1 //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the SelectionDAGISel class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/SelectionDAG.h" 15 #include "ScheduleDAGSDNodes.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/PostOrderIterator.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/EHPersonalities.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/CodeGen/FastISel.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/GCMetadata.h" 27 #include "llvm/CodeGen/GCStrategy.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineModuleInfo.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 34 #include "llvm/CodeGen/SchedulerRegistry.h" 35 #include "llvm/CodeGen/SelectionDAGISel.h" 36 #include "llvm/CodeGen/StackProtector.h" 37 #include "llvm/CodeGen/WinEHFuncInfo.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DebugInfo.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/InlineAsm.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/Intrinsics.h" 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/MC/MCAsmInfo.h" 48 #include "llvm/Support/Compiler.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/Timer.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetInstrInfo.h" 54 #include "llvm/Target/TargetIntrinsicInfo.h" 55 #include "llvm/Target/TargetLowering.h" 56 #include "llvm/Target/TargetMachine.h" 57 #include "llvm/Target/TargetOptions.h" 58 #include "llvm/Target/TargetRegisterInfo.h" 59 #include "llvm/Target/TargetSubtargetInfo.h" 60 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 61 #include <algorithm> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "isel" 66 67 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on"); 68 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected"); 69 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel"); 70 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG"); 71 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path"); 72 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered"); 73 STATISTIC(NumFastIselFailLowerArguments, 74 "Number of entry blocks where fast isel failed to lower arguments"); 75 76 #ifndef NDEBUG 77 static cl::opt<bool> 78 EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden, 79 cl::desc("Enable extra verbose messages in the \"fast\" " 80 "instruction selector")); 81 82 // Terminators 83 STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret"); 84 STATISTIC(NumFastIselFailBr,"Fast isel fails on Br"); 85 STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch"); 86 STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr"); 87 STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke"); 88 STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume"); 89 STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable"); 90 91 // Standard binary operators... 92 STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add"); 93 STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd"); 94 STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub"); 95 STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub"); 96 STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul"); 97 STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul"); 98 STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv"); 99 STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv"); 100 STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv"); 101 STATISTIC(NumFastIselFailURem,"Fast isel fails on URem"); 102 STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem"); 103 STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem"); 104 105 // Logical operators... 106 STATISTIC(NumFastIselFailAnd,"Fast isel fails on And"); 107 STATISTIC(NumFastIselFailOr,"Fast isel fails on Or"); 108 STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor"); 109 110 // Memory instructions... 111 STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca"); 112 STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load"); 113 STATISTIC(NumFastIselFailStore,"Fast isel fails on Store"); 114 STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg"); 115 STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM"); 116 STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence"); 117 STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr"); 118 119 // Convert instructions... 120 STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc"); 121 STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt"); 122 STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt"); 123 STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc"); 124 STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt"); 125 STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI"); 126 STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI"); 127 STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP"); 128 STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP"); 129 STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr"); 130 STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt"); 131 STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast"); 132 133 // Other instructions... 134 STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp"); 135 STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp"); 136 STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI"); 137 STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select"); 138 STATISTIC(NumFastIselFailCall,"Fast isel fails on Call"); 139 STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl"); 140 STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr"); 141 STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr"); 142 STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg"); 143 STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement"); 144 STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement"); 145 STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector"); 146 STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue"); 147 STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue"); 148 STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad"); 149 150 // Intrinsic instructions... 151 STATISTIC(NumFastIselFailIntrinsicCall, "Fast isel fails on Intrinsic call"); 152 STATISTIC(NumFastIselFailSAddWithOverflow, 153 "Fast isel fails on sadd.with.overflow"); 154 STATISTIC(NumFastIselFailUAddWithOverflow, 155 "Fast isel fails on uadd.with.overflow"); 156 STATISTIC(NumFastIselFailSSubWithOverflow, 157 "Fast isel fails on ssub.with.overflow"); 158 STATISTIC(NumFastIselFailUSubWithOverflow, 159 "Fast isel fails on usub.with.overflow"); 160 STATISTIC(NumFastIselFailSMulWithOverflow, 161 "Fast isel fails on smul.with.overflow"); 162 STATISTIC(NumFastIselFailUMulWithOverflow, 163 "Fast isel fails on umul.with.overflow"); 164 STATISTIC(NumFastIselFailFrameaddress, "Fast isel fails on Frameaddress"); 165 STATISTIC(NumFastIselFailSqrt, "Fast isel fails on sqrt call"); 166 STATISTIC(NumFastIselFailStackMap, "Fast isel fails on StackMap call"); 167 STATISTIC(NumFastIselFailPatchPoint, "Fast isel fails on PatchPoint call"); 168 #endif 169 170 static cl::opt<bool> 171 EnableFastISelVerbose("fast-isel-verbose", cl::Hidden, 172 cl::desc("Enable verbose messages in the \"fast\" " 173 "instruction selector")); 174 static cl::opt<int> EnableFastISelAbort( 175 "fast-isel-abort", cl::Hidden, 176 cl::desc("Enable abort calls when \"fast\" instruction selection " 177 "fails to lower an instruction: 0 disable the abort, 1 will " 178 "abort but for args, calls and terminators, 2 will also " 179 "abort for argument lowering, and 3 will never fallback " 180 "to SelectionDAG.")); 181 182 static cl::opt<bool> 183 UseMBPI("use-mbpi", 184 cl::desc("use Machine Branch Probability Info"), 185 cl::init(true), cl::Hidden); 186 187 #ifndef NDEBUG 188 static cl::opt<std::string> 189 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden, 190 cl::desc("Only display the basic block whose name " 191 "matches this for all view-*-dags options")); 192 static cl::opt<bool> 193 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden, 194 cl::desc("Pop up a window to show dags before the first " 195 "dag combine pass")); 196 static cl::opt<bool> 197 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden, 198 cl::desc("Pop up a window to show dags before legalize types")); 199 static cl::opt<bool> 200 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, 201 cl::desc("Pop up a window to show dags before legalize")); 202 static cl::opt<bool> 203 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden, 204 cl::desc("Pop up a window to show dags before the second " 205 "dag combine pass")); 206 static cl::opt<bool> 207 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden, 208 cl::desc("Pop up a window to show dags before the post legalize types" 209 " dag combine pass")); 210 static cl::opt<bool> 211 ViewISelDAGs("view-isel-dags", cl::Hidden, 212 cl::desc("Pop up a window to show isel dags as they are selected")); 213 static cl::opt<bool> 214 ViewSchedDAGs("view-sched-dags", cl::Hidden, 215 cl::desc("Pop up a window to show sched dags as they are processed")); 216 static cl::opt<bool> 217 ViewSUnitDAGs("view-sunit-dags", cl::Hidden, 218 cl::desc("Pop up a window to show SUnit dags after they are processed")); 219 #else 220 static const bool ViewDAGCombine1 = false, 221 ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false, 222 ViewDAGCombine2 = false, 223 ViewDAGCombineLT = false, 224 ViewISelDAGs = false, ViewSchedDAGs = false, 225 ViewSUnitDAGs = false; 226 #endif 227 228 //===---------------------------------------------------------------------===// 229 /// 230 /// RegisterScheduler class - Track the registration of instruction schedulers. 231 /// 232 //===---------------------------------------------------------------------===// 233 MachinePassRegistry RegisterScheduler::Registry; 234 235 //===---------------------------------------------------------------------===// 236 /// 237 /// ISHeuristic command line option for instruction schedulers. 238 /// 239 //===---------------------------------------------------------------------===// 240 static cl::opt<RegisterScheduler::FunctionPassCtor, false, 241 RegisterPassParser<RegisterScheduler> > 242 ISHeuristic("pre-RA-sched", 243 cl::init(&createDefaultScheduler), cl::Hidden, 244 cl::desc("Instruction schedulers available (before register" 245 " allocation):")); 246 247 static RegisterScheduler 248 defaultListDAGScheduler("default", "Best scheduler for the target", 249 createDefaultScheduler); 250 251 namespace llvm { 252 //===--------------------------------------------------------------------===// 253 /// \brief This class is used by SelectionDAGISel to temporarily override 254 /// the optimization level on a per-function basis. 255 class OptLevelChanger { 256 SelectionDAGISel &IS; 257 CodeGenOpt::Level SavedOptLevel; 258 bool SavedFastISel; 259 260 public: 261 OptLevelChanger(SelectionDAGISel &ISel, 262 CodeGenOpt::Level NewOptLevel) : IS(ISel) { 263 SavedOptLevel = IS.OptLevel; 264 if (NewOptLevel == SavedOptLevel) 265 return; 266 IS.OptLevel = NewOptLevel; 267 IS.TM.setOptLevel(NewOptLevel); 268 DEBUG(dbgs() << "\nChanging optimization level for Function " 269 << IS.MF->getFunction()->getName() << "\n"); 270 DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel 271 << " ; After: -O" << NewOptLevel << "\n"); 272 SavedFastISel = IS.TM.Options.EnableFastISel; 273 if (NewOptLevel == CodeGenOpt::None) { 274 IS.TM.setFastISel(IS.TM.getO0WantsFastISel()); 275 DEBUG(dbgs() << "\tFastISel is " 276 << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled") 277 << "\n"); 278 } 279 } 280 281 ~OptLevelChanger() { 282 if (IS.OptLevel == SavedOptLevel) 283 return; 284 DEBUG(dbgs() << "\nRestoring optimization level for Function " 285 << IS.MF->getFunction()->getName() << "\n"); 286 DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel 287 << " ; After: -O" << SavedOptLevel << "\n"); 288 IS.OptLevel = SavedOptLevel; 289 IS.TM.setOptLevel(SavedOptLevel); 290 IS.TM.setFastISel(SavedFastISel); 291 } 292 }; 293 294 //===--------------------------------------------------------------------===// 295 /// createDefaultScheduler - This creates an instruction scheduler appropriate 296 /// for the target. 297 ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS, 298 CodeGenOpt::Level OptLevel) { 299 const TargetLowering *TLI = IS->TLI; 300 const TargetSubtargetInfo &ST = IS->MF->getSubtarget(); 301 302 // Try first to see if the Target has its own way of selecting a scheduler 303 if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) { 304 return SchedulerCtor(IS, OptLevel); 305 } 306 307 if (OptLevel == CodeGenOpt::None || 308 (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) || 309 TLI->getSchedulingPreference() == Sched::Source) 310 return createSourceListDAGScheduler(IS, OptLevel); 311 if (TLI->getSchedulingPreference() == Sched::RegPressure) 312 return createBURRListDAGScheduler(IS, OptLevel); 313 if (TLI->getSchedulingPreference() == Sched::Hybrid) 314 return createHybridListDAGScheduler(IS, OptLevel); 315 if (TLI->getSchedulingPreference() == Sched::VLIW) 316 return createVLIWDAGScheduler(IS, OptLevel); 317 assert(TLI->getSchedulingPreference() == Sched::ILP && 318 "Unknown sched type!"); 319 return createILPListDAGScheduler(IS, OptLevel); 320 } 321 } // end namespace llvm 322 323 // EmitInstrWithCustomInserter - This method should be implemented by targets 324 // that mark instructions with the 'usesCustomInserter' flag. These 325 // instructions are special in various ways, which require special support to 326 // insert. The specified MachineInstr is created but not inserted into any 327 // basic blocks, and this method is called to expand it into a sequence of 328 // instructions, potentially also creating new basic blocks and control flow. 329 // When new basic blocks are inserted and the edges from MBB to its successors 330 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the 331 // DenseMap. 332 MachineBasicBlock * 333 TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 334 MachineBasicBlock *MBB) const { 335 #ifndef NDEBUG 336 dbgs() << "If a target marks an instruction with " 337 "'usesCustomInserter', it must implement " 338 "TargetLowering::EmitInstrWithCustomInserter!"; 339 #endif 340 llvm_unreachable(nullptr); 341 } 342 343 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 344 SDNode *Node) const { 345 assert(!MI.hasPostISelHook() && 346 "If a target marks an instruction with 'hasPostISelHook', " 347 "it must implement TargetLowering::AdjustInstrPostInstrSelection!"); 348 } 349 350 //===----------------------------------------------------------------------===// 351 // SelectionDAGISel code 352 //===----------------------------------------------------------------------===// 353 354 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, 355 CodeGenOpt::Level OL) : 356 MachineFunctionPass(ID), TM(tm), 357 FuncInfo(new FunctionLoweringInfo()), 358 CurDAG(new SelectionDAG(tm, OL)), 359 SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)), 360 GFI(), 361 OptLevel(OL), 362 DAGSize(0) { 363 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry()); 364 initializeBranchProbabilityInfoWrapperPassPass( 365 *PassRegistry::getPassRegistry()); 366 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); 367 initializeTargetLibraryInfoWrapperPassPass( 368 *PassRegistry::getPassRegistry()); 369 } 370 371 SelectionDAGISel::~SelectionDAGISel() { 372 delete SDB; 373 delete CurDAG; 374 delete FuncInfo; 375 } 376 377 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { 378 AU.addRequired<AAResultsWrapperPass>(); 379 AU.addRequired<GCModuleInfo>(); 380 AU.addRequired<StackProtector>(); 381 AU.addPreserved<StackProtector>(); 382 AU.addPreserved<GCModuleInfo>(); 383 AU.addRequired<TargetLibraryInfoWrapperPass>(); 384 if (UseMBPI && OptLevel != CodeGenOpt::None) 385 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 386 MachineFunctionPass::getAnalysisUsage(AU); 387 } 388 389 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that 390 /// may trap on it. In this case we have to split the edge so that the path 391 /// through the predecessor block that doesn't go to the phi block doesn't 392 /// execute the possibly trapping instruction. 393 /// 394 /// This is required for correctness, so it must be done at -O0. 395 /// 396 static void SplitCriticalSideEffectEdges(Function &Fn) { 397 // Loop for blocks with phi nodes. 398 for (BasicBlock &BB : Fn) { 399 PHINode *PN = dyn_cast<PHINode>(BB.begin()); 400 if (!PN) continue; 401 402 ReprocessBlock: 403 // For each block with a PHI node, check to see if any of the input values 404 // are potentially trapping constant expressions. Constant expressions are 405 // the only potentially trapping value that can occur as the argument to a 406 // PHI. 407 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I) 408 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 409 ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i)); 410 if (!CE || !CE->canTrap()) continue; 411 412 // The only case we have to worry about is when the edge is critical. 413 // Since this block has a PHI Node, we assume it has multiple input 414 // edges: check to see if the pred has multiple successors. 415 BasicBlock *Pred = PN->getIncomingBlock(i); 416 if (Pred->getTerminator()->getNumSuccessors() == 1) 417 continue; 418 419 // Okay, we have to split this edge. 420 SplitCriticalEdge( 421 Pred->getTerminator(), GetSuccessorNumber(Pred, &BB), 422 CriticalEdgeSplittingOptions().setMergeIdenticalEdges()); 423 goto ReprocessBlock; 424 } 425 } 426 } 427 428 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) { 429 // Do some sanity-checking on the command-line options. 430 assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) && 431 "-fast-isel-verbose requires -fast-isel"); 432 assert((!EnableFastISelAbort || TM.Options.EnableFastISel) && 433 "-fast-isel-abort > 0 requires -fast-isel"); 434 435 const Function &Fn = *mf.getFunction(); 436 MF = &mf; 437 438 // Reset the target options before resetting the optimization 439 // level below. 440 // FIXME: This is a horrible hack and should be processed via 441 // codegen looking at the optimization level explicitly when 442 // it wants to look at it. 443 TM.resetTargetOptions(Fn); 444 // Reset OptLevel to None for optnone functions. 445 CodeGenOpt::Level NewOptLevel = OptLevel; 446 if (OptLevel != CodeGenOpt::None && skipFunction(Fn)) 447 NewOptLevel = CodeGenOpt::None; 448 OptLevelChanger OLC(*this, NewOptLevel); 449 450 TII = MF->getSubtarget().getInstrInfo(); 451 TLI = MF->getSubtarget().getTargetLowering(); 452 RegInfo = &MF->getRegInfo(); 453 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 454 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 455 GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr; 456 457 DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n"); 458 459 SplitCriticalSideEffectEdges(const_cast<Function &>(Fn)); 460 461 CurDAG->init(*MF); 462 FuncInfo->set(Fn, *MF, CurDAG); 463 464 if (UseMBPI && OptLevel != CodeGenOpt::None) 465 FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 466 else 467 FuncInfo->BPI = nullptr; 468 469 SDB->init(GFI, *AA, LibInfo); 470 471 MF->setHasInlineAsm(false); 472 473 FuncInfo->SplitCSR = false; 474 475 // We split CSR if the target supports it for the given function 476 // and the function has only return exits. 477 if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) { 478 FuncInfo->SplitCSR = true; 479 480 // Collect all the return blocks. 481 for (const BasicBlock &BB : Fn) { 482 if (!succ_empty(&BB)) 483 continue; 484 485 const TerminatorInst *Term = BB.getTerminator(); 486 if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term)) 487 continue; 488 489 // Bail out if the exit block is not Return nor Unreachable. 490 FuncInfo->SplitCSR = false; 491 break; 492 } 493 } 494 495 MachineBasicBlock *EntryMBB = &MF->front(); 496 if (FuncInfo->SplitCSR) 497 // This performs initialization so lowering for SplitCSR will be correct. 498 TLI->initializeSplitCSR(EntryMBB); 499 500 SelectAllBasicBlocks(Fn); 501 502 // If the first basic block in the function has live ins that need to be 503 // copied into vregs, emit the copies into the top of the block before 504 // emitting the code for the block. 505 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 506 RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII); 507 508 // Insert copies in the entry block and the return blocks. 509 if (FuncInfo->SplitCSR) { 510 SmallVector<MachineBasicBlock*, 4> Returns; 511 // Collect all the return blocks. 512 for (MachineBasicBlock &MBB : mf) { 513 if (!MBB.succ_empty()) 514 continue; 515 516 MachineBasicBlock::iterator Term = MBB.getFirstTerminator(); 517 if (Term != MBB.end() && Term->isReturn()) { 518 Returns.push_back(&MBB); 519 continue; 520 } 521 } 522 TLI->insertCopiesSplitCSR(EntryMBB, Returns); 523 } 524 525 DenseMap<unsigned, unsigned> LiveInMap; 526 if (!FuncInfo->ArgDbgValues.empty()) 527 for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(), 528 E = RegInfo->livein_end(); LI != E; ++LI) 529 if (LI->second) 530 LiveInMap.insert(std::make_pair(LI->first, LI->second)); 531 532 // Insert DBG_VALUE instructions for function arguments to the entry block. 533 for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) { 534 MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1]; 535 bool hasFI = MI->getOperand(0).isFI(); 536 unsigned Reg = 537 hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg(); 538 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 539 EntryMBB->insert(EntryMBB->begin(), MI); 540 else { 541 MachineInstr *Def = RegInfo->getVRegDef(Reg); 542 if (Def) { 543 MachineBasicBlock::iterator InsertPos = Def; 544 // FIXME: VR def may not be in entry block. 545 Def->getParent()->insert(std::next(InsertPos), MI); 546 } else 547 DEBUG(dbgs() << "Dropping debug info for dead vreg" 548 << TargetRegisterInfo::virtReg2Index(Reg) << "\n"); 549 } 550 551 // If Reg is live-in then update debug info to track its copy in a vreg. 552 DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg); 553 if (LDI != LiveInMap.end()) { 554 assert(!hasFI && "There's no handling of frame pointer updating here yet " 555 "- add if needed"); 556 MachineInstr *Def = RegInfo->getVRegDef(LDI->second); 557 MachineBasicBlock::iterator InsertPos = Def; 558 const MDNode *Variable = MI->getDebugVariable(); 559 const MDNode *Expr = MI->getDebugExpression(); 560 DebugLoc DL = MI->getDebugLoc(); 561 bool IsIndirect = MI->isIndirectDebugValue(); 562 unsigned Offset = IsIndirect ? MI->getOperand(1).getImm() : 0; 563 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 564 "Expected inlined-at fields to agree"); 565 // Def is never a terminator here, so it is ok to increment InsertPos. 566 BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE), 567 IsIndirect, LDI->second, Offset, Variable, Expr); 568 569 // If this vreg is directly copied into an exported register then 570 // that COPY instructions also need DBG_VALUE, if it is the only 571 // user of LDI->second. 572 MachineInstr *CopyUseMI = nullptr; 573 for (MachineRegisterInfo::use_instr_iterator 574 UI = RegInfo->use_instr_begin(LDI->second), 575 E = RegInfo->use_instr_end(); UI != E; ) { 576 MachineInstr *UseMI = &*(UI++); 577 if (UseMI->isDebugValue()) continue; 578 if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) { 579 CopyUseMI = UseMI; continue; 580 } 581 // Otherwise this is another use or second copy use. 582 CopyUseMI = nullptr; break; 583 } 584 if (CopyUseMI) { 585 // Use MI's debug location, which describes where Variable was 586 // declared, rather than whatever is attached to CopyUseMI. 587 MachineInstr *NewMI = 588 BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 589 CopyUseMI->getOperand(0).getReg(), Offset, Variable, Expr); 590 MachineBasicBlock::iterator Pos = CopyUseMI; 591 EntryMBB->insertAfter(Pos, NewMI); 592 } 593 } 594 } 595 596 // Determine if there are any calls in this machine function. 597 MachineFrameInfo *MFI = MF->getFrameInfo(); 598 for (const auto &MBB : *MF) { 599 if (MFI->hasCalls() && MF->hasInlineAsm()) 600 break; 601 602 for (const auto &MI : MBB) { 603 const MCInstrDesc &MCID = TII->get(MI.getOpcode()); 604 if ((MCID.isCall() && !MCID.isReturn()) || 605 MI.isStackAligningInlineAsm()) { 606 MFI->setHasCalls(true); 607 } 608 if (MI.isInlineAsm()) { 609 MF->setHasInlineAsm(true); 610 } 611 } 612 } 613 614 // Determine if there is a call to setjmp in the machine function. 615 MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice()); 616 617 // Replace forward-declared registers with the registers containing 618 // the desired value. 619 MachineRegisterInfo &MRI = MF->getRegInfo(); 620 for (DenseMap<unsigned, unsigned>::iterator 621 I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end(); 622 I != E; ++I) { 623 unsigned From = I->first; 624 unsigned To = I->second; 625 // If To is also scheduled to be replaced, find what its ultimate 626 // replacement is. 627 for (;;) { 628 DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To); 629 if (J == E) break; 630 To = J->second; 631 } 632 // Make sure the new register has a sufficiently constrained register class. 633 if (TargetRegisterInfo::isVirtualRegister(From) && 634 TargetRegisterInfo::isVirtualRegister(To)) 635 MRI.constrainRegClass(To, MRI.getRegClass(From)); 636 // Replace it. 637 638 639 // Replacing one register with another won't touch the kill flags. 640 // We need to conservatively clear the kill flags as a kill on the old 641 // register might dominate existing uses of the new register. 642 if (!MRI.use_empty(To)) 643 MRI.clearKillFlags(From); 644 MRI.replaceRegWith(From, To); 645 } 646 647 if (TLI->hasCopyImplyingStackAdjustment(MF)) 648 MFI->setHasCopyImplyingStackAdjustment(true); 649 650 // Freeze the set of reserved registers now that MachineFrameInfo has been 651 // set up. All the information required by getReservedRegs() should be 652 // available now. 653 MRI.freezeReservedRegs(*MF); 654 655 // Release function-specific state. SDB and CurDAG are already cleared 656 // at this point. 657 FuncInfo->clear(); 658 659 DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n"); 660 DEBUG(MF->print(dbgs())); 661 662 return true; 663 } 664 665 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin, 666 BasicBlock::const_iterator End, 667 bool &HadTailCall) { 668 // Lower the instructions. If a call is emitted as a tail call, cease emitting 669 // nodes for this block. 670 for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) 671 SDB->visit(*I); 672 673 // Make sure the root of the DAG is up-to-date. 674 CurDAG->setRoot(SDB->getControlRoot()); 675 HadTailCall = SDB->HasTailCall; 676 SDB->clear(); 677 678 // Final step, emit the lowered DAG as machine code. 679 CodeGenAndEmitDAG(); 680 } 681 682 void SelectionDAGISel::ComputeLiveOutVRegInfo() { 683 SmallPtrSet<SDNode*, 16> VisitedNodes; 684 SmallVector<SDNode*, 128> Worklist; 685 686 Worklist.push_back(CurDAG->getRoot().getNode()); 687 688 APInt KnownZero; 689 APInt KnownOne; 690 691 do { 692 SDNode *N = Worklist.pop_back_val(); 693 694 // If we've already seen this node, ignore it. 695 if (!VisitedNodes.insert(N).second) 696 continue; 697 698 // Otherwise, add all chain operands to the worklist. 699 for (const SDValue &Op : N->op_values()) 700 if (Op.getValueType() == MVT::Other) 701 Worklist.push_back(Op.getNode()); 702 703 // If this is a CopyToReg with a vreg dest, process it. 704 if (N->getOpcode() != ISD::CopyToReg) 705 continue; 706 707 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); 708 if (!TargetRegisterInfo::isVirtualRegister(DestReg)) 709 continue; 710 711 // Ignore non-scalar or non-integer values. 712 SDValue Src = N->getOperand(2); 713 EVT SrcVT = Src.getValueType(); 714 if (!SrcVT.isInteger() || SrcVT.isVector()) 715 continue; 716 717 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src); 718 CurDAG->computeKnownBits(Src, KnownZero, KnownOne); 719 FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne); 720 } while (!Worklist.empty()); 721 } 722 723 void SelectionDAGISel::CodeGenAndEmitDAG() { 724 std::string GroupName; 725 if (TimePassesIsEnabled) 726 GroupName = "Instruction Selection and Scheduling"; 727 std::string BlockName; 728 int BlockNumber = -1; 729 (void)BlockNumber; 730 bool MatchFilterBB = false; (void)MatchFilterBB; 731 #ifndef NDEBUG 732 MatchFilterBB = (FilterDAGBasicBlockName.empty() || 733 FilterDAGBasicBlockName == 734 FuncInfo->MBB->getBasicBlock()->getName().str()); 735 #endif 736 #ifdef NDEBUG 737 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs || 738 ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs || 739 ViewSUnitDAGs) 740 #endif 741 { 742 BlockNumber = FuncInfo->MBB->getNumber(); 743 BlockName = 744 (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str(); 745 } 746 DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber 747 << " '" << BlockName << "'\n"; CurDAG->dump()); 748 749 if (ViewDAGCombine1 && MatchFilterBB) 750 CurDAG->viewGraph("dag-combine1 input for " + BlockName); 751 752 // Run the DAG combiner in pre-legalize mode. 753 { 754 NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled); 755 CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel); 756 } 757 758 DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber 759 << " '" << BlockName << "'\n"; CurDAG->dump()); 760 761 // Second step, hack on the DAG until it only uses operations and types that 762 // the target supports. 763 if (ViewLegalizeTypesDAGs && MatchFilterBB) 764 CurDAG->viewGraph("legalize-types input for " + BlockName); 765 766 bool Changed; 767 { 768 NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled); 769 Changed = CurDAG->LegalizeTypes(); 770 } 771 772 DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber 773 << " '" << BlockName << "'\n"; CurDAG->dump()); 774 775 CurDAG->NewNodesMustHaveLegalTypes = true; 776 777 if (Changed) { 778 if (ViewDAGCombineLT && MatchFilterBB) 779 CurDAG->viewGraph("dag-combine-lt input for " + BlockName); 780 781 // Run the DAG combiner in post-type-legalize mode. 782 { 783 NamedRegionTimer T("DAG Combining after legalize types", GroupName, 784 TimePassesIsEnabled); 785 CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel); 786 } 787 788 DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber 789 << " '" << BlockName << "'\n"; CurDAG->dump()); 790 791 } 792 793 { 794 NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled); 795 Changed = CurDAG->LegalizeVectors(); 796 } 797 798 if (Changed) { 799 { 800 NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled); 801 CurDAG->LegalizeTypes(); 802 } 803 804 if (ViewDAGCombineLT && MatchFilterBB) 805 CurDAG->viewGraph("dag-combine-lv input for " + BlockName); 806 807 // Run the DAG combiner in post-type-legalize mode. 808 { 809 NamedRegionTimer T("DAG Combining after legalize vectors", GroupName, 810 TimePassesIsEnabled); 811 CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel); 812 } 813 814 DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#" 815 << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump()); 816 } 817 818 if (ViewLegalizeDAGs && MatchFilterBB) 819 CurDAG->viewGraph("legalize input for " + BlockName); 820 821 { 822 NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled); 823 CurDAG->Legalize(); 824 } 825 826 DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber 827 << " '" << BlockName << "'\n"; CurDAG->dump()); 828 829 if (ViewDAGCombine2 && MatchFilterBB) 830 CurDAG->viewGraph("dag-combine2 input for " + BlockName); 831 832 // Run the DAG combiner in post-legalize mode. 833 { 834 NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled); 835 CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel); 836 } 837 838 DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber 839 << " '" << BlockName << "'\n"; CurDAG->dump()); 840 841 if (OptLevel != CodeGenOpt::None) 842 ComputeLiveOutVRegInfo(); 843 844 if (ViewISelDAGs && MatchFilterBB) 845 CurDAG->viewGraph("isel input for " + BlockName); 846 847 // Third, instruction select all of the operations to machine code, adding the 848 // code to the MachineBasicBlock. 849 { 850 NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled); 851 DoInstructionSelection(); 852 } 853 854 DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber 855 << " '" << BlockName << "'\n"; CurDAG->dump()); 856 857 if (ViewSchedDAGs && MatchFilterBB) 858 CurDAG->viewGraph("scheduler input for " + BlockName); 859 860 // Schedule machine code. 861 ScheduleDAGSDNodes *Scheduler = CreateScheduler(); 862 { 863 NamedRegionTimer T("Instruction Scheduling", GroupName, 864 TimePassesIsEnabled); 865 Scheduler->Run(CurDAG, FuncInfo->MBB); 866 } 867 868 if (ViewSUnitDAGs && MatchFilterBB) 869 Scheduler->viewGraph(); 870 871 // Emit machine code to BB. This can change 'BB' to the last block being 872 // inserted into. 873 MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB; 874 { 875 NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled); 876 877 // FuncInfo->InsertPt is passed by reference and set to the end of the 878 // scheduled instructions. 879 LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt); 880 } 881 882 // If the block was split, make sure we update any references that are used to 883 // update PHI nodes later on. 884 if (FirstMBB != LastMBB) 885 SDB->UpdateSplitBlock(FirstMBB, LastMBB); 886 887 // Free the scheduler state. 888 { 889 NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName, 890 TimePassesIsEnabled); 891 delete Scheduler; 892 } 893 894 // Free the SelectionDAG state, now that we're finished with it. 895 CurDAG->clear(); 896 } 897 898 namespace { 899 /// ISelUpdater - helper class to handle updates of the instruction selection 900 /// graph. 901 class ISelUpdater : public SelectionDAG::DAGUpdateListener { 902 SelectionDAG::allnodes_iterator &ISelPosition; 903 public: 904 ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp) 905 : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {} 906 907 /// NodeDeleted - Handle nodes deleted from the graph. If the node being 908 /// deleted is the current ISelPosition node, update ISelPosition. 909 /// 910 void NodeDeleted(SDNode *N, SDNode *E) override { 911 if (ISelPosition == SelectionDAG::allnodes_iterator(N)) 912 ++ISelPosition; 913 } 914 }; 915 } // end anonymous namespace 916 917 void SelectionDAGISel::DoInstructionSelection() { 918 DEBUG(dbgs() << "===== Instruction selection begins: BB#" 919 << FuncInfo->MBB->getNumber() 920 << " '" << FuncInfo->MBB->getName() << "'\n"); 921 922 PreprocessISelDAG(); 923 924 // Select target instructions for the DAG. 925 { 926 // Number all nodes with a topological order and set DAGSize. 927 DAGSize = CurDAG->AssignTopologicalOrder(); 928 929 // Create a dummy node (which is not added to allnodes), that adds 930 // a reference to the root node, preventing it from being deleted, 931 // and tracking any changes of the root. 932 HandleSDNode Dummy(CurDAG->getRoot()); 933 SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode()); 934 ++ISelPosition; 935 936 // Make sure that ISelPosition gets properly updated when nodes are deleted 937 // in calls made from this function. 938 ISelUpdater ISU(*CurDAG, ISelPosition); 939 940 // The AllNodes list is now topological-sorted. Visit the 941 // nodes by starting at the end of the list (the root of the 942 // graph) and preceding back toward the beginning (the entry 943 // node). 944 while (ISelPosition != CurDAG->allnodes_begin()) { 945 SDNode *Node = &*--ISelPosition; 946 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes, 947 // but there are currently some corner cases that it misses. Also, this 948 // makes it theoretically possible to disable the DAGCombiner. 949 if (Node->use_empty()) 950 continue; 951 952 Select(Node); 953 } 954 955 CurDAG->setRoot(Dummy.getValue()); 956 } 957 958 DEBUG(dbgs() << "===== Instruction selection ends:\n"); 959 960 PostprocessISelDAG(); 961 } 962 963 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) { 964 for (const User *U : CPI->users()) { 965 if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) { 966 Intrinsic::ID IID = EHPtrCall->getIntrinsicID(); 967 if (IID == Intrinsic::eh_exceptionpointer || 968 IID == Intrinsic::eh_exceptioncode) 969 return true; 970 } 971 } 972 return false; 973 } 974 975 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and 976 /// do other setup for EH landing-pad blocks. 977 bool SelectionDAGISel::PrepareEHLandingPad() { 978 MachineBasicBlock *MBB = FuncInfo->MBB; 979 const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn(); 980 const BasicBlock *LLVMBB = MBB->getBasicBlock(); 981 const TargetRegisterClass *PtrRC = 982 TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout())); 983 984 // Catchpads have one live-in register, which typically holds the exception 985 // pointer or code. 986 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) { 987 if (hasExceptionPointerOrCodeUser(CPI)) { 988 // Get or create the virtual register to hold the pointer or code. Mark 989 // the live in physreg and copy into the vreg. 990 MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn); 991 assert(EHPhysReg && "target lacks exception pointer register"); 992 MBB->addLiveIn(EHPhysReg); 993 unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC); 994 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), 995 TII->get(TargetOpcode::COPY), VReg) 996 .addReg(EHPhysReg, RegState::Kill); 997 } 998 return true; 999 } 1000 1001 if (!LLVMBB->isLandingPad()) 1002 return true; 1003 1004 // Add a label to mark the beginning of the landing pad. Deletion of the 1005 // landing pad can thus be detected via the MachineModuleInfo. 1006 MCSymbol *Label = MF->getMMI().addLandingPad(MBB); 1007 1008 // Assign the call site to the landing pad's begin label. 1009 MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]); 1010 1011 const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL); 1012 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II) 1013 .addSym(Label); 1014 1015 // Mark exception register as live in. 1016 if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn)) 1017 FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC); 1018 1019 // Mark exception selector register as live in. 1020 if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn)) 1021 FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC); 1022 1023 return true; 1024 } 1025 1026 /// isFoldedOrDeadInstruction - Return true if the specified instruction is 1027 /// side-effect free and is either dead or folded into a generated instruction. 1028 /// Return false if it needs to be emitted. 1029 static bool isFoldedOrDeadInstruction(const Instruction *I, 1030 FunctionLoweringInfo *FuncInfo) { 1031 return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded. 1032 !isa<TerminatorInst>(I) && // Terminators aren't folded. 1033 !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded. 1034 !I->isEHPad() && // EH pad instructions aren't folded. 1035 !FuncInfo->isExportedInst(I); // Exported instrs must be computed. 1036 } 1037 1038 #ifndef NDEBUG 1039 // Collect per Instruction statistics for fast-isel misses. Only those 1040 // instructions that cause the bail are accounted for. It does not account for 1041 // instructions higher in the block. Thus, summing the per instructions stats 1042 // will not add up to what is reported by NumFastIselFailures. 1043 static void collectFailStats(const Instruction *I) { 1044 switch (I->getOpcode()) { 1045 default: assert (0 && "<Invalid operator> "); 1046 1047 // Terminators 1048 case Instruction::Ret: NumFastIselFailRet++; return; 1049 case Instruction::Br: NumFastIselFailBr++; return; 1050 case Instruction::Switch: NumFastIselFailSwitch++; return; 1051 case Instruction::IndirectBr: NumFastIselFailIndirectBr++; return; 1052 case Instruction::Invoke: NumFastIselFailInvoke++; return; 1053 case Instruction::Resume: NumFastIselFailResume++; return; 1054 case Instruction::Unreachable: NumFastIselFailUnreachable++; return; 1055 1056 // Standard binary operators... 1057 case Instruction::Add: NumFastIselFailAdd++; return; 1058 case Instruction::FAdd: NumFastIselFailFAdd++; return; 1059 case Instruction::Sub: NumFastIselFailSub++; return; 1060 case Instruction::FSub: NumFastIselFailFSub++; return; 1061 case Instruction::Mul: NumFastIselFailMul++; return; 1062 case Instruction::FMul: NumFastIselFailFMul++; return; 1063 case Instruction::UDiv: NumFastIselFailUDiv++; return; 1064 case Instruction::SDiv: NumFastIselFailSDiv++; return; 1065 case Instruction::FDiv: NumFastIselFailFDiv++; return; 1066 case Instruction::URem: NumFastIselFailURem++; return; 1067 case Instruction::SRem: NumFastIselFailSRem++; return; 1068 case Instruction::FRem: NumFastIselFailFRem++; return; 1069 1070 // Logical operators... 1071 case Instruction::And: NumFastIselFailAnd++; return; 1072 case Instruction::Or: NumFastIselFailOr++; return; 1073 case Instruction::Xor: NumFastIselFailXor++; return; 1074 1075 // Memory instructions... 1076 case Instruction::Alloca: NumFastIselFailAlloca++; return; 1077 case Instruction::Load: NumFastIselFailLoad++; return; 1078 case Instruction::Store: NumFastIselFailStore++; return; 1079 case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return; 1080 case Instruction::AtomicRMW: NumFastIselFailAtomicRMW++; return; 1081 case Instruction::Fence: NumFastIselFailFence++; return; 1082 case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return; 1083 1084 // Convert instructions... 1085 case Instruction::Trunc: NumFastIselFailTrunc++; return; 1086 case Instruction::ZExt: NumFastIselFailZExt++; return; 1087 case Instruction::SExt: NumFastIselFailSExt++; return; 1088 case Instruction::FPTrunc: NumFastIselFailFPTrunc++; return; 1089 case Instruction::FPExt: NumFastIselFailFPExt++; return; 1090 case Instruction::FPToUI: NumFastIselFailFPToUI++; return; 1091 case Instruction::FPToSI: NumFastIselFailFPToSI++; return; 1092 case Instruction::UIToFP: NumFastIselFailUIToFP++; return; 1093 case Instruction::SIToFP: NumFastIselFailSIToFP++; return; 1094 case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return; 1095 case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return; 1096 case Instruction::BitCast: NumFastIselFailBitCast++; return; 1097 1098 // Other instructions... 1099 case Instruction::ICmp: NumFastIselFailICmp++; return; 1100 case Instruction::FCmp: NumFastIselFailFCmp++; return; 1101 case Instruction::PHI: NumFastIselFailPHI++; return; 1102 case Instruction::Select: NumFastIselFailSelect++; return; 1103 case Instruction::Call: { 1104 if (auto const *Intrinsic = dyn_cast<IntrinsicInst>(I)) { 1105 switch (Intrinsic->getIntrinsicID()) { 1106 default: 1107 NumFastIselFailIntrinsicCall++; return; 1108 case Intrinsic::sadd_with_overflow: 1109 NumFastIselFailSAddWithOverflow++; return; 1110 case Intrinsic::uadd_with_overflow: 1111 NumFastIselFailUAddWithOverflow++; return; 1112 case Intrinsic::ssub_with_overflow: 1113 NumFastIselFailSSubWithOverflow++; return; 1114 case Intrinsic::usub_with_overflow: 1115 NumFastIselFailUSubWithOverflow++; return; 1116 case Intrinsic::smul_with_overflow: 1117 NumFastIselFailSMulWithOverflow++; return; 1118 case Intrinsic::umul_with_overflow: 1119 NumFastIselFailUMulWithOverflow++; return; 1120 case Intrinsic::frameaddress: 1121 NumFastIselFailFrameaddress++; return; 1122 case Intrinsic::sqrt: 1123 NumFastIselFailSqrt++; return; 1124 case Intrinsic::experimental_stackmap: 1125 NumFastIselFailStackMap++; return; 1126 case Intrinsic::experimental_patchpoint_void: // fall-through 1127 case Intrinsic::experimental_patchpoint_i64: 1128 NumFastIselFailPatchPoint++; return; 1129 } 1130 } 1131 NumFastIselFailCall++; 1132 return; 1133 } 1134 case Instruction::Shl: NumFastIselFailShl++; return; 1135 case Instruction::LShr: NumFastIselFailLShr++; return; 1136 case Instruction::AShr: NumFastIselFailAShr++; return; 1137 case Instruction::VAArg: NumFastIselFailVAArg++; return; 1138 case Instruction::ExtractElement: NumFastIselFailExtractElement++; return; 1139 case Instruction::InsertElement: NumFastIselFailInsertElement++; return; 1140 case Instruction::ShuffleVector: NumFastIselFailShuffleVector++; return; 1141 case Instruction::ExtractValue: NumFastIselFailExtractValue++; return; 1142 case Instruction::InsertValue: NumFastIselFailInsertValue++; return; 1143 case Instruction::LandingPad: NumFastIselFailLandingPad++; return; 1144 } 1145 } 1146 #endif // NDEBUG 1147 1148 /// Set up SwiftErrorVals by going through the function. If the function has 1149 /// swifterror argument, it will be the first entry. 1150 static void setupSwiftErrorVals(const Function &Fn, const TargetLowering *TLI, 1151 FunctionLoweringInfo *FuncInfo) { 1152 if (!TLI->supportSwiftError()) 1153 return; 1154 1155 FuncInfo->SwiftErrorVals.clear(); 1156 FuncInfo->SwiftErrorMap.clear(); 1157 FuncInfo->SwiftErrorWorklist.clear(); 1158 1159 // Check if function has a swifterror argument. 1160 for (Function::const_arg_iterator AI = Fn.arg_begin(), AE = Fn.arg_end(); 1161 AI != AE; ++AI) 1162 if (AI->hasSwiftErrorAttr()) 1163 FuncInfo->SwiftErrorVals.push_back(&*AI); 1164 1165 for (const auto &LLVMBB : Fn) 1166 for (const auto &Inst : LLVMBB) { 1167 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(&Inst)) 1168 if (Alloca->isSwiftError()) 1169 FuncInfo->SwiftErrorVals.push_back(Alloca); 1170 } 1171 } 1172 1173 /// For each basic block, merge incoming swifterror values or simply propagate 1174 /// them. The merged results will be saved in SwiftErrorMap. For predecessors 1175 /// that are not yet visited, we create virtual registers to hold the swifterror 1176 /// values and save them in SwiftErrorWorklist. 1177 static void mergeIncomingSwiftErrors(FunctionLoweringInfo *FuncInfo, 1178 const TargetLowering *TLI, 1179 const TargetInstrInfo *TII, 1180 const BasicBlock *LLVMBB, 1181 SelectionDAGBuilder *SDB) { 1182 if (!TLI->supportSwiftError()) 1183 return; 1184 1185 // We should only do this when we have swifterror parameter or swifterror 1186 // alloc. 1187 if (FuncInfo->SwiftErrorVals.empty()) 1188 return; 1189 1190 // At beginning of a basic block, insert PHI nodes or get the virtual 1191 // register from the only predecessor, and update SwiftErrorMap; if one 1192 // of the predecessors is not visited, update SwiftErrorWorklist. 1193 // At end of a basic block, if a block is in SwiftErrorWorklist, insert copy 1194 // to sync up the virtual register assignment. 1195 1196 // Always create a virtual register for each swifterror value in entry block. 1197 auto &DL = SDB->DAG.getDataLayout(); 1198 const TargetRegisterClass *RC = TLI->getRegClassFor(TLI->getPointerTy(DL)); 1199 if (pred_begin(LLVMBB) == pred_end(LLVMBB)) { 1200 for (unsigned I = 0, E = FuncInfo->SwiftErrorVals.size(); I < E; I++) { 1201 unsigned VReg = FuncInfo->MF->getRegInfo().createVirtualRegister(RC); 1202 // Assign Undef to Vreg. We construct MI directly to make sure it works 1203 // with FastISel. 1204 BuildMI(*FuncInfo->MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), 1205 TII->get(TargetOpcode::IMPLICIT_DEF), VReg); 1206 FuncInfo->SwiftErrorMap[FuncInfo->MBB].push_back(VReg); 1207 } 1208 return; 1209 } 1210 1211 if (auto *UniquePred = LLVMBB->getUniquePredecessor()) { 1212 auto *UniquePredMBB = FuncInfo->MBBMap[UniquePred]; 1213 if (!FuncInfo->SwiftErrorMap.count(UniquePredMBB)) { 1214 // Update SwiftErrorWorklist with a new virtual register. 1215 for (unsigned I = 0, E = FuncInfo->SwiftErrorVals.size(); I < E; I++) { 1216 unsigned VReg = FuncInfo->MF->getRegInfo().createVirtualRegister(RC); 1217 FuncInfo->SwiftErrorWorklist[UniquePredMBB].push_back(VReg); 1218 // Propagate the information from the single predecessor. 1219 FuncInfo->SwiftErrorMap[FuncInfo->MBB].push_back(VReg); 1220 } 1221 return; 1222 } 1223 // Propagate the information from the single predecessor. 1224 FuncInfo->SwiftErrorMap[FuncInfo->MBB] = 1225 FuncInfo->SwiftErrorMap[UniquePredMBB]; 1226 return; 1227 } 1228 1229 // For the case of multiple predecessors, update SwiftErrorWorklist. 1230 // Handle the case where we have two or more predecessors being the same. 1231 for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB); 1232 PI != PE; ++PI) { 1233 auto *PredMBB = FuncInfo->MBBMap[*PI]; 1234 if (!FuncInfo->SwiftErrorMap.count(PredMBB) && 1235 !FuncInfo->SwiftErrorWorklist.count(PredMBB)) { 1236 for (unsigned I = 0, E = FuncInfo->SwiftErrorVals.size(); I < E; I++) { 1237 unsigned VReg = FuncInfo->MF->getRegInfo().createVirtualRegister(RC); 1238 // When we actually visit the basic block PredMBB, we will materialize 1239 // the virtual register assignment in copySwiftErrorsToFinalVRegs. 1240 FuncInfo->SwiftErrorWorklist[PredMBB].push_back(VReg); 1241 } 1242 } 1243 } 1244 1245 // For the case of multiple predecessors, create a virtual register for 1246 // each swifterror value and generate Phi node. 1247 for (unsigned I = 0, E = FuncInfo->SwiftErrorVals.size(); I < E; I++) { 1248 unsigned VReg = FuncInfo->MF->getRegInfo().createVirtualRegister(RC); 1249 FuncInfo->SwiftErrorMap[FuncInfo->MBB].push_back(VReg); 1250 1251 MachineInstrBuilder SwiftErrorPHI = BuildMI(*FuncInfo->MBB, 1252 FuncInfo->MBB->begin(), SDB->getCurDebugLoc(), 1253 TII->get(TargetOpcode::PHI), VReg); 1254 for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB); 1255 PI != PE; ++PI) { 1256 auto *PredMBB = FuncInfo->MBBMap[*PI]; 1257 unsigned SwiftErrorReg = FuncInfo->SwiftErrorMap.count(PredMBB) ? 1258 FuncInfo->SwiftErrorMap[PredMBB][I] : 1259 FuncInfo->SwiftErrorWorklist[PredMBB][I]; 1260 SwiftErrorPHI.addReg(SwiftErrorReg) 1261 .addMBB(PredMBB); 1262 } 1263 } 1264 } 1265 1266 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) { 1267 // Initialize the Fast-ISel state, if needed. 1268 FastISel *FastIS = nullptr; 1269 if (TM.Options.EnableFastISel) 1270 FastIS = TLI->createFastISel(*FuncInfo, LibInfo); 1271 1272 setupSwiftErrorVals(Fn, TLI, FuncInfo); 1273 1274 // Iterate over all basic blocks in the function. 1275 ReversePostOrderTraversal<const Function*> RPOT(&Fn); 1276 for (ReversePostOrderTraversal<const Function*>::rpo_iterator 1277 I = RPOT.begin(), E = RPOT.end(); I != E; ++I) { 1278 const BasicBlock *LLVMBB = *I; 1279 1280 if (OptLevel != CodeGenOpt::None) { 1281 bool AllPredsVisited = true; 1282 for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB); 1283 PI != PE; ++PI) { 1284 if (!FuncInfo->VisitedBBs.count(*PI)) { 1285 AllPredsVisited = false; 1286 break; 1287 } 1288 } 1289 1290 if (AllPredsVisited) { 1291 for (BasicBlock::const_iterator I = LLVMBB->begin(); 1292 const PHINode *PN = dyn_cast<PHINode>(I); ++I) 1293 FuncInfo->ComputePHILiveOutRegInfo(PN); 1294 } else { 1295 for (BasicBlock::const_iterator I = LLVMBB->begin(); 1296 const PHINode *PN = dyn_cast<PHINode>(I); ++I) 1297 FuncInfo->InvalidatePHILiveOutRegInfo(PN); 1298 } 1299 1300 FuncInfo->VisitedBBs.insert(LLVMBB); 1301 } 1302 1303 BasicBlock::const_iterator const Begin = 1304 LLVMBB->getFirstNonPHI()->getIterator(); 1305 BasicBlock::const_iterator const End = LLVMBB->end(); 1306 BasicBlock::const_iterator BI = End; 1307 1308 FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB]; 1309 if (!FuncInfo->MBB) 1310 continue; // Some blocks like catchpads have no code or MBB. 1311 FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI(); 1312 mergeIncomingSwiftErrors(FuncInfo, TLI, TII, LLVMBB, SDB); 1313 1314 // Setup an EH landing-pad block. 1315 FuncInfo->ExceptionPointerVirtReg = 0; 1316 FuncInfo->ExceptionSelectorVirtReg = 0; 1317 if (LLVMBB->isEHPad()) 1318 if (!PrepareEHLandingPad()) 1319 continue; 1320 1321 // Before doing SelectionDAG ISel, see if FastISel has been requested. 1322 if (FastIS) { 1323 FastIS->startNewBlock(); 1324 1325 // Emit code for any incoming arguments. This must happen before 1326 // beginning FastISel on the entry block. 1327 if (LLVMBB == &Fn.getEntryBlock()) { 1328 ++NumEntryBlocks; 1329 1330 // Lower any arguments needed in this block if this is the entry block. 1331 if (!FastIS->lowerArguments()) { 1332 // Fast isel failed to lower these arguments 1333 ++NumFastIselFailLowerArguments; 1334 if (EnableFastISelAbort > 1) 1335 report_fatal_error("FastISel didn't lower all arguments"); 1336 1337 // Use SelectionDAG argument lowering 1338 LowerArguments(Fn); 1339 CurDAG->setRoot(SDB->getControlRoot()); 1340 SDB->clear(); 1341 CodeGenAndEmitDAG(); 1342 } 1343 1344 // If we inserted any instructions at the beginning, make a note of 1345 // where they are, so we can be sure to emit subsequent instructions 1346 // after them. 1347 if (FuncInfo->InsertPt != FuncInfo->MBB->begin()) 1348 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt)); 1349 else 1350 FastIS->setLastLocalValue(nullptr); 1351 } 1352 1353 unsigned NumFastIselRemaining = std::distance(Begin, End); 1354 // Do FastISel on as many instructions as possible. 1355 for (; BI != Begin; --BI) { 1356 const Instruction *Inst = &*std::prev(BI); 1357 1358 // If we no longer require this instruction, skip it. 1359 if (isFoldedOrDeadInstruction(Inst, FuncInfo)) { 1360 --NumFastIselRemaining; 1361 continue; 1362 } 1363 1364 // Bottom-up: reset the insert pos at the top, after any local-value 1365 // instructions. 1366 FastIS->recomputeInsertPt(); 1367 1368 // Try to select the instruction with FastISel. 1369 if (FastIS->selectInstruction(Inst)) { 1370 --NumFastIselRemaining; 1371 ++NumFastIselSuccess; 1372 // If fast isel succeeded, skip over all the folded instructions, and 1373 // then see if there is a load right before the selected instructions. 1374 // Try to fold the load if so. 1375 const Instruction *BeforeInst = Inst; 1376 while (BeforeInst != &*Begin) { 1377 BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst)); 1378 if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo)) 1379 break; 1380 } 1381 if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) && 1382 BeforeInst->hasOneUse() && 1383 FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) { 1384 // If we succeeded, don't re-select the load. 1385 BI = std::next(BasicBlock::const_iterator(BeforeInst)); 1386 --NumFastIselRemaining; 1387 ++NumFastIselSuccess; 1388 } 1389 continue; 1390 } 1391 1392 #ifndef NDEBUG 1393 if (EnableFastISelVerbose2) 1394 collectFailStats(Inst); 1395 #endif 1396 1397 // Then handle certain instructions as single-LLVM-Instruction blocks. 1398 if (isa<CallInst>(Inst)) { 1399 1400 if (EnableFastISelVerbose || EnableFastISelAbort) { 1401 dbgs() << "FastISel missed call: "; 1402 Inst->dump(); 1403 } 1404 if (EnableFastISelAbort > 2) 1405 // FastISel selector couldn't handle something and bailed. 1406 // For the purpose of debugging, just abort. 1407 report_fatal_error("FastISel didn't select the entire block"); 1408 1409 if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() && 1410 !Inst->use_empty()) { 1411 unsigned &R = FuncInfo->ValueMap[Inst]; 1412 if (!R) 1413 R = FuncInfo->CreateRegs(Inst->getType()); 1414 } 1415 1416 bool HadTailCall = false; 1417 MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt; 1418 SelectBasicBlock(Inst->getIterator(), BI, HadTailCall); 1419 1420 // If the call was emitted as a tail call, we're done with the block. 1421 // We also need to delete any previously emitted instructions. 1422 if (HadTailCall) { 1423 FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end()); 1424 --BI; 1425 break; 1426 } 1427 1428 // Recompute NumFastIselRemaining as Selection DAG instruction 1429 // selection may have handled the call, input args, etc. 1430 unsigned RemainingNow = std::distance(Begin, BI); 1431 NumFastIselFailures += NumFastIselRemaining - RemainingNow; 1432 NumFastIselRemaining = RemainingNow; 1433 continue; 1434 } 1435 1436 bool ShouldAbort = EnableFastISelAbort; 1437 if (EnableFastISelVerbose || EnableFastISelAbort) { 1438 if (isa<TerminatorInst>(Inst)) { 1439 // Use a different message for terminator misses. 1440 dbgs() << "FastISel missed terminator: "; 1441 // Don't abort unless for terminator unless the level is really high 1442 ShouldAbort = (EnableFastISelAbort > 2); 1443 } else { 1444 dbgs() << "FastISel miss: "; 1445 } 1446 Inst->dump(); 1447 } 1448 if (ShouldAbort) 1449 // FastISel selector couldn't handle something and bailed. 1450 // For the purpose of debugging, just abort. 1451 report_fatal_error("FastISel didn't select the entire block"); 1452 1453 NumFastIselFailures += NumFastIselRemaining; 1454 break; 1455 } 1456 1457 FastIS->recomputeInsertPt(); 1458 } else { 1459 // Lower any arguments needed in this block if this is the entry block. 1460 if (LLVMBB == &Fn.getEntryBlock()) { 1461 ++NumEntryBlocks; 1462 LowerArguments(Fn); 1463 } 1464 } 1465 if (getAnalysis<StackProtector>().shouldEmitSDCheck(*LLVMBB)) { 1466 bool FunctionBasedInstrumentation = 1467 TLI->getSSPStackGuardCheck(*Fn.getParent()); 1468 SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB], 1469 FunctionBasedInstrumentation); 1470 } 1471 1472 if (Begin != BI) 1473 ++NumDAGBlocks; 1474 else 1475 ++NumFastIselBlocks; 1476 1477 if (Begin != BI) { 1478 // Run SelectionDAG instruction selection on the remainder of the block 1479 // not handled by FastISel. If FastISel is not run, this is the entire 1480 // block. 1481 bool HadTailCall; 1482 SelectBasicBlock(Begin, BI, HadTailCall); 1483 } 1484 1485 FinishBasicBlock(); 1486 FuncInfo->PHINodesToUpdate.clear(); 1487 } 1488 1489 delete FastIS; 1490 SDB->clearDanglingDebugInfo(); 1491 SDB->SPDescriptor.resetPerFunctionState(); 1492 } 1493 1494 /// Given that the input MI is before a partial terminator sequence TSeq, return 1495 /// true if M + TSeq also a partial terminator sequence. 1496 /// 1497 /// A Terminator sequence is a sequence of MachineInstrs which at this point in 1498 /// lowering copy vregs into physical registers, which are then passed into 1499 /// terminator instructors so we can satisfy ABI constraints. A partial 1500 /// terminator sequence is an improper subset of a terminator sequence (i.e. it 1501 /// may be the whole terminator sequence). 1502 static bool MIIsInTerminatorSequence(const MachineInstr &MI) { 1503 // If we do not have a copy or an implicit def, we return true if and only if 1504 // MI is a debug value. 1505 if (!MI.isCopy() && !MI.isImplicitDef()) 1506 // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the 1507 // physical registers if there is debug info associated with the terminator 1508 // of our mbb. We want to include said debug info in our terminator 1509 // sequence, so we return true in that case. 1510 return MI.isDebugValue(); 1511 1512 // We have left the terminator sequence if we are not doing one of the 1513 // following: 1514 // 1515 // 1. Copying a vreg into a physical register. 1516 // 2. Copying a vreg into a vreg. 1517 // 3. Defining a register via an implicit def. 1518 1519 // OPI should always be a register definition... 1520 MachineInstr::const_mop_iterator OPI = MI.operands_begin(); 1521 if (!OPI->isReg() || !OPI->isDef()) 1522 return false; 1523 1524 // Defining any register via an implicit def is always ok. 1525 if (MI.isImplicitDef()) 1526 return true; 1527 1528 // Grab the copy source... 1529 MachineInstr::const_mop_iterator OPI2 = OPI; 1530 ++OPI2; 1531 assert(OPI2 != MI.operands_end() 1532 && "Should have a copy implying we should have 2 arguments."); 1533 1534 // Make sure that the copy dest is not a vreg when the copy source is a 1535 // physical register. 1536 if (!OPI2->isReg() || 1537 (!TargetRegisterInfo::isPhysicalRegister(OPI->getReg()) && 1538 TargetRegisterInfo::isPhysicalRegister(OPI2->getReg()))) 1539 return false; 1540 1541 return true; 1542 } 1543 1544 /// Find the split point at which to splice the end of BB into its success stack 1545 /// protector check machine basic block. 1546 /// 1547 /// On many platforms, due to ABI constraints, terminators, even before register 1548 /// allocation, use physical registers. This creates an issue for us since 1549 /// physical registers at this point can not travel across basic 1550 /// blocks. Luckily, selectiondag always moves physical registers into vregs 1551 /// when they enter functions and moves them through a sequence of copies back 1552 /// into the physical registers right before the terminator creating a 1553 /// ``Terminator Sequence''. This function is searching for the beginning of the 1554 /// terminator sequence so that we can ensure that we splice off not just the 1555 /// terminator, but additionally the copies that move the vregs into the 1556 /// physical registers. 1557 static MachineBasicBlock::iterator 1558 FindSplitPointForStackProtector(MachineBasicBlock *BB) { 1559 MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator(); 1560 // 1561 if (SplitPoint == BB->begin()) 1562 return SplitPoint; 1563 1564 MachineBasicBlock::iterator Start = BB->begin(); 1565 MachineBasicBlock::iterator Previous = SplitPoint; 1566 --Previous; 1567 1568 while (MIIsInTerminatorSequence(*Previous)) { 1569 SplitPoint = Previous; 1570 if (Previous == Start) 1571 break; 1572 --Previous; 1573 } 1574 1575 return SplitPoint; 1576 } 1577 1578 void 1579 SelectionDAGISel::FinishBasicBlock() { 1580 DEBUG(dbgs() << "Total amount of phi nodes to update: " 1581 << FuncInfo->PHINodesToUpdate.size() << "\n"; 1582 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) 1583 dbgs() << "Node " << i << " : (" 1584 << FuncInfo->PHINodesToUpdate[i].first 1585 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n"); 1586 1587 // Next, now that we know what the last MBB the LLVM BB expanded is, update 1588 // PHI nodes in successors. 1589 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) { 1590 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first); 1591 assert(PHI->isPHI() && 1592 "This is not a machine PHI node that we are updating!"); 1593 if (!FuncInfo->MBB->isSuccessor(PHI->getParent())) 1594 continue; 1595 PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB); 1596 } 1597 1598 // Handle stack protector. 1599 if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) { 1600 // The target provides a guard check function. There is no need to 1601 // generate error handling code or to split current basic block. 1602 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); 1603 1604 // Add load and check to the basicblock. 1605 FuncInfo->MBB = ParentMBB; 1606 FuncInfo->InsertPt = 1607 FindSplitPointForStackProtector(ParentMBB); 1608 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB); 1609 CurDAG->setRoot(SDB->getRoot()); 1610 SDB->clear(); 1611 CodeGenAndEmitDAG(); 1612 1613 // Clear the Per-BB State. 1614 SDB->SPDescriptor.resetPerBBState(); 1615 } else if (SDB->SPDescriptor.shouldEmitStackProtector()) { 1616 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); 1617 MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB(); 1618 1619 // Find the split point to split the parent mbb. At the same time copy all 1620 // physical registers used in the tail of parent mbb into virtual registers 1621 // before the split point and back into physical registers after the split 1622 // point. This prevents us needing to deal with Live-ins and many other 1623 // register allocation issues caused by us splitting the parent mbb. The 1624 // register allocator will clean up said virtual copies later on. 1625 MachineBasicBlock::iterator SplitPoint = 1626 FindSplitPointForStackProtector(ParentMBB); 1627 1628 // Splice the terminator of ParentMBB into SuccessMBB. 1629 SuccessMBB->splice(SuccessMBB->end(), ParentMBB, 1630 SplitPoint, 1631 ParentMBB->end()); 1632 1633 // Add compare/jump on neq/jump to the parent BB. 1634 FuncInfo->MBB = ParentMBB; 1635 FuncInfo->InsertPt = ParentMBB->end(); 1636 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB); 1637 CurDAG->setRoot(SDB->getRoot()); 1638 SDB->clear(); 1639 CodeGenAndEmitDAG(); 1640 1641 // CodeGen Failure MBB if we have not codegened it yet. 1642 MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB(); 1643 if (FailureMBB->empty()) { 1644 FuncInfo->MBB = FailureMBB; 1645 FuncInfo->InsertPt = FailureMBB->end(); 1646 SDB->visitSPDescriptorFailure(SDB->SPDescriptor); 1647 CurDAG->setRoot(SDB->getRoot()); 1648 SDB->clear(); 1649 CodeGenAndEmitDAG(); 1650 } 1651 1652 // Clear the Per-BB State. 1653 SDB->SPDescriptor.resetPerBBState(); 1654 } 1655 1656 // Lower each BitTestBlock. 1657 for (auto &BTB : SDB->BitTestCases) { 1658 // Lower header first, if it wasn't already lowered 1659 if (!BTB.Emitted) { 1660 // Set the current basic block to the mbb we wish to insert the code into 1661 FuncInfo->MBB = BTB.Parent; 1662 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1663 // Emit the code 1664 SDB->visitBitTestHeader(BTB, FuncInfo->MBB); 1665 CurDAG->setRoot(SDB->getRoot()); 1666 SDB->clear(); 1667 CodeGenAndEmitDAG(); 1668 } 1669 1670 BranchProbability UnhandledProb = BTB.Prob; 1671 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) { 1672 UnhandledProb -= BTB.Cases[j].ExtraProb; 1673 // Set the current basic block to the mbb we wish to insert the code into 1674 FuncInfo->MBB = BTB.Cases[j].ThisBB; 1675 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1676 // Emit the code 1677 1678 // If all cases cover a contiguous range, it is not necessary to jump to 1679 // the default block after the last bit test fails. This is because the 1680 // range check during bit test header creation has guaranteed that every 1681 // case here doesn't go outside the range. In this case, there is no need 1682 // to perform the last bit test, as it will always be true. Instead, make 1683 // the second-to-last bit-test fall through to the target of the last bit 1684 // test, and delete the last bit test. 1685 1686 MachineBasicBlock *NextMBB; 1687 if (BTB.ContiguousRange && j + 2 == ej) { 1688 // Second-to-last bit-test with contiguous range: fall through to the 1689 // target of the final bit test. 1690 NextMBB = BTB.Cases[j + 1].TargetBB; 1691 } else if (j + 1 == ej) { 1692 // For the last bit test, fall through to Default. 1693 NextMBB = BTB.Default; 1694 } else { 1695 // Otherwise, fall through to the next bit test. 1696 NextMBB = BTB.Cases[j + 1].ThisBB; 1697 } 1698 1699 SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], 1700 FuncInfo->MBB); 1701 1702 CurDAG->setRoot(SDB->getRoot()); 1703 SDB->clear(); 1704 CodeGenAndEmitDAG(); 1705 1706 if (BTB.ContiguousRange && j + 2 == ej) { 1707 // Since we're not going to use the final bit test, remove it. 1708 BTB.Cases.pop_back(); 1709 break; 1710 } 1711 } 1712 1713 // Update PHI Nodes 1714 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); 1715 pi != pe; ++pi) { 1716 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); 1717 MachineBasicBlock *PHIBB = PHI->getParent(); 1718 assert(PHI->isPHI() && 1719 "This is not a machine PHI node that we are updating!"); 1720 // This is "default" BB. We have two jumps to it. From "header" BB and 1721 // from last "case" BB, unless the latter was skipped. 1722 if (PHIBB == BTB.Default) { 1723 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent); 1724 if (!BTB.ContiguousRange) { 1725 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) 1726 .addMBB(BTB.Cases.back().ThisBB); 1727 } 1728 } 1729 // One of "cases" BB. 1730 for (unsigned j = 0, ej = BTB.Cases.size(); 1731 j != ej; ++j) { 1732 MachineBasicBlock* cBB = BTB.Cases[j].ThisBB; 1733 if (cBB->isSuccessor(PHIBB)) 1734 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB); 1735 } 1736 } 1737 } 1738 SDB->BitTestCases.clear(); 1739 1740 // If the JumpTable record is filled in, then we need to emit a jump table. 1741 // Updating the PHI nodes is tricky in this case, since we need to determine 1742 // whether the PHI is a successor of the range check MBB or the jump table MBB 1743 for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) { 1744 // Lower header first, if it wasn't already lowered 1745 if (!SDB->JTCases[i].first.Emitted) { 1746 // Set the current basic block to the mbb we wish to insert the code into 1747 FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB; 1748 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1749 // Emit the code 1750 SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first, 1751 FuncInfo->MBB); 1752 CurDAG->setRoot(SDB->getRoot()); 1753 SDB->clear(); 1754 CodeGenAndEmitDAG(); 1755 } 1756 1757 // Set the current basic block to the mbb we wish to insert the code into 1758 FuncInfo->MBB = SDB->JTCases[i].second.MBB; 1759 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1760 // Emit the code 1761 SDB->visitJumpTable(SDB->JTCases[i].second); 1762 CurDAG->setRoot(SDB->getRoot()); 1763 SDB->clear(); 1764 CodeGenAndEmitDAG(); 1765 1766 // Update PHI Nodes 1767 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); 1768 pi != pe; ++pi) { 1769 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); 1770 MachineBasicBlock *PHIBB = PHI->getParent(); 1771 assert(PHI->isPHI() && 1772 "This is not a machine PHI node that we are updating!"); 1773 // "default" BB. We can go there only from header BB. 1774 if (PHIBB == SDB->JTCases[i].second.Default) 1775 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) 1776 .addMBB(SDB->JTCases[i].first.HeaderBB); 1777 // JT BB. Just iterate over successors here 1778 if (FuncInfo->MBB->isSuccessor(PHIBB)) 1779 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB); 1780 } 1781 } 1782 SDB->JTCases.clear(); 1783 1784 // If we generated any switch lowering information, build and codegen any 1785 // additional DAGs necessary. 1786 for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) { 1787 // Set the current basic block to the mbb we wish to insert the code into 1788 FuncInfo->MBB = SDB->SwitchCases[i].ThisBB; 1789 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1790 1791 // Determine the unique successors. 1792 SmallVector<MachineBasicBlock *, 2> Succs; 1793 Succs.push_back(SDB->SwitchCases[i].TrueBB); 1794 if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB) 1795 Succs.push_back(SDB->SwitchCases[i].FalseBB); 1796 1797 // Emit the code. Note that this could result in FuncInfo->MBB being split. 1798 SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB); 1799 CurDAG->setRoot(SDB->getRoot()); 1800 SDB->clear(); 1801 CodeGenAndEmitDAG(); 1802 1803 // Remember the last block, now that any splitting is done, for use in 1804 // populating PHI nodes in successors. 1805 MachineBasicBlock *ThisBB = FuncInfo->MBB; 1806 1807 // Handle any PHI nodes in successors of this chunk, as if we were coming 1808 // from the original BB before switch expansion. Note that PHI nodes can 1809 // occur multiple times in PHINodesToUpdate. We have to be very careful to 1810 // handle them the right number of times. 1811 for (unsigned i = 0, e = Succs.size(); i != e; ++i) { 1812 FuncInfo->MBB = Succs[i]; 1813 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1814 // FuncInfo->MBB may have been removed from the CFG if a branch was 1815 // constant folded. 1816 if (ThisBB->isSuccessor(FuncInfo->MBB)) { 1817 for (MachineBasicBlock::iterator 1818 MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end(); 1819 MBBI != MBBE && MBBI->isPHI(); ++MBBI) { 1820 MachineInstrBuilder PHI(*MF, MBBI); 1821 // This value for this PHI node is recorded in PHINodesToUpdate. 1822 for (unsigned pn = 0; ; ++pn) { 1823 assert(pn != FuncInfo->PHINodesToUpdate.size() && 1824 "Didn't find PHI entry!"); 1825 if (FuncInfo->PHINodesToUpdate[pn].first == PHI) { 1826 PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB); 1827 break; 1828 } 1829 } 1830 } 1831 } 1832 } 1833 } 1834 SDB->SwitchCases.clear(); 1835 } 1836 1837 /// Create the scheduler. If a specific scheduler was specified 1838 /// via the SchedulerRegistry, use it, otherwise select the 1839 /// one preferred by the target. 1840 /// 1841 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() { 1842 return ISHeuristic(this, OptLevel); 1843 } 1844 1845 //===----------------------------------------------------------------------===// 1846 // Helper functions used by the generated instruction selector. 1847 //===----------------------------------------------------------------------===// 1848 // Calls to these methods are generated by tblgen. 1849 1850 /// CheckAndMask - The isel is trying to match something like (and X, 255). If 1851 /// the dag combiner simplified the 255, we still want to match. RHS is the 1852 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value 1853 /// specified in the .td file (e.g. 255). 1854 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS, 1855 int64_t DesiredMaskS) const { 1856 const APInt &ActualMask = RHS->getAPIntValue(); 1857 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 1858 1859 // If the actual mask exactly matches, success! 1860 if (ActualMask == DesiredMask) 1861 return true; 1862 1863 // If the actual AND mask is allowing unallowed bits, this doesn't match. 1864 if (ActualMask.intersects(~DesiredMask)) 1865 return false; 1866 1867 // Otherwise, the DAG Combiner may have proven that the value coming in is 1868 // either already zero or is not demanded. Check for known zero input bits. 1869 APInt NeededMask = DesiredMask & ~ActualMask; 1870 if (CurDAG->MaskedValueIsZero(LHS, NeededMask)) 1871 return true; 1872 1873 // TODO: check to see if missing bits are just not demanded. 1874 1875 // Otherwise, this pattern doesn't match. 1876 return false; 1877 } 1878 1879 /// CheckOrMask - The isel is trying to match something like (or X, 255). If 1880 /// the dag combiner simplified the 255, we still want to match. RHS is the 1881 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value 1882 /// specified in the .td file (e.g. 255). 1883 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS, 1884 int64_t DesiredMaskS) const { 1885 const APInt &ActualMask = RHS->getAPIntValue(); 1886 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 1887 1888 // If the actual mask exactly matches, success! 1889 if (ActualMask == DesiredMask) 1890 return true; 1891 1892 // If the actual AND mask is allowing unallowed bits, this doesn't match. 1893 if (ActualMask.intersects(~DesiredMask)) 1894 return false; 1895 1896 // Otherwise, the DAG Combiner may have proven that the value coming in is 1897 // either already zero or is not demanded. Check for known zero input bits. 1898 APInt NeededMask = DesiredMask & ~ActualMask; 1899 1900 APInt KnownZero, KnownOne; 1901 CurDAG->computeKnownBits(LHS, KnownZero, KnownOne); 1902 1903 // If all the missing bits in the or are already known to be set, match! 1904 if ((NeededMask & KnownOne) == NeededMask) 1905 return true; 1906 1907 // TODO: check to see if missing bits are just not demanded. 1908 1909 // Otherwise, this pattern doesn't match. 1910 return false; 1911 } 1912 1913 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated 1914 /// by tblgen. Others should not call it. 1915 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops, 1916 const SDLoc &DL) { 1917 std::vector<SDValue> InOps; 1918 std::swap(InOps, Ops); 1919 1920 Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0 1921 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1 1922 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc 1923 Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack) 1924 1925 unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size(); 1926 if (InOps[e-1].getValueType() == MVT::Glue) 1927 --e; // Don't process a glue operand if it is here. 1928 1929 while (i != e) { 1930 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue(); 1931 if (!InlineAsm::isMemKind(Flags)) { 1932 // Just skip over this operand, copying the operands verbatim. 1933 Ops.insert(Ops.end(), InOps.begin()+i, 1934 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1); 1935 i += InlineAsm::getNumOperandRegisters(Flags) + 1; 1936 } else { 1937 assert(InlineAsm::getNumOperandRegisters(Flags) == 1 && 1938 "Memory operand with multiple values?"); 1939 1940 unsigned TiedToOperand; 1941 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) { 1942 // We need the constraint ID from the operand this is tied to. 1943 unsigned CurOp = InlineAsm::Op_FirstOperand; 1944 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue(); 1945 for (; TiedToOperand; --TiedToOperand) { 1946 CurOp += InlineAsm::getNumOperandRegisters(Flags)+1; 1947 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue(); 1948 } 1949 } 1950 1951 // Otherwise, this is a memory operand. Ask the target to select it. 1952 std::vector<SDValue> SelOps; 1953 if (SelectInlineAsmMemoryOperand(InOps[i+1], 1954 InlineAsm::getMemoryConstraintID(Flags), 1955 SelOps)) 1956 report_fatal_error("Could not match memory address. Inline asm" 1957 " failure!"); 1958 1959 // Add this to the output node. 1960 unsigned NewFlags = 1961 InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size()); 1962 Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32)); 1963 Ops.insert(Ops.end(), SelOps.begin(), SelOps.end()); 1964 i += 2; 1965 } 1966 } 1967 1968 // Add the glue input back if present. 1969 if (e != InOps.size()) 1970 Ops.push_back(InOps.back()); 1971 } 1972 1973 /// findGlueUse - Return use of MVT::Glue value produced by the specified 1974 /// SDNode. 1975 /// 1976 static SDNode *findGlueUse(SDNode *N) { 1977 unsigned FlagResNo = N->getNumValues()-1; 1978 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 1979 SDUse &Use = I.getUse(); 1980 if (Use.getResNo() == FlagResNo) 1981 return Use.getUser(); 1982 } 1983 return nullptr; 1984 } 1985 1986 /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def". 1987 /// This function recursively traverses up the operand chain, ignoring 1988 /// certain nodes. 1989 static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse, 1990 SDNode *Root, SmallPtrSetImpl<SDNode*> &Visited, 1991 bool IgnoreChains) { 1992 // The NodeID's are given uniques ID's where a node ID is guaranteed to be 1993 // greater than all of its (recursive) operands. If we scan to a point where 1994 // 'use' is smaller than the node we're scanning for, then we know we will 1995 // never find it. 1996 // 1997 // The Use may be -1 (unassigned) if it is a newly allocated node. This can 1998 // happen because we scan down to newly selected nodes in the case of glue 1999 // uses. 2000 if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1)) 2001 return false; 2002 2003 // Don't revisit nodes if we already scanned it and didn't fail, we know we 2004 // won't fail if we scan it again. 2005 if (!Visited.insert(Use).second) 2006 return false; 2007 2008 for (const SDValue &Op : Use->op_values()) { 2009 // Ignore chain uses, they are validated by HandleMergeInputChains. 2010 if (Op.getValueType() == MVT::Other && IgnoreChains) 2011 continue; 2012 2013 SDNode *N = Op.getNode(); 2014 if (N == Def) { 2015 if (Use == ImmedUse || Use == Root) 2016 continue; // We are not looking for immediate use. 2017 assert(N != Root); 2018 return true; 2019 } 2020 2021 // Traverse up the operand chain. 2022 if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains)) 2023 return true; 2024 } 2025 return false; 2026 } 2027 2028 /// IsProfitableToFold - Returns true if it's profitable to fold the specific 2029 /// operand node N of U during instruction selection that starts at Root. 2030 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U, 2031 SDNode *Root) const { 2032 if (OptLevel == CodeGenOpt::None) return false; 2033 return N.hasOneUse(); 2034 } 2035 2036 /// IsLegalToFold - Returns true if the specific operand node N of 2037 /// U can be folded during instruction selection that starts at Root. 2038 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root, 2039 CodeGenOpt::Level OptLevel, 2040 bool IgnoreChains) { 2041 if (OptLevel == CodeGenOpt::None) return false; 2042 2043 // If Root use can somehow reach N through a path that that doesn't contain 2044 // U then folding N would create a cycle. e.g. In the following 2045 // diagram, Root can reach N through X. If N is folded into into Root, then 2046 // X is both a predecessor and a successor of U. 2047 // 2048 // [N*] // 2049 // ^ ^ // 2050 // / \ // 2051 // [U*] [X]? // 2052 // ^ ^ // 2053 // \ / // 2054 // \ / // 2055 // [Root*] // 2056 // 2057 // * indicates nodes to be folded together. 2058 // 2059 // If Root produces glue, then it gets (even more) interesting. Since it 2060 // will be "glued" together with its glue use in the scheduler, we need to 2061 // check if it might reach N. 2062 // 2063 // [N*] // 2064 // ^ ^ // 2065 // / \ // 2066 // [U*] [X]? // 2067 // ^ ^ // 2068 // \ \ // 2069 // \ | // 2070 // [Root*] | // 2071 // ^ | // 2072 // f | // 2073 // | / // 2074 // [Y] / // 2075 // ^ / // 2076 // f / // 2077 // | / // 2078 // [GU] // 2079 // 2080 // If GU (glue use) indirectly reaches N (the load), and Root folds N 2081 // (call it Fold), then X is a predecessor of GU and a successor of 2082 // Fold. But since Fold and GU are glued together, this will create 2083 // a cycle in the scheduling graph. 2084 2085 // If the node has glue, walk down the graph to the "lowest" node in the 2086 // glueged set. 2087 EVT VT = Root->getValueType(Root->getNumValues()-1); 2088 while (VT == MVT::Glue) { 2089 SDNode *GU = findGlueUse(Root); 2090 if (!GU) 2091 break; 2092 Root = GU; 2093 VT = Root->getValueType(Root->getNumValues()-1); 2094 2095 // If our query node has a glue result with a use, we've walked up it. If 2096 // the user (which has already been selected) has a chain or indirectly uses 2097 // the chain, our WalkChainUsers predicate will not consider it. Because of 2098 // this, we cannot ignore chains in this predicate. 2099 IgnoreChains = false; 2100 } 2101 2102 2103 SmallPtrSet<SDNode*, 16> Visited; 2104 return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains); 2105 } 2106 2107 void SelectionDAGISel::Select_INLINEASM(SDNode *N) { 2108 SDLoc DL(N); 2109 2110 std::vector<SDValue> Ops(N->op_begin(), N->op_end()); 2111 SelectInlineAsmMemoryOperands(Ops, DL); 2112 2113 const EVT VTs[] = {MVT::Other, MVT::Glue}; 2114 SDValue New = CurDAG->getNode(ISD::INLINEASM, DL, VTs, Ops); 2115 New->setNodeId(-1); 2116 ReplaceUses(N, New.getNode()); 2117 CurDAG->RemoveDeadNode(N); 2118 } 2119 2120 void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) { 2121 SDLoc dl(Op); 2122 MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1)); 2123 const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0)); 2124 unsigned Reg = 2125 TLI->getRegisterByName(RegStr->getString().data(), Op->getValueType(0), 2126 *CurDAG); 2127 SDValue New = CurDAG->getCopyFromReg( 2128 Op->getOperand(0), dl, Reg, Op->getValueType(0)); 2129 New->setNodeId(-1); 2130 ReplaceUses(Op, New.getNode()); 2131 CurDAG->RemoveDeadNode(Op); 2132 } 2133 2134 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) { 2135 SDLoc dl(Op); 2136 MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1)); 2137 const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0)); 2138 unsigned Reg = TLI->getRegisterByName(RegStr->getString().data(), 2139 Op->getOperand(2).getValueType(), 2140 *CurDAG); 2141 SDValue New = CurDAG->getCopyToReg( 2142 Op->getOperand(0), dl, Reg, Op->getOperand(2)); 2143 New->setNodeId(-1); 2144 ReplaceUses(Op, New.getNode()); 2145 CurDAG->RemoveDeadNode(Op); 2146 } 2147 2148 void SelectionDAGISel::Select_UNDEF(SDNode *N) { 2149 CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0)); 2150 } 2151 2152 /// GetVBR - decode a vbr encoding whose top bit is set. 2153 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline uint64_t 2154 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) { 2155 assert(Val >= 128 && "Not a VBR"); 2156 Val &= 127; // Remove first vbr bit. 2157 2158 unsigned Shift = 7; 2159 uint64_t NextBits; 2160 do { 2161 NextBits = MatcherTable[Idx++]; 2162 Val |= (NextBits&127) << Shift; 2163 Shift += 7; 2164 } while (NextBits & 128); 2165 2166 return Val; 2167 } 2168 2169 /// When a match is complete, this method updates uses of interior chain results 2170 /// to use the new results. 2171 void SelectionDAGISel::UpdateChains( 2172 SDNode *NodeToMatch, SDValue InputChain, 2173 const SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) { 2174 SmallVector<SDNode*, 4> NowDeadNodes; 2175 2176 // Now that all the normal results are replaced, we replace the chain and 2177 // glue results if present. 2178 if (!ChainNodesMatched.empty()) { 2179 assert(InputChain.getNode() && 2180 "Matched input chains but didn't produce a chain"); 2181 // Loop over all of the nodes we matched that produced a chain result. 2182 // Replace all the chain results with the final chain we ended up with. 2183 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { 2184 SDNode *ChainNode = ChainNodesMatched[i]; 2185 assert(ChainNode->getOpcode() != ISD::DELETED_NODE && 2186 "Deleted node left in chain"); 2187 2188 // Don't replace the results of the root node if we're doing a 2189 // MorphNodeTo. 2190 if (ChainNode == NodeToMatch && isMorphNodeTo) 2191 continue; 2192 2193 SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1); 2194 if (ChainVal.getValueType() == MVT::Glue) 2195 ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2); 2196 assert(ChainVal.getValueType() == MVT::Other && "Not a chain?"); 2197 CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain); 2198 2199 // If the node became dead and we haven't already seen it, delete it. 2200 if (ChainNode != NodeToMatch && ChainNode->use_empty() && 2201 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode)) 2202 NowDeadNodes.push_back(ChainNode); 2203 } 2204 } 2205 2206 if (!NowDeadNodes.empty()) 2207 CurDAG->RemoveDeadNodes(NowDeadNodes); 2208 2209 DEBUG(dbgs() << "ISEL: Match complete!\n"); 2210 } 2211 2212 enum ChainResult { 2213 CR_Simple, 2214 CR_InducesCycle, 2215 CR_LeadsToInteriorNode 2216 }; 2217 2218 /// WalkChainUsers - Walk down the users of the specified chained node that is 2219 /// part of the pattern we're matching, looking at all of the users we find. 2220 /// This determines whether something is an interior node, whether we have a 2221 /// non-pattern node in between two pattern nodes (which prevent folding because 2222 /// it would induce a cycle) and whether we have a TokenFactor node sandwiched 2223 /// between pattern nodes (in which case the TF becomes part of the pattern). 2224 /// 2225 /// The walk we do here is guaranteed to be small because we quickly get down to 2226 /// already selected nodes "below" us. 2227 static ChainResult 2228 WalkChainUsers(const SDNode *ChainedNode, 2229 SmallVectorImpl<SDNode *> &ChainedNodesInPattern, 2230 DenseMap<const SDNode *, ChainResult> &TokenFactorResult, 2231 SmallVectorImpl<SDNode *> &InteriorChainedNodes) { 2232 ChainResult Result = CR_Simple; 2233 2234 for (SDNode::use_iterator UI = ChainedNode->use_begin(), 2235 E = ChainedNode->use_end(); UI != E; ++UI) { 2236 // Make sure the use is of the chain, not some other value we produce. 2237 if (UI.getUse().getValueType() != MVT::Other) continue; 2238 2239 SDNode *User = *UI; 2240 2241 if (User->getOpcode() == ISD::HANDLENODE) // Root of the graph. 2242 continue; 2243 2244 // If we see an already-selected machine node, then we've gone beyond the 2245 // pattern that we're selecting down into the already selected chunk of the 2246 // DAG. 2247 unsigned UserOpcode = User->getOpcode(); 2248 if (User->isMachineOpcode() || 2249 UserOpcode == ISD::CopyToReg || 2250 UserOpcode == ISD::CopyFromReg || 2251 UserOpcode == ISD::INLINEASM || 2252 UserOpcode == ISD::EH_LABEL || 2253 UserOpcode == ISD::LIFETIME_START || 2254 UserOpcode == ISD::LIFETIME_END) { 2255 // If their node ID got reset to -1 then they've already been selected. 2256 // Treat them like a MachineOpcode. 2257 if (User->getNodeId() == -1) 2258 continue; 2259 } 2260 2261 // If we have a TokenFactor, we handle it specially. 2262 if (User->getOpcode() != ISD::TokenFactor) { 2263 // If the node isn't a token factor and isn't part of our pattern, then it 2264 // must be a random chained node in between two nodes we're selecting. 2265 // This happens when we have something like: 2266 // x = load ptr 2267 // call 2268 // y = x+4 2269 // store y -> ptr 2270 // Because we structurally match the load/store as a read/modify/write, 2271 // but the call is chained between them. We cannot fold in this case 2272 // because it would induce a cycle in the graph. 2273 if (!std::count(ChainedNodesInPattern.begin(), 2274 ChainedNodesInPattern.end(), User)) 2275 return CR_InducesCycle; 2276 2277 // Otherwise we found a node that is part of our pattern. For example in: 2278 // x = load ptr 2279 // y = x+4 2280 // store y -> ptr 2281 // This would happen when we're scanning down from the load and see the 2282 // store as a user. Record that there is a use of ChainedNode that is 2283 // part of the pattern and keep scanning uses. 2284 Result = CR_LeadsToInteriorNode; 2285 InteriorChainedNodes.push_back(User); 2286 continue; 2287 } 2288 2289 // If we found a TokenFactor, there are two cases to consider: first if the 2290 // TokenFactor is just hanging "below" the pattern we're matching (i.e. no 2291 // uses of the TF are in our pattern) we just want to ignore it. Second, 2292 // the TokenFactor can be sandwiched in between two chained nodes, like so: 2293 // [Load chain] 2294 // ^ 2295 // | 2296 // [Load] 2297 // ^ ^ 2298 // | \ DAG's like cheese 2299 // / \ do you? 2300 // / | 2301 // [TokenFactor] [Op] 2302 // ^ ^ 2303 // | | 2304 // \ / 2305 // \ / 2306 // [Store] 2307 // 2308 // In this case, the TokenFactor becomes part of our match and we rewrite it 2309 // as a new TokenFactor. 2310 // 2311 // To distinguish these two cases, do a recursive walk down the uses. 2312 auto MemoizeResult = TokenFactorResult.find(User); 2313 bool Visited = MemoizeResult != TokenFactorResult.end(); 2314 // Recursively walk chain users only if the result is not memoized. 2315 if (!Visited) { 2316 auto Res = WalkChainUsers(User, ChainedNodesInPattern, TokenFactorResult, 2317 InteriorChainedNodes); 2318 MemoizeResult = TokenFactorResult.insert(std::make_pair(User, Res)).first; 2319 } 2320 switch (MemoizeResult->second) { 2321 case CR_Simple: 2322 // If the uses of the TokenFactor are just already-selected nodes, ignore 2323 // it, it is "below" our pattern. 2324 continue; 2325 case CR_InducesCycle: 2326 // If the uses of the TokenFactor lead to nodes that are not part of our 2327 // pattern that are not selected, folding would turn this into a cycle, 2328 // bail out now. 2329 return CR_InducesCycle; 2330 case CR_LeadsToInteriorNode: 2331 break; // Otherwise, keep processing. 2332 } 2333 2334 // Okay, we know we're in the interesting interior case. The TokenFactor 2335 // is now going to be considered part of the pattern so that we rewrite its 2336 // uses (it may have uses that are not part of the pattern) with the 2337 // ultimate chain result of the generated code. We will also add its chain 2338 // inputs as inputs to the ultimate TokenFactor we create. 2339 Result = CR_LeadsToInteriorNode; 2340 if (!Visited) { 2341 ChainedNodesInPattern.push_back(User); 2342 InteriorChainedNodes.push_back(User); 2343 } 2344 } 2345 2346 return Result; 2347 } 2348 2349 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains 2350 /// operation for when the pattern matched at least one node with a chains. The 2351 /// input vector contains a list of all of the chained nodes that we match. We 2352 /// must determine if this is a valid thing to cover (i.e. matching it won't 2353 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will 2354 /// be used as the input node chain for the generated nodes. 2355 static SDValue 2356 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched, 2357 SelectionDAG *CurDAG) { 2358 // Used for memoization. Without it WalkChainUsers could take exponential 2359 // time to run. 2360 DenseMap<const SDNode *, ChainResult> TokenFactorResult; 2361 // Walk all of the chained nodes we've matched, recursively scanning down the 2362 // users of the chain result. This adds any TokenFactor nodes that are caught 2363 // in between chained nodes to the chained and interior nodes list. 2364 SmallVector<SDNode*, 3> InteriorChainedNodes; 2365 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { 2366 if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched, 2367 TokenFactorResult, 2368 InteriorChainedNodes) == CR_InducesCycle) 2369 return SDValue(); // Would induce a cycle. 2370 } 2371 2372 // Okay, we have walked all the matched nodes and collected TokenFactor nodes 2373 // that we are interested in. Form our input TokenFactor node. 2374 SmallVector<SDValue, 3> InputChains; 2375 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { 2376 // Add the input chain of this node to the InputChains list (which will be 2377 // the operands of the generated TokenFactor) if it's not an interior node. 2378 SDNode *N = ChainNodesMatched[i]; 2379 if (N->getOpcode() != ISD::TokenFactor) { 2380 if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N)) 2381 continue; 2382 2383 // Otherwise, add the input chain. 2384 SDValue InChain = ChainNodesMatched[i]->getOperand(0); 2385 assert(InChain.getValueType() == MVT::Other && "Not a chain"); 2386 InputChains.push_back(InChain); 2387 continue; 2388 } 2389 2390 // If we have a token factor, we want to add all inputs of the token factor 2391 // that are not part of the pattern we're matching. 2392 for (const SDValue &Op : N->op_values()) { 2393 if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(), 2394 Op.getNode())) 2395 InputChains.push_back(Op); 2396 } 2397 } 2398 2399 if (InputChains.size() == 1) 2400 return InputChains[0]; 2401 return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]), 2402 MVT::Other, InputChains); 2403 } 2404 2405 /// MorphNode - Handle morphing a node in place for the selector. 2406 SDNode *SelectionDAGISel:: 2407 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList, 2408 ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) { 2409 // It is possible we're using MorphNodeTo to replace a node with no 2410 // normal results with one that has a normal result (or we could be 2411 // adding a chain) and the input could have glue and chains as well. 2412 // In this case we need to shift the operands down. 2413 // FIXME: This is a horrible hack and broken in obscure cases, no worse 2414 // than the old isel though. 2415 int OldGlueResultNo = -1, OldChainResultNo = -1; 2416 2417 unsigned NTMNumResults = Node->getNumValues(); 2418 if (Node->getValueType(NTMNumResults-1) == MVT::Glue) { 2419 OldGlueResultNo = NTMNumResults-1; 2420 if (NTMNumResults != 1 && 2421 Node->getValueType(NTMNumResults-2) == MVT::Other) 2422 OldChainResultNo = NTMNumResults-2; 2423 } else if (Node->getValueType(NTMNumResults-1) == MVT::Other) 2424 OldChainResultNo = NTMNumResults-1; 2425 2426 // Call the underlying SelectionDAG routine to do the transmogrification. Note 2427 // that this deletes operands of the old node that become dead. 2428 SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops); 2429 2430 // MorphNodeTo can operate in two ways: if an existing node with the 2431 // specified operands exists, it can just return it. Otherwise, it 2432 // updates the node in place to have the requested operands. 2433 if (Res == Node) { 2434 // If we updated the node in place, reset the node ID. To the isel, 2435 // this should be just like a newly allocated machine node. 2436 Res->setNodeId(-1); 2437 } 2438 2439 unsigned ResNumResults = Res->getNumValues(); 2440 // Move the glue if needed. 2441 if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 && 2442 (unsigned)OldGlueResultNo != ResNumResults-1) 2443 CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo), 2444 SDValue(Res, ResNumResults-1)); 2445 2446 if ((EmitNodeInfo & OPFL_GlueOutput) != 0) 2447 --ResNumResults; 2448 2449 // Move the chain reference if needed. 2450 if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 && 2451 (unsigned)OldChainResultNo != ResNumResults-1) 2452 CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo), 2453 SDValue(Res, ResNumResults-1)); 2454 2455 // Otherwise, no replacement happened because the node already exists. Replace 2456 // Uses of the old node with the new one. 2457 if (Res != Node) { 2458 CurDAG->ReplaceAllUsesWith(Node, Res); 2459 CurDAG->RemoveDeadNode(Node); 2460 } 2461 2462 return Res; 2463 } 2464 2465 /// CheckSame - Implements OP_CheckSame. 2466 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2467 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2468 SDValue N, 2469 const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) { 2470 // Accept if it is exactly the same as a previously recorded node. 2471 unsigned RecNo = MatcherTable[MatcherIndex++]; 2472 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); 2473 return N == RecordedNodes[RecNo].first; 2474 } 2475 2476 /// CheckChildSame - Implements OP_CheckChildXSame. 2477 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2478 CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2479 SDValue N, 2480 const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes, 2481 unsigned ChildNo) { 2482 if (ChildNo >= N.getNumOperands()) 2483 return false; // Match fails if out of range child #. 2484 return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo), 2485 RecordedNodes); 2486 } 2487 2488 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate. 2489 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2490 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2491 const SelectionDAGISel &SDISel) { 2492 return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]); 2493 } 2494 2495 /// CheckNodePredicate - Implements OP_CheckNodePredicate. 2496 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2497 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2498 const SelectionDAGISel &SDISel, SDNode *N) { 2499 return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]); 2500 } 2501 2502 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2503 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2504 SDNode *N) { 2505 uint16_t Opc = MatcherTable[MatcherIndex++]; 2506 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 2507 return N->getOpcode() == Opc; 2508 } 2509 2510 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2511 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, 2512 const TargetLowering *TLI, const DataLayout &DL) { 2513 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2514 if (N.getValueType() == VT) return true; 2515 2516 // Handle the case when VT is iPTR. 2517 return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL); 2518 } 2519 2520 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2521 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2522 SDValue N, const TargetLowering *TLI, const DataLayout &DL, 2523 unsigned ChildNo) { 2524 if (ChildNo >= N.getNumOperands()) 2525 return false; // Match fails if out of range child #. 2526 return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI, 2527 DL); 2528 } 2529 2530 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2531 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2532 SDValue N) { 2533 return cast<CondCodeSDNode>(N)->get() == 2534 (ISD::CondCode)MatcherTable[MatcherIndex++]; 2535 } 2536 2537 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2538 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2539 SDValue N, const TargetLowering *TLI, const DataLayout &DL) { 2540 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2541 if (cast<VTSDNode>(N)->getVT() == VT) 2542 return true; 2543 2544 // Handle the case when VT is iPTR. 2545 return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL); 2546 } 2547 2548 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2549 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2550 SDValue N) { 2551 int64_t Val = MatcherTable[MatcherIndex++]; 2552 if (Val & 128) 2553 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2554 2555 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N); 2556 return C && C->getSExtValue() == Val; 2557 } 2558 2559 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2560 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2561 SDValue N, unsigned ChildNo) { 2562 if (ChildNo >= N.getNumOperands()) 2563 return false; // Match fails if out of range child #. 2564 return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo)); 2565 } 2566 2567 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2568 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2569 SDValue N, const SelectionDAGISel &SDISel) { 2570 int64_t Val = MatcherTable[MatcherIndex++]; 2571 if (Val & 128) 2572 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2573 2574 if (N->getOpcode() != ISD::AND) return false; 2575 2576 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2577 return C && SDISel.CheckAndMask(N.getOperand(0), C, Val); 2578 } 2579 2580 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2581 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2582 SDValue N, const SelectionDAGISel &SDISel) { 2583 int64_t Val = MatcherTable[MatcherIndex++]; 2584 if (Val & 128) 2585 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2586 2587 if (N->getOpcode() != ISD::OR) return false; 2588 2589 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2590 return C && SDISel.CheckOrMask(N.getOperand(0), C, Val); 2591 } 2592 2593 /// IsPredicateKnownToFail - If we know how and can do so without pushing a 2594 /// scope, evaluate the current node. If the current predicate is known to 2595 /// fail, set Result=true and return anything. If the current predicate is 2596 /// known to pass, set Result=false and return the MatcherIndex to continue 2597 /// with. If the current predicate is unknown, set Result=false and return the 2598 /// MatcherIndex to continue with. 2599 static unsigned IsPredicateKnownToFail(const unsigned char *Table, 2600 unsigned Index, SDValue N, 2601 bool &Result, 2602 const SelectionDAGISel &SDISel, 2603 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) { 2604 switch (Table[Index++]) { 2605 default: 2606 Result = false; 2607 return Index-1; // Could not evaluate this predicate. 2608 case SelectionDAGISel::OPC_CheckSame: 2609 Result = !::CheckSame(Table, Index, N, RecordedNodes); 2610 return Index; 2611 case SelectionDAGISel::OPC_CheckChild0Same: 2612 case SelectionDAGISel::OPC_CheckChild1Same: 2613 case SelectionDAGISel::OPC_CheckChild2Same: 2614 case SelectionDAGISel::OPC_CheckChild3Same: 2615 Result = !::CheckChildSame(Table, Index, N, RecordedNodes, 2616 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same); 2617 return Index; 2618 case SelectionDAGISel::OPC_CheckPatternPredicate: 2619 Result = !::CheckPatternPredicate(Table, Index, SDISel); 2620 return Index; 2621 case SelectionDAGISel::OPC_CheckPredicate: 2622 Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode()); 2623 return Index; 2624 case SelectionDAGISel::OPC_CheckOpcode: 2625 Result = !::CheckOpcode(Table, Index, N.getNode()); 2626 return Index; 2627 case SelectionDAGISel::OPC_CheckType: 2628 Result = !::CheckType(Table, Index, N, SDISel.TLI, 2629 SDISel.CurDAG->getDataLayout()); 2630 return Index; 2631 case SelectionDAGISel::OPC_CheckChild0Type: 2632 case SelectionDAGISel::OPC_CheckChild1Type: 2633 case SelectionDAGISel::OPC_CheckChild2Type: 2634 case SelectionDAGISel::OPC_CheckChild3Type: 2635 case SelectionDAGISel::OPC_CheckChild4Type: 2636 case SelectionDAGISel::OPC_CheckChild5Type: 2637 case SelectionDAGISel::OPC_CheckChild6Type: 2638 case SelectionDAGISel::OPC_CheckChild7Type: 2639 Result = !::CheckChildType( 2640 Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(), 2641 Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type); 2642 return Index; 2643 case SelectionDAGISel::OPC_CheckCondCode: 2644 Result = !::CheckCondCode(Table, Index, N); 2645 return Index; 2646 case SelectionDAGISel::OPC_CheckValueType: 2647 Result = !::CheckValueType(Table, Index, N, SDISel.TLI, 2648 SDISel.CurDAG->getDataLayout()); 2649 return Index; 2650 case SelectionDAGISel::OPC_CheckInteger: 2651 Result = !::CheckInteger(Table, Index, N); 2652 return Index; 2653 case SelectionDAGISel::OPC_CheckChild0Integer: 2654 case SelectionDAGISel::OPC_CheckChild1Integer: 2655 case SelectionDAGISel::OPC_CheckChild2Integer: 2656 case SelectionDAGISel::OPC_CheckChild3Integer: 2657 case SelectionDAGISel::OPC_CheckChild4Integer: 2658 Result = !::CheckChildInteger(Table, Index, N, 2659 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer); 2660 return Index; 2661 case SelectionDAGISel::OPC_CheckAndImm: 2662 Result = !::CheckAndImm(Table, Index, N, SDISel); 2663 return Index; 2664 case SelectionDAGISel::OPC_CheckOrImm: 2665 Result = !::CheckOrImm(Table, Index, N, SDISel); 2666 return Index; 2667 } 2668 } 2669 2670 namespace { 2671 struct MatchScope { 2672 /// FailIndex - If this match fails, this is the index to continue with. 2673 unsigned FailIndex; 2674 2675 /// NodeStack - The node stack when the scope was formed. 2676 SmallVector<SDValue, 4> NodeStack; 2677 2678 /// NumRecordedNodes - The number of recorded nodes when the scope was formed. 2679 unsigned NumRecordedNodes; 2680 2681 /// NumMatchedMemRefs - The number of matched memref entries. 2682 unsigned NumMatchedMemRefs; 2683 2684 /// InputChain/InputGlue - The current chain/glue 2685 SDValue InputChain, InputGlue; 2686 2687 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty. 2688 bool HasChainNodesMatched; 2689 }; 2690 2691 /// \\brief A DAG update listener to keep the matching state 2692 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to 2693 /// change the DAG while matching. X86 addressing mode matcher is an example 2694 /// for this. 2695 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener 2696 { 2697 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes; 2698 SmallVectorImpl<MatchScope> &MatchScopes; 2699 public: 2700 MatchStateUpdater(SelectionDAG &DAG, 2701 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RN, 2702 SmallVectorImpl<MatchScope> &MS) : 2703 SelectionDAG::DAGUpdateListener(DAG), 2704 RecordedNodes(RN), MatchScopes(MS) { } 2705 2706 void NodeDeleted(SDNode *N, SDNode *E) override { 2707 // Some early-returns here to avoid the search if we deleted the node or 2708 // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we 2709 // do, so it's unnecessary to update matching state at that point). 2710 // Neither of these can occur currently because we only install this 2711 // update listener during matching a complex patterns. 2712 if (!E || E->isMachineOpcode()) 2713 return; 2714 // Performing linear search here does not matter because we almost never 2715 // run this code. You'd have to have a CSE during complex pattern 2716 // matching. 2717 for (auto &I : RecordedNodes) 2718 if (I.first.getNode() == N) 2719 I.first.setNode(E); 2720 2721 for (auto &I : MatchScopes) 2722 for (auto &J : I.NodeStack) 2723 if (J.getNode() == N) 2724 J.setNode(E); 2725 } 2726 }; 2727 } // end anonymous namespace 2728 2729 void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch, 2730 const unsigned char *MatcherTable, 2731 unsigned TableSize) { 2732 // FIXME: Should these even be selected? Handle these cases in the caller? 2733 switch (NodeToMatch->getOpcode()) { 2734 default: 2735 break; 2736 case ISD::EntryToken: // These nodes remain the same. 2737 case ISD::BasicBlock: 2738 case ISD::Register: 2739 case ISD::RegisterMask: 2740 case ISD::HANDLENODE: 2741 case ISD::MDNODE_SDNODE: 2742 case ISD::TargetConstant: 2743 case ISD::TargetConstantFP: 2744 case ISD::TargetConstantPool: 2745 case ISD::TargetFrameIndex: 2746 case ISD::TargetExternalSymbol: 2747 case ISD::MCSymbol: 2748 case ISD::TargetBlockAddress: 2749 case ISD::TargetJumpTable: 2750 case ISD::TargetGlobalTLSAddress: 2751 case ISD::TargetGlobalAddress: 2752 case ISD::TokenFactor: 2753 case ISD::CopyFromReg: 2754 case ISD::CopyToReg: 2755 case ISD::EH_LABEL: 2756 case ISD::LIFETIME_START: 2757 case ISD::LIFETIME_END: 2758 NodeToMatch->setNodeId(-1); // Mark selected. 2759 return; 2760 case ISD::AssertSext: 2761 case ISD::AssertZext: 2762 CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0), 2763 NodeToMatch->getOperand(0)); 2764 CurDAG->RemoveDeadNode(NodeToMatch); 2765 return; 2766 case ISD::INLINEASM: 2767 Select_INLINEASM(NodeToMatch); 2768 return; 2769 case ISD::READ_REGISTER: 2770 Select_READ_REGISTER(NodeToMatch); 2771 return; 2772 case ISD::WRITE_REGISTER: 2773 Select_WRITE_REGISTER(NodeToMatch); 2774 return; 2775 case ISD::UNDEF: 2776 Select_UNDEF(NodeToMatch); 2777 return; 2778 } 2779 2780 assert(!NodeToMatch->isMachineOpcode() && "Node already selected!"); 2781 2782 // Set up the node stack with NodeToMatch as the only node on the stack. 2783 SmallVector<SDValue, 8> NodeStack; 2784 SDValue N = SDValue(NodeToMatch, 0); 2785 NodeStack.push_back(N); 2786 2787 // MatchScopes - Scopes used when matching, if a match failure happens, this 2788 // indicates where to continue checking. 2789 SmallVector<MatchScope, 8> MatchScopes; 2790 2791 // RecordedNodes - This is the set of nodes that have been recorded by the 2792 // state machine. The second value is the parent of the node, or null if the 2793 // root is recorded. 2794 SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes; 2795 2796 // MatchedMemRefs - This is the set of MemRef's we've seen in the input 2797 // pattern. 2798 SmallVector<MachineMemOperand*, 2> MatchedMemRefs; 2799 2800 // These are the current input chain and glue for use when generating nodes. 2801 // Various Emit operations change these. For example, emitting a copytoreg 2802 // uses and updates these. 2803 SDValue InputChain, InputGlue; 2804 2805 // ChainNodesMatched - If a pattern matches nodes that have input/output 2806 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates 2807 // which ones they are. The result is captured into this list so that we can 2808 // update the chain results when the pattern is complete. 2809 SmallVector<SDNode*, 3> ChainNodesMatched; 2810 2811 DEBUG(dbgs() << "ISEL: Starting pattern match on root node: "; 2812 NodeToMatch->dump(CurDAG); 2813 dbgs() << '\n'); 2814 2815 // Determine where to start the interpreter. Normally we start at opcode #0, 2816 // but if the state machine starts with an OPC_SwitchOpcode, then we 2817 // accelerate the first lookup (which is guaranteed to be hot) with the 2818 // OpcodeOffset table. 2819 unsigned MatcherIndex = 0; 2820 2821 if (!OpcodeOffset.empty()) { 2822 // Already computed the OpcodeOffset table, just index into it. 2823 if (N.getOpcode() < OpcodeOffset.size()) 2824 MatcherIndex = OpcodeOffset[N.getOpcode()]; 2825 DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n"); 2826 2827 } else if (MatcherTable[0] == OPC_SwitchOpcode) { 2828 // Otherwise, the table isn't computed, but the state machine does start 2829 // with an OPC_SwitchOpcode instruction. Populate the table now, since this 2830 // is the first time we're selecting an instruction. 2831 unsigned Idx = 1; 2832 while (1) { 2833 // Get the size of this case. 2834 unsigned CaseSize = MatcherTable[Idx++]; 2835 if (CaseSize & 128) 2836 CaseSize = GetVBR(CaseSize, MatcherTable, Idx); 2837 if (CaseSize == 0) break; 2838 2839 // Get the opcode, add the index to the table. 2840 uint16_t Opc = MatcherTable[Idx++]; 2841 Opc |= (unsigned short)MatcherTable[Idx++] << 8; 2842 if (Opc >= OpcodeOffset.size()) 2843 OpcodeOffset.resize((Opc+1)*2); 2844 OpcodeOffset[Opc] = Idx; 2845 Idx += CaseSize; 2846 } 2847 2848 // Okay, do the lookup for the first opcode. 2849 if (N.getOpcode() < OpcodeOffset.size()) 2850 MatcherIndex = OpcodeOffset[N.getOpcode()]; 2851 } 2852 2853 while (1) { 2854 assert(MatcherIndex < TableSize && "Invalid index"); 2855 #ifndef NDEBUG 2856 unsigned CurrentOpcodeIndex = MatcherIndex; 2857 #endif 2858 BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++]; 2859 switch (Opcode) { 2860 case OPC_Scope: { 2861 // Okay, the semantics of this operation are that we should push a scope 2862 // then evaluate the first child. However, pushing a scope only to have 2863 // the first check fail (which then pops it) is inefficient. If we can 2864 // determine immediately that the first check (or first several) will 2865 // immediately fail, don't even bother pushing a scope for them. 2866 unsigned FailIndex; 2867 2868 while (1) { 2869 unsigned NumToSkip = MatcherTable[MatcherIndex++]; 2870 if (NumToSkip & 128) 2871 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); 2872 // Found the end of the scope with no match. 2873 if (NumToSkip == 0) { 2874 FailIndex = 0; 2875 break; 2876 } 2877 2878 FailIndex = MatcherIndex+NumToSkip; 2879 2880 unsigned MatcherIndexOfPredicate = MatcherIndex; 2881 (void)MatcherIndexOfPredicate; // silence warning. 2882 2883 // If we can't evaluate this predicate without pushing a scope (e.g. if 2884 // it is a 'MoveParent') or if the predicate succeeds on this node, we 2885 // push the scope and evaluate the full predicate chain. 2886 bool Result; 2887 MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N, 2888 Result, *this, RecordedNodes); 2889 if (!Result) 2890 break; 2891 2892 DEBUG(dbgs() << " Skipped scope entry (due to false predicate) at " 2893 << "index " << MatcherIndexOfPredicate 2894 << ", continuing at " << FailIndex << "\n"); 2895 ++NumDAGIselRetries; 2896 2897 // Otherwise, we know that this case of the Scope is guaranteed to fail, 2898 // move to the next case. 2899 MatcherIndex = FailIndex; 2900 } 2901 2902 // If the whole scope failed to match, bail. 2903 if (FailIndex == 0) break; 2904 2905 // Push a MatchScope which indicates where to go if the first child fails 2906 // to match. 2907 MatchScope NewEntry; 2908 NewEntry.FailIndex = FailIndex; 2909 NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end()); 2910 NewEntry.NumRecordedNodes = RecordedNodes.size(); 2911 NewEntry.NumMatchedMemRefs = MatchedMemRefs.size(); 2912 NewEntry.InputChain = InputChain; 2913 NewEntry.InputGlue = InputGlue; 2914 NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty(); 2915 MatchScopes.push_back(NewEntry); 2916 continue; 2917 } 2918 case OPC_RecordNode: { 2919 // Remember this node, it may end up being an operand in the pattern. 2920 SDNode *Parent = nullptr; 2921 if (NodeStack.size() > 1) 2922 Parent = NodeStack[NodeStack.size()-2].getNode(); 2923 RecordedNodes.push_back(std::make_pair(N, Parent)); 2924 continue; 2925 } 2926 2927 case OPC_RecordChild0: case OPC_RecordChild1: 2928 case OPC_RecordChild2: case OPC_RecordChild3: 2929 case OPC_RecordChild4: case OPC_RecordChild5: 2930 case OPC_RecordChild6: case OPC_RecordChild7: { 2931 unsigned ChildNo = Opcode-OPC_RecordChild0; 2932 if (ChildNo >= N.getNumOperands()) 2933 break; // Match fails if out of range child #. 2934 2935 RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo), 2936 N.getNode())); 2937 continue; 2938 } 2939 case OPC_RecordMemRef: 2940 MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand()); 2941 continue; 2942 2943 case OPC_CaptureGlueInput: 2944 // If the current node has an input glue, capture it in InputGlue. 2945 if (N->getNumOperands() != 0 && 2946 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) 2947 InputGlue = N->getOperand(N->getNumOperands()-1); 2948 continue; 2949 2950 case OPC_MoveChild: { 2951 unsigned ChildNo = MatcherTable[MatcherIndex++]; 2952 if (ChildNo >= N.getNumOperands()) 2953 break; // Match fails if out of range child #. 2954 N = N.getOperand(ChildNo); 2955 NodeStack.push_back(N); 2956 continue; 2957 } 2958 2959 case OPC_MoveChild0: case OPC_MoveChild1: 2960 case OPC_MoveChild2: case OPC_MoveChild3: 2961 case OPC_MoveChild4: case OPC_MoveChild5: 2962 case OPC_MoveChild6: case OPC_MoveChild7: { 2963 unsigned ChildNo = Opcode-OPC_MoveChild0; 2964 if (ChildNo >= N.getNumOperands()) 2965 break; // Match fails if out of range child #. 2966 N = N.getOperand(ChildNo); 2967 NodeStack.push_back(N); 2968 continue; 2969 } 2970 2971 case OPC_MoveParent: 2972 // Pop the current node off the NodeStack. 2973 NodeStack.pop_back(); 2974 assert(!NodeStack.empty() && "Node stack imbalance!"); 2975 N = NodeStack.back(); 2976 continue; 2977 2978 case OPC_CheckSame: 2979 if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break; 2980 continue; 2981 2982 case OPC_CheckChild0Same: case OPC_CheckChild1Same: 2983 case OPC_CheckChild2Same: case OPC_CheckChild3Same: 2984 if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes, 2985 Opcode-OPC_CheckChild0Same)) 2986 break; 2987 continue; 2988 2989 case OPC_CheckPatternPredicate: 2990 if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break; 2991 continue; 2992 case OPC_CheckPredicate: 2993 if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this, 2994 N.getNode())) 2995 break; 2996 continue; 2997 case OPC_CheckComplexPat: { 2998 unsigned CPNum = MatcherTable[MatcherIndex++]; 2999 unsigned RecNo = MatcherTable[MatcherIndex++]; 3000 assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat"); 3001 3002 // If target can modify DAG during matching, keep the matching state 3003 // consistent. 3004 std::unique_ptr<MatchStateUpdater> MSU; 3005 if (ComplexPatternFuncMutatesDAG()) 3006 MSU.reset(new MatchStateUpdater(*CurDAG, RecordedNodes, 3007 MatchScopes)); 3008 3009 if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second, 3010 RecordedNodes[RecNo].first, CPNum, 3011 RecordedNodes)) 3012 break; 3013 continue; 3014 } 3015 case OPC_CheckOpcode: 3016 if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break; 3017 continue; 3018 3019 case OPC_CheckType: 3020 if (!::CheckType(MatcherTable, MatcherIndex, N, TLI, 3021 CurDAG->getDataLayout())) 3022 break; 3023 continue; 3024 3025 case OPC_SwitchOpcode: { 3026 unsigned CurNodeOpcode = N.getOpcode(); 3027 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; 3028 unsigned CaseSize; 3029 while (1) { 3030 // Get the size of this case. 3031 CaseSize = MatcherTable[MatcherIndex++]; 3032 if (CaseSize & 128) 3033 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); 3034 if (CaseSize == 0) break; 3035 3036 uint16_t Opc = MatcherTable[MatcherIndex++]; 3037 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 3038 3039 // If the opcode matches, then we will execute this case. 3040 if (CurNodeOpcode == Opc) 3041 break; 3042 3043 // Otherwise, skip over this case. 3044 MatcherIndex += CaseSize; 3045 } 3046 3047 // If no cases matched, bail out. 3048 if (CaseSize == 0) break; 3049 3050 // Otherwise, execute the case we found. 3051 DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart 3052 << " to " << MatcherIndex << "\n"); 3053 continue; 3054 } 3055 3056 case OPC_SwitchType: { 3057 MVT CurNodeVT = N.getSimpleValueType(); 3058 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; 3059 unsigned CaseSize; 3060 while (1) { 3061 // Get the size of this case. 3062 CaseSize = MatcherTable[MatcherIndex++]; 3063 if (CaseSize & 128) 3064 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); 3065 if (CaseSize == 0) break; 3066 3067 MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3068 if (CaseVT == MVT::iPTR) 3069 CaseVT = TLI->getPointerTy(CurDAG->getDataLayout()); 3070 3071 // If the VT matches, then we will execute this case. 3072 if (CurNodeVT == CaseVT) 3073 break; 3074 3075 // Otherwise, skip over this case. 3076 MatcherIndex += CaseSize; 3077 } 3078 3079 // If no cases matched, bail out. 3080 if (CaseSize == 0) break; 3081 3082 // Otherwise, execute the case we found. 3083 DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString() 3084 << "] from " << SwitchStart << " to " << MatcherIndex<<'\n'); 3085 continue; 3086 } 3087 case OPC_CheckChild0Type: case OPC_CheckChild1Type: 3088 case OPC_CheckChild2Type: case OPC_CheckChild3Type: 3089 case OPC_CheckChild4Type: case OPC_CheckChild5Type: 3090 case OPC_CheckChild6Type: case OPC_CheckChild7Type: 3091 if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI, 3092 CurDAG->getDataLayout(), 3093 Opcode - OPC_CheckChild0Type)) 3094 break; 3095 continue; 3096 case OPC_CheckCondCode: 3097 if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break; 3098 continue; 3099 case OPC_CheckValueType: 3100 if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI, 3101 CurDAG->getDataLayout())) 3102 break; 3103 continue; 3104 case OPC_CheckInteger: 3105 if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break; 3106 continue; 3107 case OPC_CheckChild0Integer: case OPC_CheckChild1Integer: 3108 case OPC_CheckChild2Integer: case OPC_CheckChild3Integer: 3109 case OPC_CheckChild4Integer: 3110 if (!::CheckChildInteger(MatcherTable, MatcherIndex, N, 3111 Opcode-OPC_CheckChild0Integer)) break; 3112 continue; 3113 case OPC_CheckAndImm: 3114 if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break; 3115 continue; 3116 case OPC_CheckOrImm: 3117 if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break; 3118 continue; 3119 3120 case OPC_CheckFoldableChainNode: { 3121 assert(NodeStack.size() != 1 && "No parent node"); 3122 // Verify that all intermediate nodes between the root and this one have 3123 // a single use. 3124 bool HasMultipleUses = false; 3125 for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) 3126 if (!NodeStack[i].hasOneUse()) { 3127 HasMultipleUses = true; 3128 break; 3129 } 3130 if (HasMultipleUses) break; 3131 3132 // Check to see that the target thinks this is profitable to fold and that 3133 // we can fold it without inducing cycles in the graph. 3134 if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(), 3135 NodeToMatch) || 3136 !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(), 3137 NodeToMatch, OptLevel, 3138 true/*We validate our own chains*/)) 3139 break; 3140 3141 continue; 3142 } 3143 case OPC_EmitInteger: { 3144 MVT::SimpleValueType VT = 3145 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3146 int64_t Val = MatcherTable[MatcherIndex++]; 3147 if (Val & 128) 3148 Val = GetVBR(Val, MatcherTable, MatcherIndex); 3149 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3150 CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch), 3151 VT), nullptr)); 3152 continue; 3153 } 3154 case OPC_EmitRegister: { 3155 MVT::SimpleValueType VT = 3156 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3157 unsigned RegNo = MatcherTable[MatcherIndex++]; 3158 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3159 CurDAG->getRegister(RegNo, VT), nullptr)); 3160 continue; 3161 } 3162 case OPC_EmitRegister2: { 3163 // For targets w/ more than 256 register names, the register enum 3164 // values are stored in two bytes in the matcher table (just like 3165 // opcodes). 3166 MVT::SimpleValueType VT = 3167 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3168 unsigned RegNo = MatcherTable[MatcherIndex++]; 3169 RegNo |= MatcherTable[MatcherIndex++] << 8; 3170 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3171 CurDAG->getRegister(RegNo, VT), nullptr)); 3172 continue; 3173 } 3174 3175 case OPC_EmitConvertToTarget: { 3176 // Convert from IMM/FPIMM to target version. 3177 unsigned RecNo = MatcherTable[MatcherIndex++]; 3178 assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget"); 3179 SDValue Imm = RecordedNodes[RecNo].first; 3180 3181 if (Imm->getOpcode() == ISD::Constant) { 3182 const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue(); 3183 Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch), 3184 Imm.getValueType()); 3185 } else if (Imm->getOpcode() == ISD::ConstantFP) { 3186 const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue(); 3187 Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch), 3188 Imm.getValueType()); 3189 } 3190 3191 RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second)); 3192 continue; 3193 } 3194 3195 case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0 3196 case OPC_EmitMergeInputChains1_1: // OPC_EmitMergeInputChains, 1, 1 3197 case OPC_EmitMergeInputChains1_2: { // OPC_EmitMergeInputChains, 1, 2 3198 // These are space-optimized forms of OPC_EmitMergeInputChains. 3199 assert(!InputChain.getNode() && 3200 "EmitMergeInputChains should be the first chain producing node"); 3201 assert(ChainNodesMatched.empty() && 3202 "Should only have one EmitMergeInputChains per match"); 3203 3204 // Read all of the chained nodes. 3205 unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0; 3206 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); 3207 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 3208 3209 // FIXME: What if other value results of the node have uses not matched 3210 // by this pattern? 3211 if (ChainNodesMatched.back() != NodeToMatch && 3212 !RecordedNodes[RecNo].first.hasOneUse()) { 3213 ChainNodesMatched.clear(); 3214 break; 3215 } 3216 3217 // Merge the input chains if they are not intra-pattern references. 3218 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); 3219 3220 if (!InputChain.getNode()) 3221 break; // Failed to merge. 3222 continue; 3223 } 3224 3225 case OPC_EmitMergeInputChains: { 3226 assert(!InputChain.getNode() && 3227 "EmitMergeInputChains should be the first chain producing node"); 3228 // This node gets a list of nodes we matched in the input that have 3229 // chains. We want to token factor all of the input chains to these nodes 3230 // together. However, if any of the input chains is actually one of the 3231 // nodes matched in this pattern, then we have an intra-match reference. 3232 // Ignore these because the newly token factored chain should not refer to 3233 // the old nodes. 3234 unsigned NumChains = MatcherTable[MatcherIndex++]; 3235 assert(NumChains != 0 && "Can't TF zero chains"); 3236 3237 assert(ChainNodesMatched.empty() && 3238 "Should only have one EmitMergeInputChains per match"); 3239 3240 // Read all of the chained nodes. 3241 for (unsigned i = 0; i != NumChains; ++i) { 3242 unsigned RecNo = MatcherTable[MatcherIndex++]; 3243 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); 3244 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 3245 3246 // FIXME: What if other value results of the node have uses not matched 3247 // by this pattern? 3248 if (ChainNodesMatched.back() != NodeToMatch && 3249 !RecordedNodes[RecNo].first.hasOneUse()) { 3250 ChainNodesMatched.clear(); 3251 break; 3252 } 3253 } 3254 3255 // If the inner loop broke out, the match fails. 3256 if (ChainNodesMatched.empty()) 3257 break; 3258 3259 // Merge the input chains if they are not intra-pattern references. 3260 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); 3261 3262 if (!InputChain.getNode()) 3263 break; // Failed to merge. 3264 3265 continue; 3266 } 3267 3268 case OPC_EmitCopyToReg: { 3269 unsigned RecNo = MatcherTable[MatcherIndex++]; 3270 assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg"); 3271 unsigned DestPhysReg = MatcherTable[MatcherIndex++]; 3272 3273 if (!InputChain.getNode()) 3274 InputChain = CurDAG->getEntryNode(); 3275 3276 InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch), 3277 DestPhysReg, RecordedNodes[RecNo].first, 3278 InputGlue); 3279 3280 InputGlue = InputChain.getValue(1); 3281 continue; 3282 } 3283 3284 case OPC_EmitNodeXForm: { 3285 unsigned XFormNo = MatcherTable[MatcherIndex++]; 3286 unsigned RecNo = MatcherTable[MatcherIndex++]; 3287 assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm"); 3288 SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo); 3289 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr)); 3290 continue; 3291 } 3292 3293 case OPC_EmitNode: case OPC_MorphNodeTo: 3294 case OPC_EmitNode0: case OPC_EmitNode1: case OPC_EmitNode2: 3295 case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: { 3296 uint16_t TargetOpc = MatcherTable[MatcherIndex++]; 3297 TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 3298 unsigned EmitNodeInfo = MatcherTable[MatcherIndex++]; 3299 // Get the result VT list. 3300 unsigned NumVTs; 3301 // If this is one of the compressed forms, get the number of VTs based 3302 // on the Opcode. Otherwise read the next byte from the table. 3303 if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2) 3304 NumVTs = Opcode - OPC_MorphNodeTo0; 3305 else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2) 3306 NumVTs = Opcode - OPC_EmitNode0; 3307 else 3308 NumVTs = MatcherTable[MatcherIndex++]; 3309 SmallVector<EVT, 4> VTs; 3310 for (unsigned i = 0; i != NumVTs; ++i) { 3311 MVT::SimpleValueType VT = 3312 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3313 if (VT == MVT::iPTR) 3314 VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy; 3315 VTs.push_back(VT); 3316 } 3317 3318 if (EmitNodeInfo & OPFL_Chain) 3319 VTs.push_back(MVT::Other); 3320 if (EmitNodeInfo & OPFL_GlueOutput) 3321 VTs.push_back(MVT::Glue); 3322 3323 // This is hot code, so optimize the two most common cases of 1 and 2 3324 // results. 3325 SDVTList VTList; 3326 if (VTs.size() == 1) 3327 VTList = CurDAG->getVTList(VTs[0]); 3328 else if (VTs.size() == 2) 3329 VTList = CurDAG->getVTList(VTs[0], VTs[1]); 3330 else 3331 VTList = CurDAG->getVTList(VTs); 3332 3333 // Get the operand list. 3334 unsigned NumOps = MatcherTable[MatcherIndex++]; 3335 SmallVector<SDValue, 8> Ops; 3336 for (unsigned i = 0; i != NumOps; ++i) { 3337 unsigned RecNo = MatcherTable[MatcherIndex++]; 3338 if (RecNo & 128) 3339 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); 3340 3341 assert(RecNo < RecordedNodes.size() && "Invalid EmitNode"); 3342 Ops.push_back(RecordedNodes[RecNo].first); 3343 } 3344 3345 // If there are variadic operands to add, handle them now. 3346 if (EmitNodeInfo & OPFL_VariadicInfo) { 3347 // Determine the start index to copy from. 3348 unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo); 3349 FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0; 3350 assert(NodeToMatch->getNumOperands() >= FirstOpToCopy && 3351 "Invalid variadic node"); 3352 // Copy all of the variadic operands, not including a potential glue 3353 // input. 3354 for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands(); 3355 i != e; ++i) { 3356 SDValue V = NodeToMatch->getOperand(i); 3357 if (V.getValueType() == MVT::Glue) break; 3358 Ops.push_back(V); 3359 } 3360 } 3361 3362 // If this has chain/glue inputs, add them. 3363 if (EmitNodeInfo & OPFL_Chain) 3364 Ops.push_back(InputChain); 3365 if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr) 3366 Ops.push_back(InputGlue); 3367 3368 // Create the node. 3369 SDNode *Res = nullptr; 3370 bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo || 3371 (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2); 3372 if (!IsMorphNodeTo) { 3373 // If this is a normal EmitNode command, just create the new node and 3374 // add the results to the RecordedNodes list. 3375 Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch), 3376 VTList, Ops); 3377 3378 // Add all the non-glue/non-chain results to the RecordedNodes list. 3379 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 3380 if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break; 3381 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i), 3382 nullptr)); 3383 } 3384 3385 } else { 3386 assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE && 3387 "NodeToMatch was removed partway through selection"); 3388 SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N, 3389 SDNode *E) { 3390 auto &Chain = ChainNodesMatched; 3391 assert((!E || llvm::find(Chain, N) == Chain.end()) && 3392 "Chain node replaced during MorphNode"); 3393 Chain.erase(std::remove(Chain.begin(), Chain.end(), N), Chain.end()); 3394 }); 3395 Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops, EmitNodeInfo); 3396 } 3397 3398 // If the node had chain/glue results, update our notion of the current 3399 // chain and glue. 3400 if (EmitNodeInfo & OPFL_GlueOutput) { 3401 InputGlue = SDValue(Res, VTs.size()-1); 3402 if (EmitNodeInfo & OPFL_Chain) 3403 InputChain = SDValue(Res, VTs.size()-2); 3404 } else if (EmitNodeInfo & OPFL_Chain) 3405 InputChain = SDValue(Res, VTs.size()-1); 3406 3407 // If the OPFL_MemRefs glue is set on this node, slap all of the 3408 // accumulated memrefs onto it. 3409 // 3410 // FIXME: This is vastly incorrect for patterns with multiple outputs 3411 // instructions that access memory and for ComplexPatterns that match 3412 // loads. 3413 if (EmitNodeInfo & OPFL_MemRefs) { 3414 // Only attach load or store memory operands if the generated 3415 // instruction may load or store. 3416 const MCInstrDesc &MCID = TII->get(TargetOpc); 3417 bool mayLoad = MCID.mayLoad(); 3418 bool mayStore = MCID.mayStore(); 3419 3420 unsigned NumMemRefs = 0; 3421 for (SmallVectorImpl<MachineMemOperand *>::const_iterator I = 3422 MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) { 3423 if ((*I)->isLoad()) { 3424 if (mayLoad) 3425 ++NumMemRefs; 3426 } else if ((*I)->isStore()) { 3427 if (mayStore) 3428 ++NumMemRefs; 3429 } else { 3430 ++NumMemRefs; 3431 } 3432 } 3433 3434 MachineSDNode::mmo_iterator MemRefs = 3435 MF->allocateMemRefsArray(NumMemRefs); 3436 3437 MachineSDNode::mmo_iterator MemRefsPos = MemRefs; 3438 for (SmallVectorImpl<MachineMemOperand *>::const_iterator I = 3439 MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) { 3440 if ((*I)->isLoad()) { 3441 if (mayLoad) 3442 *MemRefsPos++ = *I; 3443 } else if ((*I)->isStore()) { 3444 if (mayStore) 3445 *MemRefsPos++ = *I; 3446 } else { 3447 *MemRefsPos++ = *I; 3448 } 3449 } 3450 3451 cast<MachineSDNode>(Res) 3452 ->setMemRefs(MemRefs, MemRefs + NumMemRefs); 3453 } 3454 3455 DEBUG(dbgs() << " " 3456 << (IsMorphNodeTo ? "Morphed" : "Created") 3457 << " node: "; Res->dump(CurDAG); dbgs() << "\n"); 3458 3459 // If this was a MorphNodeTo then we're completely done! 3460 if (IsMorphNodeTo) { 3461 // Update chain uses. 3462 UpdateChains(Res, InputChain, ChainNodesMatched, true); 3463 return; 3464 } 3465 continue; 3466 } 3467 3468 case OPC_CompleteMatch: { 3469 // The match has been completed, and any new nodes (if any) have been 3470 // created. Patch up references to the matched dag to use the newly 3471 // created nodes. 3472 unsigned NumResults = MatcherTable[MatcherIndex++]; 3473 3474 for (unsigned i = 0; i != NumResults; ++i) { 3475 unsigned ResSlot = MatcherTable[MatcherIndex++]; 3476 if (ResSlot & 128) 3477 ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex); 3478 3479 assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch"); 3480 SDValue Res = RecordedNodes[ResSlot].first; 3481 3482 assert(i < NodeToMatch->getNumValues() && 3483 NodeToMatch->getValueType(i) != MVT::Other && 3484 NodeToMatch->getValueType(i) != MVT::Glue && 3485 "Invalid number of results to complete!"); 3486 assert((NodeToMatch->getValueType(i) == Res.getValueType() || 3487 NodeToMatch->getValueType(i) == MVT::iPTR || 3488 Res.getValueType() == MVT::iPTR || 3489 NodeToMatch->getValueType(i).getSizeInBits() == 3490 Res.getValueType().getSizeInBits()) && 3491 "invalid replacement"); 3492 CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res); 3493 } 3494 3495 // Update chain uses. 3496 UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false); 3497 3498 // If the root node defines glue, we need to update it to the glue result. 3499 // TODO: This never happens in our tests and I think it can be removed / 3500 // replaced with an assert, but if we do it this the way the change is 3501 // NFC. 3502 if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) == 3503 MVT::Glue && 3504 InputGlue.getNode()) 3505 CurDAG->ReplaceAllUsesOfValueWith( 3506 SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1), InputGlue); 3507 3508 assert(NodeToMatch->use_empty() && 3509 "Didn't replace all uses of the node?"); 3510 CurDAG->RemoveDeadNode(NodeToMatch); 3511 3512 return; 3513 } 3514 } 3515 3516 // If the code reached this point, then the match failed. See if there is 3517 // another child to try in the current 'Scope', otherwise pop it until we 3518 // find a case to check. 3519 DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex << "\n"); 3520 ++NumDAGIselRetries; 3521 while (1) { 3522 if (MatchScopes.empty()) { 3523 CannotYetSelect(NodeToMatch); 3524 return; 3525 } 3526 3527 // Restore the interpreter state back to the point where the scope was 3528 // formed. 3529 MatchScope &LastScope = MatchScopes.back(); 3530 RecordedNodes.resize(LastScope.NumRecordedNodes); 3531 NodeStack.clear(); 3532 NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end()); 3533 N = NodeStack.back(); 3534 3535 if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size()) 3536 MatchedMemRefs.resize(LastScope.NumMatchedMemRefs); 3537 MatcherIndex = LastScope.FailIndex; 3538 3539 DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n"); 3540 3541 InputChain = LastScope.InputChain; 3542 InputGlue = LastScope.InputGlue; 3543 if (!LastScope.HasChainNodesMatched) 3544 ChainNodesMatched.clear(); 3545 3546 // Check to see what the offset is at the new MatcherIndex. If it is zero 3547 // we have reached the end of this scope, otherwise we have another child 3548 // in the current scope to try. 3549 unsigned NumToSkip = MatcherTable[MatcherIndex++]; 3550 if (NumToSkip & 128) 3551 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); 3552 3553 // If we have another child in this scope to match, update FailIndex and 3554 // try it. 3555 if (NumToSkip != 0) { 3556 LastScope.FailIndex = MatcherIndex+NumToSkip; 3557 break; 3558 } 3559 3560 // End of this scope, pop it and try the next child in the containing 3561 // scope. 3562 MatchScopes.pop_back(); 3563 } 3564 } 3565 } 3566 3567 void SelectionDAGISel::CannotYetSelect(SDNode *N) { 3568 std::string msg; 3569 raw_string_ostream Msg(msg); 3570 Msg << "Cannot select: "; 3571 3572 if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN && 3573 N->getOpcode() != ISD::INTRINSIC_WO_CHAIN && 3574 N->getOpcode() != ISD::INTRINSIC_VOID) { 3575 N->printrFull(Msg, CurDAG); 3576 Msg << "\nIn function: " << MF->getName(); 3577 } else { 3578 bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other; 3579 unsigned iid = 3580 cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue(); 3581 if (iid < Intrinsic::num_intrinsics) 3582 Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid); 3583 else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo()) 3584 Msg << "target intrinsic %" << TII->getName(iid); 3585 else 3586 Msg << "unknown intrinsic #" << iid; 3587 } 3588 report_fatal_error(Msg.str()); 3589 } 3590 3591 char SelectionDAGISel::ID = 0; 3592