1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SystemZ implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SystemZInstrInfo.h" 15 #include "SystemZInstrBuilder.h" 16 #include "SystemZTargetMachine.h" 17 #include "llvm/CodeGen/LiveVariables.h" 18 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 21 using namespace llvm; 22 23 #define GET_INSTRINFO_CTOR_DTOR 24 #define GET_INSTRMAP_INFO 25 #include "SystemZGenInstrInfo.inc" 26 27 // Return a mask with Count low bits set. 28 static uint64_t allOnes(unsigned int Count) { 29 return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1; 30 } 31 32 // Reg should be a 32-bit GPR. Return true if it is a high register rather 33 // than a low register. 34 static bool isHighReg(unsigned int Reg) { 35 if (SystemZ::GRH32BitRegClass.contains(Reg)) 36 return true; 37 assert(SystemZ::GR32BitRegClass.contains(Reg) && "Invalid GRX32"); 38 return false; 39 } 40 41 // Pin the vtable to this file. 42 void SystemZInstrInfo::anchor() {} 43 44 SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti) 45 : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP), 46 RI(), STI(sti) { 47 } 48 49 // MI is a 128-bit load or store. Split it into two 64-bit loads or stores, 50 // each having the opcode given by NewOpcode. 51 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI, 52 unsigned NewOpcode) const { 53 MachineBasicBlock *MBB = MI->getParent(); 54 MachineFunction &MF = *MBB->getParent(); 55 56 // Get two load or store instructions. Use the original instruction for one 57 // of them (arbitrarily the second here) and create a clone for the other. 58 MachineInstr *EarlierMI = MF.CloneMachineInstr(&*MI); 59 MBB->insert(MI, EarlierMI); 60 61 // Set up the two 64-bit registers. 62 MachineOperand &HighRegOp = EarlierMI->getOperand(0); 63 MachineOperand &LowRegOp = MI->getOperand(0); 64 HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64)); 65 LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64)); 66 67 // The address in the first (high) instruction is already correct. 68 // Adjust the offset in the second (low) instruction. 69 MachineOperand &HighOffsetOp = EarlierMI->getOperand(2); 70 MachineOperand &LowOffsetOp = MI->getOperand(2); 71 LowOffsetOp.setImm(LowOffsetOp.getImm() + 8); 72 73 // Clear the kill flags for the base and index registers in the first 74 // instruction. 75 EarlierMI->getOperand(1).setIsKill(false); 76 EarlierMI->getOperand(3).setIsKill(false); 77 78 // Set the opcodes. 79 unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm()); 80 unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm()); 81 assert(HighOpcode && LowOpcode && "Both offsets should be in range"); 82 83 EarlierMI->setDesc(get(HighOpcode)); 84 MI->setDesc(get(LowOpcode)); 85 } 86 87 // Split ADJDYNALLOC instruction MI. 88 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const { 89 MachineBasicBlock *MBB = MI->getParent(); 90 MachineFunction &MF = *MBB->getParent(); 91 MachineFrameInfo *MFFrame = MF.getFrameInfo(); 92 MachineOperand &OffsetMO = MI->getOperand(2); 93 94 uint64_t Offset = (MFFrame->getMaxCallFrameSize() + 95 SystemZMC::CallFrameSize + 96 OffsetMO.getImm()); 97 unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset); 98 assert(NewOpcode && "No support for huge argument lists yet"); 99 MI->setDesc(get(NewOpcode)); 100 OffsetMO.setImm(Offset); 101 } 102 103 // MI is an RI-style pseudo instruction. Replace it with LowOpcode 104 // if the first operand is a low GR32 and HighOpcode if the first operand 105 // is a high GR32. ConvertHigh is true if LowOpcode takes a signed operand 106 // and HighOpcode takes an unsigned 32-bit operand. In those cases, 107 // MI has the same kind of operand as LowOpcode, so needs to be converted 108 // if HighOpcode is used. 109 void SystemZInstrInfo::expandRIPseudo(MachineInstr &MI, unsigned LowOpcode, 110 unsigned HighOpcode, 111 bool ConvertHigh) const { 112 unsigned Reg = MI.getOperand(0).getReg(); 113 bool IsHigh = isHighReg(Reg); 114 MI.setDesc(get(IsHigh ? HighOpcode : LowOpcode)); 115 if (IsHigh && ConvertHigh) 116 MI.getOperand(1).setImm(uint32_t(MI.getOperand(1).getImm())); 117 } 118 119 // MI is a three-operand RIE-style pseudo instruction. Replace it with 120 // LowOpcodeK if the registers are both low GR32s, otherwise use a move 121 // followed by HighOpcode or LowOpcode, depending on whether the target 122 // is a high or low GR32. 123 void SystemZInstrInfo::expandRIEPseudo(MachineInstr &MI, unsigned LowOpcode, 124 unsigned LowOpcodeK, 125 unsigned HighOpcode) const { 126 unsigned DestReg = MI.getOperand(0).getReg(); 127 unsigned SrcReg = MI.getOperand(1).getReg(); 128 bool DestIsHigh = isHighReg(DestReg); 129 bool SrcIsHigh = isHighReg(SrcReg); 130 if (!DestIsHigh && !SrcIsHigh) 131 MI.setDesc(get(LowOpcodeK)); 132 else { 133 emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), DestReg, SrcReg, 134 SystemZ::LR, 32, MI.getOperand(1).isKill()); 135 MI.setDesc(get(DestIsHigh ? HighOpcode : LowOpcode)); 136 MI.getOperand(1).setReg(DestReg); 137 MI.tieOperands(0, 1); 138 } 139 } 140 141 // MI is an RXY-style pseudo instruction. Replace it with LowOpcode 142 // if the first operand is a low GR32 and HighOpcode if the first operand 143 // is a high GR32. 144 void SystemZInstrInfo::expandRXYPseudo(MachineInstr &MI, unsigned LowOpcode, 145 unsigned HighOpcode) const { 146 unsigned Reg = MI.getOperand(0).getReg(); 147 unsigned Opcode = getOpcodeForOffset(isHighReg(Reg) ? HighOpcode : LowOpcode, 148 MI.getOperand(2).getImm()); 149 MI.setDesc(get(Opcode)); 150 } 151 152 // MI is an RR-style pseudo instruction that zero-extends the low Size bits 153 // of one GRX32 into another. Replace it with LowOpcode if both operands 154 // are low registers, otherwise use RISB[LH]G. 155 void SystemZInstrInfo::expandZExtPseudo(MachineInstr &MI, unsigned LowOpcode, 156 unsigned Size) const { 157 emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), 158 MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), LowOpcode, 159 Size, MI.getOperand(1).isKill()); 160 MI.eraseFromParent(); 161 } 162 163 void SystemZInstrInfo::expandLoadStackGuard(MachineInstr *MI) const { 164 MachineBasicBlock *MBB = MI->getParent(); 165 MachineFunction &MF = *MBB->getParent(); 166 const unsigned Reg = MI->getOperand(0).getReg(); 167 168 // Conveniently, all 4 instructions are cloned from LOAD_STACK_GUARD, 169 // so they already have operand 0 set to reg. 170 171 // ear <reg>, %a0 172 MachineInstr *Ear1MI = MF.CloneMachineInstr(MI); 173 MBB->insert(MI, Ear1MI); 174 Ear1MI->setDesc(get(SystemZ::EAR)); 175 MachineInstrBuilder(MF, Ear1MI).addImm(0); 176 177 // sllg <reg>, <reg>, 32 178 MachineInstr *SllgMI = MF.CloneMachineInstr(MI); 179 MBB->insert(MI, SllgMI); 180 SllgMI->setDesc(get(SystemZ::SLLG)); 181 MachineInstrBuilder(MF, SllgMI).addReg(Reg).addReg(0).addImm(32); 182 183 // ear <reg>, %a1 184 MachineInstr *Ear2MI = MF.CloneMachineInstr(MI); 185 MBB->insert(MI, Ear2MI); 186 Ear2MI->setDesc(get(SystemZ::EAR)); 187 MachineInstrBuilder(MF, Ear2MI).addImm(1); 188 189 // lg <reg>, 40(<reg>) 190 MI->setDesc(get(SystemZ::LG)); 191 MachineInstrBuilder(MF, MI).addReg(Reg).addImm(40).addReg(0); 192 } 193 194 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR 195 // DestReg before MBBI in MBB. Use LowLowOpcode when both DestReg and SrcReg 196 // are low registers, otherwise use RISB[LH]G. Size is the number of bits 197 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR). 198 // KillSrc is true if this move is the last use of SrcReg. 199 void SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB, 200 MachineBasicBlock::iterator MBBI, 201 const DebugLoc &DL, unsigned DestReg, 202 unsigned SrcReg, unsigned LowLowOpcode, 203 unsigned Size, bool KillSrc) const { 204 unsigned Opcode; 205 bool DestIsHigh = isHighReg(DestReg); 206 bool SrcIsHigh = isHighReg(SrcReg); 207 if (DestIsHigh && SrcIsHigh) 208 Opcode = SystemZ::RISBHH; 209 else if (DestIsHigh && !SrcIsHigh) 210 Opcode = SystemZ::RISBHL; 211 else if (!DestIsHigh && SrcIsHigh) 212 Opcode = SystemZ::RISBLH; 213 else { 214 BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg) 215 .addReg(SrcReg, getKillRegState(KillSrc)); 216 return; 217 } 218 unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0); 219 BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) 220 .addReg(DestReg, RegState::Undef) 221 .addReg(SrcReg, getKillRegState(KillSrc)) 222 .addImm(32 - Size).addImm(128 + 31).addImm(Rotate); 223 } 224 225 // If MI is a simple load or store for a frame object, return the register 226 // it loads or stores and set FrameIndex to the index of the frame object. 227 // Return 0 otherwise. 228 // 229 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. 230 static int isSimpleMove(const MachineInstr &MI, int &FrameIndex, 231 unsigned Flag) { 232 const MCInstrDesc &MCID = MI.getDesc(); 233 if ((MCID.TSFlags & Flag) && MI.getOperand(1).isFI() && 234 MI.getOperand(2).getImm() == 0 && MI.getOperand(3).getReg() == 0) { 235 FrameIndex = MI.getOperand(1).getIndex(); 236 return MI.getOperand(0).getReg(); 237 } 238 return 0; 239 } 240 241 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 242 int &FrameIndex) const { 243 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad); 244 } 245 246 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 247 int &FrameIndex) const { 248 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore); 249 } 250 251 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr &MI, 252 int &DestFrameIndex, 253 int &SrcFrameIndex) const { 254 // Check for MVC 0(Length,FI1),0(FI2) 255 const MachineFrameInfo *MFI = MI.getParent()->getParent()->getFrameInfo(); 256 if (MI.getOpcode() != SystemZ::MVC || !MI.getOperand(0).isFI() || 257 MI.getOperand(1).getImm() != 0 || !MI.getOperand(3).isFI() || 258 MI.getOperand(4).getImm() != 0) 259 return false; 260 261 // Check that Length covers the full slots. 262 int64_t Length = MI.getOperand(2).getImm(); 263 unsigned FI1 = MI.getOperand(0).getIndex(); 264 unsigned FI2 = MI.getOperand(3).getIndex(); 265 if (MFI->getObjectSize(FI1) != Length || 266 MFI->getObjectSize(FI2) != Length) 267 return false; 268 269 DestFrameIndex = FI1; 270 SrcFrameIndex = FI2; 271 return true; 272 } 273 274 bool SystemZInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 275 MachineBasicBlock *&TBB, 276 MachineBasicBlock *&FBB, 277 SmallVectorImpl<MachineOperand> &Cond, 278 bool AllowModify) const { 279 // Most of the code and comments here are boilerplate. 280 281 // Start from the bottom of the block and work up, examining the 282 // terminator instructions. 283 MachineBasicBlock::iterator I = MBB.end(); 284 while (I != MBB.begin()) { 285 --I; 286 if (I->isDebugValue()) 287 continue; 288 289 // Working from the bottom, when we see a non-terminator instruction, we're 290 // done. 291 if (!isUnpredicatedTerminator(*I)) 292 break; 293 294 // A terminator that isn't a branch can't easily be handled by this 295 // analysis. 296 if (!I->isBranch()) 297 return true; 298 299 // Can't handle indirect branches. 300 SystemZII::Branch Branch(getBranchInfo(*I)); 301 if (!Branch.Target->isMBB()) 302 return true; 303 304 // Punt on compound branches. 305 if (Branch.Type != SystemZII::BranchNormal) 306 return true; 307 308 if (Branch.CCMask == SystemZ::CCMASK_ANY) { 309 // Handle unconditional branches. 310 if (!AllowModify) { 311 TBB = Branch.Target->getMBB(); 312 continue; 313 } 314 315 // If the block has any instructions after a JMP, delete them. 316 while (std::next(I) != MBB.end()) 317 std::next(I)->eraseFromParent(); 318 319 Cond.clear(); 320 FBB = nullptr; 321 322 // Delete the JMP if it's equivalent to a fall-through. 323 if (MBB.isLayoutSuccessor(Branch.Target->getMBB())) { 324 TBB = nullptr; 325 I->eraseFromParent(); 326 I = MBB.end(); 327 continue; 328 } 329 330 // TBB is used to indicate the unconditinal destination. 331 TBB = Branch.Target->getMBB(); 332 continue; 333 } 334 335 // Working from the bottom, handle the first conditional branch. 336 if (Cond.empty()) { 337 // FIXME: add X86-style branch swap 338 FBB = TBB; 339 TBB = Branch.Target->getMBB(); 340 Cond.push_back(MachineOperand::CreateImm(Branch.CCValid)); 341 Cond.push_back(MachineOperand::CreateImm(Branch.CCMask)); 342 continue; 343 } 344 345 // Handle subsequent conditional branches. 346 assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch"); 347 348 // Only handle the case where all conditional branches branch to the same 349 // destination. 350 if (TBB != Branch.Target->getMBB()) 351 return true; 352 353 // If the conditions are the same, we can leave them alone. 354 unsigned OldCCValid = Cond[0].getImm(); 355 unsigned OldCCMask = Cond[1].getImm(); 356 if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask) 357 continue; 358 359 // FIXME: Try combining conditions like X86 does. Should be easy on Z! 360 return false; 361 } 362 363 return false; 364 } 365 366 unsigned SystemZInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 367 // Most of the code and comments here are boilerplate. 368 MachineBasicBlock::iterator I = MBB.end(); 369 unsigned Count = 0; 370 371 while (I != MBB.begin()) { 372 --I; 373 if (I->isDebugValue()) 374 continue; 375 if (!I->isBranch()) 376 break; 377 if (!getBranchInfo(*I).Target->isMBB()) 378 break; 379 // Remove the branch. 380 I->eraseFromParent(); 381 I = MBB.end(); 382 ++Count; 383 } 384 385 return Count; 386 } 387 388 bool SystemZInstrInfo:: 389 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 390 assert(Cond.size() == 2 && "Invalid condition"); 391 Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm()); 392 return false; 393 } 394 395 unsigned SystemZInstrInfo::InsertBranch(MachineBasicBlock &MBB, 396 MachineBasicBlock *TBB, 397 MachineBasicBlock *FBB, 398 ArrayRef<MachineOperand> Cond, 399 const DebugLoc &DL) const { 400 // In this function we output 32-bit branches, which should always 401 // have enough range. They can be shortened and relaxed by later code 402 // in the pipeline, if desired. 403 404 // Shouldn't be a fall through. 405 assert(TBB && "InsertBranch must not be told to insert a fallthrough"); 406 assert((Cond.size() == 2 || Cond.size() == 0) && 407 "SystemZ branch conditions have one component!"); 408 409 if (Cond.empty()) { 410 // Unconditional branch? 411 assert(!FBB && "Unconditional branch with multiple successors!"); 412 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB); 413 return 1; 414 } 415 416 // Conditional branch. 417 unsigned Count = 0; 418 unsigned CCValid = Cond[0].getImm(); 419 unsigned CCMask = Cond[1].getImm(); 420 BuildMI(&MBB, DL, get(SystemZ::BRC)) 421 .addImm(CCValid).addImm(CCMask).addMBB(TBB); 422 ++Count; 423 424 if (FBB) { 425 // Two-way Conditional branch. Insert the second branch. 426 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB); 427 ++Count; 428 } 429 return Count; 430 } 431 432 bool SystemZInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 433 unsigned &SrcReg2, int &Mask, 434 int &Value) const { 435 assert(MI.isCompare() && "Caller should have checked for a comparison"); 436 437 if (MI.getNumExplicitOperands() == 2 && MI.getOperand(0).isReg() && 438 MI.getOperand(1).isImm()) { 439 SrcReg = MI.getOperand(0).getReg(); 440 SrcReg2 = 0; 441 Value = MI.getOperand(1).getImm(); 442 Mask = ~0; 443 return true; 444 } 445 446 return false; 447 } 448 449 // If Reg is a virtual register, return its definition, otherwise return null. 450 static MachineInstr *getDef(unsigned Reg, 451 const MachineRegisterInfo *MRI) { 452 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 453 return nullptr; 454 return MRI->getUniqueVRegDef(Reg); 455 } 456 457 // Return true if MI is a shift of type Opcode by Imm bits. 458 static bool isShift(MachineInstr *MI, unsigned Opcode, int64_t Imm) { 459 return (MI->getOpcode() == Opcode && 460 !MI->getOperand(2).getReg() && 461 MI->getOperand(3).getImm() == Imm); 462 } 463 464 // If the destination of MI has no uses, delete it as dead. 465 static void eraseIfDead(MachineInstr *MI, const MachineRegisterInfo *MRI) { 466 if (MRI->use_nodbg_empty(MI->getOperand(0).getReg())) 467 MI->eraseFromParent(); 468 } 469 470 // Compare compares SrcReg against zero. Check whether SrcReg contains 471 // the result of an IPM sequence whose input CC survives until Compare, 472 // and whether Compare is therefore redundant. Delete it and return 473 // true if so. 474 static bool removeIPMBasedCompare(MachineInstr &Compare, unsigned SrcReg, 475 const MachineRegisterInfo *MRI, 476 const TargetRegisterInfo *TRI) { 477 MachineInstr *LGFR = nullptr; 478 MachineInstr *RLL = getDef(SrcReg, MRI); 479 if (RLL && RLL->getOpcode() == SystemZ::LGFR) { 480 LGFR = RLL; 481 RLL = getDef(LGFR->getOperand(1).getReg(), MRI); 482 } 483 if (!RLL || !isShift(RLL, SystemZ::RLL, 31)) 484 return false; 485 486 MachineInstr *SRL = getDef(RLL->getOperand(1).getReg(), MRI); 487 if (!SRL || !isShift(SRL, SystemZ::SRL, SystemZ::IPM_CC)) 488 return false; 489 490 MachineInstr *IPM = getDef(SRL->getOperand(1).getReg(), MRI); 491 if (!IPM || IPM->getOpcode() != SystemZ::IPM) 492 return false; 493 494 // Check that there are no assignments to CC between the IPM and Compare, 495 if (IPM->getParent() != Compare.getParent()) 496 return false; 497 MachineBasicBlock::iterator MBBI = IPM, MBBE = Compare.getIterator(); 498 for (++MBBI; MBBI != MBBE; ++MBBI) { 499 MachineInstr &MI = *MBBI; 500 if (MI.modifiesRegister(SystemZ::CC, TRI)) 501 return false; 502 } 503 504 Compare.eraseFromParent(); 505 if (LGFR) 506 eraseIfDead(LGFR, MRI); 507 eraseIfDead(RLL, MRI); 508 eraseIfDead(SRL, MRI); 509 eraseIfDead(IPM, MRI); 510 511 return true; 512 } 513 514 bool SystemZInstrInfo::optimizeCompareInstr( 515 MachineInstr &Compare, unsigned SrcReg, unsigned SrcReg2, int Mask, 516 int Value, const MachineRegisterInfo *MRI) const { 517 assert(!SrcReg2 && "Only optimizing constant comparisons so far"); 518 bool IsLogical = (Compare.getDesc().TSFlags & SystemZII::IsLogical) != 0; 519 return Value == 0 && !IsLogical && 520 removeIPMBasedCompare(Compare, SrcReg, MRI, &RI); 521 } 522 523 // If Opcode is a move that has a conditional variant, return that variant, 524 // otherwise return 0. 525 static unsigned getConditionalMove(unsigned Opcode) { 526 switch (Opcode) { 527 case SystemZ::LR: return SystemZ::LOCR; 528 case SystemZ::LGR: return SystemZ::LOCGR; 529 default: return 0; 530 } 531 } 532 533 static unsigned getConditionalLoadImmediate(unsigned Opcode) { 534 switch (Opcode) { 535 case SystemZ::LHI: return SystemZ::LOCHI; 536 case SystemZ::LGHI: return SystemZ::LOCGHI; 537 default: return 0; 538 } 539 } 540 541 bool SystemZInstrInfo::isPredicable(MachineInstr &MI) const { 542 unsigned Opcode = MI.getOpcode(); 543 if (STI.hasLoadStoreOnCond() && getConditionalMove(Opcode)) 544 return true; 545 if (STI.hasLoadStoreOnCond2() && getConditionalLoadImmediate(Opcode)) 546 return true; 547 if (Opcode == SystemZ::Return || 548 Opcode == SystemZ::Trap || 549 Opcode == SystemZ::CallJG || 550 Opcode == SystemZ::CallBR) 551 return true; 552 return false; 553 } 554 555 bool SystemZInstrInfo:: 556 isProfitableToIfCvt(MachineBasicBlock &MBB, 557 unsigned NumCycles, unsigned ExtraPredCycles, 558 BranchProbability Probability) const { 559 // Avoid using conditional returns at the end of a loop (since then 560 // we'd need to emit an unconditional branch to the beginning anyway, 561 // making the loop body longer). This doesn't apply for low-probability 562 // loops (eg. compare-and-swap retry), so just decide based on branch 563 // probability instead of looping structure. 564 // However, since Compare and Trap instructions cost the same as a regular 565 // Compare instruction, we should allow the if conversion to convert this 566 // into a Conditional Compare regardless of the branch probability. 567 if (MBB.getLastNonDebugInstr()->getOpcode() != SystemZ::Trap && 568 MBB.succ_empty() && Probability < BranchProbability(1, 8)) 569 return false; 570 // For now only convert single instructions. 571 return NumCycles == 1; 572 } 573 574 bool SystemZInstrInfo:: 575 isProfitableToIfCvt(MachineBasicBlock &TMBB, 576 unsigned NumCyclesT, unsigned ExtraPredCyclesT, 577 MachineBasicBlock &FMBB, 578 unsigned NumCyclesF, unsigned ExtraPredCyclesF, 579 BranchProbability Probability) const { 580 // For now avoid converting mutually-exclusive cases. 581 return false; 582 } 583 584 bool SystemZInstrInfo:: 585 isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, 586 BranchProbability Probability) const { 587 // For now only duplicate single instructions. 588 return NumCycles == 1; 589 } 590 591 bool SystemZInstrInfo::PredicateInstruction( 592 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 593 assert(Pred.size() == 2 && "Invalid condition"); 594 unsigned CCValid = Pred[0].getImm(); 595 unsigned CCMask = Pred[1].getImm(); 596 assert(CCMask > 0 && CCMask < 15 && "Invalid predicate"); 597 unsigned Opcode = MI.getOpcode(); 598 if (STI.hasLoadStoreOnCond()) { 599 if (unsigned CondOpcode = getConditionalMove(Opcode)) { 600 MI.setDesc(get(CondOpcode)); 601 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 602 .addImm(CCValid) 603 .addImm(CCMask) 604 .addReg(SystemZ::CC, RegState::Implicit); 605 return true; 606 } 607 } 608 if (STI.hasLoadStoreOnCond2()) { 609 if (unsigned CondOpcode = getConditionalLoadImmediate(Opcode)) { 610 MI.setDesc(get(CondOpcode)); 611 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 612 .addImm(CCValid) 613 .addImm(CCMask) 614 .addReg(SystemZ::CC, RegState::Implicit); 615 return true; 616 } 617 } 618 if (Opcode == SystemZ::Trap) { 619 MI.setDesc(get(SystemZ::CondTrap)); 620 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 621 .addImm(CCValid).addImm(CCMask) 622 .addReg(SystemZ::CC, RegState::Implicit); 623 return true; 624 } 625 if (Opcode == SystemZ::Return) { 626 MI.setDesc(get(SystemZ::CondReturn)); 627 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 628 .addImm(CCValid).addImm(CCMask) 629 .addReg(SystemZ::CC, RegState::Implicit); 630 return true; 631 } 632 if (Opcode == SystemZ::CallJG) { 633 MachineOperand FirstOp = MI.getOperand(0); 634 const uint32_t *RegMask = MI.getOperand(1).getRegMask(); 635 MI.RemoveOperand(1); 636 MI.RemoveOperand(0); 637 MI.setDesc(get(SystemZ::CallBRCL)); 638 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 639 .addImm(CCValid).addImm(CCMask) 640 .addOperand(FirstOp) 641 .addRegMask(RegMask) 642 .addReg(SystemZ::CC, RegState::Implicit); 643 return true; 644 } 645 if (Opcode == SystemZ::CallBR) { 646 const uint32_t *RegMask = MI.getOperand(0).getRegMask(); 647 MI.RemoveOperand(0); 648 MI.setDesc(get(SystemZ::CallBCR)); 649 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 650 .addImm(CCValid).addImm(CCMask) 651 .addRegMask(RegMask) 652 .addReg(SystemZ::CC, RegState::Implicit); 653 return true; 654 } 655 return false; 656 } 657 658 void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 659 MachineBasicBlock::iterator MBBI, 660 const DebugLoc &DL, unsigned DestReg, 661 unsigned SrcReg, bool KillSrc) const { 662 // Split 128-bit GPR moves into two 64-bit moves. This handles ADDR128 too. 663 if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) { 664 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64), 665 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc); 666 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64), 667 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc); 668 return; 669 } 670 671 if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) { 672 emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc); 673 return; 674 } 675 676 // Everything else needs only one instruction. 677 unsigned Opcode; 678 if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg)) 679 Opcode = SystemZ::LGR; 680 else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg)) 681 // For z13 we prefer LDR over LER to avoid partial register dependencies. 682 Opcode = STI.hasVector() ? SystemZ::LDR32 : SystemZ::LER; 683 else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg)) 684 Opcode = SystemZ::LDR; 685 else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg)) 686 Opcode = SystemZ::LXR; 687 else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg)) 688 Opcode = SystemZ::VLR32; 689 else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg)) 690 Opcode = SystemZ::VLR64; 691 else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg)) 692 Opcode = SystemZ::VLR; 693 else 694 llvm_unreachable("Impossible reg-to-reg copy"); 695 696 BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) 697 .addReg(SrcReg, getKillRegState(KillSrc)); 698 } 699 700 void SystemZInstrInfo::storeRegToStackSlot( 701 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg, 702 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 703 const TargetRegisterInfo *TRI) const { 704 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 705 706 // Callers may expect a single instruction, so keep 128-bit moves 707 // together for now and lower them after register allocation. 708 unsigned LoadOpcode, StoreOpcode; 709 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); 710 addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode)) 711 .addReg(SrcReg, getKillRegState(isKill)), 712 FrameIdx); 713 } 714 715 void SystemZInstrInfo::loadRegFromStackSlot( 716 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg, 717 int FrameIdx, const TargetRegisterClass *RC, 718 const TargetRegisterInfo *TRI) const { 719 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 720 721 // Callers may expect a single instruction, so keep 128-bit moves 722 // together for now and lower them after register allocation. 723 unsigned LoadOpcode, StoreOpcode; 724 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); 725 addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg), 726 FrameIdx); 727 } 728 729 // Return true if MI is a simple load or store with a 12-bit displacement 730 // and no index. Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. 731 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) { 732 const MCInstrDesc &MCID = MI->getDesc(); 733 return ((MCID.TSFlags & Flag) && 734 isUInt<12>(MI->getOperand(2).getImm()) && 735 MI->getOperand(3).getReg() == 0); 736 } 737 738 namespace { 739 struct LogicOp { 740 LogicOp() : RegSize(0), ImmLSB(0), ImmSize(0) {} 741 LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize) 742 : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {} 743 744 explicit operator bool() const { return RegSize; } 745 746 unsigned RegSize, ImmLSB, ImmSize; 747 }; 748 } // end anonymous namespace 749 750 static LogicOp interpretAndImmediate(unsigned Opcode) { 751 switch (Opcode) { 752 case SystemZ::NILMux: return LogicOp(32, 0, 16); 753 case SystemZ::NIHMux: return LogicOp(32, 16, 16); 754 case SystemZ::NILL64: return LogicOp(64, 0, 16); 755 case SystemZ::NILH64: return LogicOp(64, 16, 16); 756 case SystemZ::NIHL64: return LogicOp(64, 32, 16); 757 case SystemZ::NIHH64: return LogicOp(64, 48, 16); 758 case SystemZ::NIFMux: return LogicOp(32, 0, 32); 759 case SystemZ::NILF64: return LogicOp(64, 0, 32); 760 case SystemZ::NIHF64: return LogicOp(64, 32, 32); 761 default: return LogicOp(); 762 } 763 } 764 765 static void transferDeadCC(MachineInstr *OldMI, MachineInstr *NewMI) { 766 if (OldMI->registerDefIsDead(SystemZ::CC)) { 767 MachineOperand *CCDef = NewMI->findRegisterDefOperand(SystemZ::CC); 768 if (CCDef != nullptr) 769 CCDef->setIsDead(true); 770 } 771 } 772 773 // Used to return from convertToThreeAddress after replacing two-address 774 // instruction OldMI with three-address instruction NewMI. 775 static MachineInstr *finishConvertToThreeAddress(MachineInstr *OldMI, 776 MachineInstr *NewMI, 777 LiveVariables *LV) { 778 if (LV) { 779 unsigned NumOps = OldMI->getNumOperands(); 780 for (unsigned I = 1; I < NumOps; ++I) { 781 MachineOperand &Op = OldMI->getOperand(I); 782 if (Op.isReg() && Op.isKill()) 783 LV->replaceKillInstruction(Op.getReg(), *OldMI, *NewMI); 784 } 785 } 786 transferDeadCC(OldMI, NewMI); 787 return NewMI; 788 } 789 790 MachineInstr *SystemZInstrInfo::convertToThreeAddress( 791 MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const { 792 MachineBasicBlock *MBB = MI.getParent(); 793 MachineFunction *MF = MBB->getParent(); 794 MachineRegisterInfo &MRI = MF->getRegInfo(); 795 796 unsigned Opcode = MI.getOpcode(); 797 unsigned NumOps = MI.getNumOperands(); 798 799 // Try to convert something like SLL into SLLK, if supported. 800 // We prefer to keep the two-operand form where possible both 801 // because it tends to be shorter and because some instructions 802 // have memory forms that can be used during spilling. 803 if (STI.hasDistinctOps()) { 804 MachineOperand &Dest = MI.getOperand(0); 805 MachineOperand &Src = MI.getOperand(1); 806 unsigned DestReg = Dest.getReg(); 807 unsigned SrcReg = Src.getReg(); 808 // AHIMux is only really a three-operand instruction when both operands 809 // are low registers. Try to constrain both operands to be low if 810 // possible. 811 if (Opcode == SystemZ::AHIMux && 812 TargetRegisterInfo::isVirtualRegister(DestReg) && 813 TargetRegisterInfo::isVirtualRegister(SrcReg) && 814 MRI.getRegClass(DestReg)->contains(SystemZ::R1L) && 815 MRI.getRegClass(SrcReg)->contains(SystemZ::R1L)) { 816 MRI.constrainRegClass(DestReg, &SystemZ::GR32BitRegClass); 817 MRI.constrainRegClass(SrcReg, &SystemZ::GR32BitRegClass); 818 } 819 int ThreeOperandOpcode = SystemZ::getThreeOperandOpcode(Opcode); 820 if (ThreeOperandOpcode >= 0) { 821 // Create three address instruction without adding the implicit 822 // operands. Those will instead be copied over from the original 823 // instruction by the loop below. 824 MachineInstrBuilder MIB( 825 *MF, MF->CreateMachineInstr(get(ThreeOperandOpcode), MI.getDebugLoc(), 826 /*NoImplicit=*/true)); 827 MIB.addOperand(Dest); 828 // Keep the kill state, but drop the tied flag. 829 MIB.addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg()); 830 // Keep the remaining operands as-is. 831 for (unsigned I = 2; I < NumOps; ++I) 832 MIB.addOperand(MI.getOperand(I)); 833 MBB->insert(MI, MIB); 834 return finishConvertToThreeAddress(&MI, MIB, LV); 835 } 836 } 837 838 // Try to convert an AND into an RISBG-type instruction. 839 if (LogicOp And = interpretAndImmediate(Opcode)) { 840 uint64_t Imm = MI.getOperand(2).getImm() << And.ImmLSB; 841 // AND IMMEDIATE leaves the other bits of the register unchanged. 842 Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB); 843 unsigned Start, End; 844 if (isRxSBGMask(Imm, And.RegSize, Start, End)) { 845 unsigned NewOpcode; 846 if (And.RegSize == 64) { 847 NewOpcode = SystemZ::RISBG; 848 // Prefer RISBGN if available, since it does not clobber CC. 849 if (STI.hasMiscellaneousExtensions()) 850 NewOpcode = SystemZ::RISBGN; 851 } else { 852 NewOpcode = SystemZ::RISBMux; 853 Start &= 31; 854 End &= 31; 855 } 856 MachineOperand &Dest = MI.getOperand(0); 857 MachineOperand &Src = MI.getOperand(1); 858 MachineInstrBuilder MIB = 859 BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpcode)) 860 .addOperand(Dest) 861 .addReg(0) 862 .addReg(Src.getReg(), getKillRegState(Src.isKill()), 863 Src.getSubReg()) 864 .addImm(Start) 865 .addImm(End + 128) 866 .addImm(0); 867 return finishConvertToThreeAddress(&MI, MIB, LV); 868 } 869 } 870 return nullptr; 871 } 872 873 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl( 874 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 875 MachineBasicBlock::iterator InsertPt, int FrameIndex, 876 LiveIntervals *LIS) const { 877 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 878 const MachineFrameInfo *MFI = MF.getFrameInfo(); 879 unsigned Size = MFI->getObjectSize(FrameIndex); 880 unsigned Opcode = MI.getOpcode(); 881 882 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 883 if (LIS != nullptr && (Opcode == SystemZ::LA || Opcode == SystemZ::LAY) && 884 isInt<8>(MI.getOperand(2).getImm()) && !MI.getOperand(3).getReg()) { 885 886 // Check CC liveness, since new instruction introduces a dead 887 // def of CC. 888 MCRegUnitIterator CCUnit(SystemZ::CC, TRI); 889 LiveRange &CCLiveRange = LIS->getRegUnit(*CCUnit); 890 ++CCUnit; 891 assert (!CCUnit.isValid() && "CC only has one reg unit."); 892 SlotIndex MISlot = 893 LIS->getSlotIndexes()->getInstructionIndex(MI).getRegSlot(); 894 if (!CCLiveRange.liveAt(MISlot)) { 895 // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST 896 MachineInstr *BuiltMI = BuildMI(*InsertPt->getParent(), InsertPt, 897 MI.getDebugLoc(), get(SystemZ::AGSI)) 898 .addFrameIndex(FrameIndex) 899 .addImm(0) 900 .addImm(MI.getOperand(2).getImm()); 901 BuiltMI->findRegisterDefOperand(SystemZ::CC)->setIsDead(true); 902 CCLiveRange.createDeadDef(MISlot, LIS->getVNInfoAllocator()); 903 return BuiltMI; 904 } 905 } 906 return nullptr; 907 } 908 909 // All other cases require a single operand. 910 if (Ops.size() != 1) 911 return nullptr; 912 913 unsigned OpNum = Ops[0]; 914 assert(Size == 915 MF.getRegInfo() 916 .getRegClass(MI.getOperand(OpNum).getReg()) 917 ->getSize() && 918 "Invalid size combination"); 919 920 if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && OpNum == 0 && 921 isInt<8>(MI.getOperand(2).getImm())) { 922 // A(G)HI %reg, CONST -> A(G)SI %mem, CONST 923 Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI); 924 MachineInstr *BuiltMI = 925 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode)) 926 .addFrameIndex(FrameIndex) 927 .addImm(0) 928 .addImm(MI.getOperand(2).getImm()); 929 transferDeadCC(&MI, BuiltMI); 930 return BuiltMI; 931 } 932 933 if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) { 934 bool Op0IsGPR = (Opcode == SystemZ::LGDR); 935 bool Op1IsGPR = (Opcode == SystemZ::LDGR); 936 // If we're spilling the destination of an LDGR or LGDR, store the 937 // source register instead. 938 if (OpNum == 0) { 939 unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD; 940 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 941 get(StoreOpcode)) 942 .addOperand(MI.getOperand(1)) 943 .addFrameIndex(FrameIndex) 944 .addImm(0) 945 .addReg(0); 946 } 947 // If we're spilling the source of an LDGR or LGDR, load the 948 // destination register instead. 949 if (OpNum == 1) { 950 unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD; 951 unsigned Dest = MI.getOperand(0).getReg(); 952 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 953 get(LoadOpcode), Dest) 954 .addFrameIndex(FrameIndex) 955 .addImm(0) 956 .addReg(0); 957 } 958 } 959 960 // Look for cases where the source of a simple store or the destination 961 // of a simple load is being spilled. Try to use MVC instead. 962 // 963 // Although MVC is in practice a fast choice in these cases, it is still 964 // logically a bytewise copy. This means that we cannot use it if the 965 // load or store is volatile. We also wouldn't be able to use MVC if 966 // the two memories partially overlap, but that case cannot occur here, 967 // because we know that one of the memories is a full frame index. 968 // 969 // For performance reasons, we also want to avoid using MVC if the addresses 970 // might be equal. We don't worry about that case here, because spill slot 971 // coloring happens later, and because we have special code to remove 972 // MVCs that turn out to be redundant. 973 if (OpNum == 0 && MI.hasOneMemOperand()) { 974 MachineMemOperand *MMO = *MI.memoperands_begin(); 975 if (MMO->getSize() == Size && !MMO->isVolatile()) { 976 // Handle conversion of loads. 977 if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXLoad)) { 978 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 979 get(SystemZ::MVC)) 980 .addFrameIndex(FrameIndex) 981 .addImm(0) 982 .addImm(Size) 983 .addOperand(MI.getOperand(1)) 984 .addImm(MI.getOperand(2).getImm()) 985 .addMemOperand(MMO); 986 } 987 // Handle conversion of stores. 988 if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXStore)) { 989 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 990 get(SystemZ::MVC)) 991 .addOperand(MI.getOperand(1)) 992 .addImm(MI.getOperand(2).getImm()) 993 .addImm(Size) 994 .addFrameIndex(FrameIndex) 995 .addImm(0) 996 .addMemOperand(MMO); 997 } 998 } 999 } 1000 1001 // If the spilled operand is the final one, try to change <INSN>R 1002 // into <INSN>. 1003 int MemOpcode = SystemZ::getMemOpcode(Opcode); 1004 if (MemOpcode >= 0) { 1005 unsigned NumOps = MI.getNumExplicitOperands(); 1006 if (OpNum == NumOps - 1) { 1007 const MCInstrDesc &MemDesc = get(MemOpcode); 1008 uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags); 1009 assert(AccessBytes != 0 && "Size of access should be known"); 1010 assert(AccessBytes <= Size && "Access outside the frame index"); 1011 uint64_t Offset = Size - AccessBytes; 1012 MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt, 1013 MI.getDebugLoc(), get(MemOpcode)); 1014 for (unsigned I = 0; I < OpNum; ++I) 1015 MIB.addOperand(MI.getOperand(I)); 1016 MIB.addFrameIndex(FrameIndex).addImm(Offset); 1017 if (MemDesc.TSFlags & SystemZII::HasIndex) 1018 MIB.addReg(0); 1019 transferDeadCC(&MI, MIB); 1020 return MIB; 1021 } 1022 } 1023 1024 return nullptr; 1025 } 1026 1027 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl( 1028 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 1029 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, 1030 LiveIntervals *LIS) const { 1031 return nullptr; 1032 } 1033 1034 bool SystemZInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1035 switch (MI.getOpcode()) { 1036 case SystemZ::L128: 1037 splitMove(MI, SystemZ::LG); 1038 return true; 1039 1040 case SystemZ::ST128: 1041 splitMove(MI, SystemZ::STG); 1042 return true; 1043 1044 case SystemZ::LX: 1045 splitMove(MI, SystemZ::LD); 1046 return true; 1047 1048 case SystemZ::STX: 1049 splitMove(MI, SystemZ::STD); 1050 return true; 1051 1052 case SystemZ::LBMux: 1053 expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH); 1054 return true; 1055 1056 case SystemZ::LHMux: 1057 expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH); 1058 return true; 1059 1060 case SystemZ::LLCRMux: 1061 expandZExtPseudo(MI, SystemZ::LLCR, 8); 1062 return true; 1063 1064 case SystemZ::LLHRMux: 1065 expandZExtPseudo(MI, SystemZ::LLHR, 16); 1066 return true; 1067 1068 case SystemZ::LLCMux: 1069 expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH); 1070 return true; 1071 1072 case SystemZ::LLHMux: 1073 expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH); 1074 return true; 1075 1076 case SystemZ::LMux: 1077 expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH); 1078 return true; 1079 1080 case SystemZ::STCMux: 1081 expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH); 1082 return true; 1083 1084 case SystemZ::STHMux: 1085 expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH); 1086 return true; 1087 1088 case SystemZ::STMux: 1089 expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH); 1090 return true; 1091 1092 case SystemZ::LHIMux: 1093 expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true); 1094 return true; 1095 1096 case SystemZ::IIFMux: 1097 expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false); 1098 return true; 1099 1100 case SystemZ::IILMux: 1101 expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false); 1102 return true; 1103 1104 case SystemZ::IIHMux: 1105 expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false); 1106 return true; 1107 1108 case SystemZ::NIFMux: 1109 expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false); 1110 return true; 1111 1112 case SystemZ::NILMux: 1113 expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false); 1114 return true; 1115 1116 case SystemZ::NIHMux: 1117 expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false); 1118 return true; 1119 1120 case SystemZ::OIFMux: 1121 expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false); 1122 return true; 1123 1124 case SystemZ::OILMux: 1125 expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false); 1126 return true; 1127 1128 case SystemZ::OIHMux: 1129 expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false); 1130 return true; 1131 1132 case SystemZ::XIFMux: 1133 expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false); 1134 return true; 1135 1136 case SystemZ::TMLMux: 1137 expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false); 1138 return true; 1139 1140 case SystemZ::TMHMux: 1141 expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false); 1142 return true; 1143 1144 case SystemZ::AHIMux: 1145 expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false); 1146 return true; 1147 1148 case SystemZ::AHIMuxK: 1149 expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH); 1150 return true; 1151 1152 case SystemZ::AFIMux: 1153 expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false); 1154 return true; 1155 1156 case SystemZ::CFIMux: 1157 expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false); 1158 return true; 1159 1160 case SystemZ::CLFIMux: 1161 expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false); 1162 return true; 1163 1164 case SystemZ::CMux: 1165 expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF); 1166 return true; 1167 1168 case SystemZ::CLMux: 1169 expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF); 1170 return true; 1171 1172 case SystemZ::RISBMux: { 1173 bool DestIsHigh = isHighReg(MI.getOperand(0).getReg()); 1174 bool SrcIsHigh = isHighReg(MI.getOperand(2).getReg()); 1175 if (SrcIsHigh == DestIsHigh) 1176 MI.setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL)); 1177 else { 1178 MI.setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH)); 1179 MI.getOperand(5).setImm(MI.getOperand(5).getImm() ^ 32); 1180 } 1181 return true; 1182 } 1183 1184 case SystemZ::ADJDYNALLOC: 1185 splitAdjDynAlloc(MI); 1186 return true; 1187 1188 case TargetOpcode::LOAD_STACK_GUARD: 1189 expandLoadStackGuard(&MI); 1190 return true; 1191 1192 default: 1193 return false; 1194 } 1195 } 1196 1197 uint64_t SystemZInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 1198 if (MI.getOpcode() == TargetOpcode::INLINEASM) { 1199 const MachineFunction *MF = MI.getParent()->getParent(); 1200 const char *AsmStr = MI.getOperand(0).getSymbolName(); 1201 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1202 } 1203 return MI.getDesc().getSize(); 1204 } 1205 1206 SystemZII::Branch 1207 SystemZInstrInfo::getBranchInfo(const MachineInstr &MI) const { 1208 switch (MI.getOpcode()) { 1209 case SystemZ::BR: 1210 case SystemZ::J: 1211 case SystemZ::JG: 1212 return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY, 1213 SystemZ::CCMASK_ANY, &MI.getOperand(0)); 1214 1215 case SystemZ::BRC: 1216 case SystemZ::BRCL: 1217 return SystemZII::Branch(SystemZII::BranchNormal, MI.getOperand(0).getImm(), 1218 MI.getOperand(1).getImm(), &MI.getOperand(2)); 1219 1220 case SystemZ::BRCT: 1221 return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP, 1222 SystemZ::CCMASK_CMP_NE, &MI.getOperand(2)); 1223 1224 case SystemZ::BRCTG: 1225 return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP, 1226 SystemZ::CCMASK_CMP_NE, &MI.getOperand(2)); 1227 1228 case SystemZ::CIJ: 1229 case SystemZ::CRJ: 1230 return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP, 1231 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1232 1233 case SystemZ::CLIJ: 1234 case SystemZ::CLRJ: 1235 return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP, 1236 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1237 1238 case SystemZ::CGIJ: 1239 case SystemZ::CGRJ: 1240 return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP, 1241 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1242 1243 case SystemZ::CLGIJ: 1244 case SystemZ::CLGRJ: 1245 return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP, 1246 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1247 1248 default: 1249 llvm_unreachable("Unrecognized branch opcode"); 1250 } 1251 } 1252 1253 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC, 1254 unsigned &LoadOpcode, 1255 unsigned &StoreOpcode) const { 1256 if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) { 1257 LoadOpcode = SystemZ::L; 1258 StoreOpcode = SystemZ::ST; 1259 } else if (RC == &SystemZ::GRH32BitRegClass) { 1260 LoadOpcode = SystemZ::LFH; 1261 StoreOpcode = SystemZ::STFH; 1262 } else if (RC == &SystemZ::GRX32BitRegClass) { 1263 LoadOpcode = SystemZ::LMux; 1264 StoreOpcode = SystemZ::STMux; 1265 } else if (RC == &SystemZ::GR64BitRegClass || 1266 RC == &SystemZ::ADDR64BitRegClass) { 1267 LoadOpcode = SystemZ::LG; 1268 StoreOpcode = SystemZ::STG; 1269 } else if (RC == &SystemZ::GR128BitRegClass || 1270 RC == &SystemZ::ADDR128BitRegClass) { 1271 LoadOpcode = SystemZ::L128; 1272 StoreOpcode = SystemZ::ST128; 1273 } else if (RC == &SystemZ::FP32BitRegClass) { 1274 LoadOpcode = SystemZ::LE; 1275 StoreOpcode = SystemZ::STE; 1276 } else if (RC == &SystemZ::FP64BitRegClass) { 1277 LoadOpcode = SystemZ::LD; 1278 StoreOpcode = SystemZ::STD; 1279 } else if (RC == &SystemZ::FP128BitRegClass) { 1280 LoadOpcode = SystemZ::LX; 1281 StoreOpcode = SystemZ::STX; 1282 } else if (RC == &SystemZ::VR32BitRegClass) { 1283 LoadOpcode = SystemZ::VL32; 1284 StoreOpcode = SystemZ::VST32; 1285 } else if (RC == &SystemZ::VR64BitRegClass) { 1286 LoadOpcode = SystemZ::VL64; 1287 StoreOpcode = SystemZ::VST64; 1288 } else if (RC == &SystemZ::VF128BitRegClass || 1289 RC == &SystemZ::VR128BitRegClass) { 1290 LoadOpcode = SystemZ::VL; 1291 StoreOpcode = SystemZ::VST; 1292 } else 1293 llvm_unreachable("Unsupported regclass to load or store"); 1294 } 1295 1296 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode, 1297 int64_t Offset) const { 1298 const MCInstrDesc &MCID = get(Opcode); 1299 int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset); 1300 if (isUInt<12>(Offset) && isUInt<12>(Offset2)) { 1301 // Get the instruction to use for unsigned 12-bit displacements. 1302 int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode); 1303 if (Disp12Opcode >= 0) 1304 return Disp12Opcode; 1305 1306 // All address-related instructions can use unsigned 12-bit 1307 // displacements. 1308 return Opcode; 1309 } 1310 if (isInt<20>(Offset) && isInt<20>(Offset2)) { 1311 // Get the instruction to use for signed 20-bit displacements. 1312 int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode); 1313 if (Disp20Opcode >= 0) 1314 return Disp20Opcode; 1315 1316 // Check whether Opcode allows signed 20-bit displacements. 1317 if (MCID.TSFlags & SystemZII::Has20BitOffset) 1318 return Opcode; 1319 } 1320 return 0; 1321 } 1322 1323 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const { 1324 switch (Opcode) { 1325 case SystemZ::L: return SystemZ::LT; 1326 case SystemZ::LY: return SystemZ::LT; 1327 case SystemZ::LG: return SystemZ::LTG; 1328 case SystemZ::LGF: return SystemZ::LTGF; 1329 case SystemZ::LR: return SystemZ::LTR; 1330 case SystemZ::LGFR: return SystemZ::LTGFR; 1331 case SystemZ::LGR: return SystemZ::LTGR; 1332 case SystemZ::LER: return SystemZ::LTEBR; 1333 case SystemZ::LDR: return SystemZ::LTDBR; 1334 case SystemZ::LXR: return SystemZ::LTXBR; 1335 case SystemZ::LCDFR: return SystemZ::LCDBR; 1336 case SystemZ::LPDFR: return SystemZ::LPDBR; 1337 case SystemZ::LNDFR: return SystemZ::LNDBR; 1338 case SystemZ::LCDFR_32: return SystemZ::LCEBR; 1339 case SystemZ::LPDFR_32: return SystemZ::LPEBR; 1340 case SystemZ::LNDFR_32: return SystemZ::LNEBR; 1341 // On zEC12 we prefer to use RISBGN. But if there is a chance to 1342 // actually use the condition code, we may turn it back into RISGB. 1343 // Note that RISBG is not really a "load-and-test" instruction, 1344 // but sets the same condition code values, so is OK to use here. 1345 case SystemZ::RISBGN: return SystemZ::RISBG; 1346 default: return 0; 1347 } 1348 } 1349 1350 // Return true if Mask matches the regexp 0*1+0*, given that zero masks 1351 // have already been filtered out. Store the first set bit in LSB and 1352 // the number of set bits in Length if so. 1353 static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) { 1354 unsigned First = findFirstSet(Mask); 1355 uint64_t Top = (Mask >> First) + 1; 1356 if ((Top & -Top) == Top) { 1357 LSB = First; 1358 Length = findFirstSet(Top); 1359 return true; 1360 } 1361 return false; 1362 } 1363 1364 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize, 1365 unsigned &Start, unsigned &End) const { 1366 // Reject trivial all-zero masks. 1367 Mask &= allOnes(BitSize); 1368 if (Mask == 0) 1369 return false; 1370 1371 // Handle the 1+0+ or 0+1+0* cases. Start then specifies the index of 1372 // the msb and End specifies the index of the lsb. 1373 unsigned LSB, Length; 1374 if (isStringOfOnes(Mask, LSB, Length)) { 1375 Start = 63 - (LSB + Length - 1); 1376 End = 63 - LSB; 1377 return true; 1378 } 1379 1380 // Handle the wrap-around 1+0+1+ cases. Start then specifies the msb 1381 // of the low 1s and End specifies the lsb of the high 1s. 1382 if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) { 1383 assert(LSB > 0 && "Bottom bit must be set"); 1384 assert(LSB + Length < BitSize && "Top bit must be set"); 1385 Start = 63 - (LSB - 1); 1386 End = 63 - (LSB + Length); 1387 return true; 1388 } 1389 1390 return false; 1391 } 1392 1393 unsigned SystemZInstrInfo::getFusedCompare(unsigned Opcode, 1394 SystemZII::FusedCompareType Type, 1395 const MachineInstr *MI) const { 1396 switch (Opcode) { 1397 case SystemZ::CHI: 1398 case SystemZ::CGHI: 1399 if (!(MI && isInt<8>(MI->getOperand(1).getImm()))) 1400 return 0; 1401 break; 1402 case SystemZ::CLFI: 1403 case SystemZ::CLGFI: 1404 if (!(MI && isUInt<8>(MI->getOperand(1).getImm()))) 1405 return 0; 1406 } 1407 switch (Type) { 1408 case SystemZII::CompareAndBranch: 1409 switch (Opcode) { 1410 case SystemZ::CR: 1411 return SystemZ::CRJ; 1412 case SystemZ::CGR: 1413 return SystemZ::CGRJ; 1414 case SystemZ::CHI: 1415 return SystemZ::CIJ; 1416 case SystemZ::CGHI: 1417 return SystemZ::CGIJ; 1418 case SystemZ::CLR: 1419 return SystemZ::CLRJ; 1420 case SystemZ::CLGR: 1421 return SystemZ::CLGRJ; 1422 case SystemZ::CLFI: 1423 return SystemZ::CLIJ; 1424 case SystemZ::CLGFI: 1425 return SystemZ::CLGIJ; 1426 default: 1427 return 0; 1428 } 1429 case SystemZII::CompareAndReturn: 1430 switch (Opcode) { 1431 case SystemZ::CR: 1432 return SystemZ::CRBReturn; 1433 case SystemZ::CGR: 1434 return SystemZ::CGRBReturn; 1435 case SystemZ::CHI: 1436 return SystemZ::CIBReturn; 1437 case SystemZ::CGHI: 1438 return SystemZ::CGIBReturn; 1439 case SystemZ::CLR: 1440 return SystemZ::CLRBReturn; 1441 case SystemZ::CLGR: 1442 return SystemZ::CLGRBReturn; 1443 case SystemZ::CLFI: 1444 return SystemZ::CLIBReturn; 1445 case SystemZ::CLGFI: 1446 return SystemZ::CLGIBReturn; 1447 default: 1448 return 0; 1449 } 1450 case SystemZII::CompareAndSibcall: 1451 switch (Opcode) { 1452 case SystemZ::CR: 1453 return SystemZ::CRBCall; 1454 case SystemZ::CGR: 1455 return SystemZ::CGRBCall; 1456 case SystemZ::CHI: 1457 return SystemZ::CIBCall; 1458 case SystemZ::CGHI: 1459 return SystemZ::CGIBCall; 1460 case SystemZ::CLR: 1461 return SystemZ::CLRBCall; 1462 case SystemZ::CLGR: 1463 return SystemZ::CLGRBCall; 1464 case SystemZ::CLFI: 1465 return SystemZ::CLIBCall; 1466 case SystemZ::CLGFI: 1467 return SystemZ::CLGIBCall; 1468 default: 1469 return 0; 1470 } 1471 case SystemZII::CompareAndTrap: 1472 switch (Opcode) { 1473 case SystemZ::CR: 1474 return SystemZ::CRT; 1475 case SystemZ::CGR: 1476 return SystemZ::CGRT; 1477 case SystemZ::CHI: 1478 return SystemZ::CIT; 1479 case SystemZ::CGHI: 1480 return SystemZ::CGIT; 1481 case SystemZ::CLR: 1482 return SystemZ::CLRT; 1483 case SystemZ::CLGR: 1484 return SystemZ::CLGRT; 1485 case SystemZ::CLFI: 1486 return SystemZ::CLFIT; 1487 case SystemZ::CLGFI: 1488 return SystemZ::CLGIT; 1489 default: 1490 return 0; 1491 } 1492 } 1493 return 0; 1494 } 1495 1496 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB, 1497 MachineBasicBlock::iterator MBBI, 1498 unsigned Reg, uint64_t Value) const { 1499 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 1500 unsigned Opcode; 1501 if (isInt<16>(Value)) 1502 Opcode = SystemZ::LGHI; 1503 else if (SystemZ::isImmLL(Value)) 1504 Opcode = SystemZ::LLILL; 1505 else if (SystemZ::isImmLH(Value)) { 1506 Opcode = SystemZ::LLILH; 1507 Value >>= 16; 1508 } else { 1509 assert(isInt<32>(Value) && "Huge values not handled yet"); 1510 Opcode = SystemZ::LGFI; 1511 } 1512 BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value); 1513 } 1514