MemOpChains.push_back(Load.getValue(1)); 5311 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5312 ArgOffset += PtrByteSize; 5313 } else { 5314 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5315 break; 5316 } 5317 } 5318 continue; 5319 } 5320 5321 switch (Arg.getSimpleValueType().SimpleTy) { 5322 default: llvm_unreachable("Unexpected ValueType for argument!"); 5323 case MVT::i1: 5324 case MVT::i32: 5325 case MVT::i64: 5326 if (Flags.isNest()) { 5327 // The 'nest' parameter, if any, is passed in R11. 5328 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 5329 hasNest = true; 5330 break; 5331 } 5332 5333 // These can be scalar arguments or elements of an integer array type 5334 // passed directly. Clang may use those instead of "byval" aggregate 5335 // types to avoid forcing arguments to memory unnecessarily. 5336 if (GPR_idx != NumGPRs) { 5337 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5338 } else { 5339 if (CallConv == CallingConv::Fast) 5340 ComputePtrOff(); 5341 5342 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5343 true, isTailCall, false, MemOpChains, 5344 TailCallArguments, dl); 5345 if (CallConv == CallingConv::Fast) 5346 ArgOffset += PtrByteSize; 5347 } 5348 if (CallConv != CallingConv::Fast) 5349 ArgOffset += PtrByteSize; 5350 break; 5351 case MVT::f32: 5352 case MVT::f64: { 5353 // These can be scalar arguments or elements of a float array type 5354 // passed directly. The latter are used to implement ELFv2 homogenous 5355 // float aggregates. 5356 5357 // Named arguments go into FPRs first, and once they overflow, the 5358 // remaining arguments go into GPRs and then the parameter save area. 5359 // Unnamed arguments for vararg functions always go to GPRs and 5360 // then the parameter save area. For now, put all arguments to vararg 5361 // routines always in both locations (FPR *and* GPR or stack slot). 5362 bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs; 5363 bool NeededLoad = false; 5364 5365 // First load the argument into the next available FPR. 5366 if (FPR_idx != NumFPRs) 5367 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5368 5369 // Next, load the argument into GPR or stack slot if needed. 5370 if (!NeedGPROrStack) 5371 ; 5372 else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) { 5373 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 5374 // once we support fp <-> gpr moves. 5375 5376 // In the non-vararg case, this can only ever happen in the 5377 // presence of f32 array types, since otherwise we never run 5378 // out of FPRs before running out of GPRs. 5379 SDValue ArgVal; 5380 5381 // Double values are always passed in a single GPR. 5382 if (Arg.getValueType() != MVT::f32) { 5383 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 5384 5385 // Non-array float values are extended and passed in a GPR. 5386 } else if (!Flags.isInConsecutiveRegs()) { 5387 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5388 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5389 5390 // If we have an array of floats, we collect every odd element 5391 // together with its predecessor into one GPR. 5392 } else if (ArgOffset % PtrByteSize != 0) { 5393 SDValue Lo, Hi; 5394 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 5395 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5396 if (!isLittleEndian) 5397 std::swap(Lo, Hi); 5398 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 5399 5400 // The final element, if even, goes into the first half of a GPR. 5401 } else if (Flags.isInConsecutiveRegsLast()) { 5402 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5403 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5404 if (!isLittleEndian) 5405 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 5406 DAG.getConstant(32, dl, MVT::i32)); 5407 5408 // Non-final even elements are skipped; they will be handled 5409 // together the with subsequent argument on the next go-around. 5410 } else 5411 ArgVal = SDValue(); 5412 5413 if (ArgVal.getNode()) 5414 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 5415 } else { 5416 if (CallConv == CallingConv::Fast) 5417 ComputePtrOff(); 5418 5419 // Single-precision floating-point values are mapped to the 5420 // second (rightmost) word of the stack doubleword. 5421 if (Arg.getValueType() == MVT::f32 && 5422 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 5423 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 5424 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5425 } 5426 5427 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5428 true, isTailCall, false, MemOpChains, 5429 TailCallArguments, dl); 5430 5431 NeededLoad = true; 5432 } 5433 // When passing an array of floats, the array occupies consecutive 5434 // space in the argument area; only round up to the next doubleword 5435 // at the end of the array. Otherwise, each float takes 8 bytes. 5436 if (CallConv != CallingConv::Fast || NeededLoad) { 5437 ArgOffset += (Arg.getValueType() == MVT::f32 && 5438 Flags.isInConsecutiveRegs()) ? 4 : 8; 5439 if (Flags.isInConsecutiveRegsLast()) 5440 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5441 } 5442 break; 5443 } 5444 case MVT::v4f32: 5445 case MVT::v4i32: 5446 case MVT::v8i16: 5447 case MVT::v16i8: 5448 case MVT::v2f64: 5449 case MVT::v2i64: 5450 case MVT::v1i128: 5451 if (!Subtarget.hasQPX()) { 5452 // These can be scalar arguments or elements of a vector array type 5453 // passed directly. The latter are used to implement ELFv2 homogenous 5454 // vector aggregates. 5455 5456 // For a varargs call, named arguments go into VRs or on the stack as 5457 // usual; unnamed arguments always go to the stack or the corresponding 5458 // GPRs when within range. For now, we always put the value in both 5459 // locations (or even all three). 5460 if (isVarArg) { 5461 // We could elide this store in the case where the object fits 5462 // entirely in R registers. Maybe later. 5463 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5464 MachinePointerInfo(), false, false, 0); 5465 MemOpChains.push_back(Store); 5466 if (VR_idx != NumVRs) { 5467 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 5468 MachinePointerInfo(), 5469 false, false, false, 0); 5470 MemOpChains.push_back(Load.getValue(1)); 5471 5472 unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 || 5473 Arg.getSimpleValueType() == MVT::v2i64) ? 5474 VSRH[VR_idx] : VR[VR_idx]; 5475 ++VR_idx; 5476 5477 RegsToPass.push_back(std::make_pair(VReg, Load)); 5478 } 5479 ArgOffset += 16; 5480 for (unsigned i=0; i<16; i+=PtrByteSize) { 5481 if (GPR_idx == NumGPRs) 5482 break; 5483 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5484 DAG.getConstant(i, dl, PtrVT)); 5485 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5486 false, false, false, 0); 5487 MemOpChains.push_back(Load.getValue(1)); 5488 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5489 } 5490 break; 5491 } 5492 5493 // Non-varargs Altivec params go into VRs or on the stack. 5494 if (VR_idx != NumVRs) { 5495 unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 || 5496 Arg.getSimpleValueType() == MVT::v2i64) ? 5497 VSRH[VR_idx] : VR[VR_idx]; 5498 ++VR_idx; 5499 5500 RegsToPass.push_back(std::make_pair(VReg, Arg)); 5501 } else { 5502 if (CallConv == CallingConv::Fast) 5503 ComputePtrOff(); 5504 5505 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5506 true, isTailCall, true, MemOpChains, 5507 TailCallArguments, dl); 5508 if (CallConv == CallingConv::Fast) 5509 ArgOffset += 16; 5510 } 5511 5512 if (CallConv != CallingConv::Fast) 5513 ArgOffset += 16; 5514 break; 5515 } // not QPX 5516 5517 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 5518 "Invalid QPX parameter type"); 5519 5520 /* fall through */ 5521 case MVT::v4f64: 5522 case MVT::v4i1: { 5523 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 5524 if (isVarArg) { 5525 // We could elide this store in the case where the object fits 5526 // entirely in R registers. Maybe later. 5527 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5528 MachinePointerInfo(), false, false, 0); 5529 MemOpChains.push_back(Store); 5530 if (QFPR_idx != NumQFPRs) { 5531 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, 5532 Store, PtrOff, MachinePointerInfo(), 5533 false, false, false, 0); 5534 MemOpChains.push_back(Load.getValue(1)); 5535 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 5536 } 5537 ArgOffset += (IsF32 ? 16 : 32); 5538 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 5539 if (GPR_idx == NumGPRs) 5540 break; 5541 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5542 DAG.getConstant(i, dl, PtrVT)); 5543 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5544 false, false, false, 0); 5545 MemOpChains.push_back(Load.getValue(1)); 5546 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5547 } 5548 break; 5549 } 5550 5551 // Non-varargs QPX params go into registers or on the stack. 5552 if (QFPR_idx != NumQFPRs) { 5553 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 5554 } else { 5555 if (CallConv == CallingConv::Fast) 5556 ComputePtrOff(); 5557 5558 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5559 true, isTailCall, true, MemOpChains, 5560 TailCallArguments, dl); 5561 if (CallConv == CallingConv::Fast) 5562 ArgOffset += (IsF32 ? 16 : 32); 5563 } 5564 5565 if (CallConv != CallingConv::Fast) 5566 ArgOffset += (IsF32 ? 16 : 32); 5567 break; 5568 } 5569 } 5570 } 5571 5572 assert(NumBytesActuallyUsed == ArgOffset); 5573 (void)NumBytesActuallyUsed; 5574 5575 if (!MemOpChains.empty()) 5576 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5577 5578 // Check if this is an indirect call (MTCTR/BCTRL). 5579 // See PrepareCall() for more information about calls through function 5580 // pointers in the 64-bit SVR4 ABI. 5581 if (!isTailCall && !isPatchPoint && 5582 !isFunctionGlobalAddress(Callee) && 5583 !isa<ExternalSymbolSDNode>(Callee)) { 5584 // Load r2 into a virtual register and store it to the TOC save area. 5585 setUsesTOCBasePtr(DAG); 5586 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 5587 // TOC save area offset. 5588 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5589 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5590 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5591 Chain = DAG.getStore( 5592 Val.getValue(1), dl, Val, AddPtr, 5593 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset), 5594 false, false, 0); 5595 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 5596 // This does not mean the MTCTR instruction must use R12; it's easier 5597 // to model this as an extra parameter, so do that. 5598 if (isELFv2ABI && !isPatchPoint) 5599 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 5600 } 5601 5602 // Build a sequence of copy-to-reg nodes chained together with token chain 5603 // and flag operands which copy the outgoing args into the appropriate regs. 5604 SDValue InFlag; 5605 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5606 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5607 RegsToPass[i].second, InFlag); 5608 InFlag = Chain.getValue(1); 5609 } 5610 5611 if (isTailCall && !IsSibCall) 5612 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5613 TailCallArguments); 5614 5615 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest, 5616 DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee, 5617 SPDiff, NumBytes, Ins, InVals, CS); 5618 } 5619 5620 SDValue PPCTargetLowering::LowerCall_Darwin( 5621 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5622 bool isTailCall, bool isPatchPoint, 5623 const SmallVectorImpl<ISD::OutputArg> &Outs, 5624 const SmallVectorImpl<SDValue> &OutVals, 5625 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5626 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5627 ImmutableCallSite *CS) const { 5628 5629 unsigned NumOps = Outs.size(); 5630 5631 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5632 bool isPPC64 = PtrVT == MVT::i64; 5633 unsigned PtrByteSize = isPPC64 ? 8 : 4; 5634 5635 MachineFunction &MF = DAG.getMachineFunction(); 5636 5637 // Mark this function as potentially containing a function that contains a 5638 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5639 // and restoring the callers stack pointer in this functions epilog. This is 5640 // done because by tail calling the called function might overwrite the value 5641 // in this function's (MF) stack pointer stack slot 0(SP). 5642 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5643 CallConv == CallingConv::Fast) 5644 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5645 5646 // Count how many bytes are to be pushed on the stack, including the linkage 5647 // area, and parameter passing area. We start with 24/48 bytes, which is 5648 // prereserved space for [SP][CR][LR][3 x unused]. 5649 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5650 unsigned NumBytes = LinkageSize; 5651 5652 // Add up all the space actually used. 5653 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 5654 // they all go in registers, but we must reserve stack space for them for 5655 // possible use by the caller. In varargs or 64-bit calls, parameters are 5656 // assigned stack space in order, with padding so Altivec parameters are 5657 // 16-byte aligned. 5658 unsigned nAltivecParamsAtEnd = 0; 5659 for (unsigned i = 0; i != NumOps; ++i) { 5660 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5661 EVT ArgVT = Outs[i].VT; 5662 // Varargs Altivec parameters are padded to a 16 byte boundary. 5663 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 5664 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 5665 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 5666 if (!isVarArg && !isPPC64) { 5667 // Non-varargs Altivec parameters go after all the non-Altivec 5668 // parameters; handle those later so we know how much padding we need. 5669 nAltivecParamsAtEnd++; 5670 continue; 5671 } 5672 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 5673 NumBytes = ((NumBytes+15)/16)*16; 5674 } 5675 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5676 } 5677 5678 // Allow for Altivec parameters at the end, if needed. 5679 if (nAltivecParamsAtEnd) { 5680 NumBytes = ((NumBytes+15)/16)*16; 5681 NumBytes += 16*nAltivecParamsAtEnd; 5682 } 5683 5684 // The prolog code of the callee may store up to 8 GPR argument registers to 5685 // the stack, allowing va_start to index over them in memory if its varargs. 5686 // Because we cannot tell if this is needed on the caller side, we have to 5687 // conservatively assume that it is needed. As such, make sure we have at 5688 // least enough stack space for the caller to store the 8 GPRs. 5689 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5690 5691 // Tail call needs the stack to be aligned. 5692 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5693 CallConv == CallingConv::Fast) 5694 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5695 5696 // Calculate by how many bytes the stack has to be adjusted in case of tail 5697 // call optimization. 5698 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5699 5700 // To protect arguments on the stack from being clobbered in a tail call, 5701 // force all the loads to happen before doing any other lowering. 5702 if (isTailCall) 5703 Chain = DAG.getStackArgumentTokenFactor(Chain); 5704 5705 // Adjust the stack pointer for the new arguments... 5706 // These operations are automatically eliminated by the prolog/epilog pass 5707 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5708 dl); 5709 SDValue CallSeqStart = Chain; 5710 5711 // Load the return address and frame pointer so it can be move somewhere else 5712 // later. 5713 SDValue LROp, FPOp; 5714 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5715 5716 // Set up a copy of the stack pointer for use loading and storing any 5717 // arguments that may not fit in the registers available for argument 5718 // passing. 5719 SDValue StackPtr; 5720 if (isPPC64) 5721 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5722 else 5723 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5724 5725 // Figure out which arguments are going to go in registers, and which in 5726 // memory. Also, if this is a vararg function, floating point operations 5727 // must be stored to our stack, and loaded into integer regs as well, if 5728 // any integer regs are available for argument passing. 5729 unsigned ArgOffset = LinkageSize; 5730 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5731 5732 static const MCPhysReg GPR_32[] = { // 32-bit registers. 5733 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 5734 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 5735 }; 5736 static const MCPhysReg GPR_64[] = { // 64-bit registers. 5737 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5738 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5739 }; 5740 static const MCPhysReg VR[] = { 5741 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5742 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5743 }; 5744 const unsigned NumGPRs = array_lengthof(GPR_32); 5745 const unsigned NumFPRs = 13; 5746 const unsigned NumVRs = array_lengthof(VR); 5747 5748 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 5749 5750 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5751 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5752 5753 SmallVector<SDValue, 8> MemOpChains; 5754 for (unsigned i = 0; i != NumOps; ++i) { 5755 SDValue Arg = OutVals[i]; 5756 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5757 5758 // PtrOff will be used to store the current argument to the stack if a 5759 // register cannot be found for it. 5760 SDValue PtrOff; 5761 5762 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5763 5764 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5765 5766 // On PPC64, promote integers to 64-bit values. 5767 if (isPPC64 && Arg.getValueType() == MVT::i32) { 5768 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5769 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5770 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5771 } 5772 5773 // FIXME memcpy is used way more than necessary. Correctness first. 5774 // Note: "by value" is code for passing a structure by value, not 5775 // basic types. 5776 if (Flags.isByVal()) { 5777 unsigned Size = Flags.getByValSize(); 5778 // Very small objects are passed right-justified. Everything else is 5779 // passed left-justified. 5780 if (Size==1 || Size==2) { 5781 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 5782 if (GPR_idx != NumGPRs) { 5783 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5784 MachinePointerInfo(), VT, 5785 false, false, false, 0); 5786 MemOpChains.push_back(Load.getValue(1)); 5787 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5788 5789 ArgOffset += PtrByteSize; 5790 } else { 5791 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5792 PtrOff.getValueType()); 5793 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5794 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5795 CallSeqStart, 5796 Flags, DAG, dl); 5797 ArgOffset += PtrByteSize; 5798 } 5799 continue; 5800 } 5801 // Copy entire object into memory. There are cases where gcc-generated 5802 // code assumes it is there, even if it could be put entirely into 5803 // registers. (This is not what the doc says.) 5804 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5805 CallSeqStart, 5806 Flags, DAG, dl); 5807 5808 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 5809 // copy the pieces of the object that fit into registers from the 5810 // parameter save area. 5811 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5812 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5813 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5814 if (GPR_idx != NumGPRs) { 5815 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 5816 MachinePointerInfo(), 5817 false, false, false, 0); 5818 MemOpChains.push_back(Load.getValue(1)); 5819 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5820 ArgOffset += PtrByteSize; 5821 } else { 5822 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5823 break; 5824 } 5825 } 5826 continue; 5827 } 5828 5829 switch (Arg.getSimpleValueType().SimpleTy) { 5830 default: llvm_unreachable("Unexpected ValueType for argument!"); 5831 case MVT::i1: 5832 case MVT::i32: 5833 case MVT::i64: 5834 if (GPR_idx != NumGPRs) { 5835 if (Arg.getValueType() == MVT::i1) 5836 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 5837 5838 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5839 } else { 5840 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5841 isPPC64, isTailCall, false, MemOpChains, 5842 TailCallArguments, dl); 5843 } 5844 ArgOffset += PtrByteSize; 5845 break; 5846 case MVT::f32: 5847 case MVT::f64: 5848 if (FPR_idx != NumFPRs) { 5849 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5850 5851 if (isVarArg) { 5852 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5853 MachinePointerInfo(), false, false, 0); 5854 MemOpChains.push_back(Store); 5855 5856 // Float varargs are always shadowed in available integer registers 5857 if (GPR_idx != NumGPRs) { 5858 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 5859 MachinePointerInfo(), false, false, 5860 false, 0); 5861 MemOpChains.push_back(Load.getValue(1)); 5862 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5863 } 5864 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 5865 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 5866 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5867 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 5868 MachinePointerInfo(), 5869 false, false, false, 0); 5870 MemOpChains.push_back(Load.getValue(1)); 5871 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5872 } 5873 } else { 5874 // If we have any FPRs remaining, we may also have GPRs remaining. 5875 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 5876 // GPRs. 5877 if (GPR_idx != NumGPRs) 5878 ++GPR_idx; 5879 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 5880 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 5881 ++GPR_idx; 5882 } 5883 } else 5884 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5885 isPPC64, isTailCall, false, MemOpChains, 5886 TailCallArguments, dl); 5887 if (isPPC64) 5888 ArgOffset += 8; 5889 else 5890 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 5891 break; 5892 case MVT::v4f32: 5893 case MVT::v4i32: 5894 case MVT::v8i16: 5895 case MVT::v16i8: 5896 if (isVarArg) { 5897 // These go aligned on the stack, or in the corresponding R registers 5898 // when within range. The Darwin PPC ABI doc claims they also go in 5899 // V registers; in fact gcc does this only for arguments that are 5900 // prototyped, not for those that match the ... We do it for all 5901 // arguments, seems to work. 5902 while (ArgOffset % 16 !=0) { 5903 ArgOffset += PtrByteSize; 5904 if (GPR_idx != NumGPRs) 5905 GPR_idx++; 5906 } 5907 // We could elide this store in the case where the object fits 5908 // entirely in R registers. Maybe later. 5909 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5910 DAG.getConstant(ArgOffset, dl, PtrVT)); 5911 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5912 MachinePointerInfo(), false, false, 0); 5913 MemOpChains.push_back(Store); 5914 if (VR_idx != NumVRs) { 5915 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 5916 MachinePointerInfo(), 5917 false, false, false, 0); 5918 MemOpChains.push_back(Load.getValue(1)); 5919 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 5920 } 5921 ArgOffset += 16; 5922 for (unsigned i=0; i<16; i+=PtrByteSize) { 5923 if (GPR_idx == NumGPRs) 5924 break; 5925 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5926 DAG.getConstant(i, dl, PtrVT)); 5927 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5928 false, false, false, 0); 5929 MemOpChains.push_back(Load.getValue(1)); 5930 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5931 } 5932 break; 5933 } 5934 5935 // Non-varargs Altivec params generally go in registers, but have 5936 // stack space allocated at the end. 5937 if (VR_idx != NumVRs) { 5938 // Doesn't have GPR space allocated. 5939 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 5940 } else if (nAltivecParamsAtEnd==0) { 5941 // We are emitting Altivec params in order. 5942 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5943 isPPC64, isTailCall, true, MemOpChains, 5944 TailCallArguments, dl); 5945 ArgOffset += 16; 5946 } 5947 break; 5948 } 5949 } 5950 // If all Altivec parameters fit in registers, as they usually do, 5951 // they get stack space following the non-Altivec parameters. We 5952 // don't track this here because nobody below needs it. 5953 // If there are more Altivec parameters than fit in registers emit 5954 // the stores here. 5955 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 5956 unsigned j = 0; 5957 // Offset is aligned; skip 1st 12 params which go in V registers. 5958 ArgOffset = ((ArgOffset+15)/16)*16; 5959 ArgOffset += 12*16; 5960 for (unsigned i = 0; i != NumOps; ++i) { 5961 SDValue Arg = OutVals[i]; 5962 EVT ArgType = Outs[i].VT; 5963 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 5964 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 5965 if (++j > NumVRs) { 5966 SDValue PtrOff; 5967 // We are emitting Altivec params in order. 5968 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5969 isPPC64, isTailCall, true, MemOpChains, 5970 TailCallArguments, dl); 5971 ArgOffset += 16; 5972 } 5973 } 5974 } 5975 } 5976 5977 if (!MemOpChains.empty()) 5978 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5979 5980 // On Darwin, R12 must contain the address of an indirect callee. This does 5981 // not mean the MTCTR instruction must use R12; it's easier to model this as 5982 // an extra parameter, so do that. 5983 if (!isTailCall && 5984 !isFunctionGlobalAddress(Callee) && 5985 !isa<ExternalSymbolSDNode>(Callee) && 5986 !isBLACompatibleAddress(Callee, DAG)) 5987 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 5988 PPC::R12), Callee)); 5989 5990 // Build a sequence of copy-to-reg nodes chained together with token chain 5991 // and flag operands which copy the outgoing args into the appropriate regs. 5992 SDValue InFlag; 5993 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5994 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5995 RegsToPass[i].second, InFlag); 5996 InFlag = Chain.getValue(1); 5997 } 5998 5999 if (isTailCall) 6000 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6001 TailCallArguments); 6002 6003 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 6004 /* unused except on PPC64 ELFv1 */ false, DAG, 6005 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 6006 NumBytes, Ins, InVals, CS); 6007 } 6008 6009 bool 6010 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 6011 MachineFunction &MF, bool isVarArg, 6012 const SmallVectorImpl<ISD::OutputArg> &Outs, 6013 LLVMContext &Context) const { 6014 SmallVector<CCValAssign, 16> RVLocs; 6015 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 6016 return CCInfo.CheckReturn(Outs, RetCC_PPC); 6017 } 6018 6019 SDValue 6020 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 6021 bool isVarArg, 6022 const SmallVectorImpl<ISD::OutputArg> &Outs, 6023 const SmallVectorImpl<SDValue> &OutVals, 6024 const SDLoc &dl, SelectionDAG &DAG) const { 6025 6026 SmallVector<CCValAssign, 16> RVLocs; 6027 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 6028 *DAG.getContext()); 6029 CCInfo.AnalyzeReturn(Outs, RetCC_PPC); 6030 6031 SDValue Flag; 6032 SmallVector<SDValue, 4> RetOps(1, Chain); 6033 6034 // Copy the result values into the output registers. 6035 for (unsigned i = 0; i != RVLocs.size(); ++i) { 6036 CCValAssign &VA = RVLocs[i]; 6037 assert(VA.isRegLoc() && "Can only return in registers!"); 6038 6039 SDValue Arg = OutVals[i]; 6040 6041 switch (VA.getLocInfo()) { 6042 default: llvm_unreachable("Unknown loc info!"); 6043 case CCValAssign::Full: break; 6044 case CCValAssign::AExt: 6045 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 6046 break; 6047 case CCValAssign::ZExt: 6048 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 6049 break; 6050 case CCValAssign::SExt: 6051 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 6052 break; 6053 } 6054 6055 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 6056 Flag = Chain.getValue(1); 6057 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 6058 } 6059 6060 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 6061 const MCPhysReg *I = 6062 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 6063 if (I) { 6064 for (; *I; ++I) { 6065 6066 if (PPC::G8RCRegClass.contains(*I)) 6067 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 6068 else if (PPC::F8RCRegClass.contains(*I)) 6069 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); 6070 else if (PPC::CRRCRegClass.contains(*I)) 6071 RetOps.push_back(DAG.getRegister(*I, MVT::i1)); 6072 else if (PPC::VRRCRegClass.contains(*I)) 6073 RetOps.push_back(DAG.getRegister(*I, MVT::Other)); 6074 else 6075 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 6076 } 6077 } 6078 6079 RetOps[0] = Chain; // Update chain. 6080 6081 // Add the flag if we have it. 6082 if (Flag.getNode()) 6083 RetOps.push_back(Flag); 6084 6085 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 6086 } 6087 6088 SDValue 6089 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 6090 SelectionDAG &DAG) const { 6091 SDLoc dl(Op); 6092 6093 // Get the corect type for integers. 6094 EVT IntVT = Op.getValueType(); 6095 6096 // Get the inputs. 6097 SDValue Chain = Op.getOperand(0); 6098 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 6099 // Build a DYNAREAOFFSET node. 6100 SDValue Ops[2] = {Chain, FPSIdx}; 6101 SDVTList VTs = DAG.getVTList(IntVT); 6102 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 6103 } 6104 6105 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 6106 SelectionDAG &DAG) const { 6107 // When we pop the dynamic allocation we need to restore the SP link. 6108 SDLoc dl(Op); 6109 6110 // Get the corect type for pointers. 6111 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6112 6113 // Construct the stack pointer operand. 6114 bool isPPC64 = Subtarget.isPPC64(); 6115 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 6116 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 6117 6118 // Get the operands for the STACKRESTORE. 6119 SDValue Chain = Op.getOperand(0); 6120 SDValue SaveSP = Op.getOperand(1); 6121 6122 // Load the old link SP. 6123 SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, 6124 MachinePointerInfo(), 6125 false, false, false, 0); 6126 6127 // Restore the stack pointer. 6128 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 6129 6130 // Store the old link SP. 6131 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(), 6132 false, false, 0); 6133 } 6134 6135 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 6136 MachineFunction &MF = DAG.getMachineFunction(); 6137 bool isPPC64 = Subtarget.isPPC64(); 6138 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6139 6140 // Get current frame pointer save index. The users of this index will be 6141 // primarily DYNALLOC instructions. 6142 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 6143 int RASI = FI->getReturnAddrSaveIndex(); 6144 6145 // If the frame pointer save index hasn't been defined yet. 6146 if (!RASI) { 6147 // Find out what the fix offset of the frame pointer save area. 6148 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 6149 // Allocate the frame index for frame pointer save area. 6150 RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 6151 // Save the result. 6152 FI->setReturnAddrSaveIndex(RASI); 6153 } 6154 return DAG.getFrameIndex(RASI, PtrVT); 6155 } 6156 6157 SDValue 6158 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 6159 MachineFunction &MF = DAG.getMachineFunction(); 6160 bool isPPC64 = Subtarget.isPPC64(); 6161 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6162 6163 // Get current frame pointer save index. The users of this index will be 6164 // primarily DYNALLOC instructions. 6165 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 6166 int FPSI = FI->getFramePointerSaveIndex(); 6167 6168 // If the frame pointer save index hasn't been defined yet. 6169 if (!FPSI) { 6170 // Find out what the fix offset of the frame pointer save area. 6171 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 6172 // Allocate the frame index for frame pointer save area. 6173 FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 6174 // Save the result. 6175 FI->setFramePointerSaveIndex(FPSI); 6176 } 6177 return DAG.getFrameIndex(FPSI, PtrVT); 6178 } 6179 6180 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 6181 SelectionDAG &DAG) const { 6182 // Get the inputs. 6183 SDValue Chain = Op.getOperand(0); 6184 SDValue Size = Op.getOperand(1); 6185 SDLoc dl(Op); 6186 6187 // Get the corect type for pointers. 6188 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6189 // Negate the size. 6190 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 6191 DAG.getConstant(0, dl, PtrVT), Size); 6192 // Construct a node for the frame pointer save index. 6193 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 6194 // Build a DYNALLOC node. 6195 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 6196 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 6197 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 6198 } 6199 6200 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 6201 SelectionDAG &DAG) const { 6202 SDLoc DL(Op); 6203 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 6204 DAG.getVTList(MVT::i32, MVT::Other), 6205 Op.getOperand(0), Op.getOperand(1)); 6206 } 6207 6208 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 6209 SelectionDAG &DAG) const { 6210 SDLoc DL(Op); 6211 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 6212 Op.getOperand(0), Op.getOperand(1)); 6213 } 6214 6215 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 6216 if (Op.getValueType().isVector()) 6217 return LowerVectorLoad(Op, DAG); 6218 6219 assert(Op.getValueType() == MVT::i1 && 6220 "Custom lowering only for i1 loads"); 6221 6222 // First, load 8 bits into 32 bits, then truncate to 1 bit. 6223 6224 SDLoc dl(Op); 6225 LoadSDNode *LD = cast<LoadSDNode>(Op); 6226 6227 SDValue Chain = LD->getChain(); 6228 SDValue BasePtr = LD->getBasePtr(); 6229 MachineMemOperand *MMO = LD->getMemOperand(); 6230 6231 SDValue NewLD = 6232 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 6233 BasePtr, MVT::i8, MMO); 6234 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 6235 6236 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 6237 return DAG.getMergeValues(Ops, dl); 6238 } 6239 6240 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 6241 if (Op.getOperand(1).getValueType().isVector()) 6242 return LowerVectorStore(Op, DAG); 6243 6244 assert(Op.getOperand(1).getValueType() == MVT::i1 && 6245 "Custom lowering only for i1 stores"); 6246 6247 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 6248 6249 SDLoc dl(Op); 6250 StoreSDNode *ST = cast<StoreSDNode>(Op); 6251 6252 SDValue Chain = ST->getChain(); 6253 SDValue BasePtr = ST->getBasePtr(); 6254 SDValue Value = ST->getValue(); 6255 MachineMemOperand *MMO = ST->getMemOperand(); 6256 6257 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 6258 Value); 6259 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 6260 } 6261 6262 // FIXME: Remove this once the ANDI glue bug is fixed: 6263 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 6264 assert(Op.getValueType() == MVT::i1 && 6265 "Custom lowering only for i1 results"); 6266 6267 SDLoc DL(Op); 6268 return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1, 6269 Op.getOperand(0)); 6270 } 6271 6272 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 6273 /// possible. 6274 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 6275 // Not FP? Not a fsel. 6276 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 6277 !Op.getOperand(2).getValueType().isFloatingPoint()) 6278 return Op; 6279 6280 // We might be able to do better than this under some circumstances, but in 6281 // general, fsel-based lowering of select is a finite-math-only optimization. 6282 // For more information, see section F.3 of the 2.06 ISA specification. 6283 if (!DAG.getTarget().Options.NoInfsFPMath || 6284 !DAG.getTarget().Options.NoNaNsFPMath) 6285 return Op; 6286 // TODO: Propagate flags from the select rather than global settings. 6287 SDNodeFlags Flags; 6288 Flags.setNoInfs(true); 6289 Flags.setNoNaNs(true); 6290 6291 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 6292 6293 EVT ResVT = Op.getValueType(); 6294 EVT CmpVT = Op.getOperand(0).getValueType(); 6295 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 6296 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 6297 SDLoc dl(Op); 6298 6299 // If the RHS of the comparison is a 0.0, we don't need to do the 6300 // subtraction at all. 6301 SDValue Sel1; 6302 if (isFloatingPointZero(RHS)) 6303 switch (CC) { 6304 default: break; // SETUO etc aren't handled by fsel. 6305 case ISD::SETNE: 6306 std::swap(TV, FV); 6307 case ISD::SETEQ: 6308 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6309 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6310 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6311 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6312 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6313 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6314 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 6315 case ISD::SETULT: 6316 case ISD::SETLT: 6317 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6318 case ISD::SETOGE: 6319 case ISD::SETGE: 6320 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6321 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6322 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6323 case ISD::SETUGT: 6324 case ISD::SETGT: 6325 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6326 case ISD::SETOLE: 6327 case ISD::SETLE: 6328 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6329 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6330 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6331 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 6332 } 6333 6334 SDValue Cmp; 6335 switch (CC) { 6336 default: break; // SETUO etc aren't handled by fsel. 6337 case ISD::SETNE: 6338 std::swap(TV, FV); 6339 case ISD::SETEQ: 6340 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6341 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6342 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6343 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6344 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6345 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6346 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6347 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 6348 case ISD::SETULT: 6349 case ISD::SETLT: 6350 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6351 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6352 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6353 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6354 case ISD::SETOGE: 6355 case ISD::SETGE: 6356 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6357 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6358 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6359 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6360 case ISD::SETUGT: 6361 case ISD::SETGT: 6362 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags); 6363 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6364 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6365 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6366 case ISD::SETOLE: 6367 case ISD::SETLE: 6368 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags); 6369 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6370 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6371 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6372 } 6373 return Op; 6374 } 6375 6376 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 6377 SelectionDAG &DAG, 6378 const SDLoc &dl) const { 6379 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6380 SDValue Src = Op.getOperand(0); 6381 if (Src.getValueType() == MVT::f32) 6382 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6383 6384 SDValue Tmp; 6385 switch (Op.getSimpleValueType().SimpleTy) { 6386 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6387 case MVT::i32: 6388 Tmp = DAG.getNode( 6389 Op.getOpcode() == ISD::FP_TO_SINT 6390 ? PPCISD::FCTIWZ 6391 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6392 dl, MVT::f64, Src); 6393 break; 6394 case MVT::i64: 6395 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6396 "i64 FP_TO_UINT is supported only with FPCVT"); 6397 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6398 PPCISD::FCTIDUZ, 6399 dl, MVT::f64, Src); 6400 break; 6401 } 6402 6403 // Convert the FP value to an int value through memory. 6404 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 6405 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 6406 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 6407 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 6408 MachinePointerInfo MPI = 6409 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 6410 6411 // Emit a store to the stack slot. 6412 SDValue Chain; 6413 if (i32Stack) { 6414 MachineFunction &MF = DAG.getMachineFunction(); 6415 MachineMemOperand *MMO = 6416 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); 6417 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 6418 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 6419 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 6420 } else 6421 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, 6422 MPI, false, false, 0); 6423 6424 // Result is a load from the stack slot. If loading 4 bytes, make sure to 6425 // add in a bias on big endian. 6426 if (Op.getValueType() == MVT::i32 && !i32Stack) { 6427 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 6428 DAG.getConstant(4, dl, FIPtr.getValueType())); 6429 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 6430 } 6431 6432 RLI.Chain = Chain; 6433 RLI.Ptr = FIPtr; 6434 RLI.MPI = MPI; 6435 } 6436 6437 /// \brief Custom lowers floating point to integer conversions to use 6438 /// the direct move instructions available in ISA 2.07 to avoid the 6439 /// need for load/store combinations. 6440 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 6441 SelectionDAG &DAG, 6442 const SDLoc &dl) const { 6443 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6444 SDValue Src = Op.getOperand(0); 6445 6446 if (Src.getValueType() == MVT::f32) 6447 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6448 6449 SDValue Tmp; 6450 switch (Op.getSimpleValueType().SimpleTy) { 6451 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6452 case MVT::i32: 6453 Tmp = DAG.getNode( 6454 Op.getOpcode() == ISD::FP_TO_SINT 6455 ? PPCISD::FCTIWZ 6456 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6457 dl, MVT::f64, Src); 6458 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 6459 break; 6460 case MVT::i64: 6461 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6462 "i64 FP_TO_UINT is supported only with FPCVT"); 6463 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6464 PPCISD::FCTIDUZ, 6465 dl, MVT::f64, Src); 6466 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 6467 break; 6468 } 6469 return Tmp; 6470 } 6471 6472 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 6473 const SDLoc &dl) const { 6474 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 6475 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 6476 6477 ReuseLoadInfo RLI; 6478 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 6479 6480 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, false, 6481 false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo, 6482 RLI.Ranges); 6483 } 6484 6485 // We're trying to insert a regular store, S, and then a load, L. If the 6486 // incoming value, O, is a load, we might just be able to have our load use the 6487 // address used by O. However, we don't know if anything else will store to 6488 // that address before we can load from it. To prevent this situation, we need 6489 // to insert our load, L, into the chain as a peer of O. To do this, we give L 6490 // the same chain operand as O, we create a token factor from the chain results 6491 // of O and L, and we replace all uses of O's chain result with that token 6492 // factor (see spliceIntoChain below for this last part). 6493 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 6494 ReuseLoadInfo &RLI, 6495 SelectionDAG &DAG, 6496 ISD::LoadExtType ET) const { 6497 SDLoc dl(Op); 6498 if (ET == ISD::NON_EXTLOAD && 6499 (Op.getOpcode() == ISD::FP_TO_UINT || 6500 Op.getOpcode() == ISD::FP_TO_SINT) && 6501 isOperationLegalOrCustom(Op.getOpcode(), 6502 Op.getOperand(0).getValueType())) { 6503 6504 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 6505 return true; 6506 } 6507 6508 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 6509 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 6510 LD->isNonTemporal()) 6511 return false; 6512 if (LD->getMemoryVT() != MemVT) 6513 return false; 6514 6515 RLI.Ptr = LD->getBasePtr(); 6516 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 6517 assert(LD->getAddressingMode() == ISD::PRE_INC && 6518 "Non-pre-inc AM on PPC?"); 6519 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 6520 LD->getOffset()); 6521 } 6522 6523 RLI.Chain = LD->getChain(); 6524 RLI.MPI = LD->getPointerInfo(); 6525 RLI.IsInvariant = LD->isInvariant(); 6526 RLI.Alignment = LD->getAlignment(); 6527 RLI.AAInfo = LD->getAAInfo(); 6528 RLI.Ranges = LD->getRanges(); 6529 6530 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 6531 return true; 6532 } 6533 6534 // Given the head of the old chain, ResChain, insert a token factor containing 6535 // it and NewResChain, and make users of ResChain now be users of that token 6536 // factor. 6537 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 6538 SDValue NewResChain, 6539 SelectionDAG &DAG) const { 6540 if (!ResChain) 6541 return; 6542 6543 SDLoc dl(NewResChain); 6544 6545 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6546 NewResChain, DAG.getUNDEF(MVT::Other)); 6547 assert(TF.getNode() != NewResChain.getNode() && 6548 "A new TF really is required here"); 6549 6550 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 6551 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 6552 } 6553 6554 /// \brief Analyze profitability of direct move 6555 /// prefer float load to int load plus direct move 6556 /// when there is no integer use of int load 6557 static bool directMoveIsProfitable(const SDValue &Op) { 6558 SDNode *Origin = Op.getOperand(0).getNode(); 6559 if (Origin->getOpcode() != ISD::LOAD) 6560 return true; 6561 6562 for (SDNode::use_iterator UI = Origin->use_begin(), 6563 UE = Origin->use_end(); 6564 UI != UE; ++UI) { 6565 6566 // Only look at the users of the loaded value. 6567 if (UI.getUse().get().getResNo() != 0) 6568 continue; 6569 6570 if (UI->getOpcode() != ISD::SINT_TO_FP && 6571 UI->getOpcode() != ISD::UINT_TO_FP) 6572 return true; 6573 } 6574 6575 return false; 6576 } 6577 6578 /// \brief Custom lowers integer to floating point conversions to use 6579 /// the direct move instructions available in ISA 2.07 to avoid the 6580 /// need for load/store combinations. 6581 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 6582 SelectionDAG &DAG, 6583 const SDLoc &dl) const { 6584 assert((Op.getValueType() == MVT::f32 || 6585 Op.getValueType() == MVT::f64) && 6586 "Invalid floating point type as target of conversion"); 6587 assert(Subtarget.hasFPCVT() && 6588 "Int to FP conversions with direct moves require FPCVT"); 6589 SDValue FP; 6590 SDValue Src = Op.getOperand(0); 6591 bool SinglePrec = Op.getValueType() == MVT::f32; 6592 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 6593 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 6594 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 6595 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 6596 6597 if (WordInt) { 6598 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 6599 dl, MVT::f64, Src); 6600 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 6601 } 6602 else { 6603 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 6604 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 6605 } 6606 6607 return FP; 6608 } 6609 6610 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 6611 SelectionDAG &DAG) const { 6612 SDLoc dl(Op); 6613 6614 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 6615 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 6616 return SDValue(); 6617 6618 SDValue Value = Op.getOperand(0); 6619 // The values are now known to be -1 (false) or 1 (true). To convert this 6620 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 6621 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 6622 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 6623 6624 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 6625 6626 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 6627 6628 if (Op.getValueType() != MVT::v4f64) 6629 Value = DAG.getNode(ISD::FP_ROUND, dl, 6630 Op.getValueType(), Value, 6631 DAG.getIntPtrConstant(1, dl)); 6632 return Value; 6633 } 6634 6635 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 6636 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 6637 return SDValue(); 6638 6639 if (Op.getOperand(0).getValueType() == MVT::i1) 6640 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 6641 DAG.getConstantFP(1.0, dl, Op.getValueType()), 6642 DAG.getConstantFP(0.0, dl, Op.getValueType())); 6643 6644 // If we have direct moves, we can do all the conversion, skip the store/load 6645 // however, without FPCVT we can't do most conversions. 6646 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 6647 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 6648 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 6649 6650 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 6651 "UINT_TO_FP is supported only with FPCVT"); 6652 6653 // If we have FCFIDS, then use it when converting to single-precision. 6654 // Otherwise, convert to double-precision and then round. 6655 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 6656 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 6657 : PPCISD::FCFIDS) 6658 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 6659 : PPCISD::FCFID); 6660 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 6661 ? MVT::f32 6662 : MVT::f64; 6663 6664 if (Op.getOperand(0).getValueType() == MVT::i64) { 6665 SDValue SINT = Op.getOperand(0); 6666 // When converting to single-precision, we actually need to convert 6667 // to double-precision first and then round to single-precision. 6668 // To avoid double-rounding effects during that operation, we have 6669 // to prepare the input operand. Bits that might be truncated when 6670 // converting to double-precision are replaced by a bit that won't 6671 // be lost at this stage, but is below the single-precision rounding 6672 // position. 6673 // 6674 // However, if -enable-unsafe-fp-math is in effect, accept double 6675 // rounding to avoid the extra overhead. 6676 if (Op.getValueType() == MVT::f32 && 6677 !Subtarget.hasFPCVT() && 6678 !DAG.getTarget().Options.UnsafeFPMath) { 6679 6680 // Twiddle input to make sure the low 11 bits are zero. (If this 6681 // is the case, we are guaranteed the value will fit into the 53 bit 6682 // mantissa of an IEEE double-precision value without rounding.) 6683 // If any of those low 11 bits were not zero originally, make sure 6684 // bit 12 (value 2048) is set instead, so that the final rounding 6685 // to single-precision gets the correct result. 6686 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 6687 SINT, DAG.getConstant(2047, dl, MVT::i64)); 6688 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 6689 Round, DAG.getConstant(2047, dl, MVT::i64)); 6690 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 6691 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 6692 Round, DAG.getConstant(-2048, dl, MVT::i64)); 6693 6694 // However, we cannot use that value unconditionally: if the magnitude 6695 // of the input value is small, the bit-twiddling we did above might 6696 // end up visibly changing the output. Fortunately, in that case, we 6697 // don't need to twiddle bits since the original input will convert 6698 // exactly to double-precision floating-point already. Therefore, 6699 // construct a conditional to use the original value if the top 11 6700 // bits are all sign-bit copies, and use the rounded value computed 6701 // above otherwise. 6702 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 6703 SINT, DAG.getConstant(53, dl, MVT::i32)); 6704 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 6705 Cond, DAG.getConstant(1, dl, MVT::i64)); 6706 Cond = DAG.getSetCC(dl, MVT::i32, 6707 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 6708 6709 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 6710 } 6711 6712 ReuseLoadInfo RLI; 6713 SDValue Bits; 6714 6715 MachineFunction &MF = DAG.getMachineFunction(); 6716 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 6717 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, false, 6718 false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo, 6719 RLI.Ranges); 6720 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6721 } else if (Subtarget.hasLFIWAX() && 6722 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 6723 MachineMemOperand *MMO = 6724 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6725 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6726 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6727 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 6728 DAG.getVTList(MVT::f64, MVT::Other), 6729 Ops, MVT::i32, MMO); 6730 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6731 } else if (Subtarget.hasFPCVT() && 6732 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 6733 MachineMemOperand *MMO = 6734 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6735 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6736 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6737 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 6738 DAG.getVTList(MVT::f64, MVT::Other), 6739 Ops, MVT::i32, MMO); 6740 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6741 } else if (((Subtarget.hasLFIWAX() && 6742 SINT.getOpcode() == ISD::SIGN_EXTEND) || 6743 (Subtarget.hasFPCVT() && 6744 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 6745 SINT.getOperand(0).getValueType() == MVT::i32) { 6746 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 6747 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6748 6749 int FrameIdx = FrameInfo->CreateStackObject(4, 4, false); 6750 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6751 6752 SDValue Store = DAG.getStore( 6753 DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 6754 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6755 false, false, 0); 6756 6757 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 6758 "Expected an i32 store"); 6759 6760 RLI.Ptr = FIdx; 6761 RLI.Chain = Store; 6762 RLI.MPI = 6763 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 6764 RLI.Alignment = 4; 6765 6766 MachineMemOperand *MMO = 6767 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6768 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6769 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6770 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 6771 PPCISD::LFIWZX : PPCISD::LFIWAX, 6772 dl, DAG.getVTList(MVT::f64, MVT::Other), 6773 Ops, MVT::i32, MMO); 6774 } else 6775 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 6776 6777 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 6778 6779 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 6780 FP = DAG.getNode(ISD::FP_ROUND, dl, 6781 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 6782 return FP; 6783 } 6784 6785 assert(Op.getOperand(0).getValueType() == MVT::i32 && 6786 "Unhandled INT_TO_FP type in custom expander!"); 6787 // Since we only generate this in 64-bit mode, we can take advantage of 6788 // 64-bit registers. In particular, sign extend the input value into the 6789 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 6790 // then lfd it and fcfid it. 6791 MachineFunction &MF = DAG.getMachineFunction(); 6792 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 6793 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6794 6795 SDValue Ld; 6796 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 6797 ReuseLoadInfo RLI; 6798 bool ReusingLoad; 6799 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 6800 DAG))) { 6801 int FrameIdx = FrameInfo->CreateStackObject(4, 4, false); 6802 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6803 6804 SDValue Store = DAG.getStore( 6805 DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 6806 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6807 false, false, 0); 6808 6809 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 6810 "Expected an i32 store"); 6811 6812 RLI.Ptr = FIdx; 6813 RLI.Chain = Store; 6814 RLI.MPI = 6815 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 6816 RLI.Alignment = 4; 6817 } 6818 6819 MachineMemOperand *MMO = 6820 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6821 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6822 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6823 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 6824 PPCISD::LFIWZX : PPCISD::LFIWAX, 6825 dl, DAG.getVTList(MVT::f64, MVT::Other), 6826 Ops, MVT::i32, MMO); 6827 if (ReusingLoad) 6828 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 6829 } else { 6830 assert(Subtarget.isPPC64() && 6831 "i32->FP without LFIWAX supported only on PPC64"); 6832 6833 int FrameIdx = FrameInfo->CreateStackObject(8, 8, false); 6834 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6835 6836 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 6837 Op.getOperand(0)); 6838 6839 // STD the extended value into the stack slot. 6840 SDValue Store = DAG.getStore( 6841 DAG.getEntryNode(), dl, Ext64, FIdx, 6842 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6843 false, false, 0); 6844 6845 // Load the value as a double. 6846 Ld = DAG.getLoad( 6847 MVT::f64, dl, Store, FIdx, 6848 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6849 false, false, false, 0); 6850 } 6851 6852 // FCFID it and return it. 6853 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 6854 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 6855 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 6856 DAG.getIntPtrConstant(0, dl)); 6857 return FP; 6858 } 6859 6860 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 6861 SelectionDAG &DAG) const { 6862 SDLoc dl(Op); 6863 /* 6864 The rounding mode is in bits 30:31 of FPSR, and has the following 6865 settings: 6866 00 Round to nearest 6867 01 Round to 0 6868 10 Round to +inf 6869 11 Round to -inf 6870 6871 FLT_ROUNDS, on the other hand, expects the following: 6872 -1 Undefined 6873 0 Round to 0 6874 1 Round to nearest 6875 2 Round to +inf 6876 3 Round to -inf 6877 6878 To perform the conversion, we do: 6879 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 6880 */ 6881 6882 MachineFunction &MF = DAG.getMachineFunction(); 6883 EVT VT = Op.getValueType(); 6884 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6885 6886 // Save FP Control Word to register 6887 EVT NodeTys[] = { 6888 MVT::f64, // return register 6889 MVT::Glue // unused in this context 6890 }; 6891 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None); 6892 6893 // Save FP register to stack slot 6894 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false); 6895 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 6896 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, 6897 StackSlot, MachinePointerInfo(), false, false,0); 6898 6899 // Load FP Control Word from low 32 bits of stack slot. 6900 SDValue Four = DAG.getConstant(4, dl, PtrVT); 6901 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 6902 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(), 6903 false, false, false, 0); 6904 6905 // Transform as necessary 6906 SDValue CWD1 = 6907 DAG.getNode(ISD::AND, dl, MVT::i32, 6908 CWD, DAG.getConstant(3, dl, MVT::i32)); 6909 SDValue CWD2 = 6910 DAG.getNode(ISD::SRL, dl, MVT::i32, 6911 DAG.getNode(ISD::AND, dl, MVT::i32, 6912 DAG.getNode(ISD::XOR, dl, MVT::i32, 6913 CWD, DAG.getConstant(3, dl, MVT::i32)), 6914 DAG.getConstant(3, dl, MVT::i32)), 6915 DAG.getConstant(1, dl, MVT::i32)); 6916 6917 SDValue RetVal = 6918 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 6919 6920 return DAG.getNode((VT.getSizeInBits() < 16 ? 6921 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 6922 } 6923 6924 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 6925 EVT VT = Op.getValueType(); 6926 unsigned BitWidth = VT.getSizeInBits(); 6927 SDLoc dl(Op); 6928 assert(Op.getNumOperands() == 3 && 6929 VT == Op.getOperand(1).getValueType() && 6930 "Unexpected SHL!"); 6931 6932 // Expand into a bunch of logical ops. Note that these ops 6933 // depend on the PPC behavior for oversized shift amounts. 6934 SDValue Lo = Op.getOperand(0); 6935 SDValue Hi = Op.getOperand(1); 6936 SDValue Amt = Op.getOperand(2); 6937 EVT AmtVT = Amt.getValueType(); 6938 6939 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6940 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6941 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 6942 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 6943 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 6944 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6945 DAG.getConstant(-BitWidth, dl, AmtVT)); 6946 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 6947 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 6948 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 6949 SDValue OutOps[] = { OutLo, OutHi }; 6950 return DAG.getMergeValues(OutOps, dl); 6951 } 6952 6953 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 6954 EVT VT = Op.getValueType(); 6955 SDLoc dl(Op); 6956 unsigned BitWidth = VT.getSizeInBits(); 6957 assert(Op.getNumOperands() == 3 && 6958 VT == Op.getOperand(1).getValueType() && 6959 "Unexpected SRL!"); 6960 6961 // Expand into a bunch of logical ops. Note that these ops 6962 // depend on the PPC behavior for oversized shift amounts. 6963 SDValue Lo = Op.getOperand(0); 6964 SDValue Hi = Op.getOperand(1); 6965 SDValue Amt = Op.getOperand(2); 6966 EVT AmtVT = Amt.getValueType(); 6967 6968 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6969 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6970 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 6971 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 6972 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 6973 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6974 DAG.getConstant(-BitWidth, dl, AmtVT)); 6975 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 6976 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 6977 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 6978 SDValue OutOps[] = { OutLo, OutHi }; 6979 return DAG.getMergeValues(OutOps, dl); 6980 } 6981 6982 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 6983 SDLoc dl(Op); 6984 EVT VT = Op.getValueType(); 6985 unsigned BitWidth = VT.getSizeInBits(); 6986 assert(Op.getNumOperands() == 3 && 6987 VT == Op.getOperand(1).getValueType() && 6988 "Unexpected SRA!"); 6989 6990 // Expand into a bunch of logical ops, followed by a select_cc. 6991 SDValue Lo = Op.getOperand(0); 6992 SDValue Hi = Op.getOperand(1); 6993 SDValue Amt = Op.getOperand(2); 6994 EVT AmtVT = Amt.getValueType(); 6995 6996 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6997 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6998 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 6999 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 7000 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7001 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7002 DAG.getConstant(-BitWidth, dl, AmtVT)); 7003 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 7004 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 7005 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 7006 Tmp4, Tmp6, ISD::SETLE); 7007 SDValue OutOps[] = { OutLo, OutHi }; 7008 return DAG.getMergeValues(OutOps, dl); 7009 } 7010 7011 //===----------------------------------------------------------------------===// 7012 // Vector related lowering. 7013 // 7014 7015 /// BuildSplatI - Build a canonical splati of Val with an element size of 7016 /// SplatSize. Cast the result to VT. 7017 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 7018 SelectionDAG &DAG, const SDLoc &dl) { 7019 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 7020 7021 static const MVT VTys[] = { // canonical VT to use for each size. 7022 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 7023 }; 7024 7025 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 7026 7027 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 7028 if (Val == -1) 7029 SplatSize = 1; 7030 7031 EVT CanonicalVT = VTys[SplatSize-1]; 7032 7033 // Build a canonical splat for this value. 7034 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 7035 } 7036 7037 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 7038 /// specified intrinsic ID. 7039 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 7040 const SDLoc &dl, EVT DestVT = MVT::Other) { 7041 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 7042 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7043 DAG.getConstant(IID, dl, MVT::i32), Op); 7044 } 7045 7046 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 7047 /// specified intrinsic ID. 7048 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 7049 SelectionDAG &DAG, const SDLoc &dl, 7050 EVT DestVT = MVT::Other) { 7051 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 7052 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7053 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 7054 } 7055 7056 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 7057 /// specified intrinsic ID. 7058 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 7059 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 7060 EVT DestVT = MVT::Other) { 7061 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 7062 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7063 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 7064 } 7065 7066 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 7067 /// amount. The result has the specified value type. 7068 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 7069 SelectionDAG &DAG, const SDLoc &dl) { 7070 // Force LHS/RHS to be the right type. 7071 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 7072 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 7073 7074 int Ops[16]; 7075 for (unsigned i = 0; i != 16; ++i) 7076 Ops[i] = i + Amt; 7077 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 7078 return DAG.getNode(ISD::BITCAST, dl, VT, T); 7079 } 7080 7081 // If this is a case we can't handle, return null and let the default 7082 // expansion code take care of it. If we CAN select this case, and if it 7083 // selects to a single instruction, return Op. Otherwise, if we can codegen 7084 // this case more efficiently than a constant pool load, lower it to the 7085 // sequence of ops that should be used. 7086 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 7087 SelectionDAG &DAG) const { 7088 SDLoc dl(Op); 7089 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 7090 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 7091 7092 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 7093 // We first build an i32 vector, load it into a QPX register, 7094 // then convert it to a floating-point vector and compare it 7095 // to a zero vector to get the boolean result. 7096 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7097 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7098 MachinePointerInfo PtrInfo = 7099 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7100 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7101 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7102 7103 assert(BVN->getNumOperands() == 4 && 7104 "BUILD_VECTOR for v4i1 does not have 4 operands"); 7105 7106 bool IsConst = true; 7107 for (unsigned i = 0; i < 4; ++i) { 7108 if (BVN->getOperand(i).isUndef()) continue; 7109 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 7110 IsConst = false; 7111 break; 7112 } 7113 } 7114 7115 if (IsConst) { 7116 Constant *One = 7117 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 7118 Constant *NegOne = 7119 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 7120 7121 Constant *CV[4]; 7122 for (unsigned i = 0; i < 4; ++i) { 7123 if (BVN->getOperand(i).isUndef()) 7124 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 7125 else if (isNullConstant(BVN->getOperand(i))) 7126 CV[i] = NegOne; 7127 else 7128 CV[i] = One; 7129 } 7130 7131 Constant *CP = ConstantVector::get(CV); 7132 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), 7133 16 /* alignment */); 7134 7135 SDValue Ops[] = {DAG.getEntryNode(), CPIdx}; 7136 SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other}); 7137 return DAG.getMemIntrinsicNode( 7138 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 7139 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 7140 } 7141 7142 SmallVector<SDValue, 4> Stores; 7143 for (unsigned i = 0; i < 4; ++i) { 7144 if (BVN->getOperand(i).isUndef()) continue; 7145 7146 unsigned Offset = 4*i; 7147 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 7148 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 7149 7150 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 7151 if (StoreSize > 4) { 7152 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 7153 BVN->getOperand(i), Idx, 7154 PtrInfo.getWithOffset(Offset), 7155 MVT::i32, false, false, 0)); 7156 } else { 7157 SDValue StoreValue = BVN->getOperand(i); 7158 if (StoreSize < 4) 7159 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 7160 7161 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, 7162 StoreValue, Idx, 7163 PtrInfo.getWithOffset(Offset), 7164 false, false, 0)); 7165 } 7166 } 7167 7168 SDValue StoreChain; 7169 if (!Stores.empty()) 7170 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7171 else 7172 StoreChain = DAG.getEntryNode(); 7173 7174 // Now load from v4i32 into the QPX register; this will extend it to 7175 // v4i64 but not yet convert it to a floating point. Nevertheless, this 7176 // is typed as v4f64 because the QPX register integer states are not 7177 // explicitly represented. 7178 7179 SDValue Ops[] = {StoreChain, 7180 DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32), 7181 FIdx}; 7182 SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other}); 7183 7184 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 7185 dl, VTs, Ops, MVT::v4i32, PtrInfo); 7186 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 7187 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 7188 LoadedVect); 7189 7190 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64); 7191 7192 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 7193 } 7194 7195 // All other QPX vectors are handled by generic code. 7196 if (Subtarget.hasQPX()) 7197 return SDValue(); 7198 7199 // Check if this is a splat of a constant value. 7200 APInt APSplatBits, APSplatUndef; 7201 unsigned SplatBitSize; 7202 bool HasAnyUndefs; 7203 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 7204 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 7205 SplatBitSize > 32) 7206 return SDValue(); 7207 7208 unsigned SplatBits = APSplatBits.getZExtValue(); 7209 unsigned SplatUndef = APSplatUndef.getZExtValue(); 7210 unsigned SplatSize = SplatBitSize / 8; 7211 7212 // First, handle single instruction cases. 7213 7214 // All zeros? 7215 if (SplatBits == 0) { 7216 // Canonicalize all zero vectors to be v4i32. 7217 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 7218 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 7219 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 7220 } 7221 return Op; 7222 } 7223 7224 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 7225 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 7226 (32-SplatBitSize)); 7227 if (SextVal >= -16 && SextVal <= 15) 7228 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 7229 7230 // Two instruction sequences. 7231 7232 // If this value is in the range [-32,30] and is even, use: 7233 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 7234 // If this value is in the range [17,31] and is odd, use: 7235 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 7236 // If this value is in the range [-31,-17] and is odd, use: 7237 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 7238 // Note the last two are three-instruction sequences. 7239 if (SextVal >= -32 && SextVal <= 31) { 7240 // To avoid having these optimizations undone by constant folding, 7241 // we convert to a pseudo that will be expanded later into one of 7242 // the above forms. 7243 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 7244 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 7245 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 7246 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 7247 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 7248 if (VT == Op.getValueType()) 7249 return RetVal; 7250 else 7251 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 7252 } 7253 7254 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 7255 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 7256 // for fneg/fabs. 7257 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 7258 // Make -1 and vspltisw -1: 7259 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 7260 7261 // Make the VSLW intrinsic, computing 0x8000_0000. 7262 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 7263 OnesV, DAG, dl); 7264 7265 // xor by OnesV to invert it. 7266 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 7267 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7268 } 7269 7270 // Check to see if this is a wide variety of vsplti*, binop self cases. 7271 static const signed char SplatCsts[] = { 7272 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 7273 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 7274 }; 7275 7276 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 7277 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 7278 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 7279 int i = SplatCsts[idx]; 7280 7281 // Figure out what shift amount will be used by altivec if shifted by i in 7282 // this splat size. 7283 unsigned TypeShiftAmt = i & (SplatBitSize-1); 7284 7285 // vsplti + shl self. 7286 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 7287 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7288 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7289 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 7290 Intrinsic::ppc_altivec_vslw 7291 }; 7292 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7293 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7294 } 7295 7296 // vsplti + srl self. 7297 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 7298 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7299 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7300 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 7301 Intrinsic::ppc_altivec_vsrw 7302 }; 7303 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7304 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7305 } 7306 7307 // vsplti + sra self. 7308 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 7309 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7310 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7311 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 7312 Intrinsic::ppc_altivec_vsraw 7313 }; 7314 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7315 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7316 } 7317 7318 // vsplti + rol self. 7319 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 7320 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 7321 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7322 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7323 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 7324 Intrinsic::ppc_altivec_vrlw 7325 }; 7326 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7327 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7328 } 7329 7330 // t = vsplti c, result = vsldoi t, t, 1 7331 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 7332 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7333 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 7334 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7335 } 7336 // t = vsplti c, result = vsldoi t, t, 2 7337 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 7338 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7339 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 7340 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7341 } 7342 // t = vsplti c, result = vsldoi t, t, 3 7343 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 7344 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7345 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 7346 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7347 } 7348 } 7349 7350 return SDValue(); 7351 } 7352 7353 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 7354 /// the specified operations to build the shuffle. 7355 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 7356 SDValue RHS, SelectionDAG &DAG, 7357 const SDLoc &dl) { 7358 unsigned OpNum = (PFEntry >> 26) & 0x0F; 7359 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 7360 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 7361 7362 enum { 7363 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 7364 OP_VMRGHW, 7365 OP_VMRGLW, 7366 OP_VSPLTISW0, 7367 OP_VSPLTISW1, 7368 OP_VSPLTISW2, 7369 OP_VSPLTISW3, 7370 OP_VSLDOI4, 7371 OP_VSLDOI8, 7372 OP_VSLDOI12 7373 }; 7374 7375 if (OpNum == OP_COPY) { 7376 if (LHSID == (1*9+2)*9+3) return LHS; 7377 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 7378 return RHS; 7379 } 7380 7381 SDValue OpLHS, OpRHS; 7382 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 7383 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 7384 7385 int ShufIdxs[16]; 7386 switch (OpNum) { 7387 default: llvm_unreachable("Unknown i32 permute!"); 7388 case OP_VMRGHW: 7389 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 7390 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 7391 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 7392 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 7393 break; 7394 case OP_VMRGLW: 7395 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 7396 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 7397 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 7398 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 7399 break; 7400 case OP_VSPLTISW0: 7401 for (unsigned i = 0; i != 16; ++i) 7402 ShufIdxs[i] = (i&3)+0; 7403 break; 7404 case OP_VSPLTISW1: 7405 for (unsigned i = 0; i != 16; ++i) 7406 ShufIdxs[i] = (i&3)+4; 7407 break; 7408 case OP_VSPLTISW2: 7409 for (unsigned i = 0; i != 16; ++i) 7410 ShufIdxs[i] = (i&3)+8; 7411 break; 7412 case OP_VSPLTISW3: 7413 for (unsigned i = 0; i != 16; ++i) 7414 ShufIdxs[i] = (i&3)+12; 7415 break; 7416 case OP_VSLDOI4: 7417 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 7418 case OP_VSLDOI8: 7419 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 7420 case OP_VSLDOI12: 7421 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 7422 } 7423 EVT VT = OpLHS.getValueType(); 7424 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 7425 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 7426 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 7427 return DAG.getNode(ISD::BITCAST, dl, VT, T); 7428 } 7429 7430 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 7431 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 7432 /// return the code it can be lowered into. Worst case, it can always be 7433 /// lowered into a vperm. 7434 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 7435 SelectionDAG &DAG) const { 7436 SDLoc dl(Op); 7437 SDValue V1 = Op.getOperand(0); 7438 SDValue V2 = Op.getOperand(1); 7439 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 7440 EVT VT = Op.getValueType(); 7441 bool isLittleEndian = Subtarget.isLittleEndian(); 7442 7443 unsigned ShiftElts, InsertAtByte; 7444 bool Swap; 7445 if (Subtarget.hasP9Vector() && 7446 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 7447 isLittleEndian)) { 7448 if (Swap) 7449 std::swap(V1, V2); 7450 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 7451 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 7452 if (ShiftElts) { 7453 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 7454 DAG.getConstant(ShiftElts, dl, MVT::i32)); 7455 SDValue Ins = DAG.getNode(PPCISD::XXINSERT, dl, MVT::v4i32, Conv1, Shl, 7456 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 7457 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 7458 } 7459 SDValue Ins = DAG.getNode(PPCISD::XXINSERT, dl, MVT::v4i32, Conv1, Conv2, 7460 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 7461 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 7462 } 7463 7464 if (Subtarget.hasVSX()) { 7465 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 7466 int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG); 7467 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 7468 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 7469 DAG.getConstant(SplatIdx, dl, MVT::i32)); 7470 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 7471 } 7472 7473 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 7474 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 7475 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 7476 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 7477 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 7478 } 7479 7480 } 7481 7482 if (Subtarget.hasQPX()) { 7483 if (VT.getVectorNumElements() != 4) 7484 return SDValue(); 7485 7486 if (V2.isUndef()) V2 = V1; 7487 7488 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 7489 if (AlignIdx != -1) { 7490 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 7491 DAG.getConstant(AlignIdx, dl, MVT::i32)); 7492 } else if (SVOp->isSplat()) { 7493 int SplatIdx = SVOp->getSplatIndex(); 7494 if (SplatIdx >= 4) { 7495 std::swap(V1, V2); 7496 SplatIdx -= 4; 7497 } 7498 7499 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 7500 DAG.getConstant(SplatIdx, dl, MVT::i32)); 7501 } 7502 7503 // Lower this into a qvgpci/qvfperm pair. 7504 7505 // Compute the qvgpci literal 7506 unsigned idx = 0; 7507 for (unsigned i = 0; i < 4; ++i) { 7508 int m = SVOp->getMaskElt(i); 7509 unsigned mm = m >= 0 ? (unsigned) m : i; 7510 idx |= mm << (3-i)*3; 7511 } 7512 7513 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 7514 DAG.getConstant(idx, dl, MVT::i32)); 7515 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 7516 } 7517 7518 // Cases that are handled by instructions that take permute immediates 7519 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 7520 // selected by the instruction selector. 7521 if (V2.isUndef()) { 7522 if (PPC::isSplatShuffleMask(SVOp, 1) || 7523 PPC::isSplatShuffleMask(SVOp, 2) || 7524 PPC::isSplatShuffleMask(SVOp, 4) || 7525 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 7526 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 7527 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 7528 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 7529 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 7530 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 7531 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 7532 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 7533 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 7534 (Subtarget.hasP8Altivec() && ( 7535 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 7536 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 7537 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 7538 return Op; 7539 } 7540 } 7541 7542 // Altivec has a variety of "shuffle immediates" that take two vector inputs 7543 // and produce a fixed permutation. If any of these match, do not lower to 7544 // VPERM. 7545 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 7546 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 7547 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 7548 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 7549 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 7550 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 7551 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 7552 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 7553 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 7554 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 7555 (Subtarget.hasP8Altivec() && ( 7556 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 7557 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 7558 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 7559 return Op; 7560 7561 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 7562 // perfect shuffle table to emit an optimal matching sequence. 7563 ArrayRef<int> PermMask = SVOp->getMask(); 7564 7565 unsigned PFIndexes[4]; 7566 bool isFourElementShuffle = true; 7567 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 7568 unsigned EltNo = 8; // Start out undef. 7569 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 7570 if (PermMask[i*4+j] < 0) 7571 continue; // Undef, ignore it. 7572 7573 unsigned ByteSource = PermMask[i*4+j]; 7574 if ((ByteSource & 3) != j) { 7575 isFourElementShuffle = false; 7576 break; 7577 } 7578 7579 if (EltNo == 8) { 7580 EltNo = ByteSource/4; 7581 } else if (EltNo != ByteSource/4) { 7582 isFourElementShuffle = false; 7583 break; 7584 } 7585 } 7586 PFIndexes[i] = EltNo; 7587 } 7588 7589 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 7590 // perfect shuffle vector to determine if it is cost effective to do this as 7591 // discrete instructions, or whether we should use a vperm. 7592 // For now, we skip this for little endian until such time as we have a 7593 // little-endian perfect shuffle table. 7594 if (isFourElementShuffle && !isLittleEndian) { 7595 // Compute the index in the perfect shuffle table. 7596 unsigned PFTableIndex = 7597 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 7598 7599 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 7600 unsigned Cost = (PFEntry >> 30); 7601 7602 // Determining when to avoid vperm is tricky. Many things affect the cost 7603 // of vperm, particularly how many times the perm mask needs to be computed. 7604 // For example, if the perm mask can be hoisted out of a loop or is already 7605 // used (perhaps because there are multiple permutes with the same shuffle 7606 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 7607 // the loop requires an extra register. 7608 // 7609 // As a compromise, we only emit discrete instructions if the shuffle can be 7610 // generated in 3 or fewer operations. When we have loop information 7611 // available, if this block is within a loop, we should avoid using vperm 7612 // for 3-operation perms and use a constant pool load instead. 7613 if (Cost < 3) 7614 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 7615 } 7616 7617 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 7618 // vector that will get spilled to the constant pool. 7619 if (V2.isUndef()) V2 = V1; 7620 7621 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 7622 // that it is in input element units, not in bytes. Convert now. 7623 7624 // For little endian, the order of the input vectors is reversed, and 7625 // the permutation mask is complemented with respect to 31. This is 7626 // necessary to produce proper semantics with the big-endian-biased vperm 7627 // instruction. 7628 EVT EltVT = V1.getValueType().getVectorElementType(); 7629 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 7630 7631 SmallVector<SDValue, 16> ResultMask; 7632 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 7633 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 7634 7635 for (unsigned j = 0; j != BytesPerElement; ++j) 7636 if (isLittleEndian) 7637 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 7638 dl, MVT::i32)); 7639 else 7640 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 7641 MVT::i32)); 7642 } 7643 7644 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 7645 if (isLittleEndian) 7646 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 7647 V2, V1, VPermMask); 7648 else 7649 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 7650 V1, V2, VPermMask); 7651 } 7652 7653 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 7654 /// vector comparison. If it is, return true and fill in Opc/isDot with 7655 /// information about the intrinsic. 7656 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 7657 bool &isDot, const PPCSubtarget &Subtarget) { 7658 unsigned IntrinsicID = 7659 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 7660 CompareOpc = -1; 7661 isDot = false; 7662 switch (IntrinsicID) { 7663 default: return false; 7664 // Comparison predicates. 7665 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break; 7666 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; 7667 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break; 7668 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break; 7669 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; 7670 case Intrinsic::ppc_altivec_vcmpequd_p: 7671 if (Subtarget.hasP8Altivec()) { 7672 CompareOpc = 199; 7673 isDot = 1; 7674 } else 7675 return false; 7676 7677 break; 7678 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; 7679 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; 7680 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; 7681 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; 7682 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; 7683 case Intrinsic::ppc_altivec_vcmpgtsd_p: 7684 if (Subtarget.hasP8Altivec()) { 7685 CompareOpc = 967; 7686 isDot = 1; 7687 } else 7688 return false; 7689 7690 break; 7691 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; 7692 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; 7693 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; 7694 case Intrinsic::ppc_altivec_vcmpgtud_p: 7695 if (Subtarget.hasP8Altivec()) { 7696 CompareOpc = 711; 7697 isDot = 1; 7698 } else 7699 return false; 7700 7701 break; 7702 // VSX predicate comparisons use the same infrastructure 7703 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 7704 case Intrinsic::ppc_vsx_xvcmpgedp_p: 7705 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 7706 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 7707 case Intrinsic::ppc_vsx_xvcmpgesp_p: 7708 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 7709 if (Subtarget.hasVSX()) { 7710 switch (IntrinsicID) { 7711 case Intrinsic::ppc_vsx_xvcmpeqdp_p: CompareOpc = 99; break; 7712 case Intrinsic::ppc_vsx_xvcmpgedp_p: CompareOpc = 115; break; 7713 case Intrinsic::ppc_vsx_xvcmpgtdp_p: CompareOpc = 107; break; 7714 case Intrinsic::ppc_vsx_xvcmpeqsp_p: CompareOpc = 67; break; 7715 case Intrinsic::ppc_vsx_xvcmpgesp_p: CompareOpc = 83; break; 7716 case Intrinsic::ppc_vsx_xvcmpgtsp_p: CompareOpc = 75; break; 7717 } 7718 isDot = 1; 7719 } 7720 else 7721 return false; 7722 7723 break; 7724 7725 // Normal Comparisons. 7726 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break; 7727 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break; 7728 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break; 7729 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break; 7730 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break; 7731 case Intrinsic::ppc_altivec_vcmpequd: 7732 if (Subtarget.hasP8Altivec()) { 7733 CompareOpc = 199; 7734 isDot = 0; 7735 } else 7736 return false; 7737 7738 break; 7739 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break; 7740 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break; 7741 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break; 7742 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break; 7743 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break; 7744 case Intrinsic::ppc_altivec_vcmpgtsd: 7745 if (Subtarget.hasP8Altivec()) { 7746 CompareOpc = 967; 7747 isDot = 0; 7748 } else 7749 return false; 7750 7751 break; 7752 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break; 7753 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break; 7754 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break; 7755 case Intrinsic::ppc_altivec_vcmpgtud: 7756 if (Subtarget.hasP8Altivec()) { 7757 CompareOpc = 711; 7758 isDot = 0; 7759 } else 7760 return false; 7761 7762 break; 7763 } 7764 return true; 7765 } 7766 7767 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 7768 /// lower, do it, otherwise return null. 7769 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 7770 SelectionDAG &DAG) const { 7771 unsigned IntrinsicID = 7772 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 7773 7774 if (IntrinsicID == Intrinsic::thread_pointer) { 7775 // Reads the thread pointer register, used for __builtin_thread_pointer. 7776 bool is64bit = Subtarget.isPPC64(); 7777 return DAG.getRegister(is64bit ? PPC::X13 : PPC::R2, 7778 is64bit ? MVT::i64 : MVT::i32); 7779 } 7780 7781 // If this is a lowered altivec predicate compare, CompareOpc is set to the 7782 // opcode number of the comparison. 7783 SDLoc dl(Op); 7784 int CompareOpc; 7785 bool isDot; 7786 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 7787 return SDValue(); // Don't custom lower most intrinsics. 7788 7789 // If this is a non-dot comparison, make the VCMP node and we are done. 7790 if (!isDot) { 7791 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 7792 Op.getOperand(1), Op.getOperand(2), 7793 DAG.getConstant(CompareOpc, dl, MVT::i32)); 7794 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 7795 } 7796 7797 // Create the PPCISD altivec 'dot' comparison node. 7798 SDValue Ops[] = { 7799 Op.getOperand(2), // LHS 7800 Op.getOperand(3), // RHS 7801 DAG.getConstant(CompareOpc, dl, MVT::i32) 7802 }; 7803 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 7804 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 7805 7806 // Now that we have the comparison, emit a copy from the CR to a GPR. 7807 // This is flagged to the above dot comparison. 7808 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 7809 DAG.getRegister(PPC::CR6, MVT::i32), 7810 CompNode.getValue(1)); 7811 7812 // Unpack the result based on how the target uses it. 7813 unsigned BitNo; // Bit # of CR6. 7814 bool InvertBit; // Invert result? 7815 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 7816 default: // Can't happen, don't crash on invalid number though. 7817 case 0: // Return the value of the EQ bit of CR6. 7818 BitNo = 0; InvertBit = false; 7819 break; 7820 case 1: // Return the inverted value of the EQ bit of CR6. 7821 BitNo = 0; InvertBit = true; 7822 break; 7823 case 2: // Return the value of the LT bit of CR6. 7824 BitNo = 2; InvertBit = false; 7825 break; 7826 case 3: // Return the inverted value of the LT bit of CR6. 7827 BitNo = 2; InvertBit = true; 7828 break; 7829 } 7830 7831 // Shift the bit into the low position. 7832 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 7833 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 7834 // Isolate the bit. 7835 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 7836 DAG.getConstant(1, dl, MVT::i32)); 7837 7838 // If we are supposed to, toggle the bit. 7839 if (InvertBit) 7840 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 7841 DAG.getConstant(1, dl, MVT::i32)); 7842 return Flags; 7843 } 7844 7845 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 7846 SelectionDAG &DAG) const { 7847 SDLoc dl(Op); 7848 // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int 7849 // instructions), but for smaller types, we need to first extend up to v2i32 7850 // before doing going farther. 7851 if (Op.getValueType() == MVT::v2i64) { 7852 EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 7853 if (ExtVT != MVT::v2i32) { 7854 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)); 7855 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op, 7856 DAG.getValueType(EVT::getVectorVT(*DAG.getContext(), 7857 ExtVT.getVectorElementType(), 4))); 7858 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op); 7859 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op, 7860 DAG.getValueType(MVT::v2i32)); 7861 } 7862 7863 return Op; 7864 } 7865 7866 return SDValue(); 7867 } 7868 7869 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 7870 SelectionDAG &DAG) const { 7871 SDLoc dl(Op); 7872 // Create a stack slot that is 16-byte aligned. 7873 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7874 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7875 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7876 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7877 7878 // Store the input value into Value#0 of the stack slot. 7879 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, 7880 Op.getOperand(0), FIdx, MachinePointerInfo(), 7881 false, false, 0); 7882 // Load it out. 7883 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(), 7884 false, false, false, 0); 7885 } 7886 7887 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 7888 SelectionDAG &DAG) const { 7889 SDLoc dl(Op); 7890 SDNode *N = Op.getNode(); 7891 7892 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 7893 "Unknown extract_vector_elt type"); 7894 7895 SDValue Value = N->getOperand(0); 7896 7897 // The first part of this is like the store lowering except that we don't 7898 // need to track the chain. 7899 7900 // The values are now known to be -1 (false) or 1 (true). To convert this 7901 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7902 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 7903 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 7904 7905 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 7906 // understand how to form the extending load. 7907 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 7908 7909 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 7910 7911 // Now convert to an integer and store. 7912 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 7913 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 7914 Value); 7915 7916 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7917 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7918 MachinePointerInfo PtrInfo = 7919 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7920 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7921 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7922 7923 SDValue StoreChain = DAG.getEntryNode(); 7924 SDValue Ops[] = {StoreChain, 7925 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 7926 Value, FIdx}; 7927 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 7928 7929 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 7930 dl, VTs, Ops, MVT::v4i32, PtrInfo); 7931 7932 // Extract the value requested. 7933 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 7934 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 7935 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 7936 7937 SDValue IntVal = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 7938 PtrInfo.getWithOffset(Offset), 7939 false, false, false, 0); 7940 7941 if (!Subtarget.useCRBits()) 7942 return IntVal; 7943 7944 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 7945 } 7946 7947 /// Lowering for QPX v4i1 loads 7948 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 7949 SelectionDAG &DAG) const { 7950 SDLoc dl(Op); 7951 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 7952 SDValue LoadChain = LN->getChain(); 7953 SDValue BasePtr = LN->getBasePtr(); 7954 7955 if (Op.getValueType() == MVT::v4f64 || 7956 Op.getValueType() == MVT::v4f32) { 7957 EVT MemVT = LN->getMemoryVT(); 7958 unsigned Alignment = LN->getAlignment(); 7959 7960 // If this load is properly aligned, then it is legal. 7961 if (Alignment >= MemVT.getStoreSize()) 7962 return Op; 7963 7964 EVT ScalarVT = Op.getValueType().getScalarType(), 7965 ScalarMemVT = MemVT.getScalarType(); 7966 unsigned Stride = ScalarMemVT.getStoreSize(); 7967 7968 SDValue Vals[4], LoadChains[4]; 7969 for (unsigned Idx = 0; Idx < 4; ++Idx) { 7970 SDValue Load; 7971 if (ScalarVT != ScalarMemVT) 7972 Load = 7973 DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 7974 BasePtr, 7975 LN->getPointerInfo().getWithOffset(Idx*Stride), 7976 ScalarMemVT, LN->isVolatile(), LN->isNonTemporal(), 7977 LN->isInvariant(), MinAlign(Alignment, Idx*Stride), 7978 LN->getAAInfo()); 7979 else 7980 Load = 7981 DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 7982 LN->getPointerInfo().getWithOffset(Idx*Stride), 7983 LN->isVolatile(), LN->isNonTemporal(), 7984 LN->isInvariant(), MinAlign(Alignment, Idx*Stride), 7985 LN->getAAInfo()); 7986 7987 if (Idx == 0 && LN->isIndexed()) { 7988 assert(LN->getAddressingMode() == ISD::PRE_INC && 7989 "Unknown addressing mode on vector load"); 7990 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 7991 LN->getAddressingMode()); 7992 } 7993 7994 Vals[Idx] = Load; 7995 LoadChains[Idx] = Load.getValue(1); 7996 7997 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 7998 DAG.getConstant(Stride, dl, 7999 BasePtr.getValueType())); 8000 } 8001 8002 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 8003 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals); 8004 8005 if (LN->isIndexed()) { 8006 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 8007 return DAG.getMergeValues(RetOps, dl); 8008 } 8009 8010 SDValue RetOps[] = { Value, TF }; 8011 return DAG.getMergeValues(RetOps, dl); 8012 } 8013 8014 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 8015 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 8016 8017 // To lower v4i1 from a byte array, we load the byte elements of the 8018 // vector and then reuse the BUILD_VECTOR logic. 8019 8020 SDValue VectElmts[4], VectElmtChains[4]; 8021 for (unsigned i = 0; i < 4; ++i) { 8022 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 8023 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 8024 8025 VectElmts[i] = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx, 8026 LN->getPointerInfo().getWithOffset(i), 8027 MVT::i8 /* memory type */, LN->isVolatile(), 8028 LN->isNonTemporal(), LN->isInvariant(), 8029 1 /* alignment */, LN->getAAInfo()); 8030 VectElmtChains[i] = VectElmts[i].getValue(1); 8031 } 8032 8033 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 8034 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts); 8035 8036 SDValue RVals[] = { Value, LoadChain }; 8037 return DAG.getMergeValues(RVals, dl); 8038 } 8039 8040 /// Lowering for QPX v4i1 stores 8041 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 8042 SelectionDAG &DAG) const { 8043 SDLoc dl(Op); 8044 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 8045 SDValue StoreChain = SN->getChain(); 8046 SDValue BasePtr = SN->getBasePtr(); 8047 SDValue Value = SN->getValue(); 8048 8049 if (Value.getValueType() == MVT::v4f64 || 8050 Value.getValueType() == MVT::v4f32) { 8051 EVT MemVT = SN->getMemoryVT(); 8052 unsigned Alignment = SN->getAlignment(); 8053 8054 // If this store is properly aligned, then it is legal. 8055 if (Alignment >= MemVT.getStoreSize()) 8056 return Op; 8057 8058 EVT ScalarVT = Value.getValueType().getScalarType(), 8059 ScalarMemVT = MemVT.getScalarType(); 8060 unsigned Stride = ScalarMemVT.getStoreSize(); 8061 8062 SDValue Stores[4]; 8063 for (unsigned Idx = 0; Idx < 4; ++Idx) { 8064 SDValue Ex = DAG.getNode( 8065 ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 8066 DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout()))); 8067 SDValue Store; 8068 if (ScalarVT != ScalarMemVT) 8069 Store = 8070 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 8071 SN->getPointerInfo().getWithOffset(Idx*Stride), 8072 ScalarMemVT, SN->isVolatile(), SN->isNonTemporal(), 8073 MinAlign(Alignment, Idx*Stride), SN->getAAInfo()); 8074 else 8075 Store = 8076 DAG.getStore(StoreChain, dl, Ex, BasePtr, 8077 SN->getPointerInfo().getWithOffset(Idx*Stride), 8078 SN->isVolatile(), SN->isNonTemporal(), 8079 MinAlign(Alignment, Idx*Stride), SN->getAAInfo()); 8080 8081 if (Idx == 0 && SN->isIndexed()) { 8082 assert(SN->getAddressingMode() == ISD::PRE_INC && 8083 "Unknown addressing mode on vector store"); 8084 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 8085 SN->getAddressingMode()); 8086 } 8087 8088 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 8089 DAG.getConstant(Stride, dl, 8090 BasePtr.getValueType())); 8091 Stores[Idx] = Store; 8092 } 8093 8094 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8095 8096 if (SN->isIndexed()) { 8097 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 8098 return DAG.getMergeValues(RetOps, dl); 8099 } 8100 8101 return TF; 8102 } 8103 8104 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 8105 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 8106 8107 // The values are now known to be -1 (false) or 1 (true). To convert this 8108 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 8109 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 8110 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 8111 8112 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 8113 // understand how to form the extending load. 8114 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 8115 8116 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 8117 8118 // Now convert to an integer and store. 8119 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 8120 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 8121 Value); 8122 8123 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 8124 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 8125 MachinePointerInfo PtrInfo = 8126 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8127 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8128 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8129 8130 SDValue Ops[] = {StoreChain, 8131 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 8132 Value, FIdx}; 8133 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 8134 8135 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 8136 dl, VTs, Ops, MVT::v4i32, PtrInfo); 8137 8138 // Move data into the byte array. 8139 SDValue Loads[4], LoadChains[4]; 8140 for (unsigned i = 0; i < 4; ++i) { 8141 unsigned Offset = 4*i; 8142 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 8143 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 8144 8145 Loads[i] = 8146 DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 8147 PtrInfo.getWithOffset(Offset), false, false, false, 0); 8148 LoadChains[i] = Loads[i].getValue(1); 8149 } 8150 8151 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 8152 8153 SDValue Stores[4]; 8154 for (unsigned i = 0; i < 4; ++i) { 8155 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 8156 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 8157 8158 Stores[i] = DAG.getTruncStore( 8159 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 8160 MVT::i8 /* memory type */, SN->isNonTemporal(), SN->isVolatile(), 8161 1 /* alignment */, SN->getAAInfo()); 8162 } 8163 8164 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8165 8166 return StoreChain; 8167 } 8168 8169 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 8170 SDLoc dl(Op); 8171 if (Op.getValueType() == MVT::v4i32) { 8172 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 8173 8174 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 8175 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 8176 8177 SDValue RHSSwap = // = vrlw RHS, 16 8178 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 8179 8180 // Shrinkify inputs to v8i16. 8181 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 8182 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 8183 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 8184 8185 // Low parts multiplied together, generating 32-bit results (we ignore the 8186 // top parts). 8187 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 8188 LHS, RHS, DAG, dl, MVT::v4i32); 8189 8190 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 8191 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 8192 // Shift the high parts up 16 bits. 8193 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 8194 Neg16, DAG, dl); 8195 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 8196 } else if (Op.getValueType() == MVT::v8i16) { 8197 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 8198 8199 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 8200 8201 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 8202 LHS, RHS, Zero, DAG, dl); 8203 } else if (Op.getValueType() == MVT::v16i8) { 8204 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 8205 bool isLittleEndian = Subtarget.isLittleEndian(); 8206 8207 // Multiply the even 8-bit parts, producing 16-bit sums. 8208 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 8209 LHS, RHS, DAG, dl, MVT::v8i16); 8210 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 8211 8212 // Multiply the odd 8-bit parts, producing 16-bit sums. 8213 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 8214 LHS, RHS, DAG, dl, MVT::v8i16); 8215 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 8216 8217 // Merge the results together. Because vmuleub and vmuloub are 8218 // instructions with a big-endian bias, we must reverse the 8219 // element numbering and reverse the meaning of "odd" and "even" 8220 // when generating little endian code. 8221 int Ops[16]; 8222 for (unsigned i = 0; i != 8; ++i) { 8223 if (isLittleEndian) { 8224 Ops[i*2 ] = 2*i; 8225 Ops[i*2+1] = 2*i+16; 8226 } else { 8227 Ops[i*2 ] = 2*i+1; 8228 Ops[i*2+1] = 2*i+1+16; 8229 } 8230 } 8231 if (isLittleEndian) 8232 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 8233 else 8234 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 8235 } else { 8236 llvm_unreachable("Unknown mul to lower!"); 8237 } 8238 } 8239 8240 /// LowerOperation - Provide custom lowering hooks for some operations. 8241 /// 8242 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 8243 switch (Op.getOpcode()) { 8244 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 8245 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 8246 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 8247 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 8248 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 8249 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 8250 case ISD::SETCC: return LowerSETCC(Op, DAG); 8251 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 8252 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 8253 case ISD::VASTART: 8254 return LowerVASTART(Op, DAG); 8255 8256 case ISD::VAARG: 8257 return LowerVAARG(Op, DAG); 8258 8259 case ISD::VACOPY: 8260 return LowerVACOPY(Op, DAG); 8261 8262 case ISD::STACKRESTORE: 8263 return LowerSTACKRESTORE(Op, DAG); 8264 8265 case ISD::DYNAMIC_STACKALLOC: 8266 return LowerDYNAMIC_STACKALLOC(Op, DAG); 8267 8268 case ISD::GET_DYNAMIC_AREA_OFFSET: 8269 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 8270 8271 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 8272 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 8273 8274 case ISD::LOAD: return LowerLOAD(Op, DAG); 8275 case ISD::STORE: return LowerSTORE(Op, DAG); 8276 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 8277 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 8278 case ISD::FP_TO_UINT: 8279 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, 8280 SDLoc(Op)); 8281 case ISD::UINT_TO_FP: 8282 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 8283 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 8284 8285 // Lower 64-bit shifts. 8286 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 8287 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 8288 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 8289 8290 // Vector-related lowering. 8291 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 8292 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 8293 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 8294 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 8295 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 8296 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 8297 case ISD::MUL: return LowerMUL(Op, DAG); 8298 8299 // For counter-based loop handling. 8300 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 8301 8302 // Frame & Return address. 8303 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 8304 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 8305 } 8306 } 8307 8308 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 8309 SmallVectorImpl<SDValue>&Results, 8310 SelectionDAG &DAG) const { 8311 SDLoc dl(N); 8312 switch (N->getOpcode()) { 8313 default: 8314 llvm_unreachable("Do not know how to custom type legalize this operation!"); 8315 case ISD::READCYCLECOUNTER: { 8316 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 8317 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 8318 8319 Results.push_back(RTB); 8320 Results.push_back(RTB.getValue(1)); 8321 Results.push_back(RTB.getValue(2)); 8322 break; 8323 } 8324 case ISD::INTRINSIC_W_CHAIN: { 8325 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 8326 Intrinsic::ppc_is_decremented_ctr_nonzero) 8327 break; 8328 8329 assert(N->getValueType(0) == MVT::i1 && 8330 "Unexpected result type for CTR decrement intrinsic"); 8331 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 8332 N->getValueType(0)); 8333 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 8334 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 8335 N->getOperand(1)); 8336 8337 Results.push_back(NewInt); 8338 Results.push_back(NewInt.getValue(1)); 8339 break; 8340 } 8341 case ISD::VAARG: { 8342 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 8343 return; 8344 8345 EVT VT = N->getValueType(0); 8346 8347 if (VT == MVT::i64) { 8348 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 8349 8350 Results.push_back(NewNode); 8351 Results.push_back(NewNode.getValue(1)); 8352 } 8353 return; 8354 } 8355 case ISD::FP_ROUND_INREG: { 8356 assert(N->getValueType(0) == MVT::ppcf128); 8357 assert(N->getOperand(0).getValueType() == MVT::ppcf128); 8358 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8359 MVT::f64, N->getOperand(0), 8360 DAG.getIntPtrConstant(0, dl)); 8361 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8362 MVT::f64, N->getOperand(0), 8363 DAG.getIntPtrConstant(1, dl)); 8364 8365 // Add the two halves of the long double in round-to-zero mode. 8366 SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8367 8368 // We know the low half is about to be thrown away, so just use something 8369 // convenient. 8370 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 8371 FPreg, FPreg)); 8372 return; 8373 } 8374 case ISD::FP_TO_SINT: 8375 case ISD::FP_TO_UINT: 8376 // LowerFP_TO_INT() can only handle f32 and f64. 8377 if (N->getOperand(0).getValueType() == MVT::ppcf128) 8378 return; 8379 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 8380 return; 8381 } 8382 } 8383 8384 //===----------------------------------------------------------------------===// 8385 // Other Lowering Code 8386 //===----------------------------------------------------------------------===// 8387 8388 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 8389 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 8390 Function *Func = Intrinsic::getDeclaration(M, Id); 8391 return Builder.CreateCall(Func, {}); 8392 } 8393 8394 // The mappings for emitLeading/TrailingFence is taken from 8395 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 8396 Instruction* PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 8397 AtomicOrdering Ord, bool IsStore, 8398 bool IsLoad) const { 8399 if (Ord == AtomicOrdering::SequentiallyConsistent) 8400 return callIntrinsic(Builder, Intrinsic::ppc_sync); 8401 if (isReleaseOrStronger(Ord)) 8402 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 8403 return nullptr; 8404 } 8405 8406 Instruction* PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 8407 AtomicOrdering Ord, bool IsStore, 8408 bool IsLoad) const { 8409 if (IsLoad && isAcquireOrStronger(Ord)) 8410 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 8411 // FIXME: this is too conservative, a dependent branch + isync is enough. 8412 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 8413 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 8414 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 8415 return nullptr; 8416 } 8417 8418 MachineBasicBlock * 8419 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 8420 unsigned AtomicSize, 8421 unsigned BinOpcode) const { 8422 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 8423 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8424 8425 auto LoadMnemonic = PPC::LDARX; 8426 auto StoreMnemonic = PPC::STDCX; 8427 switch (AtomicSize) { 8428 default: 8429 llvm_unreachable("Unexpected size of atomic entity"); 8430 case 1: 8431 LoadMnemonic = PPC::LBARX; 8432 StoreMnemonic = PPC::STBCX; 8433 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 8434 break; 8435 case 2: 8436 LoadMnemonic = PPC::LHARX; 8437 StoreMnemonic = PPC::STHCX; 8438 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 8439 break; 8440 case 4: 8441 LoadMnemonic = PPC::LWARX; 8442 StoreMnemonic = PPC::STWCX; 8443 break; 8444 case 8: 8445 LoadMnemonic = PPC::LDARX; 8446 StoreMnemonic = PPC::STDCX; 8447 break; 8448 } 8449 8450 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8451 MachineFunction *F = BB->getParent(); 8452 MachineFunction::iterator It = ++BB->getIterator(); 8453 8454 unsigned dest = MI.getOperand(0).getReg(); 8455 unsigned ptrA = MI.getOperand(1).getReg(); 8456 unsigned ptrB = MI.getOperand(2).getReg(); 8457 unsigned incr = MI.getOperand(3).getReg(); 8458 DebugLoc dl = MI.getDebugLoc(); 8459 8460 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 8461 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8462 F->insert(It, loopMBB); 8463 F->insert(It, exitMBB); 8464 exitMBB->splice(exitMBB->begin(), BB, 8465 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8466 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8467 8468 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8469 unsigned TmpReg = (!BinOpcode) ? incr : 8470 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 8471 : &PPC::GPRCRegClass); 8472 8473 // thisMBB: 8474 // ... 8475 // fallthrough --> loopMBB 8476 BB->addSuccessor(loopMBB); 8477 8478 // loopMBB: 8479 // l[wd]arx dest, ptr 8480 // add r0, dest, incr 8481 // st[wd]cx. r0, ptr 8482 // bne- loopMBB 8483 // fallthrough --> exitMBB 8484 BB = loopMBB; 8485 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 8486 .addReg(ptrA).addReg(ptrB); 8487 if (BinOpcode) 8488 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 8489 BuildMI(BB, dl, TII->get(StoreMnemonic)) 8490 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 8491 BuildMI(BB, dl, TII->get(PPC::BCC)) 8492 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 8493 BB->addSuccessor(loopMBB); 8494 BB->addSuccessor(exitMBB); 8495 8496 // exitMBB: 8497 // ... 8498 BB = exitMBB; 8499 return BB; 8500 } 8501 8502 MachineBasicBlock * 8503 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr &MI, 8504 MachineBasicBlock *BB, 8505 bool is8bit, // operation 8506 unsigned BinOpcode) const { 8507 // If we support part-word atomic mnemonics, just use them 8508 if (Subtarget.hasPartwordAtomics()) 8509 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode); 8510 8511 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 8512 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8513 // In 64 bit mode we have to use 64 bits for addresses, even though the 8514 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 8515 // registers without caring whether they're 32 or 64, but here we're 8516 // doing actual arithmetic on the addresses. 8517 bool is64bit = Subtarget.isPPC64(); 8518 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 8519 8520 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8521 MachineFunction *F = BB->getParent(); 8522 MachineFunction::iterator It = ++BB->getIterator(); 8523 8524 unsigned dest = MI.getOperand(0).getReg(); 8525 unsigned ptrA = MI.getOperand(1).getReg(); 8526 unsigned ptrB = MI.getOperand(2).getReg(); 8527 unsigned incr = MI.getOperand(3).getReg(); 8528 DebugLoc dl = MI.getDebugLoc(); 8529 8530 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 8531 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8532 F->insert(It, loopMBB); 8533 F->insert(It, exitMBB); 8534 exitMBB->splice(exitMBB->begin(), BB, 8535 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8536 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8537 8538 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8539 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 8540 : &PPC::GPRCRegClass; 8541 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 8542 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 8543 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 8544 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); 8545 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 8546 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 8547 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 8548 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 8549 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); 8550 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 8551 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 8552 unsigned Ptr1Reg; 8553 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); 8554 8555 // thisMBB: 8556 // ... 8557 // fallthrough --> loopMBB 8558 BB->addSuccessor(loopMBB); 8559 8560 // The 4-byte load must be aligned, while a char or short may be 8561 // anywhere in the word. Hence all this nasty bookkeeping code. 8562 // add ptr1, ptrA, ptrB [copy if ptrA==0] 8563 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 8564 // xori shift, shift1, 24 [16] 8565 // rlwinm ptr, ptr1, 0, 0, 29 8566 // slw incr2, incr, shift 8567 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 8568 // slw mask, mask2, shift 8569 // loopMBB: 8570 // lwarx tmpDest, ptr 8571 // add tmp, tmpDest, incr2 8572 // andc tmp2, tmpDest, mask 8573 // and tmp3, tmp, mask 8574 // or tmp4, tmp3, tmp2 8575 // stwcx. tmp4, ptr 8576 // bne- loopMBB 8577 // fallthrough --> exitMBB 8578 // srw dest, tmpDest, shift 8579 if (ptrA != ZeroReg) { 8580 Ptr1Reg = RegInfo.createVirtualRegister(RC); 8581 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 8582 .addReg(ptrA).addReg(ptrB); 8583 } else { 8584 Ptr1Reg = ptrB; 8585 } 8586 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 8587 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 8588 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 8589 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 8590 if (is64bit) 8591 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 8592 .addReg(Ptr1Reg).addImm(0).addImm(61); 8593 else 8594 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 8595 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 8596 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) 8597 .addReg(incr).addReg(ShiftReg); 8598 if (is8bit) 8599 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 8600 else { 8601 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 8602 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); 8603 } 8604 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 8605 .addReg(Mask2Reg).addReg(ShiftReg); 8606 8607 BB = loopMBB; 8608 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 8609 .addReg(ZeroReg).addReg(PtrReg); 8610 if (BinOpcode) 8611 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 8612 .addReg(Incr2Reg).addReg(TmpDestReg); 8613 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) 8614 .addReg(TmpDestReg).addReg(MaskReg); 8615 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) 8616 .addReg(TmpReg).addReg(MaskReg); 8617 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) 8618 .addReg(Tmp3Reg).addReg(Tmp2Reg); 8619 BuildMI(BB, dl, TII->get(PPC::STWCX)) 8620 .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg); 8621 BuildMI(BB, dl, TII->get(PPC::BCC)) 8622 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 8623 BB->addSuccessor(loopMBB); 8624 BB->addSuccessor(exitMBB); 8625 8626 // exitMBB: 8627 // ... 8628 BB = exitMBB; 8629 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg) 8630 .addReg(ShiftReg); 8631 return BB; 8632 } 8633 8634 llvm::MachineBasicBlock * 8635 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 8636 MachineBasicBlock *MBB) const { 8637 DebugLoc DL = MI.getDebugLoc(); 8638 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8639 8640 MachineFunction *MF = MBB->getParent(); 8641 MachineRegisterInfo &MRI = MF->getRegInfo(); 8642 8643 const BasicBlock *BB = MBB->getBasicBlock(); 8644 MachineFunction::iterator I = ++MBB->getIterator(); 8645 8646 // Memory Reference 8647 MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin(); 8648 MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end(); 8649 8650 unsigned DstReg = MI.getOperand(0).getReg(); 8651 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 8652 assert(RC->hasType(MVT::i32) && "Invalid destination!"); 8653 unsigned mainDstReg = MRI.createVirtualRegister(RC); 8654 unsigned restoreDstReg = MRI.createVirtualRegister(RC); 8655 8656 MVT PVT = getPointerTy(MF->getDataLayout()); 8657 assert((PVT == MVT::i64 || PVT == MVT::i32) && 8658 "Invalid Pointer Size!"); 8659 // For v = setjmp(buf), we generate 8660 // 8661 // thisMBB: 8662 // SjLjSetup mainMBB 8663 // bl mainMBB 8664 // v_restore = 1 8665 // b sinkMBB 8666 // 8667 // mainMBB: 8668 // buf[LabelOffset] = LR 8669 // v_main = 0 8670 // 8671 // sinkMBB: 8672 // v = phi(main, restore) 8673 // 8674 8675 MachineBasicBlock *thisMBB = MBB; 8676 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 8677 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 8678 MF->insert(I, mainMBB); 8679 MF->insert(I, sinkMBB); 8680 8681 MachineInstrBuilder MIB; 8682 8683 // Transfer the remainder of BB and its successor edges to sinkMBB. 8684 sinkMBB->splice(sinkMBB->begin(), MBB, 8685 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 8686 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 8687 8688 // Note that the structure of the jmp_buf used here is not compatible 8689 // with that used by libc, and is not designed to be. Specifically, it 8690 // stores only those 'reserved' registers that LLVM does not otherwise 8691 // understand how to spill. Also, by convention, by the time this 8692 // intrinsic is called, Clang has already stored the frame address in the 8693 // first slot of the buffer and stack address in the third. Following the 8694 // X86 target code, we'll store the jump address in the second slot. We also 8695 // need to save the TOC pointer (R2) to handle jumps between shared 8696 // libraries, and that will be stored in the fourth slot. The thread 8697 // identifier (R13) is not affected. 8698 8699 // thisMBB: 8700 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 8701 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 8702 const int64_t BPOffset = 4 * PVT.getStoreSize(); 8703 8704 // Prepare IP either in reg. 8705 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 8706 unsigned LabelReg = MRI.createVirtualRegister(PtrRC); 8707 unsigned BufReg = MI.getOperand(1).getReg(); 8708 8709 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) { 8710 setUsesTOCBasePtr(*MBB->getParent()); 8711 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 8712 .addReg(PPC::X2) 8713 .addImm(TOCOffset) 8714 .addReg(BufReg); 8715 MIB.setMemRefs(MMOBegin, MMOEnd); 8716 } 8717 8718 // Naked functions never have a base pointer, and so we use r1. For all 8719 // other functions, this decision must be delayed until during PEI. 8720 unsigned BaseReg; 8721 if (MF->getFunction()->hasFnAttribute(Attribute::Naked)) 8722 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 8723 else 8724 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 8725 8726 MIB = BuildMI(*thisMBB, MI, DL, 8727 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 8728 .addReg(BaseReg) 8729 .addImm(BPOffset) 8730 .addReg(BufReg); 8731 MIB.setMemRefs(MMOBegin, MMOEnd); 8732 8733 // Setup 8734 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 8735 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8736 MIB.addRegMask(TRI->getNoPreservedMask()); 8737 8738 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 8739 8740 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 8741 .addMBB(mainMBB); 8742 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 8743 8744 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 8745 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 8746 8747 // mainMBB: 8748 // mainDstReg = 0 8749 MIB = 8750 BuildMI(mainMBB, DL, 8751 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 8752 8753 // Store IP 8754 if (Subtarget.isPPC64()) { 8755 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 8756 .addReg(LabelReg) 8757 .addImm(LabelOffset) 8758 .addReg(BufReg); 8759 } else { 8760 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 8761 .addReg(LabelReg) 8762 .addImm(LabelOffset) 8763 .addReg(BufReg); 8764 } 8765 8766 MIB.setMemRefs(MMOBegin, MMOEnd); 8767 8768 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 8769 mainMBB->addSuccessor(sinkMBB); 8770 8771 // sinkMBB: 8772 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 8773 TII->get(PPC::PHI), DstReg) 8774 .addReg(mainDstReg).addMBB(mainMBB) 8775 .addReg(restoreDstReg).addMBB(thisMBB); 8776 8777 MI.eraseFromParent(); 8778 return sinkMBB; 8779 } 8780 8781 MachineBasicBlock * 8782 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 8783 MachineBasicBlock *MBB) const { 8784 DebugLoc DL = MI.getDebugLoc(); 8785 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8786 8787 MachineFunction *MF = MBB->getParent(); 8788 MachineRegisterInfo &MRI = MF->getRegInfo(); 8789 8790 // Memory Reference 8791 MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin(); 8792 MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end(); 8793 8794 MVT PVT = getPointerTy(MF->getDataLayout()); 8795 assert((PVT == MVT::i64 || PVT == MVT::i32) && 8796 "Invalid Pointer Size!"); 8797 8798 const TargetRegisterClass *RC = 8799 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 8800 unsigned Tmp = MRI.createVirtualRegister(RC); 8801 // Since FP is only updated here but NOT referenced, it's treated as GPR. 8802 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 8803 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 8804 unsigned BP = 8805 (PVT == MVT::i64) 8806 ? PPC::X30 8807 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 8808 : PPC::R30); 8809 8810 MachineInstrBuilder MIB; 8811 8812 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 8813 const int64_t SPOffset = 2 * PVT.getStoreSize(); 8814 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 8815 const int64_t BPOffset = 4 * PVT.getStoreSize(); 8816 8817 unsigned BufReg = MI.getOperand(0).getReg(); 8818 8819 // Reload FP (the jumped-to function may not have had a 8820 // frame pointer, and if so, then its r31 will be restored 8821 // as necessary). 8822 if (PVT == MVT::i64) { 8823 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 8824 .addImm(0) 8825 .addReg(BufReg); 8826 } else { 8827 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 8828 .addImm(0) 8829 .addReg(BufReg); 8830 } 8831 MIB.setMemRefs(MMOBegin, MMOEnd); 8832 8833 // Reload IP 8834 if (PVT == MVT::i64) { 8835 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 8836 .addImm(LabelOffset) 8837 .addReg(BufReg); 8838 } else { 8839 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 8840 .addImm(LabelOffset) 8841 .addReg(BufReg); 8842 } 8843 MIB.setMemRefs(MMOBegin, MMOEnd); 8844 8845 // Reload SP 8846 if (PVT == MVT::i64) { 8847 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 8848 .addImm(SPOffset) 8849 .addReg(BufReg); 8850 } else { 8851 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 8852 .addImm(SPOffset) 8853 .addReg(BufReg); 8854 } 8855 MIB.setMemRefs(MMOBegin, MMOEnd); 8856 8857 // Reload BP 8858 if (PVT == MVT::i64) { 8859 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 8860 .addImm(BPOffset) 8861 .addReg(BufReg); 8862 } else { 8863 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 8864 .addImm(BPOffset) 8865 .addReg(BufReg); 8866 } 8867 MIB.setMemRefs(MMOBegin, MMOEnd); 8868 8869 // Reload TOC 8870 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 8871 setUsesTOCBasePtr(*MBB->getParent()); 8872 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 8873 .addImm(TOCOffset) 8874 .addReg(BufReg); 8875 8876 MIB.setMemRefs(MMOBegin, MMOEnd); 8877 } 8878 8879 // Jump 8880 BuildMI(*MBB, MI, DL, 8881 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 8882 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 8883 8884 MI.eraseFromParent(); 8885 return MBB; 8886 } 8887 8888 MachineBasicBlock * 8889 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 8890 MachineBasicBlock *BB) const { 8891 if (MI.getOpcode() == TargetOpcode::STACKMAP || 8892 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 8893 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() && 8894 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 8895 // Call lowering should have added an r2 operand to indicate a dependence 8896 // on the TOC base pointer value. It can't however, because there is no 8897 // way to mark the dependence as implicit there, and so the stackmap code 8898 // will confuse it with a regular operand. Instead, add the dependence 8899 // here. 8900 setUsesTOCBasePtr(*BB->getParent()); 8901 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 8902 } 8903 8904 return emitPatchPoint(MI, BB); 8905 } 8906 8907 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 8908 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 8909 return emitEHSjLjSetJmp(MI, BB); 8910 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 8911 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 8912 return emitEHSjLjLongJmp(MI, BB); 8913 } 8914 8915 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8916 8917 // To "insert" these instructions we actually have to insert their 8918 // control-flow patterns. 8919 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8920 MachineFunction::iterator It = ++BB->getIterator(); 8921 8922 MachineFunction *F = BB->getParent(); 8923 8924 if (Subtarget.hasISEL() && 8925 (MI.getOpcode() == PPC::SELECT_CC_I4 || 8926 MI.getOpcode() == PPC::SELECT_CC_I8 || 8927 MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8)) { 8928 SmallVector<MachineOperand, 2> Cond; 8929 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 8930 MI.getOpcode() == PPC::SELECT_CC_I8) 8931 Cond.push_back(MI.getOperand(4)); 8932 else 8933 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 8934 Cond.push_back(MI.getOperand(1)); 8935 8936 DebugLoc dl = MI.getDebugLoc(); 8937 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 8938 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 8939 } else if (MI.getOpcode() == PPC::SELECT_CC_I4 || 8940 MI.getOpcode() == PPC::SELECT_CC_I8 || 8941 MI.getOpcode() == PPC::SELECT_CC_F4 || 8942 MI.getOpcode() == PPC::SELECT_CC_F8 || 8943 MI.getOpcode() == PPC::SELECT_CC_QFRC || 8944 MI.getOpcode() == PPC::SELECT_CC_QSRC || 8945 MI.getOpcode() == PPC::SELECT_CC_QBRC || 8946 MI.getOpcode() == PPC::SELECT_CC_VRRC || 8947 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 8948 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 8949 MI.getOpcode() == PPC::SELECT_CC_VSRC || 8950 MI.getOpcode() == PPC::SELECT_I4 || 8951 MI.getOpcode() == PPC::SELECT_I8 || 8952 MI.getOpcode() == PPC::SELECT_F4 || 8953 MI.getOpcode() == PPC::SELECT_F8 || 8954 MI.getOpcode() == PPC::SELECT_QFRC || 8955 MI.getOpcode() == PPC::SELECT_QSRC || 8956 MI.getOpcode() == PPC::SELECT_QBRC || 8957 MI.getOpcode() == PPC::SELECT_VRRC || 8958 MI.getOpcode() == PPC::SELECT_VSFRC || 8959 MI.getOpcode() == PPC::SELECT_VSSRC || 8960 MI.getOpcode() == PPC::SELECT_VSRC) { 8961 // The incoming instruction knows the destination vreg to set, the 8962 // condition code register to branch on, the true/false values to 8963 // select between, and a branch opcode to use. 8964 8965 // thisMBB: 8966 // ... 8967 // TrueVal = ... 8968 // cmpTY ccX, r1, r2 8969 // bCC copy1MBB 8970 // fallthrough --> copy0MBB 8971 MachineBasicBlock *thisMBB = BB; 8972 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 8973 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 8974 DebugLoc dl = MI.getDebugLoc(); 8975 F->insert(It, copy0MBB); 8976 F->insert(It, sinkMBB); 8977 8978 // Transfer the remainder of BB and its successor edges to sinkMBB. 8979 sinkMBB->splice(sinkMBB->begin(), BB, 8980 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8981 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 8982 8983 // Next, add the true and fallthrough blocks as its successors. 8984 BB->addSuccessor(copy0MBB); 8985 BB->addSuccessor(sinkMBB); 8986 8987 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 8988 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 8989 MI.getOpcode() == PPC::SELECT_QFRC || 8990 MI.getOpcode() == PPC::SELECT_QSRC || 8991 MI.getOpcode() == PPC::SELECT_QBRC || 8992 MI.getOpcode() == PPC::SELECT_VRRC || 8993 MI.getOpcode() == PPC::SELECT_VSFRC || 8994 MI.getOpcode() == PPC::SELECT_VSSRC || 8995 MI.getOpcode() == PPC::SELECT_VSRC) { 8996 BuildMI(BB, dl, TII->get(PPC::BC)) 8997 .addReg(MI.getOperand(1).getReg()) 8998 .addMBB(sinkMBB); 8999 } else { 9000 unsigned SelectPred = MI.getOperand(4).getImm(); 9001 BuildMI(BB, dl, TII->get(PPC::BCC)) 9002 .addImm(SelectPred) 9003 .addReg(MI.getOperand(1).getReg()) 9004 .addMBB(sinkMBB); 9005 } 9006 9007 // copy0MBB: 9008 // %FalseValue = ... 9009 // # fallthrough to sinkMBB 9010 BB = copy0MBB; 9011 9012 // Update machine-CFG edges 9013 BB->addSuccessor(sinkMBB); 9014 9015 // sinkMBB: 9016 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 9017 // ... 9018 BB = sinkMBB; 9019 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 9020 .addReg(MI.getOperand(3).getReg()) 9021 .addMBB(copy0MBB) 9022 .addReg(MI.getOperand(2).getReg()) 9023 .addMBB(thisMBB); 9024 } else if (MI.getOpcode() == PPC::ReadTB) { 9025 // To read the 64-bit time-base register on a 32-bit target, we read the 9026 // two halves. Should the counter have wrapped while it was being read, we 9027 // need to try again. 9028 // ... 9029 // readLoop: 9030 // mfspr Rx,TBU # load from TBU 9031 // mfspr Ry,TB # load from TB 9032 // mfspr Rz,TBU # load from TBU 9033 // cmpw crX,Rx,Rz # check if 'old'='new' 9034 // bne readLoop # branch if they're not equal 9035 // ... 9036 9037 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 9038 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 9039 DebugLoc dl = MI.getDebugLoc(); 9040 F->insert(It, readMBB); 9041 F->insert(It, sinkMBB); 9042 9043 // Transfer the remainder of BB and its successor edges to sinkMBB. 9044 sinkMBB->splice(sinkMBB->begin(), BB, 9045 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9046 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 9047 9048 BB->addSuccessor(readMBB); 9049 BB = readMBB; 9050 9051 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9052 unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 9053 unsigned LoReg = MI.getOperand(0).getReg(); 9054 unsigned HiReg = MI.getOperand(1).getReg(); 9055 9056 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 9057 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 9058 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 9059 9060 unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 9061 9062 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 9063 .addReg(HiReg).addReg(ReadAgainReg); 9064 BuildMI(BB, dl, TII->get(PPC::BCC)) 9065 .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB); 9066 9067 BB->addSuccessor(readMBB); 9068 BB->addSuccessor(sinkMBB); 9069 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 9070 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 9071 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 9072 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 9073 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 9074 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 9075 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 9076 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 9077 9078 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 9079 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 9080 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 9081 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 9082 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 9083 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 9084 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 9085 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 9086 9087 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 9088 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 9089 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 9090 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 9091 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 9092 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 9093 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 9094 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 9095 9096 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 9097 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 9098 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 9099 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 9100 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 9101 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 9102 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 9103 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 9104 9105 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 9106 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 9107 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 9108 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 9109 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 9110 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 9111 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 9112 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 9113 9114 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 9115 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 9116 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 9117 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 9118 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 9119 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 9120 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 9121 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 9122 9123 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 9124 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 9125 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 9126 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 9127 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 9128 BB = EmitAtomicBinary(MI, BB, 4, 0); 9129 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 9130 BB = EmitAtomicBinary(MI, BB, 8, 0); 9131 9132 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 9133 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 9134 (Subtarget.hasPartwordAtomics() && 9135 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 9136 (Subtarget.hasPartwordAtomics() && 9137 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 9138 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 9139 9140 auto LoadMnemonic = PPC::LDARX; 9141 auto StoreMnemonic = PPC::STDCX; 9142 switch (MI.getOpcode()) { 9143 default: 9144 llvm_unreachable("Compare and swap of unknown size"); 9145 case PPC::ATOMIC_CMP_SWAP_I8: 9146 LoadMnemonic = PPC::LBARX; 9147 StoreMnemonic = PPC::STBCX; 9148 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 9149 break; 9150 case PPC::ATOMIC_CMP_SWAP_I16: 9151 LoadMnemonic = PPC::LHARX; 9152 StoreMnemonic = PPC::STHCX; 9153 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 9154 break; 9155 case PPC::ATOMIC_CMP_SWAP_I32: 9156 LoadMnemonic = PPC::LWARX; 9157 StoreMnemonic = PPC::STWCX; 9158 break; 9159 case PPC::ATOMIC_CMP_SWAP_I64: 9160 LoadMnemonic = PPC::LDARX; 9161 StoreMnemonic = PPC::STDCX; 9162 break; 9163 } 9164 unsigned dest = MI.getOperand(0).getReg(); 9165 unsigned ptrA = MI.getOperand(1).getReg(); 9166 unsigned ptrB = MI.getOperand(2).getReg(); 9167 unsigned oldval = MI.getOperand(3).getReg(); 9168 unsigned newval = MI.getOperand(4).getReg(); 9169 DebugLoc dl = MI.getDebugLoc(); 9170 9171 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 9172 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 9173 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 9174 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 9175 F->insert(It, loop1MBB); 9176 F->insert(It, loop2MBB); 9177 F->insert(It, midMBB); 9178 F->insert(It, exitMBB); 9179 exitMBB->splice(exitMBB->begin(), BB, 9180 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9181 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 9182 9183 // thisMBB: 9184 // ... 9185 // fallthrough --> loopMBB 9186 BB->addSuccessor(loop1MBB); 9187 9188 // loop1MBB: 9189 // l[bhwd]arx dest, ptr 9190 // cmp[wd] dest, oldval 9191 // bne- midMBB 9192 // loop2MBB: 9193 // st[bhwd]cx. newval, ptr 9194 // bne- loopMBB 9195 // b exitBB 9196 // midMBB: 9197 // st[bhwd]cx. dest, ptr 9198 // exitBB: 9199 BB = loop1MBB; 9200 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 9201 .addReg(ptrA).addReg(ptrB); 9202 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 9203 .addReg(oldval).addReg(dest); 9204 BuildMI(BB, dl, TII->get(PPC::BCC)) 9205 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 9206 BB->addSuccessor(loop2MBB); 9207 BB->addSuccessor(midMBB); 9208 9209 BB = loop2MBB; 9210 BuildMI(BB, dl, TII->get(StoreMnemonic)) 9211 .addReg(newval).addReg(ptrA).addReg(ptrB); 9212 BuildMI(BB, dl, TII->get(PPC::BCC)) 9213 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 9214 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 9215 BB->addSuccessor(loop1MBB); 9216 BB->addSuccessor(exitMBB); 9217 9218 BB = midMBB; 9219 BuildMI(BB, dl, TII->get(StoreMnemonic)) 9220 .addReg(dest).addReg(ptrA).addReg(ptrB); 9221 BB->addSuccessor(exitMBB); 9222 9223 // exitMBB: 9224 // ... 9225 BB = exitMBB; 9226 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 9227 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 9228 // We must use 64-bit registers for addresses when targeting 64-bit, 9229 // since we're actually doing arithmetic on them. Other registers 9230 // can be 32-bit. 9231 bool is64bit = Subtarget.isPPC64(); 9232 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 9233 9234 unsigned dest = MI.getOperand(0).getReg(); 9235 unsigned ptrA = MI.getOperand(1).getReg(); 9236 unsigned ptrB = MI.getOperand(2).getReg(); 9237 unsigned oldval = MI.getOperand(3).getReg(); 9238 unsigned newval = MI.getOperand(4).getReg(); 9239 DebugLoc dl = MI.getDebugLoc(); 9240 9241 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 9242 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 9243 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 9244 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 9245 F->insert(It, loop1MBB); 9246 F->insert(It, loop2MBB); 9247 F->insert(It, midMBB); 9248 F->insert(It, exitMBB); 9249 exitMBB->splice(exitMBB->begin(), BB, 9250 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9251 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 9252 9253 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9254 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 9255 : &PPC::GPRCRegClass; 9256 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 9257 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 9258 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 9259 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); 9260 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); 9261 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); 9262 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); 9263 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 9264 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 9265 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 9266 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 9267 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 9268 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 9269 unsigned Ptr1Reg; 9270 unsigned TmpReg = RegInfo.createVirtualRegister(RC); 9271 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 9272 // thisMBB: 9273 // ... 9274 // fallthrough --> loopMBB 9275 BB->addSuccessor(loop1MBB); 9276 9277 // The 4-byte load must be aligned, while a char or short may be 9278 // anywhere in the word. Hence all this nasty bookkeeping code. 9279 // add ptr1, ptrA, ptrB [copy if ptrA==0] 9280 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 9281 // xori shift, shift1, 24 [16] 9282 // rlwinm ptr, ptr1, 0, 0, 29 9283 // slw newval2, newval, shift 9284 // slw oldval2, oldval,shift 9285 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 9286 // slw mask, mask2, shift 9287 // and newval3, newval2, mask 9288 // and oldval3, oldval2, mask 9289 // loop1MBB: 9290 // lwarx tmpDest, ptr 9291 // and tmp, tmpDest, mask 9292 // cmpw tmp, oldval3 9293 // bne- midMBB 9294 // loop2MBB: 9295 // andc tmp2, tmpDest, mask 9296 // or tmp4, tmp2, newval3 9297 // stwcx. tmp4, ptr 9298 // bne- loop1MBB 9299 // b exitBB 9300 // midMBB: 9301 // stwcx. tmpDest, ptr 9302 // exitBB: 9303 // srw dest, tmpDest, shift 9304 if (ptrA != ZeroReg) { 9305 Ptr1Reg = RegInfo.createVirtualRegister(RC); 9306 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 9307 .addReg(ptrA).addReg(ptrB); 9308 } else { 9309 Ptr1Reg = ptrB; 9310 } 9311 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 9312 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 9313 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 9314 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 9315 if (is64bit) 9316 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 9317 .addReg(Ptr1Reg).addImm(0).addImm(61); 9318 else 9319 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 9320 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 9321 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 9322 .addReg(newval).addReg(ShiftReg); 9323 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 9324 .addReg(oldval).addReg(ShiftReg); 9325 if (is8bit) 9326 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 9327 else { 9328 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 9329 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 9330 .addReg(Mask3Reg).addImm(65535); 9331 } 9332 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 9333 .addReg(Mask2Reg).addReg(ShiftReg); 9334 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 9335 .addReg(NewVal2Reg).addReg(MaskReg); 9336 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 9337 .addReg(OldVal2Reg).addReg(MaskReg); 9338 9339 BB = loop1MBB; 9340 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 9341 .addReg(ZeroReg).addReg(PtrReg); 9342 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) 9343 .addReg(TmpDestReg).addReg(MaskReg); 9344 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 9345 .addReg(TmpReg).addReg(OldVal3Reg); 9346 BuildMI(BB, dl, TII->get(PPC::BCC)) 9347 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 9348 BB->addSuccessor(loop2MBB); 9349 BB->addSuccessor(midMBB); 9350 9351 BB = loop2MBB; 9352 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) 9353 .addReg(TmpDestReg).addReg(MaskReg); 9354 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) 9355 .addReg(Tmp2Reg).addReg(NewVal3Reg); 9356 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) 9357 .addReg(ZeroReg).addReg(PtrReg); 9358 BuildMI(BB, dl, TII->get(PPC::BCC)) 9359 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 9360 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 9361 BB->addSuccessor(loop1MBB); 9362 BB->addSuccessor(exitMBB); 9363 9364 BB = midMBB; 9365 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) 9366 .addReg(ZeroReg).addReg(PtrReg); 9367 BB->addSuccessor(exitMBB); 9368 9369 // exitMBB: 9370 // ... 9371 BB = exitMBB; 9372 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg) 9373 .addReg(ShiftReg); 9374 } else if (MI.getOpcode() == PPC::FADDrtz) { 9375 // This pseudo performs an FADD with rounding mode temporarily forced 9376 // to round-to-zero. We emit this via custom inserter since the FPSCR 9377 // is not modeled at the SelectionDAG level. 9378 unsigned Dest = MI.getOperand(0).getReg(); 9379 unsigned Src1 = MI.getOperand(1).getReg(); 9380 unsigned Src2 = MI.getOperand(2).getReg(); 9381 DebugLoc dl = MI.getDebugLoc(); 9382 9383 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9384 unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 9385 9386 // Save FPSCR value. 9387 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 9388 9389 // Set rounding mode to round-to-zero. 9390 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 9391 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 9392 9393 // Perform addition. 9394 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 9395 9396 // Restore FPSCR value. 9397 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 9398 } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 9399 MI.getOpcode() == PPC::ANDIo_1_GT_BIT || 9400 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 9401 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) { 9402 unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 9403 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) 9404 ? PPC::ANDIo8 9405 : PPC::ANDIo; 9406 bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 9407 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8); 9408 9409 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9410 unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ? 9411 &PPC::GPRCRegClass : 9412 &PPC::G8RCRegClass); 9413 9414 DebugLoc dl = MI.getDebugLoc(); 9415 BuildMI(*BB, MI, dl, TII->get(Opcode), Dest) 9416 .addReg(MI.getOperand(1).getReg()) 9417 .addImm(1); 9418 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), 9419 MI.getOperand(0).getReg()) 9420 .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT); 9421 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 9422 DebugLoc Dl = MI.getDebugLoc(); 9423 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9424 unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 9425 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 9426 return BB; 9427 } else { 9428 llvm_unreachable("Unexpected instr type to insert"); 9429 } 9430 9431 MI.eraseFromParent(); // The pseudo instruction is gone now. 9432 return BB; 9433 } 9434 9435 //===----------------------------------------------------------------------===// 9436 // Target Optimization Hooks 9437 //===----------------------------------------------------------------------===// 9438 9439 static std::string getRecipOp(const char *Base, EVT VT) { 9440 std::string RecipOp(Base); 9441 if (VT.getScalarType() == MVT::f64) 9442 RecipOp += "d"; 9443 else 9444 RecipOp += "f"; 9445 9446 if (VT.isVector()) 9447 RecipOp = "vec-" + RecipOp; 9448 9449 return RecipOp; 9450 } 9451 9452 SDValue PPCTargetLowering::getRsqrtEstimate(SDValue Operand, 9453 DAGCombinerInfo &DCI, 9454 unsigned &RefinementSteps, 9455 bool &UseOneConstNR) const { 9456 EVT VT = Operand.getValueType(); 9457 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 9458 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 9459 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 9460 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 9461 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 9462 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 9463 TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals; 9464 std::string RecipOp = getRecipOp("sqrt", VT); 9465 if (!Recips.isEnabled(RecipOp)) 9466 return SDValue(); 9467 9468 RefinementSteps = Recips.getRefinementSteps(RecipOp); 9469 UseOneConstNR = true; 9470 return DCI.DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 9471 } 9472 return SDValue(); 9473 } 9474 9475 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, 9476 DAGCombinerInfo &DCI, 9477 unsigned &RefinementSteps) const { 9478 EVT VT = Operand.getValueType(); 9479 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 9480 (VT == MVT::f64 && Subtarget.hasFRE()) || 9481 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 9482 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 9483 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 9484 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 9485 TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals; 9486 std::string RecipOp = getRecipOp("div", VT); 9487 if (!Recips.isEnabled(RecipOp)) 9488 return SDValue(); 9489 9490 RefinementSteps = Recips.getRefinementSteps(RecipOp); 9491 return DCI.DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 9492 } 9493 return SDValue(); 9494 } 9495 9496 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 9497 // Note: This functionality is used only when unsafe-fp-math is enabled, and 9498 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 9499 // enabled for division), this functionality is redundant with the default 9500 // combiner logic (once the division -> reciprocal/multiply transformation 9501 // has taken place). As a result, this matters more for older cores than for 9502 // newer ones. 9503 9504 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 9505 // reciprocal if there are two or more FDIVs (for embedded cores with only 9506 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 9507 switch (Subtarget.getDarwinDirective()) { 9508 default: 9509 return 3; 9510 case PPC::DIR_440: 9511 case PPC::DIR_A2: 9512 case PPC::DIR_E500mc: 9513 case PPC::DIR_E5500: 9514 return 2; 9515 } 9516 } 9517 9518 // isConsecutiveLSLoc needs to work even if all adds have not yet been 9519 // collapsed, and so we need to look through chains of them. 9520 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 9521 int64_t& Offset, SelectionDAG &DAG) { 9522 if (DAG.isBaseWithConstantOffset(Loc)) { 9523 Base = Loc.getOperand(0); 9524 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 9525 9526 // The base might itself be a base plus an offset, and if so, accumulate 9527 // that as well. 9528 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 9529 } 9530 } 9531 9532 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 9533 unsigned Bytes, int Dist, 9534 SelectionDAG &DAG) { 9535 if (VT.getSizeInBits() / 8 != Bytes) 9536 return false; 9537 9538 SDValue BaseLoc = Base->getBasePtr(); 9539 if (Loc.getOpcode() == ISD::FrameIndex) { 9540 if (BaseLoc.getOpcode() != ISD::FrameIndex) 9541 return false; 9542 const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 9543 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 9544 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 9545 int FS = MFI->getObjectSize(FI); 9546 int BFS = MFI->getObjectSize(BFI); 9547 if (FS != BFS || FS != (int)Bytes) return false; 9548 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes); 9549 } 9550 9551 SDValue Base1 = Loc, Base2 = BaseLoc; 9552 int64_t Offset1 = 0, Offset2 = 0; 9553 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 9554 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 9555 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 9556 return true; 9557 9558 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9559 const GlobalValue *GV1 = nullptr; 9560 const GlobalValue *GV2 = nullptr; 9561 Offset1 = 0; 9562 Offset2 = 0; 9563 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 9564 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 9565 if (isGA1 && isGA2 && GV1 == GV2) 9566 return Offset1 == (Offset2 + Dist*Bytes); 9567 return false; 9568 } 9569 9570 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 9571 // not enforce equality of the chain operands. 9572 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 9573 unsigned Bytes, int Dist, 9574 SelectionDAG &DAG) { 9575 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 9576 EVT VT = LS->getMemoryVT(); 9577 SDValue Loc = LS->getBasePtr(); 9578 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 9579 } 9580 9581 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 9582 EVT VT; 9583 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 9584 default: return false; 9585 case Intrinsic::ppc_qpx_qvlfd: 9586 case Intrinsic::ppc_qpx_qvlfda: 9587 VT = MVT::v4f64; 9588 break; 9589 case Intrinsic::ppc_qpx_qvlfs: 9590 case Intrinsic::ppc_qpx_qvlfsa: 9591 VT = MVT::v4f32; 9592 break; 9593 case Intrinsic::ppc_qpx_qvlfcd: 9594 case Intrinsic::ppc_qpx_qvlfcda: 9595 VT = MVT::v2f64; 9596 break; 9597 case Intrinsic::ppc_qpx_qvlfcs: 9598 case Intrinsic::ppc_qpx_qvlfcsa: 9599 VT = MVT::v2f32; 9600 break; 9601 case Intrinsic::ppc_qpx_qvlfiwa: 9602 case Intrinsic::ppc_qpx_qvlfiwz: 9603 case Intrinsic::ppc_altivec_lvx: 9604 case Intrinsic::ppc_altivec_lvxl: 9605 case Intrinsic::ppc_vsx_lxvw4x: 9606 VT = MVT::v4i32; 9607 break; 9608 case Intrinsic::ppc_vsx_lxvd2x: 9609 VT = MVT::v2f64; 9610 break; 9611 case Intrinsic::ppc_altivec_lvebx: 9612 VT = MVT::i8; 9613 break; 9614 case Intrinsic::ppc_altivec_lvehx: 9615 VT = MVT::i16; 9616 break; 9617 case Intrinsic::ppc_altivec_lvewx: 9618 VT = MVT::i32; 9619 break; 9620 } 9621 9622 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 9623 } 9624 9625 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 9626 EVT VT; 9627 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 9628 default: return false; 9629 case Intrinsic::ppc_qpx_qvstfd: 9630 case Intrinsic::ppc_qpx_qvstfda: 9631 VT = MVT::v4f64; 9632 break; 9633 case Intrinsic::ppc_qpx_qvstfs: 9634 case Intrinsic::ppc_qpx_qvstfsa: 9635 VT = MVT::v4f32; 9636 break; 9637 case Intrinsic::ppc_qpx_qvstfcd: 9638 case Intrinsic::ppc_qpx_qvstfcda: 9639 VT = MVT::v2f64; 9640 break; 9641 case Intrinsic::ppc_qpx_qvstfcs: 9642 case Intrinsic::ppc_qpx_qvstfcsa: 9643 VT = MVT::v2f32; 9644 break; 9645 case Intrinsic::ppc_qpx_qvstfiw: 9646 case Intrinsic::ppc_qpx_qvstfiwa: 9647 case Intrinsic::ppc_altivec_stvx: 9648 case Intrinsic::ppc_altivec_stvxl: 9649 case Intrinsic::ppc_vsx_stxvw4x: 9650 VT = MVT::v4i32; 9651 break; 9652 case Intrinsic::ppc_vsx_stxvd2x: 9653 VT = MVT::v2f64; 9654 break; 9655 case Intrinsic::ppc_altivec_stvebx: 9656 VT = MVT::i8; 9657 break; 9658 case Intrinsic::ppc_altivec_stvehx: 9659 VT = MVT::i16; 9660 break; 9661 case Intrinsic::ppc_altivec_stvewx: 9662 VT = MVT::i32; 9663 break; 9664 } 9665 9666 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 9667 } 9668 9669 return false; 9670 } 9671 9672 // Return true is there is a nearyby consecutive load to the one provided 9673 // (regardless of alignment). We search up and down the chain, looking though 9674 // token factors and other loads (but nothing else). As a result, a true result 9675 // indicates that it is safe to create a new consecutive load adjacent to the 9676 // load provided. 9677 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 9678 SDValue Chain = LD->getChain(); 9679 EVT VT = LD->getMemoryVT(); 9680 9681 SmallSet<SDNode *, 16> LoadRoots; 9682 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 9683 SmallSet<SDNode *, 16> Visited; 9684 9685 // First, search up the chain, branching to follow all token-factor operands. 9686 // If we find a consecutive load, then we're done, otherwise, record all 9687 // nodes just above the top-level loads and token factors. 9688 while (!Queue.empty()) { 9689 SDNode *ChainNext = Queue.pop_back_val(); 9690 if (!Visited.insert(ChainNext).second) 9691 continue; 9692 9693 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 9694 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 9695 return true; 9696 9697 if (!Visited.count(ChainLD->getChain().getNode())) 9698 Queue.push_back(ChainLD->getChain().getNode()); 9699 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 9700 for (const SDUse &O : ChainNext->ops()) 9701 if (!Visited.count(O.getNode())) 9702 Queue.push_back(O.getNode()); 9703 } else 9704 LoadRoots.insert(ChainNext); 9705 } 9706 9707 // Second, search down the chain, starting from the top-level nodes recorded 9708 // in the first phase. These top-level nodes are the nodes just above all 9709 // loads and token factors. Starting with their uses, recursively look though 9710 // all loads (just the chain uses) and token factors to find a consecutive 9711 // load. 9712 Visited.clear(); 9713 Queue.clear(); 9714 9715 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 9716 IE = LoadRoots.end(); I != IE; ++I) { 9717 Queue.push_back(*I); 9718 9719 while (!Queue.empty()) { 9720 SDNode *LoadRoot = Queue.pop_back_val(); 9721 if (!Visited.insert(LoadRoot).second) 9722 continue; 9723 9724 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 9725 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 9726 return true; 9727 9728 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 9729 UE = LoadRoot->use_end(); UI != UE; ++UI) 9730 if (((isa<MemSDNode>(*UI) && 9731 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 9732 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 9733 Queue.push_back(*UI); 9734 } 9735 } 9736 9737 return false; 9738 } 9739 9740 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 9741 DAGCombinerInfo &DCI) const { 9742 SelectionDAG &DAG = DCI.DAG; 9743 SDLoc dl(N); 9744 9745 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 9746 // If we're tracking CR bits, we need to be careful that we don't have: 9747 // trunc(binary-ops(zext(x), zext(y))) 9748 // or 9749 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 9750 // such that we're unnecessarily moving things into GPRs when it would be 9751 // better to keep them in CR bits. 9752 9753 // Note that trunc here can be an actual i1 trunc, or can be the effective 9754 // truncation that comes from a setcc or select_cc. 9755 if (N->getOpcode() == ISD::TRUNCATE && 9756 N->getValueType(0) != MVT::i1) 9757 return SDValue(); 9758 9759 if (N->getOperand(0).getValueType() != MVT::i32 && 9760 N->getOperand(0).getValueType() != MVT::i64) 9761 return SDValue(); 9762 9763 if (N->getOpcode() == ISD::SETCC || 9764 N->getOpcode() == ISD::SELECT_CC) { 9765 // If we're looking at a comparison, then we need to make sure that the 9766 // high bits (all except for the first) don't matter the result. 9767 ISD::CondCode CC = 9768 cast<CondCodeSDNode>(N->getOperand( 9769 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 9770 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 9771 9772 if (ISD::isSignedIntSetCC(CC)) { 9773 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 9774 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 9775 return SDValue(); 9776 } else if (ISD::isUnsignedIntSetCC(CC)) { 9777 if (!DAG.MaskedValueIsZero(N->getOperand(0), 9778 APInt::getHighBitsSet(OpBits, OpBits-1)) || 9779 !DAG.MaskedValueIsZero(N->getOperand(1), 9780 APInt::getHighBitsSet(OpBits, OpBits-1))) 9781 return SDValue(); 9782 } else { 9783 // This is neither a signed nor an unsigned comparison, just make sure 9784 // that the high bits are equal. 9785 APInt Op1Zero, Op1One; 9786 APInt Op2Zero, Op2One; 9787 DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One); 9788 DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One); 9789 9790 // We don't really care about what is known about the first bit (if 9791 // anything), so clear it in all masks prior to comparing them. 9792 Op1Zero.clearBit(0); Op1One.clearBit(0); 9793 Op2Zero.clearBit(0); Op2One.clearBit(0); 9794 9795 if (Op1Zero != Op2Zero || Op1One != Op2One) 9796 return SDValue(); 9797 } 9798 } 9799 9800 // We now know that the higher-order bits are irrelevant, we just need to 9801 // make sure that all of the intermediate operations are bit operations, and 9802 // all inputs are extensions. 9803 if (N->getOperand(0).getOpcode() != ISD::AND && 9804 N->getOperand(0).getOpcode() != ISD::OR && 9805 N->getOperand(0).getOpcode() != ISD::XOR && 9806 N->getOperand(0).getOpcode() != ISD::SELECT && 9807 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 9808 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 9809 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 9810 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 9811 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 9812 return SDValue(); 9813 9814 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 9815 N->getOperand(1).getOpcode() != ISD::AND && 9816 N->getOperand(1).getOpcode() != ISD::OR && 9817 N->getOperand(1).getOpcode() != ISD::XOR && 9818 N->getOperand(1).getOpcode() != ISD::SELECT && 9819 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 9820 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 9821 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 9822 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 9823 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 9824 return SDValue(); 9825 9826 SmallVector<SDValue, 4> Inputs; 9827 SmallVector<SDValue, 8> BinOps, PromOps; 9828 SmallPtrSet<SDNode *, 16> Visited; 9829 9830 for (unsigned i = 0; i < 2; ++i) { 9831 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9832 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9833 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 9834 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 9835 isa<ConstantSDNode>(N->getOperand(i))) 9836 Inputs.push_back(N->getOperand(i)); 9837 else 9838 BinOps.push_back(N->getOperand(i)); 9839 9840 if (N->getOpcode() == ISD::TRUNCATE) 9841 break; 9842 } 9843 9844 // Visit all inputs, collect all binary operations (and, or, xor and 9845 // select) that are all fed by extensions. 9846 while (!BinOps.empty()) { 9847 SDValue BinOp = BinOps.back(); 9848 BinOps.pop_back(); 9849 9850 if (!Visited.insert(BinOp.getNode()).second) 9851 continue; 9852 9853 PromOps.push_back(BinOp); 9854 9855 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 9856 // The condition of the select is not promoted. 9857 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 9858 continue; 9859 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 9860 continue; 9861 9862 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9863 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9864 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 9865 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 9866 isa<ConstantSDNode>(BinOp.getOperand(i))) { 9867 Inputs.push_back(BinOp.getOperand(i)); 9868 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 9869 BinOp.getOperand(i).getOpcode() == ISD::OR || 9870 BinOp.getOperand(i).getOpcode() == ISD::XOR || 9871 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 9872 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 9873 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 9874 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9875 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9876 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 9877 BinOps.push_back(BinOp.getOperand(i)); 9878 } else { 9879 // We have an input that is not an extension or another binary 9880 // operation; we'll abort this transformation. 9881 return SDValue(); 9882 } 9883 } 9884 } 9885 9886 // Make sure that this is a self-contained cluster of operations (which 9887 // is not quite the same thing as saying that everything has only one 9888 // use). 9889 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9890 if (isa<ConstantSDNode>(Inputs[i])) 9891 continue; 9892 9893 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 9894 UE = Inputs[i].getNode()->use_end(); 9895 UI != UE; ++UI) { 9896 SDNode *User = *UI; 9897 if (User != N && !Visited.count(User)) 9898 return SDValue(); 9899 9900 // Make sure that we're not going to promote the non-output-value 9901 // operand(s) or SELECT or SELECT_CC. 9902 // FIXME: Although we could sometimes handle this, and it does occur in 9903 // practice that one of the condition inputs to the select is also one of 9904 // the outputs, we currently can't deal with this. 9905 if (User->getOpcode() == ISD::SELECT) { 9906 if (User->getOperand(0) == Inputs[i]) 9907 return SDValue(); 9908 } else if (User->getOpcode() == ISD::SELECT_CC) { 9909 if (User->getOperand(0) == Inputs[i] || 9910 User->getOperand(1) == Inputs[i]) 9911 return SDValue(); 9912 } 9913 } 9914 } 9915 9916 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 9917 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 9918 UE = PromOps[i].getNode()->use_end(); 9919 UI != UE; ++UI) { 9920 SDNode *User = *UI; 9921 if (User != N && !Visited.count(User)) 9922 return SDValue(); 9923 9924 // Make sure that we're not going to promote the non-output-value 9925 // operand(s) or SELECT or SELECT_CC. 9926 // FIXME: Although we could sometimes handle this, and it does occur in 9927 // practice that one of the condition inputs to the select is also one of 9928 // the outputs, we currently can't deal with this. 9929 if (User->getOpcode() == ISD::SELECT) { 9930 if (User->getOperand(0) == PromOps[i]) 9931 return SDValue(); 9932 } else if (User->getOpcode() == ISD::SELECT_CC) { 9933 if (User->getOperand(0) == PromOps[i] || 9934 User->getOperand(1) == PromOps[i]) 9935 return SDValue(); 9936 } 9937 } 9938 } 9939 9940 // Replace all inputs with the extension operand. 9941 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9942 // Constants may have users outside the cluster of to-be-promoted nodes, 9943 // and so we need to replace those as we do the promotions. 9944 if (isa<ConstantSDNode>(Inputs[i])) 9945 continue; 9946 else 9947 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 9948 } 9949 9950 std::list<HandleSDNode> PromOpHandles; 9951 for (auto &PromOp : PromOps) 9952 PromOpHandles.emplace_back(PromOp); 9953 9954 // Replace all operations (these are all the same, but have a different 9955 // (i1) return type). DAG.getNode will validate that the types of 9956 // a binary operator match, so go through the list in reverse so that 9957 // we've likely promoted both operands first. Any intermediate truncations or 9958 // extensions disappear. 9959 while (!PromOpHandles.empty()) { 9960 SDValue PromOp = PromOpHandles.back().getValue(); 9961 PromOpHandles.pop_back(); 9962 9963 if (PromOp.getOpcode() == ISD::TRUNCATE || 9964 PromOp.getOpcode() == ISD::SIGN_EXTEND || 9965 PromOp.getOpcode() == ISD::ZERO_EXTEND || 9966 PromOp.getOpcode() == ISD::ANY_EXTEND) { 9967 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 9968 PromOp.getOperand(0).getValueType() != MVT::i1) { 9969 // The operand is not yet ready (see comment below). 9970 PromOpHandles.emplace_front(PromOp); 9971 continue; 9972 } 9973 9974 SDValue RepValue = PromOp.getOperand(0); 9975 if (isa<ConstantSDNode>(RepValue)) 9976 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 9977 9978 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 9979 continue; 9980 } 9981 9982 unsigned C; 9983 switch (PromOp.getOpcode()) { 9984 default: C = 0; break; 9985 case ISD::SELECT: C = 1; break; 9986 case ISD::SELECT_CC: C = 2; break; 9987 } 9988 9989 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 9990 PromOp.getOperand(C).getValueType() != MVT::i1) || 9991 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 9992 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 9993 // The to-be-promoted operands of this node have not yet been 9994 // promoted (this should be rare because we're going through the 9995 // list backward, but if one of the operands has several users in 9996 // this cluster of to-be-promoted nodes, it is possible). 9997 PromOpHandles.emplace_front(PromOp); 9998 continue; 9999 } 10000 10001 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 10002 PromOp.getNode()->op_end()); 10003 10004 // If there are any constant inputs, make sure they're replaced now. 10005 for (unsigned i = 0; i < 2; ++i) 10006 if (isa<ConstantSDNode>(Ops[C+i])) 10007 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 10008 10009 DAG.ReplaceAllUsesOfValueWith(PromOp, 10010 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 10011 } 10012 10013 // Now we're left with the initial truncation itself. 10014 if (N->getOpcode() == ISD::TRUNCATE) 10015 return N->getOperand(0); 10016 10017 // Otherwise, this is a comparison. The operands to be compared have just 10018 // changed type (to i1), but everything else is the same. 10019 return SDValue(N, 0); 10020 } 10021 10022 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 10023 DAGCombinerInfo &DCI) const { 10024 SelectionDAG &DAG = DCI.DAG; 10025 SDLoc dl(N); 10026 10027 // If we're tracking CR bits, we need to be careful that we don't have: 10028 // zext(binary-ops(trunc(x), trunc(y))) 10029 // or 10030 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 10031 // such that we're unnecessarily moving things into CR bits that can more 10032 // efficiently stay in GPRs. Note that if we're not certain that the high 10033 // bits are set as required by the final extension, we still may need to do 10034 // some masking to get the proper behavior. 10035 10036 // This same functionality is important on PPC64 when dealing with 10037 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 10038 // the return values of functions. Because it is so similar, it is handled 10039 // here as well. 10040 10041 if (N->getValueType(0) != MVT::i32 && 10042 N->getValueType(0) != MVT::i64) 10043 return SDValue(); 10044 10045 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 10046 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 10047 return SDValue(); 10048 10049 if (N->getOperand(0).getOpcode() != ISD::AND && 10050 N->getOperand(0).getOpcode() != ISD::OR && 10051 N->getOperand(0).getOpcode() != ISD::XOR && 10052 N->getOperand(0).getOpcode() != ISD::SELECT && 10053 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 10054 return SDValue(); 10055 10056 SmallVector<SDValue, 4> Inputs; 10057 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 10058 SmallPtrSet<SDNode *, 16> Visited; 10059 10060 // Visit all inputs, collect all binary operations (and, or, xor and 10061 // select) that are all fed by truncations. 10062 while (!BinOps.empty()) { 10063 SDValue BinOp = BinOps.back(); 10064 BinOps.pop_back(); 10065 10066 if (!Visited.insert(BinOp.getNode()).second) 10067 continue; 10068 10069 PromOps.push_back(BinOp); 10070 10071 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 10072 // The condition of the select is not promoted. 10073 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 10074 continue; 10075 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 10076 continue; 10077 10078 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 10079 isa<ConstantSDNode>(BinOp.getOperand(i))) { 10080 Inputs.push_back(BinOp.getOperand(i)); 10081 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 10082 BinOp.getOperand(i).getOpcode() == ISD::OR || 10083 BinOp.getOperand(i).getOpcode() == ISD::XOR || 10084 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 10085 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 10086 BinOps.push_back(BinOp.getOperand(i)); 10087 } else { 10088 // We have an input that is not a truncation or another binary 10089 // operation; we'll abort this transformation. 10090 return SDValue(); 10091 } 10092 } 10093 } 10094 10095 // The operands of a select that must be truncated when the select is 10096 // promoted because the operand is actually part of the to-be-promoted set. 10097 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 10098 10099 // Make sure that this is a self-contained cluster of operations (which 10100 // is not quite the same thing as saying that everything has only one 10101 // use). 10102 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 10103 if (isa<ConstantSDNode>(Inputs[i])) 10104 continue; 10105 10106 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 10107 UE = Inputs[i].getNode()->use_end(); 10108 UI != UE; ++UI) { 10109 SDNode *User = *UI; 10110 if (User != N && !Visited.count(User)) 10111 return SDValue(); 10112 10113 // If we're going to promote the non-output-value operand(s) or SELECT or 10114 // SELECT_CC, record them for truncation. 10115 if (User->getOpcode() == ISD::SELECT) { 10116 if (User->getOperand(0) == Inputs[i]) 10117 SelectTruncOp[0].insert(std::make_pair(User, 10118 User->getOperand(0).getValueType())); 10119 } else if (User->getOpcode() == ISD::SELECT_CC) { 10120 if (User->getOperand(0) == Inputs[i]) 10121 SelectTruncOp[0].insert(std::make_pair(User, 10122 User->getOperand(0).getValueType())); 10123 if (User->getOperand(1) == Inputs[i]) 10124 SelectTruncOp[1].insert(std::make_pair(User, 10125 User->getOperand(1).getValueType())); 10126 } 10127 } 10128 } 10129 10130 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 10131 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 10132 UE = PromOps[i].getNode()->use_end(); 10133 UI != UE; ++UI) { 10134 SDNode *User = *UI; 10135 if (User != N && !Visited.count(User)) 10136 return SDValue(); 10137 10138 // If we're going to promote the non-output-value operand(s) or SELECT or 10139 // SELECT_CC, record them for truncation. 10140 if (User->getOpcode() == ISD::SELECT) { 10141 if (User->getOperand(0) == PromOps[i]) 10142 SelectTruncOp[0].insert(std::make_pair(User, 10143 User->getOperand(0).getValueType())); 10144 } else if (User->getOpcode() == ISD::SELECT_CC) { 10145 if (User->getOperand(0) == PromOps[i]) 10146 SelectTruncOp[0].insert(std::make_pair(User, 10147 User->getOperand(0).getValueType())); 10148 if (User->getOperand(1) == PromOps[i]) 10149 SelectTruncOp[1].insert(std::make_pair(User, 10150 User->getOperand(1).getValueType())); 10151 } 10152 } 10153 } 10154 10155 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 10156 bool ReallyNeedsExt = false; 10157 if (N->getOpcode() != ISD::ANY_EXTEND) { 10158 // If all of the inputs are not already sign/zero extended, then 10159 // we'll still need to do that at the end. 10160 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 10161 if (isa<ConstantSDNode>(Inputs[i])) 10162 continue; 10163 10164 unsigned OpBits = 10165 Inputs[i].getOperand(0).getValueSizeInBits(); 10166 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 10167 10168 if ((N->getOpcode() == ISD::ZERO_EXTEND && 10169 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 10170 APInt::getHighBitsSet(OpBits, 10171 OpBits-PromBits))) || 10172 (N->getOpcode() == ISD::SIGN_EXTEND && 10173 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 10174 (OpBits-(PromBits-1)))) { 10175 ReallyNeedsExt = true; 10176 break; 10177 } 10178 } 10179 } 10180 10181 // Replace all inputs, either with the truncation operand, or a 10182 // truncation or extension to the final output type. 10183 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 10184 // Constant inputs need to be replaced with the to-be-promoted nodes that 10185 // use them because they might have users outside of the cluster of 10186 // promoted nodes. 10187 if (isa<ConstantSDNode>(Inputs[i])) 10188 continue; 10189 10190 SDValue InSrc = Inputs[i].getOperand(0); 10191 if (Inputs[i].getValueType() == N->getValueType(0)) 10192 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 10193 else if (N->getOpcode() == ISD::SIGN_EXTEND) 10194 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 10195 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 10196 else if (N->getOpcode() == ISD::ZERO_EXTEND) 10197 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 10198 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 10199 else 10200 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 10201 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 10202 } 10203 10204 std::list<HandleSDNode> PromOpHandles; 10205 for (auto &PromOp : PromOps) 10206 PromOpHandles.emplace_back(PromOp); 10207 10208 // Replace all operations (these are all the same, but have a different 10209 // (promoted) return type). DAG.getNode will validate that the types of 10210 // a binary operator match, so go through the list in reverse so that 10211 // we've likely promoted both operands first. 10212 while (!PromOpHandles.empty()) { 10213 SDValue PromOp = PromOpHandles.back().getValue(); 10214 PromOpHandles.pop_back(); 10215 10216 unsigned C; 10217 switch (PromOp.getOpcode()) { 10218 default: C = 0; break; 10219 case ISD::SELECT: C = 1; break; 10220 case ISD::SELECT_CC: C = 2; break; 10221 } 10222 10223 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 10224 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 10225 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 10226 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 10227 // The to-be-promoted operands of this node have not yet been 10228 // promoted (this should be rare because we're going through the 10229 // list backward, but if one of the operands has several users in 10230 // this cluster of to-be-promoted nodes, it is possible). 10231 PromOpHandles.emplace_front(PromOp); 10232 continue; 10233 } 10234 10235 // For SELECT and SELECT_CC nodes, we do a similar check for any 10236 // to-be-promoted comparison inputs. 10237 if (PromOp.getOpcode() == ISD::SELECT || 10238 PromOp.getOpcode() == ISD::SELECT_CC) { 10239 if ((SelectTruncOp[0].count(PromOp.getNode()) && 10240 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 10241 (SelectTruncOp[1].count(PromOp.getNode()) && 10242 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 10243 PromOpHandles.emplace_front(PromOp); 10244 continue; 10245 } 10246 } 10247 10248 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 10249 PromOp.getNode()->op_end()); 10250 10251 // If this node has constant inputs, then they'll need to be promoted here. 10252 for (unsigned i = 0; i < 2; ++i) { 10253 if (!isa<ConstantSDNode>(Ops[C+i])) 10254 continue; 10255 if (Ops[C+i].getValueType() == N->getValueType(0)) 10256 continue; 10257 10258 if (N->getOpcode() == ISD::SIGN_EXTEND) 10259 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 10260 else if (N->getOpcode() == ISD::ZERO_EXTEND) 10261 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 10262 else 10263 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 10264 } 10265 10266 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 10267 // truncate them again to the original value type. 10268 if (PromOp.getOpcode() == ISD::SELECT || 10269 PromOp.getOpcode() == ISD::SELECT_CC) { 10270 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 10271 if (SI0 != SelectTruncOp[0].end()) 10272 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 10273 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 10274 if (SI1 != SelectTruncOp[1].end()) 10275 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 10276 } 10277 10278 DAG.ReplaceAllUsesOfValueWith(PromOp, 10279 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 10280 } 10281 10282 // Now we're left with the initial extension itself. 10283 if (!ReallyNeedsExt) 10284 return N->getOperand(0); 10285 10286 // To zero extend, just mask off everything except for the first bit (in the 10287 // i1 case). 10288 if (N->getOpcode() == ISD::ZERO_EXTEND) 10289 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 10290 DAG.getConstant(APInt::getLowBitsSet( 10291 N->getValueSizeInBits(0), PromBits), 10292 dl, N->getValueType(0))); 10293 10294 assert(N->getOpcode() == ISD::SIGN_EXTEND && 10295 "Invalid extension type"); 10296 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 10297 SDValue ShiftCst = 10298 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 10299 return DAG.getNode( 10300 ISD::SRA, dl, N->getValueType(0), 10301 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 10302 ShiftCst); 10303 } 10304 10305 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 10306 DAGCombinerInfo &DCI) const { 10307 assert(N->getOpcode() == ISD::BUILD_VECTOR && 10308 "Should be called with a BUILD_VECTOR node"); 10309 10310 SelectionDAG &DAG = DCI.DAG; 10311 SDLoc dl(N); 10312 if (N->getValueType(0) != MVT::v2f64 || !Subtarget.hasVSX()) 10313 return SDValue(); 10314 10315 // Looking for: 10316 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 10317 if (N->getOperand(0).getOpcode() != ISD::SINT_TO_FP && 10318 N->getOperand(0).getOpcode() != ISD::UINT_TO_FP) 10319 return SDValue(); 10320 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 10321 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 10322 return SDValue(); 10323 if (N->getOperand(0).getOpcode() != N->getOperand(1).getOpcode()) 10324 return SDValue(); 10325 10326 SDValue Ext1 = N->getOperand(0).getOperand(0); 10327 SDValue Ext2 = N->getOperand(1).getOperand(0); 10328 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10329 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 10330 return SDValue(); 10331 10332 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 10333 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 10334 if (!Ext1Op || !Ext2Op) 10335 return SDValue(); 10336 if (Ext1.getValueType() != MVT::i32 || 10337 Ext2.getValueType() != MVT::i32) 10338 if (Ext1.getOperand(0) != Ext2.getOperand(0)) 10339 return SDValue(); 10340 10341 int FirstElem = Ext1Op->getZExtValue(); 10342 int SecondElem = Ext2Op->getZExtValue(); 10343 int SubvecIdx; 10344 if (FirstElem == 0 && SecondElem == 1) 10345 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 10346 else if (FirstElem == 2 && SecondElem == 3) 10347 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 10348 else 10349 return SDValue(); 10350 10351 SDValue SrcVec = Ext1.getOperand(0); 10352 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 10353 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 10354 return DAG.getNode(NodeType, dl, MVT::v2f64, 10355 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 10356 } 10357 10358 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 10359 DAGCombinerInfo &DCI) const { 10360 assert((N->getOpcode() == ISD::SINT_TO_FP || 10361 N->getOpcode() == ISD::UINT_TO_FP) && 10362 "Need an int -> FP conversion node here"); 10363 10364 if (!Subtarget.has64BitSupport()) 10365 return SDValue(); 10366 10367 SelectionDAG &DAG = DCI.DAG; 10368 SDLoc dl(N); 10369 SDValue Op(N, 0); 10370 10371 // Don't handle ppc_fp128 here or i1 conversions. 10372 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 10373 return SDValue(); 10374 if (Op.getOperand(0).getValueType() == MVT::i1) 10375 return SDValue(); 10376 10377 // For i32 intermediate values, unfortunately, the conversion functions 10378 // leave the upper 32 bits of the value are undefined. Within the set of 10379 // scalar instructions, we have no method for zero- or sign-extending the 10380 // value. Thus, we cannot handle i32 intermediate values here. 10381 if (Op.getOperand(0).getValueType() == MVT::i32) 10382 return SDValue(); 10383 10384 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 10385 "UINT_TO_FP is supported only with FPCVT"); 10386 10387 // If we have FCFIDS, then use it when converting to single-precision. 10388 // Otherwise, convert to double-precision and then round. 10389 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 10390 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 10391 : PPCISD::FCFIDS) 10392 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 10393 : PPCISD::FCFID); 10394 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 10395 ? MVT::f32 10396 : MVT::f64; 10397 10398 // If we're converting from a float, to an int, and back to a float again, 10399 // then we don't need the store/load pair at all. 10400 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 10401 Subtarget.hasFPCVT()) || 10402 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 10403 SDValue Src = Op.getOperand(0).getOperand(0); 10404 if (Src.getValueType() == MVT::f32) { 10405 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 10406 DCI.AddToWorklist(Src.getNode()); 10407 } else if (Src.getValueType() != MVT::f64) { 10408 // Make sure that we don't pick up a ppc_fp128 source value. 10409 return SDValue(); 10410 } 10411 10412 unsigned FCTOp = 10413 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 10414 PPCISD::FCTIDUZ; 10415 10416 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 10417 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 10418 10419 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 10420 FP = DAG.getNode(ISD::FP_ROUND, dl, 10421 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 10422 DCI.AddToWorklist(FP.getNode()); 10423 } 10424 10425 return FP; 10426 } 10427 10428 return SDValue(); 10429 } 10430 10431 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 10432 // builtins) into loads with swaps. 10433 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 10434 DAGCombinerInfo &DCI) const { 10435 SelectionDAG &DAG = DCI.DAG; 10436 SDLoc dl(N); 10437 SDValue Chain; 10438 SDValue Base; 10439 MachineMemOperand *MMO; 10440 10441 switch (N->getOpcode()) { 10442 default: 10443 llvm_unreachable("Unexpected opcode for little endian VSX load"); 10444 case ISD::LOAD: { 10445 LoadSDNode *LD = cast<LoadSDNode>(N); 10446 Chain = LD->getChain(); 10447 Base = LD->getBasePtr(); 10448 MMO = LD->getMemOperand(); 10449 // If the MMO suggests this isn't a load of a full vector, leave 10450 // things alone. For a built-in, we have to make the change for 10451 // correctness, so if there is a size problem that will be a bug. 10452 if (MMO->getSize() < 16) 10453 return SDValue(); 10454 break; 10455 } 10456 case ISD::INTRINSIC_W_CHAIN: { 10457 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 10458 Chain = Intrin->getChain(); 10459 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 10460 // us what we want. Get operand 2 instead. 10461 Base = Intrin->getOperand(2); 10462 MMO = Intrin->getMemOperand(); 10463 break; 10464 } 10465 } 10466 10467 MVT VecTy = N->getValueType(0).getSimpleVT(); 10468 SDValue LoadOps[] = { Chain, Base }; 10469 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 10470 DAG.getVTList(MVT::v2f64, MVT::Other), 10471 LoadOps, MVT::v2f64, MMO); 10472 10473 DCI.AddToWorklist(Load.getNode()); 10474 Chain = Load.getValue(1); 10475 SDValue Swap = DAG.getNode( 10476 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 10477 DCI.AddToWorklist(Swap.getNode()); 10478 10479 // Add a bitcast if the resulting load type doesn't match v2f64. 10480 if (VecTy != MVT::v2f64) { 10481 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 10482 DCI.AddToWorklist(N.getNode()); 10483 // Package {bitcast value, swap's chain} to match Load's shape. 10484 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 10485 N, Swap.getValue(1)); 10486 } 10487 10488 return Swap; 10489 } 10490 10491 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 10492 // builtins) into stores with swaps. 10493 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 10494 DAGCombinerInfo &DCI) const { 10495 SelectionDAG &DAG = DCI.DAG; 10496 SDLoc dl(N); 10497 SDValue Chain; 10498 SDValue Base; 10499 unsigned SrcOpnd; 10500 MachineMemOperand *MMO; 10501 10502 switch (N->getOpcode()) { 10503 default: 10504 llvm_unreachable("Unexpected opcode for little endian VSX store"); 10505 case ISD::STORE: { 10506 StoreSDNode *ST = cast<StoreSDNode>(N); 10507 Chain = ST->getChain(); 10508 Base = ST->getBasePtr(); 10509 MMO = ST->getMemOperand(); 10510 SrcOpnd = 1; 10511 // If the MMO suggests this isn't a store of a full vector, leave 10512 // things alone. For a built-in, we have to make the change for 10513 // correctness, so if there is a size problem that will be a bug. 10514 if (MMO->getSize() < 16) 10515 return SDValue(); 10516 break; 10517 } 10518 case ISD::INTRINSIC_VOID: { 10519 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 10520 Chain = Intrin->getChain(); 10521 // Intrin->getBasePtr() oddly does not get what we want. 10522 Base = Intrin->getOperand(3); 10523 MMO = Intrin->getMemOperand(); 10524 SrcOpnd = 2; 10525 break; 10526 } 10527 } 10528 10529 SDValue Src = N->getOperand(SrcOpnd); 10530 MVT VecTy = Src.getValueType().getSimpleVT(); 10531 10532 // All stores are done as v2f64 and possible bit cast. 10533 if (VecTy != MVT::v2f64) { 10534 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 10535 DCI.AddToWorklist(Src.getNode()); 10536 } 10537 10538 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 10539 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 10540 DCI.AddToWorklist(Swap.getNode()); 10541 Chain = Swap.getValue(1); 10542 SDValue StoreOps[] = { Chain, Swap, Base }; 10543 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 10544 DAG.getVTList(MVT::Other), 10545 StoreOps, VecTy, MMO); 10546 DCI.AddToWorklist(Store.getNode()); 10547 return Store; 10548 } 10549 10550 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 10551 DAGCombinerInfo &DCI) const { 10552 SelectionDAG &DAG = DCI.DAG; 10553 SDLoc dl(N); 10554 switch (N->getOpcode()) { 10555 default: break; 10556 case PPCISD::SHL: 10557 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 10558 return N->getOperand(0); 10559 break; 10560 case PPCISD::SRL: 10561 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 10562 return N->getOperand(0); 10563 break; 10564 case PPCISD::SRA: 10565 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10566 if (C->isNullValue() || // 0 >>s V -> 0. 10567 C->isAllOnesValue()) // -1 >>s V -> -1. 10568 return N->getOperand(0); 10569 } 10570 break; 10571 case ISD::SIGN_EXTEND: 10572 case ISD::ZERO_EXTEND: 10573 case ISD::ANY_EXTEND: 10574 return DAGCombineExtBoolTrunc(N, DCI); 10575 case ISD::TRUNCATE: 10576 case ISD::SETCC: 10577 case ISD::SELECT_CC: 10578 return DAGCombineTruncBoolExt(N, DCI); 10579 case ISD::SINT_TO_FP: 10580 case ISD::UINT_TO_FP: 10581 return combineFPToIntToFP(N, DCI); 10582 case ISD::STORE: { 10583 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). 10584 if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() && 10585 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && 10586 N->getOperand(1).getValueType() == MVT::i32 && 10587 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) { 10588 SDValue Val = N->getOperand(1).getOperand(0); 10589 if (Val.getValueType() == MVT::f32) { 10590 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 10591 DCI.AddToWorklist(Val.getNode()); 10592 } 10593 Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val); 10594 DCI.AddToWorklist(Val.getNode()); 10595 10596 SDValue Ops[] = { 10597 N->getOperand(0), Val, N->getOperand(2), 10598 DAG.getValueType(N->getOperand(1).getValueType()) 10599 }; 10600 10601 Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 10602 DAG.getVTList(MVT::Other), Ops, 10603 cast<StoreSDNode>(N)->getMemoryVT(), 10604 cast<StoreSDNode>(N)->getMemOperand()); 10605 DCI.AddToWorklist(Val.getNode()); 10606 return Val; 10607 } 10608 10609 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 10610 if (cast<StoreSDNode>(N)->isUnindexed() && 10611 N->getOperand(1).getOpcode() == ISD::BSWAP && 10612 N->getOperand(1).getNode()->hasOneUse() && 10613 (N->getOperand(1).getValueType() == MVT::i32 || 10614 N->getOperand(1).getValueType() == MVT::i16 || 10615 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 10616 N->getOperand(1).getValueType() == MVT::i64))) { 10617 SDValue BSwapOp = N->getOperand(1).getOperand(0); 10618 // Do an any-extend to 32-bits if this is a half-word input. 10619 if (BSwapOp.getValueType() == MVT::i16) 10620 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 10621 10622 SDValue Ops[] = { 10623 N->getOperand(0), BSwapOp, N->getOperand(2), 10624 DAG.getValueType(N->getOperand(1).getValueType()) 10625 }; 10626 return 10627 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 10628 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 10629 cast<StoreSDNode>(N)->getMemOperand()); 10630 } 10631 10632 // For little endian, VSX stores require generating xxswapd/lxvd2x. 10633 EVT VT = N->getOperand(1).getValueType(); 10634 if (VT.isSimple()) { 10635 MVT StoreVT = VT.getSimpleVT(); 10636 if (Subtarget.hasVSX() && Subtarget.isLittleEndian() && 10637 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 10638 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 10639 return expandVSXStoreForLE(N, DCI); 10640 } 10641 break; 10642 } 10643 case ISD::LOAD: { 10644 LoadSDNode *LD = cast<LoadSDNode>(N); 10645 EVT VT = LD->getValueType(0); 10646 10647 // For little endian, VSX loads require generating lxvd2x/xxswapd. 10648 if (VT.isSimple()) { 10649 MVT LoadVT = VT.getSimpleVT(); 10650 if (Subtarget.hasVSX() && Subtarget.isLittleEndian() && 10651 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 10652 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 10653 return expandVSXLoadForLE(N, DCI); 10654 } 10655 10656 // We sometimes end up with a 64-bit integer load, from which we extract 10657 // two single-precision floating-point numbers. This happens with 10658 // std::complex<float>, and other similar structures, because of the way we 10659 // canonicalize structure copies. However, if we lack direct moves, 10660 // then the final bitcasts from the extracted integer values to the 10661 // floating-point numbers turn into store/load pairs. Even with direct moves, 10662 // just loading the two floating-point numbers is likely better. 10663 auto ReplaceTwoFloatLoad = [&]() { 10664 if (VT != MVT::i64) 10665 return false; 10666 10667 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 10668 LD->isVolatile()) 10669 return false; 10670 10671 // We're looking for a sequence like this: 10672 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 10673 // t16: i64 = srl t13, Constant:i32<32> 10674 // t17: i32 = truncate t16 10675 // t18: f32 = bitcast t17 10676 // t19: i32 = truncate t13 10677 // t20: f32 = bitcast t19 10678 10679 if (!LD->hasNUsesOfValue(2, 0)) 10680 return false; 10681 10682 auto UI = LD->use_begin(); 10683 while (UI.getUse().getResNo() != 0) ++UI; 10684 SDNode *Trunc = *UI++; 10685 while (UI.getUse().getResNo() != 0) ++UI; 10686 SDNode *RightShift = *UI; 10687 if (Trunc->getOpcode() != ISD::TRUNCATE) 10688 std::swap(Trunc, RightShift); 10689 10690 if (Trunc->getOpcode() != ISD::TRUNCATE || 10691 Trunc->getValueType(0) != MVT::i32 || 10692 !Trunc->hasOneUse()) 10693 return false; 10694 if (RightShift->getOpcode() != ISD::SRL || 10695 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 10696 RightShift->getConstantOperandVal(1) != 32 || 10697 !RightShift->hasOneUse()) 10698 return false; 10699 10700 SDNode *Trunc2 = *RightShift->use_begin(); 10701 if (Trunc2->getOpcode() != ISD::TRUNCATE || 10702 Trunc2->getValueType(0) != MVT::i32 || 10703 !Trunc2->hasOneUse()) 10704 return false; 10705 10706 SDNode *Bitcast = *Trunc->use_begin(); 10707 SDNode *Bitcast2 = *Trunc2->use_begin(); 10708 10709 if (Bitcast->getOpcode() != ISD::BITCAST || 10710 Bitcast->getValueType(0) != MVT::f32) 10711 return false; 10712 if (Bitcast2->getOpcode() != ISD::BITCAST || 10713 Bitcast2->getValueType(0) != MVT::f32) 10714 return false; 10715 10716 if (Subtarget.isLittleEndian()) 10717 std::swap(Bitcast, Bitcast2); 10718 10719 // Bitcast has the second float (in memory-layout order) and Bitcast2 10720 // has the first one. 10721 10722 SDValue BasePtr = LD->getBasePtr(); 10723 if (LD->isIndexed()) { 10724 assert(LD->getAddressingMode() == ISD::PRE_INC && 10725 "Non-pre-inc AM on PPC?"); 10726 BasePtr = 10727 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10728 LD->getOffset()); 10729 } 10730 10731 SDValue FloatLoad = 10732 DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 10733 LD->getPointerInfo(), false, LD->isNonTemporal(), 10734 LD->isInvariant(), LD->getAlignment(), LD->getAAInfo()); 10735 SDValue AddPtr = 10736 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 10737 BasePtr, DAG.getIntPtrConstant(4, dl)); 10738 SDValue FloatLoad2 = 10739 DAG.getLoad(MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 10740 LD->getPointerInfo().getWithOffset(4), false, 10741 LD->isNonTemporal(), LD->isInvariant(), 10742 MinAlign(LD->getAlignment(), 4), LD->getAAInfo()); 10743 10744 if (LD->isIndexed()) { 10745 // Note that DAGCombine should re-form any pre-increment load(s) from 10746 // what is produced here if that makes sense. 10747 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 10748 } 10749 10750 DCI.CombineTo(Bitcast2, FloatLoad); 10751 DCI.CombineTo(Bitcast, FloatLoad2); 10752 10753 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 10754 SDValue(FloatLoad2.getNode(), 1)); 10755 return true; 10756 }; 10757 10758 if (ReplaceTwoFloatLoad()) 10759 return SDValue(N, 0); 10760 10761 EVT MemVT = LD->getMemoryVT(); 10762 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 10763 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 10764 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 10765 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 10766 if (LD->isUnindexed() && VT.isVector() && 10767 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 10768 // P8 and later hardware should just use LOAD. 10769 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 10770 VT == MVT::v4i32 || VT == MVT::v4f32)) || 10771 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 10772 LD->getAlignment() >= ScalarABIAlignment)) && 10773 LD->getAlignment() < ABIAlignment) { 10774 // This is a type-legal unaligned Altivec or QPX load. 10775 SDValue Chain = LD->getChain(); 10776 SDValue Ptr = LD->getBasePtr(); 10777 bool isLittleEndian = Subtarget.isLittleEndian(); 10778 10779 // This implements the loading of unaligned vectors as described in 10780 // the venerable Apple Velocity Engine overview. Specifically: 10781 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 10782 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 10783 // 10784 // The general idea is to expand a sequence of one or more unaligned 10785 // loads into an alignment-based permutation-control instruction (lvsl 10786 // or lvsr), a series of regular vector loads (which always truncate 10787 // their input address to an aligned address), and a series of 10788 // permutations. The results of these permutations are the requested 10789 // loaded values. The trick is that the last "extra" load is not taken 10790 // from the address you might suspect (sizeof(vector) bytes after the 10791 // last requested load), but rather sizeof(vector) - 1 bytes after the 10792 // last requested vector. The point of this is to avoid a page fault if 10793 // the base address happened to be aligned. This works because if the 10794 // base address is aligned, then adding less than a full vector length 10795 // will cause the last vector in the sequence to be (re)loaded. 10796 // Otherwise, the next vector will be fetched as you might suspect was 10797 // necessary. 10798 10799 // We might be able to reuse the permutation generation from 10800 // a different base address offset from this one by an aligned amount. 10801 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 10802 // optimization later. 10803 Intrinsic::ID Intr, IntrLD, IntrPerm; 10804 MVT PermCntlTy, PermTy, LDTy; 10805 if (Subtarget.hasAltivec()) { 10806 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 10807 Intrinsic::ppc_altivec_lvsl; 10808 IntrLD = Intrinsic::ppc_altivec_lvx; 10809 IntrPerm = Intrinsic::ppc_altivec_vperm; 10810 PermCntlTy = MVT::v16i8; 10811 PermTy = MVT::v4i32; 10812 LDTy = MVT::v4i32; 10813 } else { 10814 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 10815 Intrinsic::ppc_qpx_qvlpcls; 10816 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 10817 Intrinsic::ppc_qpx_qvlfs; 10818 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 10819 PermCntlTy = MVT::v4f64; 10820 PermTy = MVT::v4f64; 10821 LDTy = MemVT.getSimpleVT(); 10822 } 10823 10824 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 10825 10826 // Create the new MMO for the new base load. It is like the original MMO, 10827 // but represents an area in memory almost twice the vector size centered 10828 // on the original address. If the address is unaligned, we might start 10829 // reading up to (sizeof(vector)-1) bytes below the address of the 10830 // original unaligned load. 10831 MachineFunction &MF = DAG.getMachineFunction(); 10832 MachineMemOperand *BaseMMO = 10833 MF.getMachineMemOperand(LD->getMemOperand(), 10834 -(long)MemVT.getStoreSize()+1, 10835 2*MemVT.getStoreSize()-1); 10836 10837 // Create the new base load. 10838 SDValue LDXIntID = 10839 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 10840 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 10841 SDValue BaseLoad = 10842 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 10843 DAG.getVTList(PermTy, MVT::Other), 10844 BaseLoadOps, LDTy, BaseMMO); 10845 10846 // Note that the value of IncOffset (which is provided to the next 10847 // load's pointer info offset value, and thus used to calculate the 10848 // alignment), and the value of IncValue (which is actually used to 10849 // increment the pointer value) are different! This is because we 10850 // require the next load to appear to be aligned, even though it 10851 // is actually offset from the base pointer by a lesser amount. 10852 int IncOffset = VT.getSizeInBits() / 8; 10853 int IncValue = IncOffset; 10854 10855 // Walk (both up and down) the chain looking for another load at the real 10856 // (aligned) offset (the alignment of the other load does not matter in 10857 // this case). If found, then do not use the offset reduction trick, as 10858 // that will prevent the loads from being later combined (as they would 10859 // otherwise be duplicates). 10860 if (!findConsecutiveLoad(LD, DAG)) 10861 --IncValue; 10862 10863 SDValue Increment = 10864 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 10865 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 10866 10867 MachineMemOperand *ExtraMMO = 10868 MF.getMachineMemOperand(LD->getMemOperand(), 10869 1, 2*MemVT.getStoreSize()-1); 10870 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 10871 SDValue ExtraLoad = 10872 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 10873 DAG.getVTList(PermTy, MVT::Other), 10874 ExtraLoadOps, LDTy, ExtraMMO); 10875 10876 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 10877 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 10878 10879 // Because vperm has a big-endian bias, we must reverse the order 10880 // of the input vectors and complement the permute control vector 10881 // when generating little endian code. We have already handled the 10882 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 10883 // and ExtraLoad here. 10884 SDValue Perm; 10885 if (isLittleEndian) 10886 Perm = BuildIntrinsicOp(IntrPerm, 10887 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 10888 else 10889 Perm = BuildIntrinsicOp(IntrPerm, 10890 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 10891 10892 if (VT != PermTy) 10893 Perm = Subtarget.hasAltivec() ? 10894 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 10895 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 10896 DAG.getTargetConstant(1, dl, MVT::i64)); 10897 // second argument is 1 because this rounding 10898 // is always exact. 10899 10900 // The output of the permutation is our loaded result, the TokenFactor is 10901 // our new chain. 10902 DCI.CombineTo(N, Perm, TF); 10903 return SDValue(N, 0); 10904 } 10905 } 10906 break; 10907 case ISD::INTRINSIC_WO_CHAIN: { 10908 bool isLittleEndian = Subtarget.isLittleEndian(); 10909 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 10910 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 10911 : Intrinsic::ppc_altivec_lvsl); 10912 if ((IID == Intr || 10913 IID == Intrinsic::ppc_qpx_qvlpcld || 10914 IID == Intrinsic::ppc_qpx_qvlpcls) && 10915 N->getOperand(1)->getOpcode() == ISD::ADD) { 10916 SDValue Add = N->getOperand(1); 10917 10918 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 10919 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 10920 10921 if (DAG.MaskedValueIsZero( 10922 Add->getOperand(1), 10923 APInt::getAllOnesValue(Bits /* alignment */) 10924 .zext( 10925 Add.getValueType().getScalarType().getSizeInBits()))) { 10926 SDNode *BasePtr = Add->getOperand(0).getNode(); 10927 for (SDNode::use_iterator UI = BasePtr->use_begin(), 10928 UE = BasePtr->use_end(); 10929 UI != UE; ++UI) { 10930 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 10931 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 10932 // We've found another LVSL/LVSR, and this address is an aligned 10933 // multiple of that one. The results will be the same, so use the 10934 // one we've just found instead. 10935 10936 return SDValue(*UI, 0); 10937 } 10938 } 10939 } 10940 10941 if (isa<ConstantSDNode>(Add->getOperand(1))) { 10942 SDNode *BasePtr = Add->getOperand(0).getNode(); 10943 for (SDNode::use_iterator UI = BasePtr->use_begin(), 10944 UE = BasePtr->use_end(); UI != UE; ++UI) { 10945 if (UI->getOpcode() == ISD::ADD && 10946 isa<ConstantSDNode>(UI->getOperand(1)) && 10947 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 10948 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 10949 (1ULL << Bits) == 0) { 10950 SDNode *OtherAdd = *UI; 10951 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 10952 VE = OtherAdd->use_end(); VI != VE; ++VI) { 10953 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 10954 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 10955 return SDValue(*VI, 0); 10956 } 10957 } 10958 } 10959 } 10960 } 10961 } 10962 } 10963 10964 break; 10965 case ISD::INTRINSIC_W_CHAIN: { 10966 // For little endian, VSX loads require generating lxvd2x/xxswapd. 10967 if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) { 10968 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 10969 default: 10970 break; 10971 case Intrinsic::ppc_vsx_lxvw4x: 10972 case Intrinsic::ppc_vsx_lxvd2x: 10973 return expandVSXLoadForLE(N, DCI); 10974 } 10975 } 10976 break; 10977 } 10978 case ISD::INTRINSIC_VOID: { 10979 // For little endian, VSX stores require generating xxswapd/stxvd2x. 10980 if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) { 10981 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 10982 default: 10983 break; 10984 case Intrinsic::ppc_vsx_stxvw4x: 10985 case Intrinsic::ppc_vsx_stxvd2x: 10986 return expandVSXStoreForLE(N, DCI); 10987 } 10988 } 10989 break; 10990 } 10991 case ISD::BSWAP: 10992 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 10993 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 10994 N->getOperand(0).hasOneUse() && 10995 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 10996 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 10997 N->getValueType(0) == MVT::i64))) { 10998 SDValue Load = N->getOperand(0); 10999 LoadSDNode *LD = cast<LoadSDNode>(Load); 11000 // Create the byte-swapping load. 11001 SDValue Ops[] = { 11002 LD->getChain(), // Chain 11003 LD->getBasePtr(), // Ptr 11004 DAG.getValueType(N->getValueType(0)) // VT 11005 }; 11006 SDValue BSLoad = 11007 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 11008 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 11009 MVT::i64 : MVT::i32, MVT::Other), 11010 Ops, LD->getMemoryVT(), LD->getMemOperand()); 11011 11012 // If this is an i16 load, insert the truncate. 11013 SDValue ResVal = BSLoad; 11014 if (N->getValueType(0) == MVT::i16) 11015 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 11016 11017 // First, combine the bswap away. This makes the value produced by the 11018 // load dead. 11019 DCI.CombineTo(N, ResVal); 11020 11021 // Next, combine the load away, we give it a bogus result value but a real 11022 // chain result. The result value is dead because the bswap is dead. 11023 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 11024 11025 // Return N so it doesn't get rechecked! 11026 return SDValue(N, 0); 11027 } 11028 11029 break; 11030 case PPCISD::VCMP: { 11031 // If a VCMPo node already exists with exactly the same operands as this 11032 // node, use its result instead of this node (VCMPo computes both a CR6 and 11033 // a normal output). 11034 // 11035 if (!N->getOperand(0).hasOneUse() && 11036 !N->getOperand(1).hasOneUse() && 11037 !N->getOperand(2).hasOneUse()) { 11038 11039 // Scan all of the users of the LHS, looking for VCMPo's that match. 11040 SDNode *VCMPoNode = nullptr; 11041 11042 SDNode *LHSN = N->getOperand(0).getNode(); 11043 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 11044 UI != E; ++UI) 11045 if (UI->getOpcode() == PPCISD::VCMPo && 11046 UI->getOperand(1) == N->getOperand(1) && 11047 UI->getOperand(2) == N->getOperand(2) && 11048 UI->getOperand(0) == N->getOperand(0)) { 11049 VCMPoNode = *UI; 11050 break; 11051 } 11052 11053 // If there is no VCMPo node, or if the flag value has a single use, don't 11054 // transform this. 11055 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 11056 break; 11057 11058 // Look at the (necessarily single) use of the flag value. If it has a 11059 // chain, this transformation is more complex. Note that multiple things 11060 // could use the value result, which we should ignore. 11061 SDNode *FlagUser = nullptr; 11062 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 11063 FlagUser == nullptr; ++UI) { 11064 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 11065 SDNode *User = *UI; 11066 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 11067 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 11068 FlagUser = User; 11069 break; 11070 } 11071 } 11072 } 11073 11074 // If the user is a MFOCRF instruction, we know this is safe. 11075 // Otherwise we give up for right now. 11076 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 11077 return SDValue(VCMPoNode, 0); 11078 } 11079 break; 11080 } 11081 case ISD::BRCOND: { 11082 SDValue Cond = N->getOperand(1); 11083 SDValue Target = N->getOperand(2); 11084 11085 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 11086 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 11087 Intrinsic::ppc_is_decremented_ctr_nonzero) { 11088 11089 // We now need to make the intrinsic dead (it cannot be instruction 11090 // selected). 11091 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 11092 assert(Cond.getNode()->hasOneUse() && 11093 "Counter decrement has more than one use"); 11094 11095 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 11096 N->getOperand(0), Target); 11097 } 11098 } 11099 break; 11100 case ISD::BR_CC: { 11101 // If this is a branch on an altivec predicate comparison, lower this so 11102 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 11103 // lowering is done pre-legalize, because the legalizer lowers the predicate 11104 // compare down to code that is difficult to reassemble. 11105 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 11106 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 11107 11108 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 11109 // value. If so, pass-through the AND to get to the intrinsic. 11110 if (LHS.getOpcode() == ISD::AND && 11111 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 11112 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 11113 Intrinsic::ppc_is_decremented_ctr_nonzero && 11114 isa<ConstantSDNode>(LHS.getOperand(1)) && 11115 !isNullConstant(LHS.getOperand(1))) 11116 LHS = LHS.getOperand(0); 11117 11118 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 11119 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 11120 Intrinsic::ppc_is_decremented_ctr_nonzero && 11121 isa<ConstantSDNode>(RHS)) { 11122 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 11123 "Counter decrement comparison is not EQ or NE"); 11124 11125 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 11126 bool isBDNZ = (CC == ISD::SETEQ && Val) || 11127 (CC == ISD::SETNE && !Val); 11128 11129 // We now need to make the intrinsic dead (it cannot be instruction 11130 // selected). 11131 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 11132 assert(LHS.getNode()->hasOneUse() && 11133 "Counter decrement has more than one use"); 11134 11135 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 11136 N->getOperand(0), N->getOperand(4)); 11137 } 11138 11139 int CompareOpc; 11140 bool isDot; 11141 11142 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 11143 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 11144 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 11145 assert(isDot && "Can't compare against a vector result!"); 11146 11147 // If this is a comparison against something other than 0/1, then we know 11148 // that the condition is never/always true. 11149 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 11150 if (Val != 0 && Val != 1) { 11151 if (CC == ISD::SETEQ) // Cond never true, remove branch. 11152 return N->getOperand(0); 11153 // Always !=, turn it into an unconditional branch. 11154 return DAG.getNode(ISD::BR, dl, MVT::Other, 11155 N->getOperand(0), N->getOperand(4)); 11156 } 11157 11158 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 11159 11160 // Create the PPCISD altivec 'dot' comparison node. 11161 SDValue Ops[] = { 11162 LHS.getOperand(2), // LHS of compare 11163 LHS.getOperand(3), // RHS of compare 11164 DAG.getConstant(CompareOpc, dl, MVT::i32) 11165 }; 11166 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 11167 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 11168 11169 // Unpack the result based on how the target uses it. 11170 PPC::Predicate CompOpc; 11171 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 11172 default: // Can't happen, don't crash on invalid number though. 11173 case 0: // Branch on the value of the EQ bit of CR6. 11174 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 11175 break; 11176 case 1: // Branch on the inverted value of the EQ bit of CR6. 11177 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 11178 break; 11179 case 2: // Branch on the value of the LT bit of CR6. 11180 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 11181 break; 11182 case 3: // Branch on the inverted value of the LT bit of CR6. 11183 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 11184 break; 11185 } 11186 11187 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 11188 DAG.getConstant(CompOpc, dl, MVT::i32), 11189 DAG.getRegister(PPC::CR6, MVT::i32), 11190 N->getOperand(4), CompNode.getValue(1)); 11191 } 11192 break; 11193 } 11194 case ISD::BUILD_VECTOR: 11195 return DAGCombineBuildVector(N, DCI); 11196 } 11197 11198 return SDValue(); 11199 } 11200 11201 SDValue 11202 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 11203 SelectionDAG &DAG, 11204 std::vector<SDNode *> *Created) const { 11205 // fold (sdiv X, pow2) 11206 EVT VT = N->getValueType(0); 11207 if (VT == MVT::i64 && !Subtarget.isPPC64()) 11208 return SDValue(); 11209 if ((VT != MVT::i32 && VT != MVT::i64) || 11210 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 11211 return SDValue(); 11212 11213 SDLoc DL(N); 11214 SDValue N0 = N->getOperand(0); 11215 11216 bool IsNegPow2 = (-Divisor).isPowerOf2(); 11217 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 11218 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 11219 11220 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 11221 if (Created) 11222 Created->push_back(Op.getNode()); 11223 11224 if (IsNegPow2) { 11225 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 11226 if (Created) 11227 Created->push_back(Op.getNode()); 11228 } 11229 11230 return Op; 11231 } 11232 11233 //===----------------------------------------------------------------------===// 11234 // Inline Assembly Support 11235 //===----------------------------------------------------------------------===// 11236 11237 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 11238 APInt &KnownZero, 11239 APInt &KnownOne, 11240 const SelectionDAG &DAG, 11241 unsigned Depth) const { 11242 KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0); 11243 switch (Op.getOpcode()) { 11244 default: break; 11245 case PPCISD::LBRX: { 11246 // lhbrx is known to have the top bits cleared out. 11247 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 11248 KnownZero = 0xFFFF0000; 11249 break; 11250 } 11251 case ISD::INTRINSIC_WO_CHAIN: { 11252 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 11253 default: break; 11254 case Intrinsic::ppc_altivec_vcmpbfp_p: 11255 case Intrinsic::ppc_altivec_vcmpeqfp_p: 11256 case Intrinsic::ppc_altivec_vcmpequb_p: 11257 case Intrinsic::ppc_altivec_vcmpequh_p: 11258 case Intrinsic::ppc_altivec_vcmpequw_p: 11259 case Intrinsic::ppc_altivec_vcmpequd_p: 11260 case Intrinsic::ppc_altivec_vcmpgefp_p: 11261 case Intrinsic::ppc_altivec_vcmpgtfp_p: 11262 case Intrinsic::ppc_altivec_vcmpgtsb_p: 11263 case Intrinsic::ppc_altivec_vcmpgtsh_p: 11264 case Intrinsic::ppc_altivec_vcmpgtsw_p: 11265 case Intrinsic::ppc_altivec_vcmpgtsd_p: 11266 case Intrinsic::ppc_altivec_vcmpgtub_p: 11267 case Intrinsic::ppc_altivec_vcmpgtuh_p: 11268 case Intrinsic::ppc_altivec_vcmpgtuw_p: 11269 case Intrinsic::ppc_altivec_vcmpgtud_p: 11270 KnownZero = ~1U; // All bits but the low one are known to be zero. 11271 break; 11272 } 11273 } 11274 } 11275 } 11276 11277 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 11278 switch (Subtarget.getDarwinDirective()) { 11279 default: break; 11280 case PPC::DIR_970: 11281 case PPC::DIR_PWR4: 11282 case PPC::DIR_PWR5: 11283 case PPC::DIR_PWR5X: 11284 case PPC::DIR_PWR6: 11285 case PPC::DIR_PWR6X: 11286 case PPC::DIR_PWR7: 11287 case PPC::DIR_PWR8: 11288 case PPC::DIR_PWR9: { 11289 if (!ML) 11290 break; 11291 11292 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 11293 11294 // For small loops (between 5 and 8 instructions), align to a 32-byte 11295 // boundary so that the entire loop fits in one instruction-cache line. 11296 uint64_t LoopSize = 0; 11297 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 11298 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 11299 LoopSize += TII->GetInstSizeInBytes(*J); 11300 if (LoopSize > 32) 11301 break; 11302 } 11303 11304 if (LoopSize > 16 && LoopSize <= 32) 11305 return 5; 11306 11307 break; 11308 } 11309 } 11310 11311 return TargetLowering::getPrefLoopAlignment(ML); 11312 } 11313 11314 /// getConstraintType - Given a constraint, return the type of 11315 /// constraint it is for this target. 11316 PPCTargetLowering::ConstraintType 11317 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 11318 if (Constraint.size() == 1) { 11319 switch (Constraint[0]) { 11320 default: break; 11321 case 'b': 11322 case 'r': 11323 case 'f': 11324 case 'd': 11325 case 'v': 11326 case 'y': 11327 return C_RegisterClass; 11328 case 'Z': 11329 // FIXME: While Z does indicate a memory constraint, it specifically 11330 // indicates an r+r address (used in conjunction with the 'y' modifier 11331 // in the replacement string). Currently, we're forcing the base 11332 // register to be r0 in the asm printer (which is interpreted as zero) 11333 // and forming the complete address in the second register. This is 11334 // suboptimal. 11335 return C_Memory; 11336 } 11337 } else if (Constraint == "wc") { // individual CR bits. 11338 return C_RegisterClass; 11339 } else if (Constraint == "wa" || Constraint == "wd" || 11340 Constraint == "wf" || Constraint == "ws") { 11341 return C_RegisterClass; // VSX registers. 11342 } 11343 return TargetLowering::getConstraintType(Constraint); 11344 } 11345 11346 /// Examine constraint type and operand type and determine a weight value. 11347 /// This object must already have been set up with the operand type 11348 /// and the current alternative constraint selected. 11349 TargetLowering::ConstraintWeight 11350 PPCTargetLowering::getSingleConstraintMatchWeight( 11351 AsmOperandInfo &info, const char *constraint) const { 11352 ConstraintWeight weight = CW_Invalid; 11353 Value *CallOperandVal = info.CallOperandVal; 11354 // If we don't have a value, we can't do a match, 11355 // but allow it at the lowest weight. 11356 if (!CallOperandVal) 11357 return CW_Default; 11358 Type *type = CallOperandVal->getType(); 11359 11360 // Look at the constraint type. 11361 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 11362 return CW_Register; // an individual CR bit. 11363 else if ((StringRef(constraint) == "wa" || 11364 StringRef(constraint) == "wd" || 11365 StringRef(constraint) == "wf") && 11366 type->isVectorTy()) 11367 return CW_Register; 11368 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 11369 return CW_Register; 11370 11371 switch (*constraint) { 11372 default: 11373 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 11374 break; 11375 case 'b': 11376 if (type->isIntegerTy()) 11377 weight = CW_Register; 11378 break; 11379 case 'f': 11380 if (type->isFloatTy()) 11381 weight = CW_Register; 11382 break; 11383 case 'd': 11384 if (type->isDoubleTy()) 11385 weight = CW_Register; 11386 break; 11387 case 'v': 11388 if (type->isVectorTy()) 11389 weight = CW_Register; 11390 break; 11391 case 'y': 11392 weight = CW_Register; 11393 break; 11394 case 'Z': 11395 weight = CW_Memory; 11396 break; 11397 } 11398 return weight; 11399 } 11400 11401 std::pair<unsigned, const TargetRegisterClass *> 11402 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 11403 StringRef Constraint, 11404 MVT VT) const { 11405 if (Constraint.size() == 1) { 11406 // GCC RS6000 Constraint Letters 11407 switch (Constraint[0]) { 11408 case 'b': // R1-R31 11409 if (VT == MVT::i64 && Subtarget.isPPC64()) 11410 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 11411 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 11412 case 'r': // R0-R31 11413 if (VT == MVT::i64 && Subtarget.isPPC64()) 11414 return std::make_pair(0U, &PPC::G8RCRegClass); 11415 return std::make_pair(0U, &PPC::GPRCRegClass); 11416 // 'd' and 'f' constraints are both defined to be "the floating point 11417 // registers", where one is for 32-bit and the other for 64-bit. We don't 11418 // really care overly much here so just give them all the same reg classes. 11419 case 'd': 11420 case 'f': 11421 if (VT == MVT::f32 || VT == MVT::i32) 11422 return std::make_pair(0U, &PPC::F4RCRegClass); 11423 if (VT == MVT::f64 || VT == MVT::i64) 11424 return std::make_pair(0U, &PPC::F8RCRegClass); 11425 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 11426 return std::make_pair(0U, &PPC::QFRCRegClass); 11427 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 11428 return std::make_pair(0U, &PPC::QSRCRegClass); 11429 break; 11430 case 'v': 11431 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 11432 return std::make_pair(0U, &PPC::QFRCRegClass); 11433 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 11434 return std::make_pair(0U, &PPC::QSRCRegClass); 11435 if (Subtarget.hasAltivec()) 11436 return std::make_pair(0U, &PPC::VRRCRegClass); 11437 case 'y': // crrc 11438 return std::make_pair(0U, &PPC::CRRCRegClass); 11439 } 11440 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 11441 // An individual CR bit. 11442 return std::make_pair(0U, &PPC::CRBITRCRegClass); 11443 } else if ((Constraint == "wa" || Constraint == "wd" || 11444 Constraint == "wf") && Subtarget.hasVSX()) { 11445 return std::make_pair(0U, &PPC::VSRCRegClass); 11446 } else if (Constraint == "ws" && Subtarget.hasVSX()) { 11447 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 11448 return std::make_pair(0U, &PPC::VSSRCRegClass); 11449 else 11450 return std::make_pair(0U, &PPC::VSFRCRegClass); 11451 } 11452 11453 std::pair<unsigned, const TargetRegisterClass *> R = 11454 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 11455 11456 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 11457 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 11458 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 11459 // register. 11460 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 11461 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 11462 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 11463 PPC::GPRCRegClass.contains(R.first)) 11464 return std::make_pair(TRI->getMatchingSuperReg(R.first, 11465 PPC::sub_32, &PPC::G8RCRegClass), 11466 &PPC::G8RCRegClass); 11467 11468 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 11469 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 11470 R.first = PPC::CR0; 11471 R.second = &PPC::CRRCRegClass; 11472 } 11473 11474 return R; 11475 } 11476 11477 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 11478 /// vector. If it is invalid, don't add anything to Ops. 11479 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 11480 std::string &Constraint, 11481 std::vector<SDValue>&Ops, 11482 SelectionDAG &DAG) const { 11483 SDValue Result; 11484 11485 // Only support length 1 constraints. 11486 if (Constraint.length() > 1) return; 11487 11488 char Letter = Constraint[0]; 11489 switch (Letter) { 11490 default: break; 11491 case 'I': 11492 case 'J': 11493 case 'K': 11494 case 'L': 11495 case 'M': 11496 case 'N': 11497 case 'O': 11498 case 'P': { 11499 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 11500 if (!CST) return; // Must be an immediate to match. 11501 SDLoc dl(Op); 11502 int64_t Value = CST->getSExtValue(); 11503 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 11504 // numbers are printed as such. 11505 switch (Letter) { 11506 default: llvm_unreachable("Unknown constraint letter!"); 11507 case 'I': // "I" is a signed 16-bit constant. 11508 if (isInt<16>(Value)) 11509 Result = DAG.getTargetConstant(Value, dl, TCVT); 11510 break; 11511 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 11512 if (isShiftedUInt<16, 16>(Value)) 11513 Result = DAG.getTargetConstant(Value, dl, TCVT); 11514 break; 11515 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 11516 if (isShiftedInt<16, 16>(Value)) 11517 Result = DAG.getTargetConstant(Value, dl, TCVT); 11518 break; 11519 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 11520 if (isUInt<16>(Value)) 11521 Result = DAG.getTargetConstant(Value, dl, TCVT); 11522 break; 11523 case 'M': // "M" is a constant that is greater than 31. 11524 if (Value > 31) 11525 Result = DAG.getTargetConstant(Value, dl, TCVT); 11526 break; 11527 case 'N': // "N" is a positive constant that is an exact power of two. 11528 if (Value > 0 && isPowerOf2_64(Value)) 11529 Result = DAG.getTargetConstant(Value, dl, TCVT); 11530 break; 11531 case 'O': // "O" is the constant zero. 11532 if (Value == 0) 11533 Result = DAG.getTargetConstant(Value, dl, TCVT); 11534 break; 11535 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 11536 if (isInt<16>(-Value)) 11537 Result = DAG.getTargetConstant(Value, dl, TCVT); 11538 break; 11539 } 11540 break; 11541 } 11542 } 11543 11544 if (Result.getNode()) { 11545 Ops.push_back(Result); 11546 return; 11547 } 11548 11549 // Handle standard constraint letters. 11550 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 11551 } 11552 11553 // isLegalAddressingMode - Return true if the addressing mode represented 11554 // by AM is legal for this target, for a load/store of the specified type. 11555 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 11556 const AddrMode &AM, Type *Ty, 11557 unsigned AS) const { 11558 // PPC does not allow r+i addressing modes for vectors! 11559 if (Ty->isVectorTy() && AM.BaseOffs != 0) 11560 return false; 11561 11562 // PPC allows a sign-extended 16-bit immediate field. 11563 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 11564 return false; 11565 11566 // No global is ever allowed as a base. 11567 if (AM.BaseGV) 11568 return false; 11569 11570 // PPC only support r+r, 11571 switch (AM.Scale) { 11572 case 0: // "r+i" or just "i", depending on HasBaseReg. 11573 break; 11574 case 1: 11575 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 11576 return false; 11577 // Otherwise we have r+r or r+i. 11578 break; 11579 case 2: 11580 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 11581 return false; 11582 // Allow 2*r as r+r. 11583 break; 11584 default: 11585 // No other scales are supported. 11586 return false; 11587 } 11588 11589 return true; 11590 } 11591 11592 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 11593 SelectionDAG &DAG) const { 11594 MachineFunction &MF = DAG.getMachineFunction(); 11595 MachineFrameInfo *MFI = MF.getFrameInfo(); 11596 MFI->setReturnAddressIsTaken(true); 11597 11598 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 11599 return SDValue(); 11600 11601 SDLoc dl(Op); 11602 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 11603 11604 // Make sure the function does not optimize away the store of the RA to 11605 // the stack. 11606 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 11607 FuncInfo->setLRStoreRequired(); 11608 bool isPPC64 = Subtarget.isPPC64(); 11609 auto PtrVT = getPointerTy(MF.getDataLayout()); 11610 11611 if (Depth > 0) { 11612 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 11613 SDValue Offset = 11614 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 11615 isPPC64 ? MVT::i64 : MVT::i32); 11616 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 11617 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 11618 MachinePointerInfo(), false, false, false, 0); 11619 } 11620 11621 // Just load the return address off the stack. 11622 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 11623 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 11624 MachinePointerInfo(), false, false, false, 0); 11625 } 11626 11627 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 11628 SelectionDAG &DAG) const { 11629 SDLoc dl(Op); 11630 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 11631 11632 MachineFunction &MF = DAG.getMachineFunction(); 11633 MachineFrameInfo *MFI = MF.getFrameInfo(); 11634 MFI->setFrameAddressIsTaken(true); 11635 11636 EVT PtrVT = getPointerTy(MF.getDataLayout()); 11637 bool isPPC64 = PtrVT == MVT::i64; 11638 11639 // Naked functions never have a frame pointer, and so we use r1. For all 11640 // other functions, this decision must be delayed until during PEI. 11641 unsigned FrameReg; 11642 if (MF.getFunction()->hasFnAttribute(Attribute::Naked)) 11643 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 11644 else 11645 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 11646 11647 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 11648 PtrVT); 11649 while (Depth--) 11650 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 11651 FrameAddr, MachinePointerInfo(), false, false, 11652 false, 0); 11653 return FrameAddr; 11654 } 11655 11656 // FIXME? Maybe this could be a TableGen attribute on some registers and 11657 // this table could be generated automatically from RegInfo. 11658 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT, 11659 SelectionDAG &DAG) const { 11660 bool isPPC64 = Subtarget.isPPC64(); 11661 bool isDarwinABI = Subtarget.isDarwinABI(); 11662 11663 if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) || 11664 (!isPPC64 && VT != MVT::i32)) 11665 report_fatal_error("Invalid register global variable type"); 11666 11667 bool is64Bit = isPPC64 && VT == MVT::i64; 11668 unsigned Reg = StringSwitch<unsigned>(RegName) 11669 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 11670 .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2) 11671 .Case("r13", (!isPPC64 && isDarwinABI) ? 0 : 11672 (is64Bit ? PPC::X13 : PPC::R13)) 11673 .Default(0); 11674 11675 if (Reg) 11676 return Reg; 11677 report_fatal_error("Invalid register name global variable"); 11678 } 11679 11680 bool 11681 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 11682 // The PowerPC target isn't yet aware of offsets. 11683 return false; 11684 } 11685 11686 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 11687 const CallInst &I, 11688 unsigned Intrinsic) const { 11689 11690 switch (Intrinsic) { 11691 case Intrinsic::ppc_qpx_qvlfd: 11692 case Intrinsic::ppc_qpx_qvlfs: 11693 case Intrinsic::ppc_qpx_qvlfcd: 11694 case Intrinsic::ppc_qpx_qvlfcs: 11695 case Intrinsic::ppc_qpx_qvlfiwa: 11696 case Intrinsic::ppc_qpx_qvlfiwz: 11697 case Intrinsic::ppc_altivec_lvx: 11698 case Intrinsic::ppc_altivec_lvxl: 11699 case Intrinsic::ppc_altivec_lvebx: 11700 case Intrinsic::ppc_altivec_lvehx: 11701 case Intrinsic::ppc_altivec_lvewx: 11702 case Intrinsic::ppc_vsx_lxvd2x: 11703 case Intrinsic::ppc_vsx_lxvw4x: { 11704 EVT VT; 11705 switch (Intrinsic) { 11706 case Intrinsic::ppc_altivec_lvebx: 11707 VT = MVT::i8; 11708 break; 11709 case Intrinsic::ppc_altivec_lvehx: 11710 VT = MVT::i16; 11711 break; 11712 case Intrinsic::ppc_altivec_lvewx: 11713 VT = MVT::i32; 11714 break; 11715 case Intrinsic::ppc_vsx_lxvd2x: 11716 VT = MVT::v2f64; 11717 break; 11718 case Intrinsic::ppc_qpx_qvlfd: 11719 VT = MVT::v4f64; 11720 break; 11721 case Intrinsic::ppc_qpx_qvlfs: 11722 VT = MVT::v4f32; 11723 break; 11724 case Intrinsic::ppc_qpx_qvlfcd: 11725 VT = MVT::v2f64; 11726 break; 11727 case Intrinsic::ppc_qpx_qvlfcs: 11728 VT = MVT::v2f32; 11729 break; 11730 default: 11731 VT = MVT::v4i32; 11732 break; 11733 } 11734 11735 Info.opc = ISD::INTRINSIC_W_CHAIN; 11736 Info.memVT = VT; 11737 Info.ptrVal = I.getArgOperand(0); 11738 Info.offset = -VT.getStoreSize()+1; 11739 Info.size = 2*VT.getStoreSize()-1; 11740 Info.align = 1; 11741 Info.vol = false; 11742 Info.readMem = true; 11743 Info.writeMem = false; 11744 return true; 11745 } 11746 case Intrinsic::ppc_qpx_qvlfda: 11747 case Intrinsic::ppc_qpx_qvlfsa: 11748 case Intrinsic::ppc_qpx_qvlfcda: 11749 case Intrinsic::ppc_qpx_qvlfcsa: 11750 case Intrinsic::ppc_qpx_qvlfiwaa: 11751 case Intrinsic::ppc_qpx_qvlfiwza: { 11752 EVT VT; 11753 switch (Intrinsic) { 11754 case Intrinsic::ppc_qpx_qvlfda: 11755 VT = MVT::v4f64; 11756 break; 11757 case Intrinsic::ppc_qpx_qvlfsa: 11758 VT = MVT::v4f32; 11759 break; 11760 case Intrinsic::ppc_qpx_qvlfcda: 11761 VT = MVT::v2f64; 11762 break; 11763 case Intrinsic::ppc_qpx_qvlfcsa: 11764 VT = MVT::v2f32; 11765 break; 11766 default: 11767 VT = MVT::v4i32; 11768 break; 11769 } 11770 11771 Info.opc = ISD::INTRINSIC_W_CHAIN; 11772 Info.memVT = VT; 11773 Info.ptrVal = I.getArgOperand(0); 11774 Info.offset = 0; 11775 Info.size = VT.getStoreSize(); 11776 Info.align = 1; 11777 Info.vol = false; 11778 Info.readMem = true; 11779 Info.writeMem = false; 11780 return true; 11781 } 11782 case Intrinsic::ppc_qpx_qvstfd: 11783 case Intrinsic::ppc_qpx_qvstfs: 11784 case Intrinsic::ppc_qpx_qvstfcd: 11785 case Intrinsic::ppc_qpx_qvstfcs: 11786 case Intrinsic::ppc_qpx_qvstfiw: 11787 case Intrinsic::ppc_altivec_stvx: 11788 case Intrinsic::ppc_altivec_stvxl: 11789 case Intrinsic::ppc_altivec_stvebx: 11790 case Intrinsic::ppc_altivec_stvehx: 11791 case Intrinsic::ppc_altivec_stvewx: 11792 case Intrinsic::ppc_vsx_stxvd2x: 11793 case Intrinsic::ppc_vsx_stxvw4x: { 11794 EVT VT; 11795 switch (Intrinsic) { 11796 case Intrinsic::ppc_altivec_stvebx: 11797 VT = MVT::i8; 11798 break; 11799 case Intrinsic::ppc_altivec_stvehx: 11800 VT = MVT::i16; 11801 break; 11802 case Intrinsic::ppc_altivec_stvewx: 11803 VT = MVT::i32; 11804 break; 11805 case Intrinsic::ppc_vsx_stxvd2x: 11806 VT = MVT::v2f64; 11807 break; 11808 case Intrinsic::ppc_qpx_qvstfd: 11809 VT = MVT::v4f64; 11810 break; 11811 case Intrinsic::ppc_qpx_qvstfs: 11812 VT = MVT::v4f32; 11813 break; 11814 case Intrinsic::ppc_qpx_qvstfcd: 11815 VT = MVT::v2f64; 11816 break; 11817 case Intrinsic::ppc_qpx_qvstfcs: 11818 VT = MVT::v2f32; 11819 break; 11820 default: 11821 VT = MVT::v4i32; 11822 break; 11823 } 11824 11825 Info.opc = ISD::INTRINSIC_VOID; 11826 Info.memVT = VT; 11827 Info.ptrVal = I.getArgOperand(1); 11828 Info.offset = -VT.getStoreSize()+1; 11829 Info.size = 2*VT.getStoreSize()-1; 11830 Info.align = 1; 11831 Info.vol = false; 11832 Info.readMem = false; 11833 Info.writeMem = true; 11834 return true; 11835 } 11836 case Intrinsic::ppc_qpx_qvstfda: 11837 case Intrinsic::ppc_qpx_qvstfsa: 11838 case Intrinsic::ppc_qpx_qvstfcda: 11839 case Intrinsic::ppc_qpx_qvstfcsa: 11840 case Intrinsic::ppc_qpx_qvstfiwa: { 11841 EVT VT; 11842 switch (Intrinsic) { 11843 case Intrinsic::ppc_qpx_qvstfda: 11844 VT = MVT::v4f64; 11845 break; 11846 case Intrinsic::ppc_qpx_qvstfsa: 11847 VT = MVT::v4f32; 11848 break; 11849 case Intrinsic::ppc_qpx_qvstfcda: 11850 VT = MVT::v2f64; 11851 break; 11852 case Intrinsic::ppc_qpx_qvstfcsa: 11853 VT = MVT::v2f32; 11854 break; 11855 default: 11856 VT = MVT::v4i32; 11857 break; 11858 } 11859 11860 Info.opc = ISD::INTRINSIC_VOID; 11861 Info.memVT = VT; 11862 Info.ptrVal = I.getArgOperand(1); 11863 Info.offset = 0; 11864 Info.size = VT.getStoreSize(); 11865 Info.align = 1; 11866 Info.vol = false; 11867 Info.readMem = false; 11868 Info.writeMem = true; 11869 return true; 11870 } 11871 default: 11872 break; 11873 } 11874 11875 return false; 11876 } 11877 11878 /// getOptimalMemOpType - Returns the target specific optimal type for load 11879 /// and store operations as a result of memset, memcpy, and memmove 11880 /// lowering. If DstAlign is zero that means it's safe to destination 11881 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 11882 /// means there isn't a need to check it against alignment requirement, 11883 /// probably because the source does not need to be loaded. If 'IsMemset' is 11884 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that 11885 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy 11886 /// source is constant so it does not need to be loaded. 11887 /// It returns EVT::Other if the type should be determined using generic 11888 /// target-independent logic. 11889 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, 11890 unsigned DstAlign, unsigned SrcAlign, 11891 bool IsMemset, bool ZeroMemset, 11892 bool MemcpyStrSrc, 11893 MachineFunction &MF) const { 11894 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 11895 const Function *F = MF.getFunction(); 11896 // When expanding a memset, require at least two QPX instructions to cover 11897 // the cost of loading the value to be stored from the constant pool. 11898 if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) && 11899 (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) && 11900 !F->hasFnAttribute(Attribute::NoImplicitFloat)) { 11901 return MVT::v4f64; 11902 } 11903 11904 // We should use Altivec/VSX loads and stores when available. For unaligned 11905 // addresses, unaligned VSX loads are only fast starting with the P8. 11906 if (Subtarget.hasAltivec() && Size >= 16 && 11907 (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) || 11908 ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 11909 return MVT::v4i32; 11910 } 11911 11912 if (Subtarget.isPPC64()) { 11913 return MVT::i64; 11914 } 11915 11916 return MVT::i32; 11917 } 11918 11919 /// \brief Returns true if it is beneficial to convert a load of a constant 11920 /// to just the constant itself. 11921 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 11922 Type *Ty) const { 11923 assert(Ty->isIntegerTy()); 11924 11925 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 11926 return !(BitSize == 0 || BitSize > 64); 11927 } 11928 11929 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 11930 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 11931 return false; 11932 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 11933 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 11934 return NumBits1 == 64 && NumBits2 == 32; 11935 } 11936 11937 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 11938 if (!VT1.isInteger() || !VT2.isInteger()) 11939 return false; 11940 unsigned NumBits1 = VT1.getSizeInBits(); 11941 unsigned NumBits2 = VT2.getSizeInBits(); 11942 return NumBits1 == 64 && NumBits2 == 32; 11943 } 11944 11945 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 11946 // Generally speaking, zexts are not free, but they are free when they can be 11947 // folded with other operations. 11948 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 11949 EVT MemVT = LD->getMemoryVT(); 11950 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 11951 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 11952 (LD->getExtensionType() == ISD::NON_EXTLOAD || 11953 LD->getExtensionType() == ISD::ZEXTLOAD)) 11954 return true; 11955 } 11956 11957 // FIXME: Add other cases... 11958 // - 32-bit shifts with a zext to i64 11959 // - zext after ctlz, bswap, etc. 11960 // - zext after and by a constant mask 11961 11962 return TargetLowering::isZExtFree(Val, VT2); 11963 } 11964 11965 bool PPCTargetLowering::isFPExtFree(EVT VT) const { 11966 assert(VT.isFloatingPoint()); 11967 return true; 11968 } 11969 11970 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 11971 return isInt<16>(Imm) || isUInt<16>(Imm); 11972 } 11973 11974 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 11975 return isInt<16>(Imm) || isUInt<16>(Imm); 11976 } 11977 11978 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 11979 unsigned, 11980 unsigned, 11981 bool *Fast) const { 11982 if (DisablePPCUnaligned) 11983 return false; 11984 11985 // PowerPC supports unaligned memory access for simple non-vector types. 11986 // Although accessing unaligned addresses is not as efficient as accessing 11987 // aligned addresses, it is generally more efficient than manual expansion, 11988 // and generally only traps for software emulation when crossing page 11989 // boundaries. 11990 11991 if (!VT.isSimple()) 11992 return false; 11993 11994 if (VT.getSimpleVT().isVector()) { 11995 if (Subtarget.hasVSX()) { 11996 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 11997 VT != MVT::v4f32 && VT != MVT::v4i32) 11998 return false; 11999 } else { 12000 return false; 12001 } 12002 } 12003 12004 if (VT == MVT::ppcf128) 12005 return false; 12006 12007 if (Fast) 12008 *Fast = true; 12009 12010 return true; 12011 } 12012 12013 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 12014 VT = VT.getScalarType(); 12015 12016 if (!VT.isSimple()) 12017 return false; 12018 12019 switch (VT.getSimpleVT().SimpleTy) { 12020 case MVT::f32: 12021 case MVT::f64: 12022 return true; 12023 default: 12024 break; 12025 } 12026 12027 return false; 12028 } 12029 12030 const MCPhysReg * 12031 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 12032 // LR is a callee-save register, but we must treat it as clobbered by any call 12033 // site. Hence we include LR in the scratch registers, which are in turn added 12034 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 12035 // to CTR, which is used by any indirect call. 12036 static const MCPhysReg ScratchRegs[] = { 12037 PPC::X12, PPC::LR8, PPC::CTR8, 0 12038 }; 12039 12040 return ScratchRegs; 12041 } 12042 12043 unsigned PPCTargetLowering::getExceptionPointerRegister( 12044 const Constant *PersonalityFn) const { 12045 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 12046 } 12047 12048 unsigned PPCTargetLowering::getExceptionSelectorRegister( 12049 const Constant *PersonalityFn) const { 12050 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 12051 } 12052 12053 bool 12054 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 12055 EVT VT , unsigned DefinedValues) const { 12056 if (VT == MVT::v2i64) 12057 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 12058 12059 if (Subtarget.hasVSX() || Subtarget.hasQPX()) 12060 return true; 12061 12062 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 12063 } 12064 12065 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 12066 if (DisableILPPref || Subtarget.enableMachineScheduler()) 12067 return TargetLowering::getSchedulingPreference(N); 12068 12069 return Sched::ILP; 12070 } 12071 12072 // Create a fast isel object. 12073 FastISel * 12074 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 12075 const TargetLibraryInfo *LibInfo) const { 12076 return PPC::createFastISel(FuncInfo, LibInfo); 12077 } 12078 12079 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 12080 if (Subtarget.isDarwinABI()) return; 12081 if (!Subtarget.isPPC64()) return; 12082 12083 // Update IsSplitCSR in PPCFunctionInfo 12084 PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>(); 12085 PFI->setIsSplitCSR(true); 12086 } 12087 12088 void PPCTargetLowering::insertCopiesSplitCSR( 12089 MachineBasicBlock *Entry, 12090 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 12091 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 12092 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 12093 if (!IStart) 12094 return; 12095 12096 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 12097 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 12098 MachineBasicBlock::iterator MBBI = Entry->begin(); 12099 for (const MCPhysReg *I = IStart; *I; ++I) { 12100 const TargetRegisterClass *RC = nullptr; 12101 if (PPC::G8RCRegClass.contains(*I)) 12102 RC = &PPC::G8RCRegClass; 12103 else if (PPC::F8RCRegClass.contains(*I)) 12104 RC = &PPC::F8RCRegClass; 12105 else if (PPC::CRRCRegClass.contains(*I)) 12106 RC = &PPC::CRRCRegClass; 12107 else if (PPC::VRRCRegClass.contains(*I)) 12108 RC = &PPC::VRRCRegClass; 12109 else 12110 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 12111 12112 unsigned NewVR = MRI->createVirtualRegister(RC); 12113 // Create copy from CSR to a virtual register. 12114 // FIXME: this currently does not emit CFI pseudo-instructions, it works 12115 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be 12116 // nounwind. If we want to generalize this later, we may need to emit 12117 // CFI pseudo-instructions. 12118 assert(Entry->getParent()->getFunction()->hasFnAttribute( 12119 Attribute::NoUnwind) && 12120 "Function should be nounwind in insertCopiesSplitCSR!"); 12121 Entry->addLiveIn(*I); 12122 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 12123 .addReg(*I); 12124 12125 // Insert the copy-back instructions right before the terminator 12126 for (auto *Exit : Exits) 12127 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 12128 TII->get(TargetOpcode::COPY), *I) 12129 .addReg(NewVR); 12130 } 12131 } 12132 12133 // Override to enable LOAD_STACK_GUARD lowering on Linux. 12134 bool PPCTargetLowering::useLoadStackGuardNode() const { 12135 if (!Subtarget.isTargetLinux()) 12136 return TargetLowering::useLoadStackGuardNode(); 12137 return true; 12138 } 12139 12140 // Override to disable global variable loading on Linux. 12141 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 12142 if (!Subtarget.isTargetLinux()) 12143 return TargetLowering::insertSSPDeclarations(M); 12144 } 12145