Home | History | Annotate | Download | only in libGL
      1 // Copyright 2016 The SwiftShader Authors. All Rights Reserved.
      2 //
      3 // Licensed under the Apache License, Version 2.0 (the "License");
      4 // you may not use this file except in compliance with the License.
      5 // You may obtain a copy of the License at
      6 //
      7 //    http://www.apache.org/licenses/LICENSE-2.0
      8 //
      9 // Unless required by applicable law or agreed to in writing, software
     10 // distributed under the License is distributed on an "AS IS" BASIS,
     11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     12 // See the License for the specific language governing permissions and
     13 // limitations under the License.
     14 
     15 // Program.cpp: Implements the Program class. Implements GL program objects
     16 // and related functionality.
     17 
     18 #include "Program.h"
     19 
     20 #include "main.h"
     21 #include "Shader.h"
     22 #include "utilities.h"
     23 #include "common/debug.h"
     24 #include "Shader/PixelShader.hpp"
     25 #include "Shader/VertexShader.hpp"
     26 
     27 #include <string>
     28 #include <stdlib.h>
     29 
     30 namespace gl
     31 {
     32 	unsigned int Program::currentSerial = 1;
     33 
     34 	std::string str(int i)
     35 	{
     36 		char buffer[20];
     37 		sprintf(buffer, "%d", i);
     38 		return buffer;
     39 	}
     40 
     41 	Uniform::Uniform(GLenum type, GLenum precision, const std::string &name, unsigned int arraySize) : type(type), precision(precision), name(name), arraySize(arraySize)
     42 	{
     43 		int bytes = UniformTypeSize(type) * size();
     44 		data = new unsigned char[bytes];
     45 		memset(data, 0, bytes);
     46 		dirty = true;
     47 
     48 		psRegisterIndex = -1;
     49 		vsRegisterIndex = -1;
     50 	}
     51 
     52 	Uniform::~Uniform()
     53 	{
     54 		delete[] data;
     55 	}
     56 
     57 	bool Uniform::isArray() const
     58 	{
     59 		return arraySize >= 1;
     60 	}
     61 
     62 	int Uniform::size() const
     63 	{
     64 		return arraySize > 0 ? arraySize : 1;
     65 	}
     66 
     67 	int Uniform::registerCount() const
     68 	{
     69 		return size() * VariableRowCount(type);
     70 	}
     71 
     72 	UniformLocation::UniformLocation(const std::string &name, unsigned int element, unsigned int index) : name(name), element(element), index(index)
     73 	{
     74 	}
     75 
     76 	Program::Program(ResourceManager *manager, GLuint handle) : serial(issueSerial()), resourceManager(manager), handle(handle)
     77 	{
     78 		device = getDevice();
     79 
     80 		fragmentShader = 0;
     81 		vertexShader = 0;
     82 		pixelBinary = 0;
     83 		vertexBinary = 0;
     84 
     85 		infoLog = 0;
     86 		validated = false;
     87 
     88 		unlink();
     89 
     90 		orphaned = false;
     91 		referenceCount = 0;
     92 	}
     93 
     94 	Program::~Program()
     95 	{
     96 		unlink();
     97 
     98 		if(vertexShader)
     99 		{
    100 			vertexShader->release();
    101 		}
    102 
    103 		if(fragmentShader)
    104 		{
    105 			fragmentShader->release();
    106 		}
    107 	}
    108 
    109 	bool Program::attachShader(Shader *shader)
    110 	{
    111 		if(shader->getType() == GL_VERTEX_SHADER)
    112 		{
    113 			if(vertexShader)
    114 			{
    115 				return false;
    116 			}
    117 
    118 			vertexShader = (VertexShader*)shader;
    119 			vertexShader->addRef();
    120 		}
    121 		else if(shader->getType() == GL_FRAGMENT_SHADER)
    122 		{
    123 			if(fragmentShader)
    124 			{
    125 				return false;
    126 			}
    127 
    128 			fragmentShader = (FragmentShader*)shader;
    129 			fragmentShader->addRef();
    130 		}
    131 		else UNREACHABLE(shader->getType());
    132 
    133 		return true;
    134 	}
    135 
    136 	bool Program::detachShader(Shader *shader)
    137 	{
    138 		if(shader->getType() == GL_VERTEX_SHADER)
    139 		{
    140 			if(vertexShader != shader)
    141 			{
    142 				return false;
    143 			}
    144 
    145 			vertexShader->release();
    146 			vertexShader = 0;
    147 		}
    148 		else if(shader->getType() == GL_FRAGMENT_SHADER)
    149 		{
    150 			if(fragmentShader != shader)
    151 			{
    152 				return false;
    153 			}
    154 
    155 			fragmentShader->release();
    156 			fragmentShader = 0;
    157 		}
    158 		else UNREACHABLE(shader->getType());
    159 
    160 		return true;
    161 	}
    162 
    163 	int Program::getAttachedShadersCount() const
    164 	{
    165 		return (vertexShader ? 1 : 0) + (fragmentShader ? 1 : 0);
    166 	}
    167 
    168 	sw::PixelShader *Program::getPixelShader()
    169 	{
    170 		return pixelBinary;
    171 	}
    172 
    173 	sw::VertexShader *Program::getVertexShader()
    174 	{
    175 		return vertexBinary;
    176 	}
    177 
    178 	void Program::bindAttributeLocation(GLuint index, const char *name)
    179 	{
    180 		if(index < MAX_VERTEX_ATTRIBS)
    181 		{
    182 			for(int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
    183 			{
    184 				attributeBinding[i].erase(name);
    185 			}
    186 
    187 			attributeBinding[index].insert(name);
    188 		}
    189 	}
    190 
    191 	GLuint Program::getAttributeLocation(const char *name)
    192 	{
    193 		if(name)
    194 		{
    195 			for(int index = 0; index < MAX_VERTEX_ATTRIBS; index++)
    196 			{
    197 				if(linkedAttribute[index].name == std::string(name))
    198 				{
    199 					return index;
    200 				}
    201 			}
    202 		}
    203 
    204 		return -1;
    205 	}
    206 
    207 	int Program::getAttributeStream(int attributeIndex)
    208 	{
    209 		ASSERT(attributeIndex >= 0 && attributeIndex < MAX_VERTEX_ATTRIBS);
    210 
    211 		return attributeStream[attributeIndex];
    212 	}
    213 
    214 	// Returns the index of the texture image unit (0-19) corresponding to a sampler index (0-15 for the pixel shader and 0-3 for the vertex shader)
    215 	GLint Program::getSamplerMapping(sw::SamplerType type, unsigned int samplerIndex)
    216 	{
    217 		GLuint logicalTextureUnit = -1;
    218 
    219 		switch(type)
    220 		{
    221 		case sw::SAMPLER_PIXEL:
    222 			ASSERT(samplerIndex < sizeof(samplersPS) / sizeof(samplersPS[0]));
    223 
    224 			if(samplersPS[samplerIndex].active)
    225 			{
    226 				logicalTextureUnit = samplersPS[samplerIndex].logicalTextureUnit;
    227 			}
    228 			break;
    229 		case sw::SAMPLER_VERTEX:
    230 			ASSERT(samplerIndex < sizeof(samplersVS) / sizeof(samplersVS[0]));
    231 
    232 			if(samplersVS[samplerIndex].active)
    233 			{
    234 				logicalTextureUnit = samplersVS[samplerIndex].logicalTextureUnit;
    235 			}
    236 			break;
    237 		default: UNREACHABLE(type);
    238 		}
    239 
    240 		if(logicalTextureUnit < MAX_COMBINED_TEXTURE_IMAGE_UNITS)
    241 		{
    242 			return logicalTextureUnit;
    243 		}
    244 
    245 		return -1;
    246 	}
    247 
    248 	// Returns the texture type for a given sampler type and index (0-15 for the pixel shader and 0-3 for the vertex shader)
    249 	TextureType Program::getSamplerTextureType(sw::SamplerType type, unsigned int samplerIndex)
    250 	{
    251 		switch(type)
    252 		{
    253 		case sw::SAMPLER_PIXEL:
    254 			ASSERT(samplerIndex < sizeof(samplersPS)/sizeof(samplersPS[0]));
    255 			ASSERT(samplersPS[samplerIndex].active);
    256 			return samplersPS[samplerIndex].textureType;
    257 		case sw::SAMPLER_VERTEX:
    258 			ASSERT(samplerIndex < sizeof(samplersVS)/sizeof(samplersVS[0]));
    259 			ASSERT(samplersVS[samplerIndex].active);
    260 			return samplersVS[samplerIndex].textureType;
    261 		default: UNREACHABLE(type);
    262 		}
    263 
    264 		return TEXTURE_2D;
    265 	}
    266 
    267 	GLint Program::getUniformLocation(std::string name)
    268 	{
    269 		int subscript = 0;
    270 
    271 		// Strip any trailing array operator and retrieve the subscript
    272 		size_t open = name.find_last_of('[');
    273 		size_t close = name.find_last_of(']');
    274 		if(open != std::string::npos && close == name.length() - 1)
    275 		{
    276 			subscript = atoi(name.substr(open + 1).c_str());
    277 			name.erase(open);
    278 		}
    279 
    280 		unsigned int numUniforms = uniformIndex.size();
    281 		for(unsigned int location = 0; location < numUniforms; location++)
    282 		{
    283 			if(uniformIndex[location].name == name &&
    284 			   uniformIndex[location].element == subscript)
    285 			{
    286 				return location;
    287 			}
    288 		}
    289 
    290 		return -1;
    291 	}
    292 
    293 	bool Program::setUniform1fv(GLint location, GLsizei count, const GLfloat* v)
    294 	{
    295 		if(location < 0 || location >= (int)uniformIndex.size())
    296 		{
    297 			return false;
    298 		}
    299 
    300 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
    301 		targetUniform->dirty = true;
    302 
    303 		int size = targetUniform->size();
    304 
    305 		if(size == 1 && count > 1)
    306 		{
    307 			return false;   // Attempting to write an array to a non-array uniform is an INVALID_OPERATION
    308 		}
    309 
    310 		count = std::min(size - (int)uniformIndex[location].element, count);
    311 
    312 		if(targetUniform->type == GL_FLOAT)
    313 		{
    314 			memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLfloat),
    315 				   v, sizeof(GLfloat) * count);
    316 		}
    317 		else if(targetUniform->type == GL_BOOL)
    318 		{
    319 			GLboolean *boolParams = (GLboolean*)targetUniform->data + uniformIndex[location].element;
    320 
    321 			for(int i = 0; i < count; i++)
    322 			{
    323 				if(v[i] == 0.0f)
    324 				{
    325 					boolParams[i] = GL_FALSE;
    326 				}
    327 				else
    328 				{
    329 					boolParams[i] = GL_TRUE;
    330 				}
    331 			}
    332 		}
    333 		else
    334 		{
    335 			return false;
    336 		}
    337 
    338 		return true;
    339 	}
    340 
    341 	bool Program::setUniform2fv(GLint location, GLsizei count, const GLfloat *v)
    342 	{
    343 		if(location < 0 || location >= (int)uniformIndex.size())
    344 		{
    345 			return false;
    346 		}
    347 
    348 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
    349 		targetUniform->dirty = true;
    350 
    351 		int size = targetUniform->size();
    352 
    353 		if(size == 1 && count > 1)
    354 		{
    355 			return false;   // Attempting to write an array to a non-array uniform is an INVALID_OPERATION
    356 		}
    357 
    358 		count = std::min(size - (int)uniformIndex[location].element, count);
    359 
    360 		if(targetUniform->type == GL_FLOAT_VEC2)
    361 		{
    362 			memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLfloat) * 2,
    363 				   v, 2 * sizeof(GLfloat) * count);
    364 		}
    365 		else if(targetUniform->type == GL_BOOL_VEC2)
    366 		{
    367 			GLboolean *boolParams = (GLboolean*)targetUniform->data + uniformIndex[location].element * 2;
    368 
    369 			for(int i = 0; i < count * 2; i++)
    370 			{
    371 				if(v[i] == 0.0f)
    372 				{
    373 					boolParams[i] = GL_FALSE;
    374 				}
    375 				else
    376 				{
    377 					boolParams[i] = GL_TRUE;
    378 				}
    379 			}
    380 		}
    381 		else
    382 		{
    383 			return false;
    384 		}
    385 
    386 		return true;
    387 	}
    388 
    389 	bool Program::setUniform3fv(GLint location, GLsizei count, const GLfloat *v)
    390 	{
    391 		if(location < 0 || location >= (int)uniformIndex.size())
    392 		{
    393 			return false;
    394 		}
    395 
    396 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
    397 		targetUniform->dirty = true;
    398 
    399 		int size = targetUniform->size();
    400 
    401 		if(size == 1 && count > 1)
    402 		{
    403 			return false;   // Attempting to write an array to a non-array uniform is an INVALID_OPERATION
    404 		}
    405 
    406 		count = std::min(size - (int)uniformIndex[location].element, count);
    407 
    408 		if(targetUniform->type == GL_FLOAT_VEC3)
    409 		{
    410 			memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLfloat) * 3,
    411 				   v, 3 * sizeof(GLfloat) * count);
    412 		}
    413 		else if(targetUniform->type == GL_BOOL_VEC3)
    414 		{
    415 			GLboolean *boolParams = (GLboolean*)targetUniform->data + uniformIndex[location].element * 3;
    416 
    417 			for(int i = 0; i < count * 3; i++)
    418 			{
    419 				if(v[i] == 0.0f)
    420 				{
    421 					boolParams[i] = GL_FALSE;
    422 				}
    423 				else
    424 				{
    425 					boolParams[i] = GL_TRUE;
    426 				}
    427 			}
    428 		}
    429 		else
    430 		{
    431 			return false;
    432 		}
    433 
    434 		return true;
    435 	}
    436 
    437 	bool Program::setUniform4fv(GLint location, GLsizei count, const GLfloat *v)
    438 	{
    439 		if(location < 0 || location >= (int)uniformIndex.size())
    440 		{
    441 			return false;
    442 		}
    443 
    444 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
    445 		targetUniform->dirty = true;
    446 
    447 		int size = targetUniform->size();
    448 
    449 		if(size == 1 && count > 1)
    450 		{
    451 			return false;   // Attempting to write an array to a non-array uniform is an INVALID_OPERATION
    452 		}
    453 
    454 		count = std::min(size - (int)uniformIndex[location].element, count);
    455 
    456 		if(targetUniform->type == GL_FLOAT_VEC4)
    457 		{
    458 			memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLfloat) * 4,
    459 				   v, 4 * sizeof(GLfloat) * count);
    460 		}
    461 		else if(targetUniform->type == GL_BOOL_VEC4)
    462 		{
    463 			GLboolean *boolParams = (GLboolean*)targetUniform->data + uniformIndex[location].element * 4;
    464 
    465 			for(int i = 0; i < count * 4; i++)
    466 			{
    467 				if(v[i] == 0.0f)
    468 				{
    469 					boolParams[i] = GL_FALSE;
    470 				}
    471 				else
    472 				{
    473 					boolParams[i] = GL_TRUE;
    474 				}
    475 			}
    476 		}
    477 		else
    478 		{
    479 			return false;
    480 		}
    481 
    482 		return true;
    483 	}
    484 
    485 	bool Program::setUniformMatrix2fv(GLint location, GLsizei count, const GLfloat *value)
    486 	{
    487 		if(location < 0 || location >= (int)uniformIndex.size())
    488 		{
    489 			return false;
    490 		}
    491 
    492 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
    493 		targetUniform->dirty = true;
    494 
    495 		if(targetUniform->type != GL_FLOAT_MAT2)
    496 		{
    497 			return false;
    498 		}
    499 
    500 		int size = targetUniform->size();
    501 
    502 		if(size == 1 && count > 1)
    503 		{
    504 			return false;   // Attempting to write an array to a non-array uniform is an INVALID_OPERATION
    505 		}
    506 
    507 		count = std::min(size - (int)uniformIndex[location].element, count);
    508 
    509 		memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLfloat) * 4,
    510 			   value, 4 * sizeof(GLfloat) * count);
    511 
    512 		return true;
    513 	}
    514 
    515 	bool Program::setUniformMatrix3fv(GLint location, GLsizei count, const GLfloat *value)
    516 	{
    517 		if(location < 0 || location >= (int)uniformIndex.size())
    518 		{
    519 			return false;
    520 		}
    521 
    522 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
    523 		targetUniform->dirty = true;
    524 
    525 		if(targetUniform->type != GL_FLOAT_MAT3)
    526 		{
    527 			return false;
    528 		}
    529 
    530 		int size = targetUniform->size();
    531 
    532 		if(size == 1 && count > 1)
    533 		{
    534 			return false;   // Attempting to write an array to a non-array uniform is an INVALID_OPERATION
    535 		}
    536 
    537 		count = std::min(size - (int)uniformIndex[location].element, count);
    538 
    539 		memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLfloat) * 9,
    540 			   value, 9 * sizeof(GLfloat) * count);
    541 
    542 		return true;
    543 	}
    544 
    545 	bool Program::setUniformMatrix4fv(GLint location, GLsizei count, const GLfloat *value)
    546 	{
    547 		if(location < 0 || location >= (int)uniformIndex.size())
    548 		{
    549 			return false;
    550 		}
    551 
    552 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
    553 		targetUniform->dirty = true;
    554 
    555 		if(targetUniform->type != GL_FLOAT_MAT4)
    556 		{
    557 			return false;
    558 		}
    559 
    560 		int size = targetUniform->size();
    561 
    562 		if(size == 1 && count > 1)
    563 		{
    564 			return false;   // Attempting to write an array to a non-array uniform is an INVALID_OPERATION
    565 		}
    566 
    567 		count = std::min(size - (int)uniformIndex[location].element, count);
    568 
    569 		memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLfloat) * 16,
    570 			   value, 16 * sizeof(GLfloat) * count);
    571 
    572 		return true;
    573 	}
    574 
    575 	bool Program::setUniform1iv(GLint location, GLsizei count, const GLint *v)
    576 	{
    577 		if(location < 0 || location >= (int)uniformIndex.size())
    578 		{
    579 			return false;
    580 		}
    581 
    582 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
    583 		targetUniform->dirty = true;
    584 
    585 		int size = targetUniform->size();
    586 
    587 		if(size == 1 && count > 1)
    588 		{
    589 			return false;   // Attempting to write an array to a non-array uniform is an INVALID_OPERATION
    590 		}
    591 
    592 		count = std::min(size - (int)uniformIndex[location].element, count);
    593 
    594 		if(targetUniform->type == GL_INT ||
    595 		   targetUniform->type == GL_SAMPLER_2D ||
    596 		   targetUniform->type == GL_SAMPLER_CUBE)
    597 		{
    598 			memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLint),
    599 				   v, sizeof(GLint) * count);
    600 		}
    601 		else if(targetUniform->type == GL_BOOL)
    602 		{
    603 			GLboolean *boolParams = new GLboolean[count];
    604 
    605 			for(int i = 0; i < count; i++)
    606 			{
    607 				if(v[i] == 0)
    608 				{
    609 					boolParams[i] = GL_FALSE;
    610 				}
    611 				else
    612 				{
    613 					boolParams[i] = GL_TRUE;
    614 				}
    615 			}
    616 
    617 			memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLboolean),
    618 				   boolParams, sizeof(GLboolean) * count);
    619 
    620 			delete[] boolParams;
    621 		}
    622 		else
    623 		{
    624 			return false;
    625 		}
    626 
    627 		return true;
    628 	}
    629 
    630 	bool Program::setUniform2iv(GLint location, GLsizei count, const GLint *v)
    631 	{
    632 		if(location < 0 || location >= (int)uniformIndex.size())
    633 		{
    634 			return false;
    635 		}
    636 
    637 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
    638 		targetUniform->dirty = true;
    639 
    640 		int size = targetUniform->size();
    641 
    642 		if(size == 1 && count > 1)
    643 		{
    644 			return false;   // Attempting to write an array to a non-array uniform is an INVALID_OPERATION
    645 		}
    646 
    647 		count = std::min(size - (int)uniformIndex[location].element, count);
    648 
    649 		if(targetUniform->type == GL_INT_VEC2)
    650 		{
    651 			memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLint) * 2,
    652 				   v, 2 * sizeof(GLint) * count);
    653 		}
    654 		else if(targetUniform->type == GL_BOOL_VEC2)
    655 		{
    656 			GLboolean *boolParams = new GLboolean[count * 2];
    657 
    658 			for(int i = 0; i < count * 2; i++)
    659 			{
    660 				if(v[i] == 0)
    661 				{
    662 					boolParams[i] = GL_FALSE;
    663 				}
    664 				else
    665 				{
    666 					boolParams[i] = GL_TRUE;
    667 				}
    668 			}
    669 
    670 			memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLboolean) * 2,
    671 				   boolParams, 2 * sizeof(GLboolean) * count);
    672 
    673 			delete[] boolParams;
    674 		}
    675 		else
    676 		{
    677 			return false;
    678 		}
    679 
    680 		return true;
    681 	}
    682 
    683 	bool Program::setUniform3iv(GLint location, GLsizei count, const GLint *v)
    684 	{
    685 		if(location < 0 || location >= (int)uniformIndex.size())
    686 		{
    687 			return false;
    688 		}
    689 
    690 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
    691 		targetUniform->dirty = true;
    692 
    693 		int size = targetUniform->size();
    694 
    695 		if(size == 1 && count > 1)
    696 		{
    697 			return false;   // Attempting to write an array to a non-array uniform is an INVALID_OPERATION
    698 		}
    699 
    700 		count = std::min(size - (int)uniformIndex[location].element, count);
    701 
    702 		if(targetUniform->type == GL_INT_VEC3)
    703 		{
    704 			memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLint) * 3,
    705 				   v, 3 * sizeof(GLint) * count);
    706 		}
    707 		else if(targetUniform->type == GL_BOOL_VEC3)
    708 		{
    709 			GLboolean *boolParams = new GLboolean[count * 3];
    710 
    711 			for(int i = 0; i < count * 3; i++)
    712 			{
    713 				if(v[i] == 0)
    714 				{
    715 					boolParams[i] = GL_FALSE;
    716 				}
    717 				else
    718 				{
    719 					boolParams[i] = GL_TRUE;
    720 				}
    721 			}
    722 
    723 			memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLboolean) * 3,
    724 				   boolParams, 3 * sizeof(GLboolean) * count);
    725 
    726 			delete[] boolParams;
    727 		}
    728 		else
    729 		{
    730 			return false;
    731 		}
    732 
    733 		return true;
    734 	}
    735 
    736 	bool Program::setUniform4iv(GLint location, GLsizei count, const GLint *v)
    737 	{
    738 		if(location < 0 || location >= (int)uniformIndex.size())
    739 		{
    740 			return false;
    741 		}
    742 
    743 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
    744 		targetUniform->dirty = true;
    745 
    746 		int size = targetUniform->size();
    747 
    748 		if(size == 1 && count > 1)
    749 		{
    750 			return false;   // Attempting to write an array to a non-array uniform is an INVALID_OPERATION
    751 		}
    752 
    753 		count = std::min(size - (int)uniformIndex[location].element, count);
    754 
    755 		if(targetUniform->type == GL_INT_VEC4)
    756 		{
    757 			memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLint) * 4,
    758 				   v, 4 * sizeof(GLint) * count);
    759 		}
    760 		else if(targetUniform->type == GL_BOOL_VEC4)
    761 		{
    762 			GLboolean *boolParams = new GLboolean[count * 4];
    763 
    764 			for(int i = 0; i < count * 4; i++)
    765 			{
    766 				if(v[i] == 0)
    767 				{
    768 					boolParams[i] = GL_FALSE;
    769 				}
    770 				else
    771 				{
    772 					boolParams[i] = GL_TRUE;
    773 				}
    774 			}
    775 
    776 			memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLboolean) * 4,
    777 				   boolParams, 4 * sizeof(GLboolean) * count);
    778 
    779 			delete[] boolParams;
    780 		}
    781 		else
    782 		{
    783 			return false;
    784 		}
    785 
    786 		return true;
    787 	}
    788 
    789 	bool Program::getUniformfv(GLint location, GLsizei *bufSize, GLfloat *params)
    790 	{
    791 		if(location < 0 || location >= (int)uniformIndex.size())
    792 		{
    793 			return false;
    794 		}
    795 
    796 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
    797 		unsigned int count = UniformComponentCount(targetUniform->type);
    798 
    799 		// Sized query - ensure the provided buffer is large enough
    800 		if(bufSize && static_cast<unsigned int>(*bufSize) < count * sizeof(GLfloat))
    801 		{
    802 			return false;
    803 		}
    804 
    805 		switch(UniformComponentType(targetUniform->type))
    806 		{
    807 		case GL_BOOL:
    808 			{
    809 				GLboolean *boolParams = (GLboolean*)targetUniform->data + uniformIndex[location].element * count;
    810 
    811 				for(unsigned int i = 0; i < count; i++)
    812 				{
    813 					params[i] = (boolParams[i] == GL_FALSE) ? 0.0f : 1.0f;
    814 				}
    815 			}
    816 			break;
    817 		case GL_FLOAT:
    818 			memcpy(params, targetUniform->data + uniformIndex[location].element * count * sizeof(GLfloat),
    819 				   count * sizeof(GLfloat));
    820 			break;
    821 		case GL_INT:
    822 			{
    823 				GLint *intParams = (GLint*)targetUniform->data + uniformIndex[location].element * count;
    824 
    825 				for(unsigned int i = 0; i < count; i++)
    826 				{
    827 					params[i] = (float)intParams[i];
    828 				}
    829 			}
    830 			break;
    831 		default: UNREACHABLE(targetUniform->type);
    832 		}
    833 
    834 		return true;
    835 	}
    836 
    837 	bool Program::getUniformiv(GLint location, GLsizei *bufSize, GLint *params)
    838 	{
    839 		if(location < 0 || location >= (int)uniformIndex.size())
    840 		{
    841 			return false;
    842 		}
    843 
    844 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
    845 		unsigned int count = UniformComponentCount(targetUniform->type);
    846 
    847 		// Sized query - ensure the provided buffer is large enough
    848 		if(bufSize && static_cast<unsigned int>(*bufSize) < count *sizeof(GLint))
    849 		{
    850 			return false;
    851 		}
    852 
    853 		switch(UniformComponentType(targetUniform->type))
    854 		{
    855 		case GL_BOOL:
    856 			{
    857 				GLboolean *boolParams = targetUniform->data + uniformIndex[location].element * count;
    858 
    859 				for(unsigned int i = 0; i < count; i++)
    860 				{
    861 					params[i] = (GLint)boolParams[i];
    862 				}
    863 			}
    864 			break;
    865 		case GL_FLOAT:
    866 			{
    867 				GLfloat *floatParams = (GLfloat*)targetUniform->data + uniformIndex[location].element * count;
    868 
    869 				for(unsigned int i = 0; i < count; i++)
    870 				{
    871 					params[i] = (GLint)floatParams[i];
    872 				}
    873 			}
    874 			break;
    875 		case GL_INT:
    876 			memcpy(params, targetUniform->data + uniformIndex[location].element * count * sizeof(GLint),
    877 				   count * sizeof(GLint));
    878 			break;
    879 		default: UNREACHABLE(targetUniform->type);
    880 		}
    881 
    882 		return true;
    883 	}
    884 
    885 	void Program::dirtyAllUniforms()
    886 	{
    887 		unsigned int numUniforms = uniforms.size();
    888 		for(unsigned int index = 0; index < numUniforms; index++)
    889 		{
    890 			uniforms[index]->dirty = true;
    891 		}
    892 	}
    893 
    894 	// Applies all the uniforms set for this program object to the device
    895 	void Program::applyUniforms()
    896 	{
    897 		unsigned int numUniforms = uniformIndex.size();
    898 		for(unsigned int location = 0; location < numUniforms; location++)
    899 		{
    900 			if(uniformIndex[location].element != 0)
    901 			{
    902 				continue;
    903 			}
    904 
    905 			Uniform *targetUniform = uniforms[uniformIndex[location].index];
    906 
    907 			if(targetUniform->dirty)
    908 			{
    909 				int size = targetUniform->size();
    910 				GLfloat *f = (GLfloat*)targetUniform->data;
    911 				GLint *i = (GLint*)targetUniform->data;
    912 				GLboolean *b = (GLboolean*)targetUniform->data;
    913 
    914 				switch(targetUniform->type)
    915 				{
    916 				case GL_BOOL:       applyUniform1bv(location, size, b);       break;
    917 				case GL_BOOL_VEC2:  applyUniform2bv(location, size, b);       break;
    918 				case GL_BOOL_VEC3:  applyUniform3bv(location, size, b);       break;
    919 				case GL_BOOL_VEC4:  applyUniform4bv(location, size, b);       break;
    920 				case GL_FLOAT:      applyUniform1fv(location, size, f);       break;
    921 				case GL_FLOAT_VEC2: applyUniform2fv(location, size, f);       break;
    922 				case GL_FLOAT_VEC3: applyUniform3fv(location, size, f);       break;
    923 				case GL_FLOAT_VEC4: applyUniform4fv(location, size, f);       break;
    924 				case GL_FLOAT_MAT2: applyUniformMatrix2fv(location, size, f); break;
    925 				case GL_FLOAT_MAT3: applyUniformMatrix3fv(location, size, f); break;
    926 				case GL_FLOAT_MAT4: applyUniformMatrix4fv(location, size, f); break;
    927 				case GL_SAMPLER_2D:
    928 				case GL_SAMPLER_CUBE:
    929 				case GL_INT:        applyUniform1iv(location, size, i);       break;
    930 				case GL_INT_VEC2:   applyUniform2iv(location, size, i);       break;
    931 				case GL_INT_VEC3:   applyUniform3iv(location, size, i);       break;
    932 				case GL_INT_VEC4:   applyUniform4iv(location, size, i);       break;
    933 				default:
    934 					UNREACHABLE(targetUniform->type);
    935 				}
    936 
    937 				targetUniform->dirty = false;
    938 			}
    939 		}
    940 	}
    941 
    942 	// Packs varyings into generic varying registers.
    943 	// Returns the number of used varying registers, or -1 if unsuccesful
    944 	int Program::packVaryings(const glsl::Varying *packing[][4])
    945 	{
    946 		for(glsl::VaryingList::iterator varying = fragmentShader->varyings.begin(); varying != fragmentShader->varyings.end(); varying++)
    947 		{
    948 			int n = VariableRowCount(varying->type) * varying->size();
    949 			int m = VariableColumnCount(varying->type);
    950 			bool success = false;
    951 
    952 			if(m == 2 || m == 3 || m == 4)
    953 			{
    954 				for(int r = 0; r <= MAX_VARYING_VECTORS - n && !success; r++)
    955 				{
    956 					bool available = true;
    957 
    958 					for(int y = 0; y < n && available; y++)
    959 					{
    960 						for(int x = 0; x < m && available; x++)
    961 						{
    962 							if(packing[r + y][x])
    963 							{
    964 								available = false;
    965 							}
    966 						}
    967 					}
    968 
    969 					if(available)
    970 					{
    971 						varying->registerIndex = r;
    972 						varying->column = 0;
    973 
    974 						for(int y = 0; y < n; y++)
    975 						{
    976 							for(int x = 0; x < m; x++)
    977 							{
    978 								packing[r + y][x] = &*varying;
    979 							}
    980 						}
    981 
    982 						success = true;
    983 					}
    984 				}
    985 
    986 				if(!success && m == 2)
    987 				{
    988 					for(int r = MAX_VARYING_VECTORS - n; r >= 0 && !success; r--)
    989 					{
    990 						bool available = true;
    991 
    992 						for(int y = 0; y < n && available; y++)
    993 						{
    994 							for(int x = 2; x < 4 && available; x++)
    995 							{
    996 								if(packing[r + y][x])
    997 								{
    998 									available = false;
    999 								}
   1000 							}
   1001 						}
   1002 
   1003 						if(available)
   1004 						{
   1005 							varying->registerIndex = r;
   1006 							varying->column = 2;
   1007 
   1008 							for(int y = 0; y < n; y++)
   1009 							{
   1010 								for(int x = 2; x < 4; x++)
   1011 								{
   1012 									packing[r + y][x] = &*varying;
   1013 								}
   1014 							}
   1015 
   1016 							success = true;
   1017 						}
   1018 					}
   1019 				}
   1020 			}
   1021 			else if(m == 1)
   1022 			{
   1023 				int space[4] = {0};
   1024 
   1025 				for(int y = 0; y < MAX_VARYING_VECTORS; y++)
   1026 				{
   1027 					for(int x = 0; x < 4; x++)
   1028 					{
   1029 						space[x] += packing[y][x] ? 0 : 1;
   1030 					}
   1031 				}
   1032 
   1033 				int column = 0;
   1034 
   1035 				for(int x = 0; x < 4; x++)
   1036 				{
   1037 					if(space[x] >= n && space[x] < space[column])
   1038 					{
   1039 						column = x;
   1040 					}
   1041 				}
   1042 
   1043 				if(space[column] >= n)
   1044 				{
   1045 					for(int r = 0; r < MAX_VARYING_VECTORS; r++)
   1046 					{
   1047 						if(!packing[r][column])
   1048 						{
   1049 							varying->registerIndex = r;
   1050 
   1051 							for(int y = r; y < r + n; y++)
   1052 							{
   1053 								packing[y][column] = &*varying;
   1054 							}
   1055 
   1056 							break;
   1057 						}
   1058 					}
   1059 
   1060 					varying->column = column;
   1061 
   1062 					success = true;
   1063 				}
   1064 			}
   1065 			else UNREACHABLE(m);
   1066 
   1067 			if(!success)
   1068 			{
   1069 				appendToInfoLog("Could not pack varying %s", varying->name.c_str());
   1070 
   1071 				return -1;
   1072 			}
   1073 		}
   1074 
   1075 		// Return the number of used registers
   1076 		int registers = 0;
   1077 
   1078 		for(int r = 0; r < MAX_VARYING_VECTORS; r++)
   1079 		{
   1080 			if(packing[r][0] || packing[r][1] || packing[r][2] || packing[r][3])
   1081 			{
   1082 				registers++;
   1083 			}
   1084 		}
   1085 
   1086 		return registers;
   1087 	}
   1088 
   1089 	bool Program::linkVaryings()
   1090 	{
   1091 		for(glsl::VaryingList::iterator input = fragmentShader->varyings.begin(); input != fragmentShader->varyings.end(); input++)
   1092 		{
   1093 			bool matched = false;
   1094 
   1095 			for(glsl::VaryingList::iterator output = vertexShader->varyings.begin(); output != vertexShader->varyings.end(); output++)
   1096 			{
   1097 				if(output->name == input->name)
   1098 				{
   1099 					if(output->type != input->type || output->size() != input->size())
   1100 					{
   1101 						appendToInfoLog("Type of vertex varying %s does not match that of the fragment varying", output->name.c_str());
   1102 
   1103 						return false;
   1104 					}
   1105 
   1106 					matched = true;
   1107 					break;
   1108 				}
   1109 			}
   1110 
   1111 			if(!matched)
   1112 			{
   1113 				appendToInfoLog("Fragment varying %s does not match any vertex varying", input->name.c_str());
   1114 
   1115 				return false;
   1116 			}
   1117 		}
   1118 
   1119 		glsl::VaryingList &psVaryings = fragmentShader->varyings;
   1120 		glsl::VaryingList &vsVaryings = vertexShader->varyings;
   1121 
   1122 		for(glsl::VaryingList::iterator output = vsVaryings.begin(); output != vsVaryings.end(); output++)
   1123 		{
   1124 			for(glsl::VaryingList::iterator input = psVaryings.begin(); input != psVaryings.end(); input++)
   1125 			{
   1126 				if(output->name == input->name)
   1127 				{
   1128 					int in = input->registerIndex;
   1129 					int out = output->registerIndex;
   1130 					int components = VariableColumnCount(output->type);
   1131 					int registers = VariableRowCount(output->type) * output->size();
   1132 
   1133 					ASSERT(in >= 0);
   1134 
   1135 					if(in + registers > MAX_VARYING_VECTORS)
   1136 					{
   1137 						appendToInfoLog("Too many varyings");
   1138 						return false;
   1139 					}
   1140 
   1141 					if(out >= 0)
   1142 					{
   1143 						if(out + registers > MAX_VARYING_VECTORS)
   1144 						{
   1145 							appendToInfoLog("Too many varyings");
   1146 							return false;
   1147 						}
   1148 
   1149 						for(int i = 0; i < registers; i++)
   1150 						{
   1151 							vertexBinary->setOutput(out + i, components, sw::Shader::Semantic(sw::Shader::USAGE_COLOR, in + i));
   1152 						}
   1153 					}
   1154 					else   // Vertex varying is declared but not written to
   1155 					{
   1156 						for(int i = 0; i < registers; i++)
   1157 						{
   1158 							pixelBinary->setInput(in + i, components, sw::Shader::Semantic());
   1159 						}
   1160 					}
   1161 
   1162 					break;
   1163 				}
   1164 			}
   1165 		}
   1166 
   1167 		return true;
   1168 	}
   1169 
   1170 	// Links the code of the vertex and pixel shader by matching up their varyings,
   1171 	// compiling them into binaries, determining the attribute mappings, and collecting
   1172 	// a list of uniforms
   1173 	void Program::link()
   1174 	{
   1175 		unlink();
   1176 
   1177 		if(!fragmentShader || !fragmentShader->isCompiled())
   1178 		{
   1179 			return;
   1180 		}
   1181 
   1182 		if(!vertexShader || !vertexShader->isCompiled())
   1183 		{
   1184 			return;
   1185 		}
   1186 
   1187 		vertexBinary = new sw::VertexShader(vertexShader->getVertexShader());
   1188 		pixelBinary = new sw::PixelShader(fragmentShader->getPixelShader());
   1189 
   1190 		if(!linkVaryings())
   1191 		{
   1192 			return;
   1193 		}
   1194 
   1195 		if(!linkAttributes())
   1196 		{
   1197 			return;
   1198 		}
   1199 
   1200 		if(!linkUniforms(fragmentShader))
   1201 		{
   1202 			return;
   1203 		}
   1204 
   1205 		if(!linkUniforms(vertexShader))
   1206 		{
   1207 			return;
   1208 		}
   1209 
   1210 		linked = true;   // Success
   1211 	}
   1212 
   1213 	// Determines the mapping between GL attributes and vertex stream usage indices
   1214 	bool Program::linkAttributes()
   1215 	{
   1216 		unsigned int usedLocations = 0;
   1217 
   1218 		// Link attributes that have a binding location
   1219 		for(glsl::ActiveAttributes::iterator attribute = vertexShader->activeAttributes.begin(); attribute != vertexShader->activeAttributes.end(); attribute++)
   1220 		{
   1221 			int location = getAttributeBinding(attribute->name);
   1222 
   1223 			if(location != -1)   // Set by glBindAttribLocation
   1224 			{
   1225 				if(!linkedAttribute[location].name.empty())
   1226 				{
   1227 					// Multiple active attributes bound to the same location; not an error
   1228 				}
   1229 
   1230 				linkedAttribute[location] = *attribute;
   1231 
   1232 				int rows = VariableRowCount(attribute->type);
   1233 
   1234 				if(rows + location > MAX_VERTEX_ATTRIBS)
   1235 				{
   1236 					appendToInfoLog("Active attribute (%s) at location %d is too big to fit", attribute->name.c_str(), location);
   1237 					return false;
   1238 				}
   1239 
   1240 				for(int i = 0; i < rows; i++)
   1241 				{
   1242 					usedLocations |= 1 << (location + i);
   1243 				}
   1244 			}
   1245 		}
   1246 
   1247 		// Link attributes that don't have a binding location
   1248 		for(glsl::ActiveAttributes::iterator attribute = vertexShader->activeAttributes.begin(); attribute != vertexShader->activeAttributes.end(); attribute++)
   1249 		{
   1250 			int location = getAttributeBinding(attribute->name);
   1251 
   1252 			if(location == -1)   // Not set by glBindAttribLocation
   1253 			{
   1254 				int rows = VariableRowCount(attribute->type);
   1255 				int availableIndex = AllocateFirstFreeBits(&usedLocations, rows, MAX_VERTEX_ATTRIBS);
   1256 
   1257 				if(availableIndex == -1 || availableIndex + rows > MAX_VERTEX_ATTRIBS)
   1258 				{
   1259 					appendToInfoLog("Too many active attributes (%s)", attribute->name.c_str());
   1260 					return false;   // Fail to link
   1261 				}
   1262 
   1263 				linkedAttribute[availableIndex] = *attribute;
   1264 			}
   1265 		}
   1266 
   1267 		for(int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; )
   1268 		{
   1269 			int index = vertexShader->getSemanticIndex(linkedAttribute[attributeIndex].name);
   1270 			int rows = std::max(VariableRowCount(linkedAttribute[attributeIndex].type), 1);
   1271 
   1272 			for(int r = 0; r < rows; r++)
   1273 			{
   1274 				attributeStream[attributeIndex++] = index++;
   1275 			}
   1276 		}
   1277 
   1278 		return true;
   1279 	}
   1280 
   1281 	int Program::getAttributeBinding(const std::string &name)
   1282 	{
   1283 		for(int location = 0; location < MAX_VERTEX_ATTRIBS; location++)
   1284 		{
   1285 			if(attributeBinding[location].find(name) != attributeBinding[location].end())
   1286 			{
   1287 				return location;
   1288 			}
   1289 		}
   1290 
   1291 		return -1;
   1292 	}
   1293 
   1294 	bool Program::linkUniforms(Shader *shader)
   1295 	{
   1296 		const glsl::ActiveUniforms &activeUniforms = shader->activeUniforms;
   1297 
   1298 		for(unsigned int uniformIndex = 0; uniformIndex < activeUniforms.size(); uniformIndex++)
   1299 		{
   1300 			const glsl::Uniform &uniform = activeUniforms[uniformIndex];
   1301 
   1302 			if(!defineUniform(shader->getType(), uniform.type, uniform.precision, uniform.name, uniform.arraySize, uniform.registerIndex))
   1303 			{
   1304 				return false;
   1305 			}
   1306 		}
   1307 
   1308 		return true;
   1309 	}
   1310 
   1311 	bool Program::defineUniform(GLenum shader, GLenum type, GLenum precision, const std::string &name, unsigned int arraySize, int registerIndex)
   1312 	{
   1313 		if(type == GL_SAMPLER_2D || type == GL_SAMPLER_CUBE)
   1314 		{
   1315 			int index = registerIndex;
   1316 
   1317 			do
   1318 			{
   1319 				if(shader == GL_VERTEX_SHADER)
   1320 				{
   1321 					if(index < MAX_VERTEX_TEXTURE_IMAGE_UNITS)
   1322 					{
   1323 						samplersVS[index].active = true;
   1324 						samplersVS[index].textureType = (type == GL_SAMPLER_CUBE) ? TEXTURE_CUBE : TEXTURE_2D;
   1325 						samplersVS[index].logicalTextureUnit = 0;
   1326 					}
   1327 					else
   1328 					{
   1329 					   appendToInfoLog("Vertex shader sampler count exceeds MAX_VERTEX_TEXTURE_IMAGE_UNITS (%d).", MAX_VERTEX_TEXTURE_IMAGE_UNITS);
   1330 					   return false;
   1331 					}
   1332 				}
   1333 				else if(shader == GL_FRAGMENT_SHADER)
   1334 				{
   1335 					if(index < MAX_TEXTURE_IMAGE_UNITS)
   1336 					{
   1337 						samplersPS[index].active = true;
   1338 						samplersPS[index].textureType = (type == GL_SAMPLER_CUBE) ? TEXTURE_CUBE : TEXTURE_2D;
   1339 						samplersPS[index].logicalTextureUnit = 0;
   1340 					}
   1341 					else
   1342 					{
   1343 						appendToInfoLog("Pixel shader sampler count exceeds MAX_TEXTURE_IMAGE_UNITS (%d).", MAX_TEXTURE_IMAGE_UNITS);
   1344 						return false;
   1345 					}
   1346 				}
   1347 				else UNREACHABLE(shader);
   1348 
   1349 				index++;
   1350 			}
   1351 			while(index < registerIndex + static_cast<int>(arraySize));
   1352 		}
   1353 
   1354 		Uniform *uniform = 0;
   1355 		GLint location = getUniformLocation(name);
   1356 
   1357 		if(location >= 0)   // Previously defined, types must match
   1358 		{
   1359 			uniform = uniforms[uniformIndex[location].index];
   1360 
   1361 			if(uniform->type != type)
   1362 			{
   1363 				appendToInfoLog("Types for uniform %s do not match between the vertex and fragment shader", uniform->name.c_str());
   1364 				return false;
   1365 			}
   1366 
   1367 			if(uniform->precision != precision)
   1368 			{
   1369 				appendToInfoLog("Precisions for uniform %s do not match between the vertex and fragment shader", uniform->name.c_str());
   1370 				return false;
   1371 			}
   1372 		}
   1373 		else
   1374 		{
   1375 			uniform = new Uniform(type, precision, name, arraySize);
   1376 		}
   1377 
   1378 		if(!uniform)
   1379 		{
   1380 			return false;
   1381 		}
   1382 
   1383 		if(shader == GL_VERTEX_SHADER)
   1384 		{
   1385 			uniform->vsRegisterIndex = registerIndex;
   1386 		}
   1387 		else if(shader == GL_FRAGMENT_SHADER)
   1388 		{
   1389 			uniform->psRegisterIndex = registerIndex;
   1390 		}
   1391 		else UNREACHABLE(shader);
   1392 
   1393 		if(location == -1)   // Not previously defined
   1394 		{
   1395 			uniforms.push_back(uniform);
   1396 			unsigned int index = uniforms.size() - 1;
   1397 
   1398 			for(int i = 0; i < uniform->size(); i++)
   1399 			{
   1400 				uniformIndex.push_back(UniformLocation(name, i, index));
   1401 			}
   1402 		}
   1403 
   1404 		if(shader == GL_VERTEX_SHADER)
   1405 		{
   1406 			if(registerIndex + uniform->registerCount() > MAX_VERTEX_UNIFORM_VECTORS)
   1407 			{
   1408 				appendToInfoLog("Vertex shader active uniforms exceed GL_MAX_VERTEX_UNIFORM_VECTORS (%d)", MAX_VERTEX_UNIFORM_VECTORS);
   1409 				return false;
   1410 			}
   1411 		}
   1412 		else if(shader == GL_FRAGMENT_SHADER)
   1413 		{
   1414 			if(registerIndex + uniform->registerCount() > MAX_FRAGMENT_UNIFORM_VECTORS)
   1415 			{
   1416 				appendToInfoLog("Fragment shader active uniforms exceed GL_MAX_FRAGMENT_UNIFORM_VECTORS (%d)", MAX_FRAGMENT_UNIFORM_VECTORS);
   1417 				return false;
   1418 			}
   1419 		}
   1420 		else UNREACHABLE(shader);
   1421 
   1422 		return true;
   1423 	}
   1424 
   1425 	bool Program::applyUniform1bv(GLint location, GLsizei count, const GLboolean *v)
   1426 	{
   1427 		int vector[MAX_UNIFORM_VECTORS][4];
   1428 
   1429 		for(int i = 0; i < count; i++)
   1430 		{
   1431 			vector[i][0] = (v[0] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF);
   1432 			vector[i][1] = 0;
   1433 			vector[i][2] = 0;
   1434 			vector[i][3] = 0;
   1435 
   1436 			v += 1;
   1437 		}
   1438 
   1439 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
   1440 
   1441 		if(targetUniform->psRegisterIndex != -1)
   1442 		{
   1443 			device->setPixelShaderConstantF(targetUniform->psRegisterIndex, (float*)vector, targetUniform->registerCount());
   1444 		}
   1445 
   1446 		if(targetUniform->vsRegisterIndex != -1)
   1447 		{
   1448 			device->setVertexShaderConstantF(targetUniform->vsRegisterIndex, (float*)vector, targetUniform->registerCount());
   1449 		}
   1450 
   1451 		return true;
   1452 	}
   1453 
   1454 	bool Program::applyUniform2bv(GLint location, GLsizei count, const GLboolean *v)
   1455 	{
   1456 		int vector[MAX_UNIFORM_VECTORS][4];
   1457 
   1458 		for(int i = 0; i < count; i++)
   1459 		{
   1460 			vector[i][0] = (v[0] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF);
   1461 			vector[i][1] = (v[1] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF);
   1462 			vector[i][2] = 0;
   1463 			vector[i][3] = 0;
   1464 
   1465 			v += 2;
   1466 		}
   1467 
   1468 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
   1469 
   1470 		if(targetUniform->psRegisterIndex != -1)
   1471 		{
   1472 			device->setPixelShaderConstantF(targetUniform->psRegisterIndex, (float*)vector, targetUniform->registerCount());
   1473 		}
   1474 
   1475 		if(targetUniform->vsRegisterIndex != -1)
   1476 		{
   1477 			device->setVertexShaderConstantF(targetUniform->vsRegisterIndex, (float*)vector, targetUniform->registerCount());
   1478 		}
   1479 
   1480 		return true;
   1481 	}
   1482 
   1483 	bool Program::applyUniform3bv(GLint location, GLsizei count, const GLboolean *v)
   1484 	{
   1485 		int vector[MAX_UNIFORM_VECTORS][4];
   1486 
   1487 		for(int i = 0; i < count; i++)
   1488 		{
   1489 			vector[i][0] = (v[0] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF);
   1490 			vector[i][1] = (v[1] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF);
   1491 			vector[i][2] = (v[2] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF);
   1492 			vector[i][3] = 0;
   1493 
   1494 			v += 3;
   1495 		}
   1496 
   1497 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
   1498 
   1499 		if(targetUniform->psRegisterIndex != -1)
   1500 		{
   1501 			device->setPixelShaderConstantF(targetUniform->psRegisterIndex, (float*)vector, targetUniform->registerCount());
   1502 		}
   1503 
   1504 		if(targetUniform->vsRegisterIndex != -1)
   1505 		{
   1506 			device->setVertexShaderConstantF(targetUniform->vsRegisterIndex, (float*)vector, targetUniform->registerCount());
   1507 		}
   1508 
   1509 		return true;
   1510 	}
   1511 
   1512 	bool Program::applyUniform4bv(GLint location, GLsizei count, const GLboolean *v)
   1513 	{
   1514 		int vector[MAX_UNIFORM_VECTORS][4];
   1515 
   1516 		for(int i = 0; i < count; i++)
   1517 		{
   1518 			vector[i][0] = (v[0] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF);
   1519 			vector[i][1] = (v[1] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF);
   1520 			vector[i][2] = (v[2] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF);
   1521 			vector[i][3] = (v[3] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF);
   1522 
   1523 			v += 4;
   1524 		}
   1525 
   1526 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
   1527 
   1528 		if(targetUniform->psRegisterIndex != -1)
   1529 		{
   1530 			device->setPixelShaderConstantF(targetUniform->psRegisterIndex, (float*)vector, targetUniform->registerCount());
   1531 		}
   1532 
   1533 		if(targetUniform->vsRegisterIndex != -1)
   1534 		{
   1535 			device->setVertexShaderConstantF(targetUniform->vsRegisterIndex, (float*)vector, targetUniform->registerCount());
   1536 		}
   1537 
   1538 		return true;
   1539 	}
   1540 
   1541 	bool Program::applyUniform1fv(GLint location, GLsizei count, const GLfloat *v)
   1542 	{
   1543 		float vector[MAX_UNIFORM_VECTORS][4];
   1544 
   1545 		for(int i = 0; i < count; i++)
   1546 		{
   1547 			vector[i][0] = v[0];
   1548 			vector[i][1] = 0;
   1549 			vector[i][2] = 0;
   1550 			vector[i][3] = 0;
   1551 
   1552 			v += 1;
   1553 		}
   1554 
   1555 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
   1556 
   1557 		if(targetUniform->psRegisterIndex != -1)
   1558 		{
   1559 			device->setPixelShaderConstantF(targetUniform->psRegisterIndex, (float*)vector, targetUniform->registerCount());
   1560 		}
   1561 
   1562 		if(targetUniform->vsRegisterIndex != -1)
   1563 		{
   1564 			device->setVertexShaderConstantF(targetUniform->vsRegisterIndex, (float*)vector, targetUniform->registerCount());
   1565 		}
   1566 
   1567 		return true;
   1568 	}
   1569 
   1570 	bool Program::applyUniform2fv(GLint location, GLsizei count, const GLfloat *v)
   1571 	{
   1572 		float vector[MAX_UNIFORM_VECTORS][4];
   1573 
   1574 		for(int i = 0; i < count; i++)
   1575 		{
   1576 			vector[i][0] = v[0];
   1577 			vector[i][1] = v[1];
   1578 			vector[i][2] = 0;
   1579 			vector[i][3] = 0;
   1580 
   1581 			v += 2;
   1582 		}
   1583 
   1584 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
   1585 
   1586 		if(targetUniform->psRegisterIndex != -1)
   1587 		{
   1588 			device->setPixelShaderConstantF(targetUniform->psRegisterIndex, (float*)vector, targetUniform->registerCount());
   1589 		}
   1590 
   1591 		if(targetUniform->vsRegisterIndex != -1)
   1592 		{
   1593 			device->setVertexShaderConstantF(targetUniform->vsRegisterIndex, (float*)vector, targetUniform->registerCount());
   1594 		}
   1595 
   1596 		return true;
   1597 	}
   1598 
   1599 	bool Program::applyUniform3fv(GLint location, GLsizei count, const GLfloat *v)
   1600 	{
   1601 		float vector[MAX_UNIFORM_VECTORS][4];
   1602 
   1603 		for(int i = 0; i < count; i++)
   1604 		{
   1605 			vector[i][0] = v[0];
   1606 			vector[i][1] = v[1];
   1607 			vector[i][2] = v[2];
   1608 			vector[i][3] = 0;
   1609 
   1610 			v += 3;
   1611 		}
   1612 
   1613 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
   1614 
   1615 		if(targetUniform->psRegisterIndex != -1)
   1616 		{
   1617 			device->setPixelShaderConstantF(targetUniform->psRegisterIndex, (float*)vector, targetUniform->registerCount());
   1618 		}
   1619 
   1620 		if(targetUniform->vsRegisterIndex != -1)
   1621 		{
   1622 			device->setVertexShaderConstantF(targetUniform->vsRegisterIndex, (float*)vector, targetUniform->registerCount());
   1623 		}
   1624 
   1625 		return true;
   1626 	}
   1627 
   1628 	bool Program::applyUniform4fv(GLint location, GLsizei count, const GLfloat *v)
   1629 	{
   1630 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
   1631 
   1632 		if(targetUniform->psRegisterIndex != -1)
   1633 		{
   1634 			device->setPixelShaderConstantF(targetUniform->psRegisterIndex, (float*)v, targetUniform->registerCount());
   1635 		}
   1636 
   1637 		if(targetUniform->vsRegisterIndex != -1)
   1638 		{
   1639 			device->setVertexShaderConstantF(targetUniform->vsRegisterIndex, (float*)v, targetUniform->registerCount());
   1640 		}
   1641 
   1642 		return true;
   1643 	}
   1644 
   1645 	bool Program::applyUniformMatrix2fv(GLint location, GLsizei count, const GLfloat *value)
   1646 	{
   1647 		float matrix[(MAX_UNIFORM_VECTORS + 1) / 2][2][4];
   1648 
   1649 		for(int i = 0; i < count; i++)
   1650 		{
   1651 			matrix[i][0][0] = value[0];	matrix[i][0][1] = value[1];	matrix[i][0][2] = 0; matrix[i][0][3] = 0;
   1652 			matrix[i][1][0] = value[2];	matrix[i][1][1] = value[3];	matrix[i][1][2] = 0; matrix[i][1][3] = 0;
   1653 
   1654 			value += 4;
   1655 		}
   1656 
   1657 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
   1658 
   1659 		if(targetUniform->psRegisterIndex != -1)
   1660 		{
   1661 			device->setPixelShaderConstantF(targetUniform->psRegisterIndex, (float*)matrix, targetUniform->registerCount());
   1662 		}
   1663 
   1664 		if(targetUniform->vsRegisterIndex != -1)
   1665 		{
   1666 			device->setVertexShaderConstantF(targetUniform->vsRegisterIndex, (float*)matrix, targetUniform->registerCount());
   1667 		}
   1668 
   1669 		return true;
   1670 	}
   1671 
   1672 	bool Program::applyUniformMatrix3fv(GLint location, GLsizei count, const GLfloat *value)
   1673 	{
   1674 		float matrix[(MAX_UNIFORM_VECTORS + 2) / 3][3][4];
   1675 
   1676 		for(int i = 0; i < count; i++)
   1677 		{
   1678 			matrix[i][0][0] = value[0];	matrix[i][0][1] = value[1];	matrix[i][0][2] = value[2];	matrix[i][0][3] = 0;
   1679 			matrix[i][1][0] = value[3];	matrix[i][1][1] = value[4];	matrix[i][1][2] = value[5];	matrix[i][1][3] = 0;
   1680 			matrix[i][2][0] = value[6];	matrix[i][2][1] = value[7];	matrix[i][2][2] = value[8];	matrix[i][2][3] = 0;
   1681 
   1682 			value += 9;
   1683 		}
   1684 
   1685 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
   1686 
   1687 		if(targetUniform->psRegisterIndex != -1)
   1688 		{
   1689 			device->setPixelShaderConstantF(targetUniform->psRegisterIndex, (float*)matrix, targetUniform->registerCount());
   1690 		}
   1691 
   1692 		if(targetUniform->vsRegisterIndex != -1)
   1693 		{
   1694 			device->setVertexShaderConstantF(targetUniform->vsRegisterIndex, (float*)matrix, targetUniform->registerCount());
   1695 		}
   1696 
   1697 		return true;
   1698 	}
   1699 
   1700 	bool Program::applyUniformMatrix4fv(GLint location, GLsizei count, const GLfloat *value)
   1701 	{
   1702 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
   1703 
   1704 		if(targetUniform->psRegisterIndex != -1)
   1705 		{
   1706 			device->setPixelShaderConstantF(targetUniform->psRegisterIndex, (float*)value, targetUniform->registerCount());
   1707 		}
   1708 
   1709 		if(targetUniform->vsRegisterIndex != -1)
   1710 		{
   1711 			device->setVertexShaderConstantF(targetUniform->vsRegisterIndex, (float*)value, targetUniform->registerCount());
   1712 		}
   1713 
   1714 		return true;
   1715 	}
   1716 
   1717 	bool Program::applyUniform1iv(GLint location, GLsizei count, const GLint *v)
   1718 	{
   1719 		float vector[MAX_UNIFORM_VECTORS][4];
   1720 
   1721 		for(int i = 0; i < count; i++)
   1722 		{
   1723 			vector[i][0] = (float)v[i];
   1724 			vector[i][1] = 0;
   1725 			vector[i][2] = 0;
   1726 			vector[i][3] = 0;
   1727 		}
   1728 
   1729 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
   1730 
   1731 		if(targetUniform->psRegisterIndex != -1)
   1732 		{
   1733 			if(targetUniform->type == GL_SAMPLER_2D ||
   1734 			   targetUniform->type == GL_SAMPLER_CUBE)
   1735 			{
   1736 				for(int i = 0; i < count; i++)
   1737 				{
   1738 					unsigned int samplerIndex = targetUniform->psRegisterIndex + i;
   1739 
   1740 					if(samplerIndex < MAX_TEXTURE_IMAGE_UNITS)
   1741 					{
   1742 						ASSERT(samplersPS[samplerIndex].active);
   1743 						samplersPS[samplerIndex].logicalTextureUnit = v[i];
   1744 					}
   1745 				}
   1746 			}
   1747 			else
   1748 			{
   1749 				device->setPixelShaderConstantF(targetUniform->psRegisterIndex, (float*)vector, targetUniform->registerCount());
   1750 			}
   1751 		}
   1752 
   1753 		if(targetUniform->vsRegisterIndex != -1)
   1754 		{
   1755 			if(targetUniform->type == GL_SAMPLER_2D ||
   1756 			   targetUniform->type == GL_SAMPLER_CUBE)
   1757 			{
   1758 				for(int i = 0; i < count; i++)
   1759 				{
   1760 					unsigned int samplerIndex = targetUniform->vsRegisterIndex + i;
   1761 
   1762 					if(samplerIndex < MAX_VERTEX_TEXTURE_IMAGE_UNITS)
   1763 					{
   1764 						ASSERT(samplersVS[samplerIndex].active);
   1765 						samplersVS[samplerIndex].logicalTextureUnit = v[i];
   1766 					}
   1767 				}
   1768 			}
   1769 			else
   1770 			{
   1771 				device->setVertexShaderConstantF(targetUniform->vsRegisterIndex, (float*)vector, targetUniform->registerCount());
   1772 			}
   1773 		}
   1774 
   1775 		return true;
   1776 	}
   1777 
   1778 	bool Program::applyUniform2iv(GLint location, GLsizei count, const GLint *v)
   1779 	{
   1780 		float vector[MAX_UNIFORM_VECTORS][4];
   1781 
   1782 		for(int i = 0; i < count; i++)
   1783 		{
   1784 			vector[i][0] = (float)v[0];
   1785 			vector[i][1] = (float)v[1];
   1786 			vector[i][2] = 0;
   1787 			vector[i][3] = 0;
   1788 
   1789 			v += 2;
   1790 		}
   1791 
   1792 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
   1793 
   1794 		if(targetUniform->psRegisterIndex != -1)
   1795 		{
   1796 			device->setPixelShaderConstantF(targetUniform->psRegisterIndex, (float*)vector, targetUniform->registerCount());
   1797 		}
   1798 
   1799 		if(targetUniform->vsRegisterIndex != -1)
   1800 		{
   1801 			device->setVertexShaderConstantF(targetUniform->vsRegisterIndex, (float*)vector, targetUniform->registerCount());
   1802 		}
   1803 
   1804 		return true;
   1805 	}
   1806 
   1807 	bool Program::applyUniform3iv(GLint location, GLsizei count, const GLint *v)
   1808 	{
   1809 		float vector[MAX_UNIFORM_VECTORS][4];
   1810 
   1811 		for(int i = 0; i < count; i++)
   1812 		{
   1813 			vector[i][0] = (float)v[0];
   1814 			vector[i][1] = (float)v[1];
   1815 			vector[i][2] = (float)v[2];
   1816 			vector[i][3] = 0;
   1817 
   1818 			v += 3;
   1819 		}
   1820 
   1821 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
   1822 
   1823 		if(targetUniform->psRegisterIndex != -1)
   1824 		{
   1825 			device->setPixelShaderConstantF(targetUniform->psRegisterIndex, (float*)vector, targetUniform->registerCount());
   1826 		}
   1827 
   1828 		if(targetUniform->vsRegisterIndex != -1)
   1829 		{
   1830 			device->setVertexShaderConstantF(targetUniform->vsRegisterIndex, (float*)vector, targetUniform->registerCount());
   1831 		}
   1832 
   1833 		return true;
   1834 	}
   1835 
   1836 	bool Program::applyUniform4iv(GLint location, GLsizei count, const GLint *v)
   1837 	{
   1838 		float vector[MAX_UNIFORM_VECTORS][4];
   1839 
   1840 		for(int i = 0; i < count; i++)
   1841 		{
   1842 			vector[i][0] = (float)v[0];
   1843 			vector[i][1] = (float)v[1];
   1844 			vector[i][2] = (float)v[2];
   1845 			vector[i][3] = (float)v[3];
   1846 
   1847 			v += 4;
   1848 		}
   1849 
   1850 		Uniform *targetUniform = uniforms[uniformIndex[location].index];
   1851 
   1852 		if(targetUniform->psRegisterIndex != -1)
   1853 		{
   1854 			device->setPixelShaderConstantF(targetUniform->psRegisterIndex, (float*)vector, targetUniform->registerCount());
   1855 		}
   1856 
   1857 		if(targetUniform->vsRegisterIndex != -1)
   1858 		{
   1859 			device->setVertexShaderConstantF(targetUniform->vsRegisterIndex, (float*)vector, targetUniform->registerCount());
   1860 		}
   1861 
   1862 		return true;
   1863 	}
   1864 
   1865 	void Program::appendToInfoLog(const char *format, ...)
   1866 	{
   1867 		if(!format)
   1868 		{
   1869 			return;
   1870 		}
   1871 
   1872 		char info[1024];
   1873 
   1874 		va_list vararg;
   1875 		va_start(vararg, format);
   1876 		vsnprintf(info, sizeof(info), format, vararg);
   1877 		va_end(vararg);
   1878 
   1879 		size_t infoLength = strlen(info);
   1880 
   1881 		if(!infoLog)
   1882 		{
   1883 			infoLog = new char[infoLength + 2];
   1884 			strcpy(infoLog, info);
   1885 			strcpy(infoLog + infoLength, "\n");
   1886 		}
   1887 		else
   1888 		{
   1889 			size_t logLength = strlen(infoLog);
   1890 			char *newLog = new char[logLength + infoLength + 2];
   1891 			strcpy(newLog, infoLog);
   1892 			strcpy(newLog + logLength, info);
   1893 			strcpy(newLog + logLength + infoLength, "\n");
   1894 
   1895 			delete[] infoLog;
   1896 			infoLog = newLog;
   1897 		}
   1898 	}
   1899 
   1900 	void Program::resetInfoLog()
   1901 	{
   1902 		if(infoLog)
   1903 		{
   1904 			delete[] infoLog;
   1905 			infoLog = 0;
   1906 		}
   1907 	}
   1908 
   1909 	// Returns the program object to an unlinked state, before re-linking, or at destruction
   1910 	void Program::unlink()
   1911 	{
   1912 		delete vertexBinary;
   1913 		vertexBinary = 0;
   1914 		delete pixelBinary;
   1915 		pixelBinary = 0;
   1916 
   1917 		for(int index = 0; index < MAX_VERTEX_ATTRIBS; index++)
   1918 		{
   1919 			linkedAttribute[index].name.clear();
   1920 			attributeStream[index] = -1;
   1921 		}
   1922 
   1923 		for(int index = 0; index < MAX_TEXTURE_IMAGE_UNITS; index++)
   1924 		{
   1925 			samplersPS[index].active = false;
   1926 		}
   1927 
   1928 		for(int index = 0; index < MAX_VERTEX_TEXTURE_IMAGE_UNITS; index++)
   1929 		{
   1930 			samplersVS[index].active = false;
   1931 		}
   1932 
   1933 		while(!uniforms.empty())
   1934 		{
   1935 			delete uniforms.back();
   1936 			uniforms.pop_back();
   1937 		}
   1938 
   1939 		uniformIndex.clear();
   1940 
   1941 		delete[] infoLog;
   1942 		infoLog = 0;
   1943 
   1944 		linked = false;
   1945 	}
   1946 
   1947 	bool Program::isLinked()
   1948 	{
   1949 		return linked;
   1950 	}
   1951 
   1952 	bool Program::isValidated() const
   1953 	{
   1954 		return validated;
   1955 	}
   1956 
   1957 	void Program::release()
   1958 	{
   1959 		referenceCount--;
   1960 
   1961 		if(referenceCount == 0 && orphaned)
   1962 		{
   1963 			resourceManager->deleteProgram(handle);
   1964 		}
   1965 	}
   1966 
   1967 	void Program::addRef()
   1968 	{
   1969 		referenceCount++;
   1970 	}
   1971 
   1972 	unsigned int Program::getRefCount() const
   1973 	{
   1974 		return referenceCount;
   1975 	}
   1976 
   1977 	unsigned int Program::getSerial() const
   1978 	{
   1979 		return serial;
   1980 	}
   1981 
   1982 	unsigned int Program::issueSerial()
   1983 	{
   1984 		return currentSerial++;
   1985 	}
   1986 
   1987 	int Program::getInfoLogLength() const
   1988 	{
   1989 		if(!infoLog)
   1990 		{
   1991 			return 0;
   1992 		}
   1993 		else
   1994 		{
   1995 		   return strlen(infoLog) + 1;
   1996 		}
   1997 	}
   1998 
   1999 	void Program::getInfoLog(GLsizei bufSize, GLsizei *length, char *buffer)
   2000 	{
   2001 		int index = 0;
   2002 
   2003 		if(bufSize > 0)
   2004 		{
   2005 			if(infoLog)
   2006 			{
   2007 				index = std::min(bufSize - 1, (int)strlen(infoLog));
   2008 				memcpy(buffer, infoLog, index);
   2009 			}
   2010 
   2011 			buffer[index] = '\0';
   2012 		}
   2013 
   2014 		if(length)
   2015 		{
   2016 			*length = index;
   2017 		}
   2018 	}
   2019 
   2020 	void Program::getAttachedShaders(GLsizei maxCount, GLsizei *count, GLuint *shaders)
   2021 	{
   2022 		int total = 0;
   2023 
   2024 		if(vertexShader)
   2025 		{
   2026 			if(total < maxCount)
   2027 			{
   2028 				shaders[total] = vertexShader->getName();
   2029 			}
   2030 
   2031 			total++;
   2032 		}
   2033 
   2034 		if(fragmentShader)
   2035 		{
   2036 			if(total < maxCount)
   2037 			{
   2038 				shaders[total] = fragmentShader->getName();
   2039 			}
   2040 
   2041 			total++;
   2042 		}
   2043 
   2044 		if(count)
   2045 		{
   2046 			*count = total;
   2047 		}
   2048 	}
   2049 
   2050 	void Program::getActiveAttribute(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) const
   2051 	{
   2052 		// Skip over inactive attributes
   2053 		unsigned int activeAttribute = 0;
   2054 		unsigned int attribute;
   2055 		for(attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++)
   2056 		{
   2057 			if(linkedAttribute[attribute].name.empty())
   2058 			{
   2059 				continue;
   2060 			}
   2061 
   2062 			if(activeAttribute == index)
   2063 			{
   2064 				break;
   2065 			}
   2066 
   2067 			activeAttribute++;
   2068 		}
   2069 
   2070 		if(bufsize > 0)
   2071 		{
   2072 			const char *string = linkedAttribute[attribute].name.c_str();
   2073 
   2074 			strncpy(name, string, bufsize);
   2075 			name[bufsize - 1] = '\0';
   2076 
   2077 			if(length)
   2078 			{
   2079 				*length = strlen(name);
   2080 			}
   2081 		}
   2082 
   2083 		*size = 1;   // Always a single 'type' instance
   2084 
   2085 		*type = linkedAttribute[attribute].type;
   2086 	}
   2087 
   2088 	size_t Program::getActiveAttributeCount() const
   2089 	{
   2090 		size_t count = 0;
   2091 
   2092 		for(size_t attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; ++attributeIndex)
   2093 		{
   2094 			if(!linkedAttribute[attributeIndex].name.empty())
   2095 			{
   2096 				count++;
   2097 			}
   2098 		}
   2099 
   2100 		return count;
   2101 	}
   2102 
   2103 	GLint Program::getActiveAttributeMaxLength() const
   2104 	{
   2105 		int maxLength = 0;
   2106 
   2107 		for(int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++)
   2108 		{
   2109 			if(!linkedAttribute[attributeIndex].name.empty())
   2110 			{
   2111 				maxLength = std::max((int)(linkedAttribute[attributeIndex].name.length() + 1), maxLength);
   2112 			}
   2113 		}
   2114 
   2115 		return maxLength;
   2116 	}
   2117 
   2118 	void Program::getActiveUniform(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) const
   2119 	{
   2120 		if(bufsize > 0)
   2121 		{
   2122 			std::string string = uniforms[index]->name;
   2123 
   2124 			if(uniforms[index]->isArray())
   2125 			{
   2126 				string += "[0]";
   2127 			}
   2128 
   2129 			strncpy(name, string.c_str(), bufsize);
   2130 			name[bufsize - 1] = '\0';
   2131 
   2132 			if(length)
   2133 			{
   2134 				*length = strlen(name);
   2135 			}
   2136 		}
   2137 
   2138 		*size = uniforms[index]->size();
   2139 
   2140 		*type = uniforms[index]->type;
   2141 	}
   2142 
   2143 	size_t Program::getActiveUniformCount() const
   2144 	{
   2145 		return uniforms.size();
   2146 	}
   2147 
   2148 	GLint Program::getActiveUniformMaxLength() const
   2149 	{
   2150 		int maxLength = 0;
   2151 
   2152 		unsigned int numUniforms = uniforms.size();
   2153 		for(unsigned int uniformIndex = 0; uniformIndex < numUniforms; uniformIndex++)
   2154 		{
   2155 			if(!uniforms[uniformIndex]->name.empty())
   2156 			{
   2157 				int length = (int)(uniforms[uniformIndex]->name.length() + 1);
   2158 				if(uniforms[uniformIndex]->isArray())
   2159 				{
   2160 					length += 3;  // Counting in "[0]".
   2161 				}
   2162 				maxLength = std::max(length, maxLength);
   2163 			}
   2164 		}
   2165 
   2166 		return maxLength;
   2167 	}
   2168 
   2169 	void Program::flagForDeletion()
   2170 	{
   2171 		orphaned = true;
   2172 	}
   2173 
   2174 	bool Program::isFlaggedForDeletion() const
   2175 	{
   2176 		return orphaned;
   2177 	}
   2178 
   2179 	void Program::validate()
   2180 	{
   2181 		resetInfoLog();
   2182 
   2183 		if(!isLinked())
   2184 		{
   2185 			appendToInfoLog("Program has not been successfully linked.");
   2186 			validated = false;
   2187 		}
   2188 		else
   2189 		{
   2190 			applyUniforms();
   2191 			if(!validateSamplers(true))
   2192 			{
   2193 				validated = false;
   2194 			}
   2195 			else
   2196 			{
   2197 				validated = true;
   2198 			}
   2199 		}
   2200 	}
   2201 
   2202 	bool Program::validateSamplers(bool logErrors)
   2203 	{
   2204 		// if any two active samplers in a program are of different types, but refer to the same
   2205 		// texture image unit, and this is the current program, then ValidateProgram will fail, and
   2206 		// DrawArrays and DrawElements will issue the INVALID_OPERATION error.
   2207 
   2208 		TextureType textureUnitType[MAX_COMBINED_TEXTURE_IMAGE_UNITS];
   2209 
   2210 		for(unsigned int i = 0; i < MAX_COMBINED_TEXTURE_IMAGE_UNITS; i++)
   2211 		{
   2212 			textureUnitType[i] = TEXTURE_UNKNOWN;
   2213 		}
   2214 
   2215 		for(unsigned int i = 0; i < MAX_TEXTURE_IMAGE_UNITS; i++)
   2216 		{
   2217 			if(samplersPS[i].active)
   2218 			{
   2219 				unsigned int unit = samplersPS[i].logicalTextureUnit;
   2220 
   2221 				if(unit >= MAX_COMBINED_TEXTURE_IMAGE_UNITS)
   2222 				{
   2223 					if(logErrors)
   2224 					{
   2225 						appendToInfoLog("Sampler uniform (%d) exceeds MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, MAX_COMBINED_TEXTURE_IMAGE_UNITS);
   2226 					}
   2227 
   2228 					return false;
   2229 				}
   2230 
   2231 				if(textureUnitType[unit] != TEXTURE_UNKNOWN)
   2232 				{
   2233 					if(samplersPS[i].textureType != textureUnitType[unit])
   2234 					{
   2235 						if(logErrors)
   2236 						{
   2237 							appendToInfoLog("Samplers of conflicting types refer to the same texture image unit (%d).", unit);
   2238 						}
   2239 
   2240 						return false;
   2241 					}
   2242 				}
   2243 				else
   2244 				{
   2245 					textureUnitType[unit] = samplersPS[i].textureType;
   2246 				}
   2247 			}
   2248 		}
   2249 
   2250 		for(unsigned int i = 0; i < MAX_VERTEX_TEXTURE_IMAGE_UNITS; i++)
   2251 		{
   2252 			if(samplersVS[i].active)
   2253 			{
   2254 				unsigned int unit = samplersVS[i].logicalTextureUnit;
   2255 
   2256 				if(unit >= MAX_COMBINED_TEXTURE_IMAGE_UNITS)
   2257 				{
   2258 					if(logErrors)
   2259 					{
   2260 						appendToInfoLog("Sampler uniform (%d) exceeds MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, MAX_COMBINED_TEXTURE_IMAGE_UNITS);
   2261 					}
   2262 
   2263 					return false;
   2264 				}
   2265 
   2266 				if(textureUnitType[unit] != TEXTURE_UNKNOWN)
   2267 				{
   2268 					if(samplersVS[i].textureType != textureUnitType[unit])
   2269 					{
   2270 						if(logErrors)
   2271 						{
   2272 							appendToInfoLog("Samplers of conflicting types refer to the same texture image unit (%d).", unit);
   2273 						}
   2274 
   2275 						return false;
   2276 					}
   2277 				}
   2278 				else
   2279 				{
   2280 					textureUnitType[unit] = samplersVS[i].textureType;
   2281 				}
   2282 			}
   2283 		}
   2284 
   2285 		return true;
   2286 	}
   2287 }
   2288