Home | History | Annotate | Download | only in CodeGen
      1 //===-------- InlineSpiller.cpp - Insert spills and restores inline -------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // The inline spiller modifies the machine function directly instead of
     11 // inserting spills and restores in VirtRegMap.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "regalloc"
     16 #include "Spiller.h"
     17 #include "VirtRegMap.h"
     18 #include "llvm/ADT/Statistic.h"
     19 #include "llvm/ADT/TinyPtrVector.h"
     20 #include "llvm/Analysis/AliasAnalysis.h"
     21 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     22 #include "llvm/CodeGen/LiveRangeEdit.h"
     23 #include "llvm/CodeGen/LiveStackAnalysis.h"
     24 #include "llvm/CodeGen/MachineDominators.h"
     25 #include "llvm/CodeGen/MachineInstrBundle.h"
     26 #include "llvm/CodeGen/MachineFrameInfo.h"
     27 #include "llvm/CodeGen/MachineFunction.h"
     28 #include "llvm/CodeGen/MachineLoopInfo.h"
     29 #include "llvm/CodeGen/MachineRegisterInfo.h"
     30 #include "llvm/Target/TargetMachine.h"
     31 #include "llvm/Target/TargetInstrInfo.h"
     32 #include "llvm/Support/CommandLine.h"
     33 #include "llvm/Support/Debug.h"
     34 #include "llvm/Support/raw_ostream.h"
     35 
     36 using namespace llvm;
     37 
     38 STATISTIC(NumSpilledRanges,   "Number of spilled live ranges");
     39 STATISTIC(NumSnippets,        "Number of spilled snippets");
     40 STATISTIC(NumSpills,          "Number of spills inserted");
     41 STATISTIC(NumSpillsRemoved,   "Number of spills removed");
     42 STATISTIC(NumReloads,         "Number of reloads inserted");
     43 STATISTIC(NumReloadsRemoved,  "Number of reloads removed");
     44 STATISTIC(NumFolded,          "Number of folded stack accesses");
     45 STATISTIC(NumFoldedLoads,     "Number of folded loads");
     46 STATISTIC(NumRemats,          "Number of rematerialized defs for spilling");
     47 STATISTIC(NumOmitReloadSpill, "Number of omitted spills of reloads");
     48 STATISTIC(NumHoists,          "Number of hoisted spills");
     49 
     50 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
     51                                      cl::desc("Disable inline spill hoisting"));
     52 
     53 namespace {
     54 class InlineSpiller : public Spiller {
     55   MachineFunctionPass &Pass;
     56   MachineFunction &MF;
     57   LiveIntervals &LIS;
     58   LiveStacks &LSS;
     59   AliasAnalysis *AA;
     60   MachineDominatorTree &MDT;
     61   MachineLoopInfo &Loops;
     62   VirtRegMap &VRM;
     63   MachineFrameInfo &MFI;
     64   MachineRegisterInfo &MRI;
     65   const TargetInstrInfo &TII;
     66   const TargetRegisterInfo &TRI;
     67 
     68   // Variables that are valid during spill(), but used by multiple methods.
     69   LiveRangeEdit *Edit;
     70   LiveInterval *StackInt;
     71   int StackSlot;
     72   unsigned Original;
     73 
     74   // All registers to spill to StackSlot, including the main register.
     75   SmallVector<unsigned, 8> RegsToSpill;
     76 
     77   // All COPY instructions to/from snippets.
     78   // They are ignored since both operands refer to the same stack slot.
     79   SmallPtrSet<MachineInstr*, 8> SnippetCopies;
     80 
     81   // Values that failed to remat at some point.
     82   SmallPtrSet<VNInfo*, 8> UsedValues;
     83 
     84 public:
     85   // Information about a value that was defined by a copy from a sibling
     86   // register.
     87   struct SibValueInfo {
     88     // True when all reaching defs were reloads: No spill is necessary.
     89     bool AllDefsAreReloads;
     90 
     91     // True when value is defined by an original PHI not from splitting.
     92     bool DefByOrigPHI;
     93 
     94     // True when the COPY defining this value killed its source.
     95     bool KillsSource;
     96 
     97     // The preferred register to spill.
     98     unsigned SpillReg;
     99 
    100     // The value of SpillReg that should be spilled.
    101     VNInfo *SpillVNI;
    102 
    103     // The block where SpillVNI should be spilled. Currently, this must be the
    104     // block containing SpillVNI->def.
    105     MachineBasicBlock *SpillMBB;
    106 
    107     // A defining instruction that is not a sibling copy or a reload, or NULL.
    108     // This can be used as a template for rematerialization.
    109     MachineInstr *DefMI;
    110 
    111     // List of values that depend on this one.  These values are actually the
    112     // same, but live range splitting has placed them in different registers,
    113     // or SSA update needed to insert PHI-defs to preserve SSA form.  This is
    114     // copies of the current value and phi-kills.  Usually only phi-kills cause
    115     // more than one dependent value.
    116     TinyPtrVector<VNInfo*> Deps;
    117 
    118     SibValueInfo(unsigned Reg, VNInfo *VNI)
    119       : AllDefsAreReloads(true), DefByOrigPHI(false), KillsSource(false),
    120         SpillReg(Reg), SpillVNI(VNI), SpillMBB(0), DefMI(0) {}
    121 
    122     // Returns true when a def has been found.
    123     bool hasDef() const { return DefByOrigPHI || DefMI; }
    124   };
    125 
    126 private:
    127   // Values in RegsToSpill defined by sibling copies.
    128   typedef DenseMap<VNInfo*, SibValueInfo> SibValueMap;
    129   SibValueMap SibValues;
    130 
    131   // Dead defs generated during spilling.
    132   SmallVector<MachineInstr*, 8> DeadDefs;
    133 
    134   ~InlineSpiller() {}
    135 
    136 public:
    137   InlineSpiller(MachineFunctionPass &pass,
    138                 MachineFunction &mf,
    139                 VirtRegMap &vrm)
    140     : Pass(pass),
    141       MF(mf),
    142       LIS(pass.getAnalysis<LiveIntervals>()),
    143       LSS(pass.getAnalysis<LiveStacks>()),
    144       AA(&pass.getAnalysis<AliasAnalysis>()),
    145       MDT(pass.getAnalysis<MachineDominatorTree>()),
    146       Loops(pass.getAnalysis<MachineLoopInfo>()),
    147       VRM(vrm),
    148       MFI(*mf.getFrameInfo()),
    149       MRI(mf.getRegInfo()),
    150       TII(*mf.getTarget().getInstrInfo()),
    151       TRI(*mf.getTarget().getRegisterInfo()) {}
    152 
    153   void spill(LiveRangeEdit &);
    154 
    155 private:
    156   bool isSnippet(const LiveInterval &SnipLI);
    157   void collectRegsToSpill();
    158 
    159   bool isRegToSpill(unsigned Reg) {
    160     return std::find(RegsToSpill.begin(),
    161                      RegsToSpill.end(), Reg) != RegsToSpill.end();
    162   }
    163 
    164   bool isSibling(unsigned Reg);
    165   MachineInstr *traceSiblingValue(unsigned, VNInfo*, VNInfo*);
    166   void propagateSiblingValue(SibValueMap::iterator, VNInfo *VNI = 0);
    167   void analyzeSiblingValues();
    168 
    169   bool hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI);
    170   void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
    171 
    172   void markValueUsed(LiveInterval*, VNInfo*);
    173   bool reMaterializeFor(LiveInterval&, MachineBasicBlock::iterator MI);
    174   void reMaterializeAll();
    175 
    176   bool coalesceStackAccess(MachineInstr *MI, unsigned Reg);
    177   bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> >,
    178                          MachineInstr *LoadMI = 0);
    179   void insertReload(LiveInterval &NewLI, SlotIndex,
    180                     MachineBasicBlock::iterator MI);
    181   void insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI,
    182                    SlotIndex, MachineBasicBlock::iterator MI);
    183 
    184   void spillAroundUses(unsigned Reg);
    185   void spillAll();
    186 };
    187 }
    188 
    189 namespace llvm {
    190 Spiller *createInlineSpiller(MachineFunctionPass &pass,
    191                              MachineFunction &mf,
    192                              VirtRegMap &vrm) {
    193   return new InlineSpiller(pass, mf, vrm);
    194 }
    195 }
    196 
    197 //===----------------------------------------------------------------------===//
    198 //                                Snippets
    199 //===----------------------------------------------------------------------===//
    200 
    201 // When spilling a virtual register, we also spill any snippets it is connected
    202 // to. The snippets are small live ranges that only have a single real use,
    203 // leftovers from live range splitting. Spilling them enables memory operand
    204 // folding or tightens the live range around the single use.
    205 //
    206 // This minimizes register pressure and maximizes the store-to-load distance for
    207 // spill slots which can be important in tight loops.
    208 
    209 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
    210 /// otherwise return 0.
    211 static unsigned isFullCopyOf(const MachineInstr *MI, unsigned Reg) {
    212   if (!MI->isFullCopy())
    213     return 0;
    214   if (MI->getOperand(0).getReg() == Reg)
    215       return MI->getOperand(1).getReg();
    216   if (MI->getOperand(1).getReg() == Reg)
    217       return MI->getOperand(0).getReg();
    218   return 0;
    219 }
    220 
    221 /// isSnippet - Identify if a live interval is a snippet that should be spilled.
    222 /// It is assumed that SnipLI is a virtual register with the same original as
    223 /// Edit->getReg().
    224 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
    225   unsigned Reg = Edit->getReg();
    226 
    227   // A snippet is a tiny live range with only a single instruction using it
    228   // besides copies to/from Reg or spills/fills. We accept:
    229   //
    230   //   %snip = COPY %Reg / FILL fi#
    231   //   %snip = USE %snip
    232   //   %Reg = COPY %snip / SPILL %snip, fi#
    233   //
    234   if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
    235     return false;
    236 
    237   MachineInstr *UseMI = 0;
    238 
    239   // Check that all uses satisfy our criteria.
    240   for (MachineRegisterInfo::reg_nodbg_iterator
    241          RI = MRI.reg_nodbg_begin(SnipLI.reg);
    242        MachineInstr *MI = RI.skipInstruction();) {
    243 
    244     // Allow copies to/from Reg.
    245     if (isFullCopyOf(MI, Reg))
    246       continue;
    247 
    248     // Allow stack slot loads.
    249     int FI;
    250     if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
    251       continue;
    252 
    253     // Allow stack slot stores.
    254     if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
    255       continue;
    256 
    257     // Allow a single additional instruction.
    258     if (UseMI && MI != UseMI)
    259       return false;
    260     UseMI = MI;
    261   }
    262   return true;
    263 }
    264 
    265 /// collectRegsToSpill - Collect live range snippets that only have a single
    266 /// real use.
    267 void InlineSpiller::collectRegsToSpill() {
    268   unsigned Reg = Edit->getReg();
    269 
    270   // Main register always spills.
    271   RegsToSpill.assign(1, Reg);
    272   SnippetCopies.clear();
    273 
    274   // Snippets all have the same original, so there can't be any for an original
    275   // register.
    276   if (Original == Reg)
    277     return;
    278 
    279   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Reg);
    280        MachineInstr *MI = RI.skipInstruction();) {
    281     unsigned SnipReg = isFullCopyOf(MI, Reg);
    282     if (!isSibling(SnipReg))
    283       continue;
    284     LiveInterval &SnipLI = LIS.getInterval(SnipReg);
    285     if (!isSnippet(SnipLI))
    286       continue;
    287     SnippetCopies.insert(MI);
    288     if (isRegToSpill(SnipReg))
    289       continue;
    290     RegsToSpill.push_back(SnipReg);
    291     DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
    292     ++NumSnippets;
    293   }
    294 }
    295 
    296 
    297 //===----------------------------------------------------------------------===//
    298 //                            Sibling Values
    299 //===----------------------------------------------------------------------===//
    300 
    301 // After live range splitting, some values to be spilled may be defined by
    302 // copies from sibling registers. We trace the sibling copies back to the
    303 // original value if it still exists. We need it for rematerialization.
    304 //
    305 // Even when the value can't be rematerialized, we still want to determine if
    306 // the value has already been spilled, or we may want to hoist the spill from a
    307 // loop.
    308 
    309 bool InlineSpiller::isSibling(unsigned Reg) {
    310   return TargetRegisterInfo::isVirtualRegister(Reg) &&
    311            VRM.getOriginal(Reg) == Original;
    312 }
    313 
    314 #ifndef NDEBUG
    315 static raw_ostream &operator<<(raw_ostream &OS,
    316                                const InlineSpiller::SibValueInfo &SVI) {
    317   OS << "spill " << PrintReg(SVI.SpillReg) << ':'
    318      << SVI.SpillVNI->id << '@' << SVI.SpillVNI->def;
    319   if (SVI.SpillMBB)
    320     OS << " in BB#" << SVI.SpillMBB->getNumber();
    321   if (SVI.AllDefsAreReloads)
    322     OS << " all-reloads";
    323   if (SVI.DefByOrigPHI)
    324     OS << " orig-phi";
    325   if (SVI.KillsSource)
    326     OS << " kill";
    327   OS << " deps[";
    328   for (unsigned i = 0, e = SVI.Deps.size(); i != e; ++i)
    329     OS << ' ' << SVI.Deps[i]->id << '@' << SVI.Deps[i]->def;
    330   OS << " ]";
    331   if (SVI.DefMI)
    332     OS << " def: " << *SVI.DefMI;
    333   else
    334     OS << '\n';
    335   return OS;
    336 }
    337 #endif
    338 
    339 /// propagateSiblingValue - Propagate the value in SVI to dependents if it is
    340 /// known.  Otherwise remember the dependency for later.
    341 ///
    342 /// @param SVI SibValues entry to propagate.
    343 /// @param VNI Dependent value, or NULL to propagate to all saved dependents.
    344 void InlineSpiller::propagateSiblingValue(SibValueMap::iterator SVI,
    345                                           VNInfo *VNI) {
    346   // When VNI is non-NULL, add it to SVI's deps, and only propagate to that.
    347   TinyPtrVector<VNInfo*> FirstDeps;
    348   if (VNI) {
    349     FirstDeps.push_back(VNI);
    350     SVI->second.Deps.push_back(VNI);
    351   }
    352 
    353   // Has the value been completely determined yet?  If not, defer propagation.
    354   if (!SVI->second.hasDef())
    355     return;
    356 
    357   // Work list of values to propagate.  It would be nice to use a SetVector
    358   // here, but then we would be forced to use a SmallSet.
    359   SmallVector<SibValueMap::iterator, 8> WorkList(1, SVI);
    360   SmallPtrSet<VNInfo*, 8> WorkSet;
    361 
    362   do {
    363     SVI = WorkList.pop_back_val();
    364     WorkSet.erase(SVI->first);
    365     TinyPtrVector<VNInfo*> *Deps = VNI ? &FirstDeps : &SVI->second.Deps;
    366     VNI = 0;
    367 
    368     SibValueInfo &SV = SVI->second;
    369     if (!SV.SpillMBB)
    370       SV.SpillMBB = LIS.getMBBFromIndex(SV.SpillVNI->def);
    371 
    372     DEBUG(dbgs() << "  prop to " << Deps->size() << ": "
    373                  << SVI->first->id << '@' << SVI->first->def << ":\t" << SV);
    374 
    375     assert(SV.hasDef() && "Propagating undefined value");
    376 
    377     // Should this value be propagated as a preferred spill candidate?  We don't
    378     // propagate values of registers that are about to spill.
    379     bool PropSpill = !DisableHoisting && !isRegToSpill(SV.SpillReg);
    380     unsigned SpillDepth = ~0u;
    381 
    382     for (TinyPtrVector<VNInfo*>::iterator DepI = Deps->begin(),
    383          DepE = Deps->end(); DepI != DepE; ++DepI) {
    384       SibValueMap::iterator DepSVI = SibValues.find(*DepI);
    385       assert(DepSVI != SibValues.end() && "Dependent value not in SibValues");
    386       SibValueInfo &DepSV = DepSVI->second;
    387       if (!DepSV.SpillMBB)
    388         DepSV.SpillMBB = LIS.getMBBFromIndex(DepSV.SpillVNI->def);
    389 
    390       bool Changed = false;
    391 
    392       // Propagate defining instruction.
    393       if (!DepSV.hasDef()) {
    394         Changed = true;
    395         DepSV.DefMI = SV.DefMI;
    396         DepSV.DefByOrigPHI = SV.DefByOrigPHI;
    397       }
    398 
    399       // Propagate AllDefsAreReloads.  For PHI values, this computes an AND of
    400       // all predecessors.
    401       if (!SV.AllDefsAreReloads && DepSV.AllDefsAreReloads) {
    402         Changed = true;
    403         DepSV.AllDefsAreReloads = false;
    404       }
    405 
    406       // Propagate best spill value.
    407       if (PropSpill && SV.SpillVNI != DepSV.SpillVNI) {
    408         if (SV.SpillMBB == DepSV.SpillMBB) {
    409           // DepSV is in the same block.  Hoist when dominated.
    410           if (DepSV.KillsSource && SV.SpillVNI->def < DepSV.SpillVNI->def) {
    411             // This is an alternative def earlier in the same MBB.
    412             // Hoist the spill as far as possible in SpillMBB. This can ease
    413             // register pressure:
    414             //
    415             //   x = def
    416             //   y = use x
    417             //   s = copy x
    418             //
    419             // Hoisting the spill of s to immediately after the def removes the
    420             // interference between x and y:
    421             //
    422             //   x = def
    423             //   spill x
    424             //   y = use x<kill>
    425             //
    426             // This hoist only helps when the DepSV copy kills its source.
    427             Changed = true;
    428             DepSV.SpillReg = SV.SpillReg;
    429             DepSV.SpillVNI = SV.SpillVNI;
    430             DepSV.SpillMBB = SV.SpillMBB;
    431           }
    432         } else {
    433           // DepSV is in a different block.
    434           if (SpillDepth == ~0u)
    435             SpillDepth = Loops.getLoopDepth(SV.SpillMBB);
    436 
    437           // Also hoist spills to blocks with smaller loop depth, but make sure
    438           // that the new value dominates.  Non-phi dependents are always
    439           // dominated, phis need checking.
    440           if ((Loops.getLoopDepth(DepSV.SpillMBB) > SpillDepth) &&
    441               (!DepSVI->first->isPHIDef() ||
    442                MDT.dominates(SV.SpillMBB, DepSV.SpillMBB))) {
    443             Changed = true;
    444             DepSV.SpillReg = SV.SpillReg;
    445             DepSV.SpillVNI = SV.SpillVNI;
    446             DepSV.SpillMBB = SV.SpillMBB;
    447           }
    448         }
    449       }
    450 
    451       if (!Changed)
    452         continue;
    453 
    454       // Something changed in DepSVI. Propagate to dependents.
    455       if (WorkSet.insert(DepSVI->first))
    456         WorkList.push_back(DepSVI);
    457 
    458       DEBUG(dbgs() << "  update " << DepSVI->first->id << '@'
    459             << DepSVI->first->def << " to:\t" << DepSV);
    460     }
    461   } while (!WorkList.empty());
    462 }
    463 
    464 /// traceSiblingValue - Trace a value that is about to be spilled back to the
    465 /// real defining instructions by looking through sibling copies. Always stay
    466 /// within the range of OrigVNI so the registers are known to carry the same
    467 /// value.
    468 ///
    469 /// Determine if the value is defined by all reloads, so spilling isn't
    470 /// necessary - the value is already in the stack slot.
    471 ///
    472 /// Return a defining instruction that may be a candidate for rematerialization.
    473 ///
    474 MachineInstr *InlineSpiller::traceSiblingValue(unsigned UseReg, VNInfo *UseVNI,
    475                                                VNInfo *OrigVNI) {
    476   // Check if a cached value already exists.
    477   SibValueMap::iterator SVI;
    478   bool Inserted;
    479   tie(SVI, Inserted) =
    480     SibValues.insert(std::make_pair(UseVNI, SibValueInfo(UseReg, UseVNI)));
    481   if (!Inserted) {
    482     DEBUG(dbgs() << "Cached value " << PrintReg(UseReg) << ':'
    483                  << UseVNI->id << '@' << UseVNI->def << ' ' << SVI->second);
    484     return SVI->second.DefMI;
    485   }
    486 
    487   DEBUG(dbgs() << "Tracing value " << PrintReg(UseReg) << ':'
    488                << UseVNI->id << '@' << UseVNI->def << '\n');
    489 
    490   // List of (Reg, VNI) that have been inserted into SibValues, but need to be
    491   // processed.
    492   SmallVector<std::pair<unsigned, VNInfo*>, 8> WorkList;
    493   WorkList.push_back(std::make_pair(UseReg, UseVNI));
    494 
    495   do {
    496     unsigned Reg;
    497     VNInfo *VNI;
    498     tie(Reg, VNI) = WorkList.pop_back_val();
    499     DEBUG(dbgs() << "  " << PrintReg(Reg) << ':' << VNI->id << '@' << VNI->def
    500                  << ":\t");
    501 
    502     // First check if this value has already been computed.
    503     SVI = SibValues.find(VNI);
    504     assert(SVI != SibValues.end() && "Missing SibValues entry");
    505 
    506     // Trace through PHI-defs created by live range splitting.
    507     if (VNI->isPHIDef()) {
    508       // Stop at original PHIs.  We don't know the value at the predecessors.
    509       if (VNI->def == OrigVNI->def) {
    510         DEBUG(dbgs() << "orig phi value\n");
    511         SVI->second.DefByOrigPHI = true;
    512         SVI->second.AllDefsAreReloads = false;
    513         propagateSiblingValue(SVI);
    514         continue;
    515       }
    516 
    517       // This is a PHI inserted by live range splitting.  We could trace the
    518       // live-out value from predecessor blocks, but that search can be very
    519       // expensive if there are many predecessors and many more PHIs as
    520       // generated by tail-dup when it sees an indirectbr.  Instead, look at
    521       // all the non-PHI defs that have the same value as OrigVNI.  They must
    522       // jointly dominate VNI->def.  This is not optimal since VNI may actually
    523       // be jointly dominated by a smaller subset of defs, so there is a change
    524       // we will miss a AllDefsAreReloads optimization.
    525 
    526       // Separate all values dominated by OrigVNI into PHIs and non-PHIs.
    527       SmallVector<VNInfo*, 8> PHIs, NonPHIs;
    528       LiveInterval &LI = LIS.getInterval(Reg);
    529       LiveInterval &OrigLI = LIS.getInterval(Original);
    530 
    531       for (LiveInterval::vni_iterator VI = LI.vni_begin(), VE = LI.vni_end();
    532            VI != VE; ++VI) {
    533         VNInfo *VNI2 = *VI;
    534         if (VNI2->isUnused())
    535           continue;
    536         if (!OrigLI.containsOneValue() &&
    537             OrigLI.getVNInfoAt(VNI2->def) != OrigVNI)
    538           continue;
    539         if (VNI2->isPHIDef() && VNI2->def != OrigVNI->def)
    540           PHIs.push_back(VNI2);
    541         else
    542           NonPHIs.push_back(VNI2);
    543       }
    544       DEBUG(dbgs() << "split phi value, checking " << PHIs.size()
    545                    << " phi-defs, and " << NonPHIs.size()
    546                    << " non-phi/orig defs\n");
    547 
    548       // Create entries for all the PHIs.  Don't add them to the worklist, we
    549       // are processing all of them in one go here.
    550       for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
    551         SibValues.insert(std::make_pair(PHIs[i], SibValueInfo(Reg, PHIs[i])));
    552 
    553       // Add every PHI as a dependent of all the non-PHIs.
    554       for (unsigned i = 0, e = NonPHIs.size(); i != e; ++i) {
    555         VNInfo *NonPHI = NonPHIs[i];
    556         // Known value? Try an insertion.
    557         tie(SVI, Inserted) =
    558           SibValues.insert(std::make_pair(NonPHI, SibValueInfo(Reg, NonPHI)));
    559         // Add all the PHIs as dependents of NonPHI.
    560         for (unsigned pi = 0, pe = PHIs.size(); pi != pe; ++pi)
    561           SVI->second.Deps.push_back(PHIs[pi]);
    562         // This is the first time we see NonPHI, add it to the worklist.
    563         if (Inserted)
    564           WorkList.push_back(std::make_pair(Reg, NonPHI));
    565         else
    566           // Propagate to all inserted PHIs, not just VNI.
    567           propagateSiblingValue(SVI);
    568       }
    569 
    570       // Next work list item.
    571       continue;
    572     }
    573 
    574     MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
    575     assert(MI && "Missing def");
    576 
    577     // Trace through sibling copies.
    578     if (unsigned SrcReg = isFullCopyOf(MI, Reg)) {
    579       if (isSibling(SrcReg)) {
    580         LiveInterval &SrcLI = LIS.getInterval(SrcReg);
    581         LiveRange *SrcLR = SrcLI.getLiveRangeContaining(VNI->def.getRegSlot(true));
    582         assert(SrcLR && "Copy from non-existing value");
    583         // Check if this COPY kills its source.
    584         SVI->second.KillsSource = (SrcLR->end == VNI->def);
    585         VNInfo *SrcVNI = SrcLR->valno;
    586         DEBUG(dbgs() << "copy of " << PrintReg(SrcReg) << ':'
    587                      << SrcVNI->id << '@' << SrcVNI->def
    588                      << " kill=" << unsigned(SVI->second.KillsSource) << '\n');
    589         // Known sibling source value? Try an insertion.
    590         tie(SVI, Inserted) = SibValues.insert(std::make_pair(SrcVNI,
    591                                                  SibValueInfo(SrcReg, SrcVNI)));
    592         // This is the first time we see Src, add it to the worklist.
    593         if (Inserted)
    594           WorkList.push_back(std::make_pair(SrcReg, SrcVNI));
    595         propagateSiblingValue(SVI, VNI);
    596         // Next work list item.
    597         continue;
    598       }
    599     }
    600 
    601     // Track reachable reloads.
    602     SVI->second.DefMI = MI;
    603     SVI->second.SpillMBB = MI->getParent();
    604     int FI;
    605     if (Reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) {
    606       DEBUG(dbgs() << "reload\n");
    607       propagateSiblingValue(SVI);
    608       // Next work list item.
    609       continue;
    610     }
    611 
    612     // Potential remat candidate.
    613     DEBUG(dbgs() << "def " << *MI);
    614     SVI->second.AllDefsAreReloads = false;
    615     propagateSiblingValue(SVI);
    616   } while (!WorkList.empty());
    617 
    618   // Look up the value we were looking for.  We already did this lokup at the
    619   // top of the function, but SibValues may have been invalidated.
    620   SVI = SibValues.find(UseVNI);
    621   assert(SVI != SibValues.end() && "Didn't compute requested info");
    622   DEBUG(dbgs() << "  traced to:\t" << SVI->second);
    623   return SVI->second.DefMI;
    624 }
    625 
    626 /// analyzeSiblingValues - Trace values defined by sibling copies back to
    627 /// something that isn't a sibling copy.
    628 ///
    629 /// Keep track of values that may be rematerializable.
    630 void InlineSpiller::analyzeSiblingValues() {
    631   SibValues.clear();
    632 
    633   // No siblings at all?
    634   if (Edit->getReg() == Original)
    635     return;
    636 
    637   LiveInterval &OrigLI = LIS.getInterval(Original);
    638   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
    639     unsigned Reg = RegsToSpill[i];
    640     LiveInterval &LI = LIS.getInterval(Reg);
    641     for (LiveInterval::const_vni_iterator VI = LI.vni_begin(),
    642          VE = LI.vni_end(); VI != VE; ++VI) {
    643       VNInfo *VNI = *VI;
    644       if (VNI->isUnused())
    645         continue;
    646       MachineInstr *DefMI = 0;
    647       if (!VNI->isPHIDef()) {
    648        DefMI = LIS.getInstructionFromIndex(VNI->def);
    649        assert(DefMI && "No defining instruction");
    650       }
    651       // Check possible sibling copies.
    652       if (VNI->isPHIDef() || DefMI->isCopy()) {
    653         VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def);
    654         assert(OrigVNI && "Def outside original live range");
    655         if (OrigVNI->def != VNI->def)
    656           DefMI = traceSiblingValue(Reg, VNI, OrigVNI);
    657       }
    658       if (DefMI && Edit->checkRematerializable(VNI, DefMI, AA)) {
    659         DEBUG(dbgs() << "Value " << PrintReg(Reg) << ':' << VNI->id << '@'
    660                      << VNI->def << " may remat from " << *DefMI);
    661       }
    662     }
    663   }
    664 }
    665 
    666 /// hoistSpill - Given a sibling copy that defines a value to be spilled, insert
    667 /// a spill at a better location.
    668 bool InlineSpiller::hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI) {
    669   SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
    670   VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
    671   assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
    672   SibValueMap::iterator I = SibValues.find(VNI);
    673   if (I == SibValues.end())
    674     return false;
    675 
    676   const SibValueInfo &SVI = I->second;
    677 
    678   // Let the normal folding code deal with the boring case.
    679   if (!SVI.AllDefsAreReloads && SVI.SpillVNI == VNI)
    680     return false;
    681 
    682   // SpillReg may have been deleted by remat and DCE.
    683   if (!LIS.hasInterval(SVI.SpillReg)) {
    684     DEBUG(dbgs() << "Stale interval: " << PrintReg(SVI.SpillReg) << '\n');
    685     SibValues.erase(I);
    686     return false;
    687   }
    688 
    689   LiveInterval &SibLI = LIS.getInterval(SVI.SpillReg);
    690   if (!SibLI.containsValue(SVI.SpillVNI)) {
    691     DEBUG(dbgs() << "Stale value: " << PrintReg(SVI.SpillReg) << '\n');
    692     SibValues.erase(I);
    693     return false;
    694   }
    695 
    696   // Conservatively extend the stack slot range to the range of the original
    697   // value. We may be able to do better with stack slot coloring by being more
    698   // careful here.
    699   assert(StackInt && "No stack slot assigned yet.");
    700   LiveInterval &OrigLI = LIS.getInterval(Original);
    701   VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
    702   StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
    703   DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
    704                << *StackInt << '\n');
    705 
    706   // Already spilled everywhere.
    707   if (SVI.AllDefsAreReloads) {
    708     DEBUG(dbgs() << "\tno spill needed: " << SVI);
    709     ++NumOmitReloadSpill;
    710     return true;
    711   }
    712   // We are going to spill SVI.SpillVNI immediately after its def, so clear out
    713   // any later spills of the same value.
    714   eliminateRedundantSpills(SibLI, SVI.SpillVNI);
    715 
    716   MachineBasicBlock *MBB = LIS.getMBBFromIndex(SVI.SpillVNI->def);
    717   MachineBasicBlock::iterator MII;
    718   if (SVI.SpillVNI->isPHIDef())
    719     MII = MBB->SkipPHIsAndLabels(MBB->begin());
    720   else {
    721     MachineInstr *DefMI = LIS.getInstructionFromIndex(SVI.SpillVNI->def);
    722     assert(DefMI && "Defining instruction disappeared");
    723     MII = DefMI;
    724     ++MII;
    725   }
    726   // Insert spill without kill flag immediately after def.
    727   TII.storeRegToStackSlot(*MBB, MII, SVI.SpillReg, false, StackSlot,
    728                           MRI.getRegClass(SVI.SpillReg), &TRI);
    729   --MII; // Point to store instruction.
    730   LIS.InsertMachineInstrInMaps(MII);
    731   DEBUG(dbgs() << "\thoisted: " << SVI.SpillVNI->def << '\t' << *MII);
    732 
    733   ++NumSpills;
    734   ++NumHoists;
    735   return true;
    736 }
    737 
    738 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
    739 /// redundant spills of this value in SLI.reg and sibling copies.
    740 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
    741   assert(VNI && "Missing value");
    742   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
    743   WorkList.push_back(std::make_pair(&SLI, VNI));
    744   assert(StackInt && "No stack slot assigned yet.");
    745 
    746   do {
    747     LiveInterval *LI;
    748     tie(LI, VNI) = WorkList.pop_back_val();
    749     unsigned Reg = LI->reg;
    750     DEBUG(dbgs() << "Checking redundant spills for "
    751                  << VNI->id << '@' << VNI->def << " in " << *LI << '\n');
    752 
    753     // Regs to spill are taken care of.
    754     if (isRegToSpill(Reg))
    755       continue;
    756 
    757     // Add all of VNI's live range to StackInt.
    758     StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
    759     DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
    760 
    761     // Find all spills and copies of VNI.
    762     for (MachineRegisterInfo::use_nodbg_iterator UI = MRI.use_nodbg_begin(Reg);
    763          MachineInstr *MI = UI.skipInstruction();) {
    764       if (!MI->isCopy() && !MI->mayStore())
    765         continue;
    766       SlotIndex Idx = LIS.getInstructionIndex(MI);
    767       if (LI->getVNInfoAt(Idx) != VNI)
    768         continue;
    769 
    770       // Follow sibling copies down the dominator tree.
    771       if (unsigned DstReg = isFullCopyOf(MI, Reg)) {
    772         if (isSibling(DstReg)) {
    773            LiveInterval &DstLI = LIS.getInterval(DstReg);
    774            VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
    775            assert(DstVNI && "Missing defined value");
    776            assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
    777            WorkList.push_back(std::make_pair(&DstLI, DstVNI));
    778         }
    779         continue;
    780       }
    781 
    782       // Erase spills.
    783       int FI;
    784       if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
    785         DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << *MI);
    786         // eliminateDeadDefs won't normally remove stores, so switch opcode.
    787         MI->setDesc(TII.get(TargetOpcode::KILL));
    788         DeadDefs.push_back(MI);
    789         ++NumSpillsRemoved;
    790         --NumSpills;
    791       }
    792     }
    793   } while (!WorkList.empty());
    794 }
    795 
    796 
    797 //===----------------------------------------------------------------------===//
    798 //                            Rematerialization
    799 //===----------------------------------------------------------------------===//
    800 
    801 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining
    802 /// instruction cannot be eliminated. See through snippet copies
    803 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
    804   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
    805   WorkList.push_back(std::make_pair(LI, VNI));
    806   do {
    807     tie(LI, VNI) = WorkList.pop_back_val();
    808     if (!UsedValues.insert(VNI))
    809       continue;
    810 
    811     if (VNI->isPHIDef()) {
    812       MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
    813       for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
    814              PE = MBB->pred_end(); PI != PE; ++PI) {
    815         VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI));
    816         if (PVNI)
    817           WorkList.push_back(std::make_pair(LI, PVNI));
    818       }
    819       continue;
    820     }
    821 
    822     // Follow snippet copies.
    823     MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
    824     if (!SnippetCopies.count(MI))
    825       continue;
    826     LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
    827     assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy");
    828     VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
    829     assert(SnipVNI && "Snippet undefined before copy");
    830     WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
    831   } while (!WorkList.empty());
    832 }
    833 
    834 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
    835 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg,
    836                                      MachineBasicBlock::iterator MI) {
    837   SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
    838   VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
    839 
    840   if (!ParentVNI) {
    841     DEBUG(dbgs() << "\tadding <undef> flags: ");
    842     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    843       MachineOperand &MO = MI->getOperand(i);
    844       if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg)
    845         MO.setIsUndef();
    846     }
    847     DEBUG(dbgs() << UseIdx << '\t' << *MI);
    848     return true;
    849   }
    850 
    851   if (SnippetCopies.count(MI))
    852     return false;
    853 
    854   // Use an OrigVNI from traceSiblingValue when ParentVNI is a sibling copy.
    855   LiveRangeEdit::Remat RM(ParentVNI);
    856   SibValueMap::const_iterator SibI = SibValues.find(ParentVNI);
    857   if (SibI != SibValues.end())
    858     RM.OrigMI = SibI->second.DefMI;
    859   if (!Edit->canRematerializeAt(RM, UseIdx, false)) {
    860     markValueUsed(&VirtReg, ParentVNI);
    861     DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << *MI);
    862     return false;
    863   }
    864 
    865   // If the instruction also writes VirtReg.reg, it had better not require the
    866   // same register for uses and defs.
    867   SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
    868   MIBundleOperands::RegInfo RI =
    869     MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops);
    870   if (RI.Tied) {
    871     markValueUsed(&VirtReg, ParentVNI);
    872     DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << *MI);
    873     return false;
    874   }
    875 
    876   // Before rematerializing into a register for a single instruction, try to
    877   // fold a load into the instruction. That avoids allocating a new register.
    878   if (RM.OrigMI->canFoldAsLoad() &&
    879       foldMemoryOperand(Ops, RM.OrigMI)) {
    880     Edit->markRematerialized(RM.ParentVNI);
    881     ++NumFoldedLoads;
    882     return true;
    883   }
    884 
    885   // Alocate a new register for the remat.
    886   LiveInterval &NewLI = Edit->createFrom(Original);
    887   NewLI.markNotSpillable();
    888 
    889   // Finally we can rematerialize OrigMI before MI.
    890   SlotIndex DefIdx = Edit->rematerializeAt(*MI->getParent(), MI, NewLI.reg, RM,
    891                                            TRI);
    892   DEBUG(dbgs() << "\tremat:  " << DefIdx << '\t'
    893                << *LIS.getInstructionFromIndex(DefIdx));
    894 
    895   // Replace operands
    896   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
    897     MachineOperand &MO = MI->getOperand(Ops[i].second);
    898     if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) {
    899       MO.setReg(NewLI.reg);
    900       MO.setIsKill();
    901     }
    902   }
    903   DEBUG(dbgs() << "\t        " << UseIdx << '\t' << *MI);
    904 
    905   VNInfo *DefVNI = NewLI.getNextValue(DefIdx, LIS.getVNInfoAllocator());
    906   NewLI.addRange(LiveRange(DefIdx, UseIdx.getRegSlot(), DefVNI));
    907   DEBUG(dbgs() << "\tinterval: " << NewLI << '\n');
    908   ++NumRemats;
    909   return true;
    910 }
    911 
    912 /// reMaterializeAll - Try to rematerialize as many uses as possible,
    913 /// and trim the live ranges after.
    914 void InlineSpiller::reMaterializeAll() {
    915   // analyzeSiblingValues has already tested all relevant defining instructions.
    916   if (!Edit->anyRematerializable(AA))
    917     return;
    918 
    919   UsedValues.clear();
    920 
    921   // Try to remat before all uses of snippets.
    922   bool anyRemat = false;
    923   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
    924     unsigned Reg = RegsToSpill[i];
    925     LiveInterval &LI = LIS.getInterval(Reg);
    926     for (MachineRegisterInfo::use_nodbg_iterator
    927          RI = MRI.use_nodbg_begin(Reg);
    928          MachineInstr *MI = RI.skipBundle();)
    929       anyRemat |= reMaterializeFor(LI, MI);
    930   }
    931   if (!anyRemat)
    932     return;
    933 
    934   // Remove any values that were completely rematted.
    935   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
    936     unsigned Reg = RegsToSpill[i];
    937     LiveInterval &LI = LIS.getInterval(Reg);
    938     for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end();
    939          I != E; ++I) {
    940       VNInfo *VNI = *I;
    941       if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
    942         continue;
    943       MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
    944       MI->addRegisterDead(Reg, &TRI);
    945       if (!MI->allDefsAreDead())
    946         continue;
    947       DEBUG(dbgs() << "All defs dead: " << *MI);
    948       DeadDefs.push_back(MI);
    949     }
    950   }
    951 
    952   // Eliminate dead code after remat. Note that some snippet copies may be
    953   // deleted here.
    954   if (DeadDefs.empty())
    955     return;
    956   DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
    957   Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
    958 
    959   // Get rid of deleted and empty intervals.
    960   for (unsigned i = RegsToSpill.size(); i != 0; --i) {
    961     unsigned Reg = RegsToSpill[i-1];
    962     if (!LIS.hasInterval(Reg)) {
    963       RegsToSpill.erase(RegsToSpill.begin() + (i - 1));
    964       continue;
    965     }
    966     LiveInterval &LI = LIS.getInterval(Reg);
    967     if (!LI.empty())
    968       continue;
    969     Edit->eraseVirtReg(Reg);
    970     RegsToSpill.erase(RegsToSpill.begin() + (i - 1));
    971   }
    972   DEBUG(dbgs() << RegsToSpill.size() << " registers to spill after remat.\n");
    973 }
    974 
    975 
    976 //===----------------------------------------------------------------------===//
    977 //                                 Spilling
    978 //===----------------------------------------------------------------------===//
    979 
    980 /// If MI is a load or store of StackSlot, it can be removed.
    981 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) {
    982   int FI = 0;
    983   unsigned InstrReg = TII.isLoadFromStackSlot(MI, FI);
    984   bool IsLoad = InstrReg;
    985   if (!IsLoad)
    986     InstrReg = TII.isStoreToStackSlot(MI, FI);
    987 
    988   // We have a stack access. Is it the right register and slot?
    989   if (InstrReg != Reg || FI != StackSlot)
    990     return false;
    991 
    992   DEBUG(dbgs() << "Coalescing stack access: " << *MI);
    993   LIS.RemoveMachineInstrFromMaps(MI);
    994   MI->eraseFromParent();
    995 
    996   if (IsLoad) {
    997     ++NumReloadsRemoved;
    998     --NumReloads;
    999   } else {
   1000     ++NumSpillsRemoved;
   1001     --NumSpills;
   1002   }
   1003 
   1004   return true;
   1005 }
   1006 
   1007 /// foldMemoryOperand - Try folding stack slot references in Ops into their
   1008 /// instructions.
   1009 ///
   1010 /// @param Ops    Operand indices from analyzeVirtReg().
   1011 /// @param LoadMI Load instruction to use instead of stack slot when non-null.
   1012 /// @return       True on success.
   1013 bool InlineSpiller::
   1014 foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> > Ops,
   1015                   MachineInstr *LoadMI) {
   1016   if (Ops.empty())
   1017     return false;
   1018   // Don't attempt folding in bundles.
   1019   MachineInstr *MI = Ops.front().first;
   1020   if (Ops.back().first != MI || MI->isBundled())
   1021     return false;
   1022 
   1023   bool WasCopy = MI->isCopy();
   1024   unsigned ImpReg = 0;
   1025 
   1026   // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
   1027   // operands.
   1028   SmallVector<unsigned, 8> FoldOps;
   1029   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1030     unsigned Idx = Ops[i].second;
   1031     MachineOperand &MO = MI->getOperand(Idx);
   1032     if (MO.isImplicit()) {
   1033       ImpReg = MO.getReg();
   1034       continue;
   1035     }
   1036     // FIXME: Teach targets to deal with subregs.
   1037     if (MO.getSubReg())
   1038       return false;
   1039     // We cannot fold a load instruction into a def.
   1040     if (LoadMI && MO.isDef())
   1041       return false;
   1042     // Tied use operands should not be passed to foldMemoryOperand.
   1043     if (!MI->isRegTiedToDefOperand(Idx))
   1044       FoldOps.push_back(Idx);
   1045   }
   1046 
   1047   MachineInstr *FoldMI =
   1048                 LoadMI ? TII.foldMemoryOperand(MI, FoldOps, LoadMI)
   1049                        : TII.foldMemoryOperand(MI, FoldOps, StackSlot);
   1050   if (!FoldMI)
   1051     return false;
   1052   LIS.ReplaceMachineInstrInMaps(MI, FoldMI);
   1053   MI->eraseFromParent();
   1054 
   1055   // TII.foldMemoryOperand may have left some implicit operands on the
   1056   // instruction.  Strip them.
   1057   if (ImpReg)
   1058     for (unsigned i = FoldMI->getNumOperands(); i; --i) {
   1059       MachineOperand &MO = FoldMI->getOperand(i - 1);
   1060       if (!MO.isReg() || !MO.isImplicit())
   1061         break;
   1062       if (MO.getReg() == ImpReg)
   1063         FoldMI->RemoveOperand(i - 1);
   1064     }
   1065 
   1066   DEBUG(dbgs() << "\tfolded:  " << LIS.getInstructionIndex(FoldMI) << '\t'
   1067                << *FoldMI);
   1068   if (!WasCopy)
   1069     ++NumFolded;
   1070   else if (Ops.front().second == 0)
   1071     ++NumSpills;
   1072   else
   1073     ++NumReloads;
   1074   return true;
   1075 }
   1076 
   1077 /// insertReload - Insert a reload of NewLI.reg before MI.
   1078 void InlineSpiller::insertReload(LiveInterval &NewLI,
   1079                                  SlotIndex Idx,
   1080                                  MachineBasicBlock::iterator MI) {
   1081   MachineBasicBlock &MBB = *MI->getParent();
   1082   TII.loadRegFromStackSlot(MBB, MI, NewLI.reg, StackSlot,
   1083                            MRI.getRegClass(NewLI.reg), &TRI);
   1084   --MI; // Point to load instruction.
   1085   SlotIndex LoadIdx = LIS.InsertMachineInstrInMaps(MI).getRegSlot();
   1086   DEBUG(dbgs() << "\treload:  " << LoadIdx << '\t' << *MI);
   1087   VNInfo *LoadVNI = NewLI.getNextValue(LoadIdx, LIS.getVNInfoAllocator());
   1088   NewLI.addRange(LiveRange(LoadIdx, Idx, LoadVNI));
   1089   ++NumReloads;
   1090 }
   1091 
   1092 /// insertSpill - Insert a spill of NewLI.reg after MI.
   1093 void InlineSpiller::insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI,
   1094                                 SlotIndex Idx, MachineBasicBlock::iterator MI) {
   1095   MachineBasicBlock &MBB = *MI->getParent();
   1096   TII.storeRegToStackSlot(MBB, ++MI, NewLI.reg, true, StackSlot,
   1097                           MRI.getRegClass(NewLI.reg), &TRI);
   1098   --MI; // Point to store instruction.
   1099   SlotIndex StoreIdx = LIS.InsertMachineInstrInMaps(MI).getRegSlot();
   1100   DEBUG(dbgs() << "\tspilled: " << StoreIdx << '\t' << *MI);
   1101   VNInfo *StoreVNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator());
   1102   NewLI.addRange(LiveRange(Idx, StoreIdx, StoreVNI));
   1103   ++NumSpills;
   1104 }
   1105 
   1106 /// spillAroundUses - insert spill code around each use of Reg.
   1107 void InlineSpiller::spillAroundUses(unsigned Reg) {
   1108   DEBUG(dbgs() << "spillAroundUses " << PrintReg(Reg) << '\n');
   1109   LiveInterval &OldLI = LIS.getInterval(Reg);
   1110 
   1111   // Iterate over instructions using Reg.
   1112   for (MachineRegisterInfo::reg_iterator RegI = MRI.reg_begin(Reg);
   1113        MachineInstr *MI = RegI.skipBundle();) {
   1114 
   1115     // Debug values are not allowed to affect codegen.
   1116     if (MI->isDebugValue()) {
   1117       // Modify DBG_VALUE now that the value is in a spill slot.
   1118       uint64_t Offset = MI->getOperand(1).getImm();
   1119       const MDNode *MDPtr = MI->getOperand(2).getMetadata();
   1120       DebugLoc DL = MI->getDebugLoc();
   1121       if (MachineInstr *NewDV = TII.emitFrameIndexDebugValue(MF, StackSlot,
   1122                                                            Offset, MDPtr, DL)) {
   1123         DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI);
   1124         MachineBasicBlock *MBB = MI->getParent();
   1125         MBB->insert(MBB->erase(MI), NewDV);
   1126       } else {
   1127         DEBUG(dbgs() << "Removing debug info due to spill:" << "\t" << *MI);
   1128         MI->eraseFromParent();
   1129       }
   1130       continue;
   1131     }
   1132 
   1133     // Ignore copies to/from snippets. We'll delete them.
   1134     if (SnippetCopies.count(MI))
   1135       continue;
   1136 
   1137     // Stack slot accesses may coalesce away.
   1138     if (coalesceStackAccess(MI, Reg))
   1139       continue;
   1140 
   1141     // Analyze instruction.
   1142     SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
   1143     MIBundleOperands::RegInfo RI =
   1144       MIBundleOperands(MI).analyzeVirtReg(Reg, &Ops);
   1145 
   1146     // Find the slot index where this instruction reads and writes OldLI.
   1147     // This is usually the def slot, except for tied early clobbers.
   1148     SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
   1149     if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
   1150       if (SlotIndex::isSameInstr(Idx, VNI->def))
   1151         Idx = VNI->def;
   1152 
   1153     // Check for a sibling copy.
   1154     unsigned SibReg = isFullCopyOf(MI, Reg);
   1155     if (SibReg && isSibling(SibReg)) {
   1156       // This may actually be a copy between snippets.
   1157       if (isRegToSpill(SibReg)) {
   1158         DEBUG(dbgs() << "Found new snippet copy: " << *MI);
   1159         SnippetCopies.insert(MI);
   1160         continue;
   1161       }
   1162       if (RI.Writes) {
   1163         // Hoist the spill of a sib-reg copy.
   1164         if (hoistSpill(OldLI, MI)) {
   1165           // This COPY is now dead, the value is already in the stack slot.
   1166           MI->getOperand(0).setIsDead();
   1167           DeadDefs.push_back(MI);
   1168           continue;
   1169         }
   1170       } else {
   1171         // This is a reload for a sib-reg copy. Drop spills downstream.
   1172         LiveInterval &SibLI = LIS.getInterval(SibReg);
   1173         eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
   1174         // The COPY will fold to a reload below.
   1175       }
   1176     }
   1177 
   1178     // Attempt to fold memory ops.
   1179     if (foldMemoryOperand(Ops))
   1180       continue;
   1181 
   1182     // Allocate interval around instruction.
   1183     // FIXME: Infer regclass from instruction alone.
   1184     LiveInterval &NewLI = Edit->createFrom(Reg);
   1185     NewLI.markNotSpillable();
   1186 
   1187     if (RI.Reads)
   1188       insertReload(NewLI, Idx, MI);
   1189 
   1190     // Rewrite instruction operands.
   1191     bool hasLiveDef = false;
   1192     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1193       MachineOperand &MO = Ops[i].first->getOperand(Ops[i].second);
   1194       MO.setReg(NewLI.reg);
   1195       if (MO.isUse()) {
   1196         if (!Ops[i].first->isRegTiedToDefOperand(Ops[i].second))
   1197           MO.setIsKill();
   1198       } else {
   1199         if (!MO.isDead())
   1200           hasLiveDef = true;
   1201       }
   1202     }
   1203     DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI);
   1204 
   1205     // FIXME: Use a second vreg if instruction has no tied ops.
   1206     if (RI.Writes) {
   1207       if (hasLiveDef)
   1208         insertSpill(NewLI, OldLI, Idx, MI);
   1209       else {
   1210         // This instruction defines a dead value.  We don't need to spill it,
   1211         // but do create a live range for the dead value.
   1212         VNInfo *VNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator());
   1213         NewLI.addRange(LiveRange(Idx, Idx.getDeadSlot(), VNI));
   1214       }
   1215     }
   1216 
   1217     DEBUG(dbgs() << "\tinterval: " << NewLI << '\n');
   1218   }
   1219 }
   1220 
   1221 /// spillAll - Spill all registers remaining after rematerialization.
   1222 void InlineSpiller::spillAll() {
   1223   // Update LiveStacks now that we are committed to spilling.
   1224   if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
   1225     StackSlot = VRM.assignVirt2StackSlot(Original);
   1226     StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
   1227     StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
   1228   } else
   1229     StackInt = &LSS.getInterval(StackSlot);
   1230 
   1231   if (Original != Edit->getReg())
   1232     VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
   1233 
   1234   assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
   1235   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
   1236     StackInt->MergeRangesInAsValue(LIS.getInterval(RegsToSpill[i]),
   1237                                    StackInt->getValNumInfo(0));
   1238   DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
   1239 
   1240   // Spill around uses of all RegsToSpill.
   1241   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
   1242     spillAroundUses(RegsToSpill[i]);
   1243 
   1244   // Hoisted spills may cause dead code.
   1245   if (!DeadDefs.empty()) {
   1246     DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
   1247     Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
   1248   }
   1249 
   1250   // Finally delete the SnippetCopies.
   1251   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
   1252     for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(RegsToSpill[i]);
   1253          MachineInstr *MI = RI.skipInstruction();) {
   1254       assert(SnippetCopies.count(MI) && "Remaining use wasn't a snippet copy");
   1255       // FIXME: Do this with a LiveRangeEdit callback.
   1256       LIS.RemoveMachineInstrFromMaps(MI);
   1257       MI->eraseFromParent();
   1258     }
   1259   }
   1260 
   1261   // Delete all spilled registers.
   1262   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
   1263     Edit->eraseVirtReg(RegsToSpill[i]);
   1264 }
   1265 
   1266 void InlineSpiller::spill(LiveRangeEdit &edit) {
   1267   ++NumSpilledRanges;
   1268   Edit = &edit;
   1269   assert(!TargetRegisterInfo::isStackSlot(edit.getReg())
   1270          && "Trying to spill a stack slot.");
   1271   // Share a stack slot among all descendants of Original.
   1272   Original = VRM.getOriginal(edit.getReg());
   1273   StackSlot = VRM.getStackSlot(Original);
   1274   StackInt = 0;
   1275 
   1276   DEBUG(dbgs() << "Inline spilling "
   1277                << MRI.getRegClass(edit.getReg())->getName()
   1278                << ':' << edit.getParent() << "\nFrom original "
   1279                << LIS.getInterval(Original) << '\n');
   1280   assert(edit.getParent().isSpillable() &&
   1281          "Attempting to spill already spilled value.");
   1282   assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
   1283 
   1284   collectRegsToSpill();
   1285   analyzeSiblingValues();
   1286   reMaterializeAll();
   1287 
   1288   // Remat may handle everything.
   1289   if (!RegsToSpill.empty())
   1290     spillAll();
   1291 
   1292   Edit->calculateRegClassAndHint(MF, Loops);
   1293 }
   1294