Home | History | Annotate | Download | only in Hexagon
      1 //===-- HexagonFrameLowering.cpp - Define frame lowering ------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //
      9 //===----------------------------------------------------------------------===//
     10 
     11 #define DEBUG_TYPE "hexagon-pei"
     12 
     13 #include "HexagonBlockRanges.h"
     14 #include "HexagonFrameLowering.h"
     15 #include "HexagonInstrInfo.h"
     16 #include "HexagonMachineFunctionInfo.h"
     17 #include "HexagonRegisterInfo.h"
     18 #include "HexagonSubtarget.h"
     19 #include "HexagonTargetMachine.h"
     20 #include "llvm/ADT/BitVector.h"
     21 #include "llvm/ADT/PostOrderIterator.h"
     22 #include "llvm/CodeGen/MachineDominators.h"
     23 #include "llvm/CodeGen/MachineFunction.h"
     24 #include "llvm/CodeGen/MachineFunctionPass.h"
     25 #include "llvm/CodeGen/MachineInstrBuilder.h"
     26 #include "llvm/CodeGen/MachineInstrBuilder.h"
     27 #include "llvm/CodeGen/MachineModuleInfo.h"
     28 #include "llvm/CodeGen/MachinePostDominators.h"
     29 #include "llvm/CodeGen/MachineRegisterInfo.h"
     30 #include "llvm/CodeGen/RegisterScavenging.h"
     31 #include "llvm/IR/Function.h"
     32 #include "llvm/IR/Type.h"
     33 #include "llvm/Support/CommandLine.h"
     34 #include "llvm/Support/Debug.h"
     35 #include "llvm/Support/raw_ostream.h"
     36 #include "llvm/Target/TargetInstrInfo.h"
     37 #include "llvm/Target/TargetMachine.h"
     38 #include "llvm/Target/TargetOptions.h"
     39 
     40 // Hexagon stack frame layout as defined by the ABI:
     41 //
     42 //                                                       Incoming arguments
     43 //                                                       passed via stack
     44 //                                                                      |
     45 //                                                                      |
     46 //        SP during function's                 FP during function's     |
     47 //    +-- runtime (top of stack)               runtime (bottom) --+     |
     48 //    |                                                           |     |
     49 // --++---------------------+------------------+-----------------++-+-------
     50 //   |  parameter area for  |  variable-size   |   fixed-size    |LR|  arg
     51 //   |   called functions   |  local objects   |  local objects  |FP|
     52 // --+----------------------+------------------+-----------------+--+-------
     53 //    <-    size known    -> <- size unknown -> <- size known  ->
     54 //
     55 // Low address                                                 High address
     56 //
     57 // <--- stack growth
     58 //
     59 //
     60 // - In any circumstances, the outgoing function arguments are always accessi-
     61 //   ble using the SP, and the incoming arguments are accessible using the FP.
     62 // - If the local objects are not aligned, they can always be accessed using
     63 //   the FP.
     64 // - If there are no variable-sized objects, the local objects can always be
     65 //   accessed using the SP, regardless whether they are aligned or not. (The
     66 //   alignment padding will be at the bottom of the stack (highest address),
     67 //   and so the offset with respect to the SP will be known at the compile-
     68 //   -time.)
     69 //
     70 // The only complication occurs if there are both, local aligned objects, and
     71 // dynamically allocated (variable-sized) objects. The alignment pad will be
     72 // placed between the FP and the local objects, thus preventing the use of the
     73 // FP to access the local objects. At the same time, the variable-sized objects
     74 // will be between the SP and the local objects, thus introducing an unknown
     75 // distance from the SP to the locals.
     76 //
     77 // To avoid this problem, a new register is created that holds the aligned
     78 // address of the bottom of the stack, referred in the sources as AP (aligned
     79 // pointer). The AP will be equal to "FP-p", where "p" is the smallest pad
     80 // that aligns AP to the required boundary (a maximum of the alignments of
     81 // all stack objects, fixed- and variable-sized). All local objects[1] will
     82 // then use AP as the base pointer.
     83 // [1] The exception is with "fixed" stack objects. "Fixed" stack objects get
     84 // their name from being allocated at fixed locations on the stack, relative
     85 // to the FP. In the presence of dynamic allocation and local alignment, such
     86 // objects can only be accessed through the FP.
     87 //
     88 // Illustration of the AP:
     89 //                                                                FP --+
     90 //                                                                     |
     91 // ---------------+---------------------+-----+-----------------------++-+--
     92 //   Rest of the  | Local stack objects | Pad |  Fixed stack objects  |LR|
     93 //   stack frame  | (aligned)           |     |  (CSR, spills, etc.)  |FP|
     94 // ---------------+---------------------+-----+-----------------+-----+--+--
     95 //                                      |<-- Multiple of the -->|
     96 //                                           stack alignment    +-- AP
     97 //
     98 // The AP is set up at the beginning of the function. Since it is not a dedi-
     99 // cated (reserved) register, it needs to be kept live throughout the function
    100 // to be available as the base register for local object accesses.
    101 // Normally, an address of a stack objects is obtained by a pseudo-instruction
    102 // TFR_FI. To access local objects with the AP register present, a different
    103 // pseudo-instruction needs to be used: TFR_FIA. The TFR_FIA takes one extra
    104 // argument compared to TFR_FI: the first input register is the AP register.
    105 // This keeps the register live between its definition and its uses.
    106 
    107 // The AP register is originally set up using pseudo-instruction ALIGNA:
    108 //   AP = ALIGNA A
    109 // where
    110 //   A  - required stack alignment
    111 // The alignment value must be the maximum of all alignments required by
    112 // any stack object.
    113 
    114 // The dynamic allocation uses a pseudo-instruction ALLOCA:
    115 //   Rd = ALLOCA Rs, A
    116 // where
    117 //   Rd - address of the allocated space
    118 //   Rs - minimum size (the actual allocated can be larger to accommodate
    119 //        alignment)
    120 //   A  - required alignment
    121 
    122 
    123 using namespace llvm;
    124 
    125 static cl::opt<bool> DisableDeallocRet("disable-hexagon-dealloc-ret",
    126     cl::Hidden, cl::desc("Disable Dealloc Return for Hexagon target"));
    127 
    128 static cl::opt<unsigned> NumberScavengerSlots("number-scavenger-slots",
    129     cl::Hidden, cl::desc("Set the number of scavenger slots"), cl::init(2),
    130     cl::ZeroOrMore);
    131 
    132 static cl::opt<int> SpillFuncThreshold("spill-func-threshold",
    133     cl::Hidden, cl::desc("Specify O2(not Os) spill func threshold"),
    134     cl::init(6), cl::ZeroOrMore);
    135 
    136 static cl::opt<int> SpillFuncThresholdOs("spill-func-threshold-Os",
    137     cl::Hidden, cl::desc("Specify Os spill func threshold"),
    138     cl::init(1), cl::ZeroOrMore);
    139 
    140 static cl::opt<bool> EnableStackOVFSanitizer("enable-stackovf-sanitizer",
    141     cl::Hidden, cl::desc("Enable runtime checks for stack overflow."),
    142     cl::init(false), cl::ZeroOrMore);
    143 
    144 static cl::opt<bool> EnableShrinkWrapping("hexagon-shrink-frame",
    145     cl::init(true), cl::Hidden, cl::ZeroOrMore,
    146     cl::desc("Enable stack frame shrink wrapping"));
    147 
    148 static cl::opt<unsigned> ShrinkLimit("shrink-frame-limit", cl::init(UINT_MAX),
    149     cl::Hidden, cl::ZeroOrMore, cl::desc("Max count of stack frame "
    150     "shrink-wraps"));
    151 
    152 static cl::opt<bool> UseAllocframe("use-allocframe", cl::init(true),
    153     cl::Hidden, cl::desc("Use allocframe more conservatively"));
    154 
    155 static cl::opt<bool> OptimizeSpillSlots("hexagon-opt-spill", cl::Hidden,
    156     cl::init(true), cl::desc("Optimize spill slots"));
    157 
    158 
    159 namespace llvm {
    160   void initializeHexagonCallFrameInformationPass(PassRegistry&);
    161   FunctionPass *createHexagonCallFrameInformation();
    162 }
    163 
    164 namespace {
    165   class HexagonCallFrameInformation : public MachineFunctionPass {
    166   public:
    167     static char ID;
    168     HexagonCallFrameInformation() : MachineFunctionPass(ID) {
    169       PassRegistry &PR = *PassRegistry::getPassRegistry();
    170       initializeHexagonCallFrameInformationPass(PR);
    171     }
    172     bool runOnMachineFunction(MachineFunction &MF) override;
    173     MachineFunctionProperties getRequiredProperties() const override {
    174       return MachineFunctionProperties().set(
    175           MachineFunctionProperties::Property::AllVRegsAllocated);
    176     }
    177   };
    178 
    179   char HexagonCallFrameInformation::ID = 0;
    180 }
    181 
    182 bool HexagonCallFrameInformation::runOnMachineFunction(MachineFunction &MF) {
    183   auto &HFI = *MF.getSubtarget<HexagonSubtarget>().getFrameLowering();
    184   bool NeedCFI = MF.getMMI().hasDebugInfo() ||
    185                  MF.getFunction()->needsUnwindTableEntry();
    186 
    187   if (!NeedCFI)
    188     return false;
    189   HFI.insertCFIInstructions(MF);
    190   return true;
    191 }
    192 
    193 INITIALIZE_PASS(HexagonCallFrameInformation, "hexagon-cfi",
    194                 "Hexagon call frame information", false, false)
    195 
    196 FunctionPass *llvm::createHexagonCallFrameInformation() {
    197   return new HexagonCallFrameInformation();
    198 }
    199 
    200 
    201 namespace {
    202   /// Map a register pair Reg to the subregister that has the greater "number",
    203   /// i.e. D3 (aka R7:6) will be mapped to R7, etc.
    204   unsigned getMax32BitSubRegister(unsigned Reg, const TargetRegisterInfo &TRI,
    205                                   bool hireg = true) {
    206     if (Reg < Hexagon::D0 || Reg > Hexagon::D15)
    207       return Reg;
    208 
    209     unsigned RegNo = 0;
    210     for (MCSubRegIterator SubRegs(Reg, &TRI); SubRegs.isValid(); ++SubRegs) {
    211       if (hireg) {
    212         if (*SubRegs > RegNo)
    213           RegNo = *SubRegs;
    214       } else {
    215         if (!RegNo || *SubRegs < RegNo)
    216           RegNo = *SubRegs;
    217       }
    218     }
    219     return RegNo;
    220   }
    221 
    222   /// Returns the callee saved register with the largest id in the vector.
    223   unsigned getMaxCalleeSavedReg(const std::vector<CalleeSavedInfo> &CSI,
    224                                 const TargetRegisterInfo &TRI) {
    225     static_assert(Hexagon::R1 > 0,
    226                   "Assume physical registers are encoded as positive integers");
    227     if (CSI.empty())
    228       return 0;
    229 
    230     unsigned Max = getMax32BitSubRegister(CSI[0].getReg(), TRI);
    231     for (unsigned I = 1, E = CSI.size(); I < E; ++I) {
    232       unsigned Reg = getMax32BitSubRegister(CSI[I].getReg(), TRI);
    233       if (Reg > Max)
    234         Max = Reg;
    235     }
    236     return Max;
    237   }
    238 
    239   /// Checks if the basic block contains any instruction that needs a stack
    240   /// frame to be already in place.
    241   bool needsStackFrame(const MachineBasicBlock &MBB, const BitVector &CSR,
    242         const HexagonRegisterInfo &HRI) {
    243     for (auto &I : MBB) {
    244       const MachineInstr *MI = &I;
    245       if (MI->isCall())
    246         return true;
    247       unsigned Opc = MI->getOpcode();
    248       switch (Opc) {
    249         case Hexagon::ALLOCA:
    250         case Hexagon::ALIGNA:
    251           return true;
    252         default:
    253           break;
    254       }
    255       // Check individual operands.
    256       for (const MachineOperand &MO : MI->operands()) {
    257         // While the presence of a frame index does not prove that a stack
    258         // frame will be required, all frame indexes should be within alloc-
    259         // frame/deallocframe. Otherwise, the code that translates a frame
    260         // index into an offset would have to be aware of the placement of
    261         // the frame creation/destruction instructions.
    262         if (MO.isFI())
    263           return true;
    264         if (!MO.isReg())
    265           continue;
    266         unsigned R = MO.getReg();
    267         // Virtual registers will need scavenging, which then may require
    268         // a stack slot.
    269         if (TargetRegisterInfo::isVirtualRegister(R))
    270           return true;
    271         for (MCSubRegIterator S(R, &HRI, true); S.isValid(); ++S)
    272           if (CSR[*S])
    273             return true;
    274       }
    275     }
    276     return false;
    277   }
    278 
    279   /// Returns true if MBB has a machine instructions that indicates a tail call
    280   /// in the block.
    281   bool hasTailCall(const MachineBasicBlock &MBB) {
    282     MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
    283     unsigned RetOpc = I->getOpcode();
    284     return RetOpc == Hexagon::TCRETURNi || RetOpc == Hexagon::TCRETURNr;
    285   }
    286 
    287   /// Returns true if MBB contains an instruction that returns.
    288   bool hasReturn(const MachineBasicBlock &MBB) {
    289     for (auto I = MBB.getFirstTerminator(), E = MBB.end(); I != E; ++I)
    290       if (I->isReturn())
    291         return true;
    292     return false;
    293   }
    294 
    295   /// Returns the "return" instruction from this block, or nullptr if there
    296   /// isn't any.
    297   MachineInstr *getReturn(MachineBasicBlock &MBB) {
    298     for (auto &I : MBB)
    299       if (I.isReturn())
    300         return &I;
    301     return nullptr;
    302   }
    303 
    304   bool isRestoreCall(unsigned Opc) {
    305     switch (Opc) {
    306       case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
    307       case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
    308       case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4:
    309       case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC:
    310         return true;
    311     }
    312     return false;
    313   }
    314 
    315   inline bool isOptNone(const MachineFunction &MF) {
    316     return MF.getFunction()->hasFnAttribute(Attribute::OptimizeNone) ||
    317            MF.getTarget().getOptLevel() == CodeGenOpt::None;
    318   }
    319 
    320   inline bool isOptSize(const MachineFunction &MF) {
    321     const Function &F = *MF.getFunction();
    322     return F.optForSize() && !F.optForMinSize();
    323   }
    324 
    325   inline bool isMinSize(const MachineFunction &MF) {
    326     return MF.getFunction()->optForMinSize();
    327   }
    328 }
    329 
    330 
    331 /// Implements shrink-wrapping of the stack frame. By default, stack frame
    332 /// is created in the function entry block, and is cleaned up in every block
    333 /// that returns. This function finds alternate blocks: one for the frame
    334 /// setup (prolog) and one for the cleanup (epilog).
    335 void HexagonFrameLowering::findShrunkPrologEpilog(MachineFunction &MF,
    336       MachineBasicBlock *&PrologB, MachineBasicBlock *&EpilogB) const {
    337   static unsigned ShrinkCounter = 0;
    338 
    339   if (ShrinkLimit.getPosition()) {
    340     if (ShrinkCounter >= ShrinkLimit)
    341       return;
    342     ShrinkCounter++;
    343   }
    344 
    345   auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
    346   auto &HRI = *HST.getRegisterInfo();
    347 
    348   MachineDominatorTree MDT;
    349   MDT.runOnMachineFunction(MF);
    350   MachinePostDominatorTree MPT;
    351   MPT.runOnMachineFunction(MF);
    352 
    353   typedef DenseMap<unsigned,unsigned> UnsignedMap;
    354   UnsignedMap RPO;
    355   typedef ReversePostOrderTraversal<const MachineFunction*> RPOTType;
    356   RPOTType RPOT(&MF);
    357   unsigned RPON = 0;
    358   for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I)
    359     RPO[(*I)->getNumber()] = RPON++;
    360 
    361   // Don't process functions that have loops, at least for now. Placement
    362   // of prolog and epilog must take loop structure into account. For simpli-
    363   // city don't do it right now.
    364   for (auto &I : MF) {
    365     unsigned BN = RPO[I.getNumber()];
    366     for (auto SI = I.succ_begin(), SE = I.succ_end(); SI != SE; ++SI) {
    367       // If found a back-edge, return.
    368       if (RPO[(*SI)->getNumber()] <= BN)
    369         return;
    370     }
    371   }
    372 
    373   // Collect the set of blocks that need a stack frame to execute. Scan
    374   // each block for uses/defs of callee-saved registers, calls, etc.
    375   SmallVector<MachineBasicBlock*,16> SFBlocks;
    376   BitVector CSR(Hexagon::NUM_TARGET_REGS);
    377   for (const MCPhysReg *P = HRI.getCalleeSavedRegs(&MF); *P; ++P)
    378     for (MCSubRegIterator S(*P, &HRI, true); S.isValid(); ++S)
    379       CSR[*S] = true;
    380 
    381   for (auto &I : MF)
    382     if (needsStackFrame(I, CSR, HRI))
    383       SFBlocks.push_back(&I);
    384 
    385   DEBUG({
    386     dbgs() << "Blocks needing SF: {";
    387     for (auto &B : SFBlocks)
    388       dbgs() << " BB#" << B->getNumber();
    389     dbgs() << " }\n";
    390   });
    391   // No frame needed?
    392   if (SFBlocks.empty())
    393     return;
    394 
    395   // Pick a common dominator and a common post-dominator.
    396   MachineBasicBlock *DomB = SFBlocks[0];
    397   for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
    398     DomB = MDT.findNearestCommonDominator(DomB, SFBlocks[i]);
    399     if (!DomB)
    400       break;
    401   }
    402   MachineBasicBlock *PDomB = SFBlocks[0];
    403   for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
    404     PDomB = MPT.findNearestCommonDominator(PDomB, SFBlocks[i]);
    405     if (!PDomB)
    406       break;
    407   }
    408   DEBUG({
    409     dbgs() << "Computed dom block: BB#";
    410     if (DomB) dbgs() << DomB->getNumber();
    411     else      dbgs() << "<null>";
    412     dbgs() << ", computed pdom block: BB#";
    413     if (PDomB) dbgs() << PDomB->getNumber();
    414     else       dbgs() << "<null>";
    415     dbgs() << "\n";
    416   });
    417   if (!DomB || !PDomB)
    418     return;
    419 
    420   // Make sure that DomB dominates PDomB and PDomB post-dominates DomB.
    421   if (!MDT.dominates(DomB, PDomB)) {
    422     DEBUG(dbgs() << "Dom block does not dominate pdom block\n");
    423     return;
    424   }
    425   if (!MPT.dominates(PDomB, DomB)) {
    426     DEBUG(dbgs() << "PDom block does not post-dominate dom block\n");
    427     return;
    428   }
    429 
    430   // Finally, everything seems right.
    431   PrologB = DomB;
    432   EpilogB = PDomB;
    433 }
    434 
    435 
    436 /// Perform most of the PEI work here:
    437 /// - saving/restoring of the callee-saved registers,
    438 /// - stack frame creation and destruction.
    439 /// Normally, this work is distributed among various functions, but doing it
    440 /// in one place allows shrink-wrapping of the stack frame.
    441 void HexagonFrameLowering::emitPrologue(MachineFunction &MF,
    442                                         MachineBasicBlock &MBB) const {
    443   auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
    444   auto &HRI = *HST.getRegisterInfo();
    445 
    446   MachineFrameInfo *MFI = MF.getFrameInfo();
    447   const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
    448 
    449   MachineBasicBlock *PrologB = &MF.front(), *EpilogB = nullptr;
    450   if (EnableShrinkWrapping)
    451     findShrunkPrologEpilog(MF, PrologB, EpilogB);
    452 
    453   bool PrologueStubs = false;
    454   insertCSRSpillsInBlock(*PrologB, CSI, HRI, PrologueStubs);
    455   insertPrologueInBlock(*PrologB, PrologueStubs);
    456 
    457   if (EpilogB) {
    458     insertCSRRestoresInBlock(*EpilogB, CSI, HRI);
    459     insertEpilogueInBlock(*EpilogB);
    460   } else {
    461     for (auto &B : MF)
    462       if (B.isReturnBlock())
    463         insertCSRRestoresInBlock(B, CSI, HRI);
    464 
    465     for (auto &B : MF)
    466       if (B.isReturnBlock())
    467         insertEpilogueInBlock(B);
    468 
    469     for (auto &B : MF) {
    470       if (B.empty())
    471         continue;
    472       MachineInstr *RetI = getReturn(B);
    473       if (!RetI || isRestoreCall(RetI->getOpcode()))
    474         continue;
    475       for (auto &R : CSI)
    476         RetI->addOperand(MachineOperand::CreateReg(R.getReg(), false, true));
    477     }
    478   }
    479 
    480   if (EpilogB) {
    481     // If there is an epilog block, it may not have a return instruction.
    482     // In such case, we need to add the callee-saved registers as live-ins
    483     // in all blocks on all paths from the epilog to any return block.
    484     unsigned MaxBN = 0;
    485     for (auto &B : MF)
    486       if (B.getNumber() >= 0)
    487         MaxBN = std::max(MaxBN, unsigned(B.getNumber()));
    488     BitVector DoneT(MaxBN+1), DoneF(MaxBN+1), Path(MaxBN+1);
    489     updateExitPaths(*EpilogB, EpilogB, DoneT, DoneF, Path);
    490   }
    491 }
    492 
    493 
    494 void HexagonFrameLowering::insertPrologueInBlock(MachineBasicBlock &MBB,
    495       bool PrologueStubs) const {
    496   MachineFunction &MF = *MBB.getParent();
    497   MachineFrameInfo *MFI = MF.getFrameInfo();
    498   auto &HST = MF.getSubtarget<HexagonSubtarget>();
    499   auto &HII = *HST.getInstrInfo();
    500   auto &HRI = *HST.getRegisterInfo();
    501   DebugLoc dl;
    502 
    503   unsigned MaxAlign = std::max(MFI->getMaxAlignment(), getStackAlignment());
    504 
    505   // Calculate the total stack frame size.
    506   // Get the number of bytes to allocate from the FrameInfo.
    507   unsigned FrameSize = MFI->getStackSize();
    508   // Round up the max call frame size to the max alignment on the stack.
    509   unsigned MaxCFA = alignTo(MFI->getMaxCallFrameSize(), MaxAlign);
    510   MFI->setMaxCallFrameSize(MaxCFA);
    511 
    512   FrameSize = MaxCFA + alignTo(FrameSize, MaxAlign);
    513   MFI->setStackSize(FrameSize);
    514 
    515   bool AlignStack = (MaxAlign > getStackAlignment());
    516 
    517   // Get the number of bytes to allocate from the FrameInfo.
    518   unsigned NumBytes = MFI->getStackSize();
    519   unsigned SP = HRI.getStackRegister();
    520   unsigned MaxCF = MFI->getMaxCallFrameSize();
    521   MachineBasicBlock::iterator InsertPt = MBB.begin();
    522 
    523   auto *FuncInfo = MF.getInfo<HexagonMachineFunctionInfo>();
    524   auto &AdjustRegs = FuncInfo->getAllocaAdjustInsts();
    525 
    526   for (auto MI : AdjustRegs) {
    527     assert((MI->getOpcode() == Hexagon::ALLOCA) && "Expected alloca");
    528     expandAlloca(MI, HII, SP, MaxCF);
    529     MI->eraseFromParent();
    530   }
    531 
    532   if (!hasFP(MF))
    533     return;
    534 
    535   // Check for overflow.
    536   // Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used?
    537   const unsigned int ALLOCFRAME_MAX = 16384;
    538 
    539   // Create a dummy memory operand to avoid allocframe from being treated as
    540   // a volatile memory reference.
    541   MachineMemOperand *MMO =
    542     MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOStore,
    543                             4, 4);
    544 
    545   if (NumBytes >= ALLOCFRAME_MAX) {
    546     // Emit allocframe(#0).
    547     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
    548       .addImm(0)
    549       .addMemOperand(MMO);
    550 
    551     // Subtract offset from frame pointer.
    552     // We use a caller-saved non-parameter register for that.
    553     unsigned CallerSavedReg = HRI.getFirstCallerSavedNonParamReg();
    554     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::CONST32_Int_Real),
    555             CallerSavedReg).addImm(NumBytes);
    556     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_sub), SP)
    557       .addReg(SP)
    558       .addReg(CallerSavedReg);
    559   } else {
    560     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
    561       .addImm(NumBytes)
    562       .addMemOperand(MMO);
    563   }
    564 
    565   if (AlignStack) {
    566     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_andir), SP)
    567         .addReg(SP)
    568         .addImm(-int64_t(MaxAlign));
    569   }
    570 
    571   // If the stack-checking is enabled, and we spilled the callee-saved
    572   // registers inline (i.e. did not use a spill function), then call
    573   // the stack checker directly.
    574   if (EnableStackOVFSanitizer && !PrologueStubs)
    575     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::CALLstk))
    576            .addExternalSymbol("__runtime_stack_check");
    577 }
    578 
    579 void HexagonFrameLowering::insertEpilogueInBlock(MachineBasicBlock &MBB) const {
    580   MachineFunction &MF = *MBB.getParent();
    581   if (!hasFP(MF))
    582     return;
    583 
    584   auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
    585   auto &HII = *HST.getInstrInfo();
    586   auto &HRI = *HST.getRegisterInfo();
    587   unsigned SP = HRI.getStackRegister();
    588 
    589   MachineInstr *RetI = getReturn(MBB);
    590   unsigned RetOpc = RetI ? RetI->getOpcode() : 0;
    591 
    592   MachineBasicBlock::iterator InsertPt = MBB.getFirstTerminator();
    593   DebugLoc DL;
    594   if (InsertPt != MBB.end())
    595     DL = InsertPt->getDebugLoc();
    596   else if (!MBB.empty())
    597     DL = std::prev(MBB.end())->getDebugLoc();
    598 
    599   // Handle EH_RETURN.
    600   if (RetOpc == Hexagon::EH_RETURN_JMPR) {
    601     BuildMI(MBB, InsertPt, DL, HII.get(Hexagon::L2_deallocframe));
    602     BuildMI(MBB, InsertPt, DL, HII.get(Hexagon::A2_add), SP)
    603         .addReg(SP)
    604         .addReg(Hexagon::R28);
    605     return;
    606   }
    607 
    608   // Check for RESTORE_DEALLOC_RET* tail call. Don't emit an extra dealloc-
    609   // frame instruction if we encounter it.
    610   if (RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4 ||
    611       RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC) {
    612     MachineBasicBlock::iterator It = RetI;
    613     ++It;
    614     // Delete all instructions after the RESTORE (except labels).
    615     while (It != MBB.end()) {
    616       if (!It->isLabel())
    617         It = MBB.erase(It);
    618       else
    619         ++It;
    620     }
    621     return;
    622   }
    623 
    624   // It is possible that the restoring code is a call to a library function.
    625   // All of the restore* functions include "deallocframe", so we need to make
    626   // sure that we don't add an extra one.
    627   bool NeedsDeallocframe = true;
    628   if (!MBB.empty() && InsertPt != MBB.begin()) {
    629     MachineBasicBlock::iterator PrevIt = std::prev(InsertPt);
    630     unsigned COpc = PrevIt->getOpcode();
    631     if (COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 ||
    632         COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC)
    633       NeedsDeallocframe = false;
    634   }
    635 
    636   if (!NeedsDeallocframe)
    637     return;
    638   // If the returning instruction is JMPret, replace it with dealloc_return,
    639   // otherwise just add deallocframe. The function could be returning via a
    640   // tail call.
    641   if (RetOpc != Hexagon::JMPret || DisableDeallocRet) {
    642     BuildMI(MBB, InsertPt, DL, HII.get(Hexagon::L2_deallocframe));
    643     return;
    644   }
    645   unsigned NewOpc = Hexagon::L4_return;
    646   MachineInstr *NewI = BuildMI(MBB, RetI, DL, HII.get(NewOpc));
    647   // Transfer the function live-out registers.
    648   NewI->copyImplicitOps(MF, *RetI);
    649   MBB.erase(RetI);
    650 }
    651 
    652 
    653 bool HexagonFrameLowering::updateExitPaths(MachineBasicBlock &MBB,
    654       MachineBasicBlock *RestoreB, BitVector &DoneT, BitVector &DoneF,
    655       BitVector &Path) const {
    656   assert(MBB.getNumber() >= 0);
    657   unsigned BN = MBB.getNumber();
    658   if (Path[BN] || DoneF[BN])
    659     return false;
    660   if (DoneT[BN])
    661     return true;
    662 
    663   auto &CSI = MBB.getParent()->getFrameInfo()->getCalleeSavedInfo();
    664 
    665   Path[BN] = true;
    666   bool ReachedExit = false;
    667   for (auto &SB : MBB.successors())
    668     ReachedExit |= updateExitPaths(*SB, RestoreB, DoneT, DoneF, Path);
    669 
    670   if (!MBB.empty() && MBB.back().isReturn()) {
    671     // Add implicit uses of all callee-saved registers to the reached
    672     // return instructions. This is to prevent the anti-dependency breaker
    673     // from renaming these registers.
    674     MachineInstr &RetI = MBB.back();
    675     if (!isRestoreCall(RetI.getOpcode()))
    676       for (auto &R : CSI)
    677         RetI.addOperand(MachineOperand::CreateReg(R.getReg(), false, true));
    678     ReachedExit = true;
    679   }
    680 
    681   // We don't want to add unnecessary live-ins to the restore block: since
    682   // the callee-saved registers are being defined in it, the entry of the
    683   // restore block cannot be on the path from the definitions to any exit.
    684   if (ReachedExit && &MBB != RestoreB) {
    685     for (auto &R : CSI)
    686       if (!MBB.isLiveIn(R.getReg()))
    687         MBB.addLiveIn(R.getReg());
    688     DoneT[BN] = true;
    689   }
    690   if (!ReachedExit)
    691     DoneF[BN] = true;
    692 
    693   Path[BN] = false;
    694   return ReachedExit;
    695 }
    696 
    697 
    698 namespace {
    699   bool IsAllocFrame(MachineBasicBlock::const_iterator It) {
    700     if (!It->isBundle())
    701       return It->getOpcode() == Hexagon::S2_allocframe;
    702     auto End = It->getParent()->instr_end();
    703     MachineBasicBlock::const_instr_iterator I = It.getInstrIterator();
    704     while (++I != End && I->isBundled())
    705       if (I->getOpcode() == Hexagon::S2_allocframe)
    706         return true;
    707     return false;
    708   }
    709 
    710   MachineBasicBlock::iterator FindAllocFrame(MachineBasicBlock &B) {
    711     for (auto &I : B)
    712       if (IsAllocFrame(I))
    713         return I;
    714     return B.end();
    715   }
    716 }
    717 
    718 
    719 void HexagonFrameLowering::insertCFIInstructions(MachineFunction &MF) const {
    720   for (auto &B : MF) {
    721     auto AF = FindAllocFrame(B);
    722     if (AF == B.end())
    723       continue;
    724     insertCFIInstructionsAt(B, ++AF);
    725   }
    726 }
    727 
    728 
    729 void HexagonFrameLowering::insertCFIInstructionsAt(MachineBasicBlock &MBB,
    730       MachineBasicBlock::iterator At) const {
    731   MachineFunction &MF = *MBB.getParent();
    732   MachineFrameInfo &MFI = *MF.getFrameInfo();
    733   MachineModuleInfo &MMI = MF.getMMI();
    734   auto &HST = MF.getSubtarget<HexagonSubtarget>();
    735   auto &HII = *HST.getInstrInfo();
    736   auto &HRI = *HST.getRegisterInfo();
    737 
    738   // If CFI instructions have debug information attached, something goes
    739   // wrong with the final assembly generation: the prolog_end is placed
    740   // in a wrong location.
    741   DebugLoc DL;
    742   const MCInstrDesc &CFID = HII.get(TargetOpcode::CFI_INSTRUCTION);
    743 
    744   MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
    745   bool HasFP = hasFP(MF);
    746 
    747   if (HasFP) {
    748     unsigned DwFPReg = HRI.getDwarfRegNum(HRI.getFrameRegister(), true);
    749     unsigned DwRAReg = HRI.getDwarfRegNum(HRI.getRARegister(), true);
    750 
    751     // Define CFA via an offset from the value of FP.
    752     //
    753     //  -8   -4    0 (SP)
    754     // --+----+----+---------------------
    755     //   | FP | LR |          increasing addresses -->
    756     // --+----+----+---------------------
    757     //   |         +-- Old SP (before allocframe)
    758     //   +-- New FP (after allocframe)
    759     //
    760     // MCCFIInstruction::createDefCfa subtracts the offset from the register.
    761     // MCCFIInstruction::createOffset takes the offset without sign change.
    762     auto DefCfa = MCCFIInstruction::createDefCfa(FrameLabel, DwFPReg, -8);
    763     BuildMI(MBB, At, DL, CFID)
    764         .addCFIIndex(MMI.addFrameInst(DefCfa));
    765     // R31 (return addr) = CFA - 4
    766     auto OffR31 = MCCFIInstruction::createOffset(FrameLabel, DwRAReg, -4);
    767     BuildMI(MBB, At, DL, CFID)
    768         .addCFIIndex(MMI.addFrameInst(OffR31));
    769     // R30 (frame ptr) = CFA - 8
    770     auto OffR30 = MCCFIInstruction::createOffset(FrameLabel, DwFPReg, -8);
    771     BuildMI(MBB, At, DL, CFID)
    772         .addCFIIndex(MMI.addFrameInst(OffR30));
    773   }
    774 
    775   static unsigned int RegsToMove[] = {
    776     Hexagon::R1,  Hexagon::R0,  Hexagon::R3,  Hexagon::R2,
    777     Hexagon::R17, Hexagon::R16, Hexagon::R19, Hexagon::R18,
    778     Hexagon::R21, Hexagon::R20, Hexagon::R23, Hexagon::R22,
    779     Hexagon::R25, Hexagon::R24, Hexagon::R27, Hexagon::R26,
    780     Hexagon::D0,  Hexagon::D1,  Hexagon::D8,  Hexagon::D9,
    781     Hexagon::D10, Hexagon::D11, Hexagon::D12, Hexagon::D13,
    782     Hexagon::NoRegister
    783   };
    784 
    785   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
    786 
    787   for (unsigned i = 0; RegsToMove[i] != Hexagon::NoRegister; ++i) {
    788     unsigned Reg = RegsToMove[i];
    789     auto IfR = [Reg] (const CalleeSavedInfo &C) -> bool {
    790       return C.getReg() == Reg;
    791     };
    792     auto F = std::find_if(CSI.begin(), CSI.end(), IfR);
    793     if (F == CSI.end())
    794       continue;
    795 
    796     int64_t Offset;
    797     if (HasFP) {
    798       // If the function has a frame pointer (i.e. has an allocframe),
    799       // then the CFA has been defined in terms of FP. Any offsets in
    800       // the following CFI instructions have to be defined relative
    801       // to FP, which points to the bottom of the stack frame.
    802       // The function getFrameIndexReference can still choose to use SP
    803       // for the offset calculation, so we cannot simply call it here.
    804       // Instead, get the offset (relative to the FP) directly.
    805       Offset = MFI.getObjectOffset(F->getFrameIdx());
    806     } else {
    807       unsigned FrameReg;
    808       Offset = getFrameIndexReference(MF, F->getFrameIdx(), FrameReg);
    809     }
    810     // Subtract 8 to make room for R30 and R31, which are added above.
    811     Offset -= 8;
    812 
    813     if (Reg < Hexagon::D0 || Reg > Hexagon::D15) {
    814       unsigned DwarfReg = HRI.getDwarfRegNum(Reg, true);
    815       auto OffReg = MCCFIInstruction::createOffset(FrameLabel, DwarfReg,
    816                                                    Offset);
    817       BuildMI(MBB, At, DL, CFID)
    818           .addCFIIndex(MMI.addFrameInst(OffReg));
    819     } else {
    820       // Split the double regs into subregs, and generate appropriate
    821       // cfi_offsets.
    822       // The only reason, we are split double regs is, llvm-mc does not
    823       // understand paired registers for cfi_offset.
    824       // Eg .cfi_offset r1:0, -64
    825 
    826       unsigned HiReg = HRI.getSubReg(Reg, Hexagon::subreg_hireg);
    827       unsigned LoReg = HRI.getSubReg(Reg, Hexagon::subreg_loreg);
    828       unsigned HiDwarfReg = HRI.getDwarfRegNum(HiReg, true);
    829       unsigned LoDwarfReg = HRI.getDwarfRegNum(LoReg, true);
    830       auto OffHi = MCCFIInstruction::createOffset(FrameLabel, HiDwarfReg,
    831                                                   Offset+4);
    832       BuildMI(MBB, At, DL, CFID)
    833           .addCFIIndex(MMI.addFrameInst(OffHi));
    834       auto OffLo = MCCFIInstruction::createOffset(FrameLabel, LoDwarfReg,
    835                                                   Offset);
    836       BuildMI(MBB, At, DL, CFID)
    837           .addCFIIndex(MMI.addFrameInst(OffLo));
    838     }
    839   }
    840 }
    841 
    842 
    843 bool HexagonFrameLowering::hasFP(const MachineFunction &MF) const {
    844   auto &MFI = *MF.getFrameInfo();
    845   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
    846 
    847   bool HasFixed = MFI.getNumFixedObjects();
    848   bool HasPrealloc = const_cast<MachineFrameInfo&>(MFI)
    849                         .getLocalFrameObjectCount();
    850   bool HasExtraAlign = HRI.needsStackRealignment(MF);
    851   bool HasAlloca = MFI.hasVarSizedObjects();
    852 
    853   // Insert ALLOCFRAME if we need to or at -O0 for the debugger.  Think
    854   // that this shouldn't be required, but doing so now because gcc does and
    855   // gdb can't break at the start of the function without it.  Will remove if
    856   // this turns out to be a gdb bug.
    857   //
    858   if (MF.getTarget().getOptLevel() == CodeGenOpt::None)
    859     return true;
    860 
    861   // By default we want to use SP (since it's always there). FP requires
    862   // some setup (i.e. ALLOCFRAME).
    863   // Fixed and preallocated objects need FP if the distance from them to
    864   // the SP is unknown (as is with alloca or aligna).
    865   if ((HasFixed || HasPrealloc) && (HasAlloca || HasExtraAlign))
    866     return true;
    867 
    868   if (MFI.getStackSize() > 0) {
    869     if (EnableStackOVFSanitizer || UseAllocframe)
    870       return true;
    871   }
    872 
    873   if (MFI.hasCalls() ||
    874       MF.getInfo<HexagonMachineFunctionInfo>()->hasClobberLR())
    875     return true;
    876 
    877   return false;
    878 }
    879 
    880 
    881 enum SpillKind {
    882   SK_ToMem,
    883   SK_FromMem,
    884   SK_FromMemTailcall
    885 };
    886 
    887 static const char *getSpillFunctionFor(unsigned MaxReg, SpillKind SpillType,
    888       bool Stkchk = false) {
    889   const char * V4SpillToMemoryFunctions[] = {
    890     "__save_r16_through_r17",
    891     "__save_r16_through_r19",
    892     "__save_r16_through_r21",
    893     "__save_r16_through_r23",
    894     "__save_r16_through_r25",
    895     "__save_r16_through_r27" };
    896 
    897   const char * V4SpillToMemoryStkchkFunctions[] = {
    898     "__save_r16_through_r17_stkchk",
    899     "__save_r16_through_r19_stkchk",
    900     "__save_r16_through_r21_stkchk",
    901     "__save_r16_through_r23_stkchk",
    902     "__save_r16_through_r25_stkchk",
    903     "__save_r16_through_r27_stkchk" };
    904 
    905   const char * V4SpillFromMemoryFunctions[] = {
    906     "__restore_r16_through_r17_and_deallocframe",
    907     "__restore_r16_through_r19_and_deallocframe",
    908     "__restore_r16_through_r21_and_deallocframe",
    909     "__restore_r16_through_r23_and_deallocframe",
    910     "__restore_r16_through_r25_and_deallocframe",
    911     "__restore_r16_through_r27_and_deallocframe" };
    912 
    913   const char * V4SpillFromMemoryTailcallFunctions[] = {
    914     "__restore_r16_through_r17_and_deallocframe_before_tailcall",
    915     "__restore_r16_through_r19_and_deallocframe_before_tailcall",
    916     "__restore_r16_through_r21_and_deallocframe_before_tailcall",
    917     "__restore_r16_through_r23_and_deallocframe_before_tailcall",
    918     "__restore_r16_through_r25_and_deallocframe_before_tailcall",
    919     "__restore_r16_through_r27_and_deallocframe_before_tailcall"
    920   };
    921 
    922   const char **SpillFunc = nullptr;
    923 
    924   switch(SpillType) {
    925   case SK_ToMem:
    926     SpillFunc = Stkchk ? V4SpillToMemoryStkchkFunctions
    927                        : V4SpillToMemoryFunctions;
    928     break;
    929   case SK_FromMem:
    930     SpillFunc = V4SpillFromMemoryFunctions;
    931     break;
    932   case SK_FromMemTailcall:
    933     SpillFunc = V4SpillFromMemoryTailcallFunctions;
    934     break;
    935   }
    936   assert(SpillFunc && "Unknown spill kind");
    937 
    938   // Spill all callee-saved registers up to the highest register used.
    939   switch (MaxReg) {
    940   case Hexagon::R17:
    941     return SpillFunc[0];
    942   case Hexagon::R19:
    943     return SpillFunc[1];
    944   case Hexagon::R21:
    945     return SpillFunc[2];
    946   case Hexagon::R23:
    947     return SpillFunc[3];
    948   case Hexagon::R25:
    949     return SpillFunc[4];
    950   case Hexagon::R27:
    951     return SpillFunc[5];
    952   default:
    953     llvm_unreachable("Unhandled maximum callee save register");
    954   }
    955   return 0;
    956 }
    957 
    958 
    959 int HexagonFrameLowering::getFrameIndexReference(const MachineFunction &MF,
    960       int FI, unsigned &FrameReg) const {
    961   auto &MFI = *MF.getFrameInfo();
    962   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
    963 
    964   int Offset = MFI.getObjectOffset(FI);
    965   bool HasAlloca = MFI.hasVarSizedObjects();
    966   bool HasExtraAlign = HRI.needsStackRealignment(MF);
    967   bool NoOpt = MF.getTarget().getOptLevel() == CodeGenOpt::None;
    968 
    969   unsigned SP = HRI.getStackRegister(), FP = HRI.getFrameRegister();
    970   auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
    971   unsigned AP = HMFI.getStackAlignBasePhysReg();
    972   unsigned FrameSize = MFI.getStackSize();
    973 
    974   bool UseFP = false, UseAP = false;  // Default: use SP (except at -O0).
    975   // Use FP at -O0, except when there are objects with extra alignment.
    976   // That additional alignment requirement may cause a pad to be inserted,
    977   // which will make it impossible to use FP to access objects located
    978   // past the pad.
    979   if (NoOpt && !HasExtraAlign)
    980     UseFP = true;
    981   if (MFI.isFixedObjectIndex(FI) || MFI.isObjectPreAllocated(FI)) {
    982     // Fixed and preallocated objects will be located before any padding
    983     // so FP must be used to access them.
    984     UseFP |= (HasAlloca || HasExtraAlign);
    985   } else {
    986     if (HasAlloca) {
    987       if (HasExtraAlign)
    988         UseAP = true;
    989       else
    990         UseFP = true;
    991     }
    992   }
    993 
    994   // If FP was picked, then there had better be FP.
    995   bool HasFP = hasFP(MF);
    996   assert((HasFP || !UseFP) && "This function must have frame pointer");
    997 
    998   // Having FP implies allocframe. Allocframe will store extra 8 bytes:
    999   // FP/LR. If the base register is used to access an object across these
   1000   // 8 bytes, then the offset will need to be adjusted by 8.
   1001   //
   1002   // After allocframe:
   1003   //                    HexagonISelLowering adds 8 to ---+
   1004   //                    the offsets of all stack-based   |
   1005   //                    arguments (*)                    |
   1006   //                                                     |
   1007   //   getObjectOffset < 0   0     8  getObjectOffset >= 8
   1008   // ------------------------+-----+------------------------> increasing
   1009   //     <local objects>     |FP/LR|    <input arguments>     addresses
   1010   // -----------------+------+-----+------------------------>
   1011   //                  |      |
   1012   //    SP/AP point --+      +-- FP points here (**)
   1013   //    somewhere on
   1014   //    this side of FP/LR
   1015   //
   1016   // (*) See LowerFormalArguments. The FP/LR is assumed to be present.
   1017   // (**) *FP == old-FP. FP+0..7 are the bytes of FP/LR.
   1018 
   1019   // The lowering assumes that FP/LR is present, and so the offsets of
   1020   // the formal arguments start at 8. If FP/LR is not there we need to
   1021   // reduce the offset by 8.
   1022   if (Offset > 0 && !HasFP)
   1023     Offset -= 8;
   1024 
   1025   if (UseFP)
   1026     FrameReg = FP;
   1027   else if (UseAP)
   1028     FrameReg = AP;
   1029   else
   1030     FrameReg = SP;
   1031 
   1032   // Calculate the actual offset in the instruction. If there is no FP
   1033   // (in other words, no allocframe), then SP will not be adjusted (i.e.
   1034   // there will be no SP -= FrameSize), so the frame size should not be
   1035   // added to the calculated offset.
   1036   int RealOffset = Offset;
   1037   if (!UseFP && !UseAP && HasFP)
   1038     RealOffset = FrameSize+Offset;
   1039   return RealOffset;
   1040 }
   1041 
   1042 
   1043 bool HexagonFrameLowering::insertCSRSpillsInBlock(MachineBasicBlock &MBB,
   1044       const CSIVect &CSI, const HexagonRegisterInfo &HRI,
   1045       bool &PrologueStubs) const {
   1046   if (CSI.empty())
   1047     return true;
   1048 
   1049   MachineBasicBlock::iterator MI = MBB.begin();
   1050   PrologueStubs = false;
   1051   MachineFunction &MF = *MBB.getParent();
   1052   auto &HII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
   1053 
   1054   if (useSpillFunction(MF, CSI)) {
   1055     PrologueStubs = true;
   1056     unsigned MaxReg = getMaxCalleeSavedReg(CSI, HRI);
   1057     bool StkOvrFlowEnabled = EnableStackOVFSanitizer;
   1058     const char *SpillFun = getSpillFunctionFor(MaxReg, SK_ToMem,
   1059                                                StkOvrFlowEnabled);
   1060     auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget());
   1061     bool IsPIC = HTM.isPositionIndependent();
   1062 
   1063     // Call spill function.
   1064     DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
   1065     unsigned SpillOpc;
   1066     if (StkOvrFlowEnabled)
   1067       SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_PIC
   1068                        : Hexagon::SAVE_REGISTERS_CALL_V4STK;
   1069     else
   1070       SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_PIC
   1071                        : Hexagon::SAVE_REGISTERS_CALL_V4;
   1072 
   1073     MachineInstr *SaveRegsCall =
   1074         BuildMI(MBB, MI, DL, HII.get(SpillOpc))
   1075           .addExternalSymbol(SpillFun);
   1076     // Add callee-saved registers as use.
   1077     addCalleeSaveRegistersAsImpOperand(SaveRegsCall, CSI, false, true);
   1078     // Add live in registers.
   1079     for (unsigned I = 0; I < CSI.size(); ++I)
   1080       MBB.addLiveIn(CSI[I].getReg());
   1081     return true;
   1082   }
   1083 
   1084   for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
   1085     unsigned Reg = CSI[i].getReg();
   1086     // Add live in registers. We treat eh_return callee saved register r0 - r3
   1087     // specially. They are not really callee saved registers as they are not
   1088     // supposed to be killed.
   1089     bool IsKill = !HRI.isEHReturnCalleeSaveReg(Reg);
   1090     int FI = CSI[i].getFrameIdx();
   1091     const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
   1092     HII.storeRegToStackSlot(MBB, MI, Reg, IsKill, FI, RC, &HRI);
   1093     if (IsKill)
   1094       MBB.addLiveIn(Reg);
   1095   }
   1096   return true;
   1097 }
   1098 
   1099 
   1100 bool HexagonFrameLowering::insertCSRRestoresInBlock(MachineBasicBlock &MBB,
   1101       const CSIVect &CSI, const HexagonRegisterInfo &HRI) const {
   1102   if (CSI.empty())
   1103     return false;
   1104 
   1105   MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
   1106   MachineFunction &MF = *MBB.getParent();
   1107   auto &HII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
   1108 
   1109   if (useRestoreFunction(MF, CSI)) {
   1110     bool HasTC = hasTailCall(MBB) || !hasReturn(MBB);
   1111     unsigned MaxR = getMaxCalleeSavedReg(CSI, HRI);
   1112     SpillKind Kind = HasTC ? SK_FromMemTailcall : SK_FromMem;
   1113     const char *RestoreFn = getSpillFunctionFor(MaxR, Kind);
   1114     auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget());
   1115     bool IsPIC = HTM.isPositionIndependent();
   1116 
   1117     // Call spill function.
   1118     DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc()
   1119                                   : MBB.getLastNonDebugInstr()->getDebugLoc();
   1120     MachineInstr *DeallocCall = nullptr;
   1121 
   1122     if (HasTC) {
   1123       unsigned ROpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC
   1124                             : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4;
   1125       DeallocCall = BuildMI(MBB, MI, DL, HII.get(ROpc))
   1126           .addExternalSymbol(RestoreFn);
   1127     } else {
   1128       // The block has a return.
   1129       MachineBasicBlock::iterator It = MBB.getFirstTerminator();
   1130       assert(It->isReturn() && std::next(It) == MBB.end());
   1131       unsigned ROpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC
   1132                             : Hexagon::RESTORE_DEALLOC_RET_JMP_V4;
   1133       DeallocCall = BuildMI(MBB, It, DL, HII.get(ROpc))
   1134           .addExternalSymbol(RestoreFn);
   1135       // Transfer the function live-out registers.
   1136       DeallocCall->copyImplicitOps(MF, *It);
   1137     }
   1138     addCalleeSaveRegistersAsImpOperand(DeallocCall, CSI, true, false);
   1139     return true;
   1140   }
   1141 
   1142   for (unsigned i = 0; i < CSI.size(); ++i) {
   1143     unsigned Reg = CSI[i].getReg();
   1144     const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
   1145     int FI = CSI[i].getFrameIdx();
   1146     HII.loadRegFromStackSlot(MBB, MI, Reg, FI, RC, &HRI);
   1147   }
   1148 
   1149   return true;
   1150 }
   1151 
   1152 MachineBasicBlock::iterator HexagonFrameLowering::eliminateCallFramePseudoInstr(
   1153     MachineFunction &MF, MachineBasicBlock &MBB,
   1154     MachineBasicBlock::iterator I) const {
   1155   MachineInstr &MI = *I;
   1156   unsigned Opc = MI.getOpcode();
   1157   (void)Opc; // Silence compiler warning.
   1158   assert((Opc == Hexagon::ADJCALLSTACKDOWN || Opc == Hexagon::ADJCALLSTACKUP) &&
   1159          "Cannot handle this call frame pseudo instruction");
   1160   return MBB.erase(I);
   1161 }
   1162 
   1163 
   1164 void HexagonFrameLowering::processFunctionBeforeFrameFinalized(
   1165     MachineFunction &MF, RegScavenger *RS) const {
   1166   // If this function has uses aligned stack and also has variable sized stack
   1167   // objects, then we need to map all spill slots to fixed positions, so that
   1168   // they can be accessed through FP. Otherwise they would have to be accessed
   1169   // via AP, which may not be available at the particular place in the program.
   1170   MachineFrameInfo *MFI = MF.getFrameInfo();
   1171   bool HasAlloca = MFI->hasVarSizedObjects();
   1172   bool NeedsAlign = (MFI->getMaxAlignment() > getStackAlignment());
   1173 
   1174   if (!HasAlloca || !NeedsAlign)
   1175     return;
   1176 
   1177   unsigned LFS = MFI->getLocalFrameSize();
   1178   for (int i = 0, e = MFI->getObjectIndexEnd(); i != e; ++i) {
   1179     if (!MFI->isSpillSlotObjectIndex(i) || MFI->isDeadObjectIndex(i))
   1180       continue;
   1181     unsigned S = MFI->getObjectSize(i);
   1182     // Reduce the alignment to at most 8. This will require unaligned vector
   1183     // stores if they happen here.
   1184     unsigned A = std::max(MFI->getObjectAlignment(i), 8U);
   1185     MFI->setObjectAlignment(i, 8);
   1186     LFS = alignTo(LFS+S, A);
   1187     MFI->mapLocalFrameObject(i, -LFS);
   1188   }
   1189 
   1190   MFI->setLocalFrameSize(LFS);
   1191   unsigned A = MFI->getLocalFrameMaxAlign();
   1192   assert(A <= 8 && "Unexpected local frame alignment");
   1193   if (A == 0)
   1194     MFI->setLocalFrameMaxAlign(8);
   1195   MFI->setUseLocalStackAllocationBlock(true);
   1196 
   1197   // Set the physical aligned-stack base address register.
   1198   unsigned AP = 0;
   1199   if (const MachineInstr *AI = getAlignaInstr(MF))
   1200     AP = AI->getOperand(0).getReg();
   1201   auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
   1202   HMFI.setStackAlignBasePhysReg(AP);
   1203 }
   1204 
   1205 /// Returns true if there are no caller-saved registers available in class RC.
   1206 static bool needToReserveScavengingSpillSlots(MachineFunction &MF,
   1207       const HexagonRegisterInfo &HRI, const TargetRegisterClass *RC) {
   1208   MachineRegisterInfo &MRI = MF.getRegInfo();
   1209 
   1210   auto IsUsed = [&HRI,&MRI] (unsigned Reg) -> bool {
   1211     for (MCRegAliasIterator AI(Reg, &HRI, true); AI.isValid(); ++AI)
   1212       if (MRI.isPhysRegUsed(*AI))
   1213         return true;
   1214     return false;
   1215   };
   1216 
   1217   // Check for an unused caller-saved register. Callee-saved registers
   1218   // have become pristine by now.
   1219   for (const MCPhysReg *P = HRI.getCallerSavedRegs(&MF, RC); *P; ++P)
   1220     if (!IsUsed(*P))
   1221       return false;
   1222 
   1223   // All caller-saved registers are used.
   1224   return true;
   1225 }
   1226 
   1227 
   1228 #ifndef NDEBUG
   1229 static void dump_registers(BitVector &Regs, const TargetRegisterInfo &TRI) {
   1230   dbgs() << '{';
   1231   for (int x = Regs.find_first(); x >= 0; x = Regs.find_next(x)) {
   1232     unsigned R = x;
   1233     dbgs() << ' ' << PrintReg(R, &TRI);
   1234   }
   1235   dbgs() << " }";
   1236 }
   1237 #endif
   1238 
   1239 
   1240 bool HexagonFrameLowering::assignCalleeSavedSpillSlots(MachineFunction &MF,
   1241       const TargetRegisterInfo *TRI, std::vector<CalleeSavedInfo> &CSI) const {
   1242   DEBUG(dbgs() << LLVM_FUNCTION_NAME << " on "
   1243                << MF.getFunction()->getName() << '\n');
   1244   MachineFrameInfo *MFI = MF.getFrameInfo();
   1245   BitVector SRegs(Hexagon::NUM_TARGET_REGS);
   1246 
   1247   // Generate a set of unique, callee-saved registers (SRegs), where each
   1248   // register in the set is maximal in terms of sub-/super-register relation,
   1249   // i.e. for each R in SRegs, no proper super-register of R is also in SRegs.
   1250 
   1251   // (1) For each callee-saved register, add that register and all of its
   1252   // sub-registers to SRegs.
   1253   DEBUG(dbgs() << "Initial CS registers: {");
   1254   for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
   1255     unsigned R = CSI[i].getReg();
   1256     DEBUG(dbgs() << ' ' << PrintReg(R, TRI));
   1257     for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR)
   1258       SRegs[*SR] = true;
   1259   }
   1260   DEBUG(dbgs() << " }\n");
   1261   DEBUG(dbgs() << "SRegs.1: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
   1262 
   1263   // (2) For each reserved register, remove that register and all of its
   1264   // sub- and super-registers from SRegs.
   1265   BitVector Reserved = TRI->getReservedRegs(MF);
   1266   for (int x = Reserved.find_first(); x >= 0; x = Reserved.find_next(x)) {
   1267     unsigned R = x;
   1268     for (MCSuperRegIterator SR(R, TRI, true); SR.isValid(); ++SR)
   1269       SRegs[*SR] = false;
   1270   }
   1271   DEBUG(dbgs() << "Res:     "; dump_registers(Reserved, *TRI); dbgs() << "\n");
   1272   DEBUG(dbgs() << "SRegs.2: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
   1273 
   1274   // (3) Collect all registers that have at least one sub-register in SRegs,
   1275   // and also have no sub-registers that are reserved. These will be the can-
   1276   // didates for saving as a whole instead of their individual sub-registers.
   1277   // (Saving R17:16 instead of R16 is fine, but only if R17 was not reserved.)
   1278   BitVector TmpSup(Hexagon::NUM_TARGET_REGS);
   1279   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
   1280     unsigned R = x;
   1281     for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR)
   1282       TmpSup[*SR] = true;
   1283   }
   1284   for (int x = TmpSup.find_first(); x >= 0; x = TmpSup.find_next(x)) {
   1285     unsigned R = x;
   1286     for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR) {
   1287       if (!Reserved[*SR])
   1288         continue;
   1289       TmpSup[R] = false;
   1290       break;
   1291     }
   1292   }
   1293   DEBUG(dbgs() << "TmpSup:  "; dump_registers(TmpSup, *TRI); dbgs() << "\n");
   1294 
   1295   // (4) Include all super-registers found in (3) into SRegs.
   1296   SRegs |= TmpSup;
   1297   DEBUG(dbgs() << "SRegs.4: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
   1298 
   1299   // (5) For each register R in SRegs, if any super-register of R is in SRegs,
   1300   // remove R from SRegs.
   1301   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
   1302     unsigned R = x;
   1303     for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR) {
   1304       if (!SRegs[*SR])
   1305         continue;
   1306       SRegs[R] = false;
   1307       break;
   1308     }
   1309   }
   1310   DEBUG(dbgs() << "SRegs.5: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
   1311 
   1312   // Now, for each register that has a fixed stack slot, create the stack
   1313   // object for it.
   1314   CSI.clear();
   1315 
   1316   typedef TargetFrameLowering::SpillSlot SpillSlot;
   1317   unsigned NumFixed;
   1318   int MinOffset = 0;  // CS offsets are negative.
   1319   const SpillSlot *FixedSlots = getCalleeSavedSpillSlots(NumFixed);
   1320   for (const SpillSlot *S = FixedSlots; S != FixedSlots+NumFixed; ++S) {
   1321     if (!SRegs[S->Reg])
   1322       continue;
   1323     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(S->Reg);
   1324     int FI = MFI->CreateFixedSpillStackObject(RC->getSize(), S->Offset);
   1325     MinOffset = std::min(MinOffset, S->Offset);
   1326     CSI.push_back(CalleeSavedInfo(S->Reg, FI));
   1327     SRegs[S->Reg] = false;
   1328   }
   1329 
   1330   // There can be some registers that don't have fixed slots. For example,
   1331   // we need to store R0-R3 in functions with exception handling. For each
   1332   // such register, create a non-fixed stack object.
   1333   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
   1334     unsigned R = x;
   1335     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(R);
   1336     int Off = MinOffset - RC->getSize();
   1337     unsigned Align = std::min(RC->getAlignment(), getStackAlignment());
   1338     assert(isPowerOf2_32(Align));
   1339     Off &= -Align;
   1340     int FI = MFI->CreateFixedSpillStackObject(RC->getSize(), Off);
   1341     MinOffset = std::min(MinOffset, Off);
   1342     CSI.push_back(CalleeSavedInfo(R, FI));
   1343     SRegs[R] = false;
   1344   }
   1345 
   1346   DEBUG({
   1347     dbgs() << "CS information: {";
   1348     for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
   1349       int FI = CSI[i].getFrameIdx();
   1350       int Off = MFI->getObjectOffset(FI);
   1351       dbgs() << ' ' << PrintReg(CSI[i].getReg(), TRI) << ":fi#" << FI << ":sp";
   1352       if (Off >= 0)
   1353         dbgs() << '+';
   1354       dbgs() << Off;
   1355     }
   1356     dbgs() << " }\n";
   1357   });
   1358 
   1359 #ifndef NDEBUG
   1360   // Verify that all registers were handled.
   1361   bool MissedReg = false;
   1362   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
   1363     unsigned R = x;
   1364     dbgs() << PrintReg(R, TRI) << ' ';
   1365     MissedReg = true;
   1366   }
   1367   if (MissedReg)
   1368     llvm_unreachable("...there are unhandled callee-saved registers!");
   1369 #endif
   1370 
   1371   return true;
   1372 }
   1373 
   1374 
   1375 bool HexagonFrameLowering::expandCopy(MachineBasicBlock &B,
   1376       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
   1377       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
   1378   MachineInstr *MI = &*It;
   1379   DebugLoc DL = MI->getDebugLoc();
   1380   unsigned DstR = MI->getOperand(0).getReg();
   1381   unsigned SrcR = MI->getOperand(1).getReg();
   1382   if (!Hexagon::ModRegsRegClass.contains(DstR) ||
   1383       !Hexagon::ModRegsRegClass.contains(SrcR))
   1384     return false;
   1385 
   1386   unsigned TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
   1387   BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), TmpR)
   1388     .addOperand(MI->getOperand(1));
   1389   BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), DstR)
   1390     .addReg(TmpR, RegState::Kill);
   1391 
   1392   NewRegs.push_back(TmpR);
   1393   B.erase(It);
   1394   return true;
   1395 }
   1396 
   1397 bool HexagonFrameLowering::expandStoreInt(MachineBasicBlock &B,
   1398       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
   1399       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
   1400   MachineInstr *MI = &*It;
   1401   DebugLoc DL = MI->getDebugLoc();
   1402   unsigned Opc = MI->getOpcode();
   1403   unsigned SrcR = MI->getOperand(2).getReg();
   1404   bool IsKill = MI->getOperand(2).isKill();
   1405 
   1406   assert(MI->getOperand(0).isFI() && "Expect a frame index");
   1407   int FI = MI->getOperand(0).getIndex();
   1408 
   1409   // TmpR = C2_tfrpr SrcR   if SrcR is a predicate register
   1410   // TmpR = A2_tfrcrr SrcR  if SrcR is a modifier register
   1411   unsigned TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
   1412   unsigned TfrOpc = (Opc == Hexagon::STriw_pred) ? Hexagon::C2_tfrpr
   1413                                                  : Hexagon::A2_tfrcrr;
   1414   BuildMI(B, It, DL, HII.get(TfrOpc), TmpR)
   1415     .addReg(SrcR, getKillRegState(IsKill));
   1416 
   1417   // S2_storeri_io FI, 0, TmpR
   1418   BuildMI(B, It, DL, HII.get(Hexagon::S2_storeri_io))
   1419     .addFrameIndex(FI)
   1420     .addImm(0)
   1421     .addReg(TmpR, RegState::Kill)
   1422     .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
   1423 
   1424   NewRegs.push_back(TmpR);
   1425   B.erase(It);
   1426   return true;
   1427 }
   1428 
   1429 bool HexagonFrameLowering::expandLoadInt(MachineBasicBlock &B,
   1430       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
   1431       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
   1432   MachineInstr *MI = &*It;
   1433   DebugLoc DL = MI->getDebugLoc();
   1434   unsigned Opc = MI->getOpcode();
   1435   unsigned DstR = MI->getOperand(0).getReg();
   1436 
   1437   assert(MI->getOperand(1).isFI() && "Expect a frame index");
   1438   int FI = MI->getOperand(1).getIndex();
   1439 
   1440   // TmpR = L2_loadri_io FI, 0
   1441   unsigned TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
   1442   BuildMI(B, It, DL, HII.get(Hexagon::L2_loadri_io), TmpR)
   1443     .addFrameIndex(FI)
   1444     .addImm(0)
   1445     .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
   1446 
   1447   // DstR = C2_tfrrp TmpR   if DstR is a predicate register
   1448   // DstR = A2_tfrrcr TmpR  if DstR is a modifier register
   1449   unsigned TfrOpc = (Opc == Hexagon::LDriw_pred) ? Hexagon::C2_tfrrp
   1450                                                  : Hexagon::A2_tfrrcr;
   1451   BuildMI(B, It, DL, HII.get(TfrOpc), DstR)
   1452     .addReg(TmpR, RegState::Kill);
   1453 
   1454   NewRegs.push_back(TmpR);
   1455   B.erase(It);
   1456   return true;
   1457 }
   1458 
   1459 
   1460 bool HexagonFrameLowering::expandStoreVecPred(MachineBasicBlock &B,
   1461       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
   1462       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
   1463   auto &HST = B.getParent()->getSubtarget<HexagonSubtarget>();
   1464   MachineInstr *MI = &*It;
   1465   DebugLoc DL = MI->getDebugLoc();
   1466   unsigned SrcR = MI->getOperand(2).getReg();
   1467   bool IsKill = MI->getOperand(2).isKill();
   1468 
   1469   assert(MI->getOperand(0).isFI() && "Expect a frame index");
   1470   int FI = MI->getOperand(0).getIndex();
   1471 
   1472   bool Is128B = HST.useHVXDblOps();
   1473   auto *RC = !Is128B ? &Hexagon::VectorRegsRegClass
   1474                      : &Hexagon::VectorRegs128BRegClass;
   1475 
   1476   // Insert transfer to general vector register.
   1477   //   TmpR0 = A2_tfrsi 0x01010101
   1478   //   TmpR1 = V6_vandqrt Qx, TmpR0
   1479   //   store FI, 0, TmpR1
   1480   unsigned TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
   1481   unsigned TmpR1 = MRI.createVirtualRegister(RC);
   1482 
   1483   BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0)
   1484     .addImm(0x01010101);
   1485 
   1486   unsigned VandOpc = !Is128B ? Hexagon::V6_vandqrt : Hexagon::V6_vandqrt_128B;
   1487   BuildMI(B, It, DL, HII.get(VandOpc), TmpR1)
   1488     .addReg(SrcR, getKillRegState(IsKill))
   1489     .addReg(TmpR0, RegState::Kill);
   1490 
   1491   auto *HRI = B.getParent()->getSubtarget<HexagonSubtarget>().getRegisterInfo();
   1492   HII.storeRegToStackSlot(B, It, TmpR1, true, FI, RC, HRI);
   1493   expandStoreVec(B, std::prev(It), MRI, HII, NewRegs);
   1494 
   1495   NewRegs.push_back(TmpR0);
   1496   NewRegs.push_back(TmpR1);
   1497   B.erase(It);
   1498   return true;
   1499 }
   1500 
   1501 bool HexagonFrameLowering::expandLoadVecPred(MachineBasicBlock &B,
   1502       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
   1503       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
   1504   auto &HST = B.getParent()->getSubtarget<HexagonSubtarget>();
   1505   MachineInstr *MI = &*It;
   1506   DebugLoc DL = MI->getDebugLoc();
   1507   unsigned DstR = MI->getOperand(0).getReg();
   1508 
   1509   assert(MI->getOperand(1).isFI() && "Expect a frame index");
   1510   int FI = MI->getOperand(1).getIndex();
   1511 
   1512   bool Is128B = HST.useHVXDblOps();
   1513   auto *RC = !Is128B ? &Hexagon::VectorRegsRegClass
   1514                      : &Hexagon::VectorRegs128BRegClass;
   1515 
   1516   // TmpR0 = A2_tfrsi 0x01010101
   1517   // TmpR1 = load FI, 0
   1518   // DstR = V6_vandvrt TmpR1, TmpR0
   1519   unsigned TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
   1520   unsigned TmpR1 = MRI.createVirtualRegister(RC);
   1521 
   1522   BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0)
   1523     .addImm(0x01010101);
   1524   auto *HRI = B.getParent()->getSubtarget<HexagonSubtarget>().getRegisterInfo();
   1525   HII.loadRegFromStackSlot(B, It, TmpR1, FI, RC, HRI);
   1526   expandLoadVec(B, std::prev(It), MRI, HII, NewRegs);
   1527 
   1528   unsigned VandOpc = !Is128B ? Hexagon::V6_vandvrt : Hexagon::V6_vandvrt_128B;
   1529   BuildMI(B, It, DL, HII.get(VandOpc), DstR)
   1530     .addReg(TmpR1, RegState::Kill)
   1531     .addReg(TmpR0, RegState::Kill);
   1532 
   1533   NewRegs.push_back(TmpR0);
   1534   NewRegs.push_back(TmpR1);
   1535   B.erase(It);
   1536   return true;
   1537 }
   1538 
   1539 bool HexagonFrameLowering::expandStoreVec2(MachineBasicBlock &B,
   1540       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
   1541       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
   1542   MachineFunction &MF = *B.getParent();
   1543   auto &HST = MF.getSubtarget<HexagonSubtarget>();
   1544   auto &MFI = *MF.getFrameInfo();
   1545   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
   1546   MachineInstr *MI = &*It;
   1547   DebugLoc DL = MI->getDebugLoc();
   1548 
   1549   unsigned SrcR = MI->getOperand(2).getReg();
   1550   unsigned SrcLo = HRI.getSubReg(SrcR, Hexagon::subreg_loreg);
   1551   unsigned SrcHi = HRI.getSubReg(SrcR, Hexagon::subreg_hireg);
   1552   bool IsKill = MI->getOperand(2).isKill();
   1553 
   1554   assert(MI->getOperand(0).isFI() && "Expect a frame index");
   1555   int FI = MI->getOperand(0).getIndex();
   1556 
   1557   bool Is128B = HST.useHVXDblOps();
   1558   auto *RC = !Is128B ? &Hexagon::VectorRegsRegClass
   1559                      : &Hexagon::VectorRegs128BRegClass;
   1560   unsigned Size = RC->getSize();
   1561   unsigned NeedAlign = RC->getAlignment();
   1562   unsigned HasAlign = MFI.getObjectAlignment(FI);
   1563   unsigned StoreOpc;
   1564 
   1565   // Store low part.
   1566   if (NeedAlign <= HasAlign)
   1567     StoreOpc = !Is128B ? Hexagon::V6_vS32b_ai  : Hexagon::V6_vS32b_ai_128B;
   1568   else
   1569     StoreOpc = !Is128B ? Hexagon::V6_vS32Ub_ai : Hexagon::V6_vS32Ub_ai_128B;
   1570 
   1571   BuildMI(B, It, DL, HII.get(StoreOpc))
   1572     .addFrameIndex(FI)
   1573     .addImm(0)
   1574     .addReg(SrcLo, getKillRegState(IsKill))
   1575     .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
   1576 
   1577   // Load high part.
   1578   if (NeedAlign <= MinAlign(HasAlign, Size))
   1579     StoreOpc = !Is128B ? Hexagon::V6_vS32b_ai  : Hexagon::V6_vS32b_ai_128B;
   1580   else
   1581     StoreOpc = !Is128B ? Hexagon::V6_vS32Ub_ai : Hexagon::V6_vS32Ub_ai_128B;
   1582 
   1583   BuildMI(B, It, DL, HII.get(StoreOpc))
   1584     .addFrameIndex(FI)
   1585     .addImm(Size)
   1586     .addReg(SrcHi, getKillRegState(IsKill))
   1587     .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
   1588 
   1589   B.erase(It);
   1590   return true;
   1591 }
   1592 
   1593 bool HexagonFrameLowering::expandLoadVec2(MachineBasicBlock &B,
   1594       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
   1595       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
   1596   MachineFunction &MF = *B.getParent();
   1597   auto &HST = MF.getSubtarget<HexagonSubtarget>();
   1598   auto &MFI = *MF.getFrameInfo();
   1599   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
   1600   MachineInstr *MI = &*It;
   1601   DebugLoc DL = MI->getDebugLoc();
   1602 
   1603   unsigned DstR = MI->getOperand(0).getReg();
   1604   unsigned DstHi = HRI.getSubReg(DstR, Hexagon::subreg_hireg);
   1605   unsigned DstLo = HRI.getSubReg(DstR, Hexagon::subreg_loreg);
   1606 
   1607   assert(MI->getOperand(1).isFI() && "Expect a frame index");
   1608   int FI = MI->getOperand(1).getIndex();
   1609 
   1610   bool Is128B = HST.useHVXDblOps();
   1611   auto *RC = !Is128B ? &Hexagon::VectorRegsRegClass
   1612                      : &Hexagon::VectorRegs128BRegClass;
   1613   unsigned Size = RC->getSize();
   1614   unsigned NeedAlign = RC->getAlignment();
   1615   unsigned HasAlign = MFI.getObjectAlignment(FI);
   1616   unsigned LoadOpc;
   1617 
   1618   // Load low part.
   1619   if (NeedAlign <= HasAlign)
   1620     LoadOpc = !Is128B ? Hexagon::V6_vL32b_ai  : Hexagon::V6_vL32b_ai_128B;
   1621   else
   1622     LoadOpc = !Is128B ? Hexagon::V6_vL32Ub_ai : Hexagon::V6_vL32Ub_ai_128B;
   1623 
   1624   BuildMI(B, It, DL, HII.get(LoadOpc), DstLo)
   1625     .addFrameIndex(FI)
   1626     .addImm(0)
   1627     .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
   1628 
   1629   // Load high part.
   1630   if (NeedAlign <= MinAlign(HasAlign, Size))
   1631     LoadOpc = !Is128B ? Hexagon::V6_vL32b_ai  : Hexagon::V6_vL32b_ai_128B;
   1632   else
   1633     LoadOpc = !Is128B ? Hexagon::V6_vL32Ub_ai : Hexagon::V6_vL32Ub_ai_128B;
   1634 
   1635   BuildMI(B, It, DL, HII.get(LoadOpc), DstHi)
   1636     .addFrameIndex(FI)
   1637     .addImm(Size)
   1638     .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
   1639 
   1640   B.erase(It);
   1641   return true;
   1642 }
   1643 
   1644 bool HexagonFrameLowering::expandStoreVec(MachineBasicBlock &B,
   1645       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
   1646       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
   1647   MachineFunction &MF = *B.getParent();
   1648   auto &HST = MF.getSubtarget<HexagonSubtarget>();
   1649   auto &MFI = *MF.getFrameInfo();
   1650   MachineInstr *MI = &*It;
   1651   DebugLoc DL = MI->getDebugLoc();
   1652 
   1653   unsigned SrcR = MI->getOperand(2).getReg();
   1654   bool IsKill = MI->getOperand(2).isKill();
   1655 
   1656   assert(MI->getOperand(0).isFI() && "Expect a frame index");
   1657   int FI = MI->getOperand(0).getIndex();
   1658 
   1659   bool Is128B = HST.useHVXDblOps();
   1660   auto *RC = !Is128B ? &Hexagon::VectorRegsRegClass
   1661                      : &Hexagon::VectorRegs128BRegClass;
   1662 
   1663   unsigned NeedAlign = RC->getAlignment();
   1664   unsigned HasAlign = MFI.getObjectAlignment(FI);
   1665   unsigned StoreOpc;
   1666 
   1667   if (NeedAlign <= HasAlign)
   1668     StoreOpc = !Is128B ? Hexagon::V6_vS32b_ai : Hexagon::V6_vS32b_ai_128B;
   1669   else
   1670     StoreOpc = !Is128B ? Hexagon::V6_vS32Ub_ai : Hexagon::V6_vS32Ub_ai_128B;
   1671 
   1672   BuildMI(B, It, DL, HII.get(StoreOpc))
   1673     .addFrameIndex(FI)
   1674     .addImm(0)
   1675     .addReg(SrcR, getKillRegState(IsKill))
   1676     .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
   1677 
   1678   B.erase(It);
   1679   return true;
   1680 }
   1681 
   1682 bool HexagonFrameLowering::expandLoadVec(MachineBasicBlock &B,
   1683       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
   1684       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
   1685   MachineFunction &MF = *B.getParent();
   1686   auto &HST = MF.getSubtarget<HexagonSubtarget>();
   1687   auto &MFI = *MF.getFrameInfo();
   1688   MachineInstr *MI = &*It;
   1689   DebugLoc DL = MI->getDebugLoc();
   1690 
   1691   unsigned DstR = MI->getOperand(0).getReg();
   1692 
   1693   assert(MI->getOperand(1).isFI() && "Expect a frame index");
   1694   int FI = MI->getOperand(1).getIndex();
   1695 
   1696   bool Is128B = HST.useHVXDblOps();
   1697   auto *RC = !Is128B ? &Hexagon::VectorRegsRegClass
   1698                      : &Hexagon::VectorRegs128BRegClass;
   1699 
   1700   unsigned NeedAlign = RC->getAlignment();
   1701   unsigned HasAlign = MFI.getObjectAlignment(FI);
   1702   unsigned LoadOpc;
   1703 
   1704   if (NeedAlign <= HasAlign)
   1705     LoadOpc = !Is128B ? Hexagon::V6_vL32b_ai : Hexagon::V6_vL32b_ai_128B;
   1706   else
   1707     LoadOpc = !Is128B ? Hexagon::V6_vL32Ub_ai : Hexagon::V6_vL32Ub_ai_128B;
   1708 
   1709   BuildMI(B, It, DL, HII.get(LoadOpc), DstR)
   1710     .addFrameIndex(FI)
   1711     .addImm(0)
   1712     .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
   1713 
   1714   B.erase(It);
   1715   return true;
   1716 }
   1717 
   1718 
   1719 bool HexagonFrameLowering::expandSpillMacros(MachineFunction &MF,
   1720       SmallVectorImpl<unsigned> &NewRegs) const {
   1721   auto &HST = MF.getSubtarget<HexagonSubtarget>();
   1722   auto &HII = *HST.getInstrInfo();
   1723   MachineRegisterInfo &MRI = MF.getRegInfo();
   1724   bool Changed = false;
   1725 
   1726   for (auto &B : MF) {
   1727     // Traverse the basic block.
   1728     MachineBasicBlock::iterator NextI;
   1729     for (auto I = B.begin(), E = B.end(); I != E; I = NextI) {
   1730       MachineInstr *MI = &*I;
   1731       NextI = std::next(I);
   1732       unsigned Opc = MI->getOpcode();
   1733 
   1734       switch (Opc) {
   1735         case TargetOpcode::COPY:
   1736           Changed |= expandCopy(B, I, MRI, HII, NewRegs);
   1737           break;
   1738         case Hexagon::STriw_pred:
   1739         case Hexagon::STriw_mod:
   1740           Changed |= expandStoreInt(B, I, MRI, HII, NewRegs);
   1741           break;
   1742         case Hexagon::LDriw_pred:
   1743         case Hexagon::LDriw_mod:
   1744           Changed |= expandLoadInt(B, I, MRI, HII, NewRegs);
   1745           break;
   1746         case Hexagon::STriq_pred_V6:
   1747         case Hexagon::STriq_pred_V6_128B:
   1748           Changed |= expandStoreVecPred(B, I, MRI, HII, NewRegs);
   1749           break;
   1750         case Hexagon::LDriq_pred_V6:
   1751         case Hexagon::LDriq_pred_V6_128B:
   1752           Changed |= expandLoadVecPred(B, I, MRI, HII, NewRegs);
   1753           break;
   1754         case Hexagon::LDrivv_pseudo_V6:
   1755         case Hexagon::LDrivv_pseudo_V6_128B:
   1756           Changed |= expandLoadVec2(B, I, MRI, HII, NewRegs);
   1757           break;
   1758         case Hexagon::STrivv_pseudo_V6:
   1759         case Hexagon::STrivv_pseudo_V6_128B:
   1760           Changed |= expandStoreVec2(B, I, MRI, HII, NewRegs);
   1761           break;
   1762         case Hexagon::STriv_pseudo_V6:
   1763         case Hexagon::STriv_pseudo_V6_128B:
   1764           Changed |= expandStoreVec(B, I, MRI, HII, NewRegs);
   1765           break;
   1766         case Hexagon::LDriv_pseudo_V6:
   1767         case Hexagon::LDriv_pseudo_V6_128B:
   1768           Changed |= expandLoadVec(B, I, MRI, HII, NewRegs);
   1769           break;
   1770       }
   1771     }
   1772   }
   1773 
   1774   return Changed;
   1775 }
   1776 
   1777 
   1778 void HexagonFrameLowering::determineCalleeSaves(MachineFunction &MF,
   1779                                                 BitVector &SavedRegs,
   1780                                                 RegScavenger *RS) const {
   1781   auto &HST = MF.getSubtarget<HexagonSubtarget>();
   1782   auto &HRI = *HST.getRegisterInfo();
   1783 
   1784   SavedRegs.resize(HRI.getNumRegs());
   1785 
   1786   // If we have a function containing __builtin_eh_return we want to spill and
   1787   // restore all callee saved registers. Pretend that they are used.
   1788   if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn())
   1789     for (const MCPhysReg *R = HRI.getCalleeSavedRegs(&MF); *R; ++R)
   1790       SavedRegs.set(*R);
   1791 
   1792   // Replace predicate register pseudo spill code.
   1793   SmallVector<unsigned,8> NewRegs;
   1794   expandSpillMacros(MF, NewRegs);
   1795   if (OptimizeSpillSlots && !isOptNone(MF))
   1796     optimizeSpillSlots(MF, NewRegs);
   1797 
   1798   // We need to reserve a a spill slot if scavenging could potentially require
   1799   // spilling a scavenged register.
   1800   if (!NewRegs.empty()) {
   1801     MachineFrameInfo &MFI = *MF.getFrameInfo();
   1802     MachineRegisterInfo &MRI = MF.getRegInfo();
   1803     SetVector<const TargetRegisterClass*> SpillRCs;
   1804     // Reserve an int register in any case, because it could be used to hold
   1805     // the stack offset in case it does not fit into a spill instruction.
   1806     SpillRCs.insert(&Hexagon::IntRegsRegClass);
   1807 
   1808     for (unsigned VR : NewRegs)
   1809       SpillRCs.insert(MRI.getRegClass(VR));
   1810 
   1811     for (auto *RC : SpillRCs) {
   1812       if (!needToReserveScavengingSpillSlots(MF, HRI, RC))
   1813         continue;
   1814       unsigned Num = RC == &Hexagon::IntRegsRegClass ? NumberScavengerSlots : 1;
   1815       unsigned S = RC->getSize(), A = RC->getAlignment();
   1816       for (unsigned i = 0; i < Num; i++) {
   1817         int NewFI = MFI.CreateSpillStackObject(S, A);
   1818         RS->addScavengingFrameIndex(NewFI);
   1819       }
   1820     }
   1821   }
   1822 
   1823   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
   1824 }
   1825 
   1826 
   1827 unsigned HexagonFrameLowering::findPhysReg(MachineFunction &MF,
   1828       HexagonBlockRanges::IndexRange &FIR,
   1829       HexagonBlockRanges::InstrIndexMap &IndexMap,
   1830       HexagonBlockRanges::RegToRangeMap &DeadMap,
   1831       const TargetRegisterClass *RC) const {
   1832   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
   1833   auto &MRI = MF.getRegInfo();
   1834 
   1835   auto isDead = [&FIR,&DeadMap] (unsigned Reg) -> bool {
   1836     auto F = DeadMap.find({Reg,0});
   1837     if (F == DeadMap.end())
   1838       return false;
   1839     for (auto &DR : F->second)
   1840       if (DR.contains(FIR))
   1841         return true;
   1842     return false;
   1843   };
   1844 
   1845   for (unsigned Reg : RC->getRawAllocationOrder(MF)) {
   1846     bool Dead = true;
   1847     for (auto R : HexagonBlockRanges::expandToSubRegs({Reg,0}, MRI, HRI)) {
   1848       if (isDead(R.Reg))
   1849         continue;
   1850       Dead = false;
   1851       break;
   1852     }
   1853     if (Dead)
   1854       return Reg;
   1855   }
   1856   return 0;
   1857 }
   1858 
   1859 void HexagonFrameLowering::optimizeSpillSlots(MachineFunction &MF,
   1860       SmallVectorImpl<unsigned> &VRegs) const {
   1861   auto &HST = MF.getSubtarget<HexagonSubtarget>();
   1862   auto &HII = *HST.getInstrInfo();
   1863   auto &HRI = *HST.getRegisterInfo();
   1864   auto &MRI = MF.getRegInfo();
   1865   HexagonBlockRanges HBR(MF);
   1866 
   1867   typedef std::map<MachineBasicBlock*,HexagonBlockRanges::InstrIndexMap>
   1868       BlockIndexMap;
   1869   typedef std::map<MachineBasicBlock*,HexagonBlockRanges::RangeList>
   1870       BlockRangeMap;
   1871   typedef HexagonBlockRanges::IndexType IndexType;
   1872 
   1873   struct SlotInfo {
   1874     BlockRangeMap Map;
   1875     unsigned Size;
   1876     const TargetRegisterClass *RC;
   1877 
   1878     SlotInfo() : Map(), Size(0), RC(nullptr) {}
   1879   };
   1880 
   1881   BlockIndexMap BlockIndexes;
   1882   SmallSet<int,4> BadFIs;
   1883   std::map<int,SlotInfo> FIRangeMap;
   1884 
   1885   auto getRegClass = [&MRI,&HRI] (HexagonBlockRanges::RegisterRef R)
   1886         -> const TargetRegisterClass* {
   1887     if (TargetRegisterInfo::isPhysicalRegister(R.Reg))
   1888       assert(R.Sub == 0);
   1889     if (TargetRegisterInfo::isVirtualRegister(R.Reg)) {
   1890       auto *RCR = MRI.getRegClass(R.Reg);
   1891       if (R.Sub == 0)
   1892         return RCR;
   1893       unsigned PR = *RCR->begin();
   1894       R.Reg = HRI.getSubReg(PR, R.Sub);
   1895     }
   1896     return HRI.getMinimalPhysRegClass(R.Reg);
   1897   };
   1898   // Accumulate register classes: get a common class for a pre-existing
   1899   // class HaveRC and a new class NewRC. Return nullptr if a common class
   1900   // cannot be found, otherwise return the resulting class. If HaveRC is
   1901   // nullptr, assume that it is still unset.
   1902   auto getCommonRC = [&HRI] (const TargetRegisterClass *HaveRC,
   1903                              const TargetRegisterClass *NewRC)
   1904         -> const TargetRegisterClass* {
   1905     if (HaveRC == nullptr || HaveRC == NewRC)
   1906       return NewRC;
   1907     // Different classes, both non-null. Pick the more general one.
   1908     if (HaveRC->hasSubClassEq(NewRC))
   1909       return HaveRC;
   1910     if (NewRC->hasSubClassEq(HaveRC))
   1911       return NewRC;
   1912     return nullptr;
   1913   };
   1914 
   1915   // Scan all blocks in the function. Check all occurrences of frame indexes,
   1916   // and collect relevant information.
   1917   for (auto &B : MF) {
   1918     std::map<int,IndexType> LastStore, LastLoad;
   1919     // Emplace appears not to be supported in gcc 4.7.2-4.
   1920     //auto P = BlockIndexes.emplace(&B, HexagonBlockRanges::InstrIndexMap(B));
   1921     auto P = BlockIndexes.insert(
   1922                 std::make_pair(&B, HexagonBlockRanges::InstrIndexMap(B)));
   1923     auto &IndexMap = P.first->second;
   1924     DEBUG(dbgs() << "Index map for BB#" << B.getNumber() << "\n"
   1925                  << IndexMap << '\n');
   1926 
   1927     for (auto &In : B) {
   1928       int LFI, SFI;
   1929       bool Load = HII.isLoadFromStackSlot(In, LFI) && !HII.isPredicated(In);
   1930       bool Store = HII.isStoreToStackSlot(In, SFI) && !HII.isPredicated(In);
   1931       if (Load && Store) {
   1932         // If it's both a load and a store, then we won't handle it.
   1933         BadFIs.insert(LFI);
   1934         BadFIs.insert(SFI);
   1935         continue;
   1936       }
   1937       // Check for register classes of the register used as the source for
   1938       // the store, and the register used as the destination for the load.
   1939       // Also, only accept base+imm_offset addressing modes. Other addressing
   1940       // modes can have side-effects (post-increments, etc.). For stack
   1941       // slots they are very unlikely, so there is not much loss due to
   1942       // this restriction.
   1943       if (Load || Store) {
   1944         int TFI = Load ? LFI : SFI;
   1945         unsigned AM = HII.getAddrMode(&In);
   1946         SlotInfo &SI = FIRangeMap[TFI];
   1947         bool Bad = (AM != HexagonII::BaseImmOffset);
   1948         if (!Bad) {
   1949           // If the addressing mode is ok, check the register class.
   1950           const TargetRegisterClass *RC = nullptr;
   1951           if (Load) {
   1952             MachineOperand &DataOp = In.getOperand(0);
   1953             RC = getRegClass({DataOp.getReg(), DataOp.getSubReg()});
   1954           } else {
   1955             MachineOperand &DataOp = In.getOperand(2);
   1956             RC = getRegClass({DataOp.getReg(), DataOp.getSubReg()});
   1957           }
   1958           RC = getCommonRC(SI.RC, RC);
   1959           if (RC == nullptr)
   1960             Bad = true;
   1961           else
   1962             SI.RC = RC;
   1963         }
   1964         if (!Bad) {
   1965           // Check sizes.
   1966           unsigned S = (1U << (HII.getMemAccessSize(&In) - 1));
   1967           if (SI.Size != 0 && SI.Size != S)
   1968             Bad = true;
   1969           else
   1970             SI.Size = S;
   1971         }
   1972         if (Bad)
   1973           BadFIs.insert(TFI);
   1974       }
   1975 
   1976       // Locate uses of frame indices.
   1977       for (unsigned i = 0, n = In.getNumOperands(); i < n; ++i) {
   1978         const MachineOperand &Op = In.getOperand(i);
   1979         if (!Op.isFI())
   1980           continue;
   1981         int FI = Op.getIndex();
   1982         // Make sure that the following operand is an immediate and that
   1983         // it is 0. This is the offset in the stack object.
   1984         if (i+1 >= n || !In.getOperand(i+1).isImm() ||
   1985             In.getOperand(i+1).getImm() != 0)
   1986           BadFIs.insert(FI);
   1987         if (BadFIs.count(FI))
   1988           continue;
   1989 
   1990         IndexType Index = IndexMap.getIndex(&In);
   1991         if (Load) {
   1992           if (LastStore[FI] == IndexType::None)
   1993             LastStore[FI] = IndexType::Entry;
   1994           LastLoad[FI] = Index;
   1995         } else if (Store) {
   1996           HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B];
   1997           if (LastStore[FI] != IndexType::None)
   1998             RL.add(LastStore[FI], LastLoad[FI], false, false);
   1999           else if (LastLoad[FI] != IndexType::None)
   2000             RL.add(IndexType::Entry, LastLoad[FI], false, false);
   2001           LastLoad[FI] = IndexType::None;
   2002           LastStore[FI] = Index;
   2003         } else {
   2004           BadFIs.insert(FI);
   2005         }
   2006       }
   2007     }
   2008 
   2009     for (auto &I : LastLoad) {
   2010       IndexType LL = I.second;
   2011       if (LL == IndexType::None)
   2012         continue;
   2013       auto &RL = FIRangeMap[I.first].Map[&B];
   2014       IndexType &LS = LastStore[I.first];
   2015       if (LS != IndexType::None)
   2016         RL.add(LS, LL, false, false);
   2017       else
   2018         RL.add(IndexType::Entry, LL, false, false);
   2019       LS = IndexType::None;
   2020     }
   2021     for (auto &I : LastStore) {
   2022       IndexType LS = I.second;
   2023       if (LS == IndexType::None)
   2024         continue;
   2025       auto &RL = FIRangeMap[I.first].Map[&B];
   2026       RL.add(LS, IndexType::None, false, false);
   2027     }
   2028   }
   2029 
   2030   DEBUG({
   2031     for (auto &P : FIRangeMap) {
   2032       dbgs() << "fi#" << P.first;
   2033       if (BadFIs.count(P.first))
   2034         dbgs() << " (bad)";
   2035       dbgs() << "  RC: ";
   2036       if (P.second.RC != nullptr)
   2037         dbgs() << HRI.getRegClassName(P.second.RC) << '\n';
   2038       else
   2039         dbgs() << "<null>\n";
   2040       for (auto &R : P.second.Map)
   2041         dbgs() << "  BB#" << R.first->getNumber() << " { " << R.second << "}\n";
   2042     }
   2043   });
   2044 
   2045   // When a slot is loaded from in a block without being stored to in the
   2046   // same block, it is live-on-entry to this block. To avoid CFG analysis,
   2047   // consider this slot to be live-on-exit from all blocks.
   2048   SmallSet<int,4> LoxFIs;
   2049 
   2050   std::map<MachineBasicBlock*,std::vector<int>> BlockFIMap;
   2051 
   2052   for (auto &P : FIRangeMap) {
   2053     // P = pair(FI, map: BB->RangeList)
   2054     if (BadFIs.count(P.first))
   2055       continue;
   2056     for (auto &B : MF) {
   2057       auto F = P.second.Map.find(&B);
   2058       // F = pair(BB, RangeList)
   2059       if (F == P.second.Map.end() || F->second.empty())
   2060         continue;
   2061       HexagonBlockRanges::IndexRange &IR = F->second.front();
   2062       if (IR.start() == IndexType::Entry)
   2063         LoxFIs.insert(P.first);
   2064       BlockFIMap[&B].push_back(P.first);
   2065     }
   2066   }
   2067 
   2068   DEBUG({
   2069     dbgs() << "Block-to-FI map (* -- live-on-exit):\n";
   2070     for (auto &P : BlockFIMap) {
   2071       auto &FIs = P.second;
   2072       if (FIs.empty())
   2073         continue;
   2074       dbgs() << "  BB#" << P.first->getNumber() << ": {";
   2075       for (auto I : FIs) {
   2076         dbgs() << " fi#" << I;
   2077         if (LoxFIs.count(I))
   2078           dbgs() << '*';
   2079       }
   2080       dbgs() << " }\n";
   2081     }
   2082   });
   2083 
   2084   // eliminate loads, when all loads eliminated, eliminate all stores.
   2085   for (auto &B : MF) {
   2086     auto F = BlockIndexes.find(&B);
   2087     assert(F != BlockIndexes.end());
   2088     HexagonBlockRanges::InstrIndexMap &IM = F->second;
   2089     HexagonBlockRanges::RegToRangeMap LM = HBR.computeLiveMap(IM);
   2090     HexagonBlockRanges::RegToRangeMap DM = HBR.computeDeadMap(IM, LM);
   2091     DEBUG(dbgs() << "BB#" << B.getNumber() << " dead map\n"
   2092                  << HexagonBlockRanges::PrintRangeMap(DM, HRI));
   2093 
   2094     for (auto FI : BlockFIMap[&B]) {
   2095       if (BadFIs.count(FI))
   2096         continue;
   2097       DEBUG(dbgs() << "Working on fi#" << FI << '\n');
   2098       HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B];
   2099       for (auto &Range : RL) {
   2100         DEBUG(dbgs() << "--Examining range:" << RL << '\n');
   2101         if (!IndexType::isInstr(Range.start()) ||
   2102             !IndexType::isInstr(Range.end()))
   2103           continue;
   2104         MachineInstr *SI = IM.getInstr(Range.start());
   2105         MachineInstr *EI = IM.getInstr(Range.end());
   2106         assert(SI->mayStore() && "Unexpected start instruction");
   2107         assert(EI->mayLoad() && "Unexpected end instruction");
   2108         MachineOperand &SrcOp = SI->getOperand(2);
   2109 
   2110         HexagonBlockRanges::RegisterRef SrcRR = { SrcOp.getReg(),
   2111                                                   SrcOp.getSubReg() };
   2112         auto *RC = getRegClass({SrcOp.getReg(), SrcOp.getSubReg()});
   2113         // The this-> is needed to unconfuse MSVC.
   2114         unsigned FoundR = this->findPhysReg(MF, Range, IM, DM, RC);
   2115         DEBUG(dbgs() << "Replacement reg:" << PrintReg(FoundR, &HRI) << '\n');
   2116         if (FoundR == 0)
   2117           continue;
   2118 
   2119         // Generate the copy-in: "FoundR = COPY SrcR" at the store location.
   2120         MachineBasicBlock::iterator StartIt = SI, NextIt;
   2121         MachineInstr *CopyIn = nullptr;
   2122         if (SrcRR.Reg != FoundR || SrcRR.Sub != 0) {
   2123           const DebugLoc &DL = SI->getDebugLoc();
   2124           CopyIn = BuildMI(B, StartIt, DL, HII.get(TargetOpcode::COPY), FoundR)
   2125                       .addOperand(SrcOp);
   2126         }
   2127 
   2128         ++StartIt;
   2129         // Check if this is a last store and the FI is live-on-exit.
   2130         if (LoxFIs.count(FI) && (&Range == &RL.back())) {
   2131           // Update store's source register.
   2132           if (unsigned SR = SrcOp.getSubReg())
   2133             SrcOp.setReg(HRI.getSubReg(FoundR, SR));
   2134           else
   2135             SrcOp.setReg(FoundR);
   2136           SrcOp.setSubReg(0);
   2137           // We are keeping this register live.
   2138           SrcOp.setIsKill(false);
   2139         } else {
   2140           B.erase(SI);
   2141           IM.replaceInstr(SI, CopyIn);
   2142         }
   2143 
   2144         auto EndIt = std::next(MachineBasicBlock::iterator(EI));
   2145         for (auto It = StartIt; It != EndIt; It = NextIt) {
   2146           MachineInstr *MI = &*It;
   2147           NextIt = std::next(It);
   2148           int TFI;
   2149           if (!HII.isLoadFromStackSlot(*MI, TFI) || TFI != FI)
   2150             continue;
   2151           unsigned DstR = MI->getOperand(0).getReg();
   2152           assert(MI->getOperand(0).getSubReg() == 0);
   2153           MachineInstr *CopyOut = nullptr;
   2154           if (DstR != FoundR) {
   2155             DebugLoc DL = MI->getDebugLoc();
   2156             unsigned MemSize = (1U << (HII.getMemAccessSize(MI) - 1));
   2157             assert(HII.getAddrMode(MI) == HexagonII::BaseImmOffset);
   2158             unsigned CopyOpc = TargetOpcode::COPY;
   2159             if (HII.isSignExtendingLoad(*MI))
   2160               CopyOpc = (MemSize == 1) ? Hexagon::A2_sxtb : Hexagon::A2_sxth;
   2161             else if (HII.isZeroExtendingLoad(*MI))
   2162               CopyOpc = (MemSize == 1) ? Hexagon::A2_zxtb : Hexagon::A2_zxth;
   2163             CopyOut = BuildMI(B, It, DL, HII.get(CopyOpc), DstR)
   2164                         .addReg(FoundR, getKillRegState(MI == EI));
   2165           }
   2166           IM.replaceInstr(MI, CopyOut);
   2167           B.erase(It);
   2168         }
   2169 
   2170         // Update the dead map.
   2171         HexagonBlockRanges::RegisterRef FoundRR = { FoundR, 0 };
   2172         for (auto RR : HexagonBlockRanges::expandToSubRegs(FoundRR, MRI, HRI))
   2173           DM[RR].subtract(Range);
   2174       } // for Range in range list
   2175     }
   2176   }
   2177 }
   2178 
   2179 
   2180 void HexagonFrameLowering::expandAlloca(MachineInstr *AI,
   2181       const HexagonInstrInfo &HII, unsigned SP, unsigned CF) const {
   2182   MachineBasicBlock &MB = *AI->getParent();
   2183   DebugLoc DL = AI->getDebugLoc();
   2184   unsigned A = AI->getOperand(2).getImm();
   2185 
   2186   // Have
   2187   //    Rd  = alloca Rs, #A
   2188   //
   2189   // If Rs and Rd are different registers, use this sequence:
   2190   //    Rd  = sub(r29, Rs)
   2191   //    r29 = sub(r29, Rs)
   2192   //    Rd  = and(Rd, #-A)    ; if necessary
   2193   //    r29 = and(r29, #-A)   ; if necessary
   2194   //    Rd  = add(Rd, #CF)    ; CF size aligned to at most A
   2195   // otherwise, do
   2196   //    Rd  = sub(r29, Rs)
   2197   //    Rd  = and(Rd, #-A)    ; if necessary
   2198   //    r29 = Rd
   2199   //    Rd  = add(Rd, #CF)    ; CF size aligned to at most A
   2200 
   2201   MachineOperand &RdOp = AI->getOperand(0);
   2202   MachineOperand &RsOp = AI->getOperand(1);
   2203   unsigned Rd = RdOp.getReg(), Rs = RsOp.getReg();
   2204 
   2205   // Rd = sub(r29, Rs)
   2206   BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), Rd)
   2207       .addReg(SP)
   2208       .addReg(Rs);
   2209   if (Rs != Rd) {
   2210     // r29 = sub(r29, Rs)
   2211     BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), SP)
   2212         .addReg(SP)
   2213         .addReg(Rs);
   2214   }
   2215   if (A > 8) {
   2216     // Rd  = and(Rd, #-A)
   2217     BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), Rd)
   2218         .addReg(Rd)
   2219         .addImm(-int64_t(A));
   2220     if (Rs != Rd)
   2221       BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), SP)
   2222           .addReg(SP)
   2223           .addImm(-int64_t(A));
   2224   }
   2225   if (Rs == Rd) {
   2226     // r29 = Rd
   2227     BuildMI(MB, AI, DL, HII.get(TargetOpcode::COPY), SP)
   2228         .addReg(Rd);
   2229   }
   2230   if (CF > 0) {
   2231     // Rd = add(Rd, #CF)
   2232     BuildMI(MB, AI, DL, HII.get(Hexagon::A2_addi), Rd)
   2233         .addReg(Rd)
   2234         .addImm(CF);
   2235   }
   2236 }
   2237 
   2238 
   2239 bool HexagonFrameLowering::needsAligna(const MachineFunction &MF) const {
   2240   const MachineFrameInfo *MFI = MF.getFrameInfo();
   2241   if (!MFI->hasVarSizedObjects())
   2242     return false;
   2243   unsigned MaxA = MFI->getMaxAlignment();
   2244   if (MaxA <= getStackAlignment())
   2245     return false;
   2246   return true;
   2247 }
   2248 
   2249 
   2250 const MachineInstr *HexagonFrameLowering::getAlignaInstr(
   2251       const MachineFunction &MF) const {
   2252   for (auto &B : MF)
   2253     for (auto &I : B)
   2254       if (I.getOpcode() == Hexagon::ALIGNA)
   2255         return &I;
   2256   return nullptr;
   2257 }
   2258 
   2259 
   2260 /// Adds all callee-saved registers as implicit uses or defs to the
   2261 /// instruction.
   2262 void HexagonFrameLowering::addCalleeSaveRegistersAsImpOperand(MachineInstr *MI,
   2263       const CSIVect &CSI, bool IsDef, bool IsKill) const {
   2264   // Add the callee-saved registers as implicit uses.
   2265   for (auto &R : CSI)
   2266     MI->addOperand(MachineOperand::CreateReg(R.getReg(), IsDef, true, IsKill));
   2267 }
   2268 
   2269 
   2270 /// Determine whether the callee-saved register saves and restores should
   2271 /// be generated via inline code. If this function returns "true", inline
   2272 /// code will be generated. If this function returns "false", additional
   2273 /// checks are performed, which may still lead to the inline code.
   2274 bool HexagonFrameLowering::shouldInlineCSR(MachineFunction &MF,
   2275       const CSIVect &CSI) const {
   2276   if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn())
   2277     return true;
   2278   if (!isOptSize(MF) && !isMinSize(MF))
   2279     if (MF.getTarget().getOptLevel() > CodeGenOpt::Default)
   2280       return true;
   2281 
   2282   // Check if CSI only has double registers, and if the registers form
   2283   // a contiguous block starting from D8.
   2284   BitVector Regs(Hexagon::NUM_TARGET_REGS);
   2285   for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
   2286     unsigned R = CSI[i].getReg();
   2287     if (!Hexagon::DoubleRegsRegClass.contains(R))
   2288       return true;
   2289     Regs[R] = true;
   2290   }
   2291   int F = Regs.find_first();
   2292   if (F != Hexagon::D8)
   2293     return true;
   2294   while (F >= 0) {
   2295     int N = Regs.find_next(F);
   2296     if (N >= 0 && N != F+1)
   2297       return true;
   2298     F = N;
   2299   }
   2300 
   2301   return false;
   2302 }
   2303 
   2304 
   2305 bool HexagonFrameLowering::useSpillFunction(MachineFunction &MF,
   2306       const CSIVect &CSI) const {
   2307   if (shouldInlineCSR(MF, CSI))
   2308     return false;
   2309   unsigned NumCSI = CSI.size();
   2310   if (NumCSI <= 1)
   2311     return false;
   2312 
   2313   unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs
   2314                                      : SpillFuncThreshold;
   2315   return Threshold < NumCSI;
   2316 }
   2317 
   2318 
   2319 bool HexagonFrameLowering::useRestoreFunction(MachineFunction &MF,
   2320       const CSIVect &CSI) const {
   2321   if (shouldInlineCSR(MF, CSI))
   2322     return false;
   2323   // The restore functions do a bit more than just restoring registers.
   2324   // The non-returning versions will go back directly to the caller's
   2325   // caller, others will clean up the stack frame in preparation for
   2326   // a tail call. Using them can still save code size even if only one
   2327   // register is getting restores. Make the decision based on -Oz:
   2328   // using -Os will use inline restore for a single register.
   2329   if (isMinSize(MF))
   2330     return true;
   2331   unsigned NumCSI = CSI.size();
   2332   if (NumCSI <= 1)
   2333     return false;
   2334 
   2335   unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs-1
   2336                                      : SpillFuncThreshold;
   2337   return Threshold < NumCSI;
   2338 }
   2339