1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the Base ARM implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ARM.h" 15 #include "ARMBaseInstrInfo.h" 16 #include "ARMBaseRegisterInfo.h" 17 #include "ARMConstantPoolValue.h" 18 #include "ARMFeatures.h" 19 #include "ARMHazardRecognizer.h" 20 #include "ARMMachineFunctionInfo.h" 21 #include "MCTargetDesc/ARMAddressingModes.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/CodeGen/LiveVariables.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineMemOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/SelectionDAGNodes.h" 31 #include "llvm/CodeGen/TargetSchedule.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/GlobalValue.h" 35 #include "llvm/MC/MCAsmInfo.h" 36 #include "llvm/MC/MCExpr.h" 37 #include "llvm/Support/BranchProbability.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/raw_ostream.h" 42 43 using namespace llvm; 44 45 #define DEBUG_TYPE "arm-instrinfo" 46 47 #define GET_INSTRINFO_CTOR_DTOR 48 #include "ARMGenInstrInfo.inc" 49 50 static cl::opt<bool> 51 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden, 52 cl::desc("Enable ARM 2-addr to 3-addr conv")); 53 54 /// ARM_MLxEntry - Record information about MLA / MLS instructions. 55 struct ARM_MLxEntry { 56 uint16_t MLxOpc; // MLA / MLS opcode 57 uint16_t MulOpc; // Expanded multiplication opcode 58 uint16_t AddSubOpc; // Expanded add / sub opcode 59 bool NegAcc; // True if the acc is negated before the add / sub. 60 bool HasLane; // True if instruction has an extra "lane" operand. 61 }; 62 63 static const ARM_MLxEntry ARM_MLxTable[] = { 64 // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane 65 // fp scalar ops 66 { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false }, 67 { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false }, 68 { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false }, 69 { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false }, 70 { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false }, 71 { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false }, 72 { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false }, 73 { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false }, 74 75 // fp SIMD ops 76 { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false }, 77 { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false }, 78 { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false }, 79 { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false }, 80 { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true }, 81 { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true }, 82 { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true }, 83 { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true }, 84 }; 85 86 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI) 87 : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP), 88 Subtarget(STI) { 89 for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) { 90 if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second) 91 llvm_unreachable("Duplicated entries?"); 92 MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc); 93 MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc); 94 } 95 } 96 97 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl 98 // currently defaults to no prepass hazard recognizer. 99 ScheduleHazardRecognizer * 100 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 101 const ScheduleDAG *DAG) const { 102 if (usePreRAHazardRecognizer()) { 103 const InstrItineraryData *II = 104 static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData(); 105 return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched"); 106 } 107 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 108 } 109 110 ScheduleHazardRecognizer *ARMBaseInstrInfo:: 111 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 112 const ScheduleDAG *DAG) const { 113 if (Subtarget.isThumb2() || Subtarget.hasVFP2()) 114 return (ScheduleHazardRecognizer *)new ARMHazardRecognizer(II, DAG); 115 return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG); 116 } 117 118 MachineInstr *ARMBaseInstrInfo::convertToThreeAddress( 119 MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const { 120 // FIXME: Thumb2 support. 121 122 if (!EnableARM3Addr) 123 return nullptr; 124 125 MachineFunction &MF = *MI.getParent()->getParent(); 126 uint64_t TSFlags = MI.getDesc().TSFlags; 127 bool isPre = false; 128 switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) { 129 default: return nullptr; 130 case ARMII::IndexModePre: 131 isPre = true; 132 break; 133 case ARMII::IndexModePost: 134 break; 135 } 136 137 // Try splitting an indexed load/store to an un-indexed one plus an add/sub 138 // operation. 139 unsigned MemOpc = getUnindexedOpcode(MI.getOpcode()); 140 if (MemOpc == 0) 141 return nullptr; 142 143 MachineInstr *UpdateMI = nullptr; 144 MachineInstr *MemMI = nullptr; 145 unsigned AddrMode = (TSFlags & ARMII::AddrModeMask); 146 const MCInstrDesc &MCID = MI.getDesc(); 147 unsigned NumOps = MCID.getNumOperands(); 148 bool isLoad = !MI.mayStore(); 149 const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0); 150 const MachineOperand &Base = MI.getOperand(2); 151 const MachineOperand &Offset = MI.getOperand(NumOps - 3); 152 unsigned WBReg = WB.getReg(); 153 unsigned BaseReg = Base.getReg(); 154 unsigned OffReg = Offset.getReg(); 155 unsigned OffImm = MI.getOperand(NumOps - 2).getImm(); 156 ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm(); 157 switch (AddrMode) { 158 default: llvm_unreachable("Unknown indexed op!"); 159 case ARMII::AddrMode2: { 160 bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub; 161 unsigned Amt = ARM_AM::getAM2Offset(OffImm); 162 if (OffReg == 0) { 163 if (ARM_AM::getSOImmVal(Amt) == -1) 164 // Can't encode it in a so_imm operand. This transformation will 165 // add more than 1 instruction. Abandon! 166 return nullptr; 167 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 168 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 169 .addReg(BaseReg) 170 .addImm(Amt) 171 .addImm(Pred) 172 .addReg(0) 173 .addReg(0); 174 } else if (Amt != 0) { 175 ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm); 176 unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt); 177 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 178 get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg) 179 .addReg(BaseReg) 180 .addReg(OffReg) 181 .addReg(0) 182 .addImm(SOOpc) 183 .addImm(Pred) 184 .addReg(0) 185 .addReg(0); 186 } else 187 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 188 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 189 .addReg(BaseReg) 190 .addReg(OffReg) 191 .addImm(Pred) 192 .addReg(0) 193 .addReg(0); 194 break; 195 } 196 case ARMII::AddrMode3 : { 197 bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub; 198 unsigned Amt = ARM_AM::getAM3Offset(OffImm); 199 if (OffReg == 0) 200 // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand. 201 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 202 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 203 .addReg(BaseReg) 204 .addImm(Amt) 205 .addImm(Pred) 206 .addReg(0) 207 .addReg(0); 208 else 209 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 210 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 211 .addReg(BaseReg) 212 .addReg(OffReg) 213 .addImm(Pred) 214 .addReg(0) 215 .addReg(0); 216 break; 217 } 218 } 219 220 std::vector<MachineInstr*> NewMIs; 221 if (isPre) { 222 if (isLoad) 223 MemMI = 224 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) 225 .addReg(WBReg) 226 .addImm(0) 227 .addImm(Pred); 228 else 229 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) 230 .addReg(MI.getOperand(1).getReg()) 231 .addReg(WBReg) 232 .addReg(0) 233 .addImm(0) 234 .addImm(Pred); 235 NewMIs.push_back(MemMI); 236 NewMIs.push_back(UpdateMI); 237 } else { 238 if (isLoad) 239 MemMI = 240 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) 241 .addReg(BaseReg) 242 .addImm(0) 243 .addImm(Pred); 244 else 245 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) 246 .addReg(MI.getOperand(1).getReg()) 247 .addReg(BaseReg) 248 .addReg(0) 249 .addImm(0) 250 .addImm(Pred); 251 if (WB.isDead()) 252 UpdateMI->getOperand(0).setIsDead(); 253 NewMIs.push_back(UpdateMI); 254 NewMIs.push_back(MemMI); 255 } 256 257 // Transfer LiveVariables states, kill / dead info. 258 if (LV) { 259 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 260 MachineOperand &MO = MI.getOperand(i); 261 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 262 unsigned Reg = MO.getReg(); 263 264 LiveVariables::VarInfo &VI = LV->getVarInfo(Reg); 265 if (MO.isDef()) { 266 MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI; 267 if (MO.isDead()) 268 LV->addVirtualRegisterDead(Reg, *NewMI); 269 } 270 if (MO.isUse() && MO.isKill()) { 271 for (unsigned j = 0; j < 2; ++j) { 272 // Look at the two new MI's in reverse order. 273 MachineInstr *NewMI = NewMIs[j]; 274 if (!NewMI->readsRegister(Reg)) 275 continue; 276 LV->addVirtualRegisterKilled(Reg, *NewMI); 277 if (VI.removeKill(MI)) 278 VI.Kills.push_back(NewMI); 279 break; 280 } 281 } 282 } 283 } 284 } 285 286 MachineBasicBlock::iterator MBBI = MI.getIterator(); 287 MFI->insert(MBBI, NewMIs[1]); 288 MFI->insert(MBBI, NewMIs[0]); 289 return NewMIs[0]; 290 } 291 292 // Branch analysis. 293 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 294 MachineBasicBlock *&TBB, 295 MachineBasicBlock *&FBB, 296 SmallVectorImpl<MachineOperand> &Cond, 297 bool AllowModify) const { 298 TBB = nullptr; 299 FBB = nullptr; 300 301 MachineBasicBlock::iterator I = MBB.end(); 302 if (I == MBB.begin()) 303 return false; // Empty blocks are easy. 304 --I; 305 306 // Walk backwards from the end of the basic block until the branch is 307 // analyzed or we give up. 308 while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) { 309 310 // Flag to be raised on unanalyzeable instructions. This is useful in cases 311 // where we want to clean up on the end of the basic block before we bail 312 // out. 313 bool CantAnalyze = false; 314 315 // Skip over DEBUG values and predicated nonterminators. 316 while (I->isDebugValue() || !I->isTerminator()) { 317 if (I == MBB.begin()) 318 return false; 319 --I; 320 } 321 322 if (isIndirectBranchOpcode(I->getOpcode()) || 323 isJumpTableBranchOpcode(I->getOpcode())) { 324 // Indirect branches and jump tables can't be analyzed, but we still want 325 // to clean up any instructions at the tail of the basic block. 326 CantAnalyze = true; 327 } else if (isUncondBranchOpcode(I->getOpcode())) { 328 TBB = I->getOperand(0).getMBB(); 329 } else if (isCondBranchOpcode(I->getOpcode())) { 330 // Bail out if we encounter multiple conditional branches. 331 if (!Cond.empty()) 332 return true; 333 334 assert(!FBB && "FBB should have been null."); 335 FBB = TBB; 336 TBB = I->getOperand(0).getMBB(); 337 Cond.push_back(I->getOperand(1)); 338 Cond.push_back(I->getOperand(2)); 339 } else if (I->isReturn()) { 340 // Returns can't be analyzed, but we should run cleanup. 341 CantAnalyze = !isPredicated(*I); 342 } else { 343 // We encountered other unrecognized terminator. Bail out immediately. 344 return true; 345 } 346 347 // Cleanup code - to be run for unpredicated unconditional branches and 348 // returns. 349 if (!isPredicated(*I) && 350 (isUncondBranchOpcode(I->getOpcode()) || 351 isIndirectBranchOpcode(I->getOpcode()) || 352 isJumpTableBranchOpcode(I->getOpcode()) || 353 I->isReturn())) { 354 // Forget any previous condition branch information - it no longer applies. 355 Cond.clear(); 356 FBB = nullptr; 357 358 // If we can modify the function, delete everything below this 359 // unconditional branch. 360 if (AllowModify) { 361 MachineBasicBlock::iterator DI = std::next(I); 362 while (DI != MBB.end()) { 363 MachineInstr &InstToDelete = *DI; 364 ++DI; 365 InstToDelete.eraseFromParent(); 366 } 367 } 368 } 369 370 if (CantAnalyze) 371 return true; 372 373 if (I == MBB.begin()) 374 return false; 375 376 --I; 377 } 378 379 // We made it past the terminators without bailing out - we must have 380 // analyzed this branch successfully. 381 return false; 382 } 383 384 385 unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 386 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 387 if (I == MBB.end()) 388 return 0; 389 390 if (!isUncondBranchOpcode(I->getOpcode()) && 391 !isCondBranchOpcode(I->getOpcode())) 392 return 0; 393 394 // Remove the branch. 395 I->eraseFromParent(); 396 397 I = MBB.end(); 398 399 if (I == MBB.begin()) return 1; 400 --I; 401 if (!isCondBranchOpcode(I->getOpcode())) 402 return 1; 403 404 // Remove the branch. 405 I->eraseFromParent(); 406 return 2; 407 } 408 409 unsigned ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, 410 MachineBasicBlock *TBB, 411 MachineBasicBlock *FBB, 412 ArrayRef<MachineOperand> Cond, 413 const DebugLoc &DL) const { 414 ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>(); 415 int BOpc = !AFI->isThumbFunction() 416 ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB); 417 int BccOpc = !AFI->isThumbFunction() 418 ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc); 419 bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function(); 420 421 // Shouldn't be a fall through. 422 assert(TBB && "InsertBranch must not be told to insert a fallthrough"); 423 assert((Cond.size() == 2 || Cond.size() == 0) && 424 "ARM branch conditions have two components!"); 425 426 // For conditional branches, we use addOperand to preserve CPSR flags. 427 428 if (!FBB) { 429 if (Cond.empty()) { // Unconditional branch? 430 if (isThumb) 431 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).addImm(ARMCC::AL).addReg(0); 432 else 433 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB); 434 } else 435 BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB) 436 .addImm(Cond[0].getImm()).addOperand(Cond[1]); 437 return 1; 438 } 439 440 // Two-way conditional branch. 441 BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB) 442 .addImm(Cond[0].getImm()).addOperand(Cond[1]); 443 if (isThumb) 444 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).addImm(ARMCC::AL).addReg(0); 445 else 446 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB); 447 return 2; 448 } 449 450 bool ARMBaseInstrInfo:: 451 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 452 ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm(); 453 Cond[0].setImm(ARMCC::getOppositeCondition(CC)); 454 return false; 455 } 456 457 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const { 458 if (MI.isBundle()) { 459 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 460 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 461 while (++I != E && I->isInsideBundle()) { 462 int PIdx = I->findFirstPredOperandIdx(); 463 if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL) 464 return true; 465 } 466 return false; 467 } 468 469 int PIdx = MI.findFirstPredOperandIdx(); 470 return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL; 471 } 472 473 bool ARMBaseInstrInfo::PredicateInstruction( 474 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 475 unsigned Opc = MI.getOpcode(); 476 if (isUncondBranchOpcode(Opc)) { 477 MI.setDesc(get(getMatchingCondBranchOpcode(Opc))); 478 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 479 .addImm(Pred[0].getImm()) 480 .addReg(Pred[1].getReg()); 481 return true; 482 } 483 484 int PIdx = MI.findFirstPredOperandIdx(); 485 if (PIdx != -1) { 486 MachineOperand &PMO = MI.getOperand(PIdx); 487 PMO.setImm(Pred[0].getImm()); 488 MI.getOperand(PIdx+1).setReg(Pred[1].getReg()); 489 return true; 490 } 491 return false; 492 } 493 494 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 495 ArrayRef<MachineOperand> Pred2) const { 496 if (Pred1.size() > 2 || Pred2.size() > 2) 497 return false; 498 499 ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm(); 500 ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm(); 501 if (CC1 == CC2) 502 return true; 503 504 switch (CC1) { 505 default: 506 return false; 507 case ARMCC::AL: 508 return true; 509 case ARMCC::HS: 510 return CC2 == ARMCC::HI; 511 case ARMCC::LS: 512 return CC2 == ARMCC::LO || CC2 == ARMCC::EQ; 513 case ARMCC::GE: 514 return CC2 == ARMCC::GT; 515 case ARMCC::LE: 516 return CC2 == ARMCC::LT; 517 } 518 } 519 520 bool ARMBaseInstrInfo::DefinesPredicate( 521 MachineInstr &MI, std::vector<MachineOperand> &Pred) const { 522 bool Found = false; 523 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 524 const MachineOperand &MO = MI.getOperand(i); 525 if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) || 526 (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) { 527 Pred.push_back(MO); 528 Found = true; 529 } 530 } 531 532 return Found; 533 } 534 535 static bool isCPSRDefined(const MachineInstr *MI) { 536 for (const auto &MO : MI->operands()) 537 if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead()) 538 return true; 539 return false; 540 } 541 542 static bool isEligibleForITBlock(const MachineInstr *MI) { 543 switch (MI->getOpcode()) { 544 default: return true; 545 case ARM::tADC: // ADC (register) T1 546 case ARM::tADDi3: // ADD (immediate) T1 547 case ARM::tADDi8: // ADD (immediate) T2 548 case ARM::tADDrr: // ADD (register) T1 549 case ARM::tAND: // AND (register) T1 550 case ARM::tASRri: // ASR (immediate) T1 551 case ARM::tASRrr: // ASR (register) T1 552 case ARM::tBIC: // BIC (register) T1 553 case ARM::tEOR: // EOR (register) T1 554 case ARM::tLSLri: // LSL (immediate) T1 555 case ARM::tLSLrr: // LSL (register) T1 556 case ARM::tLSRri: // LSR (immediate) T1 557 case ARM::tLSRrr: // LSR (register) T1 558 case ARM::tMUL: // MUL T1 559 case ARM::tMVN: // MVN (register) T1 560 case ARM::tORR: // ORR (register) T1 561 case ARM::tROR: // ROR (register) T1 562 case ARM::tRSB: // RSB (immediate) T1 563 case ARM::tSBC: // SBC (register) T1 564 case ARM::tSUBi3: // SUB (immediate) T1 565 case ARM::tSUBi8: // SUB (immediate) T2 566 case ARM::tSUBrr: // SUB (register) T1 567 return !isCPSRDefined(MI); 568 } 569 } 570 571 /// isPredicable - Return true if the specified instruction can be predicated. 572 /// By default, this returns true for every instruction with a 573 /// PredicateOperand. 574 bool ARMBaseInstrInfo::isPredicable(MachineInstr &MI) const { 575 if (!MI.isPredicable()) 576 return false; 577 578 if (!isEligibleForITBlock(&MI)) 579 return false; 580 581 ARMFunctionInfo *AFI = 582 MI.getParent()->getParent()->getInfo<ARMFunctionInfo>(); 583 584 if (AFI->isThumb2Function()) { 585 if (getSubtarget().restrictIT()) 586 return isV8EligibleForIT(&MI); 587 } else { // non-Thumb 588 if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) 589 return false; 590 } 591 592 return true; 593 } 594 595 namespace llvm { 596 template <> bool IsCPSRDead<MachineInstr>(MachineInstr *MI) { 597 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 598 const MachineOperand &MO = MI->getOperand(i); 599 if (!MO.isReg() || MO.isUndef() || MO.isUse()) 600 continue; 601 if (MO.getReg() != ARM::CPSR) 602 continue; 603 if (!MO.isDead()) 604 return false; 605 } 606 // all definitions of CPSR are dead 607 return true; 608 } 609 } 610 611 /// GetInstSize - Return the size of the specified MachineInstr. 612 /// 613 unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr &MI) const { 614 const MachineBasicBlock &MBB = *MI.getParent(); 615 const MachineFunction *MF = MBB.getParent(); 616 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); 617 618 const MCInstrDesc &MCID = MI.getDesc(); 619 if (MCID.getSize()) 620 return MCID.getSize(); 621 622 // If this machine instr is an inline asm, measure it. 623 if (MI.getOpcode() == ARM::INLINEASM) 624 return getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI); 625 unsigned Opc = MI.getOpcode(); 626 switch (Opc) { 627 default: 628 // pseudo-instruction sizes are zero. 629 return 0; 630 case TargetOpcode::BUNDLE: 631 return getInstBundleLength(MI); 632 case ARM::MOVi16_ga_pcrel: 633 case ARM::MOVTi16_ga_pcrel: 634 case ARM::t2MOVi16_ga_pcrel: 635 case ARM::t2MOVTi16_ga_pcrel: 636 return 4; 637 case ARM::MOVi32imm: 638 case ARM::t2MOVi32imm: 639 return 8; 640 case ARM::CONSTPOOL_ENTRY: 641 case ARM::JUMPTABLE_INSTS: 642 case ARM::JUMPTABLE_ADDRS: 643 case ARM::JUMPTABLE_TBB: 644 case ARM::JUMPTABLE_TBH: 645 // If this machine instr is a constant pool entry, its size is recorded as 646 // operand #2. 647 return MI.getOperand(2).getImm(); 648 case ARM::Int_eh_sjlj_longjmp: 649 return 16; 650 case ARM::tInt_eh_sjlj_longjmp: 651 return 10; 652 case ARM::tInt_WIN_eh_sjlj_longjmp: 653 return 12; 654 case ARM::Int_eh_sjlj_setjmp: 655 case ARM::Int_eh_sjlj_setjmp_nofp: 656 return 20; 657 case ARM::tInt_eh_sjlj_setjmp: 658 case ARM::t2Int_eh_sjlj_setjmp: 659 case ARM::t2Int_eh_sjlj_setjmp_nofp: 660 return 12; 661 case ARM::SPACE: 662 return MI.getOperand(1).getImm(); 663 } 664 } 665 666 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const { 667 unsigned Size = 0; 668 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 669 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 670 while (++I != E && I->isInsideBundle()) { 671 assert(!I->isBundle() && "No nested bundle!"); 672 Size += GetInstSizeInBytes(*I); 673 } 674 return Size; 675 } 676 677 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB, 678 MachineBasicBlock::iterator I, 679 unsigned DestReg, bool KillSrc, 680 const ARMSubtarget &Subtarget) const { 681 unsigned Opc = Subtarget.isThumb() 682 ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR) 683 : ARM::MRS; 684 685 MachineInstrBuilder MIB = 686 BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg); 687 688 // There is only 1 A/R class MRS instruction, and it always refers to 689 // APSR. However, there are lots of other possibilities on M-class cores. 690 if (Subtarget.isMClass()) 691 MIB.addImm(0x800); 692 693 AddDefaultPred(MIB); 694 695 MIB.addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc)); 696 } 697 698 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB, 699 MachineBasicBlock::iterator I, 700 unsigned SrcReg, bool KillSrc, 701 const ARMSubtarget &Subtarget) const { 702 unsigned Opc = Subtarget.isThumb() 703 ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR) 704 : ARM::MSR; 705 706 MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc)); 707 708 if (Subtarget.isMClass()) 709 MIB.addImm(0x800); 710 else 711 MIB.addImm(8); 712 713 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 714 715 AddDefaultPred(MIB); 716 717 MIB.addReg(ARM::CPSR, RegState::Implicit | RegState::Define); 718 } 719 720 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 721 MachineBasicBlock::iterator I, 722 const DebugLoc &DL, unsigned DestReg, 723 unsigned SrcReg, bool KillSrc) const { 724 bool GPRDest = ARM::GPRRegClass.contains(DestReg); 725 bool GPRSrc = ARM::GPRRegClass.contains(SrcReg); 726 727 if (GPRDest && GPRSrc) { 728 AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg) 729 .addReg(SrcReg, getKillRegState(KillSrc)))); 730 return; 731 } 732 733 bool SPRDest = ARM::SPRRegClass.contains(DestReg); 734 bool SPRSrc = ARM::SPRRegClass.contains(SrcReg); 735 736 unsigned Opc = 0; 737 if (SPRDest && SPRSrc) 738 Opc = ARM::VMOVS; 739 else if (GPRDest && SPRSrc) 740 Opc = ARM::VMOVRS; 741 else if (SPRDest && GPRSrc) 742 Opc = ARM::VMOVSR; 743 else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && !Subtarget.isFPOnlySP()) 744 Opc = ARM::VMOVD; 745 else if (ARM::QPRRegClass.contains(DestReg, SrcReg)) 746 Opc = ARM::VORRq; 747 748 if (Opc) { 749 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg); 750 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 751 if (Opc == ARM::VORRq) 752 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 753 AddDefaultPred(MIB); 754 return; 755 } 756 757 // Handle register classes that require multiple instructions. 758 unsigned BeginIdx = 0; 759 unsigned SubRegs = 0; 760 int Spacing = 1; 761 762 // Use VORRq when possible. 763 if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) { 764 Opc = ARM::VORRq; 765 BeginIdx = ARM::qsub_0; 766 SubRegs = 2; 767 } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) { 768 Opc = ARM::VORRq; 769 BeginIdx = ARM::qsub_0; 770 SubRegs = 4; 771 // Fall back to VMOVD. 772 } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) { 773 Opc = ARM::VMOVD; 774 BeginIdx = ARM::dsub_0; 775 SubRegs = 2; 776 } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) { 777 Opc = ARM::VMOVD; 778 BeginIdx = ARM::dsub_0; 779 SubRegs = 3; 780 } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) { 781 Opc = ARM::VMOVD; 782 BeginIdx = ARM::dsub_0; 783 SubRegs = 4; 784 } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) { 785 Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr; 786 BeginIdx = ARM::gsub_0; 787 SubRegs = 2; 788 } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) { 789 Opc = ARM::VMOVD; 790 BeginIdx = ARM::dsub_0; 791 SubRegs = 2; 792 Spacing = 2; 793 } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) { 794 Opc = ARM::VMOVD; 795 BeginIdx = ARM::dsub_0; 796 SubRegs = 3; 797 Spacing = 2; 798 } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) { 799 Opc = ARM::VMOVD; 800 BeginIdx = ARM::dsub_0; 801 SubRegs = 4; 802 Spacing = 2; 803 } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.isFPOnlySP()) { 804 Opc = ARM::VMOVS; 805 BeginIdx = ARM::ssub_0; 806 SubRegs = 2; 807 } else if (SrcReg == ARM::CPSR) { 808 copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget); 809 return; 810 } else if (DestReg == ARM::CPSR) { 811 copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget); 812 return; 813 } 814 815 assert(Opc && "Impossible reg-to-reg copy"); 816 817 const TargetRegisterInfo *TRI = &getRegisterInfo(); 818 MachineInstrBuilder Mov; 819 820 // Copy register tuples backward when the first Dest reg overlaps with SrcReg. 821 if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) { 822 BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing); 823 Spacing = -Spacing; 824 } 825 #ifndef NDEBUG 826 SmallSet<unsigned, 4> DstRegs; 827 #endif 828 for (unsigned i = 0; i != SubRegs; ++i) { 829 unsigned Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing); 830 unsigned Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing); 831 assert(Dst && Src && "Bad sub-register"); 832 #ifndef NDEBUG 833 assert(!DstRegs.count(Src) && "destructive vector copy"); 834 DstRegs.insert(Dst); 835 #endif 836 Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src); 837 // VORR takes two source operands. 838 if (Opc == ARM::VORRq) 839 Mov.addReg(Src); 840 Mov = AddDefaultPred(Mov); 841 // MOVr can set CC. 842 if (Opc == ARM::MOVr) 843 Mov = AddDefaultCC(Mov); 844 } 845 // Add implicit super-register defs and kills to the last instruction. 846 Mov->addRegisterDefined(DestReg, TRI); 847 if (KillSrc) 848 Mov->addRegisterKilled(SrcReg, TRI); 849 } 850 851 const MachineInstrBuilder & 852 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg, 853 unsigned SubIdx, unsigned State, 854 const TargetRegisterInfo *TRI) const { 855 if (!SubIdx) 856 return MIB.addReg(Reg, State); 857 858 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 859 return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State); 860 return MIB.addReg(Reg, State, SubIdx); 861 } 862 863 void ARMBaseInstrInfo:: 864 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, 865 unsigned SrcReg, bool isKill, int FI, 866 const TargetRegisterClass *RC, 867 const TargetRegisterInfo *TRI) const { 868 DebugLoc DL; 869 if (I != MBB.end()) DL = I->getDebugLoc(); 870 MachineFunction &MF = *MBB.getParent(); 871 MachineFrameInfo &MFI = *MF.getFrameInfo(); 872 unsigned Align = MFI.getObjectAlignment(FI); 873 874 MachineMemOperand *MMO = MF.getMachineMemOperand( 875 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore, 876 MFI.getObjectSize(FI), Align); 877 878 switch (RC->getSize()) { 879 case 4: 880 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 881 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STRi12)) 882 .addReg(SrcReg, getKillRegState(isKill)) 883 .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); 884 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 885 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRS)) 886 .addReg(SrcReg, getKillRegState(isKill)) 887 .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); 888 } else 889 llvm_unreachable("Unknown reg class!"); 890 break; 891 case 8: 892 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 893 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRD)) 894 .addReg(SrcReg, getKillRegState(isKill)) 895 .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); 896 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { 897 if (Subtarget.hasV5TEOps()) { 898 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::STRD)); 899 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); 900 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); 901 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO); 902 903 AddDefaultPred(MIB); 904 } else { 905 // Fallback to STM instruction, which has existed since the dawn of 906 // time. 907 MachineInstrBuilder MIB = 908 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STMIA)) 909 .addFrameIndex(FI).addMemOperand(MMO)); 910 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); 911 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); 912 } 913 } else 914 llvm_unreachable("Unknown reg class!"); 915 break; 916 case 16: 917 if (ARM::DPairRegClass.hasSubClassEq(RC)) { 918 // Use aligned spills if the stack can be realigned. 919 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 920 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1q64)) 921 .addFrameIndex(FI).addImm(16) 922 .addReg(SrcReg, getKillRegState(isKill)) 923 .addMemOperand(MMO)); 924 } else { 925 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMQIA)) 926 .addReg(SrcReg, getKillRegState(isKill)) 927 .addFrameIndex(FI) 928 .addMemOperand(MMO)); 929 } 930 } else 931 llvm_unreachable("Unknown reg class!"); 932 break; 933 case 24: 934 if (ARM::DTripleRegClass.hasSubClassEq(RC)) { 935 // Use aligned spills if the stack can be realigned. 936 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 937 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64TPseudo)) 938 .addFrameIndex(FI).addImm(16) 939 .addReg(SrcReg, getKillRegState(isKill)) 940 .addMemOperand(MMO)); 941 } else { 942 MachineInstrBuilder MIB = 943 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA)) 944 .addFrameIndex(FI)) 945 .addMemOperand(MMO); 946 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 947 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 948 AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 949 } 950 } else 951 llvm_unreachable("Unknown reg class!"); 952 break; 953 case 32: 954 if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) { 955 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 956 // FIXME: It's possible to only store part of the QQ register if the 957 // spilled def has a sub-register index. 958 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo)) 959 .addFrameIndex(FI).addImm(16) 960 .addReg(SrcReg, getKillRegState(isKill)) 961 .addMemOperand(MMO)); 962 } else { 963 MachineInstrBuilder MIB = 964 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA)) 965 .addFrameIndex(FI)) 966 .addMemOperand(MMO); 967 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 968 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 969 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 970 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 971 } 972 } else 973 llvm_unreachable("Unknown reg class!"); 974 break; 975 case 64: 976 if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 977 MachineInstrBuilder MIB = 978 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA)) 979 .addFrameIndex(FI)) 980 .addMemOperand(MMO); 981 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 982 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 983 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 984 MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 985 MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI); 986 MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI); 987 MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI); 988 AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI); 989 } else 990 llvm_unreachable("Unknown reg class!"); 991 break; 992 default: 993 llvm_unreachable("Unknown reg class!"); 994 } 995 } 996 997 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 998 int &FrameIndex) const { 999 switch (MI.getOpcode()) { 1000 default: break; 1001 case ARM::STRrs: 1002 case ARM::t2STRs: // FIXME: don't use t2STRs to access frame. 1003 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && 1004 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && 1005 MI.getOperand(3).getImm() == 0) { 1006 FrameIndex = MI.getOperand(1).getIndex(); 1007 return MI.getOperand(0).getReg(); 1008 } 1009 break; 1010 case ARM::STRi12: 1011 case ARM::t2STRi12: 1012 case ARM::tSTRspi: 1013 case ARM::VSTRD: 1014 case ARM::VSTRS: 1015 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && 1016 MI.getOperand(2).getImm() == 0) { 1017 FrameIndex = MI.getOperand(1).getIndex(); 1018 return MI.getOperand(0).getReg(); 1019 } 1020 break; 1021 case ARM::VST1q64: 1022 case ARM::VST1d64TPseudo: 1023 case ARM::VST1d64QPseudo: 1024 if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) { 1025 FrameIndex = MI.getOperand(0).getIndex(); 1026 return MI.getOperand(2).getReg(); 1027 } 1028 break; 1029 case ARM::VSTMQIA: 1030 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1031 FrameIndex = MI.getOperand(1).getIndex(); 1032 return MI.getOperand(0).getReg(); 1033 } 1034 break; 1035 } 1036 1037 return 0; 1038 } 1039 1040 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI, 1041 int &FrameIndex) const { 1042 const MachineMemOperand *Dummy; 1043 return MI.mayStore() && hasStoreToStackSlot(MI, Dummy, FrameIndex); 1044 } 1045 1046 void ARMBaseInstrInfo:: 1047 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, 1048 unsigned DestReg, int FI, 1049 const TargetRegisterClass *RC, 1050 const TargetRegisterInfo *TRI) const { 1051 DebugLoc DL; 1052 if (I != MBB.end()) DL = I->getDebugLoc(); 1053 MachineFunction &MF = *MBB.getParent(); 1054 MachineFrameInfo &MFI = *MF.getFrameInfo(); 1055 unsigned Align = MFI.getObjectAlignment(FI); 1056 MachineMemOperand *MMO = MF.getMachineMemOperand( 1057 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad, 1058 MFI.getObjectSize(FI), Align); 1059 1060 switch (RC->getSize()) { 1061 case 4: 1062 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 1063 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg) 1064 .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); 1065 1066 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 1067 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg) 1068 .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); 1069 } else 1070 llvm_unreachable("Unknown reg class!"); 1071 break; 1072 case 8: 1073 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 1074 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg) 1075 .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); 1076 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { 1077 MachineInstrBuilder MIB; 1078 1079 if (Subtarget.hasV5TEOps()) { 1080 MIB = BuildMI(MBB, I, DL, get(ARM::LDRD)); 1081 AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); 1082 AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); 1083 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO); 1084 1085 AddDefaultPred(MIB); 1086 } else { 1087 // Fallback to LDM instruction, which has existed since the dawn of 1088 // time. 1089 MIB = AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDMIA)) 1090 .addFrameIndex(FI).addMemOperand(MMO)); 1091 MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); 1092 MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); 1093 } 1094 1095 if (TargetRegisterInfo::isPhysicalRegister(DestReg)) 1096 MIB.addReg(DestReg, RegState::ImplicitDefine); 1097 } else 1098 llvm_unreachable("Unknown reg class!"); 1099 break; 1100 case 16: 1101 if (ARM::DPairRegClass.hasSubClassEq(RC)) { 1102 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 1103 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg) 1104 .addFrameIndex(FI).addImm(16) 1105 .addMemOperand(MMO)); 1106 } else { 1107 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg) 1108 .addFrameIndex(FI) 1109 .addMemOperand(MMO)); 1110 } 1111 } else 1112 llvm_unreachable("Unknown reg class!"); 1113 break; 1114 case 24: 1115 if (ARM::DTripleRegClass.hasSubClassEq(RC)) { 1116 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 1117 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg) 1118 .addFrameIndex(FI).addImm(16) 1119 .addMemOperand(MMO)); 1120 } else { 1121 MachineInstrBuilder MIB = 1122 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1123 .addFrameIndex(FI) 1124 .addMemOperand(MMO)); 1125 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1126 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1127 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1128 if (TargetRegisterInfo::isPhysicalRegister(DestReg)) 1129 MIB.addReg(DestReg, RegState::ImplicitDefine); 1130 } 1131 } else 1132 llvm_unreachable("Unknown reg class!"); 1133 break; 1134 case 32: 1135 if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) { 1136 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 1137 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg) 1138 .addFrameIndex(FI).addImm(16) 1139 .addMemOperand(MMO)); 1140 } else { 1141 MachineInstrBuilder MIB = 1142 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1143 .addFrameIndex(FI)) 1144 .addMemOperand(MMO); 1145 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1146 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1147 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1148 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); 1149 if (TargetRegisterInfo::isPhysicalRegister(DestReg)) 1150 MIB.addReg(DestReg, RegState::ImplicitDefine); 1151 } 1152 } else 1153 llvm_unreachable("Unknown reg class!"); 1154 break; 1155 case 64: 1156 if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 1157 MachineInstrBuilder MIB = 1158 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1159 .addFrameIndex(FI)) 1160 .addMemOperand(MMO); 1161 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1162 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1163 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1164 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); 1165 MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI); 1166 MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI); 1167 MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI); 1168 MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI); 1169 if (TargetRegisterInfo::isPhysicalRegister(DestReg)) 1170 MIB.addReg(DestReg, RegState::ImplicitDefine); 1171 } else 1172 llvm_unreachable("Unknown reg class!"); 1173 break; 1174 default: 1175 llvm_unreachable("Unknown regclass!"); 1176 } 1177 } 1178 1179 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 1180 int &FrameIndex) const { 1181 switch (MI.getOpcode()) { 1182 default: break; 1183 case ARM::LDRrs: 1184 case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame. 1185 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && 1186 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && 1187 MI.getOperand(3).getImm() == 0) { 1188 FrameIndex = MI.getOperand(1).getIndex(); 1189 return MI.getOperand(0).getReg(); 1190 } 1191 break; 1192 case ARM::LDRi12: 1193 case ARM::t2LDRi12: 1194 case ARM::tLDRspi: 1195 case ARM::VLDRD: 1196 case ARM::VLDRS: 1197 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && 1198 MI.getOperand(2).getImm() == 0) { 1199 FrameIndex = MI.getOperand(1).getIndex(); 1200 return MI.getOperand(0).getReg(); 1201 } 1202 break; 1203 case ARM::VLD1q64: 1204 case ARM::VLD1d64TPseudo: 1205 case ARM::VLD1d64QPseudo: 1206 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1207 FrameIndex = MI.getOperand(1).getIndex(); 1208 return MI.getOperand(0).getReg(); 1209 } 1210 break; 1211 case ARM::VLDMQIA: 1212 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1213 FrameIndex = MI.getOperand(1).getIndex(); 1214 return MI.getOperand(0).getReg(); 1215 } 1216 break; 1217 } 1218 1219 return 0; 1220 } 1221 1222 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI, 1223 int &FrameIndex) const { 1224 const MachineMemOperand *Dummy; 1225 return MI.mayLoad() && hasLoadFromStackSlot(MI, Dummy, FrameIndex); 1226 } 1227 1228 /// \brief Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD 1229 /// depending on whether the result is used. 1230 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const { 1231 bool isThumb1 = Subtarget.isThumb1Only(); 1232 bool isThumb2 = Subtarget.isThumb2(); 1233 const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo(); 1234 1235 DebugLoc dl = MI->getDebugLoc(); 1236 MachineBasicBlock *BB = MI->getParent(); 1237 1238 MachineInstrBuilder LDM, STM; 1239 if (isThumb1 || !MI->getOperand(1).isDead()) { 1240 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD 1241 : isThumb1 ? ARM::tLDMIA_UPD 1242 : ARM::LDMIA_UPD)) 1243 .addOperand(MI->getOperand(1)); 1244 } else { 1245 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA)); 1246 } 1247 1248 if (isThumb1 || !MI->getOperand(0).isDead()) { 1249 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD 1250 : isThumb1 ? ARM::tSTMIA_UPD 1251 : ARM::STMIA_UPD)) 1252 .addOperand(MI->getOperand(0)); 1253 } else { 1254 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA)); 1255 } 1256 1257 AddDefaultPred(LDM.addOperand(MI->getOperand(3))); 1258 AddDefaultPred(STM.addOperand(MI->getOperand(2))); 1259 1260 // Sort the scratch registers into ascending order. 1261 const TargetRegisterInfo &TRI = getRegisterInfo(); 1262 llvm::SmallVector<unsigned, 6> ScratchRegs; 1263 for(unsigned I = 5; I < MI->getNumOperands(); ++I) 1264 ScratchRegs.push_back(MI->getOperand(I).getReg()); 1265 std::sort(ScratchRegs.begin(), ScratchRegs.end(), 1266 [&TRI](const unsigned &Reg1, 1267 const unsigned &Reg2) -> bool { 1268 return TRI.getEncodingValue(Reg1) < 1269 TRI.getEncodingValue(Reg2); 1270 }); 1271 1272 for (const auto &Reg : ScratchRegs) { 1273 LDM.addReg(Reg, RegState::Define); 1274 STM.addReg(Reg, RegState::Kill); 1275 } 1276 1277 BB->erase(MI); 1278 } 1279 1280 1281 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1282 if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) { 1283 assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() && 1284 "LOAD_STACK_GUARD currently supported only for MachO."); 1285 expandLoadStackGuard(MI); 1286 MI.getParent()->erase(MI); 1287 return true; 1288 } 1289 1290 if (MI.getOpcode() == ARM::MEMCPY) { 1291 expandMEMCPY(MI); 1292 return true; 1293 } 1294 1295 // This hook gets to expand COPY instructions before they become 1296 // copyPhysReg() calls. Look for VMOVS instructions that can legally be 1297 // widened to VMOVD. We prefer the VMOVD when possible because it may be 1298 // changed into a VORR that can go down the NEON pipeline. 1299 if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || Subtarget.isFPOnlySP()) 1300 return false; 1301 1302 // Look for a copy between even S-registers. That is where we keep floats 1303 // when using NEON v2f32 instructions for f32 arithmetic. 1304 unsigned DstRegS = MI.getOperand(0).getReg(); 1305 unsigned SrcRegS = MI.getOperand(1).getReg(); 1306 if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS)) 1307 return false; 1308 1309 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1310 unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0, 1311 &ARM::DPRRegClass); 1312 unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0, 1313 &ARM::DPRRegClass); 1314 if (!DstRegD || !SrcRegD) 1315 return false; 1316 1317 // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only 1318 // legal if the COPY already defines the full DstRegD, and it isn't a 1319 // sub-register insertion. 1320 if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI)) 1321 return false; 1322 1323 // A dead copy shouldn't show up here, but reject it just in case. 1324 if (MI.getOperand(0).isDead()) 1325 return false; 1326 1327 // All clear, widen the COPY. 1328 DEBUG(dbgs() << "widening: " << MI); 1329 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 1330 1331 // Get rid of the old <imp-def> of DstRegD. Leave it if it defines a Q-reg 1332 // or some other super-register. 1333 int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD); 1334 if (ImpDefIdx != -1) 1335 MI.RemoveOperand(ImpDefIdx); 1336 1337 // Change the opcode and operands. 1338 MI.setDesc(get(ARM::VMOVD)); 1339 MI.getOperand(0).setReg(DstRegD); 1340 MI.getOperand(1).setReg(SrcRegD); 1341 AddDefaultPred(MIB); 1342 1343 // We are now reading SrcRegD instead of SrcRegS. This may upset the 1344 // register scavenger and machine verifier, so we need to indicate that we 1345 // are reading an undefined value from SrcRegD, but a proper value from 1346 // SrcRegS. 1347 MI.getOperand(1).setIsUndef(); 1348 MIB.addReg(SrcRegS, RegState::Implicit); 1349 1350 // SrcRegD may actually contain an unrelated value in the ssub_1 1351 // sub-register. Don't kill it. Only kill the ssub_0 sub-register. 1352 if (MI.getOperand(1).isKill()) { 1353 MI.getOperand(1).setIsKill(false); 1354 MI.addRegisterKilled(SrcRegS, TRI, true); 1355 } 1356 1357 DEBUG(dbgs() << "replaced by: " << MI); 1358 return true; 1359 } 1360 1361 /// Create a copy of a const pool value. Update CPI to the new index and return 1362 /// the label UID. 1363 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) { 1364 MachineConstantPool *MCP = MF.getConstantPool(); 1365 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1366 1367 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI]; 1368 assert(MCPE.isMachineConstantPoolEntry() && 1369 "Expecting a machine constantpool entry!"); 1370 ARMConstantPoolValue *ACPV = 1371 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal); 1372 1373 unsigned PCLabelId = AFI->createPICLabelUId(); 1374 ARMConstantPoolValue *NewCPV = nullptr; 1375 1376 // FIXME: The below assumes PIC relocation model and that the function 1377 // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and 1378 // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR 1379 // instructions, so that's probably OK, but is PIC always correct when 1380 // we get here? 1381 if (ACPV->isGlobalValue()) 1382 NewCPV = ARMConstantPoolConstant::Create( 1383 cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue, 1384 4, ACPV->getModifier(), ACPV->mustAddCurrentAddress()); 1385 else if (ACPV->isExtSymbol()) 1386 NewCPV = ARMConstantPoolSymbol:: 1387 Create(MF.getFunction()->getContext(), 1388 cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4); 1389 else if (ACPV->isBlockAddress()) 1390 NewCPV = ARMConstantPoolConstant:: 1391 Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId, 1392 ARMCP::CPBlockAddress, 4); 1393 else if (ACPV->isLSDA()) 1394 NewCPV = ARMConstantPoolConstant::Create(MF.getFunction(), PCLabelId, 1395 ARMCP::CPLSDA, 4); 1396 else if (ACPV->isMachineBasicBlock()) 1397 NewCPV = ARMConstantPoolMBB:: 1398 Create(MF.getFunction()->getContext(), 1399 cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4); 1400 else 1401 llvm_unreachable("Unexpected ARM constantpool value type!!"); 1402 CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment()); 1403 return PCLabelId; 1404 } 1405 1406 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB, 1407 MachineBasicBlock::iterator I, 1408 unsigned DestReg, unsigned SubIdx, 1409 const MachineInstr &Orig, 1410 const TargetRegisterInfo &TRI) const { 1411 unsigned Opcode = Orig.getOpcode(); 1412 switch (Opcode) { 1413 default: { 1414 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); 1415 MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI); 1416 MBB.insert(I, MI); 1417 break; 1418 } 1419 case ARM::tLDRpci_pic: 1420 case ARM::t2LDRpci_pic: { 1421 MachineFunction &MF = *MBB.getParent(); 1422 unsigned CPI = Orig.getOperand(1).getIndex(); 1423 unsigned PCLabelId = duplicateCPV(MF, CPI); 1424 MachineInstrBuilder MIB = 1425 BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg) 1426 .addConstantPoolIndex(CPI) 1427 .addImm(PCLabelId); 1428 MIB->setMemRefs(Orig.memoperands_begin(), Orig.memoperands_end()); 1429 break; 1430 } 1431 } 1432 } 1433 1434 MachineInstr *ARMBaseInstrInfo::duplicate(MachineInstr &Orig, 1435 MachineFunction &MF) const { 1436 MachineInstr *MI = TargetInstrInfo::duplicate(Orig, MF); 1437 switch (Orig.getOpcode()) { 1438 case ARM::tLDRpci_pic: 1439 case ARM::t2LDRpci_pic: { 1440 unsigned CPI = Orig.getOperand(1).getIndex(); 1441 unsigned PCLabelId = duplicateCPV(MF, CPI); 1442 Orig.getOperand(1).setIndex(CPI); 1443 Orig.getOperand(2).setImm(PCLabelId); 1444 break; 1445 } 1446 } 1447 return MI; 1448 } 1449 1450 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0, 1451 const MachineInstr &MI1, 1452 const MachineRegisterInfo *MRI) const { 1453 unsigned Opcode = MI0.getOpcode(); 1454 if (Opcode == ARM::t2LDRpci || 1455 Opcode == ARM::t2LDRpci_pic || 1456 Opcode == ARM::tLDRpci || 1457 Opcode == ARM::tLDRpci_pic || 1458 Opcode == ARM::LDRLIT_ga_pcrel || 1459 Opcode == ARM::LDRLIT_ga_pcrel_ldr || 1460 Opcode == ARM::tLDRLIT_ga_pcrel || 1461 Opcode == ARM::MOV_ga_pcrel || 1462 Opcode == ARM::MOV_ga_pcrel_ldr || 1463 Opcode == ARM::t2MOV_ga_pcrel) { 1464 if (MI1.getOpcode() != Opcode) 1465 return false; 1466 if (MI0.getNumOperands() != MI1.getNumOperands()) 1467 return false; 1468 1469 const MachineOperand &MO0 = MI0.getOperand(1); 1470 const MachineOperand &MO1 = MI1.getOperand(1); 1471 if (MO0.getOffset() != MO1.getOffset()) 1472 return false; 1473 1474 if (Opcode == ARM::LDRLIT_ga_pcrel || 1475 Opcode == ARM::LDRLIT_ga_pcrel_ldr || 1476 Opcode == ARM::tLDRLIT_ga_pcrel || 1477 Opcode == ARM::MOV_ga_pcrel || 1478 Opcode == ARM::MOV_ga_pcrel_ldr || 1479 Opcode == ARM::t2MOV_ga_pcrel) 1480 // Ignore the PC labels. 1481 return MO0.getGlobal() == MO1.getGlobal(); 1482 1483 const MachineFunction *MF = MI0.getParent()->getParent(); 1484 const MachineConstantPool *MCP = MF->getConstantPool(); 1485 int CPI0 = MO0.getIndex(); 1486 int CPI1 = MO1.getIndex(); 1487 const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0]; 1488 const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1]; 1489 bool isARMCP0 = MCPE0.isMachineConstantPoolEntry(); 1490 bool isARMCP1 = MCPE1.isMachineConstantPoolEntry(); 1491 if (isARMCP0 && isARMCP1) { 1492 ARMConstantPoolValue *ACPV0 = 1493 static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal); 1494 ARMConstantPoolValue *ACPV1 = 1495 static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal); 1496 return ACPV0->hasSameValue(ACPV1); 1497 } else if (!isARMCP0 && !isARMCP1) { 1498 return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal; 1499 } 1500 return false; 1501 } else if (Opcode == ARM::PICLDR) { 1502 if (MI1.getOpcode() != Opcode) 1503 return false; 1504 if (MI0.getNumOperands() != MI1.getNumOperands()) 1505 return false; 1506 1507 unsigned Addr0 = MI0.getOperand(1).getReg(); 1508 unsigned Addr1 = MI1.getOperand(1).getReg(); 1509 if (Addr0 != Addr1) { 1510 if (!MRI || 1511 !TargetRegisterInfo::isVirtualRegister(Addr0) || 1512 !TargetRegisterInfo::isVirtualRegister(Addr1)) 1513 return false; 1514 1515 // This assumes SSA form. 1516 MachineInstr *Def0 = MRI->getVRegDef(Addr0); 1517 MachineInstr *Def1 = MRI->getVRegDef(Addr1); 1518 // Check if the loaded value, e.g. a constantpool of a global address, are 1519 // the same. 1520 if (!produceSameValue(*Def0, *Def1, MRI)) 1521 return false; 1522 } 1523 1524 for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) { 1525 // %vreg12<def> = PICLDR %vreg11, 0, pred:14, pred:%noreg 1526 const MachineOperand &MO0 = MI0.getOperand(i); 1527 const MachineOperand &MO1 = MI1.getOperand(i); 1528 if (!MO0.isIdenticalTo(MO1)) 1529 return false; 1530 } 1531 return true; 1532 } 1533 1534 return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); 1535 } 1536 1537 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to 1538 /// determine if two loads are loading from the same base address. It should 1539 /// only return true if the base pointers are the same and the only differences 1540 /// between the two addresses is the offset. It also returns the offsets by 1541 /// reference. 1542 /// 1543 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched 1544 /// is permanently disabled. 1545 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 1546 int64_t &Offset1, 1547 int64_t &Offset2) const { 1548 // Don't worry about Thumb: just ARM and Thumb2. 1549 if (Subtarget.isThumb1Only()) return false; 1550 1551 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) 1552 return false; 1553 1554 switch (Load1->getMachineOpcode()) { 1555 default: 1556 return false; 1557 case ARM::LDRi12: 1558 case ARM::LDRBi12: 1559 case ARM::LDRD: 1560 case ARM::LDRH: 1561 case ARM::LDRSB: 1562 case ARM::LDRSH: 1563 case ARM::VLDRD: 1564 case ARM::VLDRS: 1565 case ARM::t2LDRi8: 1566 case ARM::t2LDRBi8: 1567 case ARM::t2LDRDi8: 1568 case ARM::t2LDRSHi8: 1569 case ARM::t2LDRi12: 1570 case ARM::t2LDRBi12: 1571 case ARM::t2LDRSHi12: 1572 break; 1573 } 1574 1575 switch (Load2->getMachineOpcode()) { 1576 default: 1577 return false; 1578 case ARM::LDRi12: 1579 case ARM::LDRBi12: 1580 case ARM::LDRD: 1581 case ARM::LDRH: 1582 case ARM::LDRSB: 1583 case ARM::LDRSH: 1584 case ARM::VLDRD: 1585 case ARM::VLDRS: 1586 case ARM::t2LDRi8: 1587 case ARM::t2LDRBi8: 1588 case ARM::t2LDRSHi8: 1589 case ARM::t2LDRi12: 1590 case ARM::t2LDRBi12: 1591 case ARM::t2LDRSHi12: 1592 break; 1593 } 1594 1595 // Check if base addresses and chain operands match. 1596 if (Load1->getOperand(0) != Load2->getOperand(0) || 1597 Load1->getOperand(4) != Load2->getOperand(4)) 1598 return false; 1599 1600 // Index should be Reg0. 1601 if (Load1->getOperand(3) != Load2->getOperand(3)) 1602 return false; 1603 1604 // Determine the offsets. 1605 if (isa<ConstantSDNode>(Load1->getOperand(1)) && 1606 isa<ConstantSDNode>(Load2->getOperand(1))) { 1607 Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue(); 1608 Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue(); 1609 return true; 1610 } 1611 1612 return false; 1613 } 1614 1615 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to 1616 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should 1617 /// be scheduled togther. On some targets if two loads are loading from 1618 /// addresses in the same cache line, it's better if they are scheduled 1619 /// together. This function takes two integers that represent the load offsets 1620 /// from the common base address. It returns true if it decides it's desirable 1621 /// to schedule the two loads together. "NumLoads" is the number of loads that 1622 /// have already been scheduled after Load1. 1623 /// 1624 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched 1625 /// is permanently disabled. 1626 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 1627 int64_t Offset1, int64_t Offset2, 1628 unsigned NumLoads) const { 1629 // Don't worry about Thumb: just ARM and Thumb2. 1630 if (Subtarget.isThumb1Only()) return false; 1631 1632 assert(Offset2 > Offset1); 1633 1634 if ((Offset2 - Offset1) / 8 > 64) 1635 return false; 1636 1637 // Check if the machine opcodes are different. If they are different 1638 // then we consider them to not be of the same base address, 1639 // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12. 1640 // In this case, they are considered to be the same because they are different 1641 // encoding forms of the same basic instruction. 1642 if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) && 1643 !((Load1->getMachineOpcode() == ARM::t2LDRBi8 && 1644 Load2->getMachineOpcode() == ARM::t2LDRBi12) || 1645 (Load1->getMachineOpcode() == ARM::t2LDRBi12 && 1646 Load2->getMachineOpcode() == ARM::t2LDRBi8))) 1647 return false; // FIXME: overly conservative? 1648 1649 // Four loads in a row should be sufficient. 1650 if (NumLoads >= 3) 1651 return false; 1652 1653 return true; 1654 } 1655 1656 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 1657 const MachineBasicBlock *MBB, 1658 const MachineFunction &MF) const { 1659 // Debug info is never a scheduling boundary. It's necessary to be explicit 1660 // due to the special treatment of IT instructions below, otherwise a 1661 // dbg_value followed by an IT will result in the IT instruction being 1662 // considered a scheduling hazard, which is wrong. It should be the actual 1663 // instruction preceding the dbg_value instruction(s), just like it is 1664 // when debug info is not present. 1665 if (MI.isDebugValue()) 1666 return false; 1667 1668 // Terminators and labels can't be scheduled around. 1669 if (MI.isTerminator() || MI.isPosition()) 1670 return true; 1671 1672 // Treat the start of the IT block as a scheduling boundary, but schedule 1673 // t2IT along with all instructions following it. 1674 // FIXME: This is a big hammer. But the alternative is to add all potential 1675 // true and anti dependencies to IT block instructions as implicit operands 1676 // to the t2IT instruction. The added compile time and complexity does not 1677 // seem worth it. 1678 MachineBasicBlock::const_iterator I = MI; 1679 // Make sure to skip any dbg_value instructions 1680 while (++I != MBB->end() && I->isDebugValue()) 1681 ; 1682 if (I != MBB->end() && I->getOpcode() == ARM::t2IT) 1683 return true; 1684 1685 // Don't attempt to schedule around any instruction that defines 1686 // a stack-oriented pointer, as it's unlikely to be profitable. This 1687 // saves compile time, because it doesn't require every single 1688 // stack slot reference to depend on the instruction that does the 1689 // modification. 1690 // Calls don't actually change the stack pointer, even if they have imp-defs. 1691 // No ARM calling conventions change the stack pointer. (X86 calling 1692 // conventions sometimes do). 1693 if (!MI.isCall() && MI.definesRegister(ARM::SP)) 1694 return true; 1695 1696 return false; 1697 } 1698 1699 bool ARMBaseInstrInfo:: 1700 isProfitableToIfCvt(MachineBasicBlock &MBB, 1701 unsigned NumCycles, unsigned ExtraPredCycles, 1702 BranchProbability Probability) const { 1703 if (!NumCycles) 1704 return false; 1705 1706 // If we are optimizing for size, see if the branch in the predecessor can be 1707 // lowered to cbn?z by the constant island lowering pass, and return false if 1708 // so. This results in a shorter instruction sequence. 1709 if (MBB.getParent()->getFunction()->optForSize()) { 1710 MachineBasicBlock *Pred = *MBB.pred_begin(); 1711 if (!Pred->empty()) { 1712 MachineInstr *LastMI = &*Pred->rbegin(); 1713 if (LastMI->getOpcode() == ARM::t2Bcc) { 1714 MachineBasicBlock::iterator CmpMI = LastMI; 1715 if (CmpMI != Pred->begin()) { 1716 --CmpMI; 1717 if (CmpMI->getOpcode() == ARM::tCMPi8 || 1718 CmpMI->getOpcode() == ARM::t2CMPri) { 1719 unsigned Reg = CmpMI->getOperand(0).getReg(); 1720 unsigned PredReg = 0; 1721 ARMCC::CondCodes P = getInstrPredicate(*CmpMI, PredReg); 1722 if (P == ARMCC::AL && CmpMI->getOperand(1).getImm() == 0 && 1723 isARMLowRegister(Reg)) 1724 return false; 1725 } 1726 } 1727 } 1728 } 1729 } 1730 1731 // Attempt to estimate the relative costs of predication versus branching. 1732 // Here we scale up each component of UnpredCost to avoid precision issue when 1733 // scaling NumCycles by Probability. 1734 const unsigned ScalingUpFactor = 1024; 1735 unsigned UnpredCost = Probability.scale(NumCycles * ScalingUpFactor); 1736 UnpredCost += ScalingUpFactor; // The branch itself 1737 UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10; 1738 1739 return (NumCycles + ExtraPredCycles) * ScalingUpFactor <= UnpredCost; 1740 } 1741 1742 bool ARMBaseInstrInfo:: 1743 isProfitableToIfCvt(MachineBasicBlock &TMBB, 1744 unsigned TCycles, unsigned TExtra, 1745 MachineBasicBlock &FMBB, 1746 unsigned FCycles, unsigned FExtra, 1747 BranchProbability Probability) const { 1748 if (!TCycles || !FCycles) 1749 return false; 1750 1751 // Attempt to estimate the relative costs of predication versus branching. 1752 // Here we scale up each component of UnpredCost to avoid precision issue when 1753 // scaling TCycles/FCycles by Probability. 1754 const unsigned ScalingUpFactor = 1024; 1755 unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor); 1756 unsigned FUnpredCost = 1757 Probability.getCompl().scale(FCycles * ScalingUpFactor); 1758 unsigned UnpredCost = TUnpredCost + FUnpredCost; 1759 UnpredCost += 1 * ScalingUpFactor; // The branch itself 1760 UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10; 1761 1762 return (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor <= UnpredCost; 1763 } 1764 1765 bool 1766 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB, 1767 MachineBasicBlock &FMBB) const { 1768 // Reduce false anti-dependencies to let the target's out-of-order execution 1769 // engine do its thing. 1770 return Subtarget.isProfitableToUnpredicate(); 1771 } 1772 1773 /// getInstrPredicate - If instruction is predicated, returns its predicate 1774 /// condition, otherwise returns AL. It also returns the condition code 1775 /// register by reference. 1776 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI, 1777 unsigned &PredReg) { 1778 int PIdx = MI.findFirstPredOperandIdx(); 1779 if (PIdx == -1) { 1780 PredReg = 0; 1781 return ARMCC::AL; 1782 } 1783 1784 PredReg = MI.getOperand(PIdx+1).getReg(); 1785 return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm(); 1786 } 1787 1788 1789 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) { 1790 if (Opc == ARM::B) 1791 return ARM::Bcc; 1792 if (Opc == ARM::tB) 1793 return ARM::tBcc; 1794 if (Opc == ARM::t2B) 1795 return ARM::t2Bcc; 1796 1797 llvm_unreachable("Unknown unconditional branch opcode!"); 1798 } 1799 1800 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI, 1801 bool NewMI, 1802 unsigned OpIdx1, 1803 unsigned OpIdx2) const { 1804 switch (MI.getOpcode()) { 1805 case ARM::MOVCCr: 1806 case ARM::t2MOVCCr: { 1807 // MOVCC can be commuted by inverting the condition. 1808 unsigned PredReg = 0; 1809 ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg); 1810 // MOVCC AL can't be inverted. Shouldn't happen. 1811 if (CC == ARMCC::AL || PredReg != ARM::CPSR) 1812 return nullptr; 1813 MachineInstr *CommutedMI = 1814 TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 1815 if (!CommutedMI) 1816 return nullptr; 1817 // After swapping the MOVCC operands, also invert the condition. 1818 CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx()) 1819 .setImm(ARMCC::getOppositeCondition(CC)); 1820 return CommutedMI; 1821 } 1822 } 1823 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 1824 } 1825 1826 /// Identify instructions that can be folded into a MOVCC instruction, and 1827 /// return the defining instruction. 1828 static MachineInstr *canFoldIntoMOVCC(unsigned Reg, 1829 const MachineRegisterInfo &MRI, 1830 const TargetInstrInfo *TII) { 1831 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1832 return nullptr; 1833 if (!MRI.hasOneNonDBGUse(Reg)) 1834 return nullptr; 1835 MachineInstr *MI = MRI.getVRegDef(Reg); 1836 if (!MI) 1837 return nullptr; 1838 // MI is folded into the MOVCC by predicating it. 1839 if (!MI->isPredicable()) 1840 return nullptr; 1841 // Check if MI has any non-dead defs or physreg uses. This also detects 1842 // predicated instructions which will be reading CPSR. 1843 for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) { 1844 const MachineOperand &MO = MI->getOperand(i); 1845 // Reject frame index operands, PEI can't handle the predicated pseudos. 1846 if (MO.isFI() || MO.isCPI() || MO.isJTI()) 1847 return nullptr; 1848 if (!MO.isReg()) 1849 continue; 1850 // MI can't have any tied operands, that would conflict with predication. 1851 if (MO.isTied()) 1852 return nullptr; 1853 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 1854 return nullptr; 1855 if (MO.isDef() && !MO.isDead()) 1856 return nullptr; 1857 } 1858 bool DontMoveAcrossStores = true; 1859 if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores)) 1860 return nullptr; 1861 return MI; 1862 } 1863 1864 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI, 1865 SmallVectorImpl<MachineOperand> &Cond, 1866 unsigned &TrueOp, unsigned &FalseOp, 1867 bool &Optimizable) const { 1868 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && 1869 "Unknown select instruction"); 1870 // MOVCC operands: 1871 // 0: Def. 1872 // 1: True use. 1873 // 2: False use. 1874 // 3: Condition code. 1875 // 4: CPSR use. 1876 TrueOp = 1; 1877 FalseOp = 2; 1878 Cond.push_back(MI.getOperand(3)); 1879 Cond.push_back(MI.getOperand(4)); 1880 // We can always fold a def. 1881 Optimizable = true; 1882 return false; 1883 } 1884 1885 MachineInstr * 1886 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI, 1887 SmallPtrSetImpl<MachineInstr *> &SeenMIs, 1888 bool PreferFalse) const { 1889 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && 1890 "Unknown select instruction"); 1891 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 1892 MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this); 1893 bool Invert = !DefMI; 1894 if (!DefMI) 1895 DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this); 1896 if (!DefMI) 1897 return nullptr; 1898 1899 // Find new register class to use. 1900 MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1); 1901 unsigned DestReg = MI.getOperand(0).getReg(); 1902 const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg()); 1903 if (!MRI.constrainRegClass(DestReg, PreviousClass)) 1904 return nullptr; 1905 1906 // Create a new predicated version of DefMI. 1907 // Rfalse is the first use. 1908 MachineInstrBuilder NewMI = 1909 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg); 1910 1911 // Copy all the DefMI operands, excluding its (null) predicate. 1912 const MCInstrDesc &DefDesc = DefMI->getDesc(); 1913 for (unsigned i = 1, e = DefDesc.getNumOperands(); 1914 i != e && !DefDesc.OpInfo[i].isPredicate(); ++i) 1915 NewMI.addOperand(DefMI->getOperand(i)); 1916 1917 unsigned CondCode = MI.getOperand(3).getImm(); 1918 if (Invert) 1919 NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode))); 1920 else 1921 NewMI.addImm(CondCode); 1922 NewMI.addOperand(MI.getOperand(4)); 1923 1924 // DefMI is not the -S version that sets CPSR, so add an optional %noreg. 1925 if (NewMI->hasOptionalDef()) 1926 AddDefaultCC(NewMI); 1927 1928 // The output register value when the predicate is false is an implicit 1929 // register operand tied to the first def. 1930 // The tie makes the register allocator ensure the FalseReg is allocated the 1931 // same register as operand 0. 1932 FalseReg.setImplicit(); 1933 NewMI.addOperand(FalseReg); 1934 NewMI->tieOperands(0, NewMI->getNumOperands() - 1); 1935 1936 // Update SeenMIs set: register newly created MI and erase removed DefMI. 1937 SeenMIs.insert(NewMI); 1938 SeenMIs.erase(DefMI); 1939 1940 // If MI is inside a loop, and DefMI is outside the loop, then kill flags on 1941 // DefMI would be invalid when tranferred inside the loop. Checking for a 1942 // loop is expensive, but at least remove kill flags if they are in different 1943 // BBs. 1944 if (DefMI->getParent() != MI.getParent()) 1945 NewMI->clearKillInfo(); 1946 1947 // The caller will erase MI, but not DefMI. 1948 DefMI->eraseFromParent(); 1949 return NewMI; 1950 } 1951 1952 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the 1953 /// instruction is encoded with an 'S' bit is determined by the optional CPSR 1954 /// def operand. 1955 /// 1956 /// This will go away once we can teach tblgen how to set the optional CPSR def 1957 /// operand itself. 1958 struct AddSubFlagsOpcodePair { 1959 uint16_t PseudoOpc; 1960 uint16_t MachineOpc; 1961 }; 1962 1963 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = { 1964 {ARM::ADDSri, ARM::ADDri}, 1965 {ARM::ADDSrr, ARM::ADDrr}, 1966 {ARM::ADDSrsi, ARM::ADDrsi}, 1967 {ARM::ADDSrsr, ARM::ADDrsr}, 1968 1969 {ARM::SUBSri, ARM::SUBri}, 1970 {ARM::SUBSrr, ARM::SUBrr}, 1971 {ARM::SUBSrsi, ARM::SUBrsi}, 1972 {ARM::SUBSrsr, ARM::SUBrsr}, 1973 1974 {ARM::RSBSri, ARM::RSBri}, 1975 {ARM::RSBSrsi, ARM::RSBrsi}, 1976 {ARM::RSBSrsr, ARM::RSBrsr}, 1977 1978 {ARM::t2ADDSri, ARM::t2ADDri}, 1979 {ARM::t2ADDSrr, ARM::t2ADDrr}, 1980 {ARM::t2ADDSrs, ARM::t2ADDrs}, 1981 1982 {ARM::t2SUBSri, ARM::t2SUBri}, 1983 {ARM::t2SUBSrr, ARM::t2SUBrr}, 1984 {ARM::t2SUBSrs, ARM::t2SUBrs}, 1985 1986 {ARM::t2RSBSri, ARM::t2RSBri}, 1987 {ARM::t2RSBSrs, ARM::t2RSBrs}, 1988 }; 1989 1990 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) { 1991 for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i) 1992 if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc) 1993 return AddSubFlagsOpcodeMap[i].MachineOpc; 1994 return 0; 1995 } 1996 1997 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB, 1998 MachineBasicBlock::iterator &MBBI, 1999 const DebugLoc &dl, unsigned DestReg, 2000 unsigned BaseReg, int NumBytes, 2001 ARMCC::CondCodes Pred, unsigned PredReg, 2002 const ARMBaseInstrInfo &TII, 2003 unsigned MIFlags) { 2004 if (NumBytes == 0 && DestReg != BaseReg) { 2005 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg) 2006 .addReg(BaseReg, RegState::Kill) 2007 .addImm((unsigned)Pred).addReg(PredReg).addReg(0) 2008 .setMIFlags(MIFlags); 2009 return; 2010 } 2011 2012 bool isSub = NumBytes < 0; 2013 if (isSub) NumBytes = -NumBytes; 2014 2015 while (NumBytes) { 2016 unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes); 2017 unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt); 2018 assert(ThisVal && "Didn't extract field correctly"); 2019 2020 // We will handle these bits from offset, clear them. 2021 NumBytes &= ~ThisVal; 2022 2023 assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?"); 2024 2025 // Build the new ADD / SUB. 2026 unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri; 2027 BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg) 2028 .addReg(BaseReg, RegState::Kill).addImm(ThisVal) 2029 .addImm((unsigned)Pred).addReg(PredReg).addReg(0) 2030 .setMIFlags(MIFlags); 2031 BaseReg = DestReg; 2032 } 2033 } 2034 2035 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget, 2036 MachineFunction &MF, MachineInstr *MI, 2037 unsigned NumBytes) { 2038 // This optimisation potentially adds lots of load and store 2039 // micro-operations, it's only really a great benefit to code-size. 2040 if (!MF.getFunction()->optForMinSize()) 2041 return false; 2042 2043 // If only one register is pushed/popped, LLVM can use an LDR/STR 2044 // instead. We can't modify those so make sure we're dealing with an 2045 // instruction we understand. 2046 bool IsPop = isPopOpcode(MI->getOpcode()); 2047 bool IsPush = isPushOpcode(MI->getOpcode()); 2048 if (!IsPush && !IsPop) 2049 return false; 2050 2051 bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD || 2052 MI->getOpcode() == ARM::VLDMDIA_UPD; 2053 bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH || 2054 MI->getOpcode() == ARM::tPOP || 2055 MI->getOpcode() == ARM::tPOP_RET; 2056 2057 assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP && 2058 MI->getOperand(1).getReg() == ARM::SP)) && 2059 "trying to fold sp update into non-sp-updating push/pop"); 2060 2061 // The VFP push & pop act on D-registers, so we can only fold an adjustment 2062 // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try 2063 // if this is violated. 2064 if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0) 2065 return false; 2066 2067 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 2068 // pred) so the list starts at 4. Thumb1 starts after the predicate. 2069 int RegListIdx = IsT1PushPop ? 2 : 4; 2070 2071 // Calculate the space we'll need in terms of registers. 2072 unsigned FirstReg = MI->getOperand(RegListIdx).getReg(); 2073 unsigned RD0Reg, RegsNeeded; 2074 if (IsVFPPushPop) { 2075 RD0Reg = ARM::D0; 2076 RegsNeeded = NumBytes / 8; 2077 } else { 2078 RD0Reg = ARM::R0; 2079 RegsNeeded = NumBytes / 4; 2080 } 2081 2082 // We're going to have to strip all list operands off before 2083 // re-adding them since the order matters, so save the existing ones 2084 // for later. 2085 SmallVector<MachineOperand, 4> RegList; 2086 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) 2087 RegList.push_back(MI->getOperand(i)); 2088 2089 const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo(); 2090 const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF); 2091 2092 // Now try to find enough space in the reglist to allocate NumBytes. 2093 for (unsigned CurReg = FirstReg - 1; CurReg >= RD0Reg && RegsNeeded; 2094 --CurReg) { 2095 if (!IsPop) { 2096 // Pushing any register is completely harmless, mark the 2097 // register involved as undef since we don't care about it in 2098 // the slightest. 2099 RegList.push_back(MachineOperand::CreateReg(CurReg, false, false, 2100 false, false, true)); 2101 --RegsNeeded; 2102 continue; 2103 } 2104 2105 // However, we can only pop an extra register if it's not live. For 2106 // registers live within the function we might clobber a return value 2107 // register; the other way a register can be live here is if it's 2108 // callee-saved. 2109 if (isCalleeSavedRegister(CurReg, CSRegs) || 2110 MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) != 2111 MachineBasicBlock::LQR_Dead) { 2112 // VFP pops don't allow holes in the register list, so any skip is fatal 2113 // for our transformation. GPR pops do, so we should just keep looking. 2114 if (IsVFPPushPop) 2115 return false; 2116 else 2117 continue; 2118 } 2119 2120 // Mark the unimportant registers as <def,dead> in the POP. 2121 RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false, 2122 true)); 2123 --RegsNeeded; 2124 } 2125 2126 if (RegsNeeded > 0) 2127 return false; 2128 2129 // Finally we know we can profitably perform the optimisation so go 2130 // ahead: strip all existing registers off and add them back again 2131 // in the right order. 2132 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) 2133 MI->RemoveOperand(i); 2134 2135 // Add the complete list back in. 2136 MachineInstrBuilder MIB(MF, &*MI); 2137 for (int i = RegList.size() - 1; i >= 0; --i) 2138 MIB.addOperand(RegList[i]); 2139 2140 return true; 2141 } 2142 2143 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx, 2144 unsigned FrameReg, int &Offset, 2145 const ARMBaseInstrInfo &TII) { 2146 unsigned Opcode = MI.getOpcode(); 2147 const MCInstrDesc &Desc = MI.getDesc(); 2148 unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); 2149 bool isSub = false; 2150 2151 // Memory operands in inline assembly always use AddrMode2. 2152 if (Opcode == ARM::INLINEASM) 2153 AddrMode = ARMII::AddrMode2; 2154 2155 if (Opcode == ARM::ADDri) { 2156 Offset += MI.getOperand(FrameRegIdx+1).getImm(); 2157 if (Offset == 0) { 2158 // Turn it into a move. 2159 MI.setDesc(TII.get(ARM::MOVr)); 2160 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2161 MI.RemoveOperand(FrameRegIdx+1); 2162 Offset = 0; 2163 return true; 2164 } else if (Offset < 0) { 2165 Offset = -Offset; 2166 isSub = true; 2167 MI.setDesc(TII.get(ARM::SUBri)); 2168 } 2169 2170 // Common case: small offset, fits into instruction. 2171 if (ARM_AM::getSOImmVal(Offset) != -1) { 2172 // Replace the FrameIndex with sp / fp 2173 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2174 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset); 2175 Offset = 0; 2176 return true; 2177 } 2178 2179 // Otherwise, pull as much of the immedidate into this ADDri/SUBri 2180 // as possible. 2181 unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset); 2182 unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt); 2183 2184 // We will handle these bits from offset, clear them. 2185 Offset &= ~ThisImmVal; 2186 2187 // Get the properly encoded SOImmVal field. 2188 assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 && 2189 "Bit extraction didn't work?"); 2190 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal); 2191 } else { 2192 unsigned ImmIdx = 0; 2193 int InstrOffs = 0; 2194 unsigned NumBits = 0; 2195 unsigned Scale = 1; 2196 switch (AddrMode) { 2197 case ARMII::AddrMode_i12: { 2198 ImmIdx = FrameRegIdx + 1; 2199 InstrOffs = MI.getOperand(ImmIdx).getImm(); 2200 NumBits = 12; 2201 break; 2202 } 2203 case ARMII::AddrMode2: { 2204 ImmIdx = FrameRegIdx+2; 2205 InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm()); 2206 if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2207 InstrOffs *= -1; 2208 NumBits = 12; 2209 break; 2210 } 2211 case ARMII::AddrMode3: { 2212 ImmIdx = FrameRegIdx+2; 2213 InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm()); 2214 if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2215 InstrOffs *= -1; 2216 NumBits = 8; 2217 break; 2218 } 2219 case ARMII::AddrMode4: 2220 case ARMII::AddrMode6: 2221 // Can't fold any offset even if it's zero. 2222 return false; 2223 case ARMII::AddrMode5: { 2224 ImmIdx = FrameRegIdx+1; 2225 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); 2226 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2227 InstrOffs *= -1; 2228 NumBits = 8; 2229 Scale = 4; 2230 break; 2231 } 2232 default: 2233 llvm_unreachable("Unsupported addressing mode!"); 2234 } 2235 2236 Offset += InstrOffs * Scale; 2237 assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!"); 2238 if (Offset < 0) { 2239 Offset = -Offset; 2240 isSub = true; 2241 } 2242 2243 // Attempt to fold address comp. if opcode has offset bits 2244 if (NumBits > 0) { 2245 // Common case: small offset, fits into instruction. 2246 MachineOperand &ImmOp = MI.getOperand(ImmIdx); 2247 int ImmedOffset = Offset / Scale; 2248 unsigned Mask = (1 << NumBits) - 1; 2249 if ((unsigned)Offset <= Mask * Scale) { 2250 // Replace the FrameIndex with sp 2251 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2252 // FIXME: When addrmode2 goes away, this will simplify (like the 2253 // T2 version), as the LDR.i12 versions don't need the encoding 2254 // tricks for the offset value. 2255 if (isSub) { 2256 if (AddrMode == ARMII::AddrMode_i12) 2257 ImmedOffset = -ImmedOffset; 2258 else 2259 ImmedOffset |= 1 << NumBits; 2260 } 2261 ImmOp.ChangeToImmediate(ImmedOffset); 2262 Offset = 0; 2263 return true; 2264 } 2265 2266 // Otherwise, it didn't fit. Pull in what we can to simplify the immed. 2267 ImmedOffset = ImmedOffset & Mask; 2268 if (isSub) { 2269 if (AddrMode == ARMII::AddrMode_i12) 2270 ImmedOffset = -ImmedOffset; 2271 else 2272 ImmedOffset |= 1 << NumBits; 2273 } 2274 ImmOp.ChangeToImmediate(ImmedOffset); 2275 Offset &= ~(Mask*Scale); 2276 } 2277 } 2278 2279 Offset = (isSub) ? -Offset : Offset; 2280 return Offset == 0; 2281 } 2282 2283 /// analyzeCompare - For a comparison instruction, return the source registers 2284 /// in SrcReg and SrcReg2 if having two register operands, and the value it 2285 /// compares against in CmpValue. Return true if the comparison instruction 2286 /// can be analyzed. 2287 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 2288 unsigned &SrcReg2, int &CmpMask, 2289 int &CmpValue) const { 2290 switch (MI.getOpcode()) { 2291 default: break; 2292 case ARM::CMPri: 2293 case ARM::t2CMPri: 2294 SrcReg = MI.getOperand(0).getReg(); 2295 SrcReg2 = 0; 2296 CmpMask = ~0; 2297 CmpValue = MI.getOperand(1).getImm(); 2298 return true; 2299 case ARM::CMPrr: 2300 case ARM::t2CMPrr: 2301 SrcReg = MI.getOperand(0).getReg(); 2302 SrcReg2 = MI.getOperand(1).getReg(); 2303 CmpMask = ~0; 2304 CmpValue = 0; 2305 return true; 2306 case ARM::TSTri: 2307 case ARM::t2TSTri: 2308 SrcReg = MI.getOperand(0).getReg(); 2309 SrcReg2 = 0; 2310 CmpMask = MI.getOperand(1).getImm(); 2311 CmpValue = 0; 2312 return true; 2313 } 2314 2315 return false; 2316 } 2317 2318 /// isSuitableForMask - Identify a suitable 'and' instruction that 2319 /// operates on the given source register and applies the same mask 2320 /// as a 'tst' instruction. Provide a limited look-through for copies. 2321 /// When successful, MI will hold the found instruction. 2322 static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg, 2323 int CmpMask, bool CommonUse) { 2324 switch (MI->getOpcode()) { 2325 case ARM::ANDri: 2326 case ARM::t2ANDri: 2327 if (CmpMask != MI->getOperand(2).getImm()) 2328 return false; 2329 if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg()) 2330 return true; 2331 break; 2332 } 2333 2334 return false; 2335 } 2336 2337 /// getSwappedCondition - assume the flags are set by MI(a,b), return 2338 /// the condition code if we modify the instructions such that flags are 2339 /// set by MI(b,a). 2340 inline static ARMCC::CondCodes getSwappedCondition(ARMCC::CondCodes CC) { 2341 switch (CC) { 2342 default: return ARMCC::AL; 2343 case ARMCC::EQ: return ARMCC::EQ; 2344 case ARMCC::NE: return ARMCC::NE; 2345 case ARMCC::HS: return ARMCC::LS; 2346 case ARMCC::LO: return ARMCC::HI; 2347 case ARMCC::HI: return ARMCC::LO; 2348 case ARMCC::LS: return ARMCC::HS; 2349 case ARMCC::GE: return ARMCC::LE; 2350 case ARMCC::LT: return ARMCC::GT; 2351 case ARMCC::GT: return ARMCC::LT; 2352 case ARMCC::LE: return ARMCC::GE; 2353 } 2354 } 2355 2356 /// isRedundantFlagInstr - check whether the first instruction, whose only 2357 /// purpose is to update flags, can be made redundant. 2358 /// CMPrr can be made redundant by SUBrr if the operands are the same. 2359 /// CMPri can be made redundant by SUBri if the operands are the same. 2360 /// This function can be extended later on. 2361 inline static bool isRedundantFlagInstr(MachineInstr *CmpI, unsigned SrcReg, 2362 unsigned SrcReg2, int ImmValue, 2363 MachineInstr *OI) { 2364 if ((CmpI->getOpcode() == ARM::CMPrr || 2365 CmpI->getOpcode() == ARM::t2CMPrr) && 2366 (OI->getOpcode() == ARM::SUBrr || 2367 OI->getOpcode() == ARM::t2SUBrr) && 2368 ((OI->getOperand(1).getReg() == SrcReg && 2369 OI->getOperand(2).getReg() == SrcReg2) || 2370 (OI->getOperand(1).getReg() == SrcReg2 && 2371 OI->getOperand(2).getReg() == SrcReg))) 2372 return true; 2373 2374 if ((CmpI->getOpcode() == ARM::CMPri || 2375 CmpI->getOpcode() == ARM::t2CMPri) && 2376 (OI->getOpcode() == ARM::SUBri || 2377 OI->getOpcode() == ARM::t2SUBri) && 2378 OI->getOperand(1).getReg() == SrcReg && 2379 OI->getOperand(2).getImm() == ImmValue) 2380 return true; 2381 return false; 2382 } 2383 2384 /// optimizeCompareInstr - Convert the instruction supplying the argument to the 2385 /// comparison into one that sets the zero bit in the flags register; 2386 /// Remove a redundant Compare instruction if an earlier instruction can set the 2387 /// flags in the same way as Compare. 2388 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two 2389 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the 2390 /// condition code of instructions which use the flags. 2391 bool ARMBaseInstrInfo::optimizeCompareInstr( 2392 MachineInstr &CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask, 2393 int CmpValue, const MachineRegisterInfo *MRI) const { 2394 // Get the unique definition of SrcReg. 2395 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 2396 if (!MI) return false; 2397 2398 // Masked compares sometimes use the same register as the corresponding 'and'. 2399 if (CmpMask != ~0) { 2400 if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) { 2401 MI = nullptr; 2402 for (MachineRegisterInfo::use_instr_iterator 2403 UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end(); 2404 UI != UE; ++UI) { 2405 if (UI->getParent() != CmpInstr.getParent()) 2406 continue; 2407 MachineInstr *PotentialAND = &*UI; 2408 if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) || 2409 isPredicated(*PotentialAND)) 2410 continue; 2411 MI = PotentialAND; 2412 break; 2413 } 2414 if (!MI) return false; 2415 } 2416 } 2417 2418 // Get ready to iterate backward from CmpInstr. 2419 MachineBasicBlock::iterator I = CmpInstr, E = MI, 2420 B = CmpInstr.getParent()->begin(); 2421 2422 // Early exit if CmpInstr is at the beginning of the BB. 2423 if (I == B) return false; 2424 2425 // There are two possible candidates which can be changed to set CPSR: 2426 // One is MI, the other is a SUB instruction. 2427 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 2428 // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue). 2429 MachineInstr *Sub = nullptr; 2430 if (SrcReg2 != 0) 2431 // MI is not a candidate for CMPrr. 2432 MI = nullptr; 2433 else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) { 2434 // Conservatively refuse to convert an instruction which isn't in the same 2435 // BB as the comparison. 2436 // For CMPri w/ CmpValue != 0, a Sub may still be a candidate. 2437 // Thus we cannot return here. 2438 if (CmpInstr.getOpcode() == ARM::CMPri || 2439 CmpInstr.getOpcode() == ARM::t2CMPri) 2440 MI = nullptr; 2441 else 2442 return false; 2443 } 2444 2445 // Check that CPSR isn't set between the comparison instruction and the one we 2446 // want to change. At the same time, search for Sub. 2447 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2448 --I; 2449 for (; I != E; --I) { 2450 const MachineInstr &Instr = *I; 2451 2452 if (Instr.modifiesRegister(ARM::CPSR, TRI) || 2453 Instr.readsRegister(ARM::CPSR, TRI)) 2454 // This instruction modifies or uses CPSR after the one we want to 2455 // change. We can't do this transformation. 2456 return false; 2457 2458 // Check whether CmpInstr can be made redundant by the current instruction. 2459 if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &*I)) { 2460 Sub = &*I; 2461 break; 2462 } 2463 2464 if (I == B) 2465 // The 'and' is below the comparison instruction. 2466 return false; 2467 } 2468 2469 // Return false if no candidates exist. 2470 if (!MI && !Sub) 2471 return false; 2472 2473 // The single candidate is called MI. 2474 if (!MI) MI = Sub; 2475 2476 // We can't use a predicated instruction - it doesn't always write the flags. 2477 if (isPredicated(*MI)) 2478 return false; 2479 2480 switch (MI->getOpcode()) { 2481 default: break; 2482 case ARM::RSBrr: 2483 case ARM::RSBri: 2484 case ARM::RSCrr: 2485 case ARM::RSCri: 2486 case ARM::ADDrr: 2487 case ARM::ADDri: 2488 case ARM::ADCrr: 2489 case ARM::ADCri: 2490 case ARM::SUBrr: 2491 case ARM::SUBri: 2492 case ARM::SBCrr: 2493 case ARM::SBCri: 2494 case ARM::t2RSBri: 2495 case ARM::t2ADDrr: 2496 case ARM::t2ADDri: 2497 case ARM::t2ADCrr: 2498 case ARM::t2ADCri: 2499 case ARM::t2SUBrr: 2500 case ARM::t2SUBri: 2501 case ARM::t2SBCrr: 2502 case ARM::t2SBCri: 2503 case ARM::ANDrr: 2504 case ARM::ANDri: 2505 case ARM::t2ANDrr: 2506 case ARM::t2ANDri: 2507 case ARM::ORRrr: 2508 case ARM::ORRri: 2509 case ARM::t2ORRrr: 2510 case ARM::t2ORRri: 2511 case ARM::EORrr: 2512 case ARM::EORri: 2513 case ARM::t2EORrr: 2514 case ARM::t2EORri: { 2515 // Scan forward for the use of CPSR 2516 // When checking against MI: if it's a conditional code that requires 2517 // checking of the V bit or C bit, then this is not safe to do. 2518 // It is safe to remove CmpInstr if CPSR is redefined or killed. 2519 // If we are done with the basic block, we need to check whether CPSR is 2520 // live-out. 2521 SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4> 2522 OperandsToUpdate; 2523 bool isSafe = false; 2524 I = CmpInstr; 2525 E = CmpInstr.getParent()->end(); 2526 while (!isSafe && ++I != E) { 2527 const MachineInstr &Instr = *I; 2528 for (unsigned IO = 0, EO = Instr.getNumOperands(); 2529 !isSafe && IO != EO; ++IO) { 2530 const MachineOperand &MO = Instr.getOperand(IO); 2531 if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) { 2532 isSafe = true; 2533 break; 2534 } 2535 if (!MO.isReg() || MO.getReg() != ARM::CPSR) 2536 continue; 2537 if (MO.isDef()) { 2538 isSafe = true; 2539 break; 2540 } 2541 // Condition code is after the operand before CPSR except for VSELs. 2542 ARMCC::CondCodes CC; 2543 bool IsInstrVSel = true; 2544 switch (Instr.getOpcode()) { 2545 default: 2546 IsInstrVSel = false; 2547 CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm(); 2548 break; 2549 case ARM::VSELEQD: 2550 case ARM::VSELEQS: 2551 CC = ARMCC::EQ; 2552 break; 2553 case ARM::VSELGTD: 2554 case ARM::VSELGTS: 2555 CC = ARMCC::GT; 2556 break; 2557 case ARM::VSELGED: 2558 case ARM::VSELGES: 2559 CC = ARMCC::GE; 2560 break; 2561 case ARM::VSELVSS: 2562 case ARM::VSELVSD: 2563 CC = ARMCC::VS; 2564 break; 2565 } 2566 2567 if (Sub) { 2568 ARMCC::CondCodes NewCC = getSwappedCondition(CC); 2569 if (NewCC == ARMCC::AL) 2570 return false; 2571 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based 2572 // on CMP needs to be updated to be based on SUB. 2573 // Push the condition code operands to OperandsToUpdate. 2574 // If it is safe to remove CmpInstr, the condition code of these 2575 // operands will be modified. 2576 if (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 2577 Sub->getOperand(2).getReg() == SrcReg) { 2578 // VSel doesn't support condition code update. 2579 if (IsInstrVSel) 2580 return false; 2581 OperandsToUpdate.push_back( 2582 std::make_pair(&((*I).getOperand(IO - 1)), NewCC)); 2583 } 2584 } else { 2585 // No Sub, so this is x = <op> y, z; cmp x, 0. 2586 switch (CC) { 2587 case ARMCC::EQ: // Z 2588 case ARMCC::NE: // Z 2589 case ARMCC::MI: // N 2590 case ARMCC::PL: // N 2591 case ARMCC::AL: // none 2592 // CPSR can be used multiple times, we should continue. 2593 break; 2594 case ARMCC::HS: // C 2595 case ARMCC::LO: // C 2596 case ARMCC::VS: // V 2597 case ARMCC::VC: // V 2598 case ARMCC::HI: // C Z 2599 case ARMCC::LS: // C Z 2600 case ARMCC::GE: // N V 2601 case ARMCC::LT: // N V 2602 case ARMCC::GT: // Z N V 2603 case ARMCC::LE: // Z N V 2604 // The instruction uses the V bit or C bit which is not safe. 2605 return false; 2606 } 2607 } 2608 } 2609 } 2610 2611 // If CPSR is not killed nor re-defined, we should check whether it is 2612 // live-out. If it is live-out, do not optimize. 2613 if (!isSafe) { 2614 MachineBasicBlock *MBB = CmpInstr.getParent(); 2615 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), 2616 SE = MBB->succ_end(); SI != SE; ++SI) 2617 if ((*SI)->isLiveIn(ARM::CPSR)) 2618 return false; 2619 } 2620 2621 // Toggle the optional operand to CPSR. 2622 MI->getOperand(5).setReg(ARM::CPSR); 2623 MI->getOperand(5).setIsDef(true); 2624 assert(!isPredicated(*MI) && "Can't use flags from predicated instruction"); 2625 CmpInstr.eraseFromParent(); 2626 2627 // Modify the condition code of operands in OperandsToUpdate. 2628 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 2629 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 2630 for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++) 2631 OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second); 2632 return true; 2633 } 2634 } 2635 2636 return false; 2637 } 2638 2639 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 2640 unsigned Reg, 2641 MachineRegisterInfo *MRI) const { 2642 // Fold large immediates into add, sub, or, xor. 2643 unsigned DefOpc = DefMI.getOpcode(); 2644 if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm) 2645 return false; 2646 if (!DefMI.getOperand(1).isImm()) 2647 // Could be t2MOVi32imm <ga:xx> 2648 return false; 2649 2650 if (!MRI->hasOneNonDBGUse(Reg)) 2651 return false; 2652 2653 const MCInstrDesc &DefMCID = DefMI.getDesc(); 2654 if (DefMCID.hasOptionalDef()) { 2655 unsigned NumOps = DefMCID.getNumOperands(); 2656 const MachineOperand &MO = DefMI.getOperand(NumOps - 1); 2657 if (MO.getReg() == ARM::CPSR && !MO.isDead()) 2658 // If DefMI defines CPSR and it is not dead, it's obviously not safe 2659 // to delete DefMI. 2660 return false; 2661 } 2662 2663 const MCInstrDesc &UseMCID = UseMI.getDesc(); 2664 if (UseMCID.hasOptionalDef()) { 2665 unsigned NumOps = UseMCID.getNumOperands(); 2666 if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR) 2667 // If the instruction sets the flag, do not attempt this optimization 2668 // since it may change the semantics of the code. 2669 return false; 2670 } 2671 2672 unsigned UseOpc = UseMI.getOpcode(); 2673 unsigned NewUseOpc = 0; 2674 uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm(); 2675 uint32_t SOImmValV1 = 0, SOImmValV2 = 0; 2676 bool Commute = false; 2677 switch (UseOpc) { 2678 default: return false; 2679 case ARM::SUBrr: 2680 case ARM::ADDrr: 2681 case ARM::ORRrr: 2682 case ARM::EORrr: 2683 case ARM::t2SUBrr: 2684 case ARM::t2ADDrr: 2685 case ARM::t2ORRrr: 2686 case ARM::t2EORrr: { 2687 Commute = UseMI.getOperand(2).getReg() != Reg; 2688 switch (UseOpc) { 2689 default: break; 2690 case ARM::ADDrr: 2691 case ARM::SUBrr: { 2692 if (UseOpc == ARM::SUBrr && Commute) 2693 return false; 2694 2695 // ADD/SUB are special because they're essentially the same operation, so 2696 // we can handle a larger range of immediates. 2697 if (ARM_AM::isSOImmTwoPartVal(ImmVal)) 2698 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri; 2699 else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) { 2700 ImmVal = -ImmVal; 2701 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri; 2702 } else 2703 return false; 2704 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); 2705 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); 2706 break; 2707 } 2708 case ARM::ORRrr: 2709 case ARM::EORrr: { 2710 if (!ARM_AM::isSOImmTwoPartVal(ImmVal)) 2711 return false; 2712 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); 2713 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); 2714 switch (UseOpc) { 2715 default: break; 2716 case ARM::ORRrr: NewUseOpc = ARM::ORRri; break; 2717 case ARM::EORrr: NewUseOpc = ARM::EORri; break; 2718 } 2719 break; 2720 } 2721 case ARM::t2ADDrr: 2722 case ARM::t2SUBrr: { 2723 if (UseOpc == ARM::t2SUBrr && Commute) 2724 return false; 2725 2726 // ADD/SUB are special because they're essentially the same operation, so 2727 // we can handle a larger range of immediates. 2728 if (ARM_AM::isT2SOImmTwoPartVal(ImmVal)) 2729 NewUseOpc = UseOpc == ARM::t2ADDrr ? ARM::t2ADDri : ARM::t2SUBri; 2730 else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) { 2731 ImmVal = -ImmVal; 2732 NewUseOpc = UseOpc == ARM::t2ADDrr ? ARM::t2SUBri : ARM::t2ADDri; 2733 } else 2734 return false; 2735 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); 2736 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); 2737 break; 2738 } 2739 case ARM::t2ORRrr: 2740 case ARM::t2EORrr: { 2741 if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal)) 2742 return false; 2743 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); 2744 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); 2745 switch (UseOpc) { 2746 default: break; 2747 case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break; 2748 case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break; 2749 } 2750 break; 2751 } 2752 } 2753 } 2754 } 2755 2756 unsigned OpIdx = Commute ? 2 : 1; 2757 unsigned Reg1 = UseMI.getOperand(OpIdx).getReg(); 2758 bool isKill = UseMI.getOperand(OpIdx).isKill(); 2759 unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg)); 2760 AddDefaultCC( 2761 AddDefaultPred(BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), 2762 get(NewUseOpc), NewReg) 2763 .addReg(Reg1, getKillRegState(isKill)) 2764 .addImm(SOImmValV1))); 2765 UseMI.setDesc(get(NewUseOpc)); 2766 UseMI.getOperand(1).setReg(NewReg); 2767 UseMI.getOperand(1).setIsKill(); 2768 UseMI.getOperand(2).ChangeToImmediate(SOImmValV2); 2769 DefMI.eraseFromParent(); 2770 return true; 2771 } 2772 2773 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData, 2774 const MachineInstr &MI) { 2775 switch (MI.getOpcode()) { 2776 default: { 2777 const MCInstrDesc &Desc = MI.getDesc(); 2778 int UOps = ItinData->getNumMicroOps(Desc.getSchedClass()); 2779 assert(UOps >= 0 && "bad # UOps"); 2780 return UOps; 2781 } 2782 2783 case ARM::LDRrs: 2784 case ARM::LDRBrs: 2785 case ARM::STRrs: 2786 case ARM::STRBrs: { 2787 unsigned ShOpVal = MI.getOperand(3).getImm(); 2788 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 2789 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 2790 if (!isSub && 2791 (ShImm == 0 || 2792 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 2793 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 2794 return 1; 2795 return 2; 2796 } 2797 2798 case ARM::LDRH: 2799 case ARM::STRH: { 2800 if (!MI.getOperand(2).getReg()) 2801 return 1; 2802 2803 unsigned ShOpVal = MI.getOperand(3).getImm(); 2804 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 2805 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 2806 if (!isSub && 2807 (ShImm == 0 || 2808 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 2809 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 2810 return 1; 2811 return 2; 2812 } 2813 2814 case ARM::LDRSB: 2815 case ARM::LDRSH: 2816 return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2; 2817 2818 case ARM::LDRSB_POST: 2819 case ARM::LDRSH_POST: { 2820 unsigned Rt = MI.getOperand(0).getReg(); 2821 unsigned Rm = MI.getOperand(3).getReg(); 2822 return (Rt == Rm) ? 4 : 3; 2823 } 2824 2825 case ARM::LDR_PRE_REG: 2826 case ARM::LDRB_PRE_REG: { 2827 unsigned Rt = MI.getOperand(0).getReg(); 2828 unsigned Rm = MI.getOperand(3).getReg(); 2829 if (Rt == Rm) 2830 return 3; 2831 unsigned ShOpVal = MI.getOperand(4).getImm(); 2832 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 2833 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 2834 if (!isSub && 2835 (ShImm == 0 || 2836 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 2837 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 2838 return 2; 2839 return 3; 2840 } 2841 2842 case ARM::STR_PRE_REG: 2843 case ARM::STRB_PRE_REG: { 2844 unsigned ShOpVal = MI.getOperand(4).getImm(); 2845 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 2846 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 2847 if (!isSub && 2848 (ShImm == 0 || 2849 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 2850 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 2851 return 2; 2852 return 3; 2853 } 2854 2855 case ARM::LDRH_PRE: 2856 case ARM::STRH_PRE: { 2857 unsigned Rt = MI.getOperand(0).getReg(); 2858 unsigned Rm = MI.getOperand(3).getReg(); 2859 if (!Rm) 2860 return 2; 2861 if (Rt == Rm) 2862 return 3; 2863 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2; 2864 } 2865 2866 case ARM::LDR_POST_REG: 2867 case ARM::LDRB_POST_REG: 2868 case ARM::LDRH_POST: { 2869 unsigned Rt = MI.getOperand(0).getReg(); 2870 unsigned Rm = MI.getOperand(3).getReg(); 2871 return (Rt == Rm) ? 3 : 2; 2872 } 2873 2874 case ARM::LDR_PRE_IMM: 2875 case ARM::LDRB_PRE_IMM: 2876 case ARM::LDR_POST_IMM: 2877 case ARM::LDRB_POST_IMM: 2878 case ARM::STRB_POST_IMM: 2879 case ARM::STRB_POST_REG: 2880 case ARM::STRB_PRE_IMM: 2881 case ARM::STRH_POST: 2882 case ARM::STR_POST_IMM: 2883 case ARM::STR_POST_REG: 2884 case ARM::STR_PRE_IMM: 2885 return 2; 2886 2887 case ARM::LDRSB_PRE: 2888 case ARM::LDRSH_PRE: { 2889 unsigned Rm = MI.getOperand(3).getReg(); 2890 if (Rm == 0) 2891 return 3; 2892 unsigned Rt = MI.getOperand(0).getReg(); 2893 if (Rt == Rm) 2894 return 4; 2895 unsigned ShOpVal = MI.getOperand(4).getImm(); 2896 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 2897 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 2898 if (!isSub && 2899 (ShImm == 0 || 2900 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 2901 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 2902 return 3; 2903 return 4; 2904 } 2905 2906 case ARM::LDRD: { 2907 unsigned Rt = MI.getOperand(0).getReg(); 2908 unsigned Rn = MI.getOperand(2).getReg(); 2909 unsigned Rm = MI.getOperand(3).getReg(); 2910 if (Rm) 2911 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 2912 : 3; 2913 return (Rt == Rn) ? 3 : 2; 2914 } 2915 2916 case ARM::STRD: { 2917 unsigned Rm = MI.getOperand(3).getReg(); 2918 if (Rm) 2919 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 2920 : 3; 2921 return 2; 2922 } 2923 2924 case ARM::LDRD_POST: 2925 case ARM::t2LDRD_POST: 2926 return 3; 2927 2928 case ARM::STRD_POST: 2929 case ARM::t2STRD_POST: 2930 return 4; 2931 2932 case ARM::LDRD_PRE: { 2933 unsigned Rt = MI.getOperand(0).getReg(); 2934 unsigned Rn = MI.getOperand(3).getReg(); 2935 unsigned Rm = MI.getOperand(4).getReg(); 2936 if (Rm) 2937 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 2938 : 4; 2939 return (Rt == Rn) ? 4 : 3; 2940 } 2941 2942 case ARM::t2LDRD_PRE: { 2943 unsigned Rt = MI.getOperand(0).getReg(); 2944 unsigned Rn = MI.getOperand(3).getReg(); 2945 return (Rt == Rn) ? 4 : 3; 2946 } 2947 2948 case ARM::STRD_PRE: { 2949 unsigned Rm = MI.getOperand(4).getReg(); 2950 if (Rm) 2951 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 2952 : 4; 2953 return 3; 2954 } 2955 2956 case ARM::t2STRD_PRE: 2957 return 3; 2958 2959 case ARM::t2LDR_POST: 2960 case ARM::t2LDRB_POST: 2961 case ARM::t2LDRB_PRE: 2962 case ARM::t2LDRSBi12: 2963 case ARM::t2LDRSBi8: 2964 case ARM::t2LDRSBpci: 2965 case ARM::t2LDRSBs: 2966 case ARM::t2LDRH_POST: 2967 case ARM::t2LDRH_PRE: 2968 case ARM::t2LDRSBT: 2969 case ARM::t2LDRSB_POST: 2970 case ARM::t2LDRSB_PRE: 2971 case ARM::t2LDRSH_POST: 2972 case ARM::t2LDRSH_PRE: 2973 case ARM::t2LDRSHi12: 2974 case ARM::t2LDRSHi8: 2975 case ARM::t2LDRSHpci: 2976 case ARM::t2LDRSHs: 2977 return 2; 2978 2979 case ARM::t2LDRDi8: { 2980 unsigned Rt = MI.getOperand(0).getReg(); 2981 unsigned Rn = MI.getOperand(2).getReg(); 2982 return (Rt == Rn) ? 3 : 2; 2983 } 2984 2985 case ARM::t2STRB_POST: 2986 case ARM::t2STRB_PRE: 2987 case ARM::t2STRBs: 2988 case ARM::t2STRDi8: 2989 case ARM::t2STRH_POST: 2990 case ARM::t2STRH_PRE: 2991 case ARM::t2STRHs: 2992 case ARM::t2STR_POST: 2993 case ARM::t2STR_PRE: 2994 case ARM::t2STRs: 2995 return 2; 2996 } 2997 } 2998 2999 // Return the number of 32-bit words loaded by LDM or stored by STM. If this 3000 // can't be easily determined return 0 (missing MachineMemOperand). 3001 // 3002 // FIXME: The current MachineInstr design does not support relying on machine 3003 // mem operands to determine the width of a memory access. Instead, we expect 3004 // the target to provide this information based on the instruction opcode and 3005 // operands. However, using MachineMemOperand is the best solution now for 3006 // two reasons: 3007 // 3008 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI 3009 // operands. This is much more dangerous than using the MachineMemOperand 3010 // sizes because CodeGen passes can insert/remove optional machine operands. In 3011 // fact, it's totally incorrect for preRA passes and appears to be wrong for 3012 // postRA passes as well. 3013 // 3014 // 2) getNumLDMAddresses is only used by the scheduling machine model and any 3015 // machine model that calls this should handle the unknown (zero size) case. 3016 // 3017 // Long term, we should require a target hook that verifies MachineMemOperand 3018 // sizes during MC lowering. That target hook should be local to MC lowering 3019 // because we can't ensure that it is aware of other MI forms. Doing this will 3020 // ensure that MachineMemOperands are correctly propagated through all passes. 3021 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const { 3022 unsigned Size = 0; 3023 for (MachineInstr::mmo_iterator I = MI.memoperands_begin(), 3024 E = MI.memoperands_end(); 3025 I != E; ++I) { 3026 Size += (*I)->getSize(); 3027 } 3028 return Size / 4; 3029 } 3030 3031 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc, 3032 unsigned NumRegs) { 3033 unsigned UOps = 1 + NumRegs; // 1 for address computation. 3034 switch (Opc) { 3035 default: 3036 break; 3037 case ARM::VLDMDIA_UPD: 3038 case ARM::VLDMDDB_UPD: 3039 case ARM::VLDMSIA_UPD: 3040 case ARM::VLDMSDB_UPD: 3041 case ARM::VSTMDIA_UPD: 3042 case ARM::VSTMDDB_UPD: 3043 case ARM::VSTMSIA_UPD: 3044 case ARM::VSTMSDB_UPD: 3045 case ARM::LDMIA_UPD: 3046 case ARM::LDMDA_UPD: 3047 case ARM::LDMDB_UPD: 3048 case ARM::LDMIB_UPD: 3049 case ARM::STMIA_UPD: 3050 case ARM::STMDA_UPD: 3051 case ARM::STMDB_UPD: 3052 case ARM::STMIB_UPD: 3053 case ARM::tLDMIA_UPD: 3054 case ARM::tSTMIA_UPD: 3055 case ARM::t2LDMIA_UPD: 3056 case ARM::t2LDMDB_UPD: 3057 case ARM::t2STMIA_UPD: 3058 case ARM::t2STMDB_UPD: 3059 ++UOps; // One for base register writeback. 3060 break; 3061 case ARM::LDMIA_RET: 3062 case ARM::tPOP_RET: 3063 case ARM::t2LDMIA_RET: 3064 UOps += 2; // One for base reg wb, one for write to pc. 3065 break; 3066 } 3067 return UOps; 3068 } 3069 3070 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, 3071 const MachineInstr &MI) const { 3072 if (!ItinData || ItinData->isEmpty()) 3073 return 1; 3074 3075 const MCInstrDesc &Desc = MI.getDesc(); 3076 unsigned Class = Desc.getSchedClass(); 3077 int ItinUOps = ItinData->getNumMicroOps(Class); 3078 if (ItinUOps >= 0) { 3079 if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore())) 3080 return getNumMicroOpsSwiftLdSt(ItinData, MI); 3081 3082 return ItinUOps; 3083 } 3084 3085 unsigned Opc = MI.getOpcode(); 3086 switch (Opc) { 3087 default: 3088 llvm_unreachable("Unexpected multi-uops instruction!"); 3089 case ARM::VLDMQIA: 3090 case ARM::VSTMQIA: 3091 return 2; 3092 3093 // The number of uOps for load / store multiple are determined by the number 3094 // registers. 3095 // 3096 // On Cortex-A8, each pair of register loads / stores can be scheduled on the 3097 // same cycle. The scheduling for the first load / store must be done 3098 // separately by assuming the address is not 64-bit aligned. 3099 // 3100 // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address 3101 // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON 3102 // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1. 3103 case ARM::VLDMDIA: 3104 case ARM::VLDMDIA_UPD: 3105 case ARM::VLDMDDB_UPD: 3106 case ARM::VLDMSIA: 3107 case ARM::VLDMSIA_UPD: 3108 case ARM::VLDMSDB_UPD: 3109 case ARM::VSTMDIA: 3110 case ARM::VSTMDIA_UPD: 3111 case ARM::VSTMDDB_UPD: 3112 case ARM::VSTMSIA: 3113 case ARM::VSTMSIA_UPD: 3114 case ARM::VSTMSDB_UPD: { 3115 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands(); 3116 return (NumRegs / 2) + (NumRegs % 2) + 1; 3117 } 3118 3119 case ARM::LDMIA_RET: 3120 case ARM::LDMIA: 3121 case ARM::LDMDA: 3122 case ARM::LDMDB: 3123 case ARM::LDMIB: 3124 case ARM::LDMIA_UPD: 3125 case ARM::LDMDA_UPD: 3126 case ARM::LDMDB_UPD: 3127 case ARM::LDMIB_UPD: 3128 case ARM::STMIA: 3129 case ARM::STMDA: 3130 case ARM::STMDB: 3131 case ARM::STMIB: 3132 case ARM::STMIA_UPD: 3133 case ARM::STMDA_UPD: 3134 case ARM::STMDB_UPD: 3135 case ARM::STMIB_UPD: 3136 case ARM::tLDMIA: 3137 case ARM::tLDMIA_UPD: 3138 case ARM::tSTMIA_UPD: 3139 case ARM::tPOP_RET: 3140 case ARM::tPOP: 3141 case ARM::tPUSH: 3142 case ARM::t2LDMIA_RET: 3143 case ARM::t2LDMIA: 3144 case ARM::t2LDMDB: 3145 case ARM::t2LDMIA_UPD: 3146 case ARM::t2LDMDB_UPD: 3147 case ARM::t2STMIA: 3148 case ARM::t2STMDB: 3149 case ARM::t2STMIA_UPD: 3150 case ARM::t2STMDB_UPD: { 3151 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1; 3152 switch (Subtarget.getLdStMultipleTiming()) { 3153 case ARMSubtarget::SingleIssuePlusExtras: 3154 return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs); 3155 case ARMSubtarget::SingleIssue: 3156 // Assume the worst. 3157 return NumRegs; 3158 case ARMSubtarget::DoubleIssue: { 3159 if (NumRegs < 4) 3160 return 2; 3161 // 4 registers would be issued: 2, 2. 3162 // 5 registers would be issued: 2, 2, 1. 3163 unsigned UOps = (NumRegs / 2); 3164 if (NumRegs % 2) 3165 ++UOps; 3166 return UOps; 3167 } 3168 case ARMSubtarget::DoubleIssueCheckUnalignedAccess: { 3169 unsigned UOps = (NumRegs / 2); 3170 // If there are odd number of registers or if it's not 64-bit aligned, 3171 // then it takes an extra AGU (Address Generation Unit) cycle. 3172 if ((NumRegs % 2) || !MI.hasOneMemOperand() || 3173 (*MI.memoperands_begin())->getAlignment() < 8) 3174 ++UOps; 3175 return UOps; 3176 } 3177 } 3178 } 3179 } 3180 llvm_unreachable("Didn't find the number of microops"); 3181 } 3182 3183 int 3184 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData, 3185 const MCInstrDesc &DefMCID, 3186 unsigned DefClass, 3187 unsigned DefIdx, unsigned DefAlign) const { 3188 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 3189 if (RegNo <= 0) 3190 // Def is the address writeback. 3191 return ItinData->getOperandCycle(DefClass, DefIdx); 3192 3193 int DefCycle; 3194 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3195 // (regno / 2) + (regno % 2) + 1 3196 DefCycle = RegNo / 2 + 1; 3197 if (RegNo % 2) 3198 ++DefCycle; 3199 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3200 DefCycle = RegNo; 3201 bool isSLoad = false; 3202 3203 switch (DefMCID.getOpcode()) { 3204 default: break; 3205 case ARM::VLDMSIA: 3206 case ARM::VLDMSIA_UPD: 3207 case ARM::VLDMSDB_UPD: 3208 isSLoad = true; 3209 break; 3210 } 3211 3212 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 3213 // then it takes an extra cycle. 3214 if ((isSLoad && (RegNo % 2)) || DefAlign < 8) 3215 ++DefCycle; 3216 } else { 3217 // Assume the worst. 3218 DefCycle = RegNo + 2; 3219 } 3220 3221 return DefCycle; 3222 } 3223 3224 int 3225 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData, 3226 const MCInstrDesc &DefMCID, 3227 unsigned DefClass, 3228 unsigned DefIdx, unsigned DefAlign) const { 3229 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 3230 if (RegNo <= 0) 3231 // Def is the address writeback. 3232 return ItinData->getOperandCycle(DefClass, DefIdx); 3233 3234 int DefCycle; 3235 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3236 // 4 registers would be issued: 1, 2, 1. 3237 // 5 registers would be issued: 1, 2, 2. 3238 DefCycle = RegNo / 2; 3239 if (DefCycle < 1) 3240 DefCycle = 1; 3241 // Result latency is issue cycle + 2: E2. 3242 DefCycle += 2; 3243 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3244 DefCycle = (RegNo / 2); 3245 // If there are odd number of registers or if it's not 64-bit aligned, 3246 // then it takes an extra AGU (Address Generation Unit) cycle. 3247 if ((RegNo % 2) || DefAlign < 8) 3248 ++DefCycle; 3249 // Result latency is AGU cycles + 2. 3250 DefCycle += 2; 3251 } else { 3252 // Assume the worst. 3253 DefCycle = RegNo + 2; 3254 } 3255 3256 return DefCycle; 3257 } 3258 3259 int 3260 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData, 3261 const MCInstrDesc &UseMCID, 3262 unsigned UseClass, 3263 unsigned UseIdx, unsigned UseAlign) const { 3264 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 3265 if (RegNo <= 0) 3266 return ItinData->getOperandCycle(UseClass, UseIdx); 3267 3268 int UseCycle; 3269 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3270 // (regno / 2) + (regno % 2) + 1 3271 UseCycle = RegNo / 2 + 1; 3272 if (RegNo % 2) 3273 ++UseCycle; 3274 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3275 UseCycle = RegNo; 3276 bool isSStore = false; 3277 3278 switch (UseMCID.getOpcode()) { 3279 default: break; 3280 case ARM::VSTMSIA: 3281 case ARM::VSTMSIA_UPD: 3282 case ARM::VSTMSDB_UPD: 3283 isSStore = true; 3284 break; 3285 } 3286 3287 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 3288 // then it takes an extra cycle. 3289 if ((isSStore && (RegNo % 2)) || UseAlign < 8) 3290 ++UseCycle; 3291 } else { 3292 // Assume the worst. 3293 UseCycle = RegNo + 2; 3294 } 3295 3296 return UseCycle; 3297 } 3298 3299 int 3300 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData, 3301 const MCInstrDesc &UseMCID, 3302 unsigned UseClass, 3303 unsigned UseIdx, unsigned UseAlign) const { 3304 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 3305 if (RegNo <= 0) 3306 return ItinData->getOperandCycle(UseClass, UseIdx); 3307 3308 int UseCycle; 3309 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3310 UseCycle = RegNo / 2; 3311 if (UseCycle < 2) 3312 UseCycle = 2; 3313 // Read in E3. 3314 UseCycle += 2; 3315 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3316 UseCycle = (RegNo / 2); 3317 // If there are odd number of registers or if it's not 64-bit aligned, 3318 // then it takes an extra AGU (Address Generation Unit) cycle. 3319 if ((RegNo % 2) || UseAlign < 8) 3320 ++UseCycle; 3321 } else { 3322 // Assume the worst. 3323 UseCycle = 1; 3324 } 3325 return UseCycle; 3326 } 3327 3328 int 3329 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 3330 const MCInstrDesc &DefMCID, 3331 unsigned DefIdx, unsigned DefAlign, 3332 const MCInstrDesc &UseMCID, 3333 unsigned UseIdx, unsigned UseAlign) const { 3334 unsigned DefClass = DefMCID.getSchedClass(); 3335 unsigned UseClass = UseMCID.getSchedClass(); 3336 3337 if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands()) 3338 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 3339 3340 // This may be a def / use of a variable_ops instruction, the operand 3341 // latency might be determinable dynamically. Let the target try to 3342 // figure it out. 3343 int DefCycle = -1; 3344 bool LdmBypass = false; 3345 switch (DefMCID.getOpcode()) { 3346 default: 3347 DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 3348 break; 3349 3350 case ARM::VLDMDIA: 3351 case ARM::VLDMDIA_UPD: 3352 case ARM::VLDMDDB_UPD: 3353 case ARM::VLDMSIA: 3354 case ARM::VLDMSIA_UPD: 3355 case ARM::VLDMSDB_UPD: 3356 DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 3357 break; 3358 3359 case ARM::LDMIA_RET: 3360 case ARM::LDMIA: 3361 case ARM::LDMDA: 3362 case ARM::LDMDB: 3363 case ARM::LDMIB: 3364 case ARM::LDMIA_UPD: 3365 case ARM::LDMDA_UPD: 3366 case ARM::LDMDB_UPD: 3367 case ARM::LDMIB_UPD: 3368 case ARM::tLDMIA: 3369 case ARM::tLDMIA_UPD: 3370 case ARM::tPUSH: 3371 case ARM::t2LDMIA_RET: 3372 case ARM::t2LDMIA: 3373 case ARM::t2LDMDB: 3374 case ARM::t2LDMIA_UPD: 3375 case ARM::t2LDMDB_UPD: 3376 LdmBypass = 1; 3377 DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 3378 break; 3379 } 3380 3381 if (DefCycle == -1) 3382 // We can't seem to determine the result latency of the def, assume it's 2. 3383 DefCycle = 2; 3384 3385 int UseCycle = -1; 3386 switch (UseMCID.getOpcode()) { 3387 default: 3388 UseCycle = ItinData->getOperandCycle(UseClass, UseIdx); 3389 break; 3390 3391 case ARM::VSTMDIA: 3392 case ARM::VSTMDIA_UPD: 3393 case ARM::VSTMDDB_UPD: 3394 case ARM::VSTMSIA: 3395 case ARM::VSTMSIA_UPD: 3396 case ARM::VSTMSDB_UPD: 3397 UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 3398 break; 3399 3400 case ARM::STMIA: 3401 case ARM::STMDA: 3402 case ARM::STMDB: 3403 case ARM::STMIB: 3404 case ARM::STMIA_UPD: 3405 case ARM::STMDA_UPD: 3406 case ARM::STMDB_UPD: 3407 case ARM::STMIB_UPD: 3408 case ARM::tSTMIA_UPD: 3409 case ARM::tPOP_RET: 3410 case ARM::tPOP: 3411 case ARM::t2STMIA: 3412 case ARM::t2STMDB: 3413 case ARM::t2STMIA_UPD: 3414 case ARM::t2STMDB_UPD: 3415 UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 3416 break; 3417 } 3418 3419 if (UseCycle == -1) 3420 // Assume it's read in the first stage. 3421 UseCycle = 1; 3422 3423 UseCycle = DefCycle - UseCycle + 1; 3424 if (UseCycle > 0) { 3425 if (LdmBypass) { 3426 // It's a variable_ops instruction so we can't use DefIdx here. Just use 3427 // first def operand. 3428 if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1, 3429 UseClass, UseIdx)) 3430 --UseCycle; 3431 } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx, 3432 UseClass, UseIdx)) { 3433 --UseCycle; 3434 } 3435 } 3436 3437 return UseCycle; 3438 } 3439 3440 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI, 3441 const MachineInstr *MI, unsigned Reg, 3442 unsigned &DefIdx, unsigned &Dist) { 3443 Dist = 0; 3444 3445 MachineBasicBlock::const_iterator I = MI; ++I; 3446 MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator()); 3447 assert(II->isInsideBundle() && "Empty bundle?"); 3448 3449 int Idx = -1; 3450 while (II->isInsideBundle()) { 3451 Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI); 3452 if (Idx != -1) 3453 break; 3454 --II; 3455 ++Dist; 3456 } 3457 3458 assert(Idx != -1 && "Cannot find bundled definition!"); 3459 DefIdx = Idx; 3460 return &*II; 3461 } 3462 3463 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI, 3464 const MachineInstr &MI, unsigned Reg, 3465 unsigned &UseIdx, unsigned &Dist) { 3466 Dist = 0; 3467 3468 MachineBasicBlock::const_instr_iterator II = ++MI.getIterator(); 3469 assert(II->isInsideBundle() && "Empty bundle?"); 3470 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 3471 3472 // FIXME: This doesn't properly handle multiple uses. 3473 int Idx = -1; 3474 while (II != E && II->isInsideBundle()) { 3475 Idx = II->findRegisterUseOperandIdx(Reg, false, TRI); 3476 if (Idx != -1) 3477 break; 3478 if (II->getOpcode() != ARM::t2IT) 3479 ++Dist; 3480 ++II; 3481 } 3482 3483 if (Idx == -1) { 3484 Dist = 0; 3485 return nullptr; 3486 } 3487 3488 UseIdx = Idx; 3489 return &*II; 3490 } 3491 3492 /// Return the number of cycles to add to (or subtract from) the static 3493 /// itinerary based on the def opcode and alignment. The caller will ensure that 3494 /// adjusted latency is at least one cycle. 3495 static int adjustDefLatency(const ARMSubtarget &Subtarget, 3496 const MachineInstr &DefMI, 3497 const MCInstrDesc &DefMCID, unsigned DefAlign) { 3498 int Adjust = 0; 3499 if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) { 3500 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 3501 // variants are one cycle cheaper. 3502 switch (DefMCID.getOpcode()) { 3503 default: break; 3504 case ARM::LDRrs: 3505 case ARM::LDRBrs: { 3506 unsigned ShOpVal = DefMI.getOperand(3).getImm(); 3507 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3508 if (ShImm == 0 || 3509 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 3510 --Adjust; 3511 break; 3512 } 3513 case ARM::t2LDRs: 3514 case ARM::t2LDRBs: 3515 case ARM::t2LDRHs: 3516 case ARM::t2LDRSHs: { 3517 // Thumb2 mode: lsl only. 3518 unsigned ShAmt = DefMI.getOperand(3).getImm(); 3519 if (ShAmt == 0 || ShAmt == 2) 3520 --Adjust; 3521 break; 3522 } 3523 } 3524 } else if (Subtarget.isSwift()) { 3525 // FIXME: Properly handle all of the latency adjustments for address 3526 // writeback. 3527 switch (DefMCID.getOpcode()) { 3528 default: break; 3529 case ARM::LDRrs: 3530 case ARM::LDRBrs: { 3531 unsigned ShOpVal = DefMI.getOperand(3).getImm(); 3532 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3533 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3534 if (!isSub && 3535 (ShImm == 0 || 3536 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3537 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3538 Adjust -= 2; 3539 else if (!isSub && 3540 ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) 3541 --Adjust; 3542 break; 3543 } 3544 case ARM::t2LDRs: 3545 case ARM::t2LDRBs: 3546 case ARM::t2LDRHs: 3547 case ARM::t2LDRSHs: { 3548 // Thumb2 mode: lsl only. 3549 unsigned ShAmt = DefMI.getOperand(3).getImm(); 3550 if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3) 3551 Adjust -= 2; 3552 break; 3553 } 3554 } 3555 } 3556 3557 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) { 3558 switch (DefMCID.getOpcode()) { 3559 default: break; 3560 case ARM::VLD1q8: 3561 case ARM::VLD1q16: 3562 case ARM::VLD1q32: 3563 case ARM::VLD1q64: 3564 case ARM::VLD1q8wb_fixed: 3565 case ARM::VLD1q16wb_fixed: 3566 case ARM::VLD1q32wb_fixed: 3567 case ARM::VLD1q64wb_fixed: 3568 case ARM::VLD1q8wb_register: 3569 case ARM::VLD1q16wb_register: 3570 case ARM::VLD1q32wb_register: 3571 case ARM::VLD1q64wb_register: 3572 case ARM::VLD2d8: 3573 case ARM::VLD2d16: 3574 case ARM::VLD2d32: 3575 case ARM::VLD2q8: 3576 case ARM::VLD2q16: 3577 case ARM::VLD2q32: 3578 case ARM::VLD2d8wb_fixed: 3579 case ARM::VLD2d16wb_fixed: 3580 case ARM::VLD2d32wb_fixed: 3581 case ARM::VLD2q8wb_fixed: 3582 case ARM::VLD2q16wb_fixed: 3583 case ARM::VLD2q32wb_fixed: 3584 case ARM::VLD2d8wb_register: 3585 case ARM::VLD2d16wb_register: 3586 case ARM::VLD2d32wb_register: 3587 case ARM::VLD2q8wb_register: 3588 case ARM::VLD2q16wb_register: 3589 case ARM::VLD2q32wb_register: 3590 case ARM::VLD3d8: 3591 case ARM::VLD3d16: 3592 case ARM::VLD3d32: 3593 case ARM::VLD1d64T: 3594 case ARM::VLD3d8_UPD: 3595 case ARM::VLD3d16_UPD: 3596 case ARM::VLD3d32_UPD: 3597 case ARM::VLD1d64Twb_fixed: 3598 case ARM::VLD1d64Twb_register: 3599 case ARM::VLD3q8_UPD: 3600 case ARM::VLD3q16_UPD: 3601 case ARM::VLD3q32_UPD: 3602 case ARM::VLD4d8: 3603 case ARM::VLD4d16: 3604 case ARM::VLD4d32: 3605 case ARM::VLD1d64Q: 3606 case ARM::VLD4d8_UPD: 3607 case ARM::VLD4d16_UPD: 3608 case ARM::VLD4d32_UPD: 3609 case ARM::VLD1d64Qwb_fixed: 3610 case ARM::VLD1d64Qwb_register: 3611 case ARM::VLD4q8_UPD: 3612 case ARM::VLD4q16_UPD: 3613 case ARM::VLD4q32_UPD: 3614 case ARM::VLD1DUPq8: 3615 case ARM::VLD1DUPq16: 3616 case ARM::VLD1DUPq32: 3617 case ARM::VLD1DUPq8wb_fixed: 3618 case ARM::VLD1DUPq16wb_fixed: 3619 case ARM::VLD1DUPq32wb_fixed: 3620 case ARM::VLD1DUPq8wb_register: 3621 case ARM::VLD1DUPq16wb_register: 3622 case ARM::VLD1DUPq32wb_register: 3623 case ARM::VLD2DUPd8: 3624 case ARM::VLD2DUPd16: 3625 case ARM::VLD2DUPd32: 3626 case ARM::VLD2DUPd8wb_fixed: 3627 case ARM::VLD2DUPd16wb_fixed: 3628 case ARM::VLD2DUPd32wb_fixed: 3629 case ARM::VLD2DUPd8wb_register: 3630 case ARM::VLD2DUPd16wb_register: 3631 case ARM::VLD2DUPd32wb_register: 3632 case ARM::VLD4DUPd8: 3633 case ARM::VLD4DUPd16: 3634 case ARM::VLD4DUPd32: 3635 case ARM::VLD4DUPd8_UPD: 3636 case ARM::VLD4DUPd16_UPD: 3637 case ARM::VLD4DUPd32_UPD: 3638 case ARM::VLD1LNd8: 3639 case ARM::VLD1LNd16: 3640 case ARM::VLD1LNd32: 3641 case ARM::VLD1LNd8_UPD: 3642 case ARM::VLD1LNd16_UPD: 3643 case ARM::VLD1LNd32_UPD: 3644 case ARM::VLD2LNd8: 3645 case ARM::VLD2LNd16: 3646 case ARM::VLD2LNd32: 3647 case ARM::VLD2LNq16: 3648 case ARM::VLD2LNq32: 3649 case ARM::VLD2LNd8_UPD: 3650 case ARM::VLD2LNd16_UPD: 3651 case ARM::VLD2LNd32_UPD: 3652 case ARM::VLD2LNq16_UPD: 3653 case ARM::VLD2LNq32_UPD: 3654 case ARM::VLD4LNd8: 3655 case ARM::VLD4LNd16: 3656 case ARM::VLD4LNd32: 3657 case ARM::VLD4LNq16: 3658 case ARM::VLD4LNq32: 3659 case ARM::VLD4LNd8_UPD: 3660 case ARM::VLD4LNd16_UPD: 3661 case ARM::VLD4LNd32_UPD: 3662 case ARM::VLD4LNq16_UPD: 3663 case ARM::VLD4LNq32_UPD: 3664 // If the address is not 64-bit aligned, the latencies of these 3665 // instructions increases by one. 3666 ++Adjust; 3667 break; 3668 } 3669 } 3670 return Adjust; 3671 } 3672 3673 int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 3674 const MachineInstr &DefMI, 3675 unsigned DefIdx, 3676 const MachineInstr &UseMI, 3677 unsigned UseIdx) const { 3678 // No operand latency. The caller may fall back to getInstrLatency. 3679 if (!ItinData || ItinData->isEmpty()) 3680 return -1; 3681 3682 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 3683 unsigned Reg = DefMO.getReg(); 3684 3685 const MachineInstr *ResolvedDefMI = &DefMI; 3686 unsigned DefAdj = 0; 3687 if (DefMI.isBundle()) 3688 ResolvedDefMI = 3689 getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj); 3690 if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() || 3691 ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) { 3692 return 1; 3693 } 3694 3695 const MachineInstr *ResolvedUseMI = &UseMI; 3696 unsigned UseAdj = 0; 3697 if (UseMI.isBundle()) { 3698 ResolvedUseMI = 3699 getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj); 3700 if (!ResolvedUseMI) 3701 return -1; 3702 } 3703 3704 return getOperandLatencyImpl( 3705 ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO, 3706 Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj); 3707 } 3708 3709 int ARMBaseInstrInfo::getOperandLatencyImpl( 3710 const InstrItineraryData *ItinData, const MachineInstr &DefMI, 3711 unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj, 3712 const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI, 3713 unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const { 3714 if (Reg == ARM::CPSR) { 3715 if (DefMI.getOpcode() == ARM::FMSTAT) { 3716 // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?) 3717 return Subtarget.isLikeA9() ? 1 : 20; 3718 } 3719 3720 // CPSR set and branch can be paired in the same cycle. 3721 if (UseMI.isBranch()) 3722 return 0; 3723 3724 // Otherwise it takes the instruction latency (generally one). 3725 unsigned Latency = getInstrLatency(ItinData, DefMI); 3726 3727 // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to 3728 // its uses. Instructions which are otherwise scheduled between them may 3729 // incur a code size penalty (not able to use the CPSR setting 16-bit 3730 // instructions). 3731 if (Latency > 0 && Subtarget.isThumb2()) { 3732 const MachineFunction *MF = DefMI.getParent()->getParent(); 3733 // FIXME: Use Function::optForSize(). 3734 if (MF->getFunction()->hasFnAttribute(Attribute::OptimizeForSize)) 3735 --Latency; 3736 } 3737 return Latency; 3738 } 3739 3740 if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit()) 3741 return -1; 3742 3743 unsigned DefAlign = DefMI.hasOneMemOperand() 3744 ? (*DefMI.memoperands_begin())->getAlignment() 3745 : 0; 3746 unsigned UseAlign = UseMI.hasOneMemOperand() 3747 ? (*UseMI.memoperands_begin())->getAlignment() 3748 : 0; 3749 3750 // Get the itinerary's latency if possible, and handle variable_ops. 3751 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID, 3752 UseIdx, UseAlign); 3753 // Unable to find operand latency. The caller may resort to getInstrLatency. 3754 if (Latency < 0) 3755 return Latency; 3756 3757 // Adjust for IT block position. 3758 int Adj = DefAdj + UseAdj; 3759 3760 // Adjust for dynamic def-side opcode variants not captured by the itinerary. 3761 Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign); 3762 if (Adj >= 0 || (int)Latency > -Adj) { 3763 return Latency + Adj; 3764 } 3765 // Return the itinerary latency, which may be zero but not less than zero. 3766 return Latency; 3767 } 3768 3769 int 3770 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 3771 SDNode *DefNode, unsigned DefIdx, 3772 SDNode *UseNode, unsigned UseIdx) const { 3773 if (!DefNode->isMachineOpcode()) 3774 return 1; 3775 3776 const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode()); 3777 3778 if (isZeroCost(DefMCID.Opcode)) 3779 return 0; 3780 3781 if (!ItinData || ItinData->isEmpty()) 3782 return DefMCID.mayLoad() ? 3 : 1; 3783 3784 if (!UseNode->isMachineOpcode()) { 3785 int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx); 3786 int Adj = Subtarget.getPreISelOperandLatencyAdjustment(); 3787 int Threshold = 1 + Adj; 3788 return Latency <= Threshold ? 1 : Latency - Adj; 3789 } 3790 3791 const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode()); 3792 const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode); 3793 unsigned DefAlign = !DefMN->memoperands_empty() 3794 ? (*DefMN->memoperands_begin())->getAlignment() : 0; 3795 const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode); 3796 unsigned UseAlign = !UseMN->memoperands_empty() 3797 ? (*UseMN->memoperands_begin())->getAlignment() : 0; 3798 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, 3799 UseMCID, UseIdx, UseAlign); 3800 3801 if (Latency > 1 && 3802 (Subtarget.isCortexA8() || Subtarget.isLikeA9() || 3803 Subtarget.isCortexA7())) { 3804 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 3805 // variants are one cycle cheaper. 3806 switch (DefMCID.getOpcode()) { 3807 default: break; 3808 case ARM::LDRrs: 3809 case ARM::LDRBrs: { 3810 unsigned ShOpVal = 3811 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 3812 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3813 if (ShImm == 0 || 3814 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 3815 --Latency; 3816 break; 3817 } 3818 case ARM::t2LDRs: 3819 case ARM::t2LDRBs: 3820 case ARM::t2LDRHs: 3821 case ARM::t2LDRSHs: { 3822 // Thumb2 mode: lsl only. 3823 unsigned ShAmt = 3824 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 3825 if (ShAmt == 0 || ShAmt == 2) 3826 --Latency; 3827 break; 3828 } 3829 } 3830 } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) { 3831 // FIXME: Properly handle all of the latency adjustments for address 3832 // writeback. 3833 switch (DefMCID.getOpcode()) { 3834 default: break; 3835 case ARM::LDRrs: 3836 case ARM::LDRBrs: { 3837 unsigned ShOpVal = 3838 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 3839 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3840 if (ShImm == 0 || 3841 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3842 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 3843 Latency -= 2; 3844 else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) 3845 --Latency; 3846 break; 3847 } 3848 case ARM::t2LDRs: 3849 case ARM::t2LDRBs: 3850 case ARM::t2LDRHs: 3851 case ARM::t2LDRSHs: { 3852 // Thumb2 mode: lsl 0-3 only. 3853 Latency -= 2; 3854 break; 3855 } 3856 } 3857 } 3858 3859 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) 3860 switch (DefMCID.getOpcode()) { 3861 default: break; 3862 case ARM::VLD1q8: 3863 case ARM::VLD1q16: 3864 case ARM::VLD1q32: 3865 case ARM::VLD1q64: 3866 case ARM::VLD1q8wb_register: 3867 case ARM::VLD1q16wb_register: 3868 case ARM::VLD1q32wb_register: 3869 case ARM::VLD1q64wb_register: 3870 case ARM::VLD1q8wb_fixed: 3871 case ARM::VLD1q16wb_fixed: 3872 case ARM::VLD1q32wb_fixed: 3873 case ARM::VLD1q64wb_fixed: 3874 case ARM::VLD2d8: 3875 case ARM::VLD2d16: 3876 case ARM::VLD2d32: 3877 case ARM::VLD2q8Pseudo: 3878 case ARM::VLD2q16Pseudo: 3879 case ARM::VLD2q32Pseudo: 3880 case ARM::VLD2d8wb_fixed: 3881 case ARM::VLD2d16wb_fixed: 3882 case ARM::VLD2d32wb_fixed: 3883 case ARM::VLD2q8PseudoWB_fixed: 3884 case ARM::VLD2q16PseudoWB_fixed: 3885 case ARM::VLD2q32PseudoWB_fixed: 3886 case ARM::VLD2d8wb_register: 3887 case ARM::VLD2d16wb_register: 3888 case ARM::VLD2d32wb_register: 3889 case ARM::VLD2q8PseudoWB_register: 3890 case ARM::VLD2q16PseudoWB_register: 3891 case ARM::VLD2q32PseudoWB_register: 3892 case ARM::VLD3d8Pseudo: 3893 case ARM::VLD3d16Pseudo: 3894 case ARM::VLD3d32Pseudo: 3895 case ARM::VLD1d64TPseudo: 3896 case ARM::VLD1d64TPseudoWB_fixed: 3897 case ARM::VLD3d8Pseudo_UPD: 3898 case ARM::VLD3d16Pseudo_UPD: 3899 case ARM::VLD3d32Pseudo_UPD: 3900 case ARM::VLD3q8Pseudo_UPD: 3901 case ARM::VLD3q16Pseudo_UPD: 3902 case ARM::VLD3q32Pseudo_UPD: 3903 case ARM::VLD3q8oddPseudo: 3904 case ARM::VLD3q16oddPseudo: 3905 case ARM::VLD3q32oddPseudo: 3906 case ARM::VLD3q8oddPseudo_UPD: 3907 case ARM::VLD3q16oddPseudo_UPD: 3908 case ARM::VLD3q32oddPseudo_UPD: 3909 case ARM::VLD4d8Pseudo: 3910 case ARM::VLD4d16Pseudo: 3911 case ARM::VLD4d32Pseudo: 3912 case ARM::VLD1d64QPseudo: 3913 case ARM::VLD1d64QPseudoWB_fixed: 3914 case ARM::VLD4d8Pseudo_UPD: 3915 case ARM::VLD4d16Pseudo_UPD: 3916 case ARM::VLD4d32Pseudo_UPD: 3917 case ARM::VLD4q8Pseudo_UPD: 3918 case ARM::VLD4q16Pseudo_UPD: 3919 case ARM::VLD4q32Pseudo_UPD: 3920 case ARM::VLD4q8oddPseudo: 3921 case ARM::VLD4q16oddPseudo: 3922 case ARM::VLD4q32oddPseudo: 3923 case ARM::VLD4q8oddPseudo_UPD: 3924 case ARM::VLD4q16oddPseudo_UPD: 3925 case ARM::VLD4q32oddPseudo_UPD: 3926 case ARM::VLD1DUPq8: 3927 case ARM::VLD1DUPq16: 3928 case ARM::VLD1DUPq32: 3929 case ARM::VLD1DUPq8wb_fixed: 3930 case ARM::VLD1DUPq16wb_fixed: 3931 case ARM::VLD1DUPq32wb_fixed: 3932 case ARM::VLD1DUPq8wb_register: 3933 case ARM::VLD1DUPq16wb_register: 3934 case ARM::VLD1DUPq32wb_register: 3935 case ARM::VLD2DUPd8: 3936 case ARM::VLD2DUPd16: 3937 case ARM::VLD2DUPd32: 3938 case ARM::VLD2DUPd8wb_fixed: 3939 case ARM::VLD2DUPd16wb_fixed: 3940 case ARM::VLD2DUPd32wb_fixed: 3941 case ARM::VLD2DUPd8wb_register: 3942 case ARM::VLD2DUPd16wb_register: 3943 case ARM::VLD2DUPd32wb_register: 3944 case ARM::VLD4DUPd8Pseudo: 3945 case ARM::VLD4DUPd16Pseudo: 3946 case ARM::VLD4DUPd32Pseudo: 3947 case ARM::VLD4DUPd8Pseudo_UPD: 3948 case ARM::VLD4DUPd16Pseudo_UPD: 3949 case ARM::VLD4DUPd32Pseudo_UPD: 3950 case ARM::VLD1LNq8Pseudo: 3951 case ARM::VLD1LNq16Pseudo: 3952 case ARM::VLD1LNq32Pseudo: 3953 case ARM::VLD1LNq8Pseudo_UPD: 3954 case ARM::VLD1LNq16Pseudo_UPD: 3955 case ARM::VLD1LNq32Pseudo_UPD: 3956 case ARM::VLD2LNd8Pseudo: 3957 case ARM::VLD2LNd16Pseudo: 3958 case ARM::VLD2LNd32Pseudo: 3959 case ARM::VLD2LNq16Pseudo: 3960 case ARM::VLD2LNq32Pseudo: 3961 case ARM::VLD2LNd8Pseudo_UPD: 3962 case ARM::VLD2LNd16Pseudo_UPD: 3963 case ARM::VLD2LNd32Pseudo_UPD: 3964 case ARM::VLD2LNq16Pseudo_UPD: 3965 case ARM::VLD2LNq32Pseudo_UPD: 3966 case ARM::VLD4LNd8Pseudo: 3967 case ARM::VLD4LNd16Pseudo: 3968 case ARM::VLD4LNd32Pseudo: 3969 case ARM::VLD4LNq16Pseudo: 3970 case ARM::VLD4LNq32Pseudo: 3971 case ARM::VLD4LNd8Pseudo_UPD: 3972 case ARM::VLD4LNd16Pseudo_UPD: 3973 case ARM::VLD4LNd32Pseudo_UPD: 3974 case ARM::VLD4LNq16Pseudo_UPD: 3975 case ARM::VLD4LNq32Pseudo_UPD: 3976 // If the address is not 64-bit aligned, the latencies of these 3977 // instructions increases by one. 3978 ++Latency; 3979 break; 3980 } 3981 3982 return Latency; 3983 } 3984 3985 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const { 3986 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || 3987 MI.isImplicitDef()) 3988 return 0; 3989 3990 if (MI.isBundle()) 3991 return 0; 3992 3993 const MCInstrDesc &MCID = MI.getDesc(); 3994 3995 if (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR)) { 3996 // When predicated, CPSR is an additional source operand for CPSR updating 3997 // instructions, this apparently increases their latencies. 3998 return 1; 3999 } 4000 return 0; 4001 } 4002 4003 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 4004 const MachineInstr &MI, 4005 unsigned *PredCost) const { 4006 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || 4007 MI.isImplicitDef()) 4008 return 1; 4009 4010 // An instruction scheduler typically runs on unbundled instructions, however 4011 // other passes may query the latency of a bundled instruction. 4012 if (MI.isBundle()) { 4013 unsigned Latency = 0; 4014 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 4015 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 4016 while (++I != E && I->isInsideBundle()) { 4017 if (I->getOpcode() != ARM::t2IT) 4018 Latency += getInstrLatency(ItinData, *I, PredCost); 4019 } 4020 return Latency; 4021 } 4022 4023 const MCInstrDesc &MCID = MI.getDesc(); 4024 if (PredCost && (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR))) { 4025 // When predicated, CPSR is an additional source operand for CPSR updating 4026 // instructions, this apparently increases their latencies. 4027 *PredCost = 1; 4028 } 4029 // Be sure to call getStageLatency for an empty itinerary in case it has a 4030 // valid MinLatency property. 4031 if (!ItinData) 4032 return MI.mayLoad() ? 3 : 1; 4033 4034 unsigned Class = MCID.getSchedClass(); 4035 4036 // For instructions with variable uops, use uops as latency. 4037 if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0) 4038 return getNumMicroOps(ItinData, MI); 4039 4040 // For the common case, fall back on the itinerary's latency. 4041 unsigned Latency = ItinData->getStageLatency(Class); 4042 4043 // Adjust for dynamic def-side opcode variants not captured by the itinerary. 4044 unsigned DefAlign = 4045 MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlignment() : 0; 4046 int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign); 4047 if (Adj >= 0 || (int)Latency > -Adj) { 4048 return Latency + Adj; 4049 } 4050 return Latency; 4051 } 4052 4053 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 4054 SDNode *Node) const { 4055 if (!Node->isMachineOpcode()) 4056 return 1; 4057 4058 if (!ItinData || ItinData->isEmpty()) 4059 return 1; 4060 4061 unsigned Opcode = Node->getMachineOpcode(); 4062 switch (Opcode) { 4063 default: 4064 return ItinData->getStageLatency(get(Opcode).getSchedClass()); 4065 case ARM::VLDMQIA: 4066 case ARM::VSTMQIA: 4067 return 2; 4068 } 4069 } 4070 4071 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel, 4072 const MachineRegisterInfo *MRI, 4073 const MachineInstr &DefMI, 4074 unsigned DefIdx, 4075 const MachineInstr &UseMI, 4076 unsigned UseIdx) const { 4077 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; 4078 unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask; 4079 if (Subtarget.nonpipelinedVFP() && 4080 (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP)) 4081 return true; 4082 4083 // Hoist VFP / NEON instructions with 4 or higher latency. 4084 unsigned Latency = 4085 SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx); 4086 if (Latency <= 3) 4087 return false; 4088 return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON || 4089 UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON; 4090 } 4091 4092 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, 4093 const MachineInstr &DefMI, 4094 unsigned DefIdx) const { 4095 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); 4096 if (!ItinData || ItinData->isEmpty()) 4097 return false; 4098 4099 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; 4100 if (DDomain == ARMII::DomainGeneral) { 4101 unsigned DefClass = DefMI.getDesc().getSchedClass(); 4102 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 4103 return (DefCycle != -1 && DefCycle <= 2); 4104 } 4105 return false; 4106 } 4107 4108 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI, 4109 StringRef &ErrInfo) const { 4110 if (convertAddSubFlagsOpcode(MI.getOpcode())) { 4111 ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG"; 4112 return false; 4113 } 4114 return true; 4115 } 4116 4117 // LoadStackGuard has so far only been implemented for MachO. Different code 4118 // sequence is needed for other targets. 4119 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI, 4120 unsigned LoadImmOpc, 4121 unsigned LoadOpc) const { 4122 MachineBasicBlock &MBB = *MI->getParent(); 4123 DebugLoc DL = MI->getDebugLoc(); 4124 unsigned Reg = MI->getOperand(0).getReg(); 4125 const GlobalValue *GV = 4126 cast<GlobalValue>((*MI->memoperands_begin())->getValue()); 4127 MachineInstrBuilder MIB; 4128 4129 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg) 4130 .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY); 4131 4132 if (Subtarget.isGVIndirectSymbol(GV)) { 4133 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); 4134 MIB.addReg(Reg, RegState::Kill).addImm(0); 4135 unsigned Flag = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant; 4136 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand( 4137 MachinePointerInfo::getGOT(*MBB.getParent()), Flag, 4, 4); 4138 MIB.addMemOperand(MMO); 4139 AddDefaultPred(MIB); 4140 } 4141 4142 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); 4143 MIB.addReg(Reg, RegState::Kill).addImm(0); 4144 MIB.setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); 4145 AddDefaultPred(MIB); 4146 } 4147 4148 bool 4149 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc, 4150 unsigned &AddSubOpc, 4151 bool &NegAcc, bool &HasLane) const { 4152 DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode); 4153 if (I == MLxEntryMap.end()) 4154 return false; 4155 4156 const ARM_MLxEntry &Entry = ARM_MLxTable[I->second]; 4157 MulOpc = Entry.MulOpc; 4158 AddSubOpc = Entry.AddSubOpc; 4159 NegAcc = Entry.NegAcc; 4160 HasLane = Entry.HasLane; 4161 return true; 4162 } 4163 4164 //===----------------------------------------------------------------------===// 4165 // Execution domains. 4166 //===----------------------------------------------------------------------===// 4167 // 4168 // Some instructions go down the NEON pipeline, some go down the VFP pipeline, 4169 // and some can go down both. The vmov instructions go down the VFP pipeline, 4170 // but they can be changed to vorr equivalents that are executed by the NEON 4171 // pipeline. 4172 // 4173 // We use the following execution domain numbering: 4174 // 4175 enum ARMExeDomain { 4176 ExeGeneric = 0, 4177 ExeVFP = 1, 4178 ExeNEON = 2 4179 }; 4180 // 4181 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h 4182 // 4183 std::pair<uint16_t, uint16_t> 4184 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const { 4185 // If we don't have access to NEON instructions then we won't be able 4186 // to swizzle anything to the NEON domain. Check to make sure. 4187 if (Subtarget.hasNEON()) { 4188 // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON 4189 // if they are not predicated. 4190 if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI)) 4191 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); 4192 4193 // CortexA9 is particularly picky about mixing the two and wants these 4194 // converted. 4195 if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) && 4196 (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR || 4197 MI.getOpcode() == ARM::VMOVS)) 4198 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); 4199 } 4200 // No other instructions can be swizzled, so just determine their domain. 4201 unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask; 4202 4203 if (Domain & ARMII::DomainNEON) 4204 return std::make_pair(ExeNEON, 0); 4205 4206 // Certain instructions can go either way on Cortex-A8. 4207 // Treat them as NEON instructions. 4208 if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8()) 4209 return std::make_pair(ExeNEON, 0); 4210 4211 if (Domain & ARMII::DomainVFP) 4212 return std::make_pair(ExeVFP, 0); 4213 4214 return std::make_pair(ExeGeneric, 0); 4215 } 4216 4217 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI, 4218 unsigned SReg, unsigned &Lane) { 4219 unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass); 4220 Lane = 0; 4221 4222 if (DReg != ARM::NoRegister) 4223 return DReg; 4224 4225 Lane = 1; 4226 DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass); 4227 4228 assert(DReg && "S-register with no D super-register?"); 4229 return DReg; 4230 } 4231 4232 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane, 4233 /// set ImplicitSReg to a register number that must be marked as implicit-use or 4234 /// zero if no register needs to be defined as implicit-use. 4235 /// 4236 /// If the function cannot determine if an SPR should be marked implicit use or 4237 /// not, it returns false. 4238 /// 4239 /// This function handles cases where an instruction is being modified from taking 4240 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict 4241 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other 4242 /// lane of the DPR). 4243 /// 4244 /// If the other SPR is defined, an implicit-use of it should be added. Else, 4245 /// (including the case where the DPR itself is defined), it should not. 4246 /// 4247 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI, 4248 MachineInstr &MI, unsigned DReg, 4249 unsigned Lane, unsigned &ImplicitSReg) { 4250 // If the DPR is defined or used already, the other SPR lane will be chained 4251 // correctly, so there is nothing to be done. 4252 if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) { 4253 ImplicitSReg = 0; 4254 return true; 4255 } 4256 4257 // Otherwise we need to go searching to see if the SPR is set explicitly. 4258 ImplicitSReg = TRI->getSubReg(DReg, 4259 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1); 4260 MachineBasicBlock::LivenessQueryResult LQR = 4261 MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI); 4262 4263 if (LQR == MachineBasicBlock::LQR_Live) 4264 return true; 4265 else if (LQR == MachineBasicBlock::LQR_Unknown) 4266 return false; 4267 4268 // If the register is known not to be live, there is no need to add an 4269 // implicit-use. 4270 ImplicitSReg = 0; 4271 return true; 4272 } 4273 4274 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI, 4275 unsigned Domain) const { 4276 unsigned DstReg, SrcReg, DReg; 4277 unsigned Lane; 4278 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 4279 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4280 switch (MI.getOpcode()) { 4281 default: 4282 llvm_unreachable("cannot handle opcode!"); 4283 break; 4284 case ARM::VMOVD: 4285 if (Domain != ExeNEON) 4286 break; 4287 4288 // Zap the predicate operands. 4289 assert(!isPredicated(MI) && "Cannot predicate a VORRd"); 4290 4291 // Make sure we've got NEON instructions. 4292 assert(Subtarget.hasNEON() && "VORRd requires NEON"); 4293 4294 // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits) 4295 DstReg = MI.getOperand(0).getReg(); 4296 SrcReg = MI.getOperand(1).getReg(); 4297 4298 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 4299 MI.RemoveOperand(i - 1); 4300 4301 // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits) 4302 MI.setDesc(get(ARM::VORRd)); 4303 AddDefaultPred( 4304 MIB.addReg(DstReg, RegState::Define).addReg(SrcReg).addReg(SrcReg)); 4305 break; 4306 case ARM::VMOVRS: 4307 if (Domain != ExeNEON) 4308 break; 4309 assert(!isPredicated(MI) && "Cannot predicate a VGETLN"); 4310 4311 // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits) 4312 DstReg = MI.getOperand(0).getReg(); 4313 SrcReg = MI.getOperand(1).getReg(); 4314 4315 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 4316 MI.RemoveOperand(i - 1); 4317 4318 DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane); 4319 4320 // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps) 4321 // Note that DSrc has been widened and the other lane may be undef, which 4322 // contaminates the entire register. 4323 MI.setDesc(get(ARM::VGETLNi32)); 4324 AddDefaultPred(MIB.addReg(DstReg, RegState::Define) 4325 .addReg(DReg, RegState::Undef) 4326 .addImm(Lane)); 4327 4328 // The old source should be an implicit use, otherwise we might think it 4329 // was dead before here. 4330 MIB.addReg(SrcReg, RegState::Implicit); 4331 break; 4332 case ARM::VMOVSR: { 4333 if (Domain != ExeNEON) 4334 break; 4335 assert(!isPredicated(MI) && "Cannot predicate a VSETLN"); 4336 4337 // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits) 4338 DstReg = MI.getOperand(0).getReg(); 4339 SrcReg = MI.getOperand(1).getReg(); 4340 4341 DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane); 4342 4343 unsigned ImplicitSReg; 4344 if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg)) 4345 break; 4346 4347 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 4348 MI.RemoveOperand(i - 1); 4349 4350 // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps) 4351 // Again DDst may be undefined at the beginning of this instruction. 4352 MI.setDesc(get(ARM::VSETLNi32)); 4353 MIB.addReg(DReg, RegState::Define) 4354 .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI))) 4355 .addReg(SrcReg) 4356 .addImm(Lane); 4357 AddDefaultPred(MIB); 4358 4359 // The narrower destination must be marked as set to keep previous chains 4360 // in place. 4361 MIB.addReg(DstReg, RegState::Define | RegState::Implicit); 4362 if (ImplicitSReg != 0) 4363 MIB.addReg(ImplicitSReg, RegState::Implicit); 4364 break; 4365 } 4366 case ARM::VMOVS: { 4367 if (Domain != ExeNEON) 4368 break; 4369 4370 // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits) 4371 DstReg = MI.getOperand(0).getReg(); 4372 SrcReg = MI.getOperand(1).getReg(); 4373 4374 unsigned DstLane = 0, SrcLane = 0, DDst, DSrc; 4375 DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane); 4376 DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane); 4377 4378 unsigned ImplicitSReg; 4379 if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg)) 4380 break; 4381 4382 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 4383 MI.RemoveOperand(i - 1); 4384 4385 if (DSrc == DDst) { 4386 // Destination can be: 4387 // %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits) 4388 MI.setDesc(get(ARM::VDUPLN32d)); 4389 MIB.addReg(DDst, RegState::Define) 4390 .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI))) 4391 .addImm(SrcLane); 4392 AddDefaultPred(MIB); 4393 4394 // Neither the source or the destination are naturally represented any 4395 // more, so add them in manually. 4396 MIB.addReg(DstReg, RegState::Implicit | RegState::Define); 4397 MIB.addReg(SrcReg, RegState::Implicit); 4398 if (ImplicitSReg != 0) 4399 MIB.addReg(ImplicitSReg, RegState::Implicit); 4400 break; 4401 } 4402 4403 // In general there's no single instruction that can perform an S <-> S 4404 // move in NEON space, but a pair of VEXT instructions *can* do the 4405 // job. It turns out that the VEXTs needed will only use DSrc once, with 4406 // the position based purely on the combination of lane-0 and lane-1 4407 // involved. For example 4408 // vmov s0, s2 -> vext.32 d0, d0, d1, #1 vext.32 d0, d0, d0, #1 4409 // vmov s1, s3 -> vext.32 d0, d1, d0, #1 vext.32 d0, d0, d0, #1 4410 // vmov s0, s3 -> vext.32 d0, d0, d0, #1 vext.32 d0, d1, d0, #1 4411 // vmov s1, s2 -> vext.32 d0, d0, d0, #1 vext.32 d0, d0, d1, #1 4412 // 4413 // Pattern of the MachineInstrs is: 4414 // %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits) 4415 MachineInstrBuilder NewMIB; 4416 NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32), 4417 DDst); 4418 4419 // On the first instruction, both DSrc and DDst may be <undef> if present. 4420 // Specifically when the original instruction didn't have them as an 4421 // <imp-use>. 4422 unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst; 4423 bool CurUndef = !MI.readsRegister(CurReg, TRI); 4424 NewMIB.addReg(CurReg, getUndefRegState(CurUndef)); 4425 4426 CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst; 4427 CurUndef = !MI.readsRegister(CurReg, TRI); 4428 NewMIB.addReg(CurReg, getUndefRegState(CurUndef)); 4429 4430 NewMIB.addImm(1); 4431 AddDefaultPred(NewMIB); 4432 4433 if (SrcLane == DstLane) 4434 NewMIB.addReg(SrcReg, RegState::Implicit); 4435 4436 MI.setDesc(get(ARM::VEXTd32)); 4437 MIB.addReg(DDst, RegState::Define); 4438 4439 // On the second instruction, DDst has definitely been defined above, so 4440 // it is not <undef>. DSrc, if present, can be <undef> as above. 4441 CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst; 4442 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); 4443 MIB.addReg(CurReg, getUndefRegState(CurUndef)); 4444 4445 CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst; 4446 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); 4447 MIB.addReg(CurReg, getUndefRegState(CurUndef)); 4448 4449 MIB.addImm(1); 4450 AddDefaultPred(MIB); 4451 4452 if (SrcLane != DstLane) 4453 MIB.addReg(SrcReg, RegState::Implicit); 4454 4455 // As before, the original destination is no longer represented, add it 4456 // implicitly. 4457 MIB.addReg(DstReg, RegState::Define | RegState::Implicit); 4458 if (ImplicitSReg != 0) 4459 MIB.addReg(ImplicitSReg, RegState::Implicit); 4460 break; 4461 } 4462 } 4463 4464 } 4465 4466 //===----------------------------------------------------------------------===// 4467 // Partial register updates 4468 //===----------------------------------------------------------------------===// 4469 // 4470 // Swift renames NEON registers with 64-bit granularity. That means any 4471 // instruction writing an S-reg implicitly reads the containing D-reg. The 4472 // problem is mostly avoided by translating f32 operations to v2f32 operations 4473 // on D-registers, but f32 loads are still a problem. 4474 // 4475 // These instructions can load an f32 into a NEON register: 4476 // 4477 // VLDRS - Only writes S, partial D update. 4478 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops. 4479 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops. 4480 // 4481 // FCONSTD can be used as a dependency-breaking instruction. 4482 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance( 4483 const MachineInstr &MI, unsigned OpNum, 4484 const TargetRegisterInfo *TRI) const { 4485 auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance(); 4486 if (!PartialUpdateClearance) 4487 return 0; 4488 4489 assert(TRI && "Need TRI instance"); 4490 4491 const MachineOperand &MO = MI.getOperand(OpNum); 4492 if (MO.readsReg()) 4493 return 0; 4494 unsigned Reg = MO.getReg(); 4495 int UseOp = -1; 4496 4497 switch (MI.getOpcode()) { 4498 // Normal instructions writing only an S-register. 4499 case ARM::VLDRS: 4500 case ARM::FCONSTS: 4501 case ARM::VMOVSR: 4502 case ARM::VMOVv8i8: 4503 case ARM::VMOVv4i16: 4504 case ARM::VMOVv2i32: 4505 case ARM::VMOVv2f32: 4506 case ARM::VMOVv1i64: 4507 UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI); 4508 break; 4509 4510 // Explicitly reads the dependency. 4511 case ARM::VLD1LNd32: 4512 UseOp = 3; 4513 break; 4514 default: 4515 return 0; 4516 } 4517 4518 // If this instruction actually reads a value from Reg, there is no unwanted 4519 // dependency. 4520 if (UseOp != -1 && MI.getOperand(UseOp).readsReg()) 4521 return 0; 4522 4523 // We must be able to clobber the whole D-reg. 4524 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 4525 // Virtual register must be a foo:ssub_0<def,undef> operand. 4526 if (!MO.getSubReg() || MI.readsVirtualRegister(Reg)) 4527 return 0; 4528 } else if (ARM::SPRRegClass.contains(Reg)) { 4529 // Physical register: MI must define the full D-reg. 4530 unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0, 4531 &ARM::DPRRegClass); 4532 if (!DReg || !MI.definesRegister(DReg, TRI)) 4533 return 0; 4534 } 4535 4536 // MI has an unwanted D-register dependency. 4537 // Avoid defs in the previous N instructrions. 4538 return PartialUpdateClearance; 4539 } 4540 4541 // Break a partial register dependency after getPartialRegUpdateClearance 4542 // returned non-zero. 4543 void ARMBaseInstrInfo::breakPartialRegDependency( 4544 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { 4545 assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def"); 4546 assert(TRI && "Need TRI instance"); 4547 4548 const MachineOperand &MO = MI.getOperand(OpNum); 4549 unsigned Reg = MO.getReg(); 4550 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && 4551 "Can't break virtual register dependencies."); 4552 unsigned DReg = Reg; 4553 4554 // If MI defines an S-reg, find the corresponding D super-register. 4555 if (ARM::SPRRegClass.contains(Reg)) { 4556 DReg = ARM::D0 + (Reg - ARM::S0) / 2; 4557 assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken"); 4558 } 4559 4560 assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps"); 4561 assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg"); 4562 4563 // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines 4564 // the full D-register by loading the same value to both lanes. The 4565 // instruction is micro-coded with 2 uops, so don't do this until we can 4566 // properly schedule micro-coded instructions. The dispatcher stalls cause 4567 // too big regressions. 4568 4569 // Insert the dependency-breaking FCONSTD before MI. 4570 // 96 is the encoding of 0.5, but the actual value doesn't matter here. 4571 AddDefaultPred( 4572 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg) 4573 .addImm(96)); 4574 MI.addRegisterKilled(DReg, TRI, true); 4575 } 4576 4577 bool ARMBaseInstrInfo::hasNOP() const { 4578 return Subtarget.getFeatureBits()[ARM::HasV6KOps]; 4579 } 4580 4581 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const { 4582 if (MI->getNumOperands() < 4) 4583 return true; 4584 unsigned ShOpVal = MI->getOperand(3).getImm(); 4585 unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal); 4586 // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1. 4587 if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) || 4588 ((ShImm == 1 || ShImm == 2) && 4589 ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl)) 4590 return true; 4591 4592 return false; 4593 } 4594 4595 bool ARMBaseInstrInfo::getRegSequenceLikeInputs( 4596 const MachineInstr &MI, unsigned DefIdx, 4597 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 4598 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 4599 assert(MI.isRegSequenceLike() && "Invalid kind of instruction"); 4600 4601 switch (MI.getOpcode()) { 4602 case ARM::VMOVDRR: 4603 // dX = VMOVDRR rY, rZ 4604 // is the same as: 4605 // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1 4606 // Populate the InputRegs accordingly. 4607 // rY 4608 const MachineOperand *MOReg = &MI.getOperand(1); 4609 InputRegs.push_back( 4610 RegSubRegPairAndIdx(MOReg->getReg(), MOReg->getSubReg(), ARM::ssub_0)); 4611 // rZ 4612 MOReg = &MI.getOperand(2); 4613 InputRegs.push_back( 4614 RegSubRegPairAndIdx(MOReg->getReg(), MOReg->getSubReg(), ARM::ssub_1)); 4615 return true; 4616 } 4617 llvm_unreachable("Target dependent opcode missing"); 4618 } 4619 4620 bool ARMBaseInstrInfo::getExtractSubregLikeInputs( 4621 const MachineInstr &MI, unsigned DefIdx, 4622 RegSubRegPairAndIdx &InputReg) const { 4623 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 4624 assert(MI.isExtractSubregLike() && "Invalid kind of instruction"); 4625 4626 switch (MI.getOpcode()) { 4627 case ARM::VMOVRRD: 4628 // rX, rY = VMOVRRD dZ 4629 // is the same as: 4630 // rX = EXTRACT_SUBREG dZ, ssub_0 4631 // rY = EXTRACT_SUBREG dZ, ssub_1 4632 const MachineOperand &MOReg = MI.getOperand(2); 4633 InputReg.Reg = MOReg.getReg(); 4634 InputReg.SubReg = MOReg.getSubReg(); 4635 InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1; 4636 return true; 4637 } 4638 llvm_unreachable("Target dependent opcode missing"); 4639 } 4640 4641 bool ARMBaseInstrInfo::getInsertSubregLikeInputs( 4642 const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg, 4643 RegSubRegPairAndIdx &InsertedReg) const { 4644 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 4645 assert(MI.isInsertSubregLike() && "Invalid kind of instruction"); 4646 4647 switch (MI.getOpcode()) { 4648 case ARM::VSETLNi32: 4649 // dX = VSETLNi32 dY, rZ, imm 4650 const MachineOperand &MOBaseReg = MI.getOperand(1); 4651 const MachineOperand &MOInsertedReg = MI.getOperand(2); 4652 const MachineOperand &MOIndex = MI.getOperand(3); 4653 BaseReg.Reg = MOBaseReg.getReg(); 4654 BaseReg.SubReg = MOBaseReg.getSubReg(); 4655 4656 InsertedReg.Reg = MOInsertedReg.getReg(); 4657 InsertedReg.SubReg = MOInsertedReg.getSubReg(); 4658 InsertedReg.SubIdx = MOIndex.getImm() == 0 ? ARM::ssub_0 : ARM::ssub_1; 4659 return true; 4660 } 4661 llvm_unreachable("Target dependent opcode missing"); 4662 } 4663