Home | History | Annotate | Download | only in ARM
      1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the Base ARM implementation of the TargetInstrInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "ARM.h"
     15 #include "ARMBaseInstrInfo.h"
     16 #include "ARMBaseRegisterInfo.h"
     17 #include "ARMConstantPoolValue.h"
     18 #include "ARMFeatures.h"
     19 #include "ARMHazardRecognizer.h"
     20 #include "ARMMachineFunctionInfo.h"
     21 #include "MCTargetDesc/ARMAddressingModes.h"
     22 #include "llvm/ADT/STLExtras.h"
     23 #include "llvm/CodeGen/LiveVariables.h"
     24 #include "llvm/CodeGen/MachineConstantPool.h"
     25 #include "llvm/CodeGen/MachineFrameInfo.h"
     26 #include "llvm/CodeGen/MachineInstrBuilder.h"
     27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     28 #include "llvm/CodeGen/MachineMemOperand.h"
     29 #include "llvm/CodeGen/MachineRegisterInfo.h"
     30 #include "llvm/CodeGen/SelectionDAGNodes.h"
     31 #include "llvm/CodeGen/TargetSchedule.h"
     32 #include "llvm/IR/Constants.h"
     33 #include "llvm/IR/Function.h"
     34 #include "llvm/IR/GlobalValue.h"
     35 #include "llvm/MC/MCAsmInfo.h"
     36 #include "llvm/MC/MCExpr.h"
     37 #include "llvm/Support/BranchProbability.h"
     38 #include "llvm/Support/CommandLine.h"
     39 #include "llvm/Support/Debug.h"
     40 #include "llvm/Support/ErrorHandling.h"
     41 #include "llvm/Support/raw_ostream.h"
     42 
     43 using namespace llvm;
     44 
     45 #define DEBUG_TYPE "arm-instrinfo"
     46 
     47 #define GET_INSTRINFO_CTOR_DTOR
     48 #include "ARMGenInstrInfo.inc"
     49 
     50 static cl::opt<bool>
     51 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
     52                cl::desc("Enable ARM 2-addr to 3-addr conv"));
     53 
     54 /// ARM_MLxEntry - Record information about MLA / MLS instructions.
     55 struct ARM_MLxEntry {
     56   uint16_t MLxOpc;     // MLA / MLS opcode
     57   uint16_t MulOpc;     // Expanded multiplication opcode
     58   uint16_t AddSubOpc;  // Expanded add / sub opcode
     59   bool NegAcc;         // True if the acc is negated before the add / sub.
     60   bool HasLane;        // True if instruction has an extra "lane" operand.
     61 };
     62 
     63 static const ARM_MLxEntry ARM_MLxTable[] = {
     64   // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
     65   // fp scalar ops
     66   { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
     67   { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
     68   { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
     69   { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
     70   { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
     71   { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
     72   { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
     73   { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },
     74 
     75   // fp SIMD ops
     76   { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
     77   { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
     78   { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
     79   { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
     80   { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
     81   { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
     82   { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
     83   { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
     84 };
     85 
     86 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
     87   : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
     88     Subtarget(STI) {
     89   for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
     90     if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
     91       llvm_unreachable("Duplicated entries?");
     92     MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
     93     MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
     94   }
     95 }
     96 
     97 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
     98 // currently defaults to no prepass hazard recognizer.
     99 ScheduleHazardRecognizer *
    100 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
    101                                                const ScheduleDAG *DAG) const {
    102   if (usePreRAHazardRecognizer()) {
    103     const InstrItineraryData *II =
    104         static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData();
    105     return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
    106   }
    107   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
    108 }
    109 
    110 ScheduleHazardRecognizer *ARMBaseInstrInfo::
    111 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
    112                                    const ScheduleDAG *DAG) const {
    113   if (Subtarget.isThumb2() || Subtarget.hasVFP2())
    114     return (ScheduleHazardRecognizer *)new ARMHazardRecognizer(II, DAG);
    115   return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
    116 }
    117 
    118 MachineInstr *ARMBaseInstrInfo::convertToThreeAddress(
    119     MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const {
    120   // FIXME: Thumb2 support.
    121 
    122   if (!EnableARM3Addr)
    123     return nullptr;
    124 
    125   MachineFunction &MF = *MI.getParent()->getParent();
    126   uint64_t TSFlags = MI.getDesc().TSFlags;
    127   bool isPre = false;
    128   switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
    129   default: return nullptr;
    130   case ARMII::IndexModePre:
    131     isPre = true;
    132     break;
    133   case ARMII::IndexModePost:
    134     break;
    135   }
    136 
    137   // Try splitting an indexed load/store to an un-indexed one plus an add/sub
    138   // operation.
    139   unsigned MemOpc = getUnindexedOpcode(MI.getOpcode());
    140   if (MemOpc == 0)
    141     return nullptr;
    142 
    143   MachineInstr *UpdateMI = nullptr;
    144   MachineInstr *MemMI = nullptr;
    145   unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
    146   const MCInstrDesc &MCID = MI.getDesc();
    147   unsigned NumOps = MCID.getNumOperands();
    148   bool isLoad = !MI.mayStore();
    149   const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0);
    150   const MachineOperand &Base = MI.getOperand(2);
    151   const MachineOperand &Offset = MI.getOperand(NumOps - 3);
    152   unsigned WBReg = WB.getReg();
    153   unsigned BaseReg = Base.getReg();
    154   unsigned OffReg = Offset.getReg();
    155   unsigned OffImm = MI.getOperand(NumOps - 2).getImm();
    156   ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm();
    157   switch (AddrMode) {
    158   default: llvm_unreachable("Unknown indexed op!");
    159   case ARMII::AddrMode2: {
    160     bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
    161     unsigned Amt = ARM_AM::getAM2Offset(OffImm);
    162     if (OffReg == 0) {
    163       if (ARM_AM::getSOImmVal(Amt) == -1)
    164         // Can't encode it in a so_imm operand. This transformation will
    165         // add more than 1 instruction. Abandon!
    166         return nullptr;
    167       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
    168                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
    169                      .addReg(BaseReg)
    170                      .addImm(Amt)
    171                      .addImm(Pred)
    172                      .addReg(0)
    173                      .addReg(0);
    174     } else if (Amt != 0) {
    175       ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
    176       unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
    177       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
    178                          get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
    179                      .addReg(BaseReg)
    180                      .addReg(OffReg)
    181                      .addReg(0)
    182                      .addImm(SOOpc)
    183                      .addImm(Pred)
    184                      .addReg(0)
    185                      .addReg(0);
    186     } else
    187       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
    188                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
    189                      .addReg(BaseReg)
    190                      .addReg(OffReg)
    191                      .addImm(Pred)
    192                      .addReg(0)
    193                      .addReg(0);
    194     break;
    195   }
    196   case ARMII::AddrMode3 : {
    197     bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
    198     unsigned Amt = ARM_AM::getAM3Offset(OffImm);
    199     if (OffReg == 0)
    200       // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
    201       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
    202                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
    203                      .addReg(BaseReg)
    204                      .addImm(Amt)
    205                      .addImm(Pred)
    206                      .addReg(0)
    207                      .addReg(0);
    208     else
    209       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
    210                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
    211                      .addReg(BaseReg)
    212                      .addReg(OffReg)
    213                      .addImm(Pred)
    214                      .addReg(0)
    215                      .addReg(0);
    216     break;
    217   }
    218   }
    219 
    220   std::vector<MachineInstr*> NewMIs;
    221   if (isPre) {
    222     if (isLoad)
    223       MemMI =
    224           BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
    225               .addReg(WBReg)
    226               .addImm(0)
    227               .addImm(Pred);
    228     else
    229       MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
    230                   .addReg(MI.getOperand(1).getReg())
    231                   .addReg(WBReg)
    232                   .addReg(0)
    233                   .addImm(0)
    234                   .addImm(Pred);
    235     NewMIs.push_back(MemMI);
    236     NewMIs.push_back(UpdateMI);
    237   } else {
    238     if (isLoad)
    239       MemMI =
    240           BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
    241               .addReg(BaseReg)
    242               .addImm(0)
    243               .addImm(Pred);
    244     else
    245       MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
    246                   .addReg(MI.getOperand(1).getReg())
    247                   .addReg(BaseReg)
    248                   .addReg(0)
    249                   .addImm(0)
    250                   .addImm(Pred);
    251     if (WB.isDead())
    252       UpdateMI->getOperand(0).setIsDead();
    253     NewMIs.push_back(UpdateMI);
    254     NewMIs.push_back(MemMI);
    255   }
    256 
    257   // Transfer LiveVariables states, kill / dead info.
    258   if (LV) {
    259     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    260       MachineOperand &MO = MI.getOperand(i);
    261       if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
    262         unsigned Reg = MO.getReg();
    263 
    264         LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
    265         if (MO.isDef()) {
    266           MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
    267           if (MO.isDead())
    268             LV->addVirtualRegisterDead(Reg, *NewMI);
    269         }
    270         if (MO.isUse() && MO.isKill()) {
    271           for (unsigned j = 0; j < 2; ++j) {
    272             // Look at the two new MI's in reverse order.
    273             MachineInstr *NewMI = NewMIs[j];
    274             if (!NewMI->readsRegister(Reg))
    275               continue;
    276             LV->addVirtualRegisterKilled(Reg, *NewMI);
    277             if (VI.removeKill(MI))
    278               VI.Kills.push_back(NewMI);
    279             break;
    280           }
    281         }
    282       }
    283     }
    284   }
    285 
    286   MachineBasicBlock::iterator MBBI = MI.getIterator();
    287   MFI->insert(MBBI, NewMIs[1]);
    288   MFI->insert(MBBI, NewMIs[0]);
    289   return NewMIs[0];
    290 }
    291 
    292 // Branch analysis.
    293 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
    294                                      MachineBasicBlock *&TBB,
    295                                      MachineBasicBlock *&FBB,
    296                                      SmallVectorImpl<MachineOperand> &Cond,
    297                                      bool AllowModify) const {
    298   TBB = nullptr;
    299   FBB = nullptr;
    300 
    301   MachineBasicBlock::iterator I = MBB.end();
    302   if (I == MBB.begin())
    303     return false; // Empty blocks are easy.
    304   --I;
    305 
    306   // Walk backwards from the end of the basic block until the branch is
    307   // analyzed or we give up.
    308   while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) {
    309 
    310     // Flag to be raised on unanalyzeable instructions. This is useful in cases
    311     // where we want to clean up on the end of the basic block before we bail
    312     // out.
    313     bool CantAnalyze = false;
    314 
    315     // Skip over DEBUG values and predicated nonterminators.
    316     while (I->isDebugValue() || !I->isTerminator()) {
    317       if (I == MBB.begin())
    318         return false;
    319       --I;
    320     }
    321 
    322     if (isIndirectBranchOpcode(I->getOpcode()) ||
    323         isJumpTableBranchOpcode(I->getOpcode())) {
    324       // Indirect branches and jump tables can't be analyzed, but we still want
    325       // to clean up any instructions at the tail of the basic block.
    326       CantAnalyze = true;
    327     } else if (isUncondBranchOpcode(I->getOpcode())) {
    328       TBB = I->getOperand(0).getMBB();
    329     } else if (isCondBranchOpcode(I->getOpcode())) {
    330       // Bail out if we encounter multiple conditional branches.
    331       if (!Cond.empty())
    332         return true;
    333 
    334       assert(!FBB && "FBB should have been null.");
    335       FBB = TBB;
    336       TBB = I->getOperand(0).getMBB();
    337       Cond.push_back(I->getOperand(1));
    338       Cond.push_back(I->getOperand(2));
    339     } else if (I->isReturn()) {
    340       // Returns can't be analyzed, but we should run cleanup.
    341       CantAnalyze = !isPredicated(*I);
    342     } else {
    343       // We encountered other unrecognized terminator. Bail out immediately.
    344       return true;
    345     }
    346 
    347     // Cleanup code - to be run for unpredicated unconditional branches and
    348     //                returns.
    349     if (!isPredicated(*I) &&
    350           (isUncondBranchOpcode(I->getOpcode()) ||
    351            isIndirectBranchOpcode(I->getOpcode()) ||
    352            isJumpTableBranchOpcode(I->getOpcode()) ||
    353            I->isReturn())) {
    354       // Forget any previous condition branch information - it no longer applies.
    355       Cond.clear();
    356       FBB = nullptr;
    357 
    358       // If we can modify the function, delete everything below this
    359       // unconditional branch.
    360       if (AllowModify) {
    361         MachineBasicBlock::iterator DI = std::next(I);
    362         while (DI != MBB.end()) {
    363           MachineInstr &InstToDelete = *DI;
    364           ++DI;
    365           InstToDelete.eraseFromParent();
    366         }
    367       }
    368     }
    369 
    370     if (CantAnalyze)
    371       return true;
    372 
    373     if (I == MBB.begin())
    374       return false;
    375 
    376     --I;
    377   }
    378 
    379   // We made it past the terminators without bailing out - we must have
    380   // analyzed this branch successfully.
    381   return false;
    382 }
    383 
    384 
    385 unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
    386   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
    387   if (I == MBB.end())
    388     return 0;
    389 
    390   if (!isUncondBranchOpcode(I->getOpcode()) &&
    391       !isCondBranchOpcode(I->getOpcode()))
    392     return 0;
    393 
    394   // Remove the branch.
    395   I->eraseFromParent();
    396 
    397   I = MBB.end();
    398 
    399   if (I == MBB.begin()) return 1;
    400   --I;
    401   if (!isCondBranchOpcode(I->getOpcode()))
    402     return 1;
    403 
    404   // Remove the branch.
    405   I->eraseFromParent();
    406   return 2;
    407 }
    408 
    409 unsigned ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB,
    410                                         MachineBasicBlock *TBB,
    411                                         MachineBasicBlock *FBB,
    412                                         ArrayRef<MachineOperand> Cond,
    413                                         const DebugLoc &DL) const {
    414   ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
    415   int BOpc   = !AFI->isThumbFunction()
    416     ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
    417   int BccOpc = !AFI->isThumbFunction()
    418     ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
    419   bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
    420 
    421   // Shouldn't be a fall through.
    422   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
    423   assert((Cond.size() == 2 || Cond.size() == 0) &&
    424          "ARM branch conditions have two components!");
    425 
    426   // For conditional branches, we use addOperand to preserve CPSR flags.
    427 
    428   if (!FBB) {
    429     if (Cond.empty()) { // Unconditional branch?
    430       if (isThumb)
    431         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).addImm(ARMCC::AL).addReg(0);
    432       else
    433         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
    434     } else
    435       BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
    436         .addImm(Cond[0].getImm()).addOperand(Cond[1]);
    437     return 1;
    438   }
    439 
    440   // Two-way conditional branch.
    441   BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
    442     .addImm(Cond[0].getImm()).addOperand(Cond[1]);
    443   if (isThumb)
    444     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).addImm(ARMCC::AL).addReg(0);
    445   else
    446     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
    447   return 2;
    448 }
    449 
    450 bool ARMBaseInstrInfo::
    451 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
    452   ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
    453   Cond[0].setImm(ARMCC::getOppositeCondition(CC));
    454   return false;
    455 }
    456 
    457 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const {
    458   if (MI.isBundle()) {
    459     MachineBasicBlock::const_instr_iterator I = MI.getIterator();
    460     MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
    461     while (++I != E && I->isInsideBundle()) {
    462       int PIdx = I->findFirstPredOperandIdx();
    463       if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
    464         return true;
    465     }
    466     return false;
    467   }
    468 
    469   int PIdx = MI.findFirstPredOperandIdx();
    470   return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL;
    471 }
    472 
    473 bool ARMBaseInstrInfo::PredicateInstruction(
    474     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
    475   unsigned Opc = MI.getOpcode();
    476   if (isUncondBranchOpcode(Opc)) {
    477     MI.setDesc(get(getMatchingCondBranchOpcode(Opc)));
    478     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
    479       .addImm(Pred[0].getImm())
    480       .addReg(Pred[1].getReg());
    481     return true;
    482   }
    483 
    484   int PIdx = MI.findFirstPredOperandIdx();
    485   if (PIdx != -1) {
    486     MachineOperand &PMO = MI.getOperand(PIdx);
    487     PMO.setImm(Pred[0].getImm());
    488     MI.getOperand(PIdx+1).setReg(Pred[1].getReg());
    489     return true;
    490   }
    491   return false;
    492 }
    493 
    494 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
    495                                          ArrayRef<MachineOperand> Pred2) const {
    496   if (Pred1.size() > 2 || Pred2.size() > 2)
    497     return false;
    498 
    499   ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
    500   ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
    501   if (CC1 == CC2)
    502     return true;
    503 
    504   switch (CC1) {
    505   default:
    506     return false;
    507   case ARMCC::AL:
    508     return true;
    509   case ARMCC::HS:
    510     return CC2 == ARMCC::HI;
    511   case ARMCC::LS:
    512     return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
    513   case ARMCC::GE:
    514     return CC2 == ARMCC::GT;
    515   case ARMCC::LE:
    516     return CC2 == ARMCC::LT;
    517   }
    518 }
    519 
    520 bool ARMBaseInstrInfo::DefinesPredicate(
    521     MachineInstr &MI, std::vector<MachineOperand> &Pred) const {
    522   bool Found = false;
    523   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    524     const MachineOperand &MO = MI.getOperand(i);
    525     if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) ||
    526         (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) {
    527       Pred.push_back(MO);
    528       Found = true;
    529     }
    530   }
    531 
    532   return Found;
    533 }
    534 
    535 static bool isCPSRDefined(const MachineInstr *MI) {
    536   for (const auto &MO : MI->operands())
    537     if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead())
    538       return true;
    539   return false;
    540 }
    541 
    542 static bool isEligibleForITBlock(const MachineInstr *MI) {
    543   switch (MI->getOpcode()) {
    544   default: return true;
    545   case ARM::tADC:   // ADC (register) T1
    546   case ARM::tADDi3: // ADD (immediate) T1
    547   case ARM::tADDi8: // ADD (immediate) T2
    548   case ARM::tADDrr: // ADD (register) T1
    549   case ARM::tAND:   // AND (register) T1
    550   case ARM::tASRri: // ASR (immediate) T1
    551   case ARM::tASRrr: // ASR (register) T1
    552   case ARM::tBIC:   // BIC (register) T1
    553   case ARM::tEOR:   // EOR (register) T1
    554   case ARM::tLSLri: // LSL (immediate) T1
    555   case ARM::tLSLrr: // LSL (register) T1
    556   case ARM::tLSRri: // LSR (immediate) T1
    557   case ARM::tLSRrr: // LSR (register) T1
    558   case ARM::tMUL:   // MUL T1
    559   case ARM::tMVN:   // MVN (register) T1
    560   case ARM::tORR:   // ORR (register) T1
    561   case ARM::tROR:   // ROR (register) T1
    562   case ARM::tRSB:   // RSB (immediate) T1
    563   case ARM::tSBC:   // SBC (register) T1
    564   case ARM::tSUBi3: // SUB (immediate) T1
    565   case ARM::tSUBi8: // SUB (immediate) T2
    566   case ARM::tSUBrr: // SUB (register) T1
    567     return !isCPSRDefined(MI);
    568   }
    569 }
    570 
    571 /// isPredicable - Return true if the specified instruction can be predicated.
    572 /// By default, this returns true for every instruction with a
    573 /// PredicateOperand.
    574 bool ARMBaseInstrInfo::isPredicable(MachineInstr &MI) const {
    575   if (!MI.isPredicable())
    576     return false;
    577 
    578   if (!isEligibleForITBlock(&MI))
    579     return false;
    580 
    581   ARMFunctionInfo *AFI =
    582       MI.getParent()->getParent()->getInfo<ARMFunctionInfo>();
    583 
    584   if (AFI->isThumb2Function()) {
    585     if (getSubtarget().restrictIT())
    586       return isV8EligibleForIT(&MI);
    587   } else { // non-Thumb
    588     if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
    589       return false;
    590   }
    591 
    592   return true;
    593 }
    594 
    595 namespace llvm {
    596 template <> bool IsCPSRDead<MachineInstr>(MachineInstr *MI) {
    597   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    598     const MachineOperand &MO = MI->getOperand(i);
    599     if (!MO.isReg() || MO.isUndef() || MO.isUse())
    600       continue;
    601     if (MO.getReg() != ARM::CPSR)
    602       continue;
    603     if (!MO.isDead())
    604       return false;
    605   }
    606   // all definitions of CPSR are dead
    607   return true;
    608 }
    609 }
    610 
    611 /// GetInstSize - Return the size of the specified MachineInstr.
    612 ///
    613 unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr &MI) const {
    614   const MachineBasicBlock &MBB = *MI.getParent();
    615   const MachineFunction *MF = MBB.getParent();
    616   const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
    617 
    618   const MCInstrDesc &MCID = MI.getDesc();
    619   if (MCID.getSize())
    620     return MCID.getSize();
    621 
    622   // If this machine instr is an inline asm, measure it.
    623   if (MI.getOpcode() == ARM::INLINEASM)
    624     return getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI);
    625   unsigned Opc = MI.getOpcode();
    626   switch (Opc) {
    627   default:
    628     // pseudo-instruction sizes are zero.
    629     return 0;
    630   case TargetOpcode::BUNDLE:
    631     return getInstBundleLength(MI);
    632   case ARM::MOVi16_ga_pcrel:
    633   case ARM::MOVTi16_ga_pcrel:
    634   case ARM::t2MOVi16_ga_pcrel:
    635   case ARM::t2MOVTi16_ga_pcrel:
    636     return 4;
    637   case ARM::MOVi32imm:
    638   case ARM::t2MOVi32imm:
    639     return 8;
    640   case ARM::CONSTPOOL_ENTRY:
    641   case ARM::JUMPTABLE_INSTS:
    642   case ARM::JUMPTABLE_ADDRS:
    643   case ARM::JUMPTABLE_TBB:
    644   case ARM::JUMPTABLE_TBH:
    645     // If this machine instr is a constant pool entry, its size is recorded as
    646     // operand #2.
    647     return MI.getOperand(2).getImm();
    648   case ARM::Int_eh_sjlj_longjmp:
    649     return 16;
    650   case ARM::tInt_eh_sjlj_longjmp:
    651     return 10;
    652   case ARM::tInt_WIN_eh_sjlj_longjmp:
    653     return 12;
    654   case ARM::Int_eh_sjlj_setjmp:
    655   case ARM::Int_eh_sjlj_setjmp_nofp:
    656     return 20;
    657   case ARM::tInt_eh_sjlj_setjmp:
    658   case ARM::t2Int_eh_sjlj_setjmp:
    659   case ARM::t2Int_eh_sjlj_setjmp_nofp:
    660     return 12;
    661   case ARM::SPACE:
    662     return MI.getOperand(1).getImm();
    663   }
    664 }
    665 
    666 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const {
    667   unsigned Size = 0;
    668   MachineBasicBlock::const_instr_iterator I = MI.getIterator();
    669   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
    670   while (++I != E && I->isInsideBundle()) {
    671     assert(!I->isBundle() && "No nested bundle!");
    672     Size += GetInstSizeInBytes(*I);
    673   }
    674   return Size;
    675 }
    676 
    677 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB,
    678                                     MachineBasicBlock::iterator I,
    679                                     unsigned DestReg, bool KillSrc,
    680                                     const ARMSubtarget &Subtarget) const {
    681   unsigned Opc = Subtarget.isThumb()
    682                      ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR)
    683                      : ARM::MRS;
    684 
    685   MachineInstrBuilder MIB =
    686       BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg);
    687 
    688   // There is only 1 A/R class MRS instruction, and it always refers to
    689   // APSR. However, there are lots of other possibilities on M-class cores.
    690   if (Subtarget.isMClass())
    691     MIB.addImm(0x800);
    692 
    693   AddDefaultPred(MIB);
    694 
    695   MIB.addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc));
    696 }
    697 
    698 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB,
    699                                   MachineBasicBlock::iterator I,
    700                                   unsigned SrcReg, bool KillSrc,
    701                                   const ARMSubtarget &Subtarget) const {
    702   unsigned Opc = Subtarget.isThumb()
    703                      ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR)
    704                      : ARM::MSR;
    705 
    706   MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc));
    707 
    708   if (Subtarget.isMClass())
    709     MIB.addImm(0x800);
    710   else
    711     MIB.addImm(8);
    712 
    713   MIB.addReg(SrcReg, getKillRegState(KillSrc));
    714 
    715   AddDefaultPred(MIB);
    716 
    717   MIB.addReg(ARM::CPSR, RegState::Implicit | RegState::Define);
    718 }
    719 
    720 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
    721                                    MachineBasicBlock::iterator I,
    722                                    const DebugLoc &DL, unsigned DestReg,
    723                                    unsigned SrcReg, bool KillSrc) const {
    724   bool GPRDest = ARM::GPRRegClass.contains(DestReg);
    725   bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
    726 
    727   if (GPRDest && GPRSrc) {
    728     AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
    729                                     .addReg(SrcReg, getKillRegState(KillSrc))));
    730     return;
    731   }
    732 
    733   bool SPRDest = ARM::SPRRegClass.contains(DestReg);
    734   bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
    735 
    736   unsigned Opc = 0;
    737   if (SPRDest && SPRSrc)
    738     Opc = ARM::VMOVS;
    739   else if (GPRDest && SPRSrc)
    740     Opc = ARM::VMOVRS;
    741   else if (SPRDest && GPRSrc)
    742     Opc = ARM::VMOVSR;
    743   else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && !Subtarget.isFPOnlySP())
    744     Opc = ARM::VMOVD;
    745   else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
    746     Opc = ARM::VORRq;
    747 
    748   if (Opc) {
    749     MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
    750     MIB.addReg(SrcReg, getKillRegState(KillSrc));
    751     if (Opc == ARM::VORRq)
    752       MIB.addReg(SrcReg, getKillRegState(KillSrc));
    753     AddDefaultPred(MIB);
    754     return;
    755   }
    756 
    757   // Handle register classes that require multiple instructions.
    758   unsigned BeginIdx = 0;
    759   unsigned SubRegs = 0;
    760   int Spacing = 1;
    761 
    762   // Use VORRq when possible.
    763   if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
    764     Opc = ARM::VORRq;
    765     BeginIdx = ARM::qsub_0;
    766     SubRegs = 2;
    767   } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
    768     Opc = ARM::VORRq;
    769     BeginIdx = ARM::qsub_0;
    770     SubRegs = 4;
    771   // Fall back to VMOVD.
    772   } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
    773     Opc = ARM::VMOVD;
    774     BeginIdx = ARM::dsub_0;
    775     SubRegs = 2;
    776   } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
    777     Opc = ARM::VMOVD;
    778     BeginIdx = ARM::dsub_0;
    779     SubRegs = 3;
    780   } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
    781     Opc = ARM::VMOVD;
    782     BeginIdx = ARM::dsub_0;
    783     SubRegs = 4;
    784   } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
    785     Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
    786     BeginIdx = ARM::gsub_0;
    787     SubRegs = 2;
    788   } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
    789     Opc = ARM::VMOVD;
    790     BeginIdx = ARM::dsub_0;
    791     SubRegs = 2;
    792     Spacing = 2;
    793   } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
    794     Opc = ARM::VMOVD;
    795     BeginIdx = ARM::dsub_0;
    796     SubRegs = 3;
    797     Spacing = 2;
    798   } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
    799     Opc = ARM::VMOVD;
    800     BeginIdx = ARM::dsub_0;
    801     SubRegs = 4;
    802     Spacing = 2;
    803   } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.isFPOnlySP()) {
    804     Opc = ARM::VMOVS;
    805     BeginIdx = ARM::ssub_0;
    806     SubRegs = 2;
    807   } else if (SrcReg == ARM::CPSR) {
    808     copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget);
    809     return;
    810   } else if (DestReg == ARM::CPSR) {
    811     copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget);
    812     return;
    813   }
    814 
    815   assert(Opc && "Impossible reg-to-reg copy");
    816 
    817   const TargetRegisterInfo *TRI = &getRegisterInfo();
    818   MachineInstrBuilder Mov;
    819 
    820   // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
    821   if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
    822     BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
    823     Spacing = -Spacing;
    824   }
    825 #ifndef NDEBUG
    826   SmallSet<unsigned, 4> DstRegs;
    827 #endif
    828   for (unsigned i = 0; i != SubRegs; ++i) {
    829     unsigned Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing);
    830     unsigned Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing);
    831     assert(Dst && Src && "Bad sub-register");
    832 #ifndef NDEBUG
    833     assert(!DstRegs.count(Src) && "destructive vector copy");
    834     DstRegs.insert(Dst);
    835 #endif
    836     Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
    837     // VORR takes two source operands.
    838     if (Opc == ARM::VORRq)
    839       Mov.addReg(Src);
    840     Mov = AddDefaultPred(Mov);
    841     // MOVr can set CC.
    842     if (Opc == ARM::MOVr)
    843       Mov = AddDefaultCC(Mov);
    844   }
    845   // Add implicit super-register defs and kills to the last instruction.
    846   Mov->addRegisterDefined(DestReg, TRI);
    847   if (KillSrc)
    848     Mov->addRegisterKilled(SrcReg, TRI);
    849 }
    850 
    851 const MachineInstrBuilder &
    852 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
    853                           unsigned SubIdx, unsigned State,
    854                           const TargetRegisterInfo *TRI) const {
    855   if (!SubIdx)
    856     return MIB.addReg(Reg, State);
    857 
    858   if (TargetRegisterInfo::isPhysicalRegister(Reg))
    859     return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
    860   return MIB.addReg(Reg, State, SubIdx);
    861 }
    862 
    863 void ARMBaseInstrInfo::
    864 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
    865                     unsigned SrcReg, bool isKill, int FI,
    866                     const TargetRegisterClass *RC,
    867                     const TargetRegisterInfo *TRI) const {
    868   DebugLoc DL;
    869   if (I != MBB.end()) DL = I->getDebugLoc();
    870   MachineFunction &MF = *MBB.getParent();
    871   MachineFrameInfo &MFI = *MF.getFrameInfo();
    872   unsigned Align = MFI.getObjectAlignment(FI);
    873 
    874   MachineMemOperand *MMO = MF.getMachineMemOperand(
    875       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
    876       MFI.getObjectSize(FI), Align);
    877 
    878   switch (RC->getSize()) {
    879     case 4:
    880       if (ARM::GPRRegClass.hasSubClassEq(RC)) {
    881         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STRi12))
    882                    .addReg(SrcReg, getKillRegState(isKill))
    883                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
    884       } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
    885         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRS))
    886                    .addReg(SrcReg, getKillRegState(isKill))
    887                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
    888       } else
    889         llvm_unreachable("Unknown reg class!");
    890       break;
    891     case 8:
    892       if (ARM::DPRRegClass.hasSubClassEq(RC)) {
    893         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRD))
    894                    .addReg(SrcReg, getKillRegState(isKill))
    895                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
    896       } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
    897         if (Subtarget.hasV5TEOps()) {
    898           MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::STRD));
    899           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
    900           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
    901           MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO);
    902 
    903           AddDefaultPred(MIB);
    904         } else {
    905           // Fallback to STM instruction, which has existed since the dawn of
    906           // time.
    907           MachineInstrBuilder MIB =
    908             AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STMIA))
    909                              .addFrameIndex(FI).addMemOperand(MMO));
    910           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
    911           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
    912         }
    913       } else
    914         llvm_unreachable("Unknown reg class!");
    915       break;
    916     case 16:
    917       if (ARM::DPairRegClass.hasSubClassEq(RC)) {
    918         // Use aligned spills if the stack can be realigned.
    919         if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
    920           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1q64))
    921                      .addFrameIndex(FI).addImm(16)
    922                      .addReg(SrcReg, getKillRegState(isKill))
    923                      .addMemOperand(MMO));
    924         } else {
    925           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMQIA))
    926                      .addReg(SrcReg, getKillRegState(isKill))
    927                      .addFrameIndex(FI)
    928                      .addMemOperand(MMO));
    929         }
    930       } else
    931         llvm_unreachable("Unknown reg class!");
    932       break;
    933     case 24:
    934       if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
    935         // Use aligned spills if the stack can be realigned.
    936         if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
    937           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64TPseudo))
    938                      .addFrameIndex(FI).addImm(16)
    939                      .addReg(SrcReg, getKillRegState(isKill))
    940                      .addMemOperand(MMO));
    941         } else {
    942           MachineInstrBuilder MIB =
    943           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
    944                        .addFrameIndex(FI))
    945                        .addMemOperand(MMO);
    946           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
    947           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
    948           AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
    949         }
    950       } else
    951         llvm_unreachable("Unknown reg class!");
    952       break;
    953     case 32:
    954       if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
    955         if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
    956           // FIXME: It's possible to only store part of the QQ register if the
    957           // spilled def has a sub-register index.
    958           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo))
    959                      .addFrameIndex(FI).addImm(16)
    960                      .addReg(SrcReg, getKillRegState(isKill))
    961                      .addMemOperand(MMO));
    962         } else {
    963           MachineInstrBuilder MIB =
    964           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
    965                        .addFrameIndex(FI))
    966                        .addMemOperand(MMO);
    967           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
    968           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
    969           MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
    970                 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
    971         }
    972       } else
    973         llvm_unreachable("Unknown reg class!");
    974       break;
    975     case 64:
    976       if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
    977         MachineInstrBuilder MIB =
    978           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
    979                          .addFrameIndex(FI))
    980                          .addMemOperand(MMO);
    981         MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
    982         MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
    983         MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
    984         MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
    985         MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
    986         MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
    987         MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
    988               AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
    989       } else
    990         llvm_unreachable("Unknown reg class!");
    991       break;
    992     default:
    993       llvm_unreachable("Unknown reg class!");
    994   }
    995 }
    996 
    997 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
    998                                               int &FrameIndex) const {
    999   switch (MI.getOpcode()) {
   1000   default: break;
   1001   case ARM::STRrs:
   1002   case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
   1003     if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
   1004         MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
   1005         MI.getOperand(3).getImm() == 0) {
   1006       FrameIndex = MI.getOperand(1).getIndex();
   1007       return MI.getOperand(0).getReg();
   1008     }
   1009     break;
   1010   case ARM::STRi12:
   1011   case ARM::t2STRi12:
   1012   case ARM::tSTRspi:
   1013   case ARM::VSTRD:
   1014   case ARM::VSTRS:
   1015     if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
   1016         MI.getOperand(2).getImm() == 0) {
   1017       FrameIndex = MI.getOperand(1).getIndex();
   1018       return MI.getOperand(0).getReg();
   1019     }
   1020     break;
   1021   case ARM::VST1q64:
   1022   case ARM::VST1d64TPseudo:
   1023   case ARM::VST1d64QPseudo:
   1024     if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) {
   1025       FrameIndex = MI.getOperand(0).getIndex();
   1026       return MI.getOperand(2).getReg();
   1027     }
   1028     break;
   1029   case ARM::VSTMQIA:
   1030     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
   1031       FrameIndex = MI.getOperand(1).getIndex();
   1032       return MI.getOperand(0).getReg();
   1033     }
   1034     break;
   1035   }
   1036 
   1037   return 0;
   1038 }
   1039 
   1040 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
   1041                                                     int &FrameIndex) const {
   1042   const MachineMemOperand *Dummy;
   1043   return MI.mayStore() && hasStoreToStackSlot(MI, Dummy, FrameIndex);
   1044 }
   1045 
   1046 void ARMBaseInstrInfo::
   1047 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
   1048                      unsigned DestReg, int FI,
   1049                      const TargetRegisterClass *RC,
   1050                      const TargetRegisterInfo *TRI) const {
   1051   DebugLoc DL;
   1052   if (I != MBB.end()) DL = I->getDebugLoc();
   1053   MachineFunction &MF = *MBB.getParent();
   1054   MachineFrameInfo &MFI = *MF.getFrameInfo();
   1055   unsigned Align = MFI.getObjectAlignment(FI);
   1056   MachineMemOperand *MMO = MF.getMachineMemOperand(
   1057       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
   1058       MFI.getObjectSize(FI), Align);
   1059 
   1060   switch (RC->getSize()) {
   1061   case 4:
   1062     if (ARM::GPRRegClass.hasSubClassEq(RC)) {
   1063       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
   1064                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
   1065 
   1066     } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
   1067       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
   1068                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
   1069     } else
   1070       llvm_unreachable("Unknown reg class!");
   1071     break;
   1072   case 8:
   1073     if (ARM::DPRRegClass.hasSubClassEq(RC)) {
   1074       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
   1075                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
   1076     } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
   1077       MachineInstrBuilder MIB;
   1078 
   1079       if (Subtarget.hasV5TEOps()) {
   1080         MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
   1081         AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
   1082         AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
   1083         MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO);
   1084 
   1085         AddDefaultPred(MIB);
   1086       } else {
   1087         // Fallback to LDM instruction, which has existed since the dawn of
   1088         // time.
   1089         MIB = AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDMIA))
   1090                                  .addFrameIndex(FI).addMemOperand(MMO));
   1091         MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
   1092         MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
   1093       }
   1094 
   1095       if (TargetRegisterInfo::isPhysicalRegister(DestReg))
   1096         MIB.addReg(DestReg, RegState::ImplicitDefine);
   1097     } else
   1098       llvm_unreachable("Unknown reg class!");
   1099     break;
   1100   case 16:
   1101     if (ARM::DPairRegClass.hasSubClassEq(RC)) {
   1102       if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
   1103         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
   1104                      .addFrameIndex(FI).addImm(16)
   1105                      .addMemOperand(MMO));
   1106       } else {
   1107         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
   1108                        .addFrameIndex(FI)
   1109                        .addMemOperand(MMO));
   1110       }
   1111     } else
   1112       llvm_unreachable("Unknown reg class!");
   1113     break;
   1114   case 24:
   1115     if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
   1116       if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
   1117         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
   1118                      .addFrameIndex(FI).addImm(16)
   1119                      .addMemOperand(MMO));
   1120       } else {
   1121         MachineInstrBuilder MIB =
   1122           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
   1123                          .addFrameIndex(FI)
   1124                          .addMemOperand(MMO));
   1125         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
   1126         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
   1127         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
   1128         if (TargetRegisterInfo::isPhysicalRegister(DestReg))
   1129           MIB.addReg(DestReg, RegState::ImplicitDefine);
   1130       }
   1131     } else
   1132       llvm_unreachable("Unknown reg class!");
   1133     break;
   1134    case 32:
   1135     if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
   1136       if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
   1137         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
   1138                      .addFrameIndex(FI).addImm(16)
   1139                      .addMemOperand(MMO));
   1140       } else {
   1141         MachineInstrBuilder MIB =
   1142         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
   1143                        .addFrameIndex(FI))
   1144                        .addMemOperand(MMO);
   1145         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
   1146         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
   1147         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
   1148         MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
   1149         if (TargetRegisterInfo::isPhysicalRegister(DestReg))
   1150           MIB.addReg(DestReg, RegState::ImplicitDefine);
   1151       }
   1152     } else
   1153       llvm_unreachable("Unknown reg class!");
   1154     break;
   1155   case 64:
   1156     if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
   1157       MachineInstrBuilder MIB =
   1158       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
   1159                      .addFrameIndex(FI))
   1160                      .addMemOperand(MMO);
   1161       MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
   1162       MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
   1163       MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
   1164       MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
   1165       MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
   1166       MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
   1167       MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
   1168       MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
   1169       if (TargetRegisterInfo::isPhysicalRegister(DestReg))
   1170         MIB.addReg(DestReg, RegState::ImplicitDefine);
   1171     } else
   1172       llvm_unreachable("Unknown reg class!");
   1173     break;
   1174   default:
   1175     llvm_unreachable("Unknown regclass!");
   1176   }
   1177 }
   1178 
   1179 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
   1180                                                int &FrameIndex) const {
   1181   switch (MI.getOpcode()) {
   1182   default: break;
   1183   case ARM::LDRrs:
   1184   case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
   1185     if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
   1186         MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
   1187         MI.getOperand(3).getImm() == 0) {
   1188       FrameIndex = MI.getOperand(1).getIndex();
   1189       return MI.getOperand(0).getReg();
   1190     }
   1191     break;
   1192   case ARM::LDRi12:
   1193   case ARM::t2LDRi12:
   1194   case ARM::tLDRspi:
   1195   case ARM::VLDRD:
   1196   case ARM::VLDRS:
   1197     if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
   1198         MI.getOperand(2).getImm() == 0) {
   1199       FrameIndex = MI.getOperand(1).getIndex();
   1200       return MI.getOperand(0).getReg();
   1201     }
   1202     break;
   1203   case ARM::VLD1q64:
   1204   case ARM::VLD1d64TPseudo:
   1205   case ARM::VLD1d64QPseudo:
   1206     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
   1207       FrameIndex = MI.getOperand(1).getIndex();
   1208       return MI.getOperand(0).getReg();
   1209     }
   1210     break;
   1211   case ARM::VLDMQIA:
   1212     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
   1213       FrameIndex = MI.getOperand(1).getIndex();
   1214       return MI.getOperand(0).getReg();
   1215     }
   1216     break;
   1217   }
   1218 
   1219   return 0;
   1220 }
   1221 
   1222 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
   1223                                                      int &FrameIndex) const {
   1224   const MachineMemOperand *Dummy;
   1225   return MI.mayLoad() && hasLoadFromStackSlot(MI, Dummy, FrameIndex);
   1226 }
   1227 
   1228 /// \brief Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD
   1229 /// depending on whether the result is used.
   1230 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const {
   1231   bool isThumb1 = Subtarget.isThumb1Only();
   1232   bool isThumb2 = Subtarget.isThumb2();
   1233   const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo();
   1234 
   1235   DebugLoc dl = MI->getDebugLoc();
   1236   MachineBasicBlock *BB = MI->getParent();
   1237 
   1238   MachineInstrBuilder LDM, STM;
   1239   if (isThumb1 || !MI->getOperand(1).isDead()) {
   1240     LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD
   1241                                                  : isThumb1 ? ARM::tLDMIA_UPD
   1242                                                             : ARM::LDMIA_UPD))
   1243              .addOperand(MI->getOperand(1));
   1244   } else {
   1245     LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA));
   1246   }
   1247 
   1248   if (isThumb1 || !MI->getOperand(0).isDead()) {
   1249     STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD
   1250                                                  : isThumb1 ? ARM::tSTMIA_UPD
   1251                                                             : ARM::STMIA_UPD))
   1252              .addOperand(MI->getOperand(0));
   1253   } else {
   1254     STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA));
   1255   }
   1256 
   1257   AddDefaultPred(LDM.addOperand(MI->getOperand(3)));
   1258   AddDefaultPred(STM.addOperand(MI->getOperand(2)));
   1259 
   1260   // Sort the scratch registers into ascending order.
   1261   const TargetRegisterInfo &TRI = getRegisterInfo();
   1262   llvm::SmallVector<unsigned, 6> ScratchRegs;
   1263   for(unsigned I = 5; I < MI->getNumOperands(); ++I)
   1264     ScratchRegs.push_back(MI->getOperand(I).getReg());
   1265   std::sort(ScratchRegs.begin(), ScratchRegs.end(),
   1266             [&TRI](const unsigned &Reg1,
   1267                    const unsigned &Reg2) -> bool {
   1268               return TRI.getEncodingValue(Reg1) <
   1269                      TRI.getEncodingValue(Reg2);
   1270             });
   1271 
   1272   for (const auto &Reg : ScratchRegs) {
   1273     LDM.addReg(Reg, RegState::Define);
   1274     STM.addReg(Reg, RegState::Kill);
   1275   }
   1276 
   1277   BB->erase(MI);
   1278 }
   1279 
   1280 
   1281 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
   1282   if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) {
   1283     assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() &&
   1284            "LOAD_STACK_GUARD currently supported only for MachO.");
   1285     expandLoadStackGuard(MI);
   1286     MI.getParent()->erase(MI);
   1287     return true;
   1288   }
   1289 
   1290   if (MI.getOpcode() == ARM::MEMCPY) {
   1291     expandMEMCPY(MI);
   1292     return true;
   1293   }
   1294 
   1295   // This hook gets to expand COPY instructions before they become
   1296   // copyPhysReg() calls.  Look for VMOVS instructions that can legally be
   1297   // widened to VMOVD.  We prefer the VMOVD when possible because it may be
   1298   // changed into a VORR that can go down the NEON pipeline.
   1299   if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || Subtarget.isFPOnlySP())
   1300     return false;
   1301 
   1302   // Look for a copy between even S-registers.  That is where we keep floats
   1303   // when using NEON v2f32 instructions for f32 arithmetic.
   1304   unsigned DstRegS = MI.getOperand(0).getReg();
   1305   unsigned SrcRegS = MI.getOperand(1).getReg();
   1306   if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
   1307     return false;
   1308 
   1309   const TargetRegisterInfo *TRI = &getRegisterInfo();
   1310   unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
   1311                                               &ARM::DPRRegClass);
   1312   unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
   1313                                               &ARM::DPRRegClass);
   1314   if (!DstRegD || !SrcRegD)
   1315     return false;
   1316 
   1317   // We want to widen this into a DstRegD = VMOVD SrcRegD copy.  This is only
   1318   // legal if the COPY already defines the full DstRegD, and it isn't a
   1319   // sub-register insertion.
   1320   if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI))
   1321     return false;
   1322 
   1323   // A dead copy shouldn't show up here, but reject it just in case.
   1324   if (MI.getOperand(0).isDead())
   1325     return false;
   1326 
   1327   // All clear, widen the COPY.
   1328   DEBUG(dbgs() << "widening:    " << MI);
   1329   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
   1330 
   1331   // Get rid of the old <imp-def> of DstRegD.  Leave it if it defines a Q-reg
   1332   // or some other super-register.
   1333   int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD);
   1334   if (ImpDefIdx != -1)
   1335     MI.RemoveOperand(ImpDefIdx);
   1336 
   1337   // Change the opcode and operands.
   1338   MI.setDesc(get(ARM::VMOVD));
   1339   MI.getOperand(0).setReg(DstRegD);
   1340   MI.getOperand(1).setReg(SrcRegD);
   1341   AddDefaultPred(MIB);
   1342 
   1343   // We are now reading SrcRegD instead of SrcRegS.  This may upset the
   1344   // register scavenger and machine verifier, so we need to indicate that we
   1345   // are reading an undefined value from SrcRegD, but a proper value from
   1346   // SrcRegS.
   1347   MI.getOperand(1).setIsUndef();
   1348   MIB.addReg(SrcRegS, RegState::Implicit);
   1349 
   1350   // SrcRegD may actually contain an unrelated value in the ssub_1
   1351   // sub-register.  Don't kill it.  Only kill the ssub_0 sub-register.
   1352   if (MI.getOperand(1).isKill()) {
   1353     MI.getOperand(1).setIsKill(false);
   1354     MI.addRegisterKilled(SrcRegS, TRI, true);
   1355   }
   1356 
   1357   DEBUG(dbgs() << "replaced by: " << MI);
   1358   return true;
   1359 }
   1360 
   1361 /// Create a copy of a const pool value. Update CPI to the new index and return
   1362 /// the label UID.
   1363 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
   1364   MachineConstantPool *MCP = MF.getConstantPool();
   1365   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   1366 
   1367   const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
   1368   assert(MCPE.isMachineConstantPoolEntry() &&
   1369          "Expecting a machine constantpool entry!");
   1370   ARMConstantPoolValue *ACPV =
   1371     static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
   1372 
   1373   unsigned PCLabelId = AFI->createPICLabelUId();
   1374   ARMConstantPoolValue *NewCPV = nullptr;
   1375 
   1376   // FIXME: The below assumes PIC relocation model and that the function
   1377   // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
   1378   // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
   1379   // instructions, so that's probably OK, but is PIC always correct when
   1380   // we get here?
   1381   if (ACPV->isGlobalValue())
   1382     NewCPV = ARMConstantPoolConstant::Create(
   1383         cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue,
   1384         4, ACPV->getModifier(), ACPV->mustAddCurrentAddress());
   1385   else if (ACPV->isExtSymbol())
   1386     NewCPV = ARMConstantPoolSymbol::
   1387       Create(MF.getFunction()->getContext(),
   1388              cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
   1389   else if (ACPV->isBlockAddress())
   1390     NewCPV = ARMConstantPoolConstant::
   1391       Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
   1392              ARMCP::CPBlockAddress, 4);
   1393   else if (ACPV->isLSDA())
   1394     NewCPV = ARMConstantPoolConstant::Create(MF.getFunction(), PCLabelId,
   1395                                              ARMCP::CPLSDA, 4);
   1396   else if (ACPV->isMachineBasicBlock())
   1397     NewCPV = ARMConstantPoolMBB::
   1398       Create(MF.getFunction()->getContext(),
   1399              cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
   1400   else
   1401     llvm_unreachable("Unexpected ARM constantpool value type!!");
   1402   CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
   1403   return PCLabelId;
   1404 }
   1405 
   1406 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB,
   1407                                      MachineBasicBlock::iterator I,
   1408                                      unsigned DestReg, unsigned SubIdx,
   1409                                      const MachineInstr &Orig,
   1410                                      const TargetRegisterInfo &TRI) const {
   1411   unsigned Opcode = Orig.getOpcode();
   1412   switch (Opcode) {
   1413   default: {
   1414     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
   1415     MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
   1416     MBB.insert(I, MI);
   1417     break;
   1418   }
   1419   case ARM::tLDRpci_pic:
   1420   case ARM::t2LDRpci_pic: {
   1421     MachineFunction &MF = *MBB.getParent();
   1422     unsigned CPI = Orig.getOperand(1).getIndex();
   1423     unsigned PCLabelId = duplicateCPV(MF, CPI);
   1424     MachineInstrBuilder MIB =
   1425         BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg)
   1426             .addConstantPoolIndex(CPI)
   1427             .addImm(PCLabelId);
   1428     MIB->setMemRefs(Orig.memoperands_begin(), Orig.memoperands_end());
   1429     break;
   1430   }
   1431   }
   1432 }
   1433 
   1434 MachineInstr *ARMBaseInstrInfo::duplicate(MachineInstr &Orig,
   1435                                           MachineFunction &MF) const {
   1436   MachineInstr *MI = TargetInstrInfo::duplicate(Orig, MF);
   1437   switch (Orig.getOpcode()) {
   1438   case ARM::tLDRpci_pic:
   1439   case ARM::t2LDRpci_pic: {
   1440     unsigned CPI = Orig.getOperand(1).getIndex();
   1441     unsigned PCLabelId = duplicateCPV(MF, CPI);
   1442     Orig.getOperand(1).setIndex(CPI);
   1443     Orig.getOperand(2).setImm(PCLabelId);
   1444     break;
   1445   }
   1446   }
   1447   return MI;
   1448 }
   1449 
   1450 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0,
   1451                                         const MachineInstr &MI1,
   1452                                         const MachineRegisterInfo *MRI) const {
   1453   unsigned Opcode = MI0.getOpcode();
   1454   if (Opcode == ARM::t2LDRpci ||
   1455       Opcode == ARM::t2LDRpci_pic ||
   1456       Opcode == ARM::tLDRpci ||
   1457       Opcode == ARM::tLDRpci_pic ||
   1458       Opcode == ARM::LDRLIT_ga_pcrel ||
   1459       Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
   1460       Opcode == ARM::tLDRLIT_ga_pcrel ||
   1461       Opcode == ARM::MOV_ga_pcrel ||
   1462       Opcode == ARM::MOV_ga_pcrel_ldr ||
   1463       Opcode == ARM::t2MOV_ga_pcrel) {
   1464     if (MI1.getOpcode() != Opcode)
   1465       return false;
   1466     if (MI0.getNumOperands() != MI1.getNumOperands())
   1467       return false;
   1468 
   1469     const MachineOperand &MO0 = MI0.getOperand(1);
   1470     const MachineOperand &MO1 = MI1.getOperand(1);
   1471     if (MO0.getOffset() != MO1.getOffset())
   1472       return false;
   1473 
   1474     if (Opcode == ARM::LDRLIT_ga_pcrel ||
   1475         Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
   1476         Opcode == ARM::tLDRLIT_ga_pcrel ||
   1477         Opcode == ARM::MOV_ga_pcrel ||
   1478         Opcode == ARM::MOV_ga_pcrel_ldr ||
   1479         Opcode == ARM::t2MOV_ga_pcrel)
   1480       // Ignore the PC labels.
   1481       return MO0.getGlobal() == MO1.getGlobal();
   1482 
   1483     const MachineFunction *MF = MI0.getParent()->getParent();
   1484     const MachineConstantPool *MCP = MF->getConstantPool();
   1485     int CPI0 = MO0.getIndex();
   1486     int CPI1 = MO1.getIndex();
   1487     const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
   1488     const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
   1489     bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
   1490     bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
   1491     if (isARMCP0 && isARMCP1) {
   1492       ARMConstantPoolValue *ACPV0 =
   1493         static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
   1494       ARMConstantPoolValue *ACPV1 =
   1495         static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
   1496       return ACPV0->hasSameValue(ACPV1);
   1497     } else if (!isARMCP0 && !isARMCP1) {
   1498       return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
   1499     }
   1500     return false;
   1501   } else if (Opcode == ARM::PICLDR) {
   1502     if (MI1.getOpcode() != Opcode)
   1503       return false;
   1504     if (MI0.getNumOperands() != MI1.getNumOperands())
   1505       return false;
   1506 
   1507     unsigned Addr0 = MI0.getOperand(1).getReg();
   1508     unsigned Addr1 = MI1.getOperand(1).getReg();
   1509     if (Addr0 != Addr1) {
   1510       if (!MRI ||
   1511           !TargetRegisterInfo::isVirtualRegister(Addr0) ||
   1512           !TargetRegisterInfo::isVirtualRegister(Addr1))
   1513         return false;
   1514 
   1515       // This assumes SSA form.
   1516       MachineInstr *Def0 = MRI->getVRegDef(Addr0);
   1517       MachineInstr *Def1 = MRI->getVRegDef(Addr1);
   1518       // Check if the loaded value, e.g. a constantpool of a global address, are
   1519       // the same.
   1520       if (!produceSameValue(*Def0, *Def1, MRI))
   1521         return false;
   1522     }
   1523 
   1524     for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) {
   1525       // %vreg12<def> = PICLDR %vreg11, 0, pred:14, pred:%noreg
   1526       const MachineOperand &MO0 = MI0.getOperand(i);
   1527       const MachineOperand &MO1 = MI1.getOperand(i);
   1528       if (!MO0.isIdenticalTo(MO1))
   1529         return false;
   1530     }
   1531     return true;
   1532   }
   1533 
   1534   return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
   1535 }
   1536 
   1537 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
   1538 /// determine if two loads are loading from the same base address. It should
   1539 /// only return true if the base pointers are the same and the only differences
   1540 /// between the two addresses is the offset. It also returns the offsets by
   1541 /// reference.
   1542 ///
   1543 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
   1544 /// is permanently disabled.
   1545 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
   1546                                                int64_t &Offset1,
   1547                                                int64_t &Offset2) const {
   1548   // Don't worry about Thumb: just ARM and Thumb2.
   1549   if (Subtarget.isThumb1Only()) return false;
   1550 
   1551   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
   1552     return false;
   1553 
   1554   switch (Load1->getMachineOpcode()) {
   1555   default:
   1556     return false;
   1557   case ARM::LDRi12:
   1558   case ARM::LDRBi12:
   1559   case ARM::LDRD:
   1560   case ARM::LDRH:
   1561   case ARM::LDRSB:
   1562   case ARM::LDRSH:
   1563   case ARM::VLDRD:
   1564   case ARM::VLDRS:
   1565   case ARM::t2LDRi8:
   1566   case ARM::t2LDRBi8:
   1567   case ARM::t2LDRDi8:
   1568   case ARM::t2LDRSHi8:
   1569   case ARM::t2LDRi12:
   1570   case ARM::t2LDRBi12:
   1571   case ARM::t2LDRSHi12:
   1572     break;
   1573   }
   1574 
   1575   switch (Load2->getMachineOpcode()) {
   1576   default:
   1577     return false;
   1578   case ARM::LDRi12:
   1579   case ARM::LDRBi12:
   1580   case ARM::LDRD:
   1581   case ARM::LDRH:
   1582   case ARM::LDRSB:
   1583   case ARM::LDRSH:
   1584   case ARM::VLDRD:
   1585   case ARM::VLDRS:
   1586   case ARM::t2LDRi8:
   1587   case ARM::t2LDRBi8:
   1588   case ARM::t2LDRSHi8:
   1589   case ARM::t2LDRi12:
   1590   case ARM::t2LDRBi12:
   1591   case ARM::t2LDRSHi12:
   1592     break;
   1593   }
   1594 
   1595   // Check if base addresses and chain operands match.
   1596   if (Load1->getOperand(0) != Load2->getOperand(0) ||
   1597       Load1->getOperand(4) != Load2->getOperand(4))
   1598     return false;
   1599 
   1600   // Index should be Reg0.
   1601   if (Load1->getOperand(3) != Load2->getOperand(3))
   1602     return false;
   1603 
   1604   // Determine the offsets.
   1605   if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
   1606       isa<ConstantSDNode>(Load2->getOperand(1))) {
   1607     Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
   1608     Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
   1609     return true;
   1610   }
   1611 
   1612   return false;
   1613 }
   1614 
   1615 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
   1616 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
   1617 /// be scheduled togther. On some targets if two loads are loading from
   1618 /// addresses in the same cache line, it's better if they are scheduled
   1619 /// together. This function takes two integers that represent the load offsets
   1620 /// from the common base address. It returns true if it decides it's desirable
   1621 /// to schedule the two loads together. "NumLoads" is the number of loads that
   1622 /// have already been scheduled after Load1.
   1623 ///
   1624 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
   1625 /// is permanently disabled.
   1626 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
   1627                                                int64_t Offset1, int64_t Offset2,
   1628                                                unsigned NumLoads) const {
   1629   // Don't worry about Thumb: just ARM and Thumb2.
   1630   if (Subtarget.isThumb1Only()) return false;
   1631 
   1632   assert(Offset2 > Offset1);
   1633 
   1634   if ((Offset2 - Offset1) / 8 > 64)
   1635     return false;
   1636 
   1637   // Check if the machine opcodes are different. If they are different
   1638   // then we consider them to not be of the same base address,
   1639   // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
   1640   // In this case, they are considered to be the same because they are different
   1641   // encoding forms of the same basic instruction.
   1642   if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
   1643       !((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
   1644          Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
   1645         (Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
   1646          Load2->getMachineOpcode() == ARM::t2LDRBi8)))
   1647     return false;  // FIXME: overly conservative?
   1648 
   1649   // Four loads in a row should be sufficient.
   1650   if (NumLoads >= 3)
   1651     return false;
   1652 
   1653   return true;
   1654 }
   1655 
   1656 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
   1657                                             const MachineBasicBlock *MBB,
   1658                                             const MachineFunction &MF) const {
   1659   // Debug info is never a scheduling boundary. It's necessary to be explicit
   1660   // due to the special treatment of IT instructions below, otherwise a
   1661   // dbg_value followed by an IT will result in the IT instruction being
   1662   // considered a scheduling hazard, which is wrong. It should be the actual
   1663   // instruction preceding the dbg_value instruction(s), just like it is
   1664   // when debug info is not present.
   1665   if (MI.isDebugValue())
   1666     return false;
   1667 
   1668   // Terminators and labels can't be scheduled around.
   1669   if (MI.isTerminator() || MI.isPosition())
   1670     return true;
   1671 
   1672   // Treat the start of the IT block as a scheduling boundary, but schedule
   1673   // t2IT along with all instructions following it.
   1674   // FIXME: This is a big hammer. But the alternative is to add all potential
   1675   // true and anti dependencies to IT block instructions as implicit operands
   1676   // to the t2IT instruction. The added compile time and complexity does not
   1677   // seem worth it.
   1678   MachineBasicBlock::const_iterator I = MI;
   1679   // Make sure to skip any dbg_value instructions
   1680   while (++I != MBB->end() && I->isDebugValue())
   1681     ;
   1682   if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
   1683     return true;
   1684 
   1685   // Don't attempt to schedule around any instruction that defines
   1686   // a stack-oriented pointer, as it's unlikely to be profitable. This
   1687   // saves compile time, because it doesn't require every single
   1688   // stack slot reference to depend on the instruction that does the
   1689   // modification.
   1690   // Calls don't actually change the stack pointer, even if they have imp-defs.
   1691   // No ARM calling conventions change the stack pointer. (X86 calling
   1692   // conventions sometimes do).
   1693   if (!MI.isCall() && MI.definesRegister(ARM::SP))
   1694     return true;
   1695 
   1696   return false;
   1697 }
   1698 
   1699 bool ARMBaseInstrInfo::
   1700 isProfitableToIfCvt(MachineBasicBlock &MBB,
   1701                     unsigned NumCycles, unsigned ExtraPredCycles,
   1702                     BranchProbability Probability) const {
   1703   if (!NumCycles)
   1704     return false;
   1705 
   1706   // If we are optimizing for size, see if the branch in the predecessor can be
   1707   // lowered to cbn?z by the constant island lowering pass, and return false if
   1708   // so. This results in a shorter instruction sequence.
   1709   if (MBB.getParent()->getFunction()->optForSize()) {
   1710     MachineBasicBlock *Pred = *MBB.pred_begin();
   1711     if (!Pred->empty()) {
   1712       MachineInstr *LastMI = &*Pred->rbegin();
   1713       if (LastMI->getOpcode() == ARM::t2Bcc) {
   1714         MachineBasicBlock::iterator CmpMI = LastMI;
   1715         if (CmpMI != Pred->begin()) {
   1716           --CmpMI;
   1717           if (CmpMI->getOpcode() == ARM::tCMPi8 ||
   1718               CmpMI->getOpcode() == ARM::t2CMPri) {
   1719             unsigned Reg = CmpMI->getOperand(0).getReg();
   1720             unsigned PredReg = 0;
   1721             ARMCC::CondCodes P = getInstrPredicate(*CmpMI, PredReg);
   1722             if (P == ARMCC::AL && CmpMI->getOperand(1).getImm() == 0 &&
   1723                 isARMLowRegister(Reg))
   1724               return false;
   1725           }
   1726         }
   1727       }
   1728     }
   1729   }
   1730 
   1731   // Attempt to estimate the relative costs of predication versus branching.
   1732   // Here we scale up each component of UnpredCost to avoid precision issue when
   1733   // scaling NumCycles by Probability.
   1734   const unsigned ScalingUpFactor = 1024;
   1735   unsigned UnpredCost = Probability.scale(NumCycles * ScalingUpFactor);
   1736   UnpredCost += ScalingUpFactor; // The branch itself
   1737   UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10;
   1738 
   1739   return (NumCycles + ExtraPredCycles) * ScalingUpFactor <= UnpredCost;
   1740 }
   1741 
   1742 bool ARMBaseInstrInfo::
   1743 isProfitableToIfCvt(MachineBasicBlock &TMBB,
   1744                     unsigned TCycles, unsigned TExtra,
   1745                     MachineBasicBlock &FMBB,
   1746                     unsigned FCycles, unsigned FExtra,
   1747                     BranchProbability Probability) const {
   1748   if (!TCycles || !FCycles)
   1749     return false;
   1750 
   1751   // Attempt to estimate the relative costs of predication versus branching.
   1752   // Here we scale up each component of UnpredCost to avoid precision issue when
   1753   // scaling TCycles/FCycles by Probability.
   1754   const unsigned ScalingUpFactor = 1024;
   1755   unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor);
   1756   unsigned FUnpredCost =
   1757       Probability.getCompl().scale(FCycles * ScalingUpFactor);
   1758   unsigned UnpredCost = TUnpredCost + FUnpredCost;
   1759   UnpredCost += 1 * ScalingUpFactor; // The branch itself
   1760   UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10;
   1761 
   1762   return (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor <= UnpredCost;
   1763 }
   1764 
   1765 bool
   1766 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
   1767                                             MachineBasicBlock &FMBB) const {
   1768   // Reduce false anti-dependencies to let the target's out-of-order execution
   1769   // engine do its thing.
   1770   return Subtarget.isProfitableToUnpredicate();
   1771 }
   1772 
   1773 /// getInstrPredicate - If instruction is predicated, returns its predicate
   1774 /// condition, otherwise returns AL. It also returns the condition code
   1775 /// register by reference.
   1776 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI,
   1777                                          unsigned &PredReg) {
   1778   int PIdx = MI.findFirstPredOperandIdx();
   1779   if (PIdx == -1) {
   1780     PredReg = 0;
   1781     return ARMCC::AL;
   1782   }
   1783 
   1784   PredReg = MI.getOperand(PIdx+1).getReg();
   1785   return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
   1786 }
   1787 
   1788 
   1789 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) {
   1790   if (Opc == ARM::B)
   1791     return ARM::Bcc;
   1792   if (Opc == ARM::tB)
   1793     return ARM::tBcc;
   1794   if (Opc == ARM::t2B)
   1795     return ARM::t2Bcc;
   1796 
   1797   llvm_unreachable("Unknown unconditional branch opcode!");
   1798 }
   1799 
   1800 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI,
   1801                                                        bool NewMI,
   1802                                                        unsigned OpIdx1,
   1803                                                        unsigned OpIdx2) const {
   1804   switch (MI.getOpcode()) {
   1805   case ARM::MOVCCr:
   1806   case ARM::t2MOVCCr: {
   1807     // MOVCC can be commuted by inverting the condition.
   1808     unsigned PredReg = 0;
   1809     ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
   1810     // MOVCC AL can't be inverted. Shouldn't happen.
   1811     if (CC == ARMCC::AL || PredReg != ARM::CPSR)
   1812       return nullptr;
   1813     MachineInstr *CommutedMI =
   1814         TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
   1815     if (!CommutedMI)
   1816       return nullptr;
   1817     // After swapping the MOVCC operands, also invert the condition.
   1818     CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx())
   1819         .setImm(ARMCC::getOppositeCondition(CC));
   1820     return CommutedMI;
   1821   }
   1822   }
   1823   return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
   1824 }
   1825 
   1826 /// Identify instructions that can be folded into a MOVCC instruction, and
   1827 /// return the defining instruction.
   1828 static MachineInstr *canFoldIntoMOVCC(unsigned Reg,
   1829                                       const MachineRegisterInfo &MRI,
   1830                                       const TargetInstrInfo *TII) {
   1831   if (!TargetRegisterInfo::isVirtualRegister(Reg))
   1832     return nullptr;
   1833   if (!MRI.hasOneNonDBGUse(Reg))
   1834     return nullptr;
   1835   MachineInstr *MI = MRI.getVRegDef(Reg);
   1836   if (!MI)
   1837     return nullptr;
   1838   // MI is folded into the MOVCC by predicating it.
   1839   if (!MI->isPredicable())
   1840     return nullptr;
   1841   // Check if MI has any non-dead defs or physreg uses. This also detects
   1842   // predicated instructions which will be reading CPSR.
   1843   for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
   1844     const MachineOperand &MO = MI->getOperand(i);
   1845     // Reject frame index operands, PEI can't handle the predicated pseudos.
   1846     if (MO.isFI() || MO.isCPI() || MO.isJTI())
   1847       return nullptr;
   1848     if (!MO.isReg())
   1849       continue;
   1850     // MI can't have any tied operands, that would conflict with predication.
   1851     if (MO.isTied())
   1852       return nullptr;
   1853     if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
   1854       return nullptr;
   1855     if (MO.isDef() && !MO.isDead())
   1856       return nullptr;
   1857   }
   1858   bool DontMoveAcrossStores = true;
   1859   if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores))
   1860     return nullptr;
   1861   return MI;
   1862 }
   1863 
   1864 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI,
   1865                                      SmallVectorImpl<MachineOperand> &Cond,
   1866                                      unsigned &TrueOp, unsigned &FalseOp,
   1867                                      bool &Optimizable) const {
   1868   assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
   1869          "Unknown select instruction");
   1870   // MOVCC operands:
   1871   // 0: Def.
   1872   // 1: True use.
   1873   // 2: False use.
   1874   // 3: Condition code.
   1875   // 4: CPSR use.
   1876   TrueOp = 1;
   1877   FalseOp = 2;
   1878   Cond.push_back(MI.getOperand(3));
   1879   Cond.push_back(MI.getOperand(4));
   1880   // We can always fold a def.
   1881   Optimizable = true;
   1882   return false;
   1883 }
   1884 
   1885 MachineInstr *
   1886 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI,
   1887                                  SmallPtrSetImpl<MachineInstr *> &SeenMIs,
   1888                                  bool PreferFalse) const {
   1889   assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
   1890          "Unknown select instruction");
   1891   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
   1892   MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this);
   1893   bool Invert = !DefMI;
   1894   if (!DefMI)
   1895     DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this);
   1896   if (!DefMI)
   1897     return nullptr;
   1898 
   1899   // Find new register class to use.
   1900   MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1);
   1901   unsigned DestReg = MI.getOperand(0).getReg();
   1902   const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg());
   1903   if (!MRI.constrainRegClass(DestReg, PreviousClass))
   1904     return nullptr;
   1905 
   1906   // Create a new predicated version of DefMI.
   1907   // Rfalse is the first use.
   1908   MachineInstrBuilder NewMI =
   1909       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg);
   1910 
   1911   // Copy all the DefMI operands, excluding its (null) predicate.
   1912   const MCInstrDesc &DefDesc = DefMI->getDesc();
   1913   for (unsigned i = 1, e = DefDesc.getNumOperands();
   1914        i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
   1915     NewMI.addOperand(DefMI->getOperand(i));
   1916 
   1917   unsigned CondCode = MI.getOperand(3).getImm();
   1918   if (Invert)
   1919     NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
   1920   else
   1921     NewMI.addImm(CondCode);
   1922   NewMI.addOperand(MI.getOperand(4));
   1923 
   1924   // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
   1925   if (NewMI->hasOptionalDef())
   1926     AddDefaultCC(NewMI);
   1927 
   1928   // The output register value when the predicate is false is an implicit
   1929   // register operand tied to the first def.
   1930   // The tie makes the register allocator ensure the FalseReg is allocated the
   1931   // same register as operand 0.
   1932   FalseReg.setImplicit();
   1933   NewMI.addOperand(FalseReg);
   1934   NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
   1935 
   1936   // Update SeenMIs set: register newly created MI and erase removed DefMI.
   1937   SeenMIs.insert(NewMI);
   1938   SeenMIs.erase(DefMI);
   1939 
   1940   // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
   1941   // DefMI would be invalid when tranferred inside the loop.  Checking for a
   1942   // loop is expensive, but at least remove kill flags if they are in different
   1943   // BBs.
   1944   if (DefMI->getParent() != MI.getParent())
   1945     NewMI->clearKillInfo();
   1946 
   1947   // The caller will erase MI, but not DefMI.
   1948   DefMI->eraseFromParent();
   1949   return NewMI;
   1950 }
   1951 
   1952 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
   1953 /// instruction is encoded with an 'S' bit is determined by the optional CPSR
   1954 /// def operand.
   1955 ///
   1956 /// This will go away once we can teach tblgen how to set the optional CPSR def
   1957 /// operand itself.
   1958 struct AddSubFlagsOpcodePair {
   1959   uint16_t PseudoOpc;
   1960   uint16_t MachineOpc;
   1961 };
   1962 
   1963 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
   1964   {ARM::ADDSri, ARM::ADDri},
   1965   {ARM::ADDSrr, ARM::ADDrr},
   1966   {ARM::ADDSrsi, ARM::ADDrsi},
   1967   {ARM::ADDSrsr, ARM::ADDrsr},
   1968 
   1969   {ARM::SUBSri, ARM::SUBri},
   1970   {ARM::SUBSrr, ARM::SUBrr},
   1971   {ARM::SUBSrsi, ARM::SUBrsi},
   1972   {ARM::SUBSrsr, ARM::SUBrsr},
   1973 
   1974   {ARM::RSBSri, ARM::RSBri},
   1975   {ARM::RSBSrsi, ARM::RSBrsi},
   1976   {ARM::RSBSrsr, ARM::RSBrsr},
   1977 
   1978   {ARM::t2ADDSri, ARM::t2ADDri},
   1979   {ARM::t2ADDSrr, ARM::t2ADDrr},
   1980   {ARM::t2ADDSrs, ARM::t2ADDrs},
   1981 
   1982   {ARM::t2SUBSri, ARM::t2SUBri},
   1983   {ARM::t2SUBSrr, ARM::t2SUBrr},
   1984   {ARM::t2SUBSrs, ARM::t2SUBrs},
   1985 
   1986   {ARM::t2RSBSri, ARM::t2RSBri},
   1987   {ARM::t2RSBSrs, ARM::t2RSBrs},
   1988 };
   1989 
   1990 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
   1991   for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
   1992     if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
   1993       return AddSubFlagsOpcodeMap[i].MachineOpc;
   1994   return 0;
   1995 }
   1996 
   1997 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
   1998                                    MachineBasicBlock::iterator &MBBI,
   1999                                    const DebugLoc &dl, unsigned DestReg,
   2000                                    unsigned BaseReg, int NumBytes,
   2001                                    ARMCC::CondCodes Pred, unsigned PredReg,
   2002                                    const ARMBaseInstrInfo &TII,
   2003                                    unsigned MIFlags) {
   2004   if (NumBytes == 0 && DestReg != BaseReg) {
   2005     BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
   2006       .addReg(BaseReg, RegState::Kill)
   2007       .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
   2008       .setMIFlags(MIFlags);
   2009     return;
   2010   }
   2011 
   2012   bool isSub = NumBytes < 0;
   2013   if (isSub) NumBytes = -NumBytes;
   2014 
   2015   while (NumBytes) {
   2016     unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
   2017     unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
   2018     assert(ThisVal && "Didn't extract field correctly");
   2019 
   2020     // We will handle these bits from offset, clear them.
   2021     NumBytes &= ~ThisVal;
   2022 
   2023     assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
   2024 
   2025     // Build the new ADD / SUB.
   2026     unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
   2027     BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
   2028       .addReg(BaseReg, RegState::Kill).addImm(ThisVal)
   2029       .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
   2030       .setMIFlags(MIFlags);
   2031     BaseReg = DestReg;
   2032   }
   2033 }
   2034 
   2035 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
   2036                                       MachineFunction &MF, MachineInstr *MI,
   2037                                       unsigned NumBytes) {
   2038   // This optimisation potentially adds lots of load and store
   2039   // micro-operations, it's only really a great benefit to code-size.
   2040   if (!MF.getFunction()->optForMinSize())
   2041     return false;
   2042 
   2043   // If only one register is pushed/popped, LLVM can use an LDR/STR
   2044   // instead. We can't modify those so make sure we're dealing with an
   2045   // instruction we understand.
   2046   bool IsPop = isPopOpcode(MI->getOpcode());
   2047   bool IsPush = isPushOpcode(MI->getOpcode());
   2048   if (!IsPush && !IsPop)
   2049     return false;
   2050 
   2051   bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
   2052                       MI->getOpcode() == ARM::VLDMDIA_UPD;
   2053   bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
   2054                      MI->getOpcode() == ARM::tPOP ||
   2055                      MI->getOpcode() == ARM::tPOP_RET;
   2056 
   2057   assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
   2058                           MI->getOperand(1).getReg() == ARM::SP)) &&
   2059          "trying to fold sp update into non-sp-updating push/pop");
   2060 
   2061   // The VFP push & pop act on D-registers, so we can only fold an adjustment
   2062   // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
   2063   // if this is violated.
   2064   if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
   2065     return false;
   2066 
   2067   // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
   2068   // pred) so the list starts at 4. Thumb1 starts after the predicate.
   2069   int RegListIdx = IsT1PushPop ? 2 : 4;
   2070 
   2071   // Calculate the space we'll need in terms of registers.
   2072   unsigned FirstReg = MI->getOperand(RegListIdx).getReg();
   2073   unsigned RD0Reg, RegsNeeded;
   2074   if (IsVFPPushPop) {
   2075     RD0Reg = ARM::D0;
   2076     RegsNeeded = NumBytes / 8;
   2077   } else {
   2078     RD0Reg = ARM::R0;
   2079     RegsNeeded = NumBytes / 4;
   2080   }
   2081 
   2082   // We're going to have to strip all list operands off before
   2083   // re-adding them since the order matters, so save the existing ones
   2084   // for later.
   2085   SmallVector<MachineOperand, 4> RegList;
   2086   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
   2087     RegList.push_back(MI->getOperand(i));
   2088 
   2089   const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
   2090   const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
   2091 
   2092   // Now try to find enough space in the reglist to allocate NumBytes.
   2093   for (unsigned CurReg = FirstReg - 1; CurReg >= RD0Reg && RegsNeeded;
   2094        --CurReg) {
   2095     if (!IsPop) {
   2096       // Pushing any register is completely harmless, mark the
   2097       // register involved as undef since we don't care about it in
   2098       // the slightest.
   2099       RegList.push_back(MachineOperand::CreateReg(CurReg, false, false,
   2100                                                   false, false, true));
   2101       --RegsNeeded;
   2102       continue;
   2103     }
   2104 
   2105     // However, we can only pop an extra register if it's not live. For
   2106     // registers live within the function we might clobber a return value
   2107     // register; the other way a register can be live here is if it's
   2108     // callee-saved.
   2109     if (isCalleeSavedRegister(CurReg, CSRegs) ||
   2110         MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) !=
   2111         MachineBasicBlock::LQR_Dead) {
   2112       // VFP pops don't allow holes in the register list, so any skip is fatal
   2113       // for our transformation. GPR pops do, so we should just keep looking.
   2114       if (IsVFPPushPop)
   2115         return false;
   2116       else
   2117         continue;
   2118     }
   2119 
   2120     // Mark the unimportant registers as <def,dead> in the POP.
   2121     RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false,
   2122                                                 true));
   2123     --RegsNeeded;
   2124   }
   2125 
   2126   if (RegsNeeded > 0)
   2127     return false;
   2128 
   2129   // Finally we know we can profitably perform the optimisation so go
   2130   // ahead: strip all existing registers off and add them back again
   2131   // in the right order.
   2132   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
   2133     MI->RemoveOperand(i);
   2134 
   2135   // Add the complete list back in.
   2136   MachineInstrBuilder MIB(MF, &*MI);
   2137   for (int i = RegList.size() - 1; i >= 0; --i)
   2138     MIB.addOperand(RegList[i]);
   2139 
   2140   return true;
   2141 }
   2142 
   2143 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
   2144                                 unsigned FrameReg, int &Offset,
   2145                                 const ARMBaseInstrInfo &TII) {
   2146   unsigned Opcode = MI.getOpcode();
   2147   const MCInstrDesc &Desc = MI.getDesc();
   2148   unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
   2149   bool isSub = false;
   2150 
   2151   // Memory operands in inline assembly always use AddrMode2.
   2152   if (Opcode == ARM::INLINEASM)
   2153     AddrMode = ARMII::AddrMode2;
   2154 
   2155   if (Opcode == ARM::ADDri) {
   2156     Offset += MI.getOperand(FrameRegIdx+1).getImm();
   2157     if (Offset == 0) {
   2158       // Turn it into a move.
   2159       MI.setDesc(TII.get(ARM::MOVr));
   2160       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
   2161       MI.RemoveOperand(FrameRegIdx+1);
   2162       Offset = 0;
   2163       return true;
   2164     } else if (Offset < 0) {
   2165       Offset = -Offset;
   2166       isSub = true;
   2167       MI.setDesc(TII.get(ARM::SUBri));
   2168     }
   2169 
   2170     // Common case: small offset, fits into instruction.
   2171     if (ARM_AM::getSOImmVal(Offset) != -1) {
   2172       // Replace the FrameIndex with sp / fp
   2173       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
   2174       MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
   2175       Offset = 0;
   2176       return true;
   2177     }
   2178 
   2179     // Otherwise, pull as much of the immedidate into this ADDri/SUBri
   2180     // as possible.
   2181     unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
   2182     unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
   2183 
   2184     // We will handle these bits from offset, clear them.
   2185     Offset &= ~ThisImmVal;
   2186 
   2187     // Get the properly encoded SOImmVal field.
   2188     assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
   2189            "Bit extraction didn't work?");
   2190     MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
   2191  } else {
   2192     unsigned ImmIdx = 0;
   2193     int InstrOffs = 0;
   2194     unsigned NumBits = 0;
   2195     unsigned Scale = 1;
   2196     switch (AddrMode) {
   2197     case ARMII::AddrMode_i12: {
   2198       ImmIdx = FrameRegIdx + 1;
   2199       InstrOffs = MI.getOperand(ImmIdx).getImm();
   2200       NumBits = 12;
   2201       break;
   2202     }
   2203     case ARMII::AddrMode2: {
   2204       ImmIdx = FrameRegIdx+2;
   2205       InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
   2206       if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
   2207         InstrOffs *= -1;
   2208       NumBits = 12;
   2209       break;
   2210     }
   2211     case ARMII::AddrMode3: {
   2212       ImmIdx = FrameRegIdx+2;
   2213       InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
   2214       if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
   2215         InstrOffs *= -1;
   2216       NumBits = 8;
   2217       break;
   2218     }
   2219     case ARMII::AddrMode4:
   2220     case ARMII::AddrMode6:
   2221       // Can't fold any offset even if it's zero.
   2222       return false;
   2223     case ARMII::AddrMode5: {
   2224       ImmIdx = FrameRegIdx+1;
   2225       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
   2226       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
   2227         InstrOffs *= -1;
   2228       NumBits = 8;
   2229       Scale = 4;
   2230       break;
   2231     }
   2232     default:
   2233       llvm_unreachable("Unsupported addressing mode!");
   2234     }
   2235 
   2236     Offset += InstrOffs * Scale;
   2237     assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
   2238     if (Offset < 0) {
   2239       Offset = -Offset;
   2240       isSub = true;
   2241     }
   2242 
   2243     // Attempt to fold address comp. if opcode has offset bits
   2244     if (NumBits > 0) {
   2245       // Common case: small offset, fits into instruction.
   2246       MachineOperand &ImmOp = MI.getOperand(ImmIdx);
   2247       int ImmedOffset = Offset / Scale;
   2248       unsigned Mask = (1 << NumBits) - 1;
   2249       if ((unsigned)Offset <= Mask * Scale) {
   2250         // Replace the FrameIndex with sp
   2251         MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
   2252         // FIXME: When addrmode2 goes away, this will simplify (like the
   2253         // T2 version), as the LDR.i12 versions don't need the encoding
   2254         // tricks for the offset value.
   2255         if (isSub) {
   2256           if (AddrMode == ARMII::AddrMode_i12)
   2257             ImmedOffset = -ImmedOffset;
   2258           else
   2259             ImmedOffset |= 1 << NumBits;
   2260         }
   2261         ImmOp.ChangeToImmediate(ImmedOffset);
   2262         Offset = 0;
   2263         return true;
   2264       }
   2265 
   2266       // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
   2267       ImmedOffset = ImmedOffset & Mask;
   2268       if (isSub) {
   2269         if (AddrMode == ARMII::AddrMode_i12)
   2270           ImmedOffset = -ImmedOffset;
   2271         else
   2272           ImmedOffset |= 1 << NumBits;
   2273       }
   2274       ImmOp.ChangeToImmediate(ImmedOffset);
   2275       Offset &= ~(Mask*Scale);
   2276     }
   2277   }
   2278 
   2279   Offset = (isSub) ? -Offset : Offset;
   2280   return Offset == 0;
   2281 }
   2282 
   2283 /// analyzeCompare - For a comparison instruction, return the source registers
   2284 /// in SrcReg and SrcReg2 if having two register operands, and the value it
   2285 /// compares against in CmpValue. Return true if the comparison instruction
   2286 /// can be analyzed.
   2287 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
   2288                                       unsigned &SrcReg2, int &CmpMask,
   2289                                       int &CmpValue) const {
   2290   switch (MI.getOpcode()) {
   2291   default: break;
   2292   case ARM::CMPri:
   2293   case ARM::t2CMPri:
   2294     SrcReg = MI.getOperand(0).getReg();
   2295     SrcReg2 = 0;
   2296     CmpMask = ~0;
   2297     CmpValue = MI.getOperand(1).getImm();
   2298     return true;
   2299   case ARM::CMPrr:
   2300   case ARM::t2CMPrr:
   2301     SrcReg = MI.getOperand(0).getReg();
   2302     SrcReg2 = MI.getOperand(1).getReg();
   2303     CmpMask = ~0;
   2304     CmpValue = 0;
   2305     return true;
   2306   case ARM::TSTri:
   2307   case ARM::t2TSTri:
   2308     SrcReg = MI.getOperand(0).getReg();
   2309     SrcReg2 = 0;
   2310     CmpMask = MI.getOperand(1).getImm();
   2311     CmpValue = 0;
   2312     return true;
   2313   }
   2314 
   2315   return false;
   2316 }
   2317 
   2318 /// isSuitableForMask - Identify a suitable 'and' instruction that
   2319 /// operates on the given source register and applies the same mask
   2320 /// as a 'tst' instruction. Provide a limited look-through for copies.
   2321 /// When successful, MI will hold the found instruction.
   2322 static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
   2323                               int CmpMask, bool CommonUse) {
   2324   switch (MI->getOpcode()) {
   2325     case ARM::ANDri:
   2326     case ARM::t2ANDri:
   2327       if (CmpMask != MI->getOperand(2).getImm())
   2328         return false;
   2329       if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
   2330         return true;
   2331       break;
   2332   }
   2333 
   2334   return false;
   2335 }
   2336 
   2337 /// getSwappedCondition - assume the flags are set by MI(a,b), return
   2338 /// the condition code if we modify the instructions such that flags are
   2339 /// set by MI(b,a).
   2340 inline static ARMCC::CondCodes getSwappedCondition(ARMCC::CondCodes CC) {
   2341   switch (CC) {
   2342   default: return ARMCC::AL;
   2343   case ARMCC::EQ: return ARMCC::EQ;
   2344   case ARMCC::NE: return ARMCC::NE;
   2345   case ARMCC::HS: return ARMCC::LS;
   2346   case ARMCC::LO: return ARMCC::HI;
   2347   case ARMCC::HI: return ARMCC::LO;
   2348   case ARMCC::LS: return ARMCC::HS;
   2349   case ARMCC::GE: return ARMCC::LE;
   2350   case ARMCC::LT: return ARMCC::GT;
   2351   case ARMCC::GT: return ARMCC::LT;
   2352   case ARMCC::LE: return ARMCC::GE;
   2353   }
   2354 }
   2355 
   2356 /// isRedundantFlagInstr - check whether the first instruction, whose only
   2357 /// purpose is to update flags, can be made redundant.
   2358 /// CMPrr can be made redundant by SUBrr if the operands are the same.
   2359 /// CMPri can be made redundant by SUBri if the operands are the same.
   2360 /// This function can be extended later on.
   2361 inline static bool isRedundantFlagInstr(MachineInstr *CmpI, unsigned SrcReg,
   2362                                         unsigned SrcReg2, int ImmValue,
   2363                                         MachineInstr *OI) {
   2364   if ((CmpI->getOpcode() == ARM::CMPrr ||
   2365        CmpI->getOpcode() == ARM::t2CMPrr) &&
   2366       (OI->getOpcode() == ARM::SUBrr ||
   2367        OI->getOpcode() == ARM::t2SUBrr) &&
   2368       ((OI->getOperand(1).getReg() == SrcReg &&
   2369         OI->getOperand(2).getReg() == SrcReg2) ||
   2370        (OI->getOperand(1).getReg() == SrcReg2 &&
   2371         OI->getOperand(2).getReg() == SrcReg)))
   2372     return true;
   2373 
   2374   if ((CmpI->getOpcode() == ARM::CMPri ||
   2375        CmpI->getOpcode() == ARM::t2CMPri) &&
   2376       (OI->getOpcode() == ARM::SUBri ||
   2377        OI->getOpcode() == ARM::t2SUBri) &&
   2378       OI->getOperand(1).getReg() == SrcReg &&
   2379       OI->getOperand(2).getImm() == ImmValue)
   2380     return true;
   2381   return false;
   2382 }
   2383 
   2384 /// optimizeCompareInstr - Convert the instruction supplying the argument to the
   2385 /// comparison into one that sets the zero bit in the flags register;
   2386 /// Remove a redundant Compare instruction if an earlier instruction can set the
   2387 /// flags in the same way as Compare.
   2388 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
   2389 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
   2390 /// condition code of instructions which use the flags.
   2391 bool ARMBaseInstrInfo::optimizeCompareInstr(
   2392     MachineInstr &CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask,
   2393     int CmpValue, const MachineRegisterInfo *MRI) const {
   2394   // Get the unique definition of SrcReg.
   2395   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
   2396   if (!MI) return false;
   2397 
   2398   // Masked compares sometimes use the same register as the corresponding 'and'.
   2399   if (CmpMask != ~0) {
   2400     if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) {
   2401       MI = nullptr;
   2402       for (MachineRegisterInfo::use_instr_iterator
   2403            UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end();
   2404            UI != UE; ++UI) {
   2405         if (UI->getParent() != CmpInstr.getParent())
   2406           continue;
   2407         MachineInstr *PotentialAND = &*UI;
   2408         if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
   2409             isPredicated(*PotentialAND))
   2410           continue;
   2411         MI = PotentialAND;
   2412         break;
   2413       }
   2414       if (!MI) return false;
   2415     }
   2416   }
   2417 
   2418   // Get ready to iterate backward from CmpInstr.
   2419   MachineBasicBlock::iterator I = CmpInstr, E = MI,
   2420                               B = CmpInstr.getParent()->begin();
   2421 
   2422   // Early exit if CmpInstr is at the beginning of the BB.
   2423   if (I == B) return false;
   2424 
   2425   // There are two possible candidates which can be changed to set CPSR:
   2426   // One is MI, the other is a SUB instruction.
   2427   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
   2428   // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
   2429   MachineInstr *Sub = nullptr;
   2430   if (SrcReg2 != 0)
   2431     // MI is not a candidate for CMPrr.
   2432     MI = nullptr;
   2433   else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) {
   2434     // Conservatively refuse to convert an instruction which isn't in the same
   2435     // BB as the comparison.
   2436     // For CMPri w/ CmpValue != 0, a Sub may still be a candidate.
   2437     // Thus we cannot return here.
   2438     if (CmpInstr.getOpcode() == ARM::CMPri ||
   2439         CmpInstr.getOpcode() == ARM::t2CMPri)
   2440       MI = nullptr;
   2441     else
   2442       return false;
   2443   }
   2444 
   2445   // Check that CPSR isn't set between the comparison instruction and the one we
   2446   // want to change. At the same time, search for Sub.
   2447   const TargetRegisterInfo *TRI = &getRegisterInfo();
   2448   --I;
   2449   for (; I != E; --I) {
   2450     const MachineInstr &Instr = *I;
   2451 
   2452     if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
   2453         Instr.readsRegister(ARM::CPSR, TRI))
   2454       // This instruction modifies or uses CPSR after the one we want to
   2455       // change. We can't do this transformation.
   2456       return false;
   2457 
   2458     // Check whether CmpInstr can be made redundant by the current instruction.
   2459     if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &*I)) {
   2460       Sub = &*I;
   2461       break;
   2462     }
   2463 
   2464     if (I == B)
   2465       // The 'and' is below the comparison instruction.
   2466       return false;
   2467   }
   2468 
   2469   // Return false if no candidates exist.
   2470   if (!MI && !Sub)
   2471     return false;
   2472 
   2473   // The single candidate is called MI.
   2474   if (!MI) MI = Sub;
   2475 
   2476   // We can't use a predicated instruction - it doesn't always write the flags.
   2477   if (isPredicated(*MI))
   2478     return false;
   2479 
   2480   switch (MI->getOpcode()) {
   2481   default: break;
   2482   case ARM::RSBrr:
   2483   case ARM::RSBri:
   2484   case ARM::RSCrr:
   2485   case ARM::RSCri:
   2486   case ARM::ADDrr:
   2487   case ARM::ADDri:
   2488   case ARM::ADCrr:
   2489   case ARM::ADCri:
   2490   case ARM::SUBrr:
   2491   case ARM::SUBri:
   2492   case ARM::SBCrr:
   2493   case ARM::SBCri:
   2494   case ARM::t2RSBri:
   2495   case ARM::t2ADDrr:
   2496   case ARM::t2ADDri:
   2497   case ARM::t2ADCrr:
   2498   case ARM::t2ADCri:
   2499   case ARM::t2SUBrr:
   2500   case ARM::t2SUBri:
   2501   case ARM::t2SBCrr:
   2502   case ARM::t2SBCri:
   2503   case ARM::ANDrr:
   2504   case ARM::ANDri:
   2505   case ARM::t2ANDrr:
   2506   case ARM::t2ANDri:
   2507   case ARM::ORRrr:
   2508   case ARM::ORRri:
   2509   case ARM::t2ORRrr:
   2510   case ARM::t2ORRri:
   2511   case ARM::EORrr:
   2512   case ARM::EORri:
   2513   case ARM::t2EORrr:
   2514   case ARM::t2EORri: {
   2515     // Scan forward for the use of CPSR
   2516     // When checking against MI: if it's a conditional code that requires
   2517     // checking of the V bit or C bit, then this is not safe to do.
   2518     // It is safe to remove CmpInstr if CPSR is redefined or killed.
   2519     // If we are done with the basic block, we need to check whether CPSR is
   2520     // live-out.
   2521     SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
   2522         OperandsToUpdate;
   2523     bool isSafe = false;
   2524     I = CmpInstr;
   2525     E = CmpInstr.getParent()->end();
   2526     while (!isSafe && ++I != E) {
   2527       const MachineInstr &Instr = *I;
   2528       for (unsigned IO = 0, EO = Instr.getNumOperands();
   2529            !isSafe && IO != EO; ++IO) {
   2530         const MachineOperand &MO = Instr.getOperand(IO);
   2531         if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
   2532           isSafe = true;
   2533           break;
   2534         }
   2535         if (!MO.isReg() || MO.getReg() != ARM::CPSR)
   2536           continue;
   2537         if (MO.isDef()) {
   2538           isSafe = true;
   2539           break;
   2540         }
   2541         // Condition code is after the operand before CPSR except for VSELs.
   2542         ARMCC::CondCodes CC;
   2543         bool IsInstrVSel = true;
   2544         switch (Instr.getOpcode()) {
   2545         default:
   2546           IsInstrVSel = false;
   2547           CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm();
   2548           break;
   2549         case ARM::VSELEQD:
   2550         case ARM::VSELEQS:
   2551           CC = ARMCC::EQ;
   2552           break;
   2553         case ARM::VSELGTD:
   2554         case ARM::VSELGTS:
   2555           CC = ARMCC::GT;
   2556           break;
   2557         case ARM::VSELGED:
   2558         case ARM::VSELGES:
   2559           CC = ARMCC::GE;
   2560           break;
   2561         case ARM::VSELVSS:
   2562         case ARM::VSELVSD:
   2563           CC = ARMCC::VS;
   2564           break;
   2565         }
   2566 
   2567         if (Sub) {
   2568           ARMCC::CondCodes NewCC = getSwappedCondition(CC);
   2569           if (NewCC == ARMCC::AL)
   2570             return false;
   2571           // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
   2572           // on CMP needs to be updated to be based on SUB.
   2573           // Push the condition code operands to OperandsToUpdate.
   2574           // If it is safe to remove CmpInstr, the condition code of these
   2575           // operands will be modified.
   2576           if (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
   2577               Sub->getOperand(2).getReg() == SrcReg) {
   2578             // VSel doesn't support condition code update.
   2579             if (IsInstrVSel)
   2580               return false;
   2581             OperandsToUpdate.push_back(
   2582                 std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
   2583           }
   2584         } else {
   2585           // No Sub, so this is x = <op> y, z; cmp x, 0.
   2586           switch (CC) {
   2587           case ARMCC::EQ: // Z
   2588           case ARMCC::NE: // Z
   2589           case ARMCC::MI: // N
   2590           case ARMCC::PL: // N
   2591           case ARMCC::AL: // none
   2592             // CPSR can be used multiple times, we should continue.
   2593             break;
   2594           case ARMCC::HS: // C
   2595           case ARMCC::LO: // C
   2596           case ARMCC::VS: // V
   2597           case ARMCC::VC: // V
   2598           case ARMCC::HI: // C Z
   2599           case ARMCC::LS: // C Z
   2600           case ARMCC::GE: // N V
   2601           case ARMCC::LT: // N V
   2602           case ARMCC::GT: // Z N V
   2603           case ARMCC::LE: // Z N V
   2604             // The instruction uses the V bit or C bit which is not safe.
   2605             return false;
   2606           }
   2607         }
   2608       }
   2609     }
   2610 
   2611     // If CPSR is not killed nor re-defined, we should check whether it is
   2612     // live-out. If it is live-out, do not optimize.
   2613     if (!isSafe) {
   2614       MachineBasicBlock *MBB = CmpInstr.getParent();
   2615       for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
   2616                SE = MBB->succ_end(); SI != SE; ++SI)
   2617         if ((*SI)->isLiveIn(ARM::CPSR))
   2618           return false;
   2619     }
   2620 
   2621     // Toggle the optional operand to CPSR.
   2622     MI->getOperand(5).setReg(ARM::CPSR);
   2623     MI->getOperand(5).setIsDef(true);
   2624     assert(!isPredicated(*MI) && "Can't use flags from predicated instruction");
   2625     CmpInstr.eraseFromParent();
   2626 
   2627     // Modify the condition code of operands in OperandsToUpdate.
   2628     // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
   2629     // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
   2630     for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
   2631       OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
   2632     return true;
   2633   }
   2634   }
   2635 
   2636   return false;
   2637 }
   2638 
   2639 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
   2640                                      unsigned Reg,
   2641                                      MachineRegisterInfo *MRI) const {
   2642   // Fold large immediates into add, sub, or, xor.
   2643   unsigned DefOpc = DefMI.getOpcode();
   2644   if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
   2645     return false;
   2646   if (!DefMI.getOperand(1).isImm())
   2647     // Could be t2MOVi32imm <ga:xx>
   2648     return false;
   2649 
   2650   if (!MRI->hasOneNonDBGUse(Reg))
   2651     return false;
   2652 
   2653   const MCInstrDesc &DefMCID = DefMI.getDesc();
   2654   if (DefMCID.hasOptionalDef()) {
   2655     unsigned NumOps = DefMCID.getNumOperands();
   2656     const MachineOperand &MO = DefMI.getOperand(NumOps - 1);
   2657     if (MO.getReg() == ARM::CPSR && !MO.isDead())
   2658       // If DefMI defines CPSR and it is not dead, it's obviously not safe
   2659       // to delete DefMI.
   2660       return false;
   2661   }
   2662 
   2663   const MCInstrDesc &UseMCID = UseMI.getDesc();
   2664   if (UseMCID.hasOptionalDef()) {
   2665     unsigned NumOps = UseMCID.getNumOperands();
   2666     if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR)
   2667       // If the instruction sets the flag, do not attempt this optimization
   2668       // since it may change the semantics of the code.
   2669       return false;
   2670   }
   2671 
   2672   unsigned UseOpc = UseMI.getOpcode();
   2673   unsigned NewUseOpc = 0;
   2674   uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm();
   2675   uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
   2676   bool Commute = false;
   2677   switch (UseOpc) {
   2678   default: return false;
   2679   case ARM::SUBrr:
   2680   case ARM::ADDrr:
   2681   case ARM::ORRrr:
   2682   case ARM::EORrr:
   2683   case ARM::t2SUBrr:
   2684   case ARM::t2ADDrr:
   2685   case ARM::t2ORRrr:
   2686   case ARM::t2EORrr: {
   2687     Commute = UseMI.getOperand(2).getReg() != Reg;
   2688     switch (UseOpc) {
   2689     default: break;
   2690     case ARM::ADDrr:
   2691     case ARM::SUBrr: {
   2692       if (UseOpc == ARM::SUBrr && Commute)
   2693         return false;
   2694 
   2695       // ADD/SUB are special because they're essentially the same operation, so
   2696       // we can handle a larger range of immediates.
   2697       if (ARM_AM::isSOImmTwoPartVal(ImmVal))
   2698         NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri;
   2699       else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) {
   2700         ImmVal = -ImmVal;
   2701         NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri;
   2702       } else
   2703         return false;
   2704       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
   2705       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
   2706       break;
   2707     }
   2708     case ARM::ORRrr:
   2709     case ARM::EORrr: {
   2710       if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
   2711         return false;
   2712       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
   2713       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
   2714       switch (UseOpc) {
   2715       default: break;
   2716       case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
   2717       case ARM::EORrr: NewUseOpc = ARM::EORri; break;
   2718       }
   2719       break;
   2720     }
   2721     case ARM::t2ADDrr:
   2722     case ARM::t2SUBrr: {
   2723       if (UseOpc == ARM::t2SUBrr && Commute)
   2724         return false;
   2725 
   2726       // ADD/SUB are special because they're essentially the same operation, so
   2727       // we can handle a larger range of immediates.
   2728       if (ARM_AM::isT2SOImmTwoPartVal(ImmVal))
   2729         NewUseOpc = UseOpc == ARM::t2ADDrr ? ARM::t2ADDri : ARM::t2SUBri;
   2730       else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) {
   2731         ImmVal = -ImmVal;
   2732         NewUseOpc = UseOpc == ARM::t2ADDrr ? ARM::t2SUBri : ARM::t2ADDri;
   2733       } else
   2734         return false;
   2735       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
   2736       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
   2737       break;
   2738     }
   2739     case ARM::t2ORRrr:
   2740     case ARM::t2EORrr: {
   2741       if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
   2742         return false;
   2743       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
   2744       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
   2745       switch (UseOpc) {
   2746       default: break;
   2747       case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
   2748       case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
   2749       }
   2750       break;
   2751     }
   2752     }
   2753   }
   2754   }
   2755 
   2756   unsigned OpIdx = Commute ? 2 : 1;
   2757   unsigned Reg1 = UseMI.getOperand(OpIdx).getReg();
   2758   bool isKill = UseMI.getOperand(OpIdx).isKill();
   2759   unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg));
   2760   AddDefaultCC(
   2761       AddDefaultPred(BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(),
   2762                              get(NewUseOpc), NewReg)
   2763                          .addReg(Reg1, getKillRegState(isKill))
   2764                          .addImm(SOImmValV1)));
   2765   UseMI.setDesc(get(NewUseOpc));
   2766   UseMI.getOperand(1).setReg(NewReg);
   2767   UseMI.getOperand(1).setIsKill();
   2768   UseMI.getOperand(2).ChangeToImmediate(SOImmValV2);
   2769   DefMI.eraseFromParent();
   2770   return true;
   2771 }
   2772 
   2773 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
   2774                                         const MachineInstr &MI) {
   2775   switch (MI.getOpcode()) {
   2776   default: {
   2777     const MCInstrDesc &Desc = MI.getDesc();
   2778     int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
   2779     assert(UOps >= 0 && "bad # UOps");
   2780     return UOps;
   2781   }
   2782 
   2783   case ARM::LDRrs:
   2784   case ARM::LDRBrs:
   2785   case ARM::STRrs:
   2786   case ARM::STRBrs: {
   2787     unsigned ShOpVal = MI.getOperand(3).getImm();
   2788     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
   2789     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
   2790     if (!isSub &&
   2791         (ShImm == 0 ||
   2792          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
   2793           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
   2794       return 1;
   2795     return 2;
   2796   }
   2797 
   2798   case ARM::LDRH:
   2799   case ARM::STRH: {
   2800     if (!MI.getOperand(2).getReg())
   2801       return 1;
   2802 
   2803     unsigned ShOpVal = MI.getOperand(3).getImm();
   2804     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
   2805     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
   2806     if (!isSub &&
   2807         (ShImm == 0 ||
   2808          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
   2809           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
   2810       return 1;
   2811     return 2;
   2812   }
   2813 
   2814   case ARM::LDRSB:
   2815   case ARM::LDRSH:
   2816     return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2;
   2817 
   2818   case ARM::LDRSB_POST:
   2819   case ARM::LDRSH_POST: {
   2820     unsigned Rt = MI.getOperand(0).getReg();
   2821     unsigned Rm = MI.getOperand(3).getReg();
   2822     return (Rt == Rm) ? 4 : 3;
   2823   }
   2824 
   2825   case ARM::LDR_PRE_REG:
   2826   case ARM::LDRB_PRE_REG: {
   2827     unsigned Rt = MI.getOperand(0).getReg();
   2828     unsigned Rm = MI.getOperand(3).getReg();
   2829     if (Rt == Rm)
   2830       return 3;
   2831     unsigned ShOpVal = MI.getOperand(4).getImm();
   2832     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
   2833     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
   2834     if (!isSub &&
   2835         (ShImm == 0 ||
   2836          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
   2837           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
   2838       return 2;
   2839     return 3;
   2840   }
   2841 
   2842   case ARM::STR_PRE_REG:
   2843   case ARM::STRB_PRE_REG: {
   2844     unsigned ShOpVal = MI.getOperand(4).getImm();
   2845     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
   2846     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
   2847     if (!isSub &&
   2848         (ShImm == 0 ||
   2849          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
   2850           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
   2851       return 2;
   2852     return 3;
   2853   }
   2854 
   2855   case ARM::LDRH_PRE:
   2856   case ARM::STRH_PRE: {
   2857     unsigned Rt = MI.getOperand(0).getReg();
   2858     unsigned Rm = MI.getOperand(3).getReg();
   2859     if (!Rm)
   2860       return 2;
   2861     if (Rt == Rm)
   2862       return 3;
   2863     return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2;
   2864   }
   2865 
   2866   case ARM::LDR_POST_REG:
   2867   case ARM::LDRB_POST_REG:
   2868   case ARM::LDRH_POST: {
   2869     unsigned Rt = MI.getOperand(0).getReg();
   2870     unsigned Rm = MI.getOperand(3).getReg();
   2871     return (Rt == Rm) ? 3 : 2;
   2872   }
   2873 
   2874   case ARM::LDR_PRE_IMM:
   2875   case ARM::LDRB_PRE_IMM:
   2876   case ARM::LDR_POST_IMM:
   2877   case ARM::LDRB_POST_IMM:
   2878   case ARM::STRB_POST_IMM:
   2879   case ARM::STRB_POST_REG:
   2880   case ARM::STRB_PRE_IMM:
   2881   case ARM::STRH_POST:
   2882   case ARM::STR_POST_IMM:
   2883   case ARM::STR_POST_REG:
   2884   case ARM::STR_PRE_IMM:
   2885     return 2;
   2886 
   2887   case ARM::LDRSB_PRE:
   2888   case ARM::LDRSH_PRE: {
   2889     unsigned Rm = MI.getOperand(3).getReg();
   2890     if (Rm == 0)
   2891       return 3;
   2892     unsigned Rt = MI.getOperand(0).getReg();
   2893     if (Rt == Rm)
   2894       return 4;
   2895     unsigned ShOpVal = MI.getOperand(4).getImm();
   2896     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
   2897     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
   2898     if (!isSub &&
   2899         (ShImm == 0 ||
   2900          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
   2901           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
   2902       return 3;
   2903     return 4;
   2904   }
   2905 
   2906   case ARM::LDRD: {
   2907     unsigned Rt = MI.getOperand(0).getReg();
   2908     unsigned Rn = MI.getOperand(2).getReg();
   2909     unsigned Rm = MI.getOperand(3).getReg();
   2910     if (Rm)
   2911       return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
   2912                                                                           : 3;
   2913     return (Rt == Rn) ? 3 : 2;
   2914   }
   2915 
   2916   case ARM::STRD: {
   2917     unsigned Rm = MI.getOperand(3).getReg();
   2918     if (Rm)
   2919       return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
   2920                                                                           : 3;
   2921     return 2;
   2922   }
   2923 
   2924   case ARM::LDRD_POST:
   2925   case ARM::t2LDRD_POST:
   2926     return 3;
   2927 
   2928   case ARM::STRD_POST:
   2929   case ARM::t2STRD_POST:
   2930     return 4;
   2931 
   2932   case ARM::LDRD_PRE: {
   2933     unsigned Rt = MI.getOperand(0).getReg();
   2934     unsigned Rn = MI.getOperand(3).getReg();
   2935     unsigned Rm = MI.getOperand(4).getReg();
   2936     if (Rm)
   2937       return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
   2938                                                                           : 4;
   2939     return (Rt == Rn) ? 4 : 3;
   2940   }
   2941 
   2942   case ARM::t2LDRD_PRE: {
   2943     unsigned Rt = MI.getOperand(0).getReg();
   2944     unsigned Rn = MI.getOperand(3).getReg();
   2945     return (Rt == Rn) ? 4 : 3;
   2946   }
   2947 
   2948   case ARM::STRD_PRE: {
   2949     unsigned Rm = MI.getOperand(4).getReg();
   2950     if (Rm)
   2951       return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
   2952                                                                           : 4;
   2953     return 3;
   2954   }
   2955 
   2956   case ARM::t2STRD_PRE:
   2957     return 3;
   2958 
   2959   case ARM::t2LDR_POST:
   2960   case ARM::t2LDRB_POST:
   2961   case ARM::t2LDRB_PRE:
   2962   case ARM::t2LDRSBi12:
   2963   case ARM::t2LDRSBi8:
   2964   case ARM::t2LDRSBpci:
   2965   case ARM::t2LDRSBs:
   2966   case ARM::t2LDRH_POST:
   2967   case ARM::t2LDRH_PRE:
   2968   case ARM::t2LDRSBT:
   2969   case ARM::t2LDRSB_POST:
   2970   case ARM::t2LDRSB_PRE:
   2971   case ARM::t2LDRSH_POST:
   2972   case ARM::t2LDRSH_PRE:
   2973   case ARM::t2LDRSHi12:
   2974   case ARM::t2LDRSHi8:
   2975   case ARM::t2LDRSHpci:
   2976   case ARM::t2LDRSHs:
   2977     return 2;
   2978 
   2979   case ARM::t2LDRDi8: {
   2980     unsigned Rt = MI.getOperand(0).getReg();
   2981     unsigned Rn = MI.getOperand(2).getReg();
   2982     return (Rt == Rn) ? 3 : 2;
   2983   }
   2984 
   2985   case ARM::t2STRB_POST:
   2986   case ARM::t2STRB_PRE:
   2987   case ARM::t2STRBs:
   2988   case ARM::t2STRDi8:
   2989   case ARM::t2STRH_POST:
   2990   case ARM::t2STRH_PRE:
   2991   case ARM::t2STRHs:
   2992   case ARM::t2STR_POST:
   2993   case ARM::t2STR_PRE:
   2994   case ARM::t2STRs:
   2995     return 2;
   2996   }
   2997 }
   2998 
   2999 // Return the number of 32-bit words loaded by LDM or stored by STM. If this
   3000 // can't be easily determined return 0 (missing MachineMemOperand).
   3001 //
   3002 // FIXME: The current MachineInstr design does not support relying on machine
   3003 // mem operands to determine the width of a memory access. Instead, we expect
   3004 // the target to provide this information based on the instruction opcode and
   3005 // operands. However, using MachineMemOperand is the best solution now for
   3006 // two reasons:
   3007 //
   3008 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
   3009 // operands. This is much more dangerous than using the MachineMemOperand
   3010 // sizes because CodeGen passes can insert/remove optional machine operands. In
   3011 // fact, it's totally incorrect for preRA passes and appears to be wrong for
   3012 // postRA passes as well.
   3013 //
   3014 // 2) getNumLDMAddresses is only used by the scheduling machine model and any
   3015 // machine model that calls this should handle the unknown (zero size) case.
   3016 //
   3017 // Long term, we should require a target hook that verifies MachineMemOperand
   3018 // sizes during MC lowering. That target hook should be local to MC lowering
   3019 // because we can't ensure that it is aware of other MI forms. Doing this will
   3020 // ensure that MachineMemOperands are correctly propagated through all passes.
   3021 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const {
   3022   unsigned Size = 0;
   3023   for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
   3024                                   E = MI.memoperands_end();
   3025        I != E; ++I) {
   3026     Size += (*I)->getSize();
   3027   }
   3028   return Size / 4;
   3029 }
   3030 
   3031 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc,
   3032                                                     unsigned NumRegs) {
   3033   unsigned UOps = 1 + NumRegs; // 1 for address computation.
   3034   switch (Opc) {
   3035   default:
   3036     break;
   3037   case ARM::VLDMDIA_UPD:
   3038   case ARM::VLDMDDB_UPD:
   3039   case ARM::VLDMSIA_UPD:
   3040   case ARM::VLDMSDB_UPD:
   3041   case ARM::VSTMDIA_UPD:
   3042   case ARM::VSTMDDB_UPD:
   3043   case ARM::VSTMSIA_UPD:
   3044   case ARM::VSTMSDB_UPD:
   3045   case ARM::LDMIA_UPD:
   3046   case ARM::LDMDA_UPD:
   3047   case ARM::LDMDB_UPD:
   3048   case ARM::LDMIB_UPD:
   3049   case ARM::STMIA_UPD:
   3050   case ARM::STMDA_UPD:
   3051   case ARM::STMDB_UPD:
   3052   case ARM::STMIB_UPD:
   3053   case ARM::tLDMIA_UPD:
   3054   case ARM::tSTMIA_UPD:
   3055   case ARM::t2LDMIA_UPD:
   3056   case ARM::t2LDMDB_UPD:
   3057   case ARM::t2STMIA_UPD:
   3058   case ARM::t2STMDB_UPD:
   3059     ++UOps; // One for base register writeback.
   3060     break;
   3061   case ARM::LDMIA_RET:
   3062   case ARM::tPOP_RET:
   3063   case ARM::t2LDMIA_RET:
   3064     UOps += 2; // One for base reg wb, one for write to pc.
   3065     break;
   3066   }
   3067   return UOps;
   3068 }
   3069 
   3070 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
   3071                                           const MachineInstr &MI) const {
   3072   if (!ItinData || ItinData->isEmpty())
   3073     return 1;
   3074 
   3075   const MCInstrDesc &Desc = MI.getDesc();
   3076   unsigned Class = Desc.getSchedClass();
   3077   int ItinUOps = ItinData->getNumMicroOps(Class);
   3078   if (ItinUOps >= 0) {
   3079     if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
   3080       return getNumMicroOpsSwiftLdSt(ItinData, MI);
   3081 
   3082     return ItinUOps;
   3083   }
   3084 
   3085   unsigned Opc = MI.getOpcode();
   3086   switch (Opc) {
   3087   default:
   3088     llvm_unreachable("Unexpected multi-uops instruction!");
   3089   case ARM::VLDMQIA:
   3090   case ARM::VSTMQIA:
   3091     return 2;
   3092 
   3093   // The number of uOps for load / store multiple are determined by the number
   3094   // registers.
   3095   //
   3096   // On Cortex-A8, each pair of register loads / stores can be scheduled on the
   3097   // same cycle. The scheduling for the first load / store must be done
   3098   // separately by assuming the address is not 64-bit aligned.
   3099   //
   3100   // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
   3101   // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
   3102   // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
   3103   case ARM::VLDMDIA:
   3104   case ARM::VLDMDIA_UPD:
   3105   case ARM::VLDMDDB_UPD:
   3106   case ARM::VLDMSIA:
   3107   case ARM::VLDMSIA_UPD:
   3108   case ARM::VLDMSDB_UPD:
   3109   case ARM::VSTMDIA:
   3110   case ARM::VSTMDIA_UPD:
   3111   case ARM::VSTMDDB_UPD:
   3112   case ARM::VSTMSIA:
   3113   case ARM::VSTMSIA_UPD:
   3114   case ARM::VSTMSDB_UPD: {
   3115     unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands();
   3116     return (NumRegs / 2) + (NumRegs % 2) + 1;
   3117   }
   3118 
   3119   case ARM::LDMIA_RET:
   3120   case ARM::LDMIA:
   3121   case ARM::LDMDA:
   3122   case ARM::LDMDB:
   3123   case ARM::LDMIB:
   3124   case ARM::LDMIA_UPD:
   3125   case ARM::LDMDA_UPD:
   3126   case ARM::LDMDB_UPD:
   3127   case ARM::LDMIB_UPD:
   3128   case ARM::STMIA:
   3129   case ARM::STMDA:
   3130   case ARM::STMDB:
   3131   case ARM::STMIB:
   3132   case ARM::STMIA_UPD:
   3133   case ARM::STMDA_UPD:
   3134   case ARM::STMDB_UPD:
   3135   case ARM::STMIB_UPD:
   3136   case ARM::tLDMIA:
   3137   case ARM::tLDMIA_UPD:
   3138   case ARM::tSTMIA_UPD:
   3139   case ARM::tPOP_RET:
   3140   case ARM::tPOP:
   3141   case ARM::tPUSH:
   3142   case ARM::t2LDMIA_RET:
   3143   case ARM::t2LDMIA:
   3144   case ARM::t2LDMDB:
   3145   case ARM::t2LDMIA_UPD:
   3146   case ARM::t2LDMDB_UPD:
   3147   case ARM::t2STMIA:
   3148   case ARM::t2STMDB:
   3149   case ARM::t2STMIA_UPD:
   3150   case ARM::t2STMDB_UPD: {
   3151     unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1;
   3152     switch (Subtarget.getLdStMultipleTiming()) {
   3153     case ARMSubtarget::SingleIssuePlusExtras:
   3154       return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs);
   3155     case ARMSubtarget::SingleIssue:
   3156       // Assume the worst.
   3157       return NumRegs;
   3158     case ARMSubtarget::DoubleIssue: {
   3159       if (NumRegs < 4)
   3160         return 2;
   3161       // 4 registers would be issued: 2, 2.
   3162       // 5 registers would be issued: 2, 2, 1.
   3163       unsigned UOps = (NumRegs / 2);
   3164       if (NumRegs % 2)
   3165         ++UOps;
   3166       return UOps;
   3167     }
   3168     case ARMSubtarget::DoubleIssueCheckUnalignedAccess: {
   3169       unsigned UOps = (NumRegs / 2);
   3170       // If there are odd number of registers or if it's not 64-bit aligned,
   3171       // then it takes an extra AGU (Address Generation Unit) cycle.
   3172       if ((NumRegs % 2) || !MI.hasOneMemOperand() ||
   3173           (*MI.memoperands_begin())->getAlignment() < 8)
   3174         ++UOps;
   3175       return UOps;
   3176       }
   3177     }
   3178   }
   3179   }
   3180   llvm_unreachable("Didn't find the number of microops");
   3181 }
   3182 
   3183 int
   3184 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
   3185                                   const MCInstrDesc &DefMCID,
   3186                                   unsigned DefClass,
   3187                                   unsigned DefIdx, unsigned DefAlign) const {
   3188   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
   3189   if (RegNo <= 0)
   3190     // Def is the address writeback.
   3191     return ItinData->getOperandCycle(DefClass, DefIdx);
   3192 
   3193   int DefCycle;
   3194   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
   3195     // (regno / 2) + (regno % 2) + 1
   3196     DefCycle = RegNo / 2 + 1;
   3197     if (RegNo % 2)
   3198       ++DefCycle;
   3199   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
   3200     DefCycle = RegNo;
   3201     bool isSLoad = false;
   3202 
   3203     switch (DefMCID.getOpcode()) {
   3204     default: break;
   3205     case ARM::VLDMSIA:
   3206     case ARM::VLDMSIA_UPD:
   3207     case ARM::VLDMSDB_UPD:
   3208       isSLoad = true;
   3209       break;
   3210     }
   3211 
   3212     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
   3213     // then it takes an extra cycle.
   3214     if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
   3215       ++DefCycle;
   3216   } else {
   3217     // Assume the worst.
   3218     DefCycle = RegNo + 2;
   3219   }
   3220 
   3221   return DefCycle;
   3222 }
   3223 
   3224 int
   3225 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
   3226                                  const MCInstrDesc &DefMCID,
   3227                                  unsigned DefClass,
   3228                                  unsigned DefIdx, unsigned DefAlign) const {
   3229   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
   3230   if (RegNo <= 0)
   3231     // Def is the address writeback.
   3232     return ItinData->getOperandCycle(DefClass, DefIdx);
   3233 
   3234   int DefCycle;
   3235   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
   3236     // 4 registers would be issued: 1, 2, 1.
   3237     // 5 registers would be issued: 1, 2, 2.
   3238     DefCycle = RegNo / 2;
   3239     if (DefCycle < 1)
   3240       DefCycle = 1;
   3241     // Result latency is issue cycle + 2: E2.
   3242     DefCycle += 2;
   3243   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
   3244     DefCycle = (RegNo / 2);
   3245     // If there are odd number of registers or if it's not 64-bit aligned,
   3246     // then it takes an extra AGU (Address Generation Unit) cycle.
   3247     if ((RegNo % 2) || DefAlign < 8)
   3248       ++DefCycle;
   3249     // Result latency is AGU cycles + 2.
   3250     DefCycle += 2;
   3251   } else {
   3252     // Assume the worst.
   3253     DefCycle = RegNo + 2;
   3254   }
   3255 
   3256   return DefCycle;
   3257 }
   3258 
   3259 int
   3260 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
   3261                                   const MCInstrDesc &UseMCID,
   3262                                   unsigned UseClass,
   3263                                   unsigned UseIdx, unsigned UseAlign) const {
   3264   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
   3265   if (RegNo <= 0)
   3266     return ItinData->getOperandCycle(UseClass, UseIdx);
   3267 
   3268   int UseCycle;
   3269   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
   3270     // (regno / 2) + (regno % 2) + 1
   3271     UseCycle = RegNo / 2 + 1;
   3272     if (RegNo % 2)
   3273       ++UseCycle;
   3274   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
   3275     UseCycle = RegNo;
   3276     bool isSStore = false;
   3277 
   3278     switch (UseMCID.getOpcode()) {
   3279     default: break;
   3280     case ARM::VSTMSIA:
   3281     case ARM::VSTMSIA_UPD:
   3282     case ARM::VSTMSDB_UPD:
   3283       isSStore = true;
   3284       break;
   3285     }
   3286 
   3287     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
   3288     // then it takes an extra cycle.
   3289     if ((isSStore && (RegNo % 2)) || UseAlign < 8)
   3290       ++UseCycle;
   3291   } else {
   3292     // Assume the worst.
   3293     UseCycle = RegNo + 2;
   3294   }
   3295 
   3296   return UseCycle;
   3297 }
   3298 
   3299 int
   3300 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
   3301                                  const MCInstrDesc &UseMCID,
   3302                                  unsigned UseClass,
   3303                                  unsigned UseIdx, unsigned UseAlign) const {
   3304   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
   3305   if (RegNo <= 0)
   3306     return ItinData->getOperandCycle(UseClass, UseIdx);
   3307 
   3308   int UseCycle;
   3309   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
   3310     UseCycle = RegNo / 2;
   3311     if (UseCycle < 2)
   3312       UseCycle = 2;
   3313     // Read in E3.
   3314     UseCycle += 2;
   3315   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
   3316     UseCycle = (RegNo / 2);
   3317     // If there are odd number of registers or if it's not 64-bit aligned,
   3318     // then it takes an extra AGU (Address Generation Unit) cycle.
   3319     if ((RegNo % 2) || UseAlign < 8)
   3320       ++UseCycle;
   3321   } else {
   3322     // Assume the worst.
   3323     UseCycle = 1;
   3324   }
   3325   return UseCycle;
   3326 }
   3327 
   3328 int
   3329 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
   3330                                     const MCInstrDesc &DefMCID,
   3331                                     unsigned DefIdx, unsigned DefAlign,
   3332                                     const MCInstrDesc &UseMCID,
   3333                                     unsigned UseIdx, unsigned UseAlign) const {
   3334   unsigned DefClass = DefMCID.getSchedClass();
   3335   unsigned UseClass = UseMCID.getSchedClass();
   3336 
   3337   if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
   3338     return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
   3339 
   3340   // This may be a def / use of a variable_ops instruction, the operand
   3341   // latency might be determinable dynamically. Let the target try to
   3342   // figure it out.
   3343   int DefCycle = -1;
   3344   bool LdmBypass = false;
   3345   switch (DefMCID.getOpcode()) {
   3346   default:
   3347     DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
   3348     break;
   3349 
   3350   case ARM::VLDMDIA:
   3351   case ARM::VLDMDIA_UPD:
   3352   case ARM::VLDMDDB_UPD:
   3353   case ARM::VLDMSIA:
   3354   case ARM::VLDMSIA_UPD:
   3355   case ARM::VLDMSDB_UPD:
   3356     DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
   3357     break;
   3358 
   3359   case ARM::LDMIA_RET:
   3360   case ARM::LDMIA:
   3361   case ARM::LDMDA:
   3362   case ARM::LDMDB:
   3363   case ARM::LDMIB:
   3364   case ARM::LDMIA_UPD:
   3365   case ARM::LDMDA_UPD:
   3366   case ARM::LDMDB_UPD:
   3367   case ARM::LDMIB_UPD:
   3368   case ARM::tLDMIA:
   3369   case ARM::tLDMIA_UPD:
   3370   case ARM::tPUSH:
   3371   case ARM::t2LDMIA_RET:
   3372   case ARM::t2LDMIA:
   3373   case ARM::t2LDMDB:
   3374   case ARM::t2LDMIA_UPD:
   3375   case ARM::t2LDMDB_UPD:
   3376     LdmBypass = 1;
   3377     DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
   3378     break;
   3379   }
   3380 
   3381   if (DefCycle == -1)
   3382     // We can't seem to determine the result latency of the def, assume it's 2.
   3383     DefCycle = 2;
   3384 
   3385   int UseCycle = -1;
   3386   switch (UseMCID.getOpcode()) {
   3387   default:
   3388     UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
   3389     break;
   3390 
   3391   case ARM::VSTMDIA:
   3392   case ARM::VSTMDIA_UPD:
   3393   case ARM::VSTMDDB_UPD:
   3394   case ARM::VSTMSIA:
   3395   case ARM::VSTMSIA_UPD:
   3396   case ARM::VSTMSDB_UPD:
   3397     UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
   3398     break;
   3399 
   3400   case ARM::STMIA:
   3401   case ARM::STMDA:
   3402   case ARM::STMDB:
   3403   case ARM::STMIB:
   3404   case ARM::STMIA_UPD:
   3405   case ARM::STMDA_UPD:
   3406   case ARM::STMDB_UPD:
   3407   case ARM::STMIB_UPD:
   3408   case ARM::tSTMIA_UPD:
   3409   case ARM::tPOP_RET:
   3410   case ARM::tPOP:
   3411   case ARM::t2STMIA:
   3412   case ARM::t2STMDB:
   3413   case ARM::t2STMIA_UPD:
   3414   case ARM::t2STMDB_UPD:
   3415     UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
   3416     break;
   3417   }
   3418 
   3419   if (UseCycle == -1)
   3420     // Assume it's read in the first stage.
   3421     UseCycle = 1;
   3422 
   3423   UseCycle = DefCycle - UseCycle + 1;
   3424   if (UseCycle > 0) {
   3425     if (LdmBypass) {
   3426       // It's a variable_ops instruction so we can't use DefIdx here. Just use
   3427       // first def operand.
   3428       if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
   3429                                           UseClass, UseIdx))
   3430         --UseCycle;
   3431     } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
   3432                                                UseClass, UseIdx)) {
   3433       --UseCycle;
   3434     }
   3435   }
   3436 
   3437   return UseCycle;
   3438 }
   3439 
   3440 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
   3441                                            const MachineInstr *MI, unsigned Reg,
   3442                                            unsigned &DefIdx, unsigned &Dist) {
   3443   Dist = 0;
   3444 
   3445   MachineBasicBlock::const_iterator I = MI; ++I;
   3446   MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator());
   3447   assert(II->isInsideBundle() && "Empty bundle?");
   3448 
   3449   int Idx = -1;
   3450   while (II->isInsideBundle()) {
   3451     Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
   3452     if (Idx != -1)
   3453       break;
   3454     --II;
   3455     ++Dist;
   3456   }
   3457 
   3458   assert(Idx != -1 && "Cannot find bundled definition!");
   3459   DefIdx = Idx;
   3460   return &*II;
   3461 }
   3462 
   3463 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
   3464                                            const MachineInstr &MI, unsigned Reg,
   3465                                            unsigned &UseIdx, unsigned &Dist) {
   3466   Dist = 0;
   3467 
   3468   MachineBasicBlock::const_instr_iterator II = ++MI.getIterator();
   3469   assert(II->isInsideBundle() && "Empty bundle?");
   3470   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
   3471 
   3472   // FIXME: This doesn't properly handle multiple uses.
   3473   int Idx = -1;
   3474   while (II != E && II->isInsideBundle()) {
   3475     Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
   3476     if (Idx != -1)
   3477       break;
   3478     if (II->getOpcode() != ARM::t2IT)
   3479       ++Dist;
   3480     ++II;
   3481   }
   3482 
   3483   if (Idx == -1) {
   3484     Dist = 0;
   3485     return nullptr;
   3486   }
   3487 
   3488   UseIdx = Idx;
   3489   return &*II;
   3490 }
   3491 
   3492 /// Return the number of cycles to add to (or subtract from) the static
   3493 /// itinerary based on the def opcode and alignment. The caller will ensure that
   3494 /// adjusted latency is at least one cycle.
   3495 static int adjustDefLatency(const ARMSubtarget &Subtarget,
   3496                             const MachineInstr &DefMI,
   3497                             const MCInstrDesc &DefMCID, unsigned DefAlign) {
   3498   int Adjust = 0;
   3499   if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) {
   3500     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
   3501     // variants are one cycle cheaper.
   3502     switch (DefMCID.getOpcode()) {
   3503     default: break;
   3504     case ARM::LDRrs:
   3505     case ARM::LDRBrs: {
   3506       unsigned ShOpVal = DefMI.getOperand(3).getImm();
   3507       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
   3508       if (ShImm == 0 ||
   3509           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
   3510         --Adjust;
   3511       break;
   3512     }
   3513     case ARM::t2LDRs:
   3514     case ARM::t2LDRBs:
   3515     case ARM::t2LDRHs:
   3516     case ARM::t2LDRSHs: {
   3517       // Thumb2 mode: lsl only.
   3518       unsigned ShAmt = DefMI.getOperand(3).getImm();
   3519       if (ShAmt == 0 || ShAmt == 2)
   3520         --Adjust;
   3521       break;
   3522     }
   3523     }
   3524   } else if (Subtarget.isSwift()) {
   3525     // FIXME: Properly handle all of the latency adjustments for address
   3526     // writeback.
   3527     switch (DefMCID.getOpcode()) {
   3528     default: break;
   3529     case ARM::LDRrs:
   3530     case ARM::LDRBrs: {
   3531       unsigned ShOpVal = DefMI.getOperand(3).getImm();
   3532       bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
   3533       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
   3534       if (!isSub &&
   3535           (ShImm == 0 ||
   3536            ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
   3537             ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
   3538         Adjust -= 2;
   3539       else if (!isSub &&
   3540                ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
   3541         --Adjust;
   3542       break;
   3543     }
   3544     case ARM::t2LDRs:
   3545     case ARM::t2LDRBs:
   3546     case ARM::t2LDRHs:
   3547     case ARM::t2LDRSHs: {
   3548       // Thumb2 mode: lsl only.
   3549       unsigned ShAmt = DefMI.getOperand(3).getImm();
   3550       if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
   3551         Adjust -= 2;
   3552       break;
   3553     }
   3554     }
   3555   }
   3556 
   3557   if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) {
   3558     switch (DefMCID.getOpcode()) {
   3559     default: break;
   3560     case ARM::VLD1q8:
   3561     case ARM::VLD1q16:
   3562     case ARM::VLD1q32:
   3563     case ARM::VLD1q64:
   3564     case ARM::VLD1q8wb_fixed:
   3565     case ARM::VLD1q16wb_fixed:
   3566     case ARM::VLD1q32wb_fixed:
   3567     case ARM::VLD1q64wb_fixed:
   3568     case ARM::VLD1q8wb_register:
   3569     case ARM::VLD1q16wb_register:
   3570     case ARM::VLD1q32wb_register:
   3571     case ARM::VLD1q64wb_register:
   3572     case ARM::VLD2d8:
   3573     case ARM::VLD2d16:
   3574     case ARM::VLD2d32:
   3575     case ARM::VLD2q8:
   3576     case ARM::VLD2q16:
   3577     case ARM::VLD2q32:
   3578     case ARM::VLD2d8wb_fixed:
   3579     case ARM::VLD2d16wb_fixed:
   3580     case ARM::VLD2d32wb_fixed:
   3581     case ARM::VLD2q8wb_fixed:
   3582     case ARM::VLD2q16wb_fixed:
   3583     case ARM::VLD2q32wb_fixed:
   3584     case ARM::VLD2d8wb_register:
   3585     case ARM::VLD2d16wb_register:
   3586     case ARM::VLD2d32wb_register:
   3587     case ARM::VLD2q8wb_register:
   3588     case ARM::VLD2q16wb_register:
   3589     case ARM::VLD2q32wb_register:
   3590     case ARM::VLD3d8:
   3591     case ARM::VLD3d16:
   3592     case ARM::VLD3d32:
   3593     case ARM::VLD1d64T:
   3594     case ARM::VLD3d8_UPD:
   3595     case ARM::VLD3d16_UPD:
   3596     case ARM::VLD3d32_UPD:
   3597     case ARM::VLD1d64Twb_fixed:
   3598     case ARM::VLD1d64Twb_register:
   3599     case ARM::VLD3q8_UPD:
   3600     case ARM::VLD3q16_UPD:
   3601     case ARM::VLD3q32_UPD:
   3602     case ARM::VLD4d8:
   3603     case ARM::VLD4d16:
   3604     case ARM::VLD4d32:
   3605     case ARM::VLD1d64Q:
   3606     case ARM::VLD4d8_UPD:
   3607     case ARM::VLD4d16_UPD:
   3608     case ARM::VLD4d32_UPD:
   3609     case ARM::VLD1d64Qwb_fixed:
   3610     case ARM::VLD1d64Qwb_register:
   3611     case ARM::VLD4q8_UPD:
   3612     case ARM::VLD4q16_UPD:
   3613     case ARM::VLD4q32_UPD:
   3614     case ARM::VLD1DUPq8:
   3615     case ARM::VLD1DUPq16:
   3616     case ARM::VLD1DUPq32:
   3617     case ARM::VLD1DUPq8wb_fixed:
   3618     case ARM::VLD1DUPq16wb_fixed:
   3619     case ARM::VLD1DUPq32wb_fixed:
   3620     case ARM::VLD1DUPq8wb_register:
   3621     case ARM::VLD1DUPq16wb_register:
   3622     case ARM::VLD1DUPq32wb_register:
   3623     case ARM::VLD2DUPd8:
   3624     case ARM::VLD2DUPd16:
   3625     case ARM::VLD2DUPd32:
   3626     case ARM::VLD2DUPd8wb_fixed:
   3627     case ARM::VLD2DUPd16wb_fixed:
   3628     case ARM::VLD2DUPd32wb_fixed:
   3629     case ARM::VLD2DUPd8wb_register:
   3630     case ARM::VLD2DUPd16wb_register:
   3631     case ARM::VLD2DUPd32wb_register:
   3632     case ARM::VLD4DUPd8:
   3633     case ARM::VLD4DUPd16:
   3634     case ARM::VLD4DUPd32:
   3635     case ARM::VLD4DUPd8_UPD:
   3636     case ARM::VLD4DUPd16_UPD:
   3637     case ARM::VLD4DUPd32_UPD:
   3638     case ARM::VLD1LNd8:
   3639     case ARM::VLD1LNd16:
   3640     case ARM::VLD1LNd32:
   3641     case ARM::VLD1LNd8_UPD:
   3642     case ARM::VLD1LNd16_UPD:
   3643     case ARM::VLD1LNd32_UPD:
   3644     case ARM::VLD2LNd8:
   3645     case ARM::VLD2LNd16:
   3646     case ARM::VLD2LNd32:
   3647     case ARM::VLD2LNq16:
   3648     case ARM::VLD2LNq32:
   3649     case ARM::VLD2LNd8_UPD:
   3650     case ARM::VLD2LNd16_UPD:
   3651     case ARM::VLD2LNd32_UPD:
   3652     case ARM::VLD2LNq16_UPD:
   3653     case ARM::VLD2LNq32_UPD:
   3654     case ARM::VLD4LNd8:
   3655     case ARM::VLD4LNd16:
   3656     case ARM::VLD4LNd32:
   3657     case ARM::VLD4LNq16:
   3658     case ARM::VLD4LNq32:
   3659     case ARM::VLD4LNd8_UPD:
   3660     case ARM::VLD4LNd16_UPD:
   3661     case ARM::VLD4LNd32_UPD:
   3662     case ARM::VLD4LNq16_UPD:
   3663     case ARM::VLD4LNq32_UPD:
   3664       // If the address is not 64-bit aligned, the latencies of these
   3665       // instructions increases by one.
   3666       ++Adjust;
   3667       break;
   3668     }
   3669   }
   3670   return Adjust;
   3671 }
   3672 
   3673 int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
   3674                                         const MachineInstr &DefMI,
   3675                                         unsigned DefIdx,
   3676                                         const MachineInstr &UseMI,
   3677                                         unsigned UseIdx) const {
   3678   // No operand latency. The caller may fall back to getInstrLatency.
   3679   if (!ItinData || ItinData->isEmpty())
   3680     return -1;
   3681 
   3682   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
   3683   unsigned Reg = DefMO.getReg();
   3684 
   3685   const MachineInstr *ResolvedDefMI = &DefMI;
   3686   unsigned DefAdj = 0;
   3687   if (DefMI.isBundle())
   3688     ResolvedDefMI =
   3689         getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj);
   3690   if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() ||
   3691       ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) {
   3692     return 1;
   3693   }
   3694 
   3695   const MachineInstr *ResolvedUseMI = &UseMI;
   3696   unsigned UseAdj = 0;
   3697   if (UseMI.isBundle()) {
   3698     ResolvedUseMI =
   3699         getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj);
   3700     if (!ResolvedUseMI)
   3701       return -1;
   3702   }
   3703 
   3704   return getOperandLatencyImpl(
   3705       ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO,
   3706       Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj);
   3707 }
   3708 
   3709 int ARMBaseInstrInfo::getOperandLatencyImpl(
   3710     const InstrItineraryData *ItinData, const MachineInstr &DefMI,
   3711     unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj,
   3712     const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI,
   3713     unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const {
   3714   if (Reg == ARM::CPSR) {
   3715     if (DefMI.getOpcode() == ARM::FMSTAT) {
   3716       // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
   3717       return Subtarget.isLikeA9() ? 1 : 20;
   3718     }
   3719 
   3720     // CPSR set and branch can be paired in the same cycle.
   3721     if (UseMI.isBranch())
   3722       return 0;
   3723 
   3724     // Otherwise it takes the instruction latency (generally one).
   3725     unsigned Latency = getInstrLatency(ItinData, DefMI);
   3726 
   3727     // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
   3728     // its uses. Instructions which are otherwise scheduled between them may
   3729     // incur a code size penalty (not able to use the CPSR setting 16-bit
   3730     // instructions).
   3731     if (Latency > 0 && Subtarget.isThumb2()) {
   3732       const MachineFunction *MF = DefMI.getParent()->getParent();
   3733       // FIXME: Use Function::optForSize().
   3734       if (MF->getFunction()->hasFnAttribute(Attribute::OptimizeForSize))
   3735         --Latency;
   3736     }
   3737     return Latency;
   3738   }
   3739 
   3740   if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit())
   3741     return -1;
   3742 
   3743   unsigned DefAlign = DefMI.hasOneMemOperand()
   3744                           ? (*DefMI.memoperands_begin())->getAlignment()
   3745                           : 0;
   3746   unsigned UseAlign = UseMI.hasOneMemOperand()
   3747                           ? (*UseMI.memoperands_begin())->getAlignment()
   3748                           : 0;
   3749 
   3750   // Get the itinerary's latency if possible, and handle variable_ops.
   3751   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID,
   3752                                   UseIdx, UseAlign);
   3753   // Unable to find operand latency. The caller may resort to getInstrLatency.
   3754   if (Latency < 0)
   3755     return Latency;
   3756 
   3757   // Adjust for IT block position.
   3758   int Adj = DefAdj + UseAdj;
   3759 
   3760   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
   3761   Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
   3762   if (Adj >= 0 || (int)Latency > -Adj) {
   3763     return Latency + Adj;
   3764   }
   3765   // Return the itinerary latency, which may be zero but not less than zero.
   3766   return Latency;
   3767 }
   3768 
   3769 int
   3770 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
   3771                                     SDNode *DefNode, unsigned DefIdx,
   3772                                     SDNode *UseNode, unsigned UseIdx) const {
   3773   if (!DefNode->isMachineOpcode())
   3774     return 1;
   3775 
   3776   const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
   3777 
   3778   if (isZeroCost(DefMCID.Opcode))
   3779     return 0;
   3780 
   3781   if (!ItinData || ItinData->isEmpty())
   3782     return DefMCID.mayLoad() ? 3 : 1;
   3783 
   3784   if (!UseNode->isMachineOpcode()) {
   3785     int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
   3786     int Adj = Subtarget.getPreISelOperandLatencyAdjustment();
   3787     int Threshold = 1 + Adj;
   3788     return Latency <= Threshold ? 1 : Latency - Adj;
   3789   }
   3790 
   3791   const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
   3792   const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode);
   3793   unsigned DefAlign = !DefMN->memoperands_empty()
   3794     ? (*DefMN->memoperands_begin())->getAlignment() : 0;
   3795   const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode);
   3796   unsigned UseAlign = !UseMN->memoperands_empty()
   3797     ? (*UseMN->memoperands_begin())->getAlignment() : 0;
   3798   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
   3799                                   UseMCID, UseIdx, UseAlign);
   3800 
   3801   if (Latency > 1 &&
   3802       (Subtarget.isCortexA8() || Subtarget.isLikeA9() ||
   3803        Subtarget.isCortexA7())) {
   3804     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
   3805     // variants are one cycle cheaper.
   3806     switch (DefMCID.getOpcode()) {
   3807     default: break;
   3808     case ARM::LDRrs:
   3809     case ARM::LDRBrs: {
   3810       unsigned ShOpVal =
   3811         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
   3812       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
   3813       if (ShImm == 0 ||
   3814           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
   3815         --Latency;
   3816       break;
   3817     }
   3818     case ARM::t2LDRs:
   3819     case ARM::t2LDRBs:
   3820     case ARM::t2LDRHs:
   3821     case ARM::t2LDRSHs: {
   3822       // Thumb2 mode: lsl only.
   3823       unsigned ShAmt =
   3824         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
   3825       if (ShAmt == 0 || ShAmt == 2)
   3826         --Latency;
   3827       break;
   3828     }
   3829     }
   3830   } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) {
   3831     // FIXME: Properly handle all of the latency adjustments for address
   3832     // writeback.
   3833     switch (DefMCID.getOpcode()) {
   3834     default: break;
   3835     case ARM::LDRrs:
   3836     case ARM::LDRBrs: {
   3837       unsigned ShOpVal =
   3838         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
   3839       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
   3840       if (ShImm == 0 ||
   3841           ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
   3842            ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
   3843         Latency -= 2;
   3844       else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
   3845         --Latency;
   3846       break;
   3847     }
   3848     case ARM::t2LDRs:
   3849     case ARM::t2LDRBs:
   3850     case ARM::t2LDRHs:
   3851     case ARM::t2LDRSHs: {
   3852       // Thumb2 mode: lsl 0-3 only.
   3853       Latency -= 2;
   3854       break;
   3855     }
   3856     }
   3857   }
   3858 
   3859   if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment())
   3860     switch (DefMCID.getOpcode()) {
   3861     default: break;
   3862     case ARM::VLD1q8:
   3863     case ARM::VLD1q16:
   3864     case ARM::VLD1q32:
   3865     case ARM::VLD1q64:
   3866     case ARM::VLD1q8wb_register:
   3867     case ARM::VLD1q16wb_register:
   3868     case ARM::VLD1q32wb_register:
   3869     case ARM::VLD1q64wb_register:
   3870     case ARM::VLD1q8wb_fixed:
   3871     case ARM::VLD1q16wb_fixed:
   3872     case ARM::VLD1q32wb_fixed:
   3873     case ARM::VLD1q64wb_fixed:
   3874     case ARM::VLD2d8:
   3875     case ARM::VLD2d16:
   3876     case ARM::VLD2d32:
   3877     case ARM::VLD2q8Pseudo:
   3878     case ARM::VLD2q16Pseudo:
   3879     case ARM::VLD2q32Pseudo:
   3880     case ARM::VLD2d8wb_fixed:
   3881     case ARM::VLD2d16wb_fixed:
   3882     case ARM::VLD2d32wb_fixed:
   3883     case ARM::VLD2q8PseudoWB_fixed:
   3884     case ARM::VLD2q16PseudoWB_fixed:
   3885     case ARM::VLD2q32PseudoWB_fixed:
   3886     case ARM::VLD2d8wb_register:
   3887     case ARM::VLD2d16wb_register:
   3888     case ARM::VLD2d32wb_register:
   3889     case ARM::VLD2q8PseudoWB_register:
   3890     case ARM::VLD2q16PseudoWB_register:
   3891     case ARM::VLD2q32PseudoWB_register:
   3892     case ARM::VLD3d8Pseudo:
   3893     case ARM::VLD3d16Pseudo:
   3894     case ARM::VLD3d32Pseudo:
   3895     case ARM::VLD1d64TPseudo:
   3896     case ARM::VLD1d64TPseudoWB_fixed:
   3897     case ARM::VLD3d8Pseudo_UPD:
   3898     case ARM::VLD3d16Pseudo_UPD:
   3899     case ARM::VLD3d32Pseudo_UPD:
   3900     case ARM::VLD3q8Pseudo_UPD:
   3901     case ARM::VLD3q16Pseudo_UPD:
   3902     case ARM::VLD3q32Pseudo_UPD:
   3903     case ARM::VLD3q8oddPseudo:
   3904     case ARM::VLD3q16oddPseudo:
   3905     case ARM::VLD3q32oddPseudo:
   3906     case ARM::VLD3q8oddPseudo_UPD:
   3907     case ARM::VLD3q16oddPseudo_UPD:
   3908     case ARM::VLD3q32oddPseudo_UPD:
   3909     case ARM::VLD4d8Pseudo:
   3910     case ARM::VLD4d16Pseudo:
   3911     case ARM::VLD4d32Pseudo:
   3912     case ARM::VLD1d64QPseudo:
   3913     case ARM::VLD1d64QPseudoWB_fixed:
   3914     case ARM::VLD4d8Pseudo_UPD:
   3915     case ARM::VLD4d16Pseudo_UPD:
   3916     case ARM::VLD4d32Pseudo_UPD:
   3917     case ARM::VLD4q8Pseudo_UPD:
   3918     case ARM::VLD4q16Pseudo_UPD:
   3919     case ARM::VLD4q32Pseudo_UPD:
   3920     case ARM::VLD4q8oddPseudo:
   3921     case ARM::VLD4q16oddPseudo:
   3922     case ARM::VLD4q32oddPseudo:
   3923     case ARM::VLD4q8oddPseudo_UPD:
   3924     case ARM::VLD4q16oddPseudo_UPD:
   3925     case ARM::VLD4q32oddPseudo_UPD:
   3926     case ARM::VLD1DUPq8:
   3927     case ARM::VLD1DUPq16:
   3928     case ARM::VLD1DUPq32:
   3929     case ARM::VLD1DUPq8wb_fixed:
   3930     case ARM::VLD1DUPq16wb_fixed:
   3931     case ARM::VLD1DUPq32wb_fixed:
   3932     case ARM::VLD1DUPq8wb_register:
   3933     case ARM::VLD1DUPq16wb_register:
   3934     case ARM::VLD1DUPq32wb_register:
   3935     case ARM::VLD2DUPd8:
   3936     case ARM::VLD2DUPd16:
   3937     case ARM::VLD2DUPd32:
   3938     case ARM::VLD2DUPd8wb_fixed:
   3939     case ARM::VLD2DUPd16wb_fixed:
   3940     case ARM::VLD2DUPd32wb_fixed:
   3941     case ARM::VLD2DUPd8wb_register:
   3942     case ARM::VLD2DUPd16wb_register:
   3943     case ARM::VLD2DUPd32wb_register:
   3944     case ARM::VLD4DUPd8Pseudo:
   3945     case ARM::VLD4DUPd16Pseudo:
   3946     case ARM::VLD4DUPd32Pseudo:
   3947     case ARM::VLD4DUPd8Pseudo_UPD:
   3948     case ARM::VLD4DUPd16Pseudo_UPD:
   3949     case ARM::VLD4DUPd32Pseudo_UPD:
   3950     case ARM::VLD1LNq8Pseudo:
   3951     case ARM::VLD1LNq16Pseudo:
   3952     case ARM::VLD1LNq32Pseudo:
   3953     case ARM::VLD1LNq8Pseudo_UPD:
   3954     case ARM::VLD1LNq16Pseudo_UPD:
   3955     case ARM::VLD1LNq32Pseudo_UPD:
   3956     case ARM::VLD2LNd8Pseudo:
   3957     case ARM::VLD2LNd16Pseudo:
   3958     case ARM::VLD2LNd32Pseudo:
   3959     case ARM::VLD2LNq16Pseudo:
   3960     case ARM::VLD2LNq32Pseudo:
   3961     case ARM::VLD2LNd8Pseudo_UPD:
   3962     case ARM::VLD2LNd16Pseudo_UPD:
   3963     case ARM::VLD2LNd32Pseudo_UPD:
   3964     case ARM::VLD2LNq16Pseudo_UPD:
   3965     case ARM::VLD2LNq32Pseudo_UPD:
   3966     case ARM::VLD4LNd8Pseudo:
   3967     case ARM::VLD4LNd16Pseudo:
   3968     case ARM::VLD4LNd32Pseudo:
   3969     case ARM::VLD4LNq16Pseudo:
   3970     case ARM::VLD4LNq32Pseudo:
   3971     case ARM::VLD4LNd8Pseudo_UPD:
   3972     case ARM::VLD4LNd16Pseudo_UPD:
   3973     case ARM::VLD4LNd32Pseudo_UPD:
   3974     case ARM::VLD4LNq16Pseudo_UPD:
   3975     case ARM::VLD4LNq32Pseudo_UPD:
   3976       // If the address is not 64-bit aligned, the latencies of these
   3977       // instructions increases by one.
   3978       ++Latency;
   3979       break;
   3980     }
   3981 
   3982   return Latency;
   3983 }
   3984 
   3985 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const {
   3986   if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
   3987       MI.isImplicitDef())
   3988     return 0;
   3989 
   3990   if (MI.isBundle())
   3991     return 0;
   3992 
   3993   const MCInstrDesc &MCID = MI.getDesc();
   3994 
   3995   if (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR)) {
   3996     // When predicated, CPSR is an additional source operand for CPSR updating
   3997     // instructions, this apparently increases their latencies.
   3998     return 1;
   3999   }
   4000   return 0;
   4001 }
   4002 
   4003 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
   4004                                            const MachineInstr &MI,
   4005                                            unsigned *PredCost) const {
   4006   if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
   4007       MI.isImplicitDef())
   4008     return 1;
   4009 
   4010   // An instruction scheduler typically runs on unbundled instructions, however
   4011   // other passes may query the latency of a bundled instruction.
   4012   if (MI.isBundle()) {
   4013     unsigned Latency = 0;
   4014     MachineBasicBlock::const_instr_iterator I = MI.getIterator();
   4015     MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
   4016     while (++I != E && I->isInsideBundle()) {
   4017       if (I->getOpcode() != ARM::t2IT)
   4018         Latency += getInstrLatency(ItinData, *I, PredCost);
   4019     }
   4020     return Latency;
   4021   }
   4022 
   4023   const MCInstrDesc &MCID = MI.getDesc();
   4024   if (PredCost && (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR))) {
   4025     // When predicated, CPSR is an additional source operand for CPSR updating
   4026     // instructions, this apparently increases their latencies.
   4027     *PredCost = 1;
   4028   }
   4029   // Be sure to call getStageLatency for an empty itinerary in case it has a
   4030   // valid MinLatency property.
   4031   if (!ItinData)
   4032     return MI.mayLoad() ? 3 : 1;
   4033 
   4034   unsigned Class = MCID.getSchedClass();
   4035 
   4036   // For instructions with variable uops, use uops as latency.
   4037   if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
   4038     return getNumMicroOps(ItinData, MI);
   4039 
   4040   // For the common case, fall back on the itinerary's latency.
   4041   unsigned Latency = ItinData->getStageLatency(Class);
   4042 
   4043   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
   4044   unsigned DefAlign =
   4045       MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlignment() : 0;
   4046   int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign);
   4047   if (Adj >= 0 || (int)Latency > -Adj) {
   4048     return Latency + Adj;
   4049   }
   4050   return Latency;
   4051 }
   4052 
   4053 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
   4054                                       SDNode *Node) const {
   4055   if (!Node->isMachineOpcode())
   4056     return 1;
   4057 
   4058   if (!ItinData || ItinData->isEmpty())
   4059     return 1;
   4060 
   4061   unsigned Opcode = Node->getMachineOpcode();
   4062   switch (Opcode) {
   4063   default:
   4064     return ItinData->getStageLatency(get(Opcode).getSchedClass());
   4065   case ARM::VLDMQIA:
   4066   case ARM::VSTMQIA:
   4067     return 2;
   4068   }
   4069 }
   4070 
   4071 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
   4072                                              const MachineRegisterInfo *MRI,
   4073                                              const MachineInstr &DefMI,
   4074                                              unsigned DefIdx,
   4075                                              const MachineInstr &UseMI,
   4076                                              unsigned UseIdx) const {
   4077   unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
   4078   unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask;
   4079   if (Subtarget.nonpipelinedVFP() &&
   4080       (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
   4081     return true;
   4082 
   4083   // Hoist VFP / NEON instructions with 4 or higher latency.
   4084   unsigned Latency =
   4085       SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx);
   4086   if (Latency <= 3)
   4087     return false;
   4088   return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
   4089          UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
   4090 }
   4091 
   4092 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
   4093                                         const MachineInstr &DefMI,
   4094                                         unsigned DefIdx) const {
   4095   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
   4096   if (!ItinData || ItinData->isEmpty())
   4097     return false;
   4098 
   4099   unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
   4100   if (DDomain == ARMII::DomainGeneral) {
   4101     unsigned DefClass = DefMI.getDesc().getSchedClass();
   4102     int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
   4103     return (DefCycle != -1 && DefCycle <= 2);
   4104   }
   4105   return false;
   4106 }
   4107 
   4108 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI,
   4109                                          StringRef &ErrInfo) const {
   4110   if (convertAddSubFlagsOpcode(MI.getOpcode())) {
   4111     ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
   4112     return false;
   4113   }
   4114   return true;
   4115 }
   4116 
   4117 // LoadStackGuard has so far only been implemented for MachO. Different code
   4118 // sequence is needed for other targets.
   4119 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
   4120                                                 unsigned LoadImmOpc,
   4121                                                 unsigned LoadOpc) const {
   4122   MachineBasicBlock &MBB = *MI->getParent();
   4123   DebugLoc DL = MI->getDebugLoc();
   4124   unsigned Reg = MI->getOperand(0).getReg();
   4125   const GlobalValue *GV =
   4126       cast<GlobalValue>((*MI->memoperands_begin())->getValue());
   4127   MachineInstrBuilder MIB;
   4128 
   4129   BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
   4130       .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY);
   4131 
   4132   if (Subtarget.isGVIndirectSymbol(GV)) {
   4133     MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
   4134     MIB.addReg(Reg, RegState::Kill).addImm(0);
   4135     unsigned Flag = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant;
   4136     MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
   4137         MachinePointerInfo::getGOT(*MBB.getParent()), Flag, 4, 4);
   4138     MIB.addMemOperand(MMO);
   4139     AddDefaultPred(MIB);
   4140   }
   4141 
   4142   MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
   4143   MIB.addReg(Reg, RegState::Kill).addImm(0);
   4144   MIB.setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
   4145   AddDefaultPred(MIB);
   4146 }
   4147 
   4148 bool
   4149 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
   4150                                      unsigned &AddSubOpc,
   4151                                      bool &NegAcc, bool &HasLane) const {
   4152   DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
   4153   if (I == MLxEntryMap.end())
   4154     return false;
   4155 
   4156   const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
   4157   MulOpc = Entry.MulOpc;
   4158   AddSubOpc = Entry.AddSubOpc;
   4159   NegAcc = Entry.NegAcc;
   4160   HasLane = Entry.HasLane;
   4161   return true;
   4162 }
   4163 
   4164 //===----------------------------------------------------------------------===//
   4165 // Execution domains.
   4166 //===----------------------------------------------------------------------===//
   4167 //
   4168 // Some instructions go down the NEON pipeline, some go down the VFP pipeline,
   4169 // and some can go down both.  The vmov instructions go down the VFP pipeline,
   4170 // but they can be changed to vorr equivalents that are executed by the NEON
   4171 // pipeline.
   4172 //
   4173 // We use the following execution domain numbering:
   4174 //
   4175 enum ARMExeDomain {
   4176   ExeGeneric = 0,
   4177   ExeVFP = 1,
   4178   ExeNEON = 2
   4179 };
   4180 //
   4181 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
   4182 //
   4183 std::pair<uint16_t, uint16_t>
   4184 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const {
   4185   // If we don't have access to NEON instructions then we won't be able
   4186   // to swizzle anything to the NEON domain. Check to make sure.
   4187   if (Subtarget.hasNEON()) {
   4188     // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
   4189     // if they are not predicated.
   4190     if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI))
   4191       return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
   4192 
   4193     // CortexA9 is particularly picky about mixing the two and wants these
   4194     // converted.
   4195     if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) &&
   4196         (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR ||
   4197          MI.getOpcode() == ARM::VMOVS))
   4198       return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
   4199   }
   4200   // No other instructions can be swizzled, so just determine their domain.
   4201   unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask;
   4202 
   4203   if (Domain & ARMII::DomainNEON)
   4204     return std::make_pair(ExeNEON, 0);
   4205 
   4206   // Certain instructions can go either way on Cortex-A8.
   4207   // Treat them as NEON instructions.
   4208   if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
   4209     return std::make_pair(ExeNEON, 0);
   4210 
   4211   if (Domain & ARMII::DomainVFP)
   4212     return std::make_pair(ExeVFP, 0);
   4213 
   4214   return std::make_pair(ExeGeneric, 0);
   4215 }
   4216 
   4217 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
   4218                                             unsigned SReg, unsigned &Lane) {
   4219   unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
   4220   Lane = 0;
   4221 
   4222   if (DReg != ARM::NoRegister)
   4223    return DReg;
   4224 
   4225   Lane = 1;
   4226   DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
   4227 
   4228   assert(DReg && "S-register with no D super-register?");
   4229   return DReg;
   4230 }
   4231 
   4232 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
   4233 /// set ImplicitSReg to a register number that must be marked as implicit-use or
   4234 /// zero if no register needs to be defined as implicit-use.
   4235 ///
   4236 /// If the function cannot determine if an SPR should be marked implicit use or
   4237 /// not, it returns false.
   4238 ///
   4239 /// This function handles cases where an instruction is being modified from taking
   4240 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
   4241 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
   4242 /// lane of the DPR).
   4243 ///
   4244 /// If the other SPR is defined, an implicit-use of it should be added. Else,
   4245 /// (including the case where the DPR itself is defined), it should not.
   4246 ///
   4247 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
   4248                                        MachineInstr &MI, unsigned DReg,
   4249                                        unsigned Lane, unsigned &ImplicitSReg) {
   4250   // If the DPR is defined or used already, the other SPR lane will be chained
   4251   // correctly, so there is nothing to be done.
   4252   if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) {
   4253     ImplicitSReg = 0;
   4254     return true;
   4255   }
   4256 
   4257   // Otherwise we need to go searching to see if the SPR is set explicitly.
   4258   ImplicitSReg = TRI->getSubReg(DReg,
   4259                                 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
   4260   MachineBasicBlock::LivenessQueryResult LQR =
   4261       MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);
   4262 
   4263   if (LQR == MachineBasicBlock::LQR_Live)
   4264     return true;
   4265   else if (LQR == MachineBasicBlock::LQR_Unknown)
   4266     return false;
   4267 
   4268   // If the register is known not to be live, there is no need to add an
   4269   // implicit-use.
   4270   ImplicitSReg = 0;
   4271   return true;
   4272 }
   4273 
   4274 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI,
   4275                                           unsigned Domain) const {
   4276   unsigned DstReg, SrcReg, DReg;
   4277   unsigned Lane;
   4278   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
   4279   const TargetRegisterInfo *TRI = &getRegisterInfo();
   4280   switch (MI.getOpcode()) {
   4281   default:
   4282     llvm_unreachable("cannot handle opcode!");
   4283     break;
   4284   case ARM::VMOVD:
   4285     if (Domain != ExeNEON)
   4286       break;
   4287 
   4288     // Zap the predicate operands.
   4289     assert(!isPredicated(MI) && "Cannot predicate a VORRd");
   4290 
   4291     // Make sure we've got NEON instructions.
   4292     assert(Subtarget.hasNEON() && "VORRd requires NEON");
   4293 
   4294     // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
   4295     DstReg = MI.getOperand(0).getReg();
   4296     SrcReg = MI.getOperand(1).getReg();
   4297 
   4298     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
   4299       MI.RemoveOperand(i - 1);
   4300 
   4301     // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
   4302     MI.setDesc(get(ARM::VORRd));
   4303     AddDefaultPred(
   4304         MIB.addReg(DstReg, RegState::Define).addReg(SrcReg).addReg(SrcReg));
   4305     break;
   4306   case ARM::VMOVRS:
   4307     if (Domain != ExeNEON)
   4308       break;
   4309     assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
   4310 
   4311     // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
   4312     DstReg = MI.getOperand(0).getReg();
   4313     SrcReg = MI.getOperand(1).getReg();
   4314 
   4315     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
   4316       MI.RemoveOperand(i - 1);
   4317 
   4318     DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
   4319 
   4320     // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
   4321     // Note that DSrc has been widened and the other lane may be undef, which
   4322     // contaminates the entire register.
   4323     MI.setDesc(get(ARM::VGETLNi32));
   4324     AddDefaultPred(MIB.addReg(DstReg, RegState::Define)
   4325                        .addReg(DReg, RegState::Undef)
   4326                        .addImm(Lane));
   4327 
   4328     // The old source should be an implicit use, otherwise we might think it
   4329     // was dead before here.
   4330     MIB.addReg(SrcReg, RegState::Implicit);
   4331     break;
   4332   case ARM::VMOVSR: {
   4333     if (Domain != ExeNEON)
   4334       break;
   4335     assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
   4336 
   4337     // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
   4338     DstReg = MI.getOperand(0).getReg();
   4339     SrcReg = MI.getOperand(1).getReg();
   4340 
   4341     DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
   4342 
   4343     unsigned ImplicitSReg;
   4344     if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
   4345       break;
   4346 
   4347     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
   4348       MI.RemoveOperand(i - 1);
   4349 
   4350     // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
   4351     // Again DDst may be undefined at the beginning of this instruction.
   4352     MI.setDesc(get(ARM::VSETLNi32));
   4353     MIB.addReg(DReg, RegState::Define)
   4354         .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI)))
   4355         .addReg(SrcReg)
   4356         .addImm(Lane);
   4357     AddDefaultPred(MIB);
   4358 
   4359     // The narrower destination must be marked as set to keep previous chains
   4360     // in place.
   4361     MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
   4362     if (ImplicitSReg != 0)
   4363       MIB.addReg(ImplicitSReg, RegState::Implicit);
   4364     break;
   4365     }
   4366     case ARM::VMOVS: {
   4367       if (Domain != ExeNEON)
   4368         break;
   4369 
   4370       // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
   4371       DstReg = MI.getOperand(0).getReg();
   4372       SrcReg = MI.getOperand(1).getReg();
   4373 
   4374       unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
   4375       DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
   4376       DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
   4377 
   4378       unsigned ImplicitSReg;
   4379       if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
   4380         break;
   4381 
   4382       for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
   4383         MI.RemoveOperand(i - 1);
   4384 
   4385       if (DSrc == DDst) {
   4386         // Destination can be:
   4387         //     %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
   4388         MI.setDesc(get(ARM::VDUPLN32d));
   4389         MIB.addReg(DDst, RegState::Define)
   4390             .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI)))
   4391             .addImm(SrcLane);
   4392         AddDefaultPred(MIB);
   4393 
   4394         // Neither the source or the destination are naturally represented any
   4395         // more, so add them in manually.
   4396         MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
   4397         MIB.addReg(SrcReg, RegState::Implicit);
   4398         if (ImplicitSReg != 0)
   4399           MIB.addReg(ImplicitSReg, RegState::Implicit);
   4400         break;
   4401       }
   4402 
   4403       // In general there's no single instruction that can perform an S <-> S
   4404       // move in NEON space, but a pair of VEXT instructions *can* do the
   4405       // job. It turns out that the VEXTs needed will only use DSrc once, with
   4406       // the position based purely on the combination of lane-0 and lane-1
   4407       // involved. For example
   4408       //     vmov s0, s2 -> vext.32 d0, d0, d1, #1  vext.32 d0, d0, d0, #1
   4409       //     vmov s1, s3 -> vext.32 d0, d1, d0, #1  vext.32 d0, d0, d0, #1
   4410       //     vmov s0, s3 -> vext.32 d0, d0, d0, #1  vext.32 d0, d1, d0, #1
   4411       //     vmov s1, s2 -> vext.32 d0, d0, d0, #1  vext.32 d0, d0, d1, #1
   4412       //
   4413       // Pattern of the MachineInstrs is:
   4414       //     %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
   4415       MachineInstrBuilder NewMIB;
   4416       NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32),
   4417                        DDst);
   4418 
   4419       // On the first instruction, both DSrc and DDst may be <undef> if present.
   4420       // Specifically when the original instruction didn't have them as an
   4421       // <imp-use>.
   4422       unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
   4423       bool CurUndef = !MI.readsRegister(CurReg, TRI);
   4424       NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
   4425 
   4426       CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
   4427       CurUndef = !MI.readsRegister(CurReg, TRI);
   4428       NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
   4429 
   4430       NewMIB.addImm(1);
   4431       AddDefaultPred(NewMIB);
   4432 
   4433       if (SrcLane == DstLane)
   4434         NewMIB.addReg(SrcReg, RegState::Implicit);
   4435 
   4436       MI.setDesc(get(ARM::VEXTd32));
   4437       MIB.addReg(DDst, RegState::Define);
   4438 
   4439       // On the second instruction, DDst has definitely been defined above, so
   4440       // it is not <undef>. DSrc, if present, can be <undef> as above.
   4441       CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
   4442       CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
   4443       MIB.addReg(CurReg, getUndefRegState(CurUndef));
   4444 
   4445       CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
   4446       CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
   4447       MIB.addReg(CurReg, getUndefRegState(CurUndef));
   4448 
   4449       MIB.addImm(1);
   4450       AddDefaultPred(MIB);
   4451 
   4452       if (SrcLane != DstLane)
   4453         MIB.addReg(SrcReg, RegState::Implicit);
   4454 
   4455       // As before, the original destination is no longer represented, add it
   4456       // implicitly.
   4457       MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
   4458       if (ImplicitSReg != 0)
   4459         MIB.addReg(ImplicitSReg, RegState::Implicit);
   4460       break;
   4461     }
   4462   }
   4463 
   4464 }
   4465 
   4466 //===----------------------------------------------------------------------===//
   4467 // Partial register updates
   4468 //===----------------------------------------------------------------------===//
   4469 //
   4470 // Swift renames NEON registers with 64-bit granularity.  That means any
   4471 // instruction writing an S-reg implicitly reads the containing D-reg.  The
   4472 // problem is mostly avoided by translating f32 operations to v2f32 operations
   4473 // on D-registers, but f32 loads are still a problem.
   4474 //
   4475 // These instructions can load an f32 into a NEON register:
   4476 //
   4477 // VLDRS - Only writes S, partial D update.
   4478 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
   4479 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
   4480 //
   4481 // FCONSTD can be used as a dependency-breaking instruction.
   4482 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance(
   4483     const MachineInstr &MI, unsigned OpNum,
   4484     const TargetRegisterInfo *TRI) const {
   4485   auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance();
   4486   if (!PartialUpdateClearance)
   4487     return 0;
   4488 
   4489   assert(TRI && "Need TRI instance");
   4490 
   4491   const MachineOperand &MO = MI.getOperand(OpNum);
   4492   if (MO.readsReg())
   4493     return 0;
   4494   unsigned Reg = MO.getReg();
   4495   int UseOp = -1;
   4496 
   4497   switch (MI.getOpcode()) {
   4498   // Normal instructions writing only an S-register.
   4499   case ARM::VLDRS:
   4500   case ARM::FCONSTS:
   4501   case ARM::VMOVSR:
   4502   case ARM::VMOVv8i8:
   4503   case ARM::VMOVv4i16:
   4504   case ARM::VMOVv2i32:
   4505   case ARM::VMOVv2f32:
   4506   case ARM::VMOVv1i64:
   4507     UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI);
   4508     break;
   4509 
   4510     // Explicitly reads the dependency.
   4511   case ARM::VLD1LNd32:
   4512     UseOp = 3;
   4513     break;
   4514   default:
   4515     return 0;
   4516   }
   4517 
   4518   // If this instruction actually reads a value from Reg, there is no unwanted
   4519   // dependency.
   4520   if (UseOp != -1 && MI.getOperand(UseOp).readsReg())
   4521     return 0;
   4522 
   4523   // We must be able to clobber the whole D-reg.
   4524   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
   4525     // Virtual register must be a foo:ssub_0<def,undef> operand.
   4526     if (!MO.getSubReg() || MI.readsVirtualRegister(Reg))
   4527       return 0;
   4528   } else if (ARM::SPRRegClass.contains(Reg)) {
   4529     // Physical register: MI must define the full D-reg.
   4530     unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
   4531                                              &ARM::DPRRegClass);
   4532     if (!DReg || !MI.definesRegister(DReg, TRI))
   4533       return 0;
   4534   }
   4535 
   4536   // MI has an unwanted D-register dependency.
   4537   // Avoid defs in the previous N instructrions.
   4538   return PartialUpdateClearance;
   4539 }
   4540 
   4541 // Break a partial register dependency after getPartialRegUpdateClearance
   4542 // returned non-zero.
   4543 void ARMBaseInstrInfo::breakPartialRegDependency(
   4544     MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
   4545   assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def");
   4546   assert(TRI && "Need TRI instance");
   4547 
   4548   const MachineOperand &MO = MI.getOperand(OpNum);
   4549   unsigned Reg = MO.getReg();
   4550   assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
   4551          "Can't break virtual register dependencies.");
   4552   unsigned DReg = Reg;
   4553 
   4554   // If MI defines an S-reg, find the corresponding D super-register.
   4555   if (ARM::SPRRegClass.contains(Reg)) {
   4556     DReg = ARM::D0 + (Reg - ARM::S0) / 2;
   4557     assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
   4558   }
   4559 
   4560   assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
   4561   assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
   4562 
   4563   // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
   4564   // the full D-register by loading the same value to both lanes.  The
   4565   // instruction is micro-coded with 2 uops, so don't do this until we can
   4566   // properly schedule micro-coded instructions.  The dispatcher stalls cause
   4567   // too big regressions.
   4568 
   4569   // Insert the dependency-breaking FCONSTD before MI.
   4570   // 96 is the encoding of 0.5, but the actual value doesn't matter here.
   4571   AddDefaultPred(
   4572       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg)
   4573           .addImm(96));
   4574   MI.addRegisterKilled(DReg, TRI, true);
   4575 }
   4576 
   4577 bool ARMBaseInstrInfo::hasNOP() const {
   4578   return Subtarget.getFeatureBits()[ARM::HasV6KOps];
   4579 }
   4580 
   4581 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
   4582   if (MI->getNumOperands() < 4)
   4583     return true;
   4584   unsigned ShOpVal = MI->getOperand(3).getImm();
   4585   unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
   4586   // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
   4587   if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
   4588       ((ShImm == 1 || ShImm == 2) &&
   4589        ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
   4590     return true;
   4591 
   4592   return false;
   4593 }
   4594 
   4595 bool ARMBaseInstrInfo::getRegSequenceLikeInputs(
   4596     const MachineInstr &MI, unsigned DefIdx,
   4597     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
   4598   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
   4599   assert(MI.isRegSequenceLike() && "Invalid kind of instruction");
   4600 
   4601   switch (MI.getOpcode()) {
   4602   case ARM::VMOVDRR:
   4603     // dX = VMOVDRR rY, rZ
   4604     // is the same as:
   4605     // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1
   4606     // Populate the InputRegs accordingly.
   4607     // rY
   4608     const MachineOperand *MOReg = &MI.getOperand(1);
   4609     InputRegs.push_back(
   4610         RegSubRegPairAndIdx(MOReg->getReg(), MOReg->getSubReg(), ARM::ssub_0));
   4611     // rZ
   4612     MOReg = &MI.getOperand(2);
   4613     InputRegs.push_back(
   4614         RegSubRegPairAndIdx(MOReg->getReg(), MOReg->getSubReg(), ARM::ssub_1));
   4615     return true;
   4616   }
   4617   llvm_unreachable("Target dependent opcode missing");
   4618 }
   4619 
   4620 bool ARMBaseInstrInfo::getExtractSubregLikeInputs(
   4621     const MachineInstr &MI, unsigned DefIdx,
   4622     RegSubRegPairAndIdx &InputReg) const {
   4623   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
   4624   assert(MI.isExtractSubregLike() && "Invalid kind of instruction");
   4625 
   4626   switch (MI.getOpcode()) {
   4627   case ARM::VMOVRRD:
   4628     // rX, rY = VMOVRRD dZ
   4629     // is the same as:
   4630     // rX = EXTRACT_SUBREG dZ, ssub_0
   4631     // rY = EXTRACT_SUBREG dZ, ssub_1
   4632     const MachineOperand &MOReg = MI.getOperand(2);
   4633     InputReg.Reg = MOReg.getReg();
   4634     InputReg.SubReg = MOReg.getSubReg();
   4635     InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1;
   4636     return true;
   4637   }
   4638   llvm_unreachable("Target dependent opcode missing");
   4639 }
   4640 
   4641 bool ARMBaseInstrInfo::getInsertSubregLikeInputs(
   4642     const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg,
   4643     RegSubRegPairAndIdx &InsertedReg) const {
   4644   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
   4645   assert(MI.isInsertSubregLike() && "Invalid kind of instruction");
   4646 
   4647   switch (MI.getOpcode()) {
   4648   case ARM::VSETLNi32:
   4649     // dX = VSETLNi32 dY, rZ, imm
   4650     const MachineOperand &MOBaseReg = MI.getOperand(1);
   4651     const MachineOperand &MOInsertedReg = MI.getOperand(2);
   4652     const MachineOperand &MOIndex = MI.getOperand(3);
   4653     BaseReg.Reg = MOBaseReg.getReg();
   4654     BaseReg.SubReg = MOBaseReg.getSubReg();
   4655 
   4656     InsertedReg.Reg = MOInsertedReg.getReg();
   4657     InsertedReg.SubReg = MOInsertedReg.getSubReg();
   4658     InsertedReg.SubIdx = MOIndex.getImm() == 0 ? ARM::ssub_0 : ARM::ssub_1;
   4659     return true;
   4660   }
   4661   llvm_unreachable("Target dependent opcode missing");
   4662 }
   4663